xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 4a3fad70)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <crypto/hash.h>
27 
28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
29 #include <linux/fscrypt.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (unlikely(condition)) {				\
37 			WARN_ON(1);					\
38 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39 		}							\
40 	} while (0)
41 #endif
42 
43 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_MAX,
58 };
59 
60 struct f2fs_fault_info {
61 	atomic_t inject_ops;
62 	unsigned int inject_rate;
63 	unsigned int inject_type;
64 };
65 
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69 
70 /*
71  * For mount options
72  */
73 #define F2FS_MOUNT_BG_GC		0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
75 #define F2FS_MOUNT_DISCARD		0x00000004
76 #define F2FS_MOUNT_NOHEAP		0x00000008
77 #define F2FS_MOUNT_XATTR_USER		0x00000010
78 #define F2FS_MOUNT_POSIX_ACL		0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
81 #define F2FS_MOUNT_INLINE_DATA		0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
84 #define F2FS_MOUNT_NOBARRIER		0x00000800
85 #define F2FS_MOUNT_FASTBOOT		0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
90 #define F2FS_MOUNT_ADAPTIVE		0x00020000
91 #define F2FS_MOUNT_LFS			0x00040000
92 #define F2FS_MOUNT_USRQUOTA		0x00080000
93 #define F2FS_MOUNT_GRPQUOTA		0x00100000
94 #define F2FS_MOUNT_PRJQUOTA		0x00200000
95 #define F2FS_MOUNT_QUOTA		0x00400000
96 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
97 
98 #define clear_opt(sbi, option)	((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
99 #define set_opt(sbi, option)	((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
100 #define test_opt(sbi, option)	((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
101 
102 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
103 		typecheck(unsigned long long, b) &&			\
104 		((long long)((a) - (b)) > 0))
105 
106 typedef u32 block_t;	/*
107 			 * should not change u32, since it is the on-disk block
108 			 * address format, __le32.
109 			 */
110 typedef u32 nid_t;
111 
112 struct f2fs_mount_info {
113 	unsigned int	opt;
114 };
115 
116 #define F2FS_FEATURE_ENCRYPT		0x0001
117 #define F2FS_FEATURE_BLKZONED		0x0002
118 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
119 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
120 #define F2FS_FEATURE_PRJQUOTA		0x0010
121 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
122 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
123 #define F2FS_FEATURE_QUOTA_INO		0x0080
124 
125 #define F2FS_HAS_FEATURE(sb, mask)					\
126 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
127 #define F2FS_SET_FEATURE(sb, mask)					\
128 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
129 #define F2FS_CLEAR_FEATURE(sb, mask)					\
130 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
131 
132 /*
133  * For checkpoint manager
134  */
135 enum {
136 	NAT_BITMAP,
137 	SIT_BITMAP
138 };
139 
140 #define	CP_UMOUNT	0x00000001
141 #define	CP_FASTBOOT	0x00000002
142 #define	CP_SYNC		0x00000004
143 #define	CP_RECOVERY	0x00000008
144 #define	CP_DISCARD	0x00000010
145 #define CP_TRIMMED	0x00000020
146 
147 #define DEF_BATCHED_TRIM_SECTIONS	2048
148 #define BATCHED_TRIM_SEGMENTS(sbi)	\
149 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
150 #define BATCHED_TRIM_BLOCKS(sbi)	\
151 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
152 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
153 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
154 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
155 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
156 #define DEF_CP_INTERVAL			60	/* 60 secs */
157 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
158 
159 struct cp_control {
160 	int reason;
161 	__u64 trim_start;
162 	__u64 trim_end;
163 	__u64 trim_minlen;
164 };
165 
166 /*
167  * For CP/NAT/SIT/SSA readahead
168  */
169 enum {
170 	META_CP,
171 	META_NAT,
172 	META_SIT,
173 	META_SSA,
174 	META_POR,
175 };
176 
177 /* for the list of ino */
178 enum {
179 	ORPHAN_INO,		/* for orphan ino list */
180 	APPEND_INO,		/* for append ino list */
181 	UPDATE_INO,		/* for update ino list */
182 	FLUSH_INO,		/* for multiple device flushing */
183 	MAX_INO_ENTRY,		/* max. list */
184 };
185 
186 struct ino_entry {
187 	struct list_head list;		/* list head */
188 	nid_t ino;			/* inode number */
189 	unsigned int dirty_device;	/* dirty device bitmap */
190 };
191 
192 /* for the list of inodes to be GCed */
193 struct inode_entry {
194 	struct list_head list;	/* list head */
195 	struct inode *inode;	/* vfs inode pointer */
196 };
197 
198 /* for the bitmap indicate blocks to be discarded */
199 struct discard_entry {
200 	struct list_head list;	/* list head */
201 	block_t start_blkaddr;	/* start blockaddr of current segment */
202 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
203 };
204 
205 /* default discard granularity of inner discard thread, unit: block count */
206 #define DEFAULT_DISCARD_GRANULARITY		16
207 
208 /* max discard pend list number */
209 #define MAX_PLIST_NUM		512
210 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
211 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
212 
213 enum {
214 	D_PREP,
215 	D_SUBMIT,
216 	D_DONE,
217 };
218 
219 struct discard_info {
220 	block_t lstart;			/* logical start address */
221 	block_t len;			/* length */
222 	block_t start;			/* actual start address in dev */
223 };
224 
225 struct discard_cmd {
226 	struct rb_node rb_node;		/* rb node located in rb-tree */
227 	union {
228 		struct {
229 			block_t lstart;	/* logical start address */
230 			block_t len;	/* length */
231 			block_t start;	/* actual start address in dev */
232 		};
233 		struct discard_info di;	/* discard info */
234 
235 	};
236 	struct list_head list;		/* command list */
237 	struct completion wait;		/* compleation */
238 	struct block_device *bdev;	/* bdev */
239 	unsigned short ref;		/* reference count */
240 	unsigned char state;		/* state */
241 	int error;			/* bio error */
242 };
243 
244 enum {
245 	DPOLICY_BG,
246 	DPOLICY_FORCE,
247 	DPOLICY_FSTRIM,
248 	DPOLICY_UMOUNT,
249 	MAX_DPOLICY,
250 };
251 
252 struct discard_policy {
253 	int type;			/* type of discard */
254 	unsigned int min_interval;	/* used for candidates exist */
255 	unsigned int max_interval;	/* used for candidates not exist */
256 	unsigned int max_requests;	/* # of discards issued per round */
257 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
258 	bool io_aware;			/* issue discard in idle time */
259 	bool sync;			/* submit discard with REQ_SYNC flag */
260 	unsigned int granularity;	/* discard granularity */
261 };
262 
263 struct discard_cmd_control {
264 	struct task_struct *f2fs_issue_discard;	/* discard thread */
265 	struct list_head entry_list;		/* 4KB discard entry list */
266 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
267 	unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
268 	struct list_head wait_list;		/* store on-flushing entries */
269 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
270 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
271 	unsigned int discard_wake;		/* to wake up discard thread */
272 	struct mutex cmd_lock;
273 	unsigned int nr_discards;		/* # of discards in the list */
274 	unsigned int max_discards;		/* max. discards to be issued */
275 	unsigned int discard_granularity;	/* discard granularity */
276 	unsigned int undiscard_blks;		/* # of undiscard blocks */
277 	atomic_t issued_discard;		/* # of issued discard */
278 	atomic_t issing_discard;		/* # of issing discard */
279 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
280 	struct rb_root root;			/* root of discard rb-tree */
281 };
282 
283 /* for the list of fsync inodes, used only during recovery */
284 struct fsync_inode_entry {
285 	struct list_head list;	/* list head */
286 	struct inode *inode;	/* vfs inode pointer */
287 	block_t blkaddr;	/* block address locating the last fsync */
288 	block_t last_dentry;	/* block address locating the last dentry */
289 };
290 
291 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
292 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
293 
294 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
295 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
296 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
297 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
298 
299 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
300 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
301 
302 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
303 {
304 	int before = nats_in_cursum(journal);
305 
306 	journal->n_nats = cpu_to_le16(before + i);
307 	return before;
308 }
309 
310 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
311 {
312 	int before = sits_in_cursum(journal);
313 
314 	journal->n_sits = cpu_to_le16(before + i);
315 	return before;
316 }
317 
318 static inline bool __has_cursum_space(struct f2fs_journal *journal,
319 							int size, int type)
320 {
321 	if (type == NAT_JOURNAL)
322 		return size <= MAX_NAT_JENTRIES(journal);
323 	return size <= MAX_SIT_JENTRIES(journal);
324 }
325 
326 /*
327  * ioctl commands
328  */
329 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
330 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
331 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
332 
333 #define F2FS_IOCTL_MAGIC		0xf5
334 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
335 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
336 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
337 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
338 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
339 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
340 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
341 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
342 						struct f2fs_defragment)
343 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
344 						struct f2fs_move_range)
345 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
346 						struct f2fs_flush_device)
347 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
348 						struct f2fs_gc_range)
349 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
350 
351 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
352 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
353 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
354 
355 /*
356  * should be same as XFS_IOC_GOINGDOWN.
357  * Flags for going down operation used by FS_IOC_GOINGDOWN
358  */
359 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
360 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
361 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
362 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
363 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
364 
365 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
366 /*
367  * ioctl commands in 32 bit emulation
368  */
369 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
370 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
371 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
372 #endif
373 
374 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
375 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
376 
377 struct f2fs_gc_range {
378 	u32 sync;
379 	u64 start;
380 	u64 len;
381 };
382 
383 struct f2fs_defragment {
384 	u64 start;
385 	u64 len;
386 };
387 
388 struct f2fs_move_range {
389 	u32 dst_fd;		/* destination fd */
390 	u64 pos_in;		/* start position in src_fd */
391 	u64 pos_out;		/* start position in dst_fd */
392 	u64 len;		/* size to move */
393 };
394 
395 struct f2fs_flush_device {
396 	u32 dev_num;		/* device number to flush */
397 	u32 segments;		/* # of segments to flush */
398 };
399 
400 /* for inline stuff */
401 #define DEF_INLINE_RESERVED_SIZE	1
402 #define DEF_MIN_INLINE_SIZE		1
403 static inline int get_extra_isize(struct inode *inode);
404 static inline int get_inline_xattr_addrs(struct inode *inode);
405 #define F2FS_INLINE_XATTR_ADDRS(inode)	get_inline_xattr_addrs(inode)
406 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
407 				(CUR_ADDRS_PER_INODE(inode) -		\
408 				F2FS_INLINE_XATTR_ADDRS(inode) -	\
409 				DEF_INLINE_RESERVED_SIZE))
410 
411 /* for inline dir */
412 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
413 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
414 				BITS_PER_BYTE + 1))
415 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
416 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
417 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
418 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
419 				NR_INLINE_DENTRY(inode) + \
420 				INLINE_DENTRY_BITMAP_SIZE(inode)))
421 
422 /*
423  * For INODE and NODE manager
424  */
425 /* for directory operations */
426 struct f2fs_dentry_ptr {
427 	struct inode *inode;
428 	void *bitmap;
429 	struct f2fs_dir_entry *dentry;
430 	__u8 (*filename)[F2FS_SLOT_LEN];
431 	int max;
432 	int nr_bitmap;
433 };
434 
435 static inline void make_dentry_ptr_block(struct inode *inode,
436 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
437 {
438 	d->inode = inode;
439 	d->max = NR_DENTRY_IN_BLOCK;
440 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
441 	d->bitmap = &t->dentry_bitmap;
442 	d->dentry = t->dentry;
443 	d->filename = t->filename;
444 }
445 
446 static inline void make_dentry_ptr_inline(struct inode *inode,
447 					struct f2fs_dentry_ptr *d, void *t)
448 {
449 	int entry_cnt = NR_INLINE_DENTRY(inode);
450 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
451 	int reserved_size = INLINE_RESERVED_SIZE(inode);
452 
453 	d->inode = inode;
454 	d->max = entry_cnt;
455 	d->nr_bitmap = bitmap_size;
456 	d->bitmap = t;
457 	d->dentry = t + bitmap_size + reserved_size;
458 	d->filename = t + bitmap_size + reserved_size +
459 					SIZE_OF_DIR_ENTRY * entry_cnt;
460 }
461 
462 /*
463  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
464  * as its node offset to distinguish from index node blocks.
465  * But some bits are used to mark the node block.
466  */
467 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
468 				>> OFFSET_BIT_SHIFT)
469 enum {
470 	ALLOC_NODE,			/* allocate a new node page if needed */
471 	LOOKUP_NODE,			/* look up a node without readahead */
472 	LOOKUP_NODE_RA,			/*
473 					 * look up a node with readahead called
474 					 * by get_data_block.
475 					 */
476 };
477 
478 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
479 
480 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
481 
482 /* vector size for gang look-up from extent cache that consists of radix tree */
483 #define EXT_TREE_VEC_SIZE	64
484 
485 /* for in-memory extent cache entry */
486 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
487 
488 /* number of extent info in extent cache we try to shrink */
489 #define EXTENT_CACHE_SHRINK_NUMBER	128
490 
491 struct rb_entry {
492 	struct rb_node rb_node;		/* rb node located in rb-tree */
493 	unsigned int ofs;		/* start offset of the entry */
494 	unsigned int len;		/* length of the entry */
495 };
496 
497 struct extent_info {
498 	unsigned int fofs;		/* start offset in a file */
499 	unsigned int len;		/* length of the extent */
500 	u32 blk;			/* start block address of the extent */
501 };
502 
503 struct extent_node {
504 	struct rb_node rb_node;
505 	union {
506 		struct {
507 			unsigned int fofs;
508 			unsigned int len;
509 			u32 blk;
510 		};
511 		struct extent_info ei;	/* extent info */
512 
513 	};
514 	struct list_head list;		/* node in global extent list of sbi */
515 	struct extent_tree *et;		/* extent tree pointer */
516 };
517 
518 struct extent_tree {
519 	nid_t ino;			/* inode number */
520 	struct rb_root root;		/* root of extent info rb-tree */
521 	struct extent_node *cached_en;	/* recently accessed extent node */
522 	struct extent_info largest;	/* largested extent info */
523 	struct list_head list;		/* to be used by sbi->zombie_list */
524 	rwlock_t lock;			/* protect extent info rb-tree */
525 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
526 };
527 
528 /*
529  * This structure is taken from ext4_map_blocks.
530  *
531  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
532  */
533 #define F2FS_MAP_NEW		(1 << BH_New)
534 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
535 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
536 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
537 				F2FS_MAP_UNWRITTEN)
538 
539 struct f2fs_map_blocks {
540 	block_t m_pblk;
541 	block_t m_lblk;
542 	unsigned int m_len;
543 	unsigned int m_flags;
544 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
545 };
546 
547 /* for flag in get_data_block */
548 enum {
549 	F2FS_GET_BLOCK_DEFAULT,
550 	F2FS_GET_BLOCK_FIEMAP,
551 	F2FS_GET_BLOCK_BMAP,
552 	F2FS_GET_BLOCK_PRE_DIO,
553 	F2FS_GET_BLOCK_PRE_AIO,
554 };
555 
556 /*
557  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
558  */
559 #define FADVISE_COLD_BIT	0x01
560 #define FADVISE_LOST_PINO_BIT	0x02
561 #define FADVISE_ENCRYPT_BIT	0x04
562 #define FADVISE_ENC_NAME_BIT	0x08
563 #define FADVISE_KEEP_SIZE_BIT	0x10
564 
565 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
566 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
567 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
568 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
569 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
570 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
571 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
572 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
573 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
574 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
575 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
576 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
577 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
578 
579 #define DEF_DIR_LEVEL		0
580 
581 struct f2fs_inode_info {
582 	struct inode vfs_inode;		/* serve a vfs inode */
583 	unsigned long i_flags;		/* keep an inode flags for ioctl */
584 	unsigned char i_advise;		/* use to give file attribute hints */
585 	unsigned char i_dir_level;	/* use for dentry level for large dir */
586 	unsigned int i_current_depth;	/* use only in directory structure */
587 	unsigned int i_pino;		/* parent inode number */
588 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
589 
590 	/* Use below internally in f2fs*/
591 	unsigned long flags;		/* use to pass per-file flags */
592 	struct rw_semaphore i_sem;	/* protect fi info */
593 	atomic_t dirty_pages;		/* # of dirty pages */
594 	f2fs_hash_t chash;		/* hash value of given file name */
595 	unsigned int clevel;		/* maximum level of given file name */
596 	struct task_struct *task;	/* lookup and create consistency */
597 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
598 	nid_t i_xattr_nid;		/* node id that contains xattrs */
599 	loff_t	last_disk_size;		/* lastly written file size */
600 
601 #ifdef CONFIG_QUOTA
602 	struct dquot *i_dquot[MAXQUOTAS];
603 
604 	/* quota space reservation, managed internally by quota code */
605 	qsize_t i_reserved_quota;
606 #endif
607 	struct list_head dirty_list;	/* dirty list for dirs and files */
608 	struct list_head gdirty_list;	/* linked in global dirty list */
609 	struct list_head inmem_ilist;	/* list for inmem inodes */
610 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
611 	struct task_struct *inmem_task;	/* store inmemory task */
612 	struct mutex inmem_lock;	/* lock for inmemory pages */
613 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
614 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
615 	struct rw_semaphore i_mmap_sem;
616 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
617 
618 	int i_extra_isize;		/* size of extra space located in i_addr */
619 	kprojid_t i_projid;		/* id for project quota */
620 	int i_inline_xattr_size;	/* inline xattr size */
621 };
622 
623 static inline void get_extent_info(struct extent_info *ext,
624 					struct f2fs_extent *i_ext)
625 {
626 	ext->fofs = le32_to_cpu(i_ext->fofs);
627 	ext->blk = le32_to_cpu(i_ext->blk);
628 	ext->len = le32_to_cpu(i_ext->len);
629 }
630 
631 static inline void set_raw_extent(struct extent_info *ext,
632 					struct f2fs_extent *i_ext)
633 {
634 	i_ext->fofs = cpu_to_le32(ext->fofs);
635 	i_ext->blk = cpu_to_le32(ext->blk);
636 	i_ext->len = cpu_to_le32(ext->len);
637 }
638 
639 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
640 						u32 blk, unsigned int len)
641 {
642 	ei->fofs = fofs;
643 	ei->blk = blk;
644 	ei->len = len;
645 }
646 
647 static inline bool __is_discard_mergeable(struct discard_info *back,
648 						struct discard_info *front)
649 {
650 	return back->lstart + back->len == front->lstart;
651 }
652 
653 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
654 						struct discard_info *back)
655 {
656 	return __is_discard_mergeable(back, cur);
657 }
658 
659 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
660 						struct discard_info *front)
661 {
662 	return __is_discard_mergeable(cur, front);
663 }
664 
665 static inline bool __is_extent_mergeable(struct extent_info *back,
666 						struct extent_info *front)
667 {
668 	return (back->fofs + back->len == front->fofs &&
669 			back->blk + back->len == front->blk);
670 }
671 
672 static inline bool __is_back_mergeable(struct extent_info *cur,
673 						struct extent_info *back)
674 {
675 	return __is_extent_mergeable(back, cur);
676 }
677 
678 static inline bool __is_front_mergeable(struct extent_info *cur,
679 						struct extent_info *front)
680 {
681 	return __is_extent_mergeable(cur, front);
682 }
683 
684 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
685 static inline void __try_update_largest_extent(struct inode *inode,
686 			struct extent_tree *et, struct extent_node *en)
687 {
688 	if (en->ei.len > et->largest.len) {
689 		et->largest = en->ei;
690 		f2fs_mark_inode_dirty_sync(inode, true);
691 	}
692 }
693 
694 /*
695  * For free nid management
696  */
697 enum nid_state {
698 	FREE_NID,		/* newly added to free nid list */
699 	PREALLOC_NID,		/* it is preallocated */
700 	MAX_NID_STATE,
701 };
702 
703 struct f2fs_nm_info {
704 	block_t nat_blkaddr;		/* base disk address of NAT */
705 	nid_t max_nid;			/* maximum possible node ids */
706 	nid_t available_nids;		/* # of available node ids */
707 	nid_t next_scan_nid;		/* the next nid to be scanned */
708 	unsigned int ram_thresh;	/* control the memory footprint */
709 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
710 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
711 
712 	/* NAT cache management */
713 	struct radix_tree_root nat_root;/* root of the nat entry cache */
714 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
715 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
716 	struct list_head nat_entries;	/* cached nat entry list (clean) */
717 	unsigned int nat_cnt;		/* the # of cached nat entries */
718 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
719 	unsigned int nat_blocks;	/* # of nat blocks */
720 
721 	/* free node ids management */
722 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
723 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
724 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
725 	spinlock_t nid_list_lock;	/* protect nid lists ops */
726 	struct mutex build_lock;	/* lock for build free nids */
727 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
728 	unsigned char *nat_block_bitmap;
729 	unsigned short *free_nid_count;	/* free nid count of NAT block */
730 
731 	/* for checkpoint */
732 	char *nat_bitmap;		/* NAT bitmap pointer */
733 
734 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
735 	unsigned char *nat_bits;	/* NAT bits blocks */
736 	unsigned char *full_nat_bits;	/* full NAT pages */
737 	unsigned char *empty_nat_bits;	/* empty NAT pages */
738 #ifdef CONFIG_F2FS_CHECK_FS
739 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
740 #endif
741 	int bitmap_size;		/* bitmap size */
742 };
743 
744 /*
745  * this structure is used as one of function parameters.
746  * all the information are dedicated to a given direct node block determined
747  * by the data offset in a file.
748  */
749 struct dnode_of_data {
750 	struct inode *inode;		/* vfs inode pointer */
751 	struct page *inode_page;	/* its inode page, NULL is possible */
752 	struct page *node_page;		/* cached direct node page */
753 	nid_t nid;			/* node id of the direct node block */
754 	unsigned int ofs_in_node;	/* data offset in the node page */
755 	bool inode_page_locked;		/* inode page is locked or not */
756 	bool node_changed;		/* is node block changed */
757 	char cur_level;			/* level of hole node page */
758 	char max_level;			/* level of current page located */
759 	block_t	data_blkaddr;		/* block address of the node block */
760 };
761 
762 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
763 		struct page *ipage, struct page *npage, nid_t nid)
764 {
765 	memset(dn, 0, sizeof(*dn));
766 	dn->inode = inode;
767 	dn->inode_page = ipage;
768 	dn->node_page = npage;
769 	dn->nid = nid;
770 }
771 
772 /*
773  * For SIT manager
774  *
775  * By default, there are 6 active log areas across the whole main area.
776  * When considering hot and cold data separation to reduce cleaning overhead,
777  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
778  * respectively.
779  * In the current design, you should not change the numbers intentionally.
780  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
781  * logs individually according to the underlying devices. (default: 6)
782  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
783  * data and 8 for node logs.
784  */
785 #define	NR_CURSEG_DATA_TYPE	(3)
786 #define NR_CURSEG_NODE_TYPE	(3)
787 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
788 
789 enum {
790 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
791 	CURSEG_WARM_DATA,	/* data blocks */
792 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
793 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
794 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
795 	CURSEG_COLD_NODE,	/* indirect node blocks */
796 	NO_CHECK_TYPE,
797 };
798 
799 struct flush_cmd {
800 	struct completion wait;
801 	struct llist_node llnode;
802 	nid_t ino;
803 	int ret;
804 };
805 
806 struct flush_cmd_control {
807 	struct task_struct *f2fs_issue_flush;	/* flush thread */
808 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
809 	atomic_t issued_flush;			/* # of issued flushes */
810 	atomic_t issing_flush;			/* # of issing flushes */
811 	struct llist_head issue_list;		/* list for command issue */
812 	struct llist_node *dispatch_list;	/* list for command dispatch */
813 };
814 
815 struct f2fs_sm_info {
816 	struct sit_info *sit_info;		/* whole segment information */
817 	struct free_segmap_info *free_info;	/* free segment information */
818 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
819 	struct curseg_info *curseg_array;	/* active segment information */
820 
821 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
822 
823 	block_t seg0_blkaddr;		/* block address of 0'th segment */
824 	block_t main_blkaddr;		/* start block address of main area */
825 	block_t ssa_blkaddr;		/* start block address of SSA area */
826 
827 	unsigned int segment_count;	/* total # of segments */
828 	unsigned int main_segments;	/* # of segments in main area */
829 	unsigned int reserved_segments;	/* # of reserved segments */
830 	unsigned int ovp_segments;	/* # of overprovision segments */
831 
832 	/* a threshold to reclaim prefree segments */
833 	unsigned int rec_prefree_segments;
834 
835 	/* for batched trimming */
836 	unsigned int trim_sections;		/* # of sections to trim */
837 
838 	struct list_head sit_entry_set;	/* sit entry set list */
839 
840 	unsigned int ipu_policy;	/* in-place-update policy */
841 	unsigned int min_ipu_util;	/* in-place-update threshold */
842 	unsigned int min_fsync_blocks;	/* threshold for fsync */
843 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
844 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
845 
846 	/* for flush command control */
847 	struct flush_cmd_control *fcc_info;
848 
849 	/* for discard command control */
850 	struct discard_cmd_control *dcc_info;
851 };
852 
853 /*
854  * For superblock
855  */
856 /*
857  * COUNT_TYPE for monitoring
858  *
859  * f2fs monitors the number of several block types such as on-writeback,
860  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
861  */
862 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
863 enum count_type {
864 	F2FS_DIRTY_DENTS,
865 	F2FS_DIRTY_DATA,
866 	F2FS_DIRTY_QDATA,
867 	F2FS_DIRTY_NODES,
868 	F2FS_DIRTY_META,
869 	F2FS_INMEM_PAGES,
870 	F2FS_DIRTY_IMETA,
871 	F2FS_WB_CP_DATA,
872 	F2FS_WB_DATA,
873 	NR_COUNT_TYPE,
874 };
875 
876 /*
877  * The below are the page types of bios used in submit_bio().
878  * The available types are:
879  * DATA			User data pages. It operates as async mode.
880  * NODE			Node pages. It operates as async mode.
881  * META			FS metadata pages such as SIT, NAT, CP.
882  * NR_PAGE_TYPE		The number of page types.
883  * META_FLUSH		Make sure the previous pages are written
884  *			with waiting the bio's completion
885  * ...			Only can be used with META.
886  */
887 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
888 enum page_type {
889 	DATA,
890 	NODE,
891 	META,
892 	NR_PAGE_TYPE,
893 	META_FLUSH,
894 	INMEM,		/* the below types are used by tracepoints only. */
895 	INMEM_DROP,
896 	INMEM_INVALIDATE,
897 	INMEM_REVOKE,
898 	IPU,
899 	OPU,
900 };
901 
902 enum temp_type {
903 	HOT = 0,	/* must be zero for meta bio */
904 	WARM,
905 	COLD,
906 	NR_TEMP_TYPE,
907 };
908 
909 enum need_lock_type {
910 	LOCK_REQ = 0,
911 	LOCK_DONE,
912 	LOCK_RETRY,
913 };
914 
915 enum cp_reason_type {
916 	CP_NO_NEEDED,
917 	CP_NON_REGULAR,
918 	CP_HARDLINK,
919 	CP_SB_NEED_CP,
920 	CP_WRONG_PINO,
921 	CP_NO_SPC_ROLL,
922 	CP_NODE_NEED_CP,
923 	CP_FASTBOOT_MODE,
924 	CP_SPEC_LOG_NUM,
925 };
926 
927 enum iostat_type {
928 	APP_DIRECT_IO,			/* app direct IOs */
929 	APP_BUFFERED_IO,		/* app buffered IOs */
930 	APP_WRITE_IO,			/* app write IOs */
931 	APP_MAPPED_IO,			/* app mapped IOs */
932 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
933 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
934 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
935 	FS_GC_DATA_IO,			/* data IOs from forground gc */
936 	FS_GC_NODE_IO,			/* node IOs from forground gc */
937 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
938 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
939 	FS_CP_META_IO,			/* meta IOs from checkpoint */
940 	FS_DISCARD,			/* discard */
941 	NR_IO_TYPE,
942 };
943 
944 struct f2fs_io_info {
945 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
946 	nid_t ino;		/* inode number */
947 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
948 	enum temp_type temp;	/* contains HOT/WARM/COLD */
949 	int op;			/* contains REQ_OP_ */
950 	int op_flags;		/* req_flag_bits */
951 	block_t new_blkaddr;	/* new block address to be written */
952 	block_t old_blkaddr;	/* old block address before Cow */
953 	struct page *page;	/* page to be written */
954 	struct page *encrypted_page;	/* encrypted page */
955 	struct list_head list;		/* serialize IOs */
956 	bool submitted;		/* indicate IO submission */
957 	int need_lock;		/* indicate we need to lock cp_rwsem */
958 	bool in_list;		/* indicate fio is in io_list */
959 	enum iostat_type io_type;	/* io type */
960 };
961 
962 #define is_read_io(rw) ((rw) == READ)
963 struct f2fs_bio_info {
964 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
965 	struct bio *bio;		/* bios to merge */
966 	sector_t last_block_in_bio;	/* last block number */
967 	struct f2fs_io_info fio;	/* store buffered io info. */
968 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
969 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
970 	struct list_head io_list;	/* track fios */
971 };
972 
973 #define FDEV(i)				(sbi->devs[i])
974 #define RDEV(i)				(raw_super->devs[i])
975 struct f2fs_dev_info {
976 	struct block_device *bdev;
977 	char path[MAX_PATH_LEN];
978 	unsigned int total_segments;
979 	block_t start_blk;
980 	block_t end_blk;
981 #ifdef CONFIG_BLK_DEV_ZONED
982 	unsigned int nr_blkz;			/* Total number of zones */
983 	u8 *blkz_type;				/* Array of zones type */
984 #endif
985 };
986 
987 enum inode_type {
988 	DIR_INODE,			/* for dirty dir inode */
989 	FILE_INODE,			/* for dirty regular/symlink inode */
990 	DIRTY_META,			/* for all dirtied inode metadata */
991 	ATOMIC_FILE,			/* for all atomic files */
992 	NR_INODE_TYPE,
993 };
994 
995 /* for inner inode cache management */
996 struct inode_management {
997 	struct radix_tree_root ino_root;	/* ino entry array */
998 	spinlock_t ino_lock;			/* for ino entry lock */
999 	struct list_head ino_list;		/* inode list head */
1000 	unsigned long ino_num;			/* number of entries */
1001 };
1002 
1003 /* For s_flag in struct f2fs_sb_info */
1004 enum {
1005 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1006 	SBI_IS_CLOSE,				/* specify unmounting */
1007 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1008 	SBI_POR_DOING,				/* recovery is doing or not */
1009 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1010 	SBI_NEED_CP,				/* need to checkpoint */
1011 };
1012 
1013 enum {
1014 	CP_TIME,
1015 	REQ_TIME,
1016 	MAX_TIME,
1017 };
1018 
1019 struct f2fs_sb_info {
1020 	struct super_block *sb;			/* pointer to VFS super block */
1021 	struct proc_dir_entry *s_proc;		/* proc entry */
1022 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1023 	int valid_super_block;			/* valid super block no */
1024 	unsigned long s_flag;				/* flags for sbi */
1025 
1026 #ifdef CONFIG_BLK_DEV_ZONED
1027 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1028 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1029 #endif
1030 
1031 	/* for node-related operations */
1032 	struct f2fs_nm_info *nm_info;		/* node manager */
1033 	struct inode *node_inode;		/* cache node blocks */
1034 
1035 	/* for segment-related operations */
1036 	struct f2fs_sm_info *sm_info;		/* segment manager */
1037 
1038 	/* for bio operations */
1039 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1040 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1041 						/* bio ordering for NODE/DATA */
1042 	int write_io_size_bits;			/* Write IO size bits */
1043 	mempool_t *write_io_dummy;		/* Dummy pages */
1044 
1045 	/* for checkpoint */
1046 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1047 	int cur_cp_pack;			/* remain current cp pack */
1048 	spinlock_t cp_lock;			/* for flag in ckpt */
1049 	struct inode *meta_inode;		/* cache meta blocks */
1050 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1051 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1052 	struct rw_semaphore node_write;		/* locking node writes */
1053 	struct rw_semaphore node_change;	/* locking node change */
1054 	wait_queue_head_t cp_wait;
1055 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1056 	long interval_time[MAX_TIME];		/* to store thresholds */
1057 
1058 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1059 
1060 	/* for orphan inode, use 0'th array */
1061 	unsigned int max_orphans;		/* max orphan inodes */
1062 
1063 	/* for inode management */
1064 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1065 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1066 
1067 	/* for extent tree cache */
1068 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1069 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1070 	struct list_head extent_list;		/* lru list for shrinker */
1071 	spinlock_t extent_lock;			/* locking extent lru list */
1072 	atomic_t total_ext_tree;		/* extent tree count */
1073 	struct list_head zombie_list;		/* extent zombie tree list */
1074 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1075 	atomic_t total_ext_node;		/* extent info count */
1076 
1077 	/* basic filesystem units */
1078 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1079 	unsigned int log_blocksize;		/* log2 block size */
1080 	unsigned int blocksize;			/* block size */
1081 	unsigned int root_ino_num;		/* root inode number*/
1082 	unsigned int node_ino_num;		/* node inode number*/
1083 	unsigned int meta_ino_num;		/* meta inode number*/
1084 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1085 	unsigned int blocks_per_seg;		/* blocks per segment */
1086 	unsigned int segs_per_sec;		/* segments per section */
1087 	unsigned int secs_per_zone;		/* sections per zone */
1088 	unsigned int total_sections;		/* total section count */
1089 	unsigned int total_node_count;		/* total node block count */
1090 	unsigned int total_valid_node_count;	/* valid node block count */
1091 	loff_t max_file_blocks;			/* max block index of file */
1092 	int active_logs;			/* # of active logs */
1093 	int dir_level;				/* directory level */
1094 	int inline_xattr_size;			/* inline xattr size */
1095 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1096 
1097 	block_t user_block_count;		/* # of user blocks */
1098 	block_t total_valid_block_count;	/* # of valid blocks */
1099 	block_t discard_blks;			/* discard command candidats */
1100 	block_t last_valid_block_count;		/* for recovery */
1101 	block_t reserved_blocks;		/* configurable reserved blocks */
1102 	block_t current_reserved_blocks;	/* current reserved blocks */
1103 
1104 	u32 s_next_generation;			/* for NFS support */
1105 
1106 	/* # of pages, see count_type */
1107 	atomic_t nr_pages[NR_COUNT_TYPE];
1108 	/* # of allocated blocks */
1109 	struct percpu_counter alloc_valid_block_count;
1110 
1111 	/* writeback control */
1112 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1113 
1114 	/* valid inode count */
1115 	struct percpu_counter total_valid_inode_count;
1116 
1117 	struct f2fs_mount_info mount_opt;	/* mount options */
1118 
1119 	/* for cleaning operations */
1120 	struct mutex gc_mutex;			/* mutex for GC */
1121 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1122 	unsigned int cur_victim_sec;		/* current victim section num */
1123 
1124 	/* threshold for converting bg victims for fg */
1125 	u64 fggc_threshold;
1126 
1127 	/* maximum # of trials to find a victim segment for SSR and GC */
1128 	unsigned int max_victim_search;
1129 
1130 	/*
1131 	 * for stat information.
1132 	 * one is for the LFS mode, and the other is for the SSR mode.
1133 	 */
1134 #ifdef CONFIG_F2FS_STAT_FS
1135 	struct f2fs_stat_info *stat_info;	/* FS status information */
1136 	unsigned int segment_count[2];		/* # of allocated segments */
1137 	unsigned int block_count[2];		/* # of allocated blocks */
1138 	atomic_t inplace_count;		/* # of inplace update */
1139 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1140 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1141 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1142 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1143 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1144 	atomic_t inline_inode;			/* # of inline_data inodes */
1145 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1146 	atomic_t aw_cnt;			/* # of atomic writes */
1147 	atomic_t vw_cnt;			/* # of volatile writes */
1148 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1149 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1150 	int bg_gc;				/* background gc calls */
1151 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1152 #endif
1153 	spinlock_t stat_lock;			/* lock for stat operations */
1154 
1155 	/* For app/fs IO statistics */
1156 	spinlock_t iostat_lock;
1157 	unsigned long long write_iostat[NR_IO_TYPE];
1158 	bool iostat_enable;
1159 
1160 	/* For sysfs suppport */
1161 	struct kobject s_kobj;
1162 	struct completion s_kobj_unregister;
1163 
1164 	/* For shrinker support */
1165 	struct list_head s_list;
1166 	int s_ndevs;				/* number of devices */
1167 	struct f2fs_dev_info *devs;		/* for device list */
1168 	unsigned int dirty_device;		/* for checkpoint data flush */
1169 	spinlock_t dev_lock;			/* protect dirty_device */
1170 	struct mutex umount_mutex;
1171 	unsigned int shrinker_run_no;
1172 
1173 	/* For write statistics */
1174 	u64 sectors_written_start;
1175 	u64 kbytes_written;
1176 
1177 	/* Reference to checksum algorithm driver via cryptoapi */
1178 	struct crypto_shash *s_chksum_driver;
1179 
1180 	/* Precomputed FS UUID checksum for seeding other checksums */
1181 	__u32 s_chksum_seed;
1182 
1183 	/* For fault injection */
1184 #ifdef CONFIG_F2FS_FAULT_INJECTION
1185 	struct f2fs_fault_info fault_info;
1186 #endif
1187 
1188 #ifdef CONFIG_QUOTA
1189 	/* Names of quota files with journalled quota */
1190 	char *s_qf_names[MAXQUOTAS];
1191 	int s_jquota_fmt;			/* Format of quota to use */
1192 #endif
1193 };
1194 
1195 #ifdef CONFIG_F2FS_FAULT_INJECTION
1196 #define f2fs_show_injection_info(type)				\
1197 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1198 		KERN_INFO, fault_name[type],			\
1199 		__func__, __builtin_return_address(0))
1200 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1201 {
1202 	struct f2fs_fault_info *ffi = &sbi->fault_info;
1203 
1204 	if (!ffi->inject_rate)
1205 		return false;
1206 
1207 	if (!IS_FAULT_SET(ffi, type))
1208 		return false;
1209 
1210 	atomic_inc(&ffi->inject_ops);
1211 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1212 		atomic_set(&ffi->inject_ops, 0);
1213 		return true;
1214 	}
1215 	return false;
1216 }
1217 #endif
1218 
1219 /* For write statistics. Suppose sector size is 512 bytes,
1220  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1221  */
1222 #define BD_PART_WRITTEN(s)						 \
1223 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1224 		(s)->sectors_written_start) >> 1)
1225 
1226 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1227 {
1228 	sbi->last_time[type] = jiffies;
1229 }
1230 
1231 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1232 {
1233 	unsigned long interval = sbi->interval_time[type] * HZ;
1234 
1235 	return time_after(jiffies, sbi->last_time[type] + interval);
1236 }
1237 
1238 static inline bool is_idle(struct f2fs_sb_info *sbi)
1239 {
1240 	struct block_device *bdev = sbi->sb->s_bdev;
1241 	struct request_queue *q = bdev_get_queue(bdev);
1242 	struct request_list *rl = &q->root_rl;
1243 
1244 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1245 		return 0;
1246 
1247 	return f2fs_time_over(sbi, REQ_TIME);
1248 }
1249 
1250 /*
1251  * Inline functions
1252  */
1253 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1254 			   unsigned int length)
1255 {
1256 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1257 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
1258 	u32 retval;
1259 	int err;
1260 
1261 	shash->tfm = sbi->s_chksum_driver;
1262 	shash->flags = 0;
1263 	*ctx = F2FS_SUPER_MAGIC;
1264 
1265 	err = crypto_shash_update(shash, address, length);
1266 	BUG_ON(err);
1267 
1268 	retval = *ctx;
1269 	barrier_data(ctx);
1270 	return retval;
1271 }
1272 
1273 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1274 				  void *buf, size_t buf_size)
1275 {
1276 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1277 }
1278 
1279 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1280 			      const void *address, unsigned int length)
1281 {
1282 	struct {
1283 		struct shash_desc shash;
1284 		char ctx[4];
1285 	} desc;
1286 	int err;
1287 
1288 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1289 
1290 	desc.shash.tfm = sbi->s_chksum_driver;
1291 	desc.shash.flags = 0;
1292 	*(u32 *)desc.ctx = crc;
1293 
1294 	err = crypto_shash_update(&desc.shash, address, length);
1295 	BUG_ON(err);
1296 
1297 	return *(u32 *)desc.ctx;
1298 }
1299 
1300 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1301 {
1302 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1303 }
1304 
1305 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1306 {
1307 	return sb->s_fs_info;
1308 }
1309 
1310 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1311 {
1312 	return F2FS_SB(inode->i_sb);
1313 }
1314 
1315 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1316 {
1317 	return F2FS_I_SB(mapping->host);
1318 }
1319 
1320 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1321 {
1322 	return F2FS_M_SB(page->mapping);
1323 }
1324 
1325 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1326 {
1327 	return (struct f2fs_super_block *)(sbi->raw_super);
1328 }
1329 
1330 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1331 {
1332 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1333 }
1334 
1335 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1336 {
1337 	return (struct f2fs_node *)page_address(page);
1338 }
1339 
1340 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1341 {
1342 	return &((struct f2fs_node *)page_address(page))->i;
1343 }
1344 
1345 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1346 {
1347 	return (struct f2fs_nm_info *)(sbi->nm_info);
1348 }
1349 
1350 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1351 {
1352 	return (struct f2fs_sm_info *)(sbi->sm_info);
1353 }
1354 
1355 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1356 {
1357 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1358 }
1359 
1360 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1361 {
1362 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1363 }
1364 
1365 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1366 {
1367 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1368 }
1369 
1370 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1371 {
1372 	return sbi->meta_inode->i_mapping;
1373 }
1374 
1375 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1376 {
1377 	return sbi->node_inode->i_mapping;
1378 }
1379 
1380 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1381 {
1382 	return test_bit(type, &sbi->s_flag);
1383 }
1384 
1385 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1386 {
1387 	set_bit(type, &sbi->s_flag);
1388 }
1389 
1390 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1391 {
1392 	clear_bit(type, &sbi->s_flag);
1393 }
1394 
1395 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1396 {
1397 	return le64_to_cpu(cp->checkpoint_ver);
1398 }
1399 
1400 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1401 {
1402 	if (type < F2FS_MAX_QUOTAS)
1403 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1404 	return 0;
1405 }
1406 
1407 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1408 {
1409 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1410 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1411 }
1412 
1413 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1414 {
1415 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1416 
1417 	return ckpt_flags & f;
1418 }
1419 
1420 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1421 {
1422 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1423 }
1424 
1425 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1426 {
1427 	unsigned int ckpt_flags;
1428 
1429 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1430 	ckpt_flags |= f;
1431 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1432 }
1433 
1434 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1435 {
1436 	unsigned long flags;
1437 
1438 	spin_lock_irqsave(&sbi->cp_lock, flags);
1439 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1440 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1441 }
1442 
1443 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1444 {
1445 	unsigned int ckpt_flags;
1446 
1447 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1448 	ckpt_flags &= (~f);
1449 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1450 }
1451 
1452 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1453 {
1454 	unsigned long flags;
1455 
1456 	spin_lock_irqsave(&sbi->cp_lock, flags);
1457 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1458 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1459 }
1460 
1461 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1462 {
1463 	unsigned long flags;
1464 
1465 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1466 
1467 	if (lock)
1468 		spin_lock_irqsave(&sbi->cp_lock, flags);
1469 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1470 	kfree(NM_I(sbi)->nat_bits);
1471 	NM_I(sbi)->nat_bits = NULL;
1472 	if (lock)
1473 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1474 }
1475 
1476 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1477 					struct cp_control *cpc)
1478 {
1479 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1480 
1481 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1482 }
1483 
1484 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1485 {
1486 	down_read(&sbi->cp_rwsem);
1487 }
1488 
1489 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1490 {
1491 	return down_read_trylock(&sbi->cp_rwsem);
1492 }
1493 
1494 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1495 {
1496 	up_read(&sbi->cp_rwsem);
1497 }
1498 
1499 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1500 {
1501 	down_write(&sbi->cp_rwsem);
1502 }
1503 
1504 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1505 {
1506 	up_write(&sbi->cp_rwsem);
1507 }
1508 
1509 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1510 {
1511 	int reason = CP_SYNC;
1512 
1513 	if (test_opt(sbi, FASTBOOT))
1514 		reason = CP_FASTBOOT;
1515 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1516 		reason = CP_UMOUNT;
1517 	return reason;
1518 }
1519 
1520 static inline bool __remain_node_summaries(int reason)
1521 {
1522 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1523 }
1524 
1525 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1526 {
1527 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1528 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1529 }
1530 
1531 /*
1532  * Check whether the given nid is within node id range.
1533  */
1534 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1535 {
1536 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1537 		return -EINVAL;
1538 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1539 		return -EINVAL;
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Check whether the inode has blocks or not
1545  */
1546 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1547 {
1548 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1549 
1550 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1551 }
1552 
1553 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1554 {
1555 	return ofs == XATTR_NODE_OFFSET;
1556 }
1557 
1558 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1559 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1560 				 struct inode *inode, blkcnt_t *count)
1561 {
1562 	blkcnt_t diff = 0, release = 0;
1563 	block_t avail_user_block_count;
1564 	int ret;
1565 
1566 	ret = dquot_reserve_block(inode, *count);
1567 	if (ret)
1568 		return ret;
1569 
1570 #ifdef CONFIG_F2FS_FAULT_INJECTION
1571 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1572 		f2fs_show_injection_info(FAULT_BLOCK);
1573 		release = *count;
1574 		goto enospc;
1575 	}
1576 #endif
1577 	/*
1578 	 * let's increase this in prior to actual block count change in order
1579 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1580 	 */
1581 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1582 
1583 	spin_lock(&sbi->stat_lock);
1584 	sbi->total_valid_block_count += (block_t)(*count);
1585 	avail_user_block_count = sbi->user_block_count -
1586 					sbi->current_reserved_blocks;
1587 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1588 		diff = sbi->total_valid_block_count - avail_user_block_count;
1589 		*count -= diff;
1590 		release = diff;
1591 		sbi->total_valid_block_count = avail_user_block_count;
1592 		if (!*count) {
1593 			spin_unlock(&sbi->stat_lock);
1594 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1595 			goto enospc;
1596 		}
1597 	}
1598 	spin_unlock(&sbi->stat_lock);
1599 
1600 	if (release)
1601 		dquot_release_reservation_block(inode, release);
1602 	f2fs_i_blocks_write(inode, *count, true, true);
1603 	return 0;
1604 
1605 enospc:
1606 	dquot_release_reservation_block(inode, release);
1607 	return -ENOSPC;
1608 }
1609 
1610 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1611 						struct inode *inode,
1612 						block_t count)
1613 {
1614 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1615 
1616 	spin_lock(&sbi->stat_lock);
1617 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1618 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1619 	sbi->total_valid_block_count -= (block_t)count;
1620 	if (sbi->reserved_blocks &&
1621 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1622 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1623 					sbi->current_reserved_blocks + count);
1624 	spin_unlock(&sbi->stat_lock);
1625 	f2fs_i_blocks_write(inode, count, false, true);
1626 }
1627 
1628 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1629 {
1630 	atomic_inc(&sbi->nr_pages[count_type]);
1631 
1632 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1633 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1634 		return;
1635 
1636 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1637 }
1638 
1639 static inline void inode_inc_dirty_pages(struct inode *inode)
1640 {
1641 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1642 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1643 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1644 	if (IS_NOQUOTA(inode))
1645 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1646 }
1647 
1648 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1649 {
1650 	atomic_dec(&sbi->nr_pages[count_type]);
1651 }
1652 
1653 static inline void inode_dec_dirty_pages(struct inode *inode)
1654 {
1655 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1656 			!S_ISLNK(inode->i_mode))
1657 		return;
1658 
1659 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1660 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1661 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1662 	if (IS_NOQUOTA(inode))
1663 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1664 }
1665 
1666 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1667 {
1668 	return atomic_read(&sbi->nr_pages[count_type]);
1669 }
1670 
1671 static inline int get_dirty_pages(struct inode *inode)
1672 {
1673 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1674 }
1675 
1676 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1677 {
1678 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1679 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1680 						sbi->log_blocks_per_seg;
1681 
1682 	return segs / sbi->segs_per_sec;
1683 }
1684 
1685 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1686 {
1687 	return sbi->total_valid_block_count;
1688 }
1689 
1690 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1691 {
1692 	return sbi->discard_blks;
1693 }
1694 
1695 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1696 {
1697 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1698 
1699 	/* return NAT or SIT bitmap */
1700 	if (flag == NAT_BITMAP)
1701 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1702 	else if (flag == SIT_BITMAP)
1703 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1704 
1705 	return 0;
1706 }
1707 
1708 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1709 {
1710 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1711 }
1712 
1713 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1714 {
1715 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1716 	int offset;
1717 
1718 	if (__cp_payload(sbi) > 0) {
1719 		if (flag == NAT_BITMAP)
1720 			return &ckpt->sit_nat_version_bitmap;
1721 		else
1722 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1723 	} else {
1724 		offset = (flag == NAT_BITMAP) ?
1725 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1726 		return &ckpt->sit_nat_version_bitmap + offset;
1727 	}
1728 }
1729 
1730 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1731 {
1732 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1733 
1734 	if (sbi->cur_cp_pack == 2)
1735 		start_addr += sbi->blocks_per_seg;
1736 	return start_addr;
1737 }
1738 
1739 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1740 {
1741 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1742 
1743 	if (sbi->cur_cp_pack == 1)
1744 		start_addr += sbi->blocks_per_seg;
1745 	return start_addr;
1746 }
1747 
1748 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1749 {
1750 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1751 }
1752 
1753 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1754 {
1755 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1756 }
1757 
1758 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1759 					struct inode *inode, bool is_inode)
1760 {
1761 	block_t	valid_block_count;
1762 	unsigned int valid_node_count;
1763 	bool quota = inode && !is_inode;
1764 
1765 	if (quota) {
1766 		int ret = dquot_reserve_block(inode, 1);
1767 		if (ret)
1768 			return ret;
1769 	}
1770 
1771 #ifdef CONFIG_F2FS_FAULT_INJECTION
1772 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1773 		f2fs_show_injection_info(FAULT_BLOCK);
1774 		goto enospc;
1775 	}
1776 #endif
1777 
1778 	spin_lock(&sbi->stat_lock);
1779 
1780 	valid_block_count = sbi->total_valid_block_count + 1;
1781 	if (unlikely(valid_block_count + sbi->current_reserved_blocks >
1782 						sbi->user_block_count)) {
1783 		spin_unlock(&sbi->stat_lock);
1784 		goto enospc;
1785 	}
1786 
1787 	valid_node_count = sbi->total_valid_node_count + 1;
1788 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1789 		spin_unlock(&sbi->stat_lock);
1790 		goto enospc;
1791 	}
1792 
1793 	sbi->total_valid_node_count++;
1794 	sbi->total_valid_block_count++;
1795 	spin_unlock(&sbi->stat_lock);
1796 
1797 	if (inode) {
1798 		if (is_inode)
1799 			f2fs_mark_inode_dirty_sync(inode, true);
1800 		else
1801 			f2fs_i_blocks_write(inode, 1, true, true);
1802 	}
1803 
1804 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1805 	return 0;
1806 
1807 enospc:
1808 	if (quota)
1809 		dquot_release_reservation_block(inode, 1);
1810 	return -ENOSPC;
1811 }
1812 
1813 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1814 					struct inode *inode, bool is_inode)
1815 {
1816 	spin_lock(&sbi->stat_lock);
1817 
1818 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1819 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1820 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1821 
1822 	sbi->total_valid_node_count--;
1823 	sbi->total_valid_block_count--;
1824 	if (sbi->reserved_blocks &&
1825 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1826 		sbi->current_reserved_blocks++;
1827 
1828 	spin_unlock(&sbi->stat_lock);
1829 
1830 	if (!is_inode)
1831 		f2fs_i_blocks_write(inode, 1, false, true);
1832 }
1833 
1834 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1835 {
1836 	return sbi->total_valid_node_count;
1837 }
1838 
1839 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1840 {
1841 	percpu_counter_inc(&sbi->total_valid_inode_count);
1842 }
1843 
1844 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1845 {
1846 	percpu_counter_dec(&sbi->total_valid_inode_count);
1847 }
1848 
1849 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1850 {
1851 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1852 }
1853 
1854 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1855 						pgoff_t index, bool for_write)
1856 {
1857 #ifdef CONFIG_F2FS_FAULT_INJECTION
1858 	struct page *page = find_lock_page(mapping, index);
1859 
1860 	if (page)
1861 		return page;
1862 
1863 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1864 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1865 		return NULL;
1866 	}
1867 #endif
1868 	if (!for_write)
1869 		return grab_cache_page(mapping, index);
1870 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1871 }
1872 
1873 static inline struct page *f2fs_pagecache_get_page(
1874 				struct address_space *mapping, pgoff_t index,
1875 				int fgp_flags, gfp_t gfp_mask)
1876 {
1877 #ifdef CONFIG_F2FS_FAULT_INJECTION
1878 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1879 		f2fs_show_injection_info(FAULT_PAGE_GET);
1880 		return NULL;
1881 	}
1882 #endif
1883 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1884 }
1885 
1886 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1887 {
1888 	char *src_kaddr = kmap(src);
1889 	char *dst_kaddr = kmap(dst);
1890 
1891 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1892 	kunmap(dst);
1893 	kunmap(src);
1894 }
1895 
1896 static inline void f2fs_put_page(struct page *page, int unlock)
1897 {
1898 	if (!page)
1899 		return;
1900 
1901 	if (unlock) {
1902 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1903 		unlock_page(page);
1904 	}
1905 	put_page(page);
1906 }
1907 
1908 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1909 {
1910 	if (dn->node_page)
1911 		f2fs_put_page(dn->node_page, 1);
1912 	if (dn->inode_page && dn->node_page != dn->inode_page)
1913 		f2fs_put_page(dn->inode_page, 0);
1914 	dn->node_page = NULL;
1915 	dn->inode_page = NULL;
1916 }
1917 
1918 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1919 					size_t size)
1920 {
1921 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1922 }
1923 
1924 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1925 						gfp_t flags)
1926 {
1927 	void *entry;
1928 
1929 	entry = kmem_cache_alloc(cachep, flags);
1930 	if (!entry)
1931 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1932 	return entry;
1933 }
1934 
1935 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
1936 						int npages, bool no_fail)
1937 {
1938 	struct bio *bio;
1939 
1940 	if (no_fail) {
1941 		/* No failure on bio allocation */
1942 		bio = bio_alloc(GFP_NOIO, npages);
1943 		if (!bio)
1944 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1945 		return bio;
1946 	}
1947 #ifdef CONFIG_F2FS_FAULT_INJECTION
1948 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
1949 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
1950 		return NULL;
1951 	}
1952 #endif
1953 	return bio_alloc(GFP_KERNEL, npages);
1954 }
1955 
1956 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1957 				unsigned long index, void *item)
1958 {
1959 	while (radix_tree_insert(root, index, item))
1960 		cond_resched();
1961 }
1962 
1963 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1964 
1965 static inline bool IS_INODE(struct page *page)
1966 {
1967 	struct f2fs_node *p = F2FS_NODE(page);
1968 
1969 	return RAW_IS_INODE(p);
1970 }
1971 
1972 static inline int offset_in_addr(struct f2fs_inode *i)
1973 {
1974 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
1975 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
1976 }
1977 
1978 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1979 {
1980 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1981 }
1982 
1983 static inline int f2fs_has_extra_attr(struct inode *inode);
1984 static inline block_t datablock_addr(struct inode *inode,
1985 			struct page *node_page, unsigned int offset)
1986 {
1987 	struct f2fs_node *raw_node;
1988 	__le32 *addr_array;
1989 	int base = 0;
1990 	bool is_inode = IS_INODE(node_page);
1991 
1992 	raw_node = F2FS_NODE(node_page);
1993 
1994 	/* from GC path only */
1995 	if (!inode) {
1996 		if (is_inode)
1997 			base = offset_in_addr(&raw_node->i);
1998 	} else if (f2fs_has_extra_attr(inode) && is_inode) {
1999 		base = get_extra_isize(inode);
2000 	}
2001 
2002 	addr_array = blkaddr_in_node(raw_node);
2003 	return le32_to_cpu(addr_array[base + offset]);
2004 }
2005 
2006 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2007 {
2008 	int mask;
2009 
2010 	addr += (nr >> 3);
2011 	mask = 1 << (7 - (nr & 0x07));
2012 	return mask & *addr;
2013 }
2014 
2015 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2016 {
2017 	int mask;
2018 
2019 	addr += (nr >> 3);
2020 	mask = 1 << (7 - (nr & 0x07));
2021 	*addr |= mask;
2022 }
2023 
2024 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2025 {
2026 	int mask;
2027 
2028 	addr += (nr >> 3);
2029 	mask = 1 << (7 - (nr & 0x07));
2030 	*addr &= ~mask;
2031 }
2032 
2033 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2034 {
2035 	int mask;
2036 	int ret;
2037 
2038 	addr += (nr >> 3);
2039 	mask = 1 << (7 - (nr & 0x07));
2040 	ret = mask & *addr;
2041 	*addr |= mask;
2042 	return ret;
2043 }
2044 
2045 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2046 {
2047 	int mask;
2048 	int ret;
2049 
2050 	addr += (nr >> 3);
2051 	mask = 1 << (7 - (nr & 0x07));
2052 	ret = mask & *addr;
2053 	*addr &= ~mask;
2054 	return ret;
2055 }
2056 
2057 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2058 {
2059 	int mask;
2060 
2061 	addr += (nr >> 3);
2062 	mask = 1 << (7 - (nr & 0x07));
2063 	*addr ^= mask;
2064 }
2065 
2066 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2067 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
2068 #define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
2069 
2070 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2071 {
2072 	if (S_ISDIR(mode))
2073 		return flags;
2074 	else if (S_ISREG(mode))
2075 		return flags & F2FS_REG_FLMASK;
2076 	else
2077 		return flags & F2FS_OTHER_FLMASK;
2078 }
2079 
2080 /* used for f2fs_inode_info->flags */
2081 enum {
2082 	FI_NEW_INODE,		/* indicate newly allocated inode */
2083 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2084 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2085 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2086 	FI_INC_LINK,		/* need to increment i_nlink */
2087 	FI_ACL_MODE,		/* indicate acl mode */
2088 	FI_NO_ALLOC,		/* should not allocate any blocks */
2089 	FI_FREE_NID,		/* free allocated nide */
2090 	FI_NO_EXTENT,		/* not to use the extent cache */
2091 	FI_INLINE_XATTR,	/* used for inline xattr */
2092 	FI_INLINE_DATA,		/* used for inline data*/
2093 	FI_INLINE_DENTRY,	/* used for inline dentry */
2094 	FI_APPEND_WRITE,	/* inode has appended data */
2095 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2096 	FI_NEED_IPU,		/* used for ipu per file */
2097 	FI_ATOMIC_FILE,		/* indicate atomic file */
2098 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2099 	FI_VOLATILE_FILE,	/* indicate volatile file */
2100 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2101 	FI_DROP_CACHE,		/* drop dirty page cache */
2102 	FI_DATA_EXIST,		/* indicate data exists */
2103 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2104 	FI_DO_DEFRAG,		/* indicate defragment is running */
2105 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2106 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2107 	FI_HOT_DATA,		/* indicate file is hot */
2108 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2109 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2110 };
2111 
2112 static inline void __mark_inode_dirty_flag(struct inode *inode,
2113 						int flag, bool set)
2114 {
2115 	switch (flag) {
2116 	case FI_INLINE_XATTR:
2117 	case FI_INLINE_DATA:
2118 	case FI_INLINE_DENTRY:
2119 		if (set)
2120 			return;
2121 	case FI_DATA_EXIST:
2122 	case FI_INLINE_DOTS:
2123 		f2fs_mark_inode_dirty_sync(inode, true);
2124 	}
2125 }
2126 
2127 static inline void set_inode_flag(struct inode *inode, int flag)
2128 {
2129 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2130 		set_bit(flag, &F2FS_I(inode)->flags);
2131 	__mark_inode_dirty_flag(inode, flag, true);
2132 }
2133 
2134 static inline int is_inode_flag_set(struct inode *inode, int flag)
2135 {
2136 	return test_bit(flag, &F2FS_I(inode)->flags);
2137 }
2138 
2139 static inline void clear_inode_flag(struct inode *inode, int flag)
2140 {
2141 	if (test_bit(flag, &F2FS_I(inode)->flags))
2142 		clear_bit(flag, &F2FS_I(inode)->flags);
2143 	__mark_inode_dirty_flag(inode, flag, false);
2144 }
2145 
2146 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2147 {
2148 	F2FS_I(inode)->i_acl_mode = mode;
2149 	set_inode_flag(inode, FI_ACL_MODE);
2150 	f2fs_mark_inode_dirty_sync(inode, false);
2151 }
2152 
2153 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2154 {
2155 	if (inc)
2156 		inc_nlink(inode);
2157 	else
2158 		drop_nlink(inode);
2159 	f2fs_mark_inode_dirty_sync(inode, true);
2160 }
2161 
2162 static inline void f2fs_i_blocks_write(struct inode *inode,
2163 					block_t diff, bool add, bool claim)
2164 {
2165 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2166 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2167 
2168 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2169 	if (add) {
2170 		if (claim)
2171 			dquot_claim_block(inode, diff);
2172 		else
2173 			dquot_alloc_block_nofail(inode, diff);
2174 	} else {
2175 		dquot_free_block(inode, diff);
2176 	}
2177 
2178 	f2fs_mark_inode_dirty_sync(inode, true);
2179 	if (clean || recover)
2180 		set_inode_flag(inode, FI_AUTO_RECOVER);
2181 }
2182 
2183 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2184 {
2185 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2186 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2187 
2188 	if (i_size_read(inode) == i_size)
2189 		return;
2190 
2191 	i_size_write(inode, i_size);
2192 	f2fs_mark_inode_dirty_sync(inode, true);
2193 	if (clean || recover)
2194 		set_inode_flag(inode, FI_AUTO_RECOVER);
2195 }
2196 
2197 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2198 {
2199 	F2FS_I(inode)->i_current_depth = depth;
2200 	f2fs_mark_inode_dirty_sync(inode, true);
2201 }
2202 
2203 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2204 {
2205 	F2FS_I(inode)->i_xattr_nid = xnid;
2206 	f2fs_mark_inode_dirty_sync(inode, true);
2207 }
2208 
2209 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2210 {
2211 	F2FS_I(inode)->i_pino = pino;
2212 	f2fs_mark_inode_dirty_sync(inode, true);
2213 }
2214 
2215 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2216 {
2217 	struct f2fs_inode_info *fi = F2FS_I(inode);
2218 
2219 	if (ri->i_inline & F2FS_INLINE_XATTR)
2220 		set_bit(FI_INLINE_XATTR, &fi->flags);
2221 	if (ri->i_inline & F2FS_INLINE_DATA)
2222 		set_bit(FI_INLINE_DATA, &fi->flags);
2223 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2224 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2225 	if (ri->i_inline & F2FS_DATA_EXIST)
2226 		set_bit(FI_DATA_EXIST, &fi->flags);
2227 	if (ri->i_inline & F2FS_INLINE_DOTS)
2228 		set_bit(FI_INLINE_DOTS, &fi->flags);
2229 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2230 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2231 }
2232 
2233 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2234 {
2235 	ri->i_inline = 0;
2236 
2237 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2238 		ri->i_inline |= F2FS_INLINE_XATTR;
2239 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2240 		ri->i_inline |= F2FS_INLINE_DATA;
2241 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2242 		ri->i_inline |= F2FS_INLINE_DENTRY;
2243 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2244 		ri->i_inline |= F2FS_DATA_EXIST;
2245 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2246 		ri->i_inline |= F2FS_INLINE_DOTS;
2247 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2248 		ri->i_inline |= F2FS_EXTRA_ATTR;
2249 }
2250 
2251 static inline int f2fs_has_extra_attr(struct inode *inode)
2252 {
2253 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2254 }
2255 
2256 static inline int f2fs_has_inline_xattr(struct inode *inode)
2257 {
2258 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2259 }
2260 
2261 static inline unsigned int addrs_per_inode(struct inode *inode)
2262 {
2263 	return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode);
2264 }
2265 
2266 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2267 {
2268 	struct f2fs_inode *ri = F2FS_INODE(page);
2269 
2270 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2271 					F2FS_INLINE_XATTR_ADDRS(inode)]);
2272 }
2273 
2274 static inline int inline_xattr_size(struct inode *inode)
2275 {
2276 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2277 }
2278 
2279 static inline int f2fs_has_inline_data(struct inode *inode)
2280 {
2281 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2282 }
2283 
2284 static inline int f2fs_exist_data(struct inode *inode)
2285 {
2286 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2287 }
2288 
2289 static inline int f2fs_has_inline_dots(struct inode *inode)
2290 {
2291 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2292 }
2293 
2294 static inline bool f2fs_is_atomic_file(struct inode *inode)
2295 {
2296 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2297 }
2298 
2299 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2300 {
2301 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2302 }
2303 
2304 static inline bool f2fs_is_volatile_file(struct inode *inode)
2305 {
2306 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2307 }
2308 
2309 static inline bool f2fs_is_first_block_written(struct inode *inode)
2310 {
2311 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2312 }
2313 
2314 static inline bool f2fs_is_drop_cache(struct inode *inode)
2315 {
2316 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2317 }
2318 
2319 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2320 {
2321 	struct f2fs_inode *ri = F2FS_INODE(page);
2322 	int extra_size = get_extra_isize(inode);
2323 
2324 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2325 }
2326 
2327 static inline int f2fs_has_inline_dentry(struct inode *inode)
2328 {
2329 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2330 }
2331 
2332 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2333 {
2334 	if (!f2fs_has_inline_dentry(dir))
2335 		kunmap(page);
2336 }
2337 
2338 static inline int is_file(struct inode *inode, int type)
2339 {
2340 	return F2FS_I(inode)->i_advise & type;
2341 }
2342 
2343 static inline void set_file(struct inode *inode, int type)
2344 {
2345 	F2FS_I(inode)->i_advise |= type;
2346 	f2fs_mark_inode_dirty_sync(inode, true);
2347 }
2348 
2349 static inline void clear_file(struct inode *inode, int type)
2350 {
2351 	F2FS_I(inode)->i_advise &= ~type;
2352 	f2fs_mark_inode_dirty_sync(inode, true);
2353 }
2354 
2355 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2356 {
2357 	bool ret;
2358 
2359 	if (dsync) {
2360 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2361 
2362 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2363 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2364 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2365 		return ret;
2366 	}
2367 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2368 			file_keep_isize(inode) ||
2369 			i_size_read(inode) & PAGE_MASK)
2370 		return false;
2371 
2372 	down_read(&F2FS_I(inode)->i_sem);
2373 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2374 	up_read(&F2FS_I(inode)->i_sem);
2375 
2376 	return ret;
2377 }
2378 
2379 static inline int f2fs_readonly(struct super_block *sb)
2380 {
2381 	return sb->s_flags & SB_RDONLY;
2382 }
2383 
2384 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2385 {
2386 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2387 }
2388 
2389 static inline bool is_dot_dotdot(const struct qstr *str)
2390 {
2391 	if (str->len == 1 && str->name[0] == '.')
2392 		return true;
2393 
2394 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2395 		return true;
2396 
2397 	return false;
2398 }
2399 
2400 static inline bool f2fs_may_extent_tree(struct inode *inode)
2401 {
2402 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2403 			is_inode_flag_set(inode, FI_NO_EXTENT))
2404 		return false;
2405 
2406 	return S_ISREG(inode->i_mode);
2407 }
2408 
2409 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2410 					size_t size, gfp_t flags)
2411 {
2412 #ifdef CONFIG_F2FS_FAULT_INJECTION
2413 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2414 		f2fs_show_injection_info(FAULT_KMALLOC);
2415 		return NULL;
2416 	}
2417 #endif
2418 	return kmalloc(size, flags);
2419 }
2420 
2421 static inline int get_extra_isize(struct inode *inode)
2422 {
2423 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2424 }
2425 
2426 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb);
2427 static inline int get_inline_xattr_addrs(struct inode *inode)
2428 {
2429 	return F2FS_I(inode)->i_inline_xattr_size;
2430 }
2431 
2432 #define get_inode_mode(i) \
2433 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2434 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2435 
2436 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2437 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2438 	offsetof(struct f2fs_inode, i_extra_isize))	\
2439 
2440 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2441 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2442 		((offsetof(typeof(*f2fs_inode), field) +	\
2443 		sizeof((f2fs_inode)->field))			\
2444 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2445 
2446 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2447 {
2448 	int i;
2449 
2450 	spin_lock(&sbi->iostat_lock);
2451 	for (i = 0; i < NR_IO_TYPE; i++)
2452 		sbi->write_iostat[i] = 0;
2453 	spin_unlock(&sbi->iostat_lock);
2454 }
2455 
2456 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2457 			enum iostat_type type, unsigned long long io_bytes)
2458 {
2459 	if (!sbi->iostat_enable)
2460 		return;
2461 	spin_lock(&sbi->iostat_lock);
2462 	sbi->write_iostat[type] += io_bytes;
2463 
2464 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2465 		sbi->write_iostat[APP_BUFFERED_IO] =
2466 			sbi->write_iostat[APP_WRITE_IO] -
2467 			sbi->write_iostat[APP_DIRECT_IO];
2468 	spin_unlock(&sbi->iostat_lock);
2469 }
2470 
2471 /*
2472  * file.c
2473  */
2474 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2475 void truncate_data_blocks(struct dnode_of_data *dn);
2476 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2477 int f2fs_truncate(struct inode *inode);
2478 int f2fs_getattr(const struct path *path, struct kstat *stat,
2479 			u32 request_mask, unsigned int flags);
2480 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2481 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2482 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2483 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2484 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2485 
2486 /*
2487  * inode.c
2488  */
2489 void f2fs_set_inode_flags(struct inode *inode);
2490 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2491 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2492 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2493 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2494 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2495 int update_inode(struct inode *inode, struct page *node_page);
2496 int update_inode_page(struct inode *inode);
2497 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2498 void f2fs_evict_inode(struct inode *inode);
2499 void handle_failed_inode(struct inode *inode);
2500 
2501 /*
2502  * namei.c
2503  */
2504 struct dentry *f2fs_get_parent(struct dentry *child);
2505 
2506 /*
2507  * dir.c
2508  */
2509 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2510 unsigned char get_de_type(struct f2fs_dir_entry *de);
2511 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2512 			f2fs_hash_t namehash, int *max_slots,
2513 			struct f2fs_dentry_ptr *d);
2514 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2515 			unsigned int start_pos, struct fscrypt_str *fstr);
2516 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2517 			struct f2fs_dentry_ptr *d);
2518 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2519 			const struct qstr *new_name,
2520 			const struct qstr *orig_name, struct page *dpage);
2521 void update_parent_metadata(struct inode *dir, struct inode *inode,
2522 			unsigned int current_depth);
2523 int room_for_filename(const void *bitmap, int slots, int max_slots);
2524 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2525 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2526 			struct fscrypt_name *fname, struct page **res_page);
2527 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2528 			const struct qstr *child, struct page **res_page);
2529 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2530 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2531 			struct page **page);
2532 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2533 			struct page *page, struct inode *inode);
2534 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2535 			const struct qstr *name, f2fs_hash_t name_hash,
2536 			unsigned int bit_pos);
2537 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2538 			const struct qstr *orig_name,
2539 			struct inode *inode, nid_t ino, umode_t mode);
2540 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2541 			struct inode *inode, nid_t ino, umode_t mode);
2542 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2543 			struct inode *inode, nid_t ino, umode_t mode);
2544 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2545 			struct inode *dir, struct inode *inode);
2546 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2547 bool f2fs_empty_dir(struct inode *dir);
2548 
2549 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2550 {
2551 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2552 				inode, inode->i_ino, inode->i_mode);
2553 }
2554 
2555 /*
2556  * super.c
2557  */
2558 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2559 void f2fs_inode_synced(struct inode *inode);
2560 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2561 void f2fs_quota_off_umount(struct super_block *sb);
2562 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2563 int f2fs_sync_fs(struct super_block *sb, int sync);
2564 extern __printf(3, 4)
2565 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2566 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2567 
2568 /*
2569  * hash.c
2570  */
2571 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2572 				struct fscrypt_name *fname);
2573 
2574 /*
2575  * node.c
2576  */
2577 struct dnode_of_data;
2578 struct node_info;
2579 
2580 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2581 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2582 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2583 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2584 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2585 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2586 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2587 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2588 int truncate_xattr_node(struct inode *inode);
2589 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2590 int remove_inode_page(struct inode *inode);
2591 struct page *new_inode_page(struct inode *inode);
2592 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2593 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2594 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2595 struct page *get_node_page_ra(struct page *parent, int start);
2596 void move_node_page(struct page *node_page, int gc_type);
2597 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2598 			struct writeback_control *wbc, bool atomic);
2599 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2600 			bool do_balance, enum iostat_type io_type);
2601 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2602 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2603 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2604 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2605 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2606 void recover_inline_xattr(struct inode *inode, struct page *page);
2607 int recover_xattr_data(struct inode *inode, struct page *page,
2608 			block_t blkaddr);
2609 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2610 int restore_node_summary(struct f2fs_sb_info *sbi,
2611 			unsigned int segno, struct f2fs_summary_block *sum);
2612 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2613 int build_node_manager(struct f2fs_sb_info *sbi);
2614 void destroy_node_manager(struct f2fs_sb_info *sbi);
2615 int __init create_node_manager_caches(void);
2616 void destroy_node_manager_caches(void);
2617 
2618 /*
2619  * segment.c
2620  */
2621 bool need_SSR(struct f2fs_sb_info *sbi);
2622 void register_inmem_page(struct inode *inode, struct page *page);
2623 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2624 void drop_inmem_pages(struct inode *inode);
2625 void drop_inmem_page(struct inode *inode, struct page *page);
2626 int commit_inmem_pages(struct inode *inode);
2627 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2628 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2629 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2630 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2631 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2632 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2633 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2634 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2635 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2636 						unsigned int granularity);
2637 void stop_discard_thread(struct f2fs_sb_info *sbi);
2638 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2639 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2640 void release_discard_addrs(struct f2fs_sb_info *sbi);
2641 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2642 void allocate_new_segments(struct f2fs_sb_info *sbi);
2643 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2644 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2645 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2646 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2647 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2648 						enum iostat_type io_type);
2649 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2650 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2651 int rewrite_data_page(struct f2fs_io_info *fio);
2652 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2653 			block_t old_blkaddr, block_t new_blkaddr,
2654 			bool recover_curseg, bool recover_newaddr);
2655 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2656 			block_t old_addr, block_t new_addr,
2657 			unsigned char version, bool recover_curseg,
2658 			bool recover_newaddr);
2659 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2660 			block_t old_blkaddr, block_t *new_blkaddr,
2661 			struct f2fs_summary *sum, int type,
2662 			struct f2fs_io_info *fio, bool add_list);
2663 void f2fs_wait_on_page_writeback(struct page *page,
2664 			enum page_type type, bool ordered);
2665 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2666 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2667 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2668 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2669 			unsigned int val, int alloc);
2670 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2671 int build_segment_manager(struct f2fs_sb_info *sbi);
2672 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2673 int __init create_segment_manager_caches(void);
2674 void destroy_segment_manager_caches(void);
2675 
2676 /*
2677  * checkpoint.c
2678  */
2679 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2680 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2681 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2682 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2683 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2684 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2685 			int type, bool sync);
2686 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2687 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2688 			long nr_to_write, enum iostat_type io_type);
2689 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2690 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2691 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2692 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2693 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2694 					unsigned int devidx, int type);
2695 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2696 					unsigned int devidx, int type);
2697 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2698 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2699 void release_orphan_inode(struct f2fs_sb_info *sbi);
2700 void add_orphan_inode(struct inode *inode);
2701 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2702 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2703 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2704 void update_dirty_page(struct inode *inode, struct page *page);
2705 void remove_dirty_inode(struct inode *inode);
2706 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2707 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2708 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2709 int __init create_checkpoint_caches(void);
2710 void destroy_checkpoint_caches(void);
2711 
2712 /*
2713  * data.c
2714  */
2715 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2716 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2717 				struct inode *inode, nid_t ino, pgoff_t idx,
2718 				enum page_type type);
2719 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2720 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2721 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2722 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2723 			block_t blk_addr, struct bio *bio);
2724 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2725 void set_data_blkaddr(struct dnode_of_data *dn);
2726 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2727 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2728 int reserve_new_block(struct dnode_of_data *dn);
2729 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2730 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2731 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2732 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2733 			int op_flags, bool for_write);
2734 struct page *find_data_page(struct inode *inode, pgoff_t index);
2735 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2736 			bool for_write);
2737 struct page *get_new_data_page(struct inode *inode,
2738 			struct page *ipage, pgoff_t index, bool new_i_size);
2739 int do_write_data_page(struct f2fs_io_info *fio);
2740 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2741 			int create, int flag);
2742 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2743 			u64 start, u64 len);
2744 void f2fs_set_page_dirty_nobuffers(struct page *page);
2745 int __f2fs_write_data_pages(struct address_space *mapping,
2746 						struct writeback_control *wbc,
2747 						enum iostat_type io_type);
2748 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2749 			unsigned int length);
2750 int f2fs_release_page(struct page *page, gfp_t wait);
2751 #ifdef CONFIG_MIGRATION
2752 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2753 			struct page *page, enum migrate_mode mode);
2754 #endif
2755 
2756 /*
2757  * gc.c
2758  */
2759 int start_gc_thread(struct f2fs_sb_info *sbi);
2760 void stop_gc_thread(struct f2fs_sb_info *sbi);
2761 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2762 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2763 			unsigned int segno);
2764 void build_gc_manager(struct f2fs_sb_info *sbi);
2765 
2766 /*
2767  * recovery.c
2768  */
2769 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2770 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2771 
2772 /*
2773  * debug.c
2774  */
2775 #ifdef CONFIG_F2FS_STAT_FS
2776 struct f2fs_stat_info {
2777 	struct list_head stat_list;
2778 	struct f2fs_sb_info *sbi;
2779 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2780 	int main_area_segs, main_area_sections, main_area_zones;
2781 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2782 	unsigned long long hit_total, total_ext;
2783 	int ext_tree, zombie_tree, ext_node;
2784 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2785 	int ndirty_data, ndirty_qdata;
2786 	int inmem_pages;
2787 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2788 	int nats, dirty_nats, sits, dirty_sits;
2789 	int free_nids, avail_nids, alloc_nids;
2790 	int total_count, utilization;
2791 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2792 	int nr_flushing, nr_flushed, flush_list_empty;
2793 	int nr_discarding, nr_discarded;
2794 	int nr_discard_cmd;
2795 	unsigned int undiscard_blks;
2796 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2797 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2798 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2799 	unsigned int bimodal, avg_vblocks;
2800 	int util_free, util_valid, util_invalid;
2801 	int rsvd_segs, overp_segs;
2802 	int dirty_count, node_pages, meta_pages;
2803 	int prefree_count, call_count, cp_count, bg_cp_count;
2804 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2805 	int bg_node_segs, bg_data_segs;
2806 	int tot_blks, data_blks, node_blks;
2807 	int bg_data_blks, bg_node_blks;
2808 	int curseg[NR_CURSEG_TYPE];
2809 	int cursec[NR_CURSEG_TYPE];
2810 	int curzone[NR_CURSEG_TYPE];
2811 
2812 	unsigned int segment_count[2];
2813 	unsigned int block_count[2];
2814 	unsigned int inplace_count;
2815 	unsigned long long base_mem, cache_mem, page_mem;
2816 };
2817 
2818 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2819 {
2820 	return (struct f2fs_stat_info *)sbi->stat_info;
2821 }
2822 
2823 #define stat_inc_cp_count(si)		((si)->cp_count++)
2824 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2825 #define stat_inc_call_count(si)		((si)->call_count++)
2826 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2827 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2828 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2829 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2830 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2831 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2832 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2833 #define stat_inc_inline_xattr(inode)					\
2834 	do {								\
2835 		if (f2fs_has_inline_xattr(inode))			\
2836 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2837 	} while (0)
2838 #define stat_dec_inline_xattr(inode)					\
2839 	do {								\
2840 		if (f2fs_has_inline_xattr(inode))			\
2841 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2842 	} while (0)
2843 #define stat_inc_inline_inode(inode)					\
2844 	do {								\
2845 		if (f2fs_has_inline_data(inode))			\
2846 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2847 	} while (0)
2848 #define stat_dec_inline_inode(inode)					\
2849 	do {								\
2850 		if (f2fs_has_inline_data(inode))			\
2851 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2852 	} while (0)
2853 #define stat_inc_inline_dir(inode)					\
2854 	do {								\
2855 		if (f2fs_has_inline_dentry(inode))			\
2856 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2857 	} while (0)
2858 #define stat_dec_inline_dir(inode)					\
2859 	do {								\
2860 		if (f2fs_has_inline_dentry(inode))			\
2861 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2862 	} while (0)
2863 #define stat_inc_seg_type(sbi, curseg)					\
2864 		((sbi)->segment_count[(curseg)->alloc_type]++)
2865 #define stat_inc_block_count(sbi, curseg)				\
2866 		((sbi)->block_count[(curseg)->alloc_type]++)
2867 #define stat_inc_inplace_blocks(sbi)					\
2868 		(atomic_inc(&(sbi)->inplace_count))
2869 #define stat_inc_atomic_write(inode)					\
2870 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2871 #define stat_dec_atomic_write(inode)					\
2872 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2873 #define stat_update_max_atomic_write(inode)				\
2874 	do {								\
2875 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2876 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2877 		if (cur > max)						\
2878 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2879 	} while (0)
2880 #define stat_inc_volatile_write(inode)					\
2881 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2882 #define stat_dec_volatile_write(inode)					\
2883 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2884 #define stat_update_max_volatile_write(inode)				\
2885 	do {								\
2886 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
2887 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
2888 		if (cur > max)						\
2889 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
2890 	} while (0)
2891 #define stat_inc_seg_count(sbi, type, gc_type)				\
2892 	do {								\
2893 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2894 		si->tot_segs++;						\
2895 		if ((type) == SUM_TYPE_DATA) {				\
2896 			si->data_segs++;				\
2897 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2898 		} else {						\
2899 			si->node_segs++;				\
2900 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2901 		}							\
2902 	} while (0)
2903 
2904 #define stat_inc_tot_blk_count(si, blks)				\
2905 	((si)->tot_blks += (blks))
2906 
2907 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2908 	do {								\
2909 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2910 		stat_inc_tot_blk_count(si, blks);			\
2911 		si->data_blks += (blks);				\
2912 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2913 	} while (0)
2914 
2915 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2916 	do {								\
2917 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2918 		stat_inc_tot_blk_count(si, blks);			\
2919 		si->node_blks += (blks);				\
2920 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2921 	} while (0)
2922 
2923 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2924 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2925 int __init f2fs_create_root_stats(void);
2926 void f2fs_destroy_root_stats(void);
2927 #else
2928 #define stat_inc_cp_count(si)				do { } while (0)
2929 #define stat_inc_bg_cp_count(si)			do { } while (0)
2930 #define stat_inc_call_count(si)				do { } while (0)
2931 #define stat_inc_bggc_count(si)				do { } while (0)
2932 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
2933 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
2934 #define stat_inc_total_hit(sb)				do { } while (0)
2935 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
2936 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
2937 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
2938 #define stat_inc_inline_xattr(inode)			do { } while (0)
2939 #define stat_dec_inline_xattr(inode)			do { } while (0)
2940 #define stat_inc_inline_inode(inode)			do { } while (0)
2941 #define stat_dec_inline_inode(inode)			do { } while (0)
2942 #define stat_inc_inline_dir(inode)			do { } while (0)
2943 #define stat_dec_inline_dir(inode)			do { } while (0)
2944 #define stat_inc_atomic_write(inode)			do { } while (0)
2945 #define stat_dec_atomic_write(inode)			do { } while (0)
2946 #define stat_update_max_atomic_write(inode)		do { } while (0)
2947 #define stat_inc_volatile_write(inode)			do { } while (0)
2948 #define stat_dec_volatile_write(inode)			do { } while (0)
2949 #define stat_update_max_volatile_write(inode)		do { } while (0)
2950 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
2951 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
2952 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
2953 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
2954 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
2955 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
2956 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
2957 
2958 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2959 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2960 static inline int __init f2fs_create_root_stats(void) { return 0; }
2961 static inline void f2fs_destroy_root_stats(void) { }
2962 #endif
2963 
2964 extern const struct file_operations f2fs_dir_operations;
2965 extern const struct file_operations f2fs_file_operations;
2966 extern const struct inode_operations f2fs_file_inode_operations;
2967 extern const struct address_space_operations f2fs_dblock_aops;
2968 extern const struct address_space_operations f2fs_node_aops;
2969 extern const struct address_space_operations f2fs_meta_aops;
2970 extern const struct inode_operations f2fs_dir_inode_operations;
2971 extern const struct inode_operations f2fs_symlink_inode_operations;
2972 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2973 extern const struct inode_operations f2fs_special_inode_operations;
2974 extern struct kmem_cache *inode_entry_slab;
2975 
2976 /*
2977  * inline.c
2978  */
2979 bool f2fs_may_inline_data(struct inode *inode);
2980 bool f2fs_may_inline_dentry(struct inode *inode);
2981 void read_inline_data(struct page *page, struct page *ipage);
2982 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2983 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2984 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2985 int f2fs_convert_inline_inode(struct inode *inode);
2986 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2987 bool recover_inline_data(struct inode *inode, struct page *npage);
2988 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2989 			struct fscrypt_name *fname, struct page **res_page);
2990 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2991 			struct page *ipage);
2992 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2993 			const struct qstr *orig_name,
2994 			struct inode *inode, nid_t ino, umode_t mode);
2995 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2996 			struct inode *dir, struct inode *inode);
2997 bool f2fs_empty_inline_dir(struct inode *dir);
2998 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2999 			struct fscrypt_str *fstr);
3000 int f2fs_inline_data_fiemap(struct inode *inode,
3001 			struct fiemap_extent_info *fieinfo,
3002 			__u64 start, __u64 len);
3003 
3004 /*
3005  * shrinker.c
3006  */
3007 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3008 			struct shrink_control *sc);
3009 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3010 			struct shrink_control *sc);
3011 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3012 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3013 
3014 /*
3015  * extent_cache.c
3016  */
3017 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3018 				struct rb_entry *cached_re, unsigned int ofs);
3019 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3020 				struct rb_root *root, struct rb_node **parent,
3021 				unsigned int ofs);
3022 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3023 		struct rb_entry *cached_re, unsigned int ofs,
3024 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3025 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3026 		bool force);
3027 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3028 						struct rb_root *root);
3029 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3030 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3031 void f2fs_drop_extent_tree(struct inode *inode);
3032 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3033 void f2fs_destroy_extent_tree(struct inode *inode);
3034 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3035 			struct extent_info *ei);
3036 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3037 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3038 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3039 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3040 int __init create_extent_cache(void);
3041 void destroy_extent_cache(void);
3042 
3043 /*
3044  * sysfs.c
3045  */
3046 int __init f2fs_init_sysfs(void);
3047 void f2fs_exit_sysfs(void);
3048 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3049 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3050 
3051 /*
3052  * crypto support
3053  */
3054 static inline bool f2fs_encrypted_inode(struct inode *inode)
3055 {
3056 	return file_is_encrypt(inode);
3057 }
3058 
3059 static inline bool f2fs_encrypted_file(struct inode *inode)
3060 {
3061 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3062 }
3063 
3064 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3065 {
3066 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3067 	file_set_encrypt(inode);
3068 	inode->i_flags |= S_ENCRYPTED;
3069 #endif
3070 }
3071 
3072 static inline bool f2fs_bio_encrypted(struct bio *bio)
3073 {
3074 	return bio->bi_private != NULL;
3075 }
3076 
3077 static inline int f2fs_sb_has_crypto(struct super_block *sb)
3078 {
3079 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
3080 }
3081 
3082 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
3083 {
3084 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
3085 }
3086 
3087 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
3088 {
3089 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
3090 }
3091 
3092 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
3093 {
3094 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
3095 }
3096 
3097 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
3098 {
3099 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
3100 }
3101 
3102 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb)
3103 {
3104 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR);
3105 }
3106 
3107 static inline int f2fs_sb_has_quota_ino(struct super_block *sb)
3108 {
3109 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO);
3110 }
3111 
3112 #ifdef CONFIG_BLK_DEV_ZONED
3113 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3114 			struct block_device *bdev, block_t blkaddr)
3115 {
3116 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3117 	int i;
3118 
3119 	for (i = 0; i < sbi->s_ndevs; i++)
3120 		if (FDEV(i).bdev == bdev)
3121 			return FDEV(i).blkz_type[zno];
3122 	return -EINVAL;
3123 }
3124 #endif
3125 
3126 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3127 {
3128 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3129 
3130 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3131 }
3132 
3133 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3134 {
3135 	clear_opt(sbi, ADAPTIVE);
3136 	clear_opt(sbi, LFS);
3137 
3138 	switch (mt) {
3139 	case F2FS_MOUNT_ADAPTIVE:
3140 		set_opt(sbi, ADAPTIVE);
3141 		break;
3142 	case F2FS_MOUNT_LFS:
3143 		set_opt(sbi, LFS);
3144 		break;
3145 	}
3146 }
3147 
3148 static inline bool f2fs_may_encrypt(struct inode *inode)
3149 {
3150 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3151 	umode_t mode = inode->i_mode;
3152 
3153 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3154 #else
3155 	return 0;
3156 #endif
3157 }
3158 
3159 #endif
3160