1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/cred.h> 23 #include <linux/vmalloc.h> 24 #include <linux/bio.h> 25 #include <linux/blkdev.h> 26 #include <linux/quotaops.h> 27 #include <crypto/hash.h> 28 29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 30 #include <linux/fscrypt.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_KVMALLOC, 48 FAULT_PAGE_ALLOC, 49 FAULT_PAGE_GET, 50 FAULT_ALLOC_BIO, 51 FAULT_ALLOC_NID, 52 FAULT_ORPHAN, 53 FAULT_BLOCK, 54 FAULT_DIR_DEPTH, 55 FAULT_EVICT_INODE, 56 FAULT_TRUNCATE, 57 FAULT_IO, 58 FAULT_CHECKPOINT, 59 FAULT_MAX, 60 }; 61 62 struct f2fs_fault_info { 63 atomic_t inject_ops; 64 unsigned int inject_rate; 65 unsigned int inject_type; 66 }; 67 68 extern char *fault_name[FAULT_MAX]; 69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 70 #endif 71 72 /* 73 * For mount options 74 */ 75 #define F2FS_MOUNT_BG_GC 0x00000001 76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 77 #define F2FS_MOUNT_DISCARD 0x00000004 78 #define F2FS_MOUNT_NOHEAP 0x00000008 79 #define F2FS_MOUNT_XATTR_USER 0x00000010 80 #define F2FS_MOUNT_POSIX_ACL 0x00000020 81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 83 #define F2FS_MOUNT_INLINE_DATA 0x00000100 84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 86 #define F2FS_MOUNT_NOBARRIER 0x00000800 87 #define F2FS_MOUNT_FASTBOOT 0x00001000 88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 89 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 92 #define F2FS_MOUNT_ADAPTIVE 0x00020000 93 #define F2FS_MOUNT_LFS 0x00040000 94 #define F2FS_MOUNT_USRQUOTA 0x00080000 95 #define F2FS_MOUNT_GRPQUOTA 0x00100000 96 #define F2FS_MOUNT_PRJQUOTA 0x00200000 97 #define F2FS_MOUNT_QUOTA 0x00400000 98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 100 101 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 102 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 103 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 104 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 105 106 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 107 typecheck(unsigned long long, b) && \ 108 ((long long)((a) - (b)) > 0)) 109 110 typedef u32 block_t; /* 111 * should not change u32, since it is the on-disk block 112 * address format, __le32. 113 */ 114 typedef u32 nid_t; 115 116 struct f2fs_mount_info { 117 unsigned int opt; 118 int write_io_size_bits; /* Write IO size bits */ 119 block_t root_reserved_blocks; /* root reserved blocks */ 120 kuid_t s_resuid; /* reserved blocks for uid */ 121 kgid_t s_resgid; /* reserved blocks for gid */ 122 int active_logs; /* # of active logs */ 123 int inline_xattr_size; /* inline xattr size */ 124 #ifdef CONFIG_F2FS_FAULT_INJECTION 125 struct f2fs_fault_info fault_info; /* For fault injection */ 126 #endif 127 #ifdef CONFIG_QUOTA 128 /* Names of quota files with journalled quota */ 129 char *s_qf_names[MAXQUOTAS]; 130 int s_jquota_fmt; /* Format of quota to use */ 131 #endif 132 /* For which write hints are passed down to block layer */ 133 int whint_mode; 134 int alloc_mode; /* segment allocation policy */ 135 int fsync_mode; /* fsync policy */ 136 bool test_dummy_encryption; /* test dummy encryption */ 137 }; 138 139 #define F2FS_FEATURE_ENCRYPT 0x0001 140 #define F2FS_FEATURE_BLKZONED 0x0002 141 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 142 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 143 #define F2FS_FEATURE_PRJQUOTA 0x0010 144 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 145 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 146 #define F2FS_FEATURE_QUOTA_INO 0x0080 147 #define F2FS_FEATURE_INODE_CRTIME 0x0100 148 #define F2FS_FEATURE_LOST_FOUND 0x0200 149 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */ 150 151 #define F2FS_HAS_FEATURE(sb, mask) \ 152 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 153 #define F2FS_SET_FEATURE(sb, mask) \ 154 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 155 #define F2FS_CLEAR_FEATURE(sb, mask) \ 156 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 157 158 /* 159 * Default values for user and/or group using reserved blocks 160 */ 161 #define F2FS_DEF_RESUID 0 162 #define F2FS_DEF_RESGID 0 163 164 /* 165 * For checkpoint manager 166 */ 167 enum { 168 NAT_BITMAP, 169 SIT_BITMAP 170 }; 171 172 #define CP_UMOUNT 0x00000001 173 #define CP_FASTBOOT 0x00000002 174 #define CP_SYNC 0x00000004 175 #define CP_RECOVERY 0x00000008 176 #define CP_DISCARD 0x00000010 177 #define CP_TRIMMED 0x00000020 178 179 #define DEF_BATCHED_TRIM_SECTIONS 2048 180 #define BATCHED_TRIM_SEGMENTS(sbi) \ 181 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 182 #define BATCHED_TRIM_BLOCKS(sbi) \ 183 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 184 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 185 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 186 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 187 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 188 #define DEF_CP_INTERVAL 60 /* 60 secs */ 189 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 190 191 struct cp_control { 192 int reason; 193 __u64 trim_start; 194 __u64 trim_end; 195 __u64 trim_minlen; 196 }; 197 198 /* 199 * For CP/NAT/SIT/SSA readahead 200 */ 201 enum { 202 META_CP, 203 META_NAT, 204 META_SIT, 205 META_SSA, 206 META_POR, 207 }; 208 209 /* for the list of ino */ 210 enum { 211 ORPHAN_INO, /* for orphan ino list */ 212 APPEND_INO, /* for append ino list */ 213 UPDATE_INO, /* for update ino list */ 214 TRANS_DIR_INO, /* for trasactions dir ino list */ 215 FLUSH_INO, /* for multiple device flushing */ 216 MAX_INO_ENTRY, /* max. list */ 217 }; 218 219 struct ino_entry { 220 struct list_head list; /* list head */ 221 nid_t ino; /* inode number */ 222 unsigned int dirty_device; /* dirty device bitmap */ 223 }; 224 225 /* for the list of inodes to be GCed */ 226 struct inode_entry { 227 struct list_head list; /* list head */ 228 struct inode *inode; /* vfs inode pointer */ 229 }; 230 231 /* for the bitmap indicate blocks to be discarded */ 232 struct discard_entry { 233 struct list_head list; /* list head */ 234 block_t start_blkaddr; /* start blockaddr of current segment */ 235 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 236 }; 237 238 /* default discard granularity of inner discard thread, unit: block count */ 239 #define DEFAULT_DISCARD_GRANULARITY 16 240 241 /* max discard pend list number */ 242 #define MAX_PLIST_NUM 512 243 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 244 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 245 246 enum { 247 D_PREP, 248 D_SUBMIT, 249 D_DONE, 250 }; 251 252 struct discard_info { 253 block_t lstart; /* logical start address */ 254 block_t len; /* length */ 255 block_t start; /* actual start address in dev */ 256 }; 257 258 struct discard_cmd { 259 struct rb_node rb_node; /* rb node located in rb-tree */ 260 union { 261 struct { 262 block_t lstart; /* logical start address */ 263 block_t len; /* length */ 264 block_t start; /* actual start address in dev */ 265 }; 266 struct discard_info di; /* discard info */ 267 268 }; 269 struct list_head list; /* command list */ 270 struct completion wait; /* compleation */ 271 struct block_device *bdev; /* bdev */ 272 unsigned short ref; /* reference count */ 273 unsigned char state; /* state */ 274 int error; /* bio error */ 275 }; 276 277 enum { 278 DPOLICY_BG, 279 DPOLICY_FORCE, 280 DPOLICY_FSTRIM, 281 DPOLICY_UMOUNT, 282 MAX_DPOLICY, 283 }; 284 285 struct discard_policy { 286 int type; /* type of discard */ 287 unsigned int min_interval; /* used for candidates exist */ 288 unsigned int max_interval; /* used for candidates not exist */ 289 unsigned int max_requests; /* # of discards issued per round */ 290 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 291 bool io_aware; /* issue discard in idle time */ 292 bool sync; /* submit discard with REQ_SYNC flag */ 293 unsigned int granularity; /* discard granularity */ 294 }; 295 296 struct discard_cmd_control { 297 struct task_struct *f2fs_issue_discard; /* discard thread */ 298 struct list_head entry_list; /* 4KB discard entry list */ 299 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 300 struct list_head wait_list; /* store on-flushing entries */ 301 struct list_head fstrim_list; /* in-flight discard from fstrim */ 302 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 303 unsigned int discard_wake; /* to wake up discard thread */ 304 struct mutex cmd_lock; 305 unsigned int nr_discards; /* # of discards in the list */ 306 unsigned int max_discards; /* max. discards to be issued */ 307 unsigned int discard_granularity; /* discard granularity */ 308 unsigned int undiscard_blks; /* # of undiscard blocks */ 309 atomic_t issued_discard; /* # of issued discard */ 310 atomic_t issing_discard; /* # of issing discard */ 311 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 312 struct rb_root root; /* root of discard rb-tree */ 313 }; 314 315 /* for the list of fsync inodes, used only during recovery */ 316 struct fsync_inode_entry { 317 struct list_head list; /* list head */ 318 struct inode *inode; /* vfs inode pointer */ 319 block_t blkaddr; /* block address locating the last fsync */ 320 block_t last_dentry; /* block address locating the last dentry */ 321 }; 322 323 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 324 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 325 326 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 327 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 328 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 329 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 330 331 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 332 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 333 334 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 335 { 336 int before = nats_in_cursum(journal); 337 338 journal->n_nats = cpu_to_le16(before + i); 339 return before; 340 } 341 342 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 343 { 344 int before = sits_in_cursum(journal); 345 346 journal->n_sits = cpu_to_le16(before + i); 347 return before; 348 } 349 350 static inline bool __has_cursum_space(struct f2fs_journal *journal, 351 int size, int type) 352 { 353 if (type == NAT_JOURNAL) 354 return size <= MAX_NAT_JENTRIES(journal); 355 return size <= MAX_SIT_JENTRIES(journal); 356 } 357 358 /* 359 * ioctl commands 360 */ 361 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 362 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 363 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 364 365 #define F2FS_IOCTL_MAGIC 0xf5 366 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 367 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 368 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 369 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 370 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 371 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 372 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 373 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 374 struct f2fs_defragment) 375 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 376 struct f2fs_move_range) 377 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 378 struct f2fs_flush_device) 379 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 380 struct f2fs_gc_range) 381 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 382 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 383 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 384 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 385 386 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 387 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 388 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 389 390 /* 391 * should be same as XFS_IOC_GOINGDOWN. 392 * Flags for going down operation used by FS_IOC_GOINGDOWN 393 */ 394 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 395 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 396 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 397 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 398 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 399 400 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 401 /* 402 * ioctl commands in 32 bit emulation 403 */ 404 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 405 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 406 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 407 #endif 408 409 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 410 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 411 412 struct f2fs_gc_range { 413 u32 sync; 414 u64 start; 415 u64 len; 416 }; 417 418 struct f2fs_defragment { 419 u64 start; 420 u64 len; 421 }; 422 423 struct f2fs_move_range { 424 u32 dst_fd; /* destination fd */ 425 u64 pos_in; /* start position in src_fd */ 426 u64 pos_out; /* start position in dst_fd */ 427 u64 len; /* size to move */ 428 }; 429 430 struct f2fs_flush_device { 431 u32 dev_num; /* device number to flush */ 432 u32 segments; /* # of segments to flush */ 433 }; 434 435 /* for inline stuff */ 436 #define DEF_INLINE_RESERVED_SIZE 1 437 #define DEF_MIN_INLINE_SIZE 1 438 static inline int get_extra_isize(struct inode *inode); 439 static inline int get_inline_xattr_addrs(struct inode *inode); 440 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 441 (CUR_ADDRS_PER_INODE(inode) - \ 442 get_inline_xattr_addrs(inode) - \ 443 DEF_INLINE_RESERVED_SIZE)) 444 445 /* for inline dir */ 446 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 447 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 448 BITS_PER_BYTE + 1)) 449 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 450 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 451 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 452 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 453 NR_INLINE_DENTRY(inode) + \ 454 INLINE_DENTRY_BITMAP_SIZE(inode))) 455 456 /* 457 * For INODE and NODE manager 458 */ 459 /* for directory operations */ 460 struct f2fs_dentry_ptr { 461 struct inode *inode; 462 void *bitmap; 463 struct f2fs_dir_entry *dentry; 464 __u8 (*filename)[F2FS_SLOT_LEN]; 465 int max; 466 int nr_bitmap; 467 }; 468 469 static inline void make_dentry_ptr_block(struct inode *inode, 470 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 471 { 472 d->inode = inode; 473 d->max = NR_DENTRY_IN_BLOCK; 474 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 475 d->bitmap = t->dentry_bitmap; 476 d->dentry = t->dentry; 477 d->filename = t->filename; 478 } 479 480 static inline void make_dentry_ptr_inline(struct inode *inode, 481 struct f2fs_dentry_ptr *d, void *t) 482 { 483 int entry_cnt = NR_INLINE_DENTRY(inode); 484 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 485 int reserved_size = INLINE_RESERVED_SIZE(inode); 486 487 d->inode = inode; 488 d->max = entry_cnt; 489 d->nr_bitmap = bitmap_size; 490 d->bitmap = t; 491 d->dentry = t + bitmap_size + reserved_size; 492 d->filename = t + bitmap_size + reserved_size + 493 SIZE_OF_DIR_ENTRY * entry_cnt; 494 } 495 496 /* 497 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 498 * as its node offset to distinguish from index node blocks. 499 * But some bits are used to mark the node block. 500 */ 501 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 502 >> OFFSET_BIT_SHIFT) 503 enum { 504 ALLOC_NODE, /* allocate a new node page if needed */ 505 LOOKUP_NODE, /* look up a node without readahead */ 506 LOOKUP_NODE_RA, /* 507 * look up a node with readahead called 508 * by get_data_block. 509 */ 510 }; 511 512 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 513 514 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 515 516 /* vector size for gang look-up from extent cache that consists of radix tree */ 517 #define EXT_TREE_VEC_SIZE 64 518 519 /* for in-memory extent cache entry */ 520 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 521 522 /* number of extent info in extent cache we try to shrink */ 523 #define EXTENT_CACHE_SHRINK_NUMBER 128 524 525 struct rb_entry { 526 struct rb_node rb_node; /* rb node located in rb-tree */ 527 unsigned int ofs; /* start offset of the entry */ 528 unsigned int len; /* length of the entry */ 529 }; 530 531 struct extent_info { 532 unsigned int fofs; /* start offset in a file */ 533 unsigned int len; /* length of the extent */ 534 u32 blk; /* start block address of the extent */ 535 }; 536 537 struct extent_node { 538 struct rb_node rb_node; 539 union { 540 struct { 541 unsigned int fofs; 542 unsigned int len; 543 u32 blk; 544 }; 545 struct extent_info ei; /* extent info */ 546 547 }; 548 struct list_head list; /* node in global extent list of sbi */ 549 struct extent_tree *et; /* extent tree pointer */ 550 }; 551 552 struct extent_tree { 553 nid_t ino; /* inode number */ 554 struct rb_root root; /* root of extent info rb-tree */ 555 struct extent_node *cached_en; /* recently accessed extent node */ 556 struct extent_info largest; /* largested extent info */ 557 struct list_head list; /* to be used by sbi->zombie_list */ 558 rwlock_t lock; /* protect extent info rb-tree */ 559 atomic_t node_cnt; /* # of extent node in rb-tree*/ 560 }; 561 562 /* 563 * This structure is taken from ext4_map_blocks. 564 * 565 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 566 */ 567 #define F2FS_MAP_NEW (1 << BH_New) 568 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 569 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 570 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 571 F2FS_MAP_UNWRITTEN) 572 573 struct f2fs_map_blocks { 574 block_t m_pblk; 575 block_t m_lblk; 576 unsigned int m_len; 577 unsigned int m_flags; 578 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 579 pgoff_t *m_next_extent; /* point to next possible extent */ 580 int m_seg_type; 581 }; 582 583 /* for flag in get_data_block */ 584 enum { 585 F2FS_GET_BLOCK_DEFAULT, 586 F2FS_GET_BLOCK_FIEMAP, 587 F2FS_GET_BLOCK_BMAP, 588 F2FS_GET_BLOCK_PRE_DIO, 589 F2FS_GET_BLOCK_PRE_AIO, 590 F2FS_GET_BLOCK_PRECACHE, 591 }; 592 593 /* 594 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 595 */ 596 #define FADVISE_COLD_BIT 0x01 597 #define FADVISE_LOST_PINO_BIT 0x02 598 #define FADVISE_ENCRYPT_BIT 0x04 599 #define FADVISE_ENC_NAME_BIT 0x08 600 #define FADVISE_KEEP_SIZE_BIT 0x10 601 #define FADVISE_HOT_BIT 0x20 602 #define FADVISE_VERITY_BIT 0x40 /* reserved */ 603 604 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 605 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 606 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 607 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 608 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 609 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 610 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 611 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 612 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 613 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 614 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 615 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 616 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 617 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 618 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 619 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 620 621 #define DEF_DIR_LEVEL 0 622 623 struct f2fs_inode_info { 624 struct inode vfs_inode; /* serve a vfs inode */ 625 unsigned long i_flags; /* keep an inode flags for ioctl */ 626 unsigned char i_advise; /* use to give file attribute hints */ 627 unsigned char i_dir_level; /* use for dentry level for large dir */ 628 union { 629 unsigned int i_current_depth; /* only for directory depth */ 630 unsigned short i_gc_failures; /* only for regular file */ 631 }; 632 unsigned int i_pino; /* parent inode number */ 633 umode_t i_acl_mode; /* keep file acl mode temporarily */ 634 635 /* Use below internally in f2fs*/ 636 unsigned long flags; /* use to pass per-file flags */ 637 struct rw_semaphore i_sem; /* protect fi info */ 638 atomic_t dirty_pages; /* # of dirty pages */ 639 f2fs_hash_t chash; /* hash value of given file name */ 640 unsigned int clevel; /* maximum level of given file name */ 641 struct task_struct *task; /* lookup and create consistency */ 642 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 643 nid_t i_xattr_nid; /* node id that contains xattrs */ 644 loff_t last_disk_size; /* lastly written file size */ 645 646 #ifdef CONFIG_QUOTA 647 struct dquot *i_dquot[MAXQUOTAS]; 648 649 /* quota space reservation, managed internally by quota code */ 650 qsize_t i_reserved_quota; 651 #endif 652 struct list_head dirty_list; /* dirty list for dirs and files */ 653 struct list_head gdirty_list; /* linked in global dirty list */ 654 struct list_head inmem_ilist; /* list for inmem inodes */ 655 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 656 struct task_struct *inmem_task; /* store inmemory task */ 657 struct mutex inmem_lock; /* lock for inmemory pages */ 658 struct extent_tree *extent_tree; /* cached extent_tree entry */ 659 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 660 struct rw_semaphore i_mmap_sem; 661 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 662 663 int i_extra_isize; /* size of extra space located in i_addr */ 664 kprojid_t i_projid; /* id for project quota */ 665 int i_inline_xattr_size; /* inline xattr size */ 666 struct timespec i_crtime; /* inode creation time */ 667 struct timespec i_disk_time[4]; /* inode disk times */ 668 }; 669 670 static inline void get_extent_info(struct extent_info *ext, 671 struct f2fs_extent *i_ext) 672 { 673 ext->fofs = le32_to_cpu(i_ext->fofs); 674 ext->blk = le32_to_cpu(i_ext->blk); 675 ext->len = le32_to_cpu(i_ext->len); 676 } 677 678 static inline void set_raw_extent(struct extent_info *ext, 679 struct f2fs_extent *i_ext) 680 { 681 i_ext->fofs = cpu_to_le32(ext->fofs); 682 i_ext->blk = cpu_to_le32(ext->blk); 683 i_ext->len = cpu_to_le32(ext->len); 684 } 685 686 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 687 u32 blk, unsigned int len) 688 { 689 ei->fofs = fofs; 690 ei->blk = blk; 691 ei->len = len; 692 } 693 694 static inline bool __is_discard_mergeable(struct discard_info *back, 695 struct discard_info *front) 696 { 697 return back->lstart + back->len == front->lstart; 698 } 699 700 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 701 struct discard_info *back) 702 { 703 return __is_discard_mergeable(back, cur); 704 } 705 706 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 707 struct discard_info *front) 708 { 709 return __is_discard_mergeable(cur, front); 710 } 711 712 static inline bool __is_extent_mergeable(struct extent_info *back, 713 struct extent_info *front) 714 { 715 return (back->fofs + back->len == front->fofs && 716 back->blk + back->len == front->blk); 717 } 718 719 static inline bool __is_back_mergeable(struct extent_info *cur, 720 struct extent_info *back) 721 { 722 return __is_extent_mergeable(back, cur); 723 } 724 725 static inline bool __is_front_mergeable(struct extent_info *cur, 726 struct extent_info *front) 727 { 728 return __is_extent_mergeable(cur, front); 729 } 730 731 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 732 static inline void __try_update_largest_extent(struct inode *inode, 733 struct extent_tree *et, struct extent_node *en) 734 { 735 if (en->ei.len > et->largest.len) { 736 et->largest = en->ei; 737 f2fs_mark_inode_dirty_sync(inode, true); 738 } 739 } 740 741 /* 742 * For free nid management 743 */ 744 enum nid_state { 745 FREE_NID, /* newly added to free nid list */ 746 PREALLOC_NID, /* it is preallocated */ 747 MAX_NID_STATE, 748 }; 749 750 struct f2fs_nm_info { 751 block_t nat_blkaddr; /* base disk address of NAT */ 752 nid_t max_nid; /* maximum possible node ids */ 753 nid_t available_nids; /* # of available node ids */ 754 nid_t next_scan_nid; /* the next nid to be scanned */ 755 unsigned int ram_thresh; /* control the memory footprint */ 756 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 757 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 758 759 /* NAT cache management */ 760 struct radix_tree_root nat_root;/* root of the nat entry cache */ 761 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 762 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 763 struct list_head nat_entries; /* cached nat entry list (clean) */ 764 unsigned int nat_cnt; /* the # of cached nat entries */ 765 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 766 unsigned int nat_blocks; /* # of nat blocks */ 767 768 /* free node ids management */ 769 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 770 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 771 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 772 spinlock_t nid_list_lock; /* protect nid lists ops */ 773 struct mutex build_lock; /* lock for build free nids */ 774 unsigned char **free_nid_bitmap; 775 unsigned char *nat_block_bitmap; 776 unsigned short *free_nid_count; /* free nid count of NAT block */ 777 778 /* for checkpoint */ 779 char *nat_bitmap; /* NAT bitmap pointer */ 780 781 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 782 unsigned char *nat_bits; /* NAT bits blocks */ 783 unsigned char *full_nat_bits; /* full NAT pages */ 784 unsigned char *empty_nat_bits; /* empty NAT pages */ 785 #ifdef CONFIG_F2FS_CHECK_FS 786 char *nat_bitmap_mir; /* NAT bitmap mirror */ 787 #endif 788 int bitmap_size; /* bitmap size */ 789 }; 790 791 /* 792 * this structure is used as one of function parameters. 793 * all the information are dedicated to a given direct node block determined 794 * by the data offset in a file. 795 */ 796 struct dnode_of_data { 797 struct inode *inode; /* vfs inode pointer */ 798 struct page *inode_page; /* its inode page, NULL is possible */ 799 struct page *node_page; /* cached direct node page */ 800 nid_t nid; /* node id of the direct node block */ 801 unsigned int ofs_in_node; /* data offset in the node page */ 802 bool inode_page_locked; /* inode page is locked or not */ 803 bool node_changed; /* is node block changed */ 804 char cur_level; /* level of hole node page */ 805 char max_level; /* level of current page located */ 806 block_t data_blkaddr; /* block address of the node block */ 807 }; 808 809 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 810 struct page *ipage, struct page *npage, nid_t nid) 811 { 812 memset(dn, 0, sizeof(*dn)); 813 dn->inode = inode; 814 dn->inode_page = ipage; 815 dn->node_page = npage; 816 dn->nid = nid; 817 } 818 819 /* 820 * For SIT manager 821 * 822 * By default, there are 6 active log areas across the whole main area. 823 * When considering hot and cold data separation to reduce cleaning overhead, 824 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 825 * respectively. 826 * In the current design, you should not change the numbers intentionally. 827 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 828 * logs individually according to the underlying devices. (default: 6) 829 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 830 * data and 8 for node logs. 831 */ 832 #define NR_CURSEG_DATA_TYPE (3) 833 #define NR_CURSEG_NODE_TYPE (3) 834 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 835 836 enum { 837 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 838 CURSEG_WARM_DATA, /* data blocks */ 839 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 840 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 841 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 842 CURSEG_COLD_NODE, /* indirect node blocks */ 843 NO_CHECK_TYPE, 844 }; 845 846 struct flush_cmd { 847 struct completion wait; 848 struct llist_node llnode; 849 nid_t ino; 850 int ret; 851 }; 852 853 struct flush_cmd_control { 854 struct task_struct *f2fs_issue_flush; /* flush thread */ 855 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 856 atomic_t issued_flush; /* # of issued flushes */ 857 atomic_t issing_flush; /* # of issing flushes */ 858 struct llist_head issue_list; /* list for command issue */ 859 struct llist_node *dispatch_list; /* list for command dispatch */ 860 }; 861 862 struct f2fs_sm_info { 863 struct sit_info *sit_info; /* whole segment information */ 864 struct free_segmap_info *free_info; /* free segment information */ 865 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 866 struct curseg_info *curseg_array; /* active segment information */ 867 868 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 869 870 block_t seg0_blkaddr; /* block address of 0'th segment */ 871 block_t main_blkaddr; /* start block address of main area */ 872 block_t ssa_blkaddr; /* start block address of SSA area */ 873 874 unsigned int segment_count; /* total # of segments */ 875 unsigned int main_segments; /* # of segments in main area */ 876 unsigned int reserved_segments; /* # of reserved segments */ 877 unsigned int ovp_segments; /* # of overprovision segments */ 878 879 /* a threshold to reclaim prefree segments */ 880 unsigned int rec_prefree_segments; 881 882 /* for batched trimming */ 883 unsigned int trim_sections; /* # of sections to trim */ 884 885 struct list_head sit_entry_set; /* sit entry set list */ 886 887 unsigned int ipu_policy; /* in-place-update policy */ 888 unsigned int min_ipu_util; /* in-place-update threshold */ 889 unsigned int min_fsync_blocks; /* threshold for fsync */ 890 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 891 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 892 893 /* for flush command control */ 894 struct flush_cmd_control *fcc_info; 895 896 /* for discard command control */ 897 struct discard_cmd_control *dcc_info; 898 }; 899 900 /* 901 * For superblock 902 */ 903 /* 904 * COUNT_TYPE for monitoring 905 * 906 * f2fs monitors the number of several block types such as on-writeback, 907 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 908 */ 909 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 910 enum count_type { 911 F2FS_DIRTY_DENTS, 912 F2FS_DIRTY_DATA, 913 F2FS_DIRTY_QDATA, 914 F2FS_DIRTY_NODES, 915 F2FS_DIRTY_META, 916 F2FS_INMEM_PAGES, 917 F2FS_DIRTY_IMETA, 918 F2FS_WB_CP_DATA, 919 F2FS_WB_DATA, 920 NR_COUNT_TYPE, 921 }; 922 923 /* 924 * The below are the page types of bios used in submit_bio(). 925 * The available types are: 926 * DATA User data pages. It operates as async mode. 927 * NODE Node pages. It operates as async mode. 928 * META FS metadata pages such as SIT, NAT, CP. 929 * NR_PAGE_TYPE The number of page types. 930 * META_FLUSH Make sure the previous pages are written 931 * with waiting the bio's completion 932 * ... Only can be used with META. 933 */ 934 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 935 enum page_type { 936 DATA, 937 NODE, 938 META, 939 NR_PAGE_TYPE, 940 META_FLUSH, 941 INMEM, /* the below types are used by tracepoints only. */ 942 INMEM_DROP, 943 INMEM_INVALIDATE, 944 INMEM_REVOKE, 945 IPU, 946 OPU, 947 }; 948 949 enum temp_type { 950 HOT = 0, /* must be zero for meta bio */ 951 WARM, 952 COLD, 953 NR_TEMP_TYPE, 954 }; 955 956 enum need_lock_type { 957 LOCK_REQ = 0, 958 LOCK_DONE, 959 LOCK_RETRY, 960 }; 961 962 enum cp_reason_type { 963 CP_NO_NEEDED, 964 CP_NON_REGULAR, 965 CP_HARDLINK, 966 CP_SB_NEED_CP, 967 CP_WRONG_PINO, 968 CP_NO_SPC_ROLL, 969 CP_NODE_NEED_CP, 970 CP_FASTBOOT_MODE, 971 CP_SPEC_LOG_NUM, 972 CP_RECOVER_DIR, 973 }; 974 975 enum iostat_type { 976 APP_DIRECT_IO, /* app direct IOs */ 977 APP_BUFFERED_IO, /* app buffered IOs */ 978 APP_WRITE_IO, /* app write IOs */ 979 APP_MAPPED_IO, /* app mapped IOs */ 980 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 981 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 982 FS_META_IO, /* meta IOs from kworker/reclaimer */ 983 FS_GC_DATA_IO, /* data IOs from forground gc */ 984 FS_GC_NODE_IO, /* node IOs from forground gc */ 985 FS_CP_DATA_IO, /* data IOs from checkpoint */ 986 FS_CP_NODE_IO, /* node IOs from checkpoint */ 987 FS_CP_META_IO, /* meta IOs from checkpoint */ 988 FS_DISCARD, /* discard */ 989 NR_IO_TYPE, 990 }; 991 992 struct f2fs_io_info { 993 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 994 nid_t ino; /* inode number */ 995 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 996 enum temp_type temp; /* contains HOT/WARM/COLD */ 997 int op; /* contains REQ_OP_ */ 998 int op_flags; /* req_flag_bits */ 999 block_t new_blkaddr; /* new block address to be written */ 1000 block_t old_blkaddr; /* old block address before Cow */ 1001 struct page *page; /* page to be written */ 1002 struct page *encrypted_page; /* encrypted page */ 1003 struct list_head list; /* serialize IOs */ 1004 bool submitted; /* indicate IO submission */ 1005 int need_lock; /* indicate we need to lock cp_rwsem */ 1006 bool in_list; /* indicate fio is in io_list */ 1007 bool is_meta; /* indicate borrow meta inode mapping or not */ 1008 enum iostat_type io_type; /* io type */ 1009 struct writeback_control *io_wbc; /* writeback control */ 1010 }; 1011 1012 #define is_read_io(rw) ((rw) == READ) 1013 struct f2fs_bio_info { 1014 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1015 struct bio *bio; /* bios to merge */ 1016 sector_t last_block_in_bio; /* last block number */ 1017 struct f2fs_io_info fio; /* store buffered io info. */ 1018 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1019 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1020 struct list_head io_list; /* track fios */ 1021 }; 1022 1023 #define FDEV(i) (sbi->devs[i]) 1024 #define RDEV(i) (raw_super->devs[i]) 1025 struct f2fs_dev_info { 1026 struct block_device *bdev; 1027 char path[MAX_PATH_LEN]; 1028 unsigned int total_segments; 1029 block_t start_blk; 1030 block_t end_blk; 1031 #ifdef CONFIG_BLK_DEV_ZONED 1032 unsigned int nr_blkz; /* Total number of zones */ 1033 u8 *blkz_type; /* Array of zones type */ 1034 #endif 1035 }; 1036 1037 enum inode_type { 1038 DIR_INODE, /* for dirty dir inode */ 1039 FILE_INODE, /* for dirty regular/symlink inode */ 1040 DIRTY_META, /* for all dirtied inode metadata */ 1041 ATOMIC_FILE, /* for all atomic files */ 1042 NR_INODE_TYPE, 1043 }; 1044 1045 /* for inner inode cache management */ 1046 struct inode_management { 1047 struct radix_tree_root ino_root; /* ino entry array */ 1048 spinlock_t ino_lock; /* for ino entry lock */ 1049 struct list_head ino_list; /* inode list head */ 1050 unsigned long ino_num; /* number of entries */ 1051 }; 1052 1053 /* For s_flag in struct f2fs_sb_info */ 1054 enum { 1055 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1056 SBI_IS_CLOSE, /* specify unmounting */ 1057 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1058 SBI_POR_DOING, /* recovery is doing or not */ 1059 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1060 SBI_NEED_CP, /* need to checkpoint */ 1061 }; 1062 1063 enum { 1064 CP_TIME, 1065 REQ_TIME, 1066 MAX_TIME, 1067 }; 1068 1069 enum { 1070 WHINT_MODE_OFF, /* not pass down write hints */ 1071 WHINT_MODE_USER, /* try to pass down hints given by users */ 1072 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1073 }; 1074 1075 enum { 1076 ALLOC_MODE_DEFAULT, /* stay default */ 1077 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1078 }; 1079 1080 enum fsync_mode { 1081 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1082 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1083 }; 1084 1085 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1086 #define DUMMY_ENCRYPTION_ENABLED(sbi) \ 1087 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption)) 1088 #else 1089 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0) 1090 #endif 1091 1092 struct f2fs_sb_info { 1093 struct super_block *sb; /* pointer to VFS super block */ 1094 struct proc_dir_entry *s_proc; /* proc entry */ 1095 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1096 struct rw_semaphore sb_lock; /* lock for raw super block */ 1097 int valid_super_block; /* valid super block no */ 1098 unsigned long s_flag; /* flags for sbi */ 1099 1100 #ifdef CONFIG_BLK_DEV_ZONED 1101 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1102 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1103 #endif 1104 1105 /* for node-related operations */ 1106 struct f2fs_nm_info *nm_info; /* node manager */ 1107 struct inode *node_inode; /* cache node blocks */ 1108 1109 /* for segment-related operations */ 1110 struct f2fs_sm_info *sm_info; /* segment manager */ 1111 1112 /* for bio operations */ 1113 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1114 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1115 /* bio ordering for NODE/DATA */ 1116 mempool_t *write_io_dummy; /* Dummy pages */ 1117 1118 /* for checkpoint */ 1119 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1120 int cur_cp_pack; /* remain current cp pack */ 1121 spinlock_t cp_lock; /* for flag in ckpt */ 1122 struct inode *meta_inode; /* cache meta blocks */ 1123 struct mutex cp_mutex; /* checkpoint procedure lock */ 1124 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1125 struct rw_semaphore node_write; /* locking node writes */ 1126 struct rw_semaphore node_change; /* locking node change */ 1127 wait_queue_head_t cp_wait; 1128 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1129 long interval_time[MAX_TIME]; /* to store thresholds */ 1130 1131 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1132 1133 /* for orphan inode, use 0'th array */ 1134 unsigned int max_orphans; /* max orphan inodes */ 1135 1136 /* for inode management */ 1137 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1138 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1139 1140 /* for extent tree cache */ 1141 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1142 struct mutex extent_tree_lock; /* locking extent radix tree */ 1143 struct list_head extent_list; /* lru list for shrinker */ 1144 spinlock_t extent_lock; /* locking extent lru list */ 1145 atomic_t total_ext_tree; /* extent tree count */ 1146 struct list_head zombie_list; /* extent zombie tree list */ 1147 atomic_t total_zombie_tree; /* extent zombie tree count */ 1148 atomic_t total_ext_node; /* extent info count */ 1149 1150 /* basic filesystem units */ 1151 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1152 unsigned int log_blocksize; /* log2 block size */ 1153 unsigned int blocksize; /* block size */ 1154 unsigned int root_ino_num; /* root inode number*/ 1155 unsigned int node_ino_num; /* node inode number*/ 1156 unsigned int meta_ino_num; /* meta inode number*/ 1157 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1158 unsigned int blocks_per_seg; /* blocks per segment */ 1159 unsigned int segs_per_sec; /* segments per section */ 1160 unsigned int secs_per_zone; /* sections per zone */ 1161 unsigned int total_sections; /* total section count */ 1162 unsigned int total_node_count; /* total node block count */ 1163 unsigned int total_valid_node_count; /* valid node block count */ 1164 loff_t max_file_blocks; /* max block index of file */ 1165 int dir_level; /* directory level */ 1166 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */ 1167 int readdir_ra; /* readahead inode in readdir */ 1168 1169 block_t user_block_count; /* # of user blocks */ 1170 block_t total_valid_block_count; /* # of valid blocks */ 1171 block_t discard_blks; /* discard command candidats */ 1172 block_t last_valid_block_count; /* for recovery */ 1173 block_t reserved_blocks; /* configurable reserved blocks */ 1174 block_t current_reserved_blocks; /* current reserved blocks */ 1175 1176 unsigned int nquota_files; /* # of quota sysfile */ 1177 1178 u32 s_next_generation; /* for NFS support */ 1179 1180 /* # of pages, see count_type */ 1181 atomic_t nr_pages[NR_COUNT_TYPE]; 1182 /* # of allocated blocks */ 1183 struct percpu_counter alloc_valid_block_count; 1184 1185 /* writeback control */ 1186 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 1187 1188 /* valid inode count */ 1189 struct percpu_counter total_valid_inode_count; 1190 1191 struct f2fs_mount_info mount_opt; /* mount options */ 1192 1193 /* for cleaning operations */ 1194 struct mutex gc_mutex; /* mutex for GC */ 1195 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1196 unsigned int cur_victim_sec; /* current victim section num */ 1197 1198 /* threshold for converting bg victims for fg */ 1199 u64 fggc_threshold; 1200 1201 /* threshold for gc trials on pinned files */ 1202 u64 gc_pin_file_threshold; 1203 1204 /* maximum # of trials to find a victim segment for SSR and GC */ 1205 unsigned int max_victim_search; 1206 1207 /* 1208 * for stat information. 1209 * one is for the LFS mode, and the other is for the SSR mode. 1210 */ 1211 #ifdef CONFIG_F2FS_STAT_FS 1212 struct f2fs_stat_info *stat_info; /* FS status information */ 1213 unsigned int segment_count[2]; /* # of allocated segments */ 1214 unsigned int block_count[2]; /* # of allocated blocks */ 1215 atomic_t inplace_count; /* # of inplace update */ 1216 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1217 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1218 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1219 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1220 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1221 atomic_t inline_inode; /* # of inline_data inodes */ 1222 atomic_t inline_dir; /* # of inline_dentry inodes */ 1223 atomic_t aw_cnt; /* # of atomic writes */ 1224 atomic_t vw_cnt; /* # of volatile writes */ 1225 atomic_t max_aw_cnt; /* max # of atomic writes */ 1226 atomic_t max_vw_cnt; /* max # of volatile writes */ 1227 int bg_gc; /* background gc calls */ 1228 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1229 #endif 1230 spinlock_t stat_lock; /* lock for stat operations */ 1231 1232 /* For app/fs IO statistics */ 1233 spinlock_t iostat_lock; 1234 unsigned long long write_iostat[NR_IO_TYPE]; 1235 bool iostat_enable; 1236 1237 /* For sysfs suppport */ 1238 struct kobject s_kobj; 1239 struct completion s_kobj_unregister; 1240 1241 /* For shrinker support */ 1242 struct list_head s_list; 1243 int s_ndevs; /* number of devices */ 1244 struct f2fs_dev_info *devs; /* for device list */ 1245 unsigned int dirty_device; /* for checkpoint data flush */ 1246 spinlock_t dev_lock; /* protect dirty_device */ 1247 struct mutex umount_mutex; 1248 unsigned int shrinker_run_no; 1249 1250 /* For write statistics */ 1251 u64 sectors_written_start; 1252 u64 kbytes_written; 1253 1254 /* Reference to checksum algorithm driver via cryptoapi */ 1255 struct crypto_shash *s_chksum_driver; 1256 1257 /* Precomputed FS UUID checksum for seeding other checksums */ 1258 __u32 s_chksum_seed; 1259 }; 1260 1261 #ifdef CONFIG_F2FS_FAULT_INJECTION 1262 #define f2fs_show_injection_info(type) \ 1263 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1264 KERN_INFO, fault_name[type], \ 1265 __func__, __builtin_return_address(0)) 1266 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1267 { 1268 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1269 1270 if (!ffi->inject_rate) 1271 return false; 1272 1273 if (!IS_FAULT_SET(ffi, type)) 1274 return false; 1275 1276 atomic_inc(&ffi->inject_ops); 1277 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1278 atomic_set(&ffi->inject_ops, 0); 1279 return true; 1280 } 1281 return false; 1282 } 1283 #endif 1284 1285 /* For write statistics. Suppose sector size is 512 bytes, 1286 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1287 */ 1288 #define BD_PART_WRITTEN(s) \ 1289 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1290 (s)->sectors_written_start) >> 1) 1291 1292 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1293 { 1294 sbi->last_time[type] = jiffies; 1295 } 1296 1297 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1298 { 1299 unsigned long interval = sbi->interval_time[type] * HZ; 1300 1301 return time_after(jiffies, sbi->last_time[type] + interval); 1302 } 1303 1304 static inline bool is_idle(struct f2fs_sb_info *sbi) 1305 { 1306 struct block_device *bdev = sbi->sb->s_bdev; 1307 struct request_queue *q = bdev_get_queue(bdev); 1308 struct request_list *rl = &q->root_rl; 1309 1310 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1311 return 0; 1312 1313 return f2fs_time_over(sbi, REQ_TIME); 1314 } 1315 1316 /* 1317 * Inline functions 1318 */ 1319 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1320 const void *address, unsigned int length) 1321 { 1322 struct { 1323 struct shash_desc shash; 1324 char ctx[4]; 1325 } desc; 1326 int err; 1327 1328 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1329 1330 desc.shash.tfm = sbi->s_chksum_driver; 1331 desc.shash.flags = 0; 1332 *(u32 *)desc.ctx = crc; 1333 1334 err = crypto_shash_update(&desc.shash, address, length); 1335 BUG_ON(err); 1336 1337 return *(u32 *)desc.ctx; 1338 } 1339 1340 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1341 unsigned int length) 1342 { 1343 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1344 } 1345 1346 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1347 void *buf, size_t buf_size) 1348 { 1349 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1350 } 1351 1352 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1353 const void *address, unsigned int length) 1354 { 1355 return __f2fs_crc32(sbi, crc, address, length); 1356 } 1357 1358 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1359 { 1360 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1361 } 1362 1363 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1364 { 1365 return sb->s_fs_info; 1366 } 1367 1368 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1369 { 1370 return F2FS_SB(inode->i_sb); 1371 } 1372 1373 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1374 { 1375 return F2FS_I_SB(mapping->host); 1376 } 1377 1378 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1379 { 1380 return F2FS_M_SB(page->mapping); 1381 } 1382 1383 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1384 { 1385 return (struct f2fs_super_block *)(sbi->raw_super); 1386 } 1387 1388 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1389 { 1390 return (struct f2fs_checkpoint *)(sbi->ckpt); 1391 } 1392 1393 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1394 { 1395 return (struct f2fs_node *)page_address(page); 1396 } 1397 1398 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1399 { 1400 return &((struct f2fs_node *)page_address(page))->i; 1401 } 1402 1403 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1404 { 1405 return (struct f2fs_nm_info *)(sbi->nm_info); 1406 } 1407 1408 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1409 { 1410 return (struct f2fs_sm_info *)(sbi->sm_info); 1411 } 1412 1413 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1414 { 1415 return (struct sit_info *)(SM_I(sbi)->sit_info); 1416 } 1417 1418 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1419 { 1420 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1421 } 1422 1423 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1424 { 1425 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1426 } 1427 1428 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1429 { 1430 return sbi->meta_inode->i_mapping; 1431 } 1432 1433 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1434 { 1435 return sbi->node_inode->i_mapping; 1436 } 1437 1438 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1439 { 1440 return test_bit(type, &sbi->s_flag); 1441 } 1442 1443 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1444 { 1445 set_bit(type, &sbi->s_flag); 1446 } 1447 1448 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1449 { 1450 clear_bit(type, &sbi->s_flag); 1451 } 1452 1453 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1454 { 1455 return le64_to_cpu(cp->checkpoint_ver); 1456 } 1457 1458 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1459 { 1460 if (type < F2FS_MAX_QUOTAS) 1461 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1462 return 0; 1463 } 1464 1465 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1466 { 1467 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1468 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1469 } 1470 1471 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1472 { 1473 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1474 1475 return ckpt_flags & f; 1476 } 1477 1478 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1479 { 1480 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1481 } 1482 1483 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1484 { 1485 unsigned int ckpt_flags; 1486 1487 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1488 ckpt_flags |= f; 1489 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1490 } 1491 1492 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1493 { 1494 unsigned long flags; 1495 1496 spin_lock_irqsave(&sbi->cp_lock, flags); 1497 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1498 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1499 } 1500 1501 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1502 { 1503 unsigned int ckpt_flags; 1504 1505 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1506 ckpt_flags &= (~f); 1507 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1508 } 1509 1510 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1511 { 1512 unsigned long flags; 1513 1514 spin_lock_irqsave(&sbi->cp_lock, flags); 1515 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1516 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1517 } 1518 1519 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1520 { 1521 unsigned long flags; 1522 1523 set_sbi_flag(sbi, SBI_NEED_FSCK); 1524 1525 if (lock) 1526 spin_lock_irqsave(&sbi->cp_lock, flags); 1527 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1528 kfree(NM_I(sbi)->nat_bits); 1529 NM_I(sbi)->nat_bits = NULL; 1530 if (lock) 1531 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1532 } 1533 1534 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1535 struct cp_control *cpc) 1536 { 1537 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1538 1539 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1540 } 1541 1542 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1543 { 1544 down_read(&sbi->cp_rwsem); 1545 } 1546 1547 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1548 { 1549 return down_read_trylock(&sbi->cp_rwsem); 1550 } 1551 1552 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1553 { 1554 up_read(&sbi->cp_rwsem); 1555 } 1556 1557 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1558 { 1559 down_write(&sbi->cp_rwsem); 1560 } 1561 1562 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1563 { 1564 up_write(&sbi->cp_rwsem); 1565 } 1566 1567 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1568 { 1569 int reason = CP_SYNC; 1570 1571 if (test_opt(sbi, FASTBOOT)) 1572 reason = CP_FASTBOOT; 1573 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1574 reason = CP_UMOUNT; 1575 return reason; 1576 } 1577 1578 static inline bool __remain_node_summaries(int reason) 1579 { 1580 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1581 } 1582 1583 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1584 { 1585 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1586 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1587 } 1588 1589 /* 1590 * Check whether the given nid is within node id range. 1591 */ 1592 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1593 { 1594 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1595 return -EINVAL; 1596 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1597 return -EINVAL; 1598 return 0; 1599 } 1600 1601 /* 1602 * Check whether the inode has blocks or not 1603 */ 1604 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1605 { 1606 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1607 1608 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1609 } 1610 1611 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1612 { 1613 return ofs == XATTR_NODE_OFFSET; 1614 } 1615 1616 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1617 struct inode *inode) 1618 { 1619 if (!inode) 1620 return true; 1621 if (!test_opt(sbi, RESERVE_ROOT)) 1622 return false; 1623 if (IS_NOQUOTA(inode)) 1624 return true; 1625 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1626 return true; 1627 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1628 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1629 return true; 1630 if (capable(CAP_SYS_RESOURCE)) 1631 return true; 1632 return false; 1633 } 1634 1635 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1636 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1637 struct inode *inode, blkcnt_t *count) 1638 { 1639 blkcnt_t diff = 0, release = 0; 1640 block_t avail_user_block_count; 1641 int ret; 1642 1643 ret = dquot_reserve_block(inode, *count); 1644 if (ret) 1645 return ret; 1646 1647 #ifdef CONFIG_F2FS_FAULT_INJECTION 1648 if (time_to_inject(sbi, FAULT_BLOCK)) { 1649 f2fs_show_injection_info(FAULT_BLOCK); 1650 release = *count; 1651 goto enospc; 1652 } 1653 #endif 1654 /* 1655 * let's increase this in prior to actual block count change in order 1656 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1657 */ 1658 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1659 1660 spin_lock(&sbi->stat_lock); 1661 sbi->total_valid_block_count += (block_t)(*count); 1662 avail_user_block_count = sbi->user_block_count - 1663 sbi->current_reserved_blocks; 1664 1665 if (!__allow_reserved_blocks(sbi, inode)) 1666 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1667 1668 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1669 diff = sbi->total_valid_block_count - avail_user_block_count; 1670 if (diff > *count) 1671 diff = *count; 1672 *count -= diff; 1673 release = diff; 1674 sbi->total_valid_block_count -= diff; 1675 if (!*count) { 1676 spin_unlock(&sbi->stat_lock); 1677 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1678 goto enospc; 1679 } 1680 } 1681 spin_unlock(&sbi->stat_lock); 1682 1683 if (unlikely(release)) 1684 dquot_release_reservation_block(inode, release); 1685 f2fs_i_blocks_write(inode, *count, true, true); 1686 return 0; 1687 1688 enospc: 1689 dquot_release_reservation_block(inode, release); 1690 return -ENOSPC; 1691 } 1692 1693 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1694 struct inode *inode, 1695 block_t count) 1696 { 1697 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1698 1699 spin_lock(&sbi->stat_lock); 1700 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1701 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1702 sbi->total_valid_block_count -= (block_t)count; 1703 if (sbi->reserved_blocks && 1704 sbi->current_reserved_blocks < sbi->reserved_blocks) 1705 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1706 sbi->current_reserved_blocks + count); 1707 spin_unlock(&sbi->stat_lock); 1708 f2fs_i_blocks_write(inode, count, false, true); 1709 } 1710 1711 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1712 { 1713 atomic_inc(&sbi->nr_pages[count_type]); 1714 1715 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1716 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1717 return; 1718 1719 set_sbi_flag(sbi, SBI_IS_DIRTY); 1720 } 1721 1722 static inline void inode_inc_dirty_pages(struct inode *inode) 1723 { 1724 atomic_inc(&F2FS_I(inode)->dirty_pages); 1725 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1726 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1727 if (IS_NOQUOTA(inode)) 1728 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1729 } 1730 1731 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1732 { 1733 atomic_dec(&sbi->nr_pages[count_type]); 1734 } 1735 1736 static inline void inode_dec_dirty_pages(struct inode *inode) 1737 { 1738 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1739 !S_ISLNK(inode->i_mode)) 1740 return; 1741 1742 atomic_dec(&F2FS_I(inode)->dirty_pages); 1743 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1744 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1745 if (IS_NOQUOTA(inode)) 1746 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1747 } 1748 1749 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1750 { 1751 return atomic_read(&sbi->nr_pages[count_type]); 1752 } 1753 1754 static inline int get_dirty_pages(struct inode *inode) 1755 { 1756 return atomic_read(&F2FS_I(inode)->dirty_pages); 1757 } 1758 1759 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1760 { 1761 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1762 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1763 sbi->log_blocks_per_seg; 1764 1765 return segs / sbi->segs_per_sec; 1766 } 1767 1768 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1769 { 1770 return sbi->total_valid_block_count; 1771 } 1772 1773 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1774 { 1775 return sbi->discard_blks; 1776 } 1777 1778 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1779 { 1780 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1781 1782 /* return NAT or SIT bitmap */ 1783 if (flag == NAT_BITMAP) 1784 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1785 else if (flag == SIT_BITMAP) 1786 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1787 1788 return 0; 1789 } 1790 1791 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1792 { 1793 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1794 } 1795 1796 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1797 { 1798 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1799 int offset; 1800 1801 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 1802 offset = (flag == SIT_BITMAP) ? 1803 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 1804 return &ckpt->sit_nat_version_bitmap + offset; 1805 } 1806 1807 if (__cp_payload(sbi) > 0) { 1808 if (flag == NAT_BITMAP) 1809 return &ckpt->sit_nat_version_bitmap; 1810 else 1811 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1812 } else { 1813 offset = (flag == NAT_BITMAP) ? 1814 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1815 return &ckpt->sit_nat_version_bitmap + offset; 1816 } 1817 } 1818 1819 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1820 { 1821 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1822 1823 if (sbi->cur_cp_pack == 2) 1824 start_addr += sbi->blocks_per_seg; 1825 return start_addr; 1826 } 1827 1828 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1829 { 1830 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1831 1832 if (sbi->cur_cp_pack == 1) 1833 start_addr += sbi->blocks_per_seg; 1834 return start_addr; 1835 } 1836 1837 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1838 { 1839 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1840 } 1841 1842 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1843 { 1844 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1845 } 1846 1847 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1848 struct inode *inode, bool is_inode) 1849 { 1850 block_t valid_block_count; 1851 unsigned int valid_node_count; 1852 bool quota = inode && !is_inode; 1853 1854 if (quota) { 1855 int ret = dquot_reserve_block(inode, 1); 1856 if (ret) 1857 return ret; 1858 } 1859 1860 #ifdef CONFIG_F2FS_FAULT_INJECTION 1861 if (time_to_inject(sbi, FAULT_BLOCK)) { 1862 f2fs_show_injection_info(FAULT_BLOCK); 1863 goto enospc; 1864 } 1865 #endif 1866 1867 spin_lock(&sbi->stat_lock); 1868 1869 valid_block_count = sbi->total_valid_block_count + 1870 sbi->current_reserved_blocks + 1; 1871 1872 if (!__allow_reserved_blocks(sbi, inode)) 1873 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 1874 1875 if (unlikely(valid_block_count > sbi->user_block_count)) { 1876 spin_unlock(&sbi->stat_lock); 1877 goto enospc; 1878 } 1879 1880 valid_node_count = sbi->total_valid_node_count + 1; 1881 if (unlikely(valid_node_count > sbi->total_node_count)) { 1882 spin_unlock(&sbi->stat_lock); 1883 goto enospc; 1884 } 1885 1886 sbi->total_valid_node_count++; 1887 sbi->total_valid_block_count++; 1888 spin_unlock(&sbi->stat_lock); 1889 1890 if (inode) { 1891 if (is_inode) 1892 f2fs_mark_inode_dirty_sync(inode, true); 1893 else 1894 f2fs_i_blocks_write(inode, 1, true, true); 1895 } 1896 1897 percpu_counter_inc(&sbi->alloc_valid_block_count); 1898 return 0; 1899 1900 enospc: 1901 if (quota) 1902 dquot_release_reservation_block(inode, 1); 1903 return -ENOSPC; 1904 } 1905 1906 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1907 struct inode *inode, bool is_inode) 1908 { 1909 spin_lock(&sbi->stat_lock); 1910 1911 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1912 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1913 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1914 1915 sbi->total_valid_node_count--; 1916 sbi->total_valid_block_count--; 1917 if (sbi->reserved_blocks && 1918 sbi->current_reserved_blocks < sbi->reserved_blocks) 1919 sbi->current_reserved_blocks++; 1920 1921 spin_unlock(&sbi->stat_lock); 1922 1923 if (!is_inode) 1924 f2fs_i_blocks_write(inode, 1, false, true); 1925 } 1926 1927 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1928 { 1929 return sbi->total_valid_node_count; 1930 } 1931 1932 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1933 { 1934 percpu_counter_inc(&sbi->total_valid_inode_count); 1935 } 1936 1937 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1938 { 1939 percpu_counter_dec(&sbi->total_valid_inode_count); 1940 } 1941 1942 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1943 { 1944 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1945 } 1946 1947 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1948 pgoff_t index, bool for_write) 1949 { 1950 #ifdef CONFIG_F2FS_FAULT_INJECTION 1951 struct page *page = find_lock_page(mapping, index); 1952 1953 if (page) 1954 return page; 1955 1956 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1957 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1958 return NULL; 1959 } 1960 #endif 1961 if (!for_write) 1962 return grab_cache_page(mapping, index); 1963 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1964 } 1965 1966 static inline struct page *f2fs_pagecache_get_page( 1967 struct address_space *mapping, pgoff_t index, 1968 int fgp_flags, gfp_t gfp_mask) 1969 { 1970 #ifdef CONFIG_F2FS_FAULT_INJECTION 1971 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 1972 f2fs_show_injection_info(FAULT_PAGE_GET); 1973 return NULL; 1974 } 1975 #endif 1976 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 1977 } 1978 1979 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1980 { 1981 char *src_kaddr = kmap(src); 1982 char *dst_kaddr = kmap(dst); 1983 1984 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1985 kunmap(dst); 1986 kunmap(src); 1987 } 1988 1989 static inline void f2fs_put_page(struct page *page, int unlock) 1990 { 1991 if (!page) 1992 return; 1993 1994 if (unlock) { 1995 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1996 unlock_page(page); 1997 } 1998 put_page(page); 1999 } 2000 2001 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2002 { 2003 if (dn->node_page) 2004 f2fs_put_page(dn->node_page, 1); 2005 if (dn->inode_page && dn->node_page != dn->inode_page) 2006 f2fs_put_page(dn->inode_page, 0); 2007 dn->node_page = NULL; 2008 dn->inode_page = NULL; 2009 } 2010 2011 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2012 size_t size) 2013 { 2014 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2015 } 2016 2017 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2018 gfp_t flags) 2019 { 2020 void *entry; 2021 2022 entry = kmem_cache_alloc(cachep, flags); 2023 if (!entry) 2024 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2025 return entry; 2026 } 2027 2028 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 2029 int npages, bool no_fail) 2030 { 2031 struct bio *bio; 2032 2033 if (no_fail) { 2034 /* No failure on bio allocation */ 2035 bio = bio_alloc(GFP_NOIO, npages); 2036 if (!bio) 2037 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 2038 return bio; 2039 } 2040 #ifdef CONFIG_F2FS_FAULT_INJECTION 2041 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2042 f2fs_show_injection_info(FAULT_ALLOC_BIO); 2043 return NULL; 2044 } 2045 #endif 2046 return bio_alloc(GFP_KERNEL, npages); 2047 } 2048 2049 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2050 unsigned long index, void *item) 2051 { 2052 while (radix_tree_insert(root, index, item)) 2053 cond_resched(); 2054 } 2055 2056 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2057 2058 static inline bool IS_INODE(struct page *page) 2059 { 2060 struct f2fs_node *p = F2FS_NODE(page); 2061 2062 return RAW_IS_INODE(p); 2063 } 2064 2065 static inline int offset_in_addr(struct f2fs_inode *i) 2066 { 2067 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2068 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2069 } 2070 2071 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2072 { 2073 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2074 } 2075 2076 static inline int f2fs_has_extra_attr(struct inode *inode); 2077 static inline block_t datablock_addr(struct inode *inode, 2078 struct page *node_page, unsigned int offset) 2079 { 2080 struct f2fs_node *raw_node; 2081 __le32 *addr_array; 2082 int base = 0; 2083 bool is_inode = IS_INODE(node_page); 2084 2085 raw_node = F2FS_NODE(node_page); 2086 2087 /* from GC path only */ 2088 if (is_inode) { 2089 if (!inode) 2090 base = offset_in_addr(&raw_node->i); 2091 else if (f2fs_has_extra_attr(inode)) 2092 base = get_extra_isize(inode); 2093 } 2094 2095 addr_array = blkaddr_in_node(raw_node); 2096 return le32_to_cpu(addr_array[base + offset]); 2097 } 2098 2099 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2100 { 2101 int mask; 2102 2103 addr += (nr >> 3); 2104 mask = 1 << (7 - (nr & 0x07)); 2105 return mask & *addr; 2106 } 2107 2108 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2109 { 2110 int mask; 2111 2112 addr += (nr >> 3); 2113 mask = 1 << (7 - (nr & 0x07)); 2114 *addr |= mask; 2115 } 2116 2117 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2118 { 2119 int mask; 2120 2121 addr += (nr >> 3); 2122 mask = 1 << (7 - (nr & 0x07)); 2123 *addr &= ~mask; 2124 } 2125 2126 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2127 { 2128 int mask; 2129 int ret; 2130 2131 addr += (nr >> 3); 2132 mask = 1 << (7 - (nr & 0x07)); 2133 ret = mask & *addr; 2134 *addr |= mask; 2135 return ret; 2136 } 2137 2138 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2139 { 2140 int mask; 2141 int ret; 2142 2143 addr += (nr >> 3); 2144 mask = 1 << (7 - (nr & 0x07)); 2145 ret = mask & *addr; 2146 *addr &= ~mask; 2147 return ret; 2148 } 2149 2150 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2151 { 2152 int mask; 2153 2154 addr += (nr >> 3); 2155 mask = 1 << (7 - (nr & 0x07)); 2156 *addr ^= mask; 2157 } 2158 2159 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 2160 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 2161 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL) 2162 2163 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2164 { 2165 if (S_ISDIR(mode)) 2166 return flags; 2167 else if (S_ISREG(mode)) 2168 return flags & F2FS_REG_FLMASK; 2169 else 2170 return flags & F2FS_OTHER_FLMASK; 2171 } 2172 2173 /* used for f2fs_inode_info->flags */ 2174 enum { 2175 FI_NEW_INODE, /* indicate newly allocated inode */ 2176 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2177 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2178 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2179 FI_INC_LINK, /* need to increment i_nlink */ 2180 FI_ACL_MODE, /* indicate acl mode */ 2181 FI_NO_ALLOC, /* should not allocate any blocks */ 2182 FI_FREE_NID, /* free allocated nide */ 2183 FI_NO_EXTENT, /* not to use the extent cache */ 2184 FI_INLINE_XATTR, /* used for inline xattr */ 2185 FI_INLINE_DATA, /* used for inline data*/ 2186 FI_INLINE_DENTRY, /* used for inline dentry */ 2187 FI_APPEND_WRITE, /* inode has appended data */ 2188 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2189 FI_NEED_IPU, /* used for ipu per file */ 2190 FI_ATOMIC_FILE, /* indicate atomic file */ 2191 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2192 FI_VOLATILE_FILE, /* indicate volatile file */ 2193 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2194 FI_DROP_CACHE, /* drop dirty page cache */ 2195 FI_DATA_EXIST, /* indicate data exists */ 2196 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2197 FI_DO_DEFRAG, /* indicate defragment is running */ 2198 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2199 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2200 FI_HOT_DATA, /* indicate file is hot */ 2201 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2202 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2203 FI_PIN_FILE, /* indicate file should not be gced */ 2204 }; 2205 2206 static inline void __mark_inode_dirty_flag(struct inode *inode, 2207 int flag, bool set) 2208 { 2209 switch (flag) { 2210 case FI_INLINE_XATTR: 2211 case FI_INLINE_DATA: 2212 case FI_INLINE_DENTRY: 2213 case FI_NEW_INODE: 2214 if (set) 2215 return; 2216 case FI_DATA_EXIST: 2217 case FI_INLINE_DOTS: 2218 case FI_PIN_FILE: 2219 f2fs_mark_inode_dirty_sync(inode, true); 2220 } 2221 } 2222 2223 static inline void set_inode_flag(struct inode *inode, int flag) 2224 { 2225 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2226 set_bit(flag, &F2FS_I(inode)->flags); 2227 __mark_inode_dirty_flag(inode, flag, true); 2228 } 2229 2230 static inline int is_inode_flag_set(struct inode *inode, int flag) 2231 { 2232 return test_bit(flag, &F2FS_I(inode)->flags); 2233 } 2234 2235 static inline void clear_inode_flag(struct inode *inode, int flag) 2236 { 2237 if (test_bit(flag, &F2FS_I(inode)->flags)) 2238 clear_bit(flag, &F2FS_I(inode)->flags); 2239 __mark_inode_dirty_flag(inode, flag, false); 2240 } 2241 2242 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2243 { 2244 F2FS_I(inode)->i_acl_mode = mode; 2245 set_inode_flag(inode, FI_ACL_MODE); 2246 f2fs_mark_inode_dirty_sync(inode, false); 2247 } 2248 2249 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2250 { 2251 if (inc) 2252 inc_nlink(inode); 2253 else 2254 drop_nlink(inode); 2255 f2fs_mark_inode_dirty_sync(inode, true); 2256 } 2257 2258 static inline void f2fs_i_blocks_write(struct inode *inode, 2259 block_t diff, bool add, bool claim) 2260 { 2261 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2262 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2263 2264 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2265 if (add) { 2266 if (claim) 2267 dquot_claim_block(inode, diff); 2268 else 2269 dquot_alloc_block_nofail(inode, diff); 2270 } else { 2271 dquot_free_block(inode, diff); 2272 } 2273 2274 f2fs_mark_inode_dirty_sync(inode, true); 2275 if (clean || recover) 2276 set_inode_flag(inode, FI_AUTO_RECOVER); 2277 } 2278 2279 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2280 { 2281 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2282 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2283 2284 if (i_size_read(inode) == i_size) 2285 return; 2286 2287 i_size_write(inode, i_size); 2288 f2fs_mark_inode_dirty_sync(inode, true); 2289 if (clean || recover) 2290 set_inode_flag(inode, FI_AUTO_RECOVER); 2291 } 2292 2293 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2294 { 2295 F2FS_I(inode)->i_current_depth = depth; 2296 f2fs_mark_inode_dirty_sync(inode, true); 2297 } 2298 2299 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2300 unsigned int count) 2301 { 2302 F2FS_I(inode)->i_gc_failures = count; 2303 f2fs_mark_inode_dirty_sync(inode, true); 2304 } 2305 2306 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2307 { 2308 F2FS_I(inode)->i_xattr_nid = xnid; 2309 f2fs_mark_inode_dirty_sync(inode, true); 2310 } 2311 2312 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2313 { 2314 F2FS_I(inode)->i_pino = pino; 2315 f2fs_mark_inode_dirty_sync(inode, true); 2316 } 2317 2318 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2319 { 2320 struct f2fs_inode_info *fi = F2FS_I(inode); 2321 2322 if (ri->i_inline & F2FS_INLINE_XATTR) 2323 set_bit(FI_INLINE_XATTR, &fi->flags); 2324 if (ri->i_inline & F2FS_INLINE_DATA) 2325 set_bit(FI_INLINE_DATA, &fi->flags); 2326 if (ri->i_inline & F2FS_INLINE_DENTRY) 2327 set_bit(FI_INLINE_DENTRY, &fi->flags); 2328 if (ri->i_inline & F2FS_DATA_EXIST) 2329 set_bit(FI_DATA_EXIST, &fi->flags); 2330 if (ri->i_inline & F2FS_INLINE_DOTS) 2331 set_bit(FI_INLINE_DOTS, &fi->flags); 2332 if (ri->i_inline & F2FS_EXTRA_ATTR) 2333 set_bit(FI_EXTRA_ATTR, &fi->flags); 2334 if (ri->i_inline & F2FS_PIN_FILE) 2335 set_bit(FI_PIN_FILE, &fi->flags); 2336 } 2337 2338 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2339 { 2340 ri->i_inline = 0; 2341 2342 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2343 ri->i_inline |= F2FS_INLINE_XATTR; 2344 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2345 ri->i_inline |= F2FS_INLINE_DATA; 2346 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2347 ri->i_inline |= F2FS_INLINE_DENTRY; 2348 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2349 ri->i_inline |= F2FS_DATA_EXIST; 2350 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2351 ri->i_inline |= F2FS_INLINE_DOTS; 2352 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2353 ri->i_inline |= F2FS_EXTRA_ATTR; 2354 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2355 ri->i_inline |= F2FS_PIN_FILE; 2356 } 2357 2358 static inline int f2fs_has_extra_attr(struct inode *inode) 2359 { 2360 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2361 } 2362 2363 static inline int f2fs_has_inline_xattr(struct inode *inode) 2364 { 2365 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2366 } 2367 2368 static inline unsigned int addrs_per_inode(struct inode *inode) 2369 { 2370 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode); 2371 } 2372 2373 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2374 { 2375 struct f2fs_inode *ri = F2FS_INODE(page); 2376 2377 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2378 get_inline_xattr_addrs(inode)]); 2379 } 2380 2381 static inline int inline_xattr_size(struct inode *inode) 2382 { 2383 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2384 } 2385 2386 static inline int f2fs_has_inline_data(struct inode *inode) 2387 { 2388 return is_inode_flag_set(inode, FI_INLINE_DATA); 2389 } 2390 2391 static inline int f2fs_exist_data(struct inode *inode) 2392 { 2393 return is_inode_flag_set(inode, FI_DATA_EXIST); 2394 } 2395 2396 static inline int f2fs_has_inline_dots(struct inode *inode) 2397 { 2398 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2399 } 2400 2401 static inline bool f2fs_is_pinned_file(struct inode *inode) 2402 { 2403 return is_inode_flag_set(inode, FI_PIN_FILE); 2404 } 2405 2406 static inline bool f2fs_is_atomic_file(struct inode *inode) 2407 { 2408 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2409 } 2410 2411 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2412 { 2413 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2414 } 2415 2416 static inline bool f2fs_is_volatile_file(struct inode *inode) 2417 { 2418 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2419 } 2420 2421 static inline bool f2fs_is_first_block_written(struct inode *inode) 2422 { 2423 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2424 } 2425 2426 static inline bool f2fs_is_drop_cache(struct inode *inode) 2427 { 2428 return is_inode_flag_set(inode, FI_DROP_CACHE); 2429 } 2430 2431 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2432 { 2433 struct f2fs_inode *ri = F2FS_INODE(page); 2434 int extra_size = get_extra_isize(inode); 2435 2436 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2437 } 2438 2439 static inline int f2fs_has_inline_dentry(struct inode *inode) 2440 { 2441 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2442 } 2443 2444 static inline int is_file(struct inode *inode, int type) 2445 { 2446 return F2FS_I(inode)->i_advise & type; 2447 } 2448 2449 static inline void set_file(struct inode *inode, int type) 2450 { 2451 F2FS_I(inode)->i_advise |= type; 2452 f2fs_mark_inode_dirty_sync(inode, true); 2453 } 2454 2455 static inline void clear_file(struct inode *inode, int type) 2456 { 2457 F2FS_I(inode)->i_advise &= ~type; 2458 f2fs_mark_inode_dirty_sync(inode, true); 2459 } 2460 2461 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2462 { 2463 bool ret; 2464 2465 if (dsync) { 2466 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2467 2468 spin_lock(&sbi->inode_lock[DIRTY_META]); 2469 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2470 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2471 return ret; 2472 } 2473 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2474 file_keep_isize(inode) || 2475 i_size_read(inode) & ~PAGE_MASK) 2476 return false; 2477 2478 if (!timespec_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 2479 return false; 2480 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 2481 return false; 2482 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 2483 return false; 2484 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3, 2485 &F2FS_I(inode)->i_crtime)) 2486 return false; 2487 2488 down_read(&F2FS_I(inode)->i_sem); 2489 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2490 up_read(&F2FS_I(inode)->i_sem); 2491 2492 return ret; 2493 } 2494 2495 static inline bool f2fs_readonly(struct super_block *sb) 2496 { 2497 return sb_rdonly(sb); 2498 } 2499 2500 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2501 { 2502 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2503 } 2504 2505 static inline bool is_dot_dotdot(const struct qstr *str) 2506 { 2507 if (str->len == 1 && str->name[0] == '.') 2508 return true; 2509 2510 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2511 return true; 2512 2513 return false; 2514 } 2515 2516 static inline bool f2fs_may_extent_tree(struct inode *inode) 2517 { 2518 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2519 is_inode_flag_set(inode, FI_NO_EXTENT)) 2520 return false; 2521 2522 return S_ISREG(inode->i_mode); 2523 } 2524 2525 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2526 size_t size, gfp_t flags) 2527 { 2528 #ifdef CONFIG_F2FS_FAULT_INJECTION 2529 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2530 f2fs_show_injection_info(FAULT_KMALLOC); 2531 return NULL; 2532 } 2533 #endif 2534 return kmalloc(size, flags); 2535 } 2536 2537 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2538 size_t size, gfp_t flags) 2539 { 2540 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2541 } 2542 2543 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2544 size_t size, gfp_t flags) 2545 { 2546 #ifdef CONFIG_F2FS_FAULT_INJECTION 2547 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2548 f2fs_show_injection_info(FAULT_KVMALLOC); 2549 return NULL; 2550 } 2551 #endif 2552 return kvmalloc(size, flags); 2553 } 2554 2555 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2556 size_t size, gfp_t flags) 2557 { 2558 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2559 } 2560 2561 static inline int get_extra_isize(struct inode *inode) 2562 { 2563 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2564 } 2565 2566 static inline int get_inline_xattr_addrs(struct inode *inode) 2567 { 2568 return F2FS_I(inode)->i_inline_xattr_size; 2569 } 2570 2571 #define get_inode_mode(i) \ 2572 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2573 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2574 2575 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2576 (offsetof(struct f2fs_inode, i_extra_end) - \ 2577 offsetof(struct f2fs_inode, i_extra_isize)) \ 2578 2579 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2580 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2581 ((offsetof(typeof(*f2fs_inode), field) + \ 2582 sizeof((f2fs_inode)->field)) \ 2583 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2584 2585 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2586 { 2587 int i; 2588 2589 spin_lock(&sbi->iostat_lock); 2590 for (i = 0; i < NR_IO_TYPE; i++) 2591 sbi->write_iostat[i] = 0; 2592 spin_unlock(&sbi->iostat_lock); 2593 } 2594 2595 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2596 enum iostat_type type, unsigned long long io_bytes) 2597 { 2598 if (!sbi->iostat_enable) 2599 return; 2600 spin_lock(&sbi->iostat_lock); 2601 sbi->write_iostat[type] += io_bytes; 2602 2603 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2604 sbi->write_iostat[APP_BUFFERED_IO] = 2605 sbi->write_iostat[APP_WRITE_IO] - 2606 sbi->write_iostat[APP_DIRECT_IO]; 2607 spin_unlock(&sbi->iostat_lock); 2608 } 2609 2610 /* 2611 * file.c 2612 */ 2613 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2614 void truncate_data_blocks(struct dnode_of_data *dn); 2615 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2616 int f2fs_truncate(struct inode *inode); 2617 int f2fs_getattr(const struct path *path, struct kstat *stat, 2618 u32 request_mask, unsigned int flags); 2619 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2620 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2621 void truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2622 int f2fs_precache_extents(struct inode *inode); 2623 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2624 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2625 int f2fs_pin_file_control(struct inode *inode, bool inc); 2626 2627 /* 2628 * inode.c 2629 */ 2630 void f2fs_set_inode_flags(struct inode *inode); 2631 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2632 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2633 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2634 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2635 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2636 void update_inode(struct inode *inode, struct page *node_page); 2637 void update_inode_page(struct inode *inode); 2638 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2639 void f2fs_evict_inode(struct inode *inode); 2640 void handle_failed_inode(struct inode *inode); 2641 2642 /* 2643 * namei.c 2644 */ 2645 int update_extension_list(struct f2fs_sb_info *sbi, const char *name, 2646 bool hot, bool set); 2647 struct dentry *f2fs_get_parent(struct dentry *child); 2648 2649 /* 2650 * dir.c 2651 */ 2652 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2653 unsigned char get_de_type(struct f2fs_dir_entry *de); 2654 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2655 f2fs_hash_t namehash, int *max_slots, 2656 struct f2fs_dentry_ptr *d); 2657 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2658 unsigned int start_pos, struct fscrypt_str *fstr); 2659 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2660 struct f2fs_dentry_ptr *d); 2661 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2662 const struct qstr *new_name, 2663 const struct qstr *orig_name, struct page *dpage); 2664 void update_parent_metadata(struct inode *dir, struct inode *inode, 2665 unsigned int current_depth); 2666 int room_for_filename(const void *bitmap, int slots, int max_slots); 2667 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2668 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2669 struct fscrypt_name *fname, struct page **res_page); 2670 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2671 const struct qstr *child, struct page **res_page); 2672 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2673 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2674 struct page **page); 2675 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2676 struct page *page, struct inode *inode); 2677 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2678 const struct qstr *name, f2fs_hash_t name_hash, 2679 unsigned int bit_pos); 2680 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2681 const struct qstr *orig_name, 2682 struct inode *inode, nid_t ino, umode_t mode); 2683 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2684 struct inode *inode, nid_t ino, umode_t mode); 2685 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2686 struct inode *inode, nid_t ino, umode_t mode); 2687 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2688 struct inode *dir, struct inode *inode); 2689 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2690 bool f2fs_empty_dir(struct inode *dir); 2691 2692 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2693 { 2694 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2695 inode, inode->i_ino, inode->i_mode); 2696 } 2697 2698 /* 2699 * super.c 2700 */ 2701 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2702 void f2fs_inode_synced(struct inode *inode); 2703 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2704 void f2fs_quota_off_umount(struct super_block *sb); 2705 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2706 int f2fs_sync_fs(struct super_block *sb, int sync); 2707 extern __printf(3, 4) 2708 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2709 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2710 2711 /* 2712 * hash.c 2713 */ 2714 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2715 struct fscrypt_name *fname); 2716 2717 /* 2718 * node.c 2719 */ 2720 struct dnode_of_data; 2721 struct node_info; 2722 2723 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2724 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2725 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2726 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2727 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2728 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2729 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2730 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2731 int truncate_xattr_node(struct inode *inode); 2732 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2733 int remove_inode_page(struct inode *inode); 2734 struct page *new_inode_page(struct inode *inode); 2735 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2736 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2737 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2738 struct page *get_node_page_ra(struct page *parent, int start); 2739 void move_node_page(struct page *node_page, int gc_type); 2740 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2741 struct writeback_control *wbc, bool atomic); 2742 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 2743 bool do_balance, enum iostat_type io_type); 2744 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2745 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2746 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2747 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2748 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2749 void recover_inline_xattr(struct inode *inode, struct page *page); 2750 int recover_xattr_data(struct inode *inode, struct page *page); 2751 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2752 void restore_node_summary(struct f2fs_sb_info *sbi, 2753 unsigned int segno, struct f2fs_summary_block *sum); 2754 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2755 int build_node_manager(struct f2fs_sb_info *sbi); 2756 void destroy_node_manager(struct f2fs_sb_info *sbi); 2757 int __init create_node_manager_caches(void); 2758 void destroy_node_manager_caches(void); 2759 2760 /* 2761 * segment.c 2762 */ 2763 bool need_SSR(struct f2fs_sb_info *sbi); 2764 void register_inmem_page(struct inode *inode, struct page *page); 2765 void drop_inmem_pages_all(struct f2fs_sb_info *sbi); 2766 void drop_inmem_pages(struct inode *inode); 2767 void drop_inmem_page(struct inode *inode, struct page *page); 2768 int commit_inmem_pages(struct inode *inode); 2769 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2770 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2771 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2772 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2773 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2774 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2775 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2776 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2777 void init_discard_policy(struct discard_policy *dpolicy, int discard_type, 2778 unsigned int granularity); 2779 void drop_discard_cmd(struct f2fs_sb_info *sbi); 2780 void stop_discard_thread(struct f2fs_sb_info *sbi); 2781 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2782 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2783 void release_discard_addrs(struct f2fs_sb_info *sbi); 2784 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2785 void allocate_new_segments(struct f2fs_sb_info *sbi); 2786 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2787 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2788 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2789 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2790 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2791 enum iostat_type io_type); 2792 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2793 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2794 int rewrite_data_page(struct f2fs_io_info *fio); 2795 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2796 block_t old_blkaddr, block_t new_blkaddr, 2797 bool recover_curseg, bool recover_newaddr); 2798 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2799 block_t old_addr, block_t new_addr, 2800 unsigned char version, bool recover_curseg, 2801 bool recover_newaddr); 2802 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2803 block_t old_blkaddr, block_t *new_blkaddr, 2804 struct f2fs_summary *sum, int type, 2805 struct f2fs_io_info *fio, bool add_list); 2806 void f2fs_wait_on_page_writeback(struct page *page, 2807 enum page_type type, bool ordered); 2808 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2809 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2810 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2811 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2812 unsigned int val, int alloc); 2813 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2814 int build_segment_manager(struct f2fs_sb_info *sbi); 2815 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2816 int __init create_segment_manager_caches(void); 2817 void destroy_segment_manager_caches(void); 2818 int rw_hint_to_seg_type(enum rw_hint hint); 2819 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type, 2820 enum temp_type temp); 2821 2822 /* 2823 * checkpoint.c 2824 */ 2825 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2826 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2827 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2828 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2829 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2830 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2831 int type, bool sync); 2832 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2833 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2834 long nr_to_write, enum iostat_type io_type); 2835 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2836 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2837 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2838 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2839 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2840 unsigned int devidx, int type); 2841 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2842 unsigned int devidx, int type); 2843 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2844 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2845 void release_orphan_inode(struct f2fs_sb_info *sbi); 2846 void add_orphan_inode(struct inode *inode); 2847 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2848 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2849 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2850 void update_dirty_page(struct inode *inode, struct page *page); 2851 void remove_dirty_inode(struct inode *inode); 2852 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2853 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2854 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2855 int __init create_checkpoint_caches(void); 2856 void destroy_checkpoint_caches(void); 2857 2858 /* 2859 * data.c 2860 */ 2861 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2862 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2863 struct inode *inode, nid_t ino, pgoff_t idx, 2864 enum page_type type); 2865 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2866 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2867 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2868 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2869 block_t blk_addr, struct bio *bio); 2870 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2871 void set_data_blkaddr(struct dnode_of_data *dn); 2872 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2873 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2874 int reserve_new_block(struct dnode_of_data *dn); 2875 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2876 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2877 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2878 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2879 int op_flags, bool for_write); 2880 struct page *find_data_page(struct inode *inode, pgoff_t index); 2881 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2882 bool for_write); 2883 struct page *get_new_data_page(struct inode *inode, 2884 struct page *ipage, pgoff_t index, bool new_i_size); 2885 int do_write_data_page(struct f2fs_io_info *fio); 2886 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2887 int create, int flag); 2888 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2889 u64 start, u64 len); 2890 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 2891 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 2892 void f2fs_set_page_dirty_nobuffers(struct page *page); 2893 int __f2fs_write_data_pages(struct address_space *mapping, 2894 struct writeback_control *wbc, 2895 enum iostat_type io_type); 2896 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2897 unsigned int length); 2898 int f2fs_release_page(struct page *page, gfp_t wait); 2899 #ifdef CONFIG_MIGRATION 2900 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2901 struct page *page, enum migrate_mode mode); 2902 #endif 2903 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 2904 2905 /* 2906 * gc.c 2907 */ 2908 int start_gc_thread(struct f2fs_sb_info *sbi); 2909 void stop_gc_thread(struct f2fs_sb_info *sbi); 2910 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2911 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2912 unsigned int segno); 2913 void build_gc_manager(struct f2fs_sb_info *sbi); 2914 2915 /* 2916 * recovery.c 2917 */ 2918 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2919 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2920 2921 /* 2922 * debug.c 2923 */ 2924 #ifdef CONFIG_F2FS_STAT_FS 2925 struct f2fs_stat_info { 2926 struct list_head stat_list; 2927 struct f2fs_sb_info *sbi; 2928 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2929 int main_area_segs, main_area_sections, main_area_zones; 2930 unsigned long long hit_largest, hit_cached, hit_rbtree; 2931 unsigned long long hit_total, total_ext; 2932 int ext_tree, zombie_tree, ext_node; 2933 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 2934 int ndirty_data, ndirty_qdata; 2935 int inmem_pages; 2936 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 2937 int nats, dirty_nats, sits, dirty_sits; 2938 int free_nids, avail_nids, alloc_nids; 2939 int total_count, utilization; 2940 int bg_gc, nr_wb_cp_data, nr_wb_data; 2941 int nr_flushing, nr_flushed, flush_list_empty; 2942 int nr_discarding, nr_discarded; 2943 int nr_discard_cmd; 2944 unsigned int undiscard_blks; 2945 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2946 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2947 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2948 unsigned int bimodal, avg_vblocks; 2949 int util_free, util_valid, util_invalid; 2950 int rsvd_segs, overp_segs; 2951 int dirty_count, node_pages, meta_pages; 2952 int prefree_count, call_count, cp_count, bg_cp_count; 2953 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2954 int bg_node_segs, bg_data_segs; 2955 int tot_blks, data_blks, node_blks; 2956 int bg_data_blks, bg_node_blks; 2957 int curseg[NR_CURSEG_TYPE]; 2958 int cursec[NR_CURSEG_TYPE]; 2959 int curzone[NR_CURSEG_TYPE]; 2960 2961 unsigned int segment_count[2]; 2962 unsigned int block_count[2]; 2963 unsigned int inplace_count; 2964 unsigned long long base_mem, cache_mem, page_mem; 2965 }; 2966 2967 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2968 { 2969 return (struct f2fs_stat_info *)sbi->stat_info; 2970 } 2971 2972 #define stat_inc_cp_count(si) ((si)->cp_count++) 2973 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2974 #define stat_inc_call_count(si) ((si)->call_count++) 2975 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2976 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2977 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2978 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2979 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2980 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2981 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2982 #define stat_inc_inline_xattr(inode) \ 2983 do { \ 2984 if (f2fs_has_inline_xattr(inode)) \ 2985 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2986 } while (0) 2987 #define stat_dec_inline_xattr(inode) \ 2988 do { \ 2989 if (f2fs_has_inline_xattr(inode)) \ 2990 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2991 } while (0) 2992 #define stat_inc_inline_inode(inode) \ 2993 do { \ 2994 if (f2fs_has_inline_data(inode)) \ 2995 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2996 } while (0) 2997 #define stat_dec_inline_inode(inode) \ 2998 do { \ 2999 if (f2fs_has_inline_data(inode)) \ 3000 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3001 } while (0) 3002 #define stat_inc_inline_dir(inode) \ 3003 do { \ 3004 if (f2fs_has_inline_dentry(inode)) \ 3005 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3006 } while (0) 3007 #define stat_dec_inline_dir(inode) \ 3008 do { \ 3009 if (f2fs_has_inline_dentry(inode)) \ 3010 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3011 } while (0) 3012 #define stat_inc_seg_type(sbi, curseg) \ 3013 ((sbi)->segment_count[(curseg)->alloc_type]++) 3014 #define stat_inc_block_count(sbi, curseg) \ 3015 ((sbi)->block_count[(curseg)->alloc_type]++) 3016 #define stat_inc_inplace_blocks(sbi) \ 3017 (atomic_inc(&(sbi)->inplace_count)) 3018 #define stat_inc_atomic_write(inode) \ 3019 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 3020 #define stat_dec_atomic_write(inode) \ 3021 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 3022 #define stat_update_max_atomic_write(inode) \ 3023 do { \ 3024 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 3025 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3026 if (cur > max) \ 3027 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3028 } while (0) 3029 #define stat_inc_volatile_write(inode) \ 3030 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3031 #define stat_dec_volatile_write(inode) \ 3032 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3033 #define stat_update_max_volatile_write(inode) \ 3034 do { \ 3035 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3036 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3037 if (cur > max) \ 3038 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3039 } while (0) 3040 #define stat_inc_seg_count(sbi, type, gc_type) \ 3041 do { \ 3042 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3043 si->tot_segs++; \ 3044 if ((type) == SUM_TYPE_DATA) { \ 3045 si->data_segs++; \ 3046 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3047 } else { \ 3048 si->node_segs++; \ 3049 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3050 } \ 3051 } while (0) 3052 3053 #define stat_inc_tot_blk_count(si, blks) \ 3054 ((si)->tot_blks += (blks)) 3055 3056 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3057 do { \ 3058 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3059 stat_inc_tot_blk_count(si, blks); \ 3060 si->data_blks += (blks); \ 3061 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3062 } while (0) 3063 3064 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3065 do { \ 3066 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3067 stat_inc_tot_blk_count(si, blks); \ 3068 si->node_blks += (blks); \ 3069 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3070 } while (0) 3071 3072 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3073 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3074 int __init f2fs_create_root_stats(void); 3075 void f2fs_destroy_root_stats(void); 3076 #else 3077 #define stat_inc_cp_count(si) do { } while (0) 3078 #define stat_inc_bg_cp_count(si) do { } while (0) 3079 #define stat_inc_call_count(si) do { } while (0) 3080 #define stat_inc_bggc_count(si) do { } while (0) 3081 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3082 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3083 #define stat_inc_total_hit(sb) do { } while (0) 3084 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3085 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3086 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3087 #define stat_inc_inline_xattr(inode) do { } while (0) 3088 #define stat_dec_inline_xattr(inode) do { } while (0) 3089 #define stat_inc_inline_inode(inode) do { } while (0) 3090 #define stat_dec_inline_inode(inode) do { } while (0) 3091 #define stat_inc_inline_dir(inode) do { } while (0) 3092 #define stat_dec_inline_dir(inode) do { } while (0) 3093 #define stat_inc_atomic_write(inode) do { } while (0) 3094 #define stat_dec_atomic_write(inode) do { } while (0) 3095 #define stat_update_max_atomic_write(inode) do { } while (0) 3096 #define stat_inc_volatile_write(inode) do { } while (0) 3097 #define stat_dec_volatile_write(inode) do { } while (0) 3098 #define stat_update_max_volatile_write(inode) do { } while (0) 3099 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3100 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3101 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3102 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3103 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3104 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3105 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3106 3107 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3108 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3109 static inline int __init f2fs_create_root_stats(void) { return 0; } 3110 static inline void f2fs_destroy_root_stats(void) { } 3111 #endif 3112 3113 extern const struct file_operations f2fs_dir_operations; 3114 extern const struct file_operations f2fs_file_operations; 3115 extern const struct inode_operations f2fs_file_inode_operations; 3116 extern const struct address_space_operations f2fs_dblock_aops; 3117 extern const struct address_space_operations f2fs_node_aops; 3118 extern const struct address_space_operations f2fs_meta_aops; 3119 extern const struct inode_operations f2fs_dir_inode_operations; 3120 extern const struct inode_operations f2fs_symlink_inode_operations; 3121 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3122 extern const struct inode_operations f2fs_special_inode_operations; 3123 extern struct kmem_cache *inode_entry_slab; 3124 3125 /* 3126 * inline.c 3127 */ 3128 bool f2fs_may_inline_data(struct inode *inode); 3129 bool f2fs_may_inline_dentry(struct inode *inode); 3130 void read_inline_data(struct page *page, struct page *ipage); 3131 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 3132 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3133 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3134 int f2fs_convert_inline_inode(struct inode *inode); 3135 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3136 bool recover_inline_data(struct inode *inode, struct page *npage); 3137 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 3138 struct fscrypt_name *fname, struct page **res_page); 3139 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 3140 struct page *ipage); 3141 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3142 const struct qstr *orig_name, 3143 struct inode *inode, nid_t ino, umode_t mode); 3144 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 3145 struct inode *dir, struct inode *inode); 3146 bool f2fs_empty_inline_dir(struct inode *dir); 3147 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3148 struct fscrypt_str *fstr); 3149 int f2fs_inline_data_fiemap(struct inode *inode, 3150 struct fiemap_extent_info *fieinfo, 3151 __u64 start, __u64 len); 3152 3153 /* 3154 * shrinker.c 3155 */ 3156 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3157 struct shrink_control *sc); 3158 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3159 struct shrink_control *sc); 3160 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3161 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3162 3163 /* 3164 * extent_cache.c 3165 */ 3166 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 3167 struct rb_entry *cached_re, unsigned int ofs); 3168 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3169 struct rb_root *root, struct rb_node **parent, 3170 unsigned int ofs); 3171 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 3172 struct rb_entry *cached_re, unsigned int ofs, 3173 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3174 struct rb_node ***insert_p, struct rb_node **insert_parent, 3175 bool force); 3176 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3177 struct rb_root *root); 3178 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3179 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3180 void f2fs_drop_extent_tree(struct inode *inode); 3181 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3182 void f2fs_destroy_extent_tree(struct inode *inode); 3183 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3184 struct extent_info *ei); 3185 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3186 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3187 pgoff_t fofs, block_t blkaddr, unsigned int len); 3188 void init_extent_cache_info(struct f2fs_sb_info *sbi); 3189 int __init create_extent_cache(void); 3190 void destroy_extent_cache(void); 3191 3192 /* 3193 * sysfs.c 3194 */ 3195 int __init f2fs_init_sysfs(void); 3196 void f2fs_exit_sysfs(void); 3197 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3198 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3199 3200 /* 3201 * crypto support 3202 */ 3203 static inline bool f2fs_encrypted_inode(struct inode *inode) 3204 { 3205 return file_is_encrypt(inode); 3206 } 3207 3208 static inline bool f2fs_encrypted_file(struct inode *inode) 3209 { 3210 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3211 } 3212 3213 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3214 { 3215 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3216 file_set_encrypt(inode); 3217 inode->i_flags |= S_ENCRYPTED; 3218 #endif 3219 } 3220 3221 static inline bool f2fs_bio_encrypted(struct bio *bio) 3222 { 3223 return bio->bi_private != NULL; 3224 } 3225 3226 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3227 static inline int f2fs_sb_has_##name(struct super_block *sb) \ 3228 { \ 3229 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \ 3230 } 3231 3232 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3233 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3234 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3235 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3236 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3237 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3238 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3239 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3240 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 3241 3242 #ifdef CONFIG_BLK_DEV_ZONED 3243 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3244 struct block_device *bdev, block_t blkaddr) 3245 { 3246 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3247 int i; 3248 3249 for (i = 0; i < sbi->s_ndevs; i++) 3250 if (FDEV(i).bdev == bdev) 3251 return FDEV(i).blkz_type[zno]; 3252 return -EINVAL; 3253 } 3254 #endif 3255 3256 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 3257 { 3258 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3259 3260 return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb); 3261 } 3262 3263 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3264 { 3265 clear_opt(sbi, ADAPTIVE); 3266 clear_opt(sbi, LFS); 3267 3268 switch (mt) { 3269 case F2FS_MOUNT_ADAPTIVE: 3270 set_opt(sbi, ADAPTIVE); 3271 break; 3272 case F2FS_MOUNT_LFS: 3273 set_opt(sbi, LFS); 3274 break; 3275 } 3276 } 3277 3278 static inline bool f2fs_may_encrypt(struct inode *inode) 3279 { 3280 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3281 umode_t mode = inode->i_mode; 3282 3283 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3284 #else 3285 return 0; 3286 #endif 3287 } 3288 3289 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw) 3290 { 3291 return (f2fs_encrypted_file(inode) || 3292 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 3293 F2FS_I_SB(inode)->s_ndevs); 3294 } 3295 3296 #endif 3297