1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <crypto/hash.h> 27 28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 29 #include <linux/fscrypt.h> 30 31 #ifdef CONFIG_F2FS_CHECK_FS 32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 33 #else 34 #define f2fs_bug_on(sbi, condition) \ 35 do { \ 36 if (unlikely(condition)) { \ 37 WARN_ON(1); \ 38 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 39 } \ 40 } while (0) 41 #endif 42 43 #ifdef CONFIG_F2FS_FAULT_INJECTION 44 enum { 45 FAULT_KMALLOC, 46 FAULT_PAGE_ALLOC, 47 FAULT_PAGE_GET, 48 FAULT_ALLOC_BIO, 49 FAULT_ALLOC_NID, 50 FAULT_ORPHAN, 51 FAULT_BLOCK, 52 FAULT_DIR_DEPTH, 53 FAULT_EVICT_INODE, 54 FAULT_TRUNCATE, 55 FAULT_IO, 56 FAULT_CHECKPOINT, 57 FAULT_MAX, 58 }; 59 60 struct f2fs_fault_info { 61 atomic_t inject_ops; 62 unsigned int inject_rate; 63 unsigned int inject_type; 64 }; 65 66 extern char *fault_name[FAULT_MAX]; 67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 68 #endif 69 70 /* 71 * For mount options 72 */ 73 #define F2FS_MOUNT_BG_GC 0x00000001 74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 75 #define F2FS_MOUNT_DISCARD 0x00000004 76 #define F2FS_MOUNT_NOHEAP 0x00000008 77 #define F2FS_MOUNT_XATTR_USER 0x00000010 78 #define F2FS_MOUNT_POSIX_ACL 0x00000020 79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 81 #define F2FS_MOUNT_INLINE_DATA 0x00000100 82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 84 #define F2FS_MOUNT_NOBARRIER 0x00000800 85 #define F2FS_MOUNT_FASTBOOT 0x00001000 86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 90 #define F2FS_MOUNT_ADAPTIVE 0x00020000 91 #define F2FS_MOUNT_LFS 0x00040000 92 #define F2FS_MOUNT_USRQUOTA 0x00080000 93 #define F2FS_MOUNT_GRPQUOTA 0x00100000 94 #define F2FS_MOUNT_PRJQUOTA 0x00200000 95 #define F2FS_MOUNT_QUOTA 0x00400000 96 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 97 98 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option) 99 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option) 100 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option) 101 102 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 103 typecheck(unsigned long long, b) && \ 104 ((long long)((a) - (b)) > 0)) 105 106 typedef u32 block_t; /* 107 * should not change u32, since it is the on-disk block 108 * address format, __le32. 109 */ 110 typedef u32 nid_t; 111 112 struct f2fs_mount_info { 113 unsigned int opt; 114 }; 115 116 #define F2FS_FEATURE_ENCRYPT 0x0001 117 #define F2FS_FEATURE_BLKZONED 0x0002 118 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 119 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 120 #define F2FS_FEATURE_PRJQUOTA 0x0010 121 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 122 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 123 #define F2FS_FEATURE_QUOTA_INO 0x0080 124 125 #define F2FS_HAS_FEATURE(sb, mask) \ 126 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 127 #define F2FS_SET_FEATURE(sb, mask) \ 128 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 129 #define F2FS_CLEAR_FEATURE(sb, mask) \ 130 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 131 132 /* 133 * For checkpoint manager 134 */ 135 enum { 136 NAT_BITMAP, 137 SIT_BITMAP 138 }; 139 140 #define CP_UMOUNT 0x00000001 141 #define CP_FASTBOOT 0x00000002 142 #define CP_SYNC 0x00000004 143 #define CP_RECOVERY 0x00000008 144 #define CP_DISCARD 0x00000010 145 #define CP_TRIMMED 0x00000020 146 147 #define DEF_BATCHED_TRIM_SECTIONS 2048 148 #define BATCHED_TRIM_SEGMENTS(sbi) \ 149 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 150 #define BATCHED_TRIM_BLOCKS(sbi) \ 151 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 152 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 153 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 154 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 155 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 156 #define DEF_CP_INTERVAL 60 /* 60 secs */ 157 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 158 159 struct cp_control { 160 int reason; 161 __u64 trim_start; 162 __u64 trim_end; 163 __u64 trim_minlen; 164 }; 165 166 /* 167 * For CP/NAT/SIT/SSA readahead 168 */ 169 enum { 170 META_CP, 171 META_NAT, 172 META_SIT, 173 META_SSA, 174 META_POR, 175 }; 176 177 /* for the list of ino */ 178 enum { 179 ORPHAN_INO, /* for orphan ino list */ 180 APPEND_INO, /* for append ino list */ 181 UPDATE_INO, /* for update ino list */ 182 FLUSH_INO, /* for multiple device flushing */ 183 MAX_INO_ENTRY, /* max. list */ 184 }; 185 186 struct ino_entry { 187 struct list_head list; /* list head */ 188 nid_t ino; /* inode number */ 189 unsigned int dirty_device; /* dirty device bitmap */ 190 }; 191 192 /* for the list of inodes to be GCed */ 193 struct inode_entry { 194 struct list_head list; /* list head */ 195 struct inode *inode; /* vfs inode pointer */ 196 }; 197 198 /* for the bitmap indicate blocks to be discarded */ 199 struct discard_entry { 200 struct list_head list; /* list head */ 201 block_t start_blkaddr; /* start blockaddr of current segment */ 202 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 203 }; 204 205 /* default discard granularity of inner discard thread, unit: block count */ 206 #define DEFAULT_DISCARD_GRANULARITY 16 207 208 /* max discard pend list number */ 209 #define MAX_PLIST_NUM 512 210 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 211 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 212 213 enum { 214 D_PREP, 215 D_SUBMIT, 216 D_DONE, 217 }; 218 219 struct discard_info { 220 block_t lstart; /* logical start address */ 221 block_t len; /* length */ 222 block_t start; /* actual start address in dev */ 223 }; 224 225 struct discard_cmd { 226 struct rb_node rb_node; /* rb node located in rb-tree */ 227 union { 228 struct { 229 block_t lstart; /* logical start address */ 230 block_t len; /* length */ 231 block_t start; /* actual start address in dev */ 232 }; 233 struct discard_info di; /* discard info */ 234 235 }; 236 struct list_head list; /* command list */ 237 struct completion wait; /* compleation */ 238 struct block_device *bdev; /* bdev */ 239 unsigned short ref; /* reference count */ 240 unsigned char state; /* state */ 241 int error; /* bio error */ 242 }; 243 244 enum { 245 DPOLICY_BG, 246 DPOLICY_FORCE, 247 DPOLICY_FSTRIM, 248 DPOLICY_UMOUNT, 249 MAX_DPOLICY, 250 }; 251 252 struct discard_policy { 253 int type; /* type of discard */ 254 unsigned int min_interval; /* used for candidates exist */ 255 unsigned int max_interval; /* used for candidates not exist */ 256 unsigned int max_requests; /* # of discards issued per round */ 257 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 258 bool io_aware; /* issue discard in idle time */ 259 bool sync; /* submit discard with REQ_SYNC flag */ 260 unsigned int granularity; /* discard granularity */ 261 }; 262 263 struct discard_cmd_control { 264 struct task_struct *f2fs_issue_discard; /* discard thread */ 265 struct list_head entry_list; /* 4KB discard entry list */ 266 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 267 unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */ 268 struct list_head wait_list; /* store on-flushing entries */ 269 struct list_head fstrim_list; /* in-flight discard from fstrim */ 270 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 271 unsigned int discard_wake; /* to wake up discard thread */ 272 struct mutex cmd_lock; 273 unsigned int nr_discards; /* # of discards in the list */ 274 unsigned int max_discards; /* max. discards to be issued */ 275 unsigned int discard_granularity; /* discard granularity */ 276 unsigned int undiscard_blks; /* # of undiscard blocks */ 277 atomic_t issued_discard; /* # of issued discard */ 278 atomic_t issing_discard; /* # of issing discard */ 279 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 280 struct rb_root root; /* root of discard rb-tree */ 281 }; 282 283 /* for the list of fsync inodes, used only during recovery */ 284 struct fsync_inode_entry { 285 struct list_head list; /* list head */ 286 struct inode *inode; /* vfs inode pointer */ 287 block_t blkaddr; /* block address locating the last fsync */ 288 block_t last_dentry; /* block address locating the last dentry */ 289 }; 290 291 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 292 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 293 294 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 295 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 296 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 297 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 298 299 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 300 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 301 302 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 303 { 304 int before = nats_in_cursum(journal); 305 306 journal->n_nats = cpu_to_le16(before + i); 307 return before; 308 } 309 310 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 311 { 312 int before = sits_in_cursum(journal); 313 314 journal->n_sits = cpu_to_le16(before + i); 315 return before; 316 } 317 318 static inline bool __has_cursum_space(struct f2fs_journal *journal, 319 int size, int type) 320 { 321 if (type == NAT_JOURNAL) 322 return size <= MAX_NAT_JENTRIES(journal); 323 return size <= MAX_SIT_JENTRIES(journal); 324 } 325 326 /* 327 * ioctl commands 328 */ 329 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 330 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 331 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 332 333 #define F2FS_IOCTL_MAGIC 0xf5 334 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 335 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 336 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 337 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 338 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 339 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 340 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 341 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 342 struct f2fs_defragment) 343 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 344 struct f2fs_move_range) 345 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 346 struct f2fs_flush_device) 347 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 348 struct f2fs_gc_range) 349 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 350 351 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 352 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 353 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 354 355 /* 356 * should be same as XFS_IOC_GOINGDOWN. 357 * Flags for going down operation used by FS_IOC_GOINGDOWN 358 */ 359 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 360 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 361 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 362 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 363 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 364 365 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 366 /* 367 * ioctl commands in 32 bit emulation 368 */ 369 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 370 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 371 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 372 #endif 373 374 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 375 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 376 377 struct f2fs_gc_range { 378 u32 sync; 379 u64 start; 380 u64 len; 381 }; 382 383 struct f2fs_defragment { 384 u64 start; 385 u64 len; 386 }; 387 388 struct f2fs_move_range { 389 u32 dst_fd; /* destination fd */ 390 u64 pos_in; /* start position in src_fd */ 391 u64 pos_out; /* start position in dst_fd */ 392 u64 len; /* size to move */ 393 }; 394 395 struct f2fs_flush_device { 396 u32 dev_num; /* device number to flush */ 397 u32 segments; /* # of segments to flush */ 398 }; 399 400 /* for inline stuff */ 401 #define DEF_INLINE_RESERVED_SIZE 1 402 #define DEF_MIN_INLINE_SIZE 1 403 static inline int get_extra_isize(struct inode *inode); 404 static inline int get_inline_xattr_addrs(struct inode *inode); 405 #define F2FS_INLINE_XATTR_ADDRS(inode) get_inline_xattr_addrs(inode) 406 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 407 (CUR_ADDRS_PER_INODE(inode) - \ 408 F2FS_INLINE_XATTR_ADDRS(inode) - \ 409 DEF_INLINE_RESERVED_SIZE)) 410 411 /* for inline dir */ 412 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 413 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 414 BITS_PER_BYTE + 1)) 415 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 416 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 417 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 418 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 419 NR_INLINE_DENTRY(inode) + \ 420 INLINE_DENTRY_BITMAP_SIZE(inode))) 421 422 /* 423 * For INODE and NODE manager 424 */ 425 /* for directory operations */ 426 struct f2fs_dentry_ptr { 427 struct inode *inode; 428 void *bitmap; 429 struct f2fs_dir_entry *dentry; 430 __u8 (*filename)[F2FS_SLOT_LEN]; 431 int max; 432 int nr_bitmap; 433 }; 434 435 static inline void make_dentry_ptr_block(struct inode *inode, 436 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 437 { 438 d->inode = inode; 439 d->max = NR_DENTRY_IN_BLOCK; 440 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 441 d->bitmap = &t->dentry_bitmap; 442 d->dentry = t->dentry; 443 d->filename = t->filename; 444 } 445 446 static inline void make_dentry_ptr_inline(struct inode *inode, 447 struct f2fs_dentry_ptr *d, void *t) 448 { 449 int entry_cnt = NR_INLINE_DENTRY(inode); 450 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 451 int reserved_size = INLINE_RESERVED_SIZE(inode); 452 453 d->inode = inode; 454 d->max = entry_cnt; 455 d->nr_bitmap = bitmap_size; 456 d->bitmap = t; 457 d->dentry = t + bitmap_size + reserved_size; 458 d->filename = t + bitmap_size + reserved_size + 459 SIZE_OF_DIR_ENTRY * entry_cnt; 460 } 461 462 /* 463 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 464 * as its node offset to distinguish from index node blocks. 465 * But some bits are used to mark the node block. 466 */ 467 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 468 >> OFFSET_BIT_SHIFT) 469 enum { 470 ALLOC_NODE, /* allocate a new node page if needed */ 471 LOOKUP_NODE, /* look up a node without readahead */ 472 LOOKUP_NODE_RA, /* 473 * look up a node with readahead called 474 * by get_data_block. 475 */ 476 }; 477 478 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 479 480 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 481 482 /* vector size for gang look-up from extent cache that consists of radix tree */ 483 #define EXT_TREE_VEC_SIZE 64 484 485 /* for in-memory extent cache entry */ 486 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 487 488 /* number of extent info in extent cache we try to shrink */ 489 #define EXTENT_CACHE_SHRINK_NUMBER 128 490 491 struct rb_entry { 492 struct rb_node rb_node; /* rb node located in rb-tree */ 493 unsigned int ofs; /* start offset of the entry */ 494 unsigned int len; /* length of the entry */ 495 }; 496 497 struct extent_info { 498 unsigned int fofs; /* start offset in a file */ 499 unsigned int len; /* length of the extent */ 500 u32 blk; /* start block address of the extent */ 501 }; 502 503 struct extent_node { 504 struct rb_node rb_node; 505 union { 506 struct { 507 unsigned int fofs; 508 unsigned int len; 509 u32 blk; 510 }; 511 struct extent_info ei; /* extent info */ 512 513 }; 514 struct list_head list; /* node in global extent list of sbi */ 515 struct extent_tree *et; /* extent tree pointer */ 516 }; 517 518 struct extent_tree { 519 nid_t ino; /* inode number */ 520 struct rb_root root; /* root of extent info rb-tree */ 521 struct extent_node *cached_en; /* recently accessed extent node */ 522 struct extent_info largest; /* largested extent info */ 523 struct list_head list; /* to be used by sbi->zombie_list */ 524 rwlock_t lock; /* protect extent info rb-tree */ 525 atomic_t node_cnt; /* # of extent node in rb-tree*/ 526 }; 527 528 /* 529 * This structure is taken from ext4_map_blocks. 530 * 531 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 532 */ 533 #define F2FS_MAP_NEW (1 << BH_New) 534 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 535 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 536 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 537 F2FS_MAP_UNWRITTEN) 538 539 struct f2fs_map_blocks { 540 block_t m_pblk; 541 block_t m_lblk; 542 unsigned int m_len; 543 unsigned int m_flags; 544 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 545 }; 546 547 /* for flag in get_data_block */ 548 enum { 549 F2FS_GET_BLOCK_DEFAULT, 550 F2FS_GET_BLOCK_FIEMAP, 551 F2FS_GET_BLOCK_BMAP, 552 F2FS_GET_BLOCK_PRE_DIO, 553 F2FS_GET_BLOCK_PRE_AIO, 554 }; 555 556 /* 557 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 558 */ 559 #define FADVISE_COLD_BIT 0x01 560 #define FADVISE_LOST_PINO_BIT 0x02 561 #define FADVISE_ENCRYPT_BIT 0x04 562 #define FADVISE_ENC_NAME_BIT 0x08 563 #define FADVISE_KEEP_SIZE_BIT 0x10 564 565 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 566 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 567 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 568 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 569 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 570 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 571 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 572 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 573 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 574 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 575 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 576 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 577 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 578 579 #define DEF_DIR_LEVEL 0 580 581 struct f2fs_inode_info { 582 struct inode vfs_inode; /* serve a vfs inode */ 583 unsigned long i_flags; /* keep an inode flags for ioctl */ 584 unsigned char i_advise; /* use to give file attribute hints */ 585 unsigned char i_dir_level; /* use for dentry level for large dir */ 586 unsigned int i_current_depth; /* use only in directory structure */ 587 unsigned int i_pino; /* parent inode number */ 588 umode_t i_acl_mode; /* keep file acl mode temporarily */ 589 590 /* Use below internally in f2fs*/ 591 unsigned long flags; /* use to pass per-file flags */ 592 struct rw_semaphore i_sem; /* protect fi info */ 593 atomic_t dirty_pages; /* # of dirty pages */ 594 f2fs_hash_t chash; /* hash value of given file name */ 595 unsigned int clevel; /* maximum level of given file name */ 596 struct task_struct *task; /* lookup and create consistency */ 597 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 598 nid_t i_xattr_nid; /* node id that contains xattrs */ 599 loff_t last_disk_size; /* lastly written file size */ 600 601 #ifdef CONFIG_QUOTA 602 struct dquot *i_dquot[MAXQUOTAS]; 603 604 /* quota space reservation, managed internally by quota code */ 605 qsize_t i_reserved_quota; 606 #endif 607 struct list_head dirty_list; /* dirty list for dirs and files */ 608 struct list_head gdirty_list; /* linked in global dirty list */ 609 struct list_head inmem_ilist; /* list for inmem inodes */ 610 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 611 struct task_struct *inmem_task; /* store inmemory task */ 612 struct mutex inmem_lock; /* lock for inmemory pages */ 613 struct extent_tree *extent_tree; /* cached extent_tree entry */ 614 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 615 struct rw_semaphore i_mmap_sem; 616 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 617 618 int i_extra_isize; /* size of extra space located in i_addr */ 619 kprojid_t i_projid; /* id for project quota */ 620 int i_inline_xattr_size; /* inline xattr size */ 621 }; 622 623 static inline void get_extent_info(struct extent_info *ext, 624 struct f2fs_extent *i_ext) 625 { 626 ext->fofs = le32_to_cpu(i_ext->fofs); 627 ext->blk = le32_to_cpu(i_ext->blk); 628 ext->len = le32_to_cpu(i_ext->len); 629 } 630 631 static inline void set_raw_extent(struct extent_info *ext, 632 struct f2fs_extent *i_ext) 633 { 634 i_ext->fofs = cpu_to_le32(ext->fofs); 635 i_ext->blk = cpu_to_le32(ext->blk); 636 i_ext->len = cpu_to_le32(ext->len); 637 } 638 639 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 640 u32 blk, unsigned int len) 641 { 642 ei->fofs = fofs; 643 ei->blk = blk; 644 ei->len = len; 645 } 646 647 static inline bool __is_discard_mergeable(struct discard_info *back, 648 struct discard_info *front) 649 { 650 return back->lstart + back->len == front->lstart; 651 } 652 653 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 654 struct discard_info *back) 655 { 656 return __is_discard_mergeable(back, cur); 657 } 658 659 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 660 struct discard_info *front) 661 { 662 return __is_discard_mergeable(cur, front); 663 } 664 665 static inline bool __is_extent_mergeable(struct extent_info *back, 666 struct extent_info *front) 667 { 668 return (back->fofs + back->len == front->fofs && 669 back->blk + back->len == front->blk); 670 } 671 672 static inline bool __is_back_mergeable(struct extent_info *cur, 673 struct extent_info *back) 674 { 675 return __is_extent_mergeable(back, cur); 676 } 677 678 static inline bool __is_front_mergeable(struct extent_info *cur, 679 struct extent_info *front) 680 { 681 return __is_extent_mergeable(cur, front); 682 } 683 684 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 685 static inline void __try_update_largest_extent(struct inode *inode, 686 struct extent_tree *et, struct extent_node *en) 687 { 688 if (en->ei.len > et->largest.len) { 689 et->largest = en->ei; 690 f2fs_mark_inode_dirty_sync(inode, true); 691 } 692 } 693 694 /* 695 * For free nid management 696 */ 697 enum nid_state { 698 FREE_NID, /* newly added to free nid list */ 699 PREALLOC_NID, /* it is preallocated */ 700 MAX_NID_STATE, 701 }; 702 703 struct f2fs_nm_info { 704 block_t nat_blkaddr; /* base disk address of NAT */ 705 nid_t max_nid; /* maximum possible node ids */ 706 nid_t available_nids; /* # of available node ids */ 707 nid_t next_scan_nid; /* the next nid to be scanned */ 708 unsigned int ram_thresh; /* control the memory footprint */ 709 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 710 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 711 712 /* NAT cache management */ 713 struct radix_tree_root nat_root;/* root of the nat entry cache */ 714 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 715 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 716 struct list_head nat_entries; /* cached nat entry list (clean) */ 717 unsigned int nat_cnt; /* the # of cached nat entries */ 718 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 719 unsigned int nat_blocks; /* # of nat blocks */ 720 721 /* free node ids management */ 722 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 723 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 724 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 725 spinlock_t nid_list_lock; /* protect nid lists ops */ 726 struct mutex build_lock; /* lock for build free nids */ 727 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 728 unsigned char *nat_block_bitmap; 729 unsigned short *free_nid_count; /* free nid count of NAT block */ 730 731 /* for checkpoint */ 732 char *nat_bitmap; /* NAT bitmap pointer */ 733 734 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 735 unsigned char *nat_bits; /* NAT bits blocks */ 736 unsigned char *full_nat_bits; /* full NAT pages */ 737 unsigned char *empty_nat_bits; /* empty NAT pages */ 738 #ifdef CONFIG_F2FS_CHECK_FS 739 char *nat_bitmap_mir; /* NAT bitmap mirror */ 740 #endif 741 int bitmap_size; /* bitmap size */ 742 }; 743 744 /* 745 * this structure is used as one of function parameters. 746 * all the information are dedicated to a given direct node block determined 747 * by the data offset in a file. 748 */ 749 struct dnode_of_data { 750 struct inode *inode; /* vfs inode pointer */ 751 struct page *inode_page; /* its inode page, NULL is possible */ 752 struct page *node_page; /* cached direct node page */ 753 nid_t nid; /* node id of the direct node block */ 754 unsigned int ofs_in_node; /* data offset in the node page */ 755 bool inode_page_locked; /* inode page is locked or not */ 756 bool node_changed; /* is node block changed */ 757 char cur_level; /* level of hole node page */ 758 char max_level; /* level of current page located */ 759 block_t data_blkaddr; /* block address of the node block */ 760 }; 761 762 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 763 struct page *ipage, struct page *npage, nid_t nid) 764 { 765 memset(dn, 0, sizeof(*dn)); 766 dn->inode = inode; 767 dn->inode_page = ipage; 768 dn->node_page = npage; 769 dn->nid = nid; 770 } 771 772 /* 773 * For SIT manager 774 * 775 * By default, there are 6 active log areas across the whole main area. 776 * When considering hot and cold data separation to reduce cleaning overhead, 777 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 778 * respectively. 779 * In the current design, you should not change the numbers intentionally. 780 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 781 * logs individually according to the underlying devices. (default: 6) 782 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 783 * data and 8 for node logs. 784 */ 785 #define NR_CURSEG_DATA_TYPE (3) 786 #define NR_CURSEG_NODE_TYPE (3) 787 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 788 789 enum { 790 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 791 CURSEG_WARM_DATA, /* data blocks */ 792 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 793 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 794 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 795 CURSEG_COLD_NODE, /* indirect node blocks */ 796 NO_CHECK_TYPE, 797 }; 798 799 struct flush_cmd { 800 struct completion wait; 801 struct llist_node llnode; 802 nid_t ino; 803 int ret; 804 }; 805 806 struct flush_cmd_control { 807 struct task_struct *f2fs_issue_flush; /* flush thread */ 808 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 809 atomic_t issued_flush; /* # of issued flushes */ 810 atomic_t issing_flush; /* # of issing flushes */ 811 struct llist_head issue_list; /* list for command issue */ 812 struct llist_node *dispatch_list; /* list for command dispatch */ 813 }; 814 815 struct f2fs_sm_info { 816 struct sit_info *sit_info; /* whole segment information */ 817 struct free_segmap_info *free_info; /* free segment information */ 818 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 819 struct curseg_info *curseg_array; /* active segment information */ 820 821 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 822 823 block_t seg0_blkaddr; /* block address of 0'th segment */ 824 block_t main_blkaddr; /* start block address of main area */ 825 block_t ssa_blkaddr; /* start block address of SSA area */ 826 827 unsigned int segment_count; /* total # of segments */ 828 unsigned int main_segments; /* # of segments in main area */ 829 unsigned int reserved_segments; /* # of reserved segments */ 830 unsigned int ovp_segments; /* # of overprovision segments */ 831 832 /* a threshold to reclaim prefree segments */ 833 unsigned int rec_prefree_segments; 834 835 /* for batched trimming */ 836 unsigned int trim_sections; /* # of sections to trim */ 837 838 struct list_head sit_entry_set; /* sit entry set list */ 839 840 unsigned int ipu_policy; /* in-place-update policy */ 841 unsigned int min_ipu_util; /* in-place-update threshold */ 842 unsigned int min_fsync_blocks; /* threshold for fsync */ 843 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 844 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 845 846 /* for flush command control */ 847 struct flush_cmd_control *fcc_info; 848 849 /* for discard command control */ 850 struct discard_cmd_control *dcc_info; 851 }; 852 853 /* 854 * For superblock 855 */ 856 /* 857 * COUNT_TYPE for monitoring 858 * 859 * f2fs monitors the number of several block types such as on-writeback, 860 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 861 */ 862 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 863 enum count_type { 864 F2FS_DIRTY_DENTS, 865 F2FS_DIRTY_DATA, 866 F2FS_DIRTY_QDATA, 867 F2FS_DIRTY_NODES, 868 F2FS_DIRTY_META, 869 F2FS_INMEM_PAGES, 870 F2FS_DIRTY_IMETA, 871 F2FS_WB_CP_DATA, 872 F2FS_WB_DATA, 873 NR_COUNT_TYPE, 874 }; 875 876 /* 877 * The below are the page types of bios used in submit_bio(). 878 * The available types are: 879 * DATA User data pages. It operates as async mode. 880 * NODE Node pages. It operates as async mode. 881 * META FS metadata pages such as SIT, NAT, CP. 882 * NR_PAGE_TYPE The number of page types. 883 * META_FLUSH Make sure the previous pages are written 884 * with waiting the bio's completion 885 * ... Only can be used with META. 886 */ 887 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 888 enum page_type { 889 DATA, 890 NODE, 891 META, 892 NR_PAGE_TYPE, 893 META_FLUSH, 894 INMEM, /* the below types are used by tracepoints only. */ 895 INMEM_DROP, 896 INMEM_INVALIDATE, 897 INMEM_REVOKE, 898 IPU, 899 OPU, 900 }; 901 902 enum temp_type { 903 HOT = 0, /* must be zero for meta bio */ 904 WARM, 905 COLD, 906 NR_TEMP_TYPE, 907 }; 908 909 enum need_lock_type { 910 LOCK_REQ = 0, 911 LOCK_DONE, 912 LOCK_RETRY, 913 }; 914 915 enum cp_reason_type { 916 CP_NO_NEEDED, 917 CP_NON_REGULAR, 918 CP_HARDLINK, 919 CP_SB_NEED_CP, 920 CP_WRONG_PINO, 921 CP_NO_SPC_ROLL, 922 CP_NODE_NEED_CP, 923 CP_FASTBOOT_MODE, 924 CP_SPEC_LOG_NUM, 925 }; 926 927 enum iostat_type { 928 APP_DIRECT_IO, /* app direct IOs */ 929 APP_BUFFERED_IO, /* app buffered IOs */ 930 APP_WRITE_IO, /* app write IOs */ 931 APP_MAPPED_IO, /* app mapped IOs */ 932 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 933 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 934 FS_META_IO, /* meta IOs from kworker/reclaimer */ 935 FS_GC_DATA_IO, /* data IOs from forground gc */ 936 FS_GC_NODE_IO, /* node IOs from forground gc */ 937 FS_CP_DATA_IO, /* data IOs from checkpoint */ 938 FS_CP_NODE_IO, /* node IOs from checkpoint */ 939 FS_CP_META_IO, /* meta IOs from checkpoint */ 940 FS_DISCARD, /* discard */ 941 NR_IO_TYPE, 942 }; 943 944 struct f2fs_io_info { 945 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 946 nid_t ino; /* inode number */ 947 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 948 enum temp_type temp; /* contains HOT/WARM/COLD */ 949 int op; /* contains REQ_OP_ */ 950 int op_flags; /* req_flag_bits */ 951 block_t new_blkaddr; /* new block address to be written */ 952 block_t old_blkaddr; /* old block address before Cow */ 953 struct page *page; /* page to be written */ 954 struct page *encrypted_page; /* encrypted page */ 955 struct list_head list; /* serialize IOs */ 956 bool submitted; /* indicate IO submission */ 957 int need_lock; /* indicate we need to lock cp_rwsem */ 958 bool in_list; /* indicate fio is in io_list */ 959 enum iostat_type io_type; /* io type */ 960 }; 961 962 #define is_read_io(rw) ((rw) == READ) 963 struct f2fs_bio_info { 964 struct f2fs_sb_info *sbi; /* f2fs superblock */ 965 struct bio *bio; /* bios to merge */ 966 sector_t last_block_in_bio; /* last block number */ 967 struct f2fs_io_info fio; /* store buffered io info. */ 968 struct rw_semaphore io_rwsem; /* blocking op for bio */ 969 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 970 struct list_head io_list; /* track fios */ 971 }; 972 973 #define FDEV(i) (sbi->devs[i]) 974 #define RDEV(i) (raw_super->devs[i]) 975 struct f2fs_dev_info { 976 struct block_device *bdev; 977 char path[MAX_PATH_LEN]; 978 unsigned int total_segments; 979 block_t start_blk; 980 block_t end_blk; 981 #ifdef CONFIG_BLK_DEV_ZONED 982 unsigned int nr_blkz; /* Total number of zones */ 983 u8 *blkz_type; /* Array of zones type */ 984 #endif 985 }; 986 987 enum inode_type { 988 DIR_INODE, /* for dirty dir inode */ 989 FILE_INODE, /* for dirty regular/symlink inode */ 990 DIRTY_META, /* for all dirtied inode metadata */ 991 ATOMIC_FILE, /* for all atomic files */ 992 NR_INODE_TYPE, 993 }; 994 995 /* for inner inode cache management */ 996 struct inode_management { 997 struct radix_tree_root ino_root; /* ino entry array */ 998 spinlock_t ino_lock; /* for ino entry lock */ 999 struct list_head ino_list; /* inode list head */ 1000 unsigned long ino_num; /* number of entries */ 1001 }; 1002 1003 /* For s_flag in struct f2fs_sb_info */ 1004 enum { 1005 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1006 SBI_IS_CLOSE, /* specify unmounting */ 1007 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1008 SBI_POR_DOING, /* recovery is doing or not */ 1009 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1010 SBI_NEED_CP, /* need to checkpoint */ 1011 }; 1012 1013 enum { 1014 CP_TIME, 1015 REQ_TIME, 1016 MAX_TIME, 1017 }; 1018 1019 struct f2fs_sb_info { 1020 struct super_block *sb; /* pointer to VFS super block */ 1021 struct proc_dir_entry *s_proc; /* proc entry */ 1022 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1023 int valid_super_block; /* valid super block no */ 1024 unsigned long s_flag; /* flags for sbi */ 1025 1026 #ifdef CONFIG_BLK_DEV_ZONED 1027 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1028 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1029 #endif 1030 1031 /* for node-related operations */ 1032 struct f2fs_nm_info *nm_info; /* node manager */ 1033 struct inode *node_inode; /* cache node blocks */ 1034 1035 /* for segment-related operations */ 1036 struct f2fs_sm_info *sm_info; /* segment manager */ 1037 1038 /* for bio operations */ 1039 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1040 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1041 /* bio ordering for NODE/DATA */ 1042 int write_io_size_bits; /* Write IO size bits */ 1043 mempool_t *write_io_dummy; /* Dummy pages */ 1044 1045 /* for checkpoint */ 1046 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1047 int cur_cp_pack; /* remain current cp pack */ 1048 spinlock_t cp_lock; /* for flag in ckpt */ 1049 struct inode *meta_inode; /* cache meta blocks */ 1050 struct mutex cp_mutex; /* checkpoint procedure lock */ 1051 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1052 struct rw_semaphore node_write; /* locking node writes */ 1053 struct rw_semaphore node_change; /* locking node change */ 1054 wait_queue_head_t cp_wait; 1055 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1056 long interval_time[MAX_TIME]; /* to store thresholds */ 1057 1058 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1059 1060 /* for orphan inode, use 0'th array */ 1061 unsigned int max_orphans; /* max orphan inodes */ 1062 1063 /* for inode management */ 1064 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1065 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1066 1067 /* for extent tree cache */ 1068 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1069 struct mutex extent_tree_lock; /* locking extent radix tree */ 1070 struct list_head extent_list; /* lru list for shrinker */ 1071 spinlock_t extent_lock; /* locking extent lru list */ 1072 atomic_t total_ext_tree; /* extent tree count */ 1073 struct list_head zombie_list; /* extent zombie tree list */ 1074 atomic_t total_zombie_tree; /* extent zombie tree count */ 1075 atomic_t total_ext_node; /* extent info count */ 1076 1077 /* basic filesystem units */ 1078 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1079 unsigned int log_blocksize; /* log2 block size */ 1080 unsigned int blocksize; /* block size */ 1081 unsigned int root_ino_num; /* root inode number*/ 1082 unsigned int node_ino_num; /* node inode number*/ 1083 unsigned int meta_ino_num; /* meta inode number*/ 1084 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1085 unsigned int blocks_per_seg; /* blocks per segment */ 1086 unsigned int segs_per_sec; /* segments per section */ 1087 unsigned int secs_per_zone; /* sections per zone */ 1088 unsigned int total_sections; /* total section count */ 1089 unsigned int total_node_count; /* total node block count */ 1090 unsigned int total_valid_node_count; /* valid node block count */ 1091 loff_t max_file_blocks; /* max block index of file */ 1092 int active_logs; /* # of active logs */ 1093 int dir_level; /* directory level */ 1094 int inline_xattr_size; /* inline xattr size */ 1095 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */ 1096 1097 block_t user_block_count; /* # of user blocks */ 1098 block_t total_valid_block_count; /* # of valid blocks */ 1099 block_t discard_blks; /* discard command candidats */ 1100 block_t last_valid_block_count; /* for recovery */ 1101 block_t reserved_blocks; /* configurable reserved blocks */ 1102 block_t current_reserved_blocks; /* current reserved blocks */ 1103 1104 u32 s_next_generation; /* for NFS support */ 1105 1106 /* # of pages, see count_type */ 1107 atomic_t nr_pages[NR_COUNT_TYPE]; 1108 /* # of allocated blocks */ 1109 struct percpu_counter alloc_valid_block_count; 1110 1111 /* writeback control */ 1112 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 1113 1114 /* valid inode count */ 1115 struct percpu_counter total_valid_inode_count; 1116 1117 struct f2fs_mount_info mount_opt; /* mount options */ 1118 1119 /* for cleaning operations */ 1120 struct mutex gc_mutex; /* mutex for GC */ 1121 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1122 unsigned int cur_victim_sec; /* current victim section num */ 1123 1124 /* threshold for converting bg victims for fg */ 1125 u64 fggc_threshold; 1126 1127 /* maximum # of trials to find a victim segment for SSR and GC */ 1128 unsigned int max_victim_search; 1129 1130 /* 1131 * for stat information. 1132 * one is for the LFS mode, and the other is for the SSR mode. 1133 */ 1134 #ifdef CONFIG_F2FS_STAT_FS 1135 struct f2fs_stat_info *stat_info; /* FS status information */ 1136 unsigned int segment_count[2]; /* # of allocated segments */ 1137 unsigned int block_count[2]; /* # of allocated blocks */ 1138 atomic_t inplace_count; /* # of inplace update */ 1139 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1140 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1141 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1142 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1143 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1144 atomic_t inline_inode; /* # of inline_data inodes */ 1145 atomic_t inline_dir; /* # of inline_dentry inodes */ 1146 atomic_t aw_cnt; /* # of atomic writes */ 1147 atomic_t vw_cnt; /* # of volatile writes */ 1148 atomic_t max_aw_cnt; /* max # of atomic writes */ 1149 atomic_t max_vw_cnt; /* max # of volatile writes */ 1150 int bg_gc; /* background gc calls */ 1151 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1152 #endif 1153 spinlock_t stat_lock; /* lock for stat operations */ 1154 1155 /* For app/fs IO statistics */ 1156 spinlock_t iostat_lock; 1157 unsigned long long write_iostat[NR_IO_TYPE]; 1158 bool iostat_enable; 1159 1160 /* For sysfs suppport */ 1161 struct kobject s_kobj; 1162 struct completion s_kobj_unregister; 1163 1164 /* For shrinker support */ 1165 struct list_head s_list; 1166 int s_ndevs; /* number of devices */ 1167 struct f2fs_dev_info *devs; /* for device list */ 1168 unsigned int dirty_device; /* for checkpoint data flush */ 1169 spinlock_t dev_lock; /* protect dirty_device */ 1170 struct mutex umount_mutex; 1171 unsigned int shrinker_run_no; 1172 1173 /* For write statistics */ 1174 u64 sectors_written_start; 1175 u64 kbytes_written; 1176 1177 /* Reference to checksum algorithm driver via cryptoapi */ 1178 struct crypto_shash *s_chksum_driver; 1179 1180 /* Precomputed FS UUID checksum for seeding other checksums */ 1181 __u32 s_chksum_seed; 1182 1183 /* For fault injection */ 1184 #ifdef CONFIG_F2FS_FAULT_INJECTION 1185 struct f2fs_fault_info fault_info; 1186 #endif 1187 1188 #ifdef CONFIG_QUOTA 1189 /* Names of quota files with journalled quota */ 1190 char *s_qf_names[MAXQUOTAS]; 1191 int s_jquota_fmt; /* Format of quota to use */ 1192 #endif 1193 }; 1194 1195 #ifdef CONFIG_F2FS_FAULT_INJECTION 1196 #define f2fs_show_injection_info(type) \ 1197 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1198 KERN_INFO, fault_name[type], \ 1199 __func__, __builtin_return_address(0)) 1200 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1201 { 1202 struct f2fs_fault_info *ffi = &sbi->fault_info; 1203 1204 if (!ffi->inject_rate) 1205 return false; 1206 1207 if (!IS_FAULT_SET(ffi, type)) 1208 return false; 1209 1210 atomic_inc(&ffi->inject_ops); 1211 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1212 atomic_set(&ffi->inject_ops, 0); 1213 return true; 1214 } 1215 return false; 1216 } 1217 #endif 1218 1219 /* For write statistics. Suppose sector size is 512 bytes, 1220 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1221 */ 1222 #define BD_PART_WRITTEN(s) \ 1223 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1224 (s)->sectors_written_start) >> 1) 1225 1226 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1227 { 1228 sbi->last_time[type] = jiffies; 1229 } 1230 1231 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1232 { 1233 unsigned long interval = sbi->interval_time[type] * HZ; 1234 1235 return time_after(jiffies, sbi->last_time[type] + interval); 1236 } 1237 1238 static inline bool is_idle(struct f2fs_sb_info *sbi) 1239 { 1240 struct block_device *bdev = sbi->sb->s_bdev; 1241 struct request_queue *q = bdev_get_queue(bdev); 1242 struct request_list *rl = &q->root_rl; 1243 1244 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1245 return 0; 1246 1247 return f2fs_time_over(sbi, REQ_TIME); 1248 } 1249 1250 /* 1251 * Inline functions 1252 */ 1253 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1254 unsigned int length) 1255 { 1256 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 1257 u32 *ctx = (u32 *)shash_desc_ctx(shash); 1258 u32 retval; 1259 int err; 1260 1261 shash->tfm = sbi->s_chksum_driver; 1262 shash->flags = 0; 1263 *ctx = F2FS_SUPER_MAGIC; 1264 1265 err = crypto_shash_update(shash, address, length); 1266 BUG_ON(err); 1267 1268 retval = *ctx; 1269 barrier_data(ctx); 1270 return retval; 1271 } 1272 1273 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1274 void *buf, size_t buf_size) 1275 { 1276 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1277 } 1278 1279 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1280 const void *address, unsigned int length) 1281 { 1282 struct { 1283 struct shash_desc shash; 1284 char ctx[4]; 1285 } desc; 1286 int err; 1287 1288 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1289 1290 desc.shash.tfm = sbi->s_chksum_driver; 1291 desc.shash.flags = 0; 1292 *(u32 *)desc.ctx = crc; 1293 1294 err = crypto_shash_update(&desc.shash, address, length); 1295 BUG_ON(err); 1296 1297 return *(u32 *)desc.ctx; 1298 } 1299 1300 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1301 { 1302 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1303 } 1304 1305 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1306 { 1307 return sb->s_fs_info; 1308 } 1309 1310 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1311 { 1312 return F2FS_SB(inode->i_sb); 1313 } 1314 1315 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1316 { 1317 return F2FS_I_SB(mapping->host); 1318 } 1319 1320 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1321 { 1322 return F2FS_M_SB(page->mapping); 1323 } 1324 1325 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1326 { 1327 return (struct f2fs_super_block *)(sbi->raw_super); 1328 } 1329 1330 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1331 { 1332 return (struct f2fs_checkpoint *)(sbi->ckpt); 1333 } 1334 1335 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1336 { 1337 return (struct f2fs_node *)page_address(page); 1338 } 1339 1340 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1341 { 1342 return &((struct f2fs_node *)page_address(page))->i; 1343 } 1344 1345 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1346 { 1347 return (struct f2fs_nm_info *)(sbi->nm_info); 1348 } 1349 1350 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1351 { 1352 return (struct f2fs_sm_info *)(sbi->sm_info); 1353 } 1354 1355 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1356 { 1357 return (struct sit_info *)(SM_I(sbi)->sit_info); 1358 } 1359 1360 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1361 { 1362 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1363 } 1364 1365 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1366 { 1367 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1368 } 1369 1370 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1371 { 1372 return sbi->meta_inode->i_mapping; 1373 } 1374 1375 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1376 { 1377 return sbi->node_inode->i_mapping; 1378 } 1379 1380 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1381 { 1382 return test_bit(type, &sbi->s_flag); 1383 } 1384 1385 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1386 { 1387 set_bit(type, &sbi->s_flag); 1388 } 1389 1390 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1391 { 1392 clear_bit(type, &sbi->s_flag); 1393 } 1394 1395 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1396 { 1397 return le64_to_cpu(cp->checkpoint_ver); 1398 } 1399 1400 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1401 { 1402 if (type < F2FS_MAX_QUOTAS) 1403 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1404 return 0; 1405 } 1406 1407 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1408 { 1409 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1410 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1411 } 1412 1413 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1414 { 1415 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1416 1417 return ckpt_flags & f; 1418 } 1419 1420 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1421 { 1422 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1423 } 1424 1425 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1426 { 1427 unsigned int ckpt_flags; 1428 1429 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1430 ckpt_flags |= f; 1431 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1432 } 1433 1434 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1435 { 1436 unsigned long flags; 1437 1438 spin_lock_irqsave(&sbi->cp_lock, flags); 1439 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1440 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1441 } 1442 1443 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1444 { 1445 unsigned int ckpt_flags; 1446 1447 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1448 ckpt_flags &= (~f); 1449 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1450 } 1451 1452 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1453 { 1454 unsigned long flags; 1455 1456 spin_lock_irqsave(&sbi->cp_lock, flags); 1457 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1458 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1459 } 1460 1461 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1462 { 1463 unsigned long flags; 1464 1465 set_sbi_flag(sbi, SBI_NEED_FSCK); 1466 1467 if (lock) 1468 spin_lock_irqsave(&sbi->cp_lock, flags); 1469 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1470 kfree(NM_I(sbi)->nat_bits); 1471 NM_I(sbi)->nat_bits = NULL; 1472 if (lock) 1473 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1474 } 1475 1476 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1477 struct cp_control *cpc) 1478 { 1479 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1480 1481 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1482 } 1483 1484 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1485 { 1486 down_read(&sbi->cp_rwsem); 1487 } 1488 1489 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1490 { 1491 return down_read_trylock(&sbi->cp_rwsem); 1492 } 1493 1494 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1495 { 1496 up_read(&sbi->cp_rwsem); 1497 } 1498 1499 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1500 { 1501 down_write(&sbi->cp_rwsem); 1502 } 1503 1504 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1505 { 1506 up_write(&sbi->cp_rwsem); 1507 } 1508 1509 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1510 { 1511 int reason = CP_SYNC; 1512 1513 if (test_opt(sbi, FASTBOOT)) 1514 reason = CP_FASTBOOT; 1515 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1516 reason = CP_UMOUNT; 1517 return reason; 1518 } 1519 1520 static inline bool __remain_node_summaries(int reason) 1521 { 1522 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1523 } 1524 1525 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1526 { 1527 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1528 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1529 } 1530 1531 /* 1532 * Check whether the given nid is within node id range. 1533 */ 1534 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1535 { 1536 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1537 return -EINVAL; 1538 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1539 return -EINVAL; 1540 return 0; 1541 } 1542 1543 /* 1544 * Check whether the inode has blocks or not 1545 */ 1546 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1547 { 1548 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1549 1550 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1551 } 1552 1553 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1554 { 1555 return ofs == XATTR_NODE_OFFSET; 1556 } 1557 1558 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1559 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1560 struct inode *inode, blkcnt_t *count) 1561 { 1562 blkcnt_t diff = 0, release = 0; 1563 block_t avail_user_block_count; 1564 int ret; 1565 1566 ret = dquot_reserve_block(inode, *count); 1567 if (ret) 1568 return ret; 1569 1570 #ifdef CONFIG_F2FS_FAULT_INJECTION 1571 if (time_to_inject(sbi, FAULT_BLOCK)) { 1572 f2fs_show_injection_info(FAULT_BLOCK); 1573 release = *count; 1574 goto enospc; 1575 } 1576 #endif 1577 /* 1578 * let's increase this in prior to actual block count change in order 1579 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1580 */ 1581 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1582 1583 spin_lock(&sbi->stat_lock); 1584 sbi->total_valid_block_count += (block_t)(*count); 1585 avail_user_block_count = sbi->user_block_count - 1586 sbi->current_reserved_blocks; 1587 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1588 diff = sbi->total_valid_block_count - avail_user_block_count; 1589 *count -= diff; 1590 release = diff; 1591 sbi->total_valid_block_count = avail_user_block_count; 1592 if (!*count) { 1593 spin_unlock(&sbi->stat_lock); 1594 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1595 goto enospc; 1596 } 1597 } 1598 spin_unlock(&sbi->stat_lock); 1599 1600 if (release) 1601 dquot_release_reservation_block(inode, release); 1602 f2fs_i_blocks_write(inode, *count, true, true); 1603 return 0; 1604 1605 enospc: 1606 dquot_release_reservation_block(inode, release); 1607 return -ENOSPC; 1608 } 1609 1610 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1611 struct inode *inode, 1612 block_t count) 1613 { 1614 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1615 1616 spin_lock(&sbi->stat_lock); 1617 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1618 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1619 sbi->total_valid_block_count -= (block_t)count; 1620 if (sbi->reserved_blocks && 1621 sbi->current_reserved_blocks < sbi->reserved_blocks) 1622 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1623 sbi->current_reserved_blocks + count); 1624 spin_unlock(&sbi->stat_lock); 1625 f2fs_i_blocks_write(inode, count, false, true); 1626 } 1627 1628 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1629 { 1630 atomic_inc(&sbi->nr_pages[count_type]); 1631 1632 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1633 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1634 return; 1635 1636 set_sbi_flag(sbi, SBI_IS_DIRTY); 1637 } 1638 1639 static inline void inode_inc_dirty_pages(struct inode *inode) 1640 { 1641 atomic_inc(&F2FS_I(inode)->dirty_pages); 1642 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1643 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1644 if (IS_NOQUOTA(inode)) 1645 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1646 } 1647 1648 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1649 { 1650 atomic_dec(&sbi->nr_pages[count_type]); 1651 } 1652 1653 static inline void inode_dec_dirty_pages(struct inode *inode) 1654 { 1655 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1656 !S_ISLNK(inode->i_mode)) 1657 return; 1658 1659 atomic_dec(&F2FS_I(inode)->dirty_pages); 1660 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1661 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1662 if (IS_NOQUOTA(inode)) 1663 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1664 } 1665 1666 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1667 { 1668 return atomic_read(&sbi->nr_pages[count_type]); 1669 } 1670 1671 static inline int get_dirty_pages(struct inode *inode) 1672 { 1673 return atomic_read(&F2FS_I(inode)->dirty_pages); 1674 } 1675 1676 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1677 { 1678 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1679 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1680 sbi->log_blocks_per_seg; 1681 1682 return segs / sbi->segs_per_sec; 1683 } 1684 1685 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1686 { 1687 return sbi->total_valid_block_count; 1688 } 1689 1690 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1691 { 1692 return sbi->discard_blks; 1693 } 1694 1695 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1696 { 1697 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1698 1699 /* return NAT or SIT bitmap */ 1700 if (flag == NAT_BITMAP) 1701 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1702 else if (flag == SIT_BITMAP) 1703 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1704 1705 return 0; 1706 } 1707 1708 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1709 { 1710 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1711 } 1712 1713 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1714 { 1715 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1716 int offset; 1717 1718 if (__cp_payload(sbi) > 0) { 1719 if (flag == NAT_BITMAP) 1720 return &ckpt->sit_nat_version_bitmap; 1721 else 1722 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1723 } else { 1724 offset = (flag == NAT_BITMAP) ? 1725 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1726 return &ckpt->sit_nat_version_bitmap + offset; 1727 } 1728 } 1729 1730 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1731 { 1732 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1733 1734 if (sbi->cur_cp_pack == 2) 1735 start_addr += sbi->blocks_per_seg; 1736 return start_addr; 1737 } 1738 1739 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1740 { 1741 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1742 1743 if (sbi->cur_cp_pack == 1) 1744 start_addr += sbi->blocks_per_seg; 1745 return start_addr; 1746 } 1747 1748 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1749 { 1750 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1751 } 1752 1753 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1754 { 1755 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1756 } 1757 1758 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1759 struct inode *inode, bool is_inode) 1760 { 1761 block_t valid_block_count; 1762 unsigned int valid_node_count; 1763 bool quota = inode && !is_inode; 1764 1765 if (quota) { 1766 int ret = dquot_reserve_block(inode, 1); 1767 if (ret) 1768 return ret; 1769 } 1770 1771 #ifdef CONFIG_F2FS_FAULT_INJECTION 1772 if (time_to_inject(sbi, FAULT_BLOCK)) { 1773 f2fs_show_injection_info(FAULT_BLOCK); 1774 goto enospc; 1775 } 1776 #endif 1777 1778 spin_lock(&sbi->stat_lock); 1779 1780 valid_block_count = sbi->total_valid_block_count + 1; 1781 if (unlikely(valid_block_count + sbi->current_reserved_blocks > 1782 sbi->user_block_count)) { 1783 spin_unlock(&sbi->stat_lock); 1784 goto enospc; 1785 } 1786 1787 valid_node_count = sbi->total_valid_node_count + 1; 1788 if (unlikely(valid_node_count > sbi->total_node_count)) { 1789 spin_unlock(&sbi->stat_lock); 1790 goto enospc; 1791 } 1792 1793 sbi->total_valid_node_count++; 1794 sbi->total_valid_block_count++; 1795 spin_unlock(&sbi->stat_lock); 1796 1797 if (inode) { 1798 if (is_inode) 1799 f2fs_mark_inode_dirty_sync(inode, true); 1800 else 1801 f2fs_i_blocks_write(inode, 1, true, true); 1802 } 1803 1804 percpu_counter_inc(&sbi->alloc_valid_block_count); 1805 return 0; 1806 1807 enospc: 1808 if (quota) 1809 dquot_release_reservation_block(inode, 1); 1810 return -ENOSPC; 1811 } 1812 1813 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1814 struct inode *inode, bool is_inode) 1815 { 1816 spin_lock(&sbi->stat_lock); 1817 1818 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1819 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1820 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1821 1822 sbi->total_valid_node_count--; 1823 sbi->total_valid_block_count--; 1824 if (sbi->reserved_blocks && 1825 sbi->current_reserved_blocks < sbi->reserved_blocks) 1826 sbi->current_reserved_blocks++; 1827 1828 spin_unlock(&sbi->stat_lock); 1829 1830 if (!is_inode) 1831 f2fs_i_blocks_write(inode, 1, false, true); 1832 } 1833 1834 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1835 { 1836 return sbi->total_valid_node_count; 1837 } 1838 1839 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1840 { 1841 percpu_counter_inc(&sbi->total_valid_inode_count); 1842 } 1843 1844 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1845 { 1846 percpu_counter_dec(&sbi->total_valid_inode_count); 1847 } 1848 1849 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1850 { 1851 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1852 } 1853 1854 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1855 pgoff_t index, bool for_write) 1856 { 1857 #ifdef CONFIG_F2FS_FAULT_INJECTION 1858 struct page *page = find_lock_page(mapping, index); 1859 1860 if (page) 1861 return page; 1862 1863 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1864 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1865 return NULL; 1866 } 1867 #endif 1868 if (!for_write) 1869 return grab_cache_page(mapping, index); 1870 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1871 } 1872 1873 static inline struct page *f2fs_pagecache_get_page( 1874 struct address_space *mapping, pgoff_t index, 1875 int fgp_flags, gfp_t gfp_mask) 1876 { 1877 #ifdef CONFIG_F2FS_FAULT_INJECTION 1878 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 1879 f2fs_show_injection_info(FAULT_PAGE_GET); 1880 return NULL; 1881 } 1882 #endif 1883 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 1884 } 1885 1886 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1887 { 1888 char *src_kaddr = kmap(src); 1889 char *dst_kaddr = kmap(dst); 1890 1891 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1892 kunmap(dst); 1893 kunmap(src); 1894 } 1895 1896 static inline void f2fs_put_page(struct page *page, int unlock) 1897 { 1898 if (!page) 1899 return; 1900 1901 if (unlock) { 1902 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1903 unlock_page(page); 1904 } 1905 put_page(page); 1906 } 1907 1908 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1909 { 1910 if (dn->node_page) 1911 f2fs_put_page(dn->node_page, 1); 1912 if (dn->inode_page && dn->node_page != dn->inode_page) 1913 f2fs_put_page(dn->inode_page, 0); 1914 dn->node_page = NULL; 1915 dn->inode_page = NULL; 1916 } 1917 1918 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1919 size_t size) 1920 { 1921 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1922 } 1923 1924 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1925 gfp_t flags) 1926 { 1927 void *entry; 1928 1929 entry = kmem_cache_alloc(cachep, flags); 1930 if (!entry) 1931 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1932 return entry; 1933 } 1934 1935 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 1936 int npages, bool no_fail) 1937 { 1938 struct bio *bio; 1939 1940 if (no_fail) { 1941 /* No failure on bio allocation */ 1942 bio = bio_alloc(GFP_NOIO, npages); 1943 if (!bio) 1944 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1945 return bio; 1946 } 1947 #ifdef CONFIG_F2FS_FAULT_INJECTION 1948 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 1949 f2fs_show_injection_info(FAULT_ALLOC_BIO); 1950 return NULL; 1951 } 1952 #endif 1953 return bio_alloc(GFP_KERNEL, npages); 1954 } 1955 1956 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1957 unsigned long index, void *item) 1958 { 1959 while (radix_tree_insert(root, index, item)) 1960 cond_resched(); 1961 } 1962 1963 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1964 1965 static inline bool IS_INODE(struct page *page) 1966 { 1967 struct f2fs_node *p = F2FS_NODE(page); 1968 1969 return RAW_IS_INODE(p); 1970 } 1971 1972 static inline int offset_in_addr(struct f2fs_inode *i) 1973 { 1974 return (i->i_inline & F2FS_EXTRA_ATTR) ? 1975 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 1976 } 1977 1978 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1979 { 1980 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1981 } 1982 1983 static inline int f2fs_has_extra_attr(struct inode *inode); 1984 static inline block_t datablock_addr(struct inode *inode, 1985 struct page *node_page, unsigned int offset) 1986 { 1987 struct f2fs_node *raw_node; 1988 __le32 *addr_array; 1989 int base = 0; 1990 bool is_inode = IS_INODE(node_page); 1991 1992 raw_node = F2FS_NODE(node_page); 1993 1994 /* from GC path only */ 1995 if (!inode) { 1996 if (is_inode) 1997 base = offset_in_addr(&raw_node->i); 1998 } else if (f2fs_has_extra_attr(inode) && is_inode) { 1999 base = get_extra_isize(inode); 2000 } 2001 2002 addr_array = blkaddr_in_node(raw_node); 2003 return le32_to_cpu(addr_array[base + offset]); 2004 } 2005 2006 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2007 { 2008 int mask; 2009 2010 addr += (nr >> 3); 2011 mask = 1 << (7 - (nr & 0x07)); 2012 return mask & *addr; 2013 } 2014 2015 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2016 { 2017 int mask; 2018 2019 addr += (nr >> 3); 2020 mask = 1 << (7 - (nr & 0x07)); 2021 *addr |= mask; 2022 } 2023 2024 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2025 { 2026 int mask; 2027 2028 addr += (nr >> 3); 2029 mask = 1 << (7 - (nr & 0x07)); 2030 *addr &= ~mask; 2031 } 2032 2033 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2034 { 2035 int mask; 2036 int ret; 2037 2038 addr += (nr >> 3); 2039 mask = 1 << (7 - (nr & 0x07)); 2040 ret = mask & *addr; 2041 *addr |= mask; 2042 return ret; 2043 } 2044 2045 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2046 { 2047 int mask; 2048 int ret; 2049 2050 addr += (nr >> 3); 2051 mask = 1 << (7 - (nr & 0x07)); 2052 ret = mask & *addr; 2053 *addr &= ~mask; 2054 return ret; 2055 } 2056 2057 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2058 { 2059 int mask; 2060 2061 addr += (nr >> 3); 2062 mask = 1 << (7 - (nr & 0x07)); 2063 *addr ^= mask; 2064 } 2065 2066 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 2067 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 2068 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL) 2069 2070 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2071 { 2072 if (S_ISDIR(mode)) 2073 return flags; 2074 else if (S_ISREG(mode)) 2075 return flags & F2FS_REG_FLMASK; 2076 else 2077 return flags & F2FS_OTHER_FLMASK; 2078 } 2079 2080 /* used for f2fs_inode_info->flags */ 2081 enum { 2082 FI_NEW_INODE, /* indicate newly allocated inode */ 2083 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2084 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2085 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2086 FI_INC_LINK, /* need to increment i_nlink */ 2087 FI_ACL_MODE, /* indicate acl mode */ 2088 FI_NO_ALLOC, /* should not allocate any blocks */ 2089 FI_FREE_NID, /* free allocated nide */ 2090 FI_NO_EXTENT, /* not to use the extent cache */ 2091 FI_INLINE_XATTR, /* used for inline xattr */ 2092 FI_INLINE_DATA, /* used for inline data*/ 2093 FI_INLINE_DENTRY, /* used for inline dentry */ 2094 FI_APPEND_WRITE, /* inode has appended data */ 2095 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2096 FI_NEED_IPU, /* used for ipu per file */ 2097 FI_ATOMIC_FILE, /* indicate atomic file */ 2098 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2099 FI_VOLATILE_FILE, /* indicate volatile file */ 2100 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2101 FI_DROP_CACHE, /* drop dirty page cache */ 2102 FI_DATA_EXIST, /* indicate data exists */ 2103 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2104 FI_DO_DEFRAG, /* indicate defragment is running */ 2105 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2106 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2107 FI_HOT_DATA, /* indicate file is hot */ 2108 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2109 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2110 }; 2111 2112 static inline void __mark_inode_dirty_flag(struct inode *inode, 2113 int flag, bool set) 2114 { 2115 switch (flag) { 2116 case FI_INLINE_XATTR: 2117 case FI_INLINE_DATA: 2118 case FI_INLINE_DENTRY: 2119 if (set) 2120 return; 2121 case FI_DATA_EXIST: 2122 case FI_INLINE_DOTS: 2123 f2fs_mark_inode_dirty_sync(inode, true); 2124 } 2125 } 2126 2127 static inline void set_inode_flag(struct inode *inode, int flag) 2128 { 2129 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2130 set_bit(flag, &F2FS_I(inode)->flags); 2131 __mark_inode_dirty_flag(inode, flag, true); 2132 } 2133 2134 static inline int is_inode_flag_set(struct inode *inode, int flag) 2135 { 2136 return test_bit(flag, &F2FS_I(inode)->flags); 2137 } 2138 2139 static inline void clear_inode_flag(struct inode *inode, int flag) 2140 { 2141 if (test_bit(flag, &F2FS_I(inode)->flags)) 2142 clear_bit(flag, &F2FS_I(inode)->flags); 2143 __mark_inode_dirty_flag(inode, flag, false); 2144 } 2145 2146 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2147 { 2148 F2FS_I(inode)->i_acl_mode = mode; 2149 set_inode_flag(inode, FI_ACL_MODE); 2150 f2fs_mark_inode_dirty_sync(inode, false); 2151 } 2152 2153 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2154 { 2155 if (inc) 2156 inc_nlink(inode); 2157 else 2158 drop_nlink(inode); 2159 f2fs_mark_inode_dirty_sync(inode, true); 2160 } 2161 2162 static inline void f2fs_i_blocks_write(struct inode *inode, 2163 block_t diff, bool add, bool claim) 2164 { 2165 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2166 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2167 2168 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2169 if (add) { 2170 if (claim) 2171 dquot_claim_block(inode, diff); 2172 else 2173 dquot_alloc_block_nofail(inode, diff); 2174 } else { 2175 dquot_free_block(inode, diff); 2176 } 2177 2178 f2fs_mark_inode_dirty_sync(inode, true); 2179 if (clean || recover) 2180 set_inode_flag(inode, FI_AUTO_RECOVER); 2181 } 2182 2183 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2184 { 2185 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2186 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2187 2188 if (i_size_read(inode) == i_size) 2189 return; 2190 2191 i_size_write(inode, i_size); 2192 f2fs_mark_inode_dirty_sync(inode, true); 2193 if (clean || recover) 2194 set_inode_flag(inode, FI_AUTO_RECOVER); 2195 } 2196 2197 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2198 { 2199 F2FS_I(inode)->i_current_depth = depth; 2200 f2fs_mark_inode_dirty_sync(inode, true); 2201 } 2202 2203 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2204 { 2205 F2FS_I(inode)->i_xattr_nid = xnid; 2206 f2fs_mark_inode_dirty_sync(inode, true); 2207 } 2208 2209 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2210 { 2211 F2FS_I(inode)->i_pino = pino; 2212 f2fs_mark_inode_dirty_sync(inode, true); 2213 } 2214 2215 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2216 { 2217 struct f2fs_inode_info *fi = F2FS_I(inode); 2218 2219 if (ri->i_inline & F2FS_INLINE_XATTR) 2220 set_bit(FI_INLINE_XATTR, &fi->flags); 2221 if (ri->i_inline & F2FS_INLINE_DATA) 2222 set_bit(FI_INLINE_DATA, &fi->flags); 2223 if (ri->i_inline & F2FS_INLINE_DENTRY) 2224 set_bit(FI_INLINE_DENTRY, &fi->flags); 2225 if (ri->i_inline & F2FS_DATA_EXIST) 2226 set_bit(FI_DATA_EXIST, &fi->flags); 2227 if (ri->i_inline & F2FS_INLINE_DOTS) 2228 set_bit(FI_INLINE_DOTS, &fi->flags); 2229 if (ri->i_inline & F2FS_EXTRA_ATTR) 2230 set_bit(FI_EXTRA_ATTR, &fi->flags); 2231 } 2232 2233 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2234 { 2235 ri->i_inline = 0; 2236 2237 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2238 ri->i_inline |= F2FS_INLINE_XATTR; 2239 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2240 ri->i_inline |= F2FS_INLINE_DATA; 2241 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2242 ri->i_inline |= F2FS_INLINE_DENTRY; 2243 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2244 ri->i_inline |= F2FS_DATA_EXIST; 2245 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2246 ri->i_inline |= F2FS_INLINE_DOTS; 2247 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2248 ri->i_inline |= F2FS_EXTRA_ATTR; 2249 } 2250 2251 static inline int f2fs_has_extra_attr(struct inode *inode) 2252 { 2253 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2254 } 2255 2256 static inline int f2fs_has_inline_xattr(struct inode *inode) 2257 { 2258 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2259 } 2260 2261 static inline unsigned int addrs_per_inode(struct inode *inode) 2262 { 2263 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode); 2264 } 2265 2266 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2267 { 2268 struct f2fs_inode *ri = F2FS_INODE(page); 2269 2270 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2271 F2FS_INLINE_XATTR_ADDRS(inode)]); 2272 } 2273 2274 static inline int inline_xattr_size(struct inode *inode) 2275 { 2276 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2277 } 2278 2279 static inline int f2fs_has_inline_data(struct inode *inode) 2280 { 2281 return is_inode_flag_set(inode, FI_INLINE_DATA); 2282 } 2283 2284 static inline int f2fs_exist_data(struct inode *inode) 2285 { 2286 return is_inode_flag_set(inode, FI_DATA_EXIST); 2287 } 2288 2289 static inline int f2fs_has_inline_dots(struct inode *inode) 2290 { 2291 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2292 } 2293 2294 static inline bool f2fs_is_atomic_file(struct inode *inode) 2295 { 2296 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2297 } 2298 2299 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2300 { 2301 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2302 } 2303 2304 static inline bool f2fs_is_volatile_file(struct inode *inode) 2305 { 2306 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2307 } 2308 2309 static inline bool f2fs_is_first_block_written(struct inode *inode) 2310 { 2311 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2312 } 2313 2314 static inline bool f2fs_is_drop_cache(struct inode *inode) 2315 { 2316 return is_inode_flag_set(inode, FI_DROP_CACHE); 2317 } 2318 2319 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2320 { 2321 struct f2fs_inode *ri = F2FS_INODE(page); 2322 int extra_size = get_extra_isize(inode); 2323 2324 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2325 } 2326 2327 static inline int f2fs_has_inline_dentry(struct inode *inode) 2328 { 2329 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2330 } 2331 2332 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 2333 { 2334 if (!f2fs_has_inline_dentry(dir)) 2335 kunmap(page); 2336 } 2337 2338 static inline int is_file(struct inode *inode, int type) 2339 { 2340 return F2FS_I(inode)->i_advise & type; 2341 } 2342 2343 static inline void set_file(struct inode *inode, int type) 2344 { 2345 F2FS_I(inode)->i_advise |= type; 2346 f2fs_mark_inode_dirty_sync(inode, true); 2347 } 2348 2349 static inline void clear_file(struct inode *inode, int type) 2350 { 2351 F2FS_I(inode)->i_advise &= ~type; 2352 f2fs_mark_inode_dirty_sync(inode, true); 2353 } 2354 2355 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2356 { 2357 bool ret; 2358 2359 if (dsync) { 2360 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2361 2362 spin_lock(&sbi->inode_lock[DIRTY_META]); 2363 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2364 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2365 return ret; 2366 } 2367 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2368 file_keep_isize(inode) || 2369 i_size_read(inode) & PAGE_MASK) 2370 return false; 2371 2372 down_read(&F2FS_I(inode)->i_sem); 2373 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2374 up_read(&F2FS_I(inode)->i_sem); 2375 2376 return ret; 2377 } 2378 2379 static inline int f2fs_readonly(struct super_block *sb) 2380 { 2381 return sb->s_flags & SB_RDONLY; 2382 } 2383 2384 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2385 { 2386 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2387 } 2388 2389 static inline bool is_dot_dotdot(const struct qstr *str) 2390 { 2391 if (str->len == 1 && str->name[0] == '.') 2392 return true; 2393 2394 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2395 return true; 2396 2397 return false; 2398 } 2399 2400 static inline bool f2fs_may_extent_tree(struct inode *inode) 2401 { 2402 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2403 is_inode_flag_set(inode, FI_NO_EXTENT)) 2404 return false; 2405 2406 return S_ISREG(inode->i_mode); 2407 } 2408 2409 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2410 size_t size, gfp_t flags) 2411 { 2412 #ifdef CONFIG_F2FS_FAULT_INJECTION 2413 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2414 f2fs_show_injection_info(FAULT_KMALLOC); 2415 return NULL; 2416 } 2417 #endif 2418 return kmalloc(size, flags); 2419 } 2420 2421 static inline int get_extra_isize(struct inode *inode) 2422 { 2423 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2424 } 2425 2426 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb); 2427 static inline int get_inline_xattr_addrs(struct inode *inode) 2428 { 2429 return F2FS_I(inode)->i_inline_xattr_size; 2430 } 2431 2432 #define get_inode_mode(i) \ 2433 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2434 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2435 2436 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2437 (offsetof(struct f2fs_inode, i_extra_end) - \ 2438 offsetof(struct f2fs_inode, i_extra_isize)) \ 2439 2440 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2441 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2442 ((offsetof(typeof(*f2fs_inode), field) + \ 2443 sizeof((f2fs_inode)->field)) \ 2444 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2445 2446 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2447 { 2448 int i; 2449 2450 spin_lock(&sbi->iostat_lock); 2451 for (i = 0; i < NR_IO_TYPE; i++) 2452 sbi->write_iostat[i] = 0; 2453 spin_unlock(&sbi->iostat_lock); 2454 } 2455 2456 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2457 enum iostat_type type, unsigned long long io_bytes) 2458 { 2459 if (!sbi->iostat_enable) 2460 return; 2461 spin_lock(&sbi->iostat_lock); 2462 sbi->write_iostat[type] += io_bytes; 2463 2464 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2465 sbi->write_iostat[APP_BUFFERED_IO] = 2466 sbi->write_iostat[APP_WRITE_IO] - 2467 sbi->write_iostat[APP_DIRECT_IO]; 2468 spin_unlock(&sbi->iostat_lock); 2469 } 2470 2471 /* 2472 * file.c 2473 */ 2474 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2475 void truncate_data_blocks(struct dnode_of_data *dn); 2476 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2477 int f2fs_truncate(struct inode *inode); 2478 int f2fs_getattr(const struct path *path, struct kstat *stat, 2479 u32 request_mask, unsigned int flags); 2480 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2481 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2482 int truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2483 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2484 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2485 2486 /* 2487 * inode.c 2488 */ 2489 void f2fs_set_inode_flags(struct inode *inode); 2490 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2491 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2492 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2493 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2494 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2495 int update_inode(struct inode *inode, struct page *node_page); 2496 int update_inode_page(struct inode *inode); 2497 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2498 void f2fs_evict_inode(struct inode *inode); 2499 void handle_failed_inode(struct inode *inode); 2500 2501 /* 2502 * namei.c 2503 */ 2504 struct dentry *f2fs_get_parent(struct dentry *child); 2505 2506 /* 2507 * dir.c 2508 */ 2509 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2510 unsigned char get_de_type(struct f2fs_dir_entry *de); 2511 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2512 f2fs_hash_t namehash, int *max_slots, 2513 struct f2fs_dentry_ptr *d); 2514 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2515 unsigned int start_pos, struct fscrypt_str *fstr); 2516 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2517 struct f2fs_dentry_ptr *d); 2518 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2519 const struct qstr *new_name, 2520 const struct qstr *orig_name, struct page *dpage); 2521 void update_parent_metadata(struct inode *dir, struct inode *inode, 2522 unsigned int current_depth); 2523 int room_for_filename(const void *bitmap, int slots, int max_slots); 2524 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2525 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2526 struct fscrypt_name *fname, struct page **res_page); 2527 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2528 const struct qstr *child, struct page **res_page); 2529 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2530 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2531 struct page **page); 2532 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2533 struct page *page, struct inode *inode); 2534 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2535 const struct qstr *name, f2fs_hash_t name_hash, 2536 unsigned int bit_pos); 2537 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2538 const struct qstr *orig_name, 2539 struct inode *inode, nid_t ino, umode_t mode); 2540 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2541 struct inode *inode, nid_t ino, umode_t mode); 2542 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2543 struct inode *inode, nid_t ino, umode_t mode); 2544 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2545 struct inode *dir, struct inode *inode); 2546 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2547 bool f2fs_empty_dir(struct inode *dir); 2548 2549 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2550 { 2551 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2552 inode, inode->i_ino, inode->i_mode); 2553 } 2554 2555 /* 2556 * super.c 2557 */ 2558 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2559 void f2fs_inode_synced(struct inode *inode); 2560 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2561 void f2fs_quota_off_umount(struct super_block *sb); 2562 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2563 int f2fs_sync_fs(struct super_block *sb, int sync); 2564 extern __printf(3, 4) 2565 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2566 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2567 2568 /* 2569 * hash.c 2570 */ 2571 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2572 struct fscrypt_name *fname); 2573 2574 /* 2575 * node.c 2576 */ 2577 struct dnode_of_data; 2578 struct node_info; 2579 2580 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2581 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2582 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2583 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2584 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2585 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2586 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2587 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2588 int truncate_xattr_node(struct inode *inode); 2589 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2590 int remove_inode_page(struct inode *inode); 2591 struct page *new_inode_page(struct inode *inode); 2592 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2593 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2594 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2595 struct page *get_node_page_ra(struct page *parent, int start); 2596 void move_node_page(struct page *node_page, int gc_type); 2597 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2598 struct writeback_control *wbc, bool atomic); 2599 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 2600 bool do_balance, enum iostat_type io_type); 2601 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2602 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2603 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2604 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2605 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2606 void recover_inline_xattr(struct inode *inode, struct page *page); 2607 int recover_xattr_data(struct inode *inode, struct page *page, 2608 block_t blkaddr); 2609 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2610 int restore_node_summary(struct f2fs_sb_info *sbi, 2611 unsigned int segno, struct f2fs_summary_block *sum); 2612 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2613 int build_node_manager(struct f2fs_sb_info *sbi); 2614 void destroy_node_manager(struct f2fs_sb_info *sbi); 2615 int __init create_node_manager_caches(void); 2616 void destroy_node_manager_caches(void); 2617 2618 /* 2619 * segment.c 2620 */ 2621 bool need_SSR(struct f2fs_sb_info *sbi); 2622 void register_inmem_page(struct inode *inode, struct page *page); 2623 void drop_inmem_pages_all(struct f2fs_sb_info *sbi); 2624 void drop_inmem_pages(struct inode *inode); 2625 void drop_inmem_page(struct inode *inode, struct page *page); 2626 int commit_inmem_pages(struct inode *inode); 2627 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2628 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2629 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2630 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2631 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2632 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2633 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2634 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2635 void init_discard_policy(struct discard_policy *dpolicy, int discard_type, 2636 unsigned int granularity); 2637 void stop_discard_thread(struct f2fs_sb_info *sbi); 2638 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2639 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2640 void release_discard_addrs(struct f2fs_sb_info *sbi); 2641 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2642 void allocate_new_segments(struct f2fs_sb_info *sbi); 2643 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2644 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2645 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2646 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2647 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2648 enum iostat_type io_type); 2649 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2650 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2651 int rewrite_data_page(struct f2fs_io_info *fio); 2652 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2653 block_t old_blkaddr, block_t new_blkaddr, 2654 bool recover_curseg, bool recover_newaddr); 2655 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2656 block_t old_addr, block_t new_addr, 2657 unsigned char version, bool recover_curseg, 2658 bool recover_newaddr); 2659 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2660 block_t old_blkaddr, block_t *new_blkaddr, 2661 struct f2fs_summary *sum, int type, 2662 struct f2fs_io_info *fio, bool add_list); 2663 void f2fs_wait_on_page_writeback(struct page *page, 2664 enum page_type type, bool ordered); 2665 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2666 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2667 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2668 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2669 unsigned int val, int alloc); 2670 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2671 int build_segment_manager(struct f2fs_sb_info *sbi); 2672 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2673 int __init create_segment_manager_caches(void); 2674 void destroy_segment_manager_caches(void); 2675 2676 /* 2677 * checkpoint.c 2678 */ 2679 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2680 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2681 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2682 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2683 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2684 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2685 int type, bool sync); 2686 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2687 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2688 long nr_to_write, enum iostat_type io_type); 2689 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2690 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2691 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2692 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2693 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2694 unsigned int devidx, int type); 2695 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2696 unsigned int devidx, int type); 2697 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2698 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2699 void release_orphan_inode(struct f2fs_sb_info *sbi); 2700 void add_orphan_inode(struct inode *inode); 2701 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2702 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2703 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2704 void update_dirty_page(struct inode *inode, struct page *page); 2705 void remove_dirty_inode(struct inode *inode); 2706 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2707 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2708 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2709 int __init create_checkpoint_caches(void); 2710 void destroy_checkpoint_caches(void); 2711 2712 /* 2713 * data.c 2714 */ 2715 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2716 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2717 struct inode *inode, nid_t ino, pgoff_t idx, 2718 enum page_type type); 2719 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2720 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2721 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2722 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2723 block_t blk_addr, struct bio *bio); 2724 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2725 void set_data_blkaddr(struct dnode_of_data *dn); 2726 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2727 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2728 int reserve_new_block(struct dnode_of_data *dn); 2729 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2730 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2731 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2732 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2733 int op_flags, bool for_write); 2734 struct page *find_data_page(struct inode *inode, pgoff_t index); 2735 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2736 bool for_write); 2737 struct page *get_new_data_page(struct inode *inode, 2738 struct page *ipage, pgoff_t index, bool new_i_size); 2739 int do_write_data_page(struct f2fs_io_info *fio); 2740 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2741 int create, int flag); 2742 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2743 u64 start, u64 len); 2744 void f2fs_set_page_dirty_nobuffers(struct page *page); 2745 int __f2fs_write_data_pages(struct address_space *mapping, 2746 struct writeback_control *wbc, 2747 enum iostat_type io_type); 2748 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2749 unsigned int length); 2750 int f2fs_release_page(struct page *page, gfp_t wait); 2751 #ifdef CONFIG_MIGRATION 2752 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2753 struct page *page, enum migrate_mode mode); 2754 #endif 2755 2756 /* 2757 * gc.c 2758 */ 2759 int start_gc_thread(struct f2fs_sb_info *sbi); 2760 void stop_gc_thread(struct f2fs_sb_info *sbi); 2761 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2762 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2763 unsigned int segno); 2764 void build_gc_manager(struct f2fs_sb_info *sbi); 2765 2766 /* 2767 * recovery.c 2768 */ 2769 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2770 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2771 2772 /* 2773 * debug.c 2774 */ 2775 #ifdef CONFIG_F2FS_STAT_FS 2776 struct f2fs_stat_info { 2777 struct list_head stat_list; 2778 struct f2fs_sb_info *sbi; 2779 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2780 int main_area_segs, main_area_sections, main_area_zones; 2781 unsigned long long hit_largest, hit_cached, hit_rbtree; 2782 unsigned long long hit_total, total_ext; 2783 int ext_tree, zombie_tree, ext_node; 2784 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 2785 int ndirty_data, ndirty_qdata; 2786 int inmem_pages; 2787 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 2788 int nats, dirty_nats, sits, dirty_sits; 2789 int free_nids, avail_nids, alloc_nids; 2790 int total_count, utilization; 2791 int bg_gc, nr_wb_cp_data, nr_wb_data; 2792 int nr_flushing, nr_flushed, flush_list_empty; 2793 int nr_discarding, nr_discarded; 2794 int nr_discard_cmd; 2795 unsigned int undiscard_blks; 2796 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2797 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2798 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2799 unsigned int bimodal, avg_vblocks; 2800 int util_free, util_valid, util_invalid; 2801 int rsvd_segs, overp_segs; 2802 int dirty_count, node_pages, meta_pages; 2803 int prefree_count, call_count, cp_count, bg_cp_count; 2804 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2805 int bg_node_segs, bg_data_segs; 2806 int tot_blks, data_blks, node_blks; 2807 int bg_data_blks, bg_node_blks; 2808 int curseg[NR_CURSEG_TYPE]; 2809 int cursec[NR_CURSEG_TYPE]; 2810 int curzone[NR_CURSEG_TYPE]; 2811 2812 unsigned int segment_count[2]; 2813 unsigned int block_count[2]; 2814 unsigned int inplace_count; 2815 unsigned long long base_mem, cache_mem, page_mem; 2816 }; 2817 2818 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2819 { 2820 return (struct f2fs_stat_info *)sbi->stat_info; 2821 } 2822 2823 #define stat_inc_cp_count(si) ((si)->cp_count++) 2824 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2825 #define stat_inc_call_count(si) ((si)->call_count++) 2826 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2827 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2828 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2829 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2830 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2831 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2832 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2833 #define stat_inc_inline_xattr(inode) \ 2834 do { \ 2835 if (f2fs_has_inline_xattr(inode)) \ 2836 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2837 } while (0) 2838 #define stat_dec_inline_xattr(inode) \ 2839 do { \ 2840 if (f2fs_has_inline_xattr(inode)) \ 2841 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2842 } while (0) 2843 #define stat_inc_inline_inode(inode) \ 2844 do { \ 2845 if (f2fs_has_inline_data(inode)) \ 2846 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2847 } while (0) 2848 #define stat_dec_inline_inode(inode) \ 2849 do { \ 2850 if (f2fs_has_inline_data(inode)) \ 2851 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2852 } while (0) 2853 #define stat_inc_inline_dir(inode) \ 2854 do { \ 2855 if (f2fs_has_inline_dentry(inode)) \ 2856 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2857 } while (0) 2858 #define stat_dec_inline_dir(inode) \ 2859 do { \ 2860 if (f2fs_has_inline_dentry(inode)) \ 2861 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2862 } while (0) 2863 #define stat_inc_seg_type(sbi, curseg) \ 2864 ((sbi)->segment_count[(curseg)->alloc_type]++) 2865 #define stat_inc_block_count(sbi, curseg) \ 2866 ((sbi)->block_count[(curseg)->alloc_type]++) 2867 #define stat_inc_inplace_blocks(sbi) \ 2868 (atomic_inc(&(sbi)->inplace_count)) 2869 #define stat_inc_atomic_write(inode) \ 2870 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2871 #define stat_dec_atomic_write(inode) \ 2872 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2873 #define stat_update_max_atomic_write(inode) \ 2874 do { \ 2875 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2876 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2877 if (cur > max) \ 2878 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2879 } while (0) 2880 #define stat_inc_volatile_write(inode) \ 2881 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 2882 #define stat_dec_volatile_write(inode) \ 2883 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 2884 #define stat_update_max_volatile_write(inode) \ 2885 do { \ 2886 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 2887 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 2888 if (cur > max) \ 2889 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 2890 } while (0) 2891 #define stat_inc_seg_count(sbi, type, gc_type) \ 2892 do { \ 2893 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2894 si->tot_segs++; \ 2895 if ((type) == SUM_TYPE_DATA) { \ 2896 si->data_segs++; \ 2897 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2898 } else { \ 2899 si->node_segs++; \ 2900 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2901 } \ 2902 } while (0) 2903 2904 #define stat_inc_tot_blk_count(si, blks) \ 2905 ((si)->tot_blks += (blks)) 2906 2907 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2908 do { \ 2909 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2910 stat_inc_tot_blk_count(si, blks); \ 2911 si->data_blks += (blks); \ 2912 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2913 } while (0) 2914 2915 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2916 do { \ 2917 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2918 stat_inc_tot_blk_count(si, blks); \ 2919 si->node_blks += (blks); \ 2920 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2921 } while (0) 2922 2923 int f2fs_build_stats(struct f2fs_sb_info *sbi); 2924 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 2925 int __init f2fs_create_root_stats(void); 2926 void f2fs_destroy_root_stats(void); 2927 #else 2928 #define stat_inc_cp_count(si) do { } while (0) 2929 #define stat_inc_bg_cp_count(si) do { } while (0) 2930 #define stat_inc_call_count(si) do { } while (0) 2931 #define stat_inc_bggc_count(si) do { } while (0) 2932 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 2933 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 2934 #define stat_inc_total_hit(sb) do { } while (0) 2935 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 2936 #define stat_inc_largest_node_hit(sbi) do { } while (0) 2937 #define stat_inc_cached_node_hit(sbi) do { } while (0) 2938 #define stat_inc_inline_xattr(inode) do { } while (0) 2939 #define stat_dec_inline_xattr(inode) do { } while (0) 2940 #define stat_inc_inline_inode(inode) do { } while (0) 2941 #define stat_dec_inline_inode(inode) do { } while (0) 2942 #define stat_inc_inline_dir(inode) do { } while (0) 2943 #define stat_dec_inline_dir(inode) do { } while (0) 2944 #define stat_inc_atomic_write(inode) do { } while (0) 2945 #define stat_dec_atomic_write(inode) do { } while (0) 2946 #define stat_update_max_atomic_write(inode) do { } while (0) 2947 #define stat_inc_volatile_write(inode) do { } while (0) 2948 #define stat_dec_volatile_write(inode) do { } while (0) 2949 #define stat_update_max_volatile_write(inode) do { } while (0) 2950 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 2951 #define stat_inc_block_count(sbi, curseg) do { } while (0) 2952 #define stat_inc_inplace_blocks(sbi) do { } while (0) 2953 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 2954 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 2955 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 2956 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 2957 2958 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2959 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2960 static inline int __init f2fs_create_root_stats(void) { return 0; } 2961 static inline void f2fs_destroy_root_stats(void) { } 2962 #endif 2963 2964 extern const struct file_operations f2fs_dir_operations; 2965 extern const struct file_operations f2fs_file_operations; 2966 extern const struct inode_operations f2fs_file_inode_operations; 2967 extern const struct address_space_operations f2fs_dblock_aops; 2968 extern const struct address_space_operations f2fs_node_aops; 2969 extern const struct address_space_operations f2fs_meta_aops; 2970 extern const struct inode_operations f2fs_dir_inode_operations; 2971 extern const struct inode_operations f2fs_symlink_inode_operations; 2972 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2973 extern const struct inode_operations f2fs_special_inode_operations; 2974 extern struct kmem_cache *inode_entry_slab; 2975 2976 /* 2977 * inline.c 2978 */ 2979 bool f2fs_may_inline_data(struct inode *inode); 2980 bool f2fs_may_inline_dentry(struct inode *inode); 2981 void read_inline_data(struct page *page, struct page *ipage); 2982 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 2983 int f2fs_read_inline_data(struct inode *inode, struct page *page); 2984 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 2985 int f2fs_convert_inline_inode(struct inode *inode); 2986 int f2fs_write_inline_data(struct inode *inode, struct page *page); 2987 bool recover_inline_data(struct inode *inode, struct page *npage); 2988 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 2989 struct fscrypt_name *fname, struct page **res_page); 2990 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 2991 struct page *ipage); 2992 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 2993 const struct qstr *orig_name, 2994 struct inode *inode, nid_t ino, umode_t mode); 2995 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 2996 struct inode *dir, struct inode *inode); 2997 bool f2fs_empty_inline_dir(struct inode *dir); 2998 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 2999 struct fscrypt_str *fstr); 3000 int f2fs_inline_data_fiemap(struct inode *inode, 3001 struct fiemap_extent_info *fieinfo, 3002 __u64 start, __u64 len); 3003 3004 /* 3005 * shrinker.c 3006 */ 3007 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3008 struct shrink_control *sc); 3009 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3010 struct shrink_control *sc); 3011 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3012 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3013 3014 /* 3015 * extent_cache.c 3016 */ 3017 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 3018 struct rb_entry *cached_re, unsigned int ofs); 3019 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3020 struct rb_root *root, struct rb_node **parent, 3021 unsigned int ofs); 3022 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 3023 struct rb_entry *cached_re, unsigned int ofs, 3024 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3025 struct rb_node ***insert_p, struct rb_node **insert_parent, 3026 bool force); 3027 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3028 struct rb_root *root); 3029 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3030 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3031 void f2fs_drop_extent_tree(struct inode *inode); 3032 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3033 void f2fs_destroy_extent_tree(struct inode *inode); 3034 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3035 struct extent_info *ei); 3036 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3037 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3038 pgoff_t fofs, block_t blkaddr, unsigned int len); 3039 void init_extent_cache_info(struct f2fs_sb_info *sbi); 3040 int __init create_extent_cache(void); 3041 void destroy_extent_cache(void); 3042 3043 /* 3044 * sysfs.c 3045 */ 3046 int __init f2fs_init_sysfs(void); 3047 void f2fs_exit_sysfs(void); 3048 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3049 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3050 3051 /* 3052 * crypto support 3053 */ 3054 static inline bool f2fs_encrypted_inode(struct inode *inode) 3055 { 3056 return file_is_encrypt(inode); 3057 } 3058 3059 static inline bool f2fs_encrypted_file(struct inode *inode) 3060 { 3061 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3062 } 3063 3064 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3065 { 3066 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3067 file_set_encrypt(inode); 3068 inode->i_flags |= S_ENCRYPTED; 3069 #endif 3070 } 3071 3072 static inline bool f2fs_bio_encrypted(struct bio *bio) 3073 { 3074 return bio->bi_private != NULL; 3075 } 3076 3077 static inline int f2fs_sb_has_crypto(struct super_block *sb) 3078 { 3079 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 3080 } 3081 3082 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 3083 { 3084 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 3085 } 3086 3087 static inline int f2fs_sb_has_extra_attr(struct super_block *sb) 3088 { 3089 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR); 3090 } 3091 3092 static inline int f2fs_sb_has_project_quota(struct super_block *sb) 3093 { 3094 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA); 3095 } 3096 3097 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb) 3098 { 3099 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM); 3100 } 3101 3102 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb) 3103 { 3104 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR); 3105 } 3106 3107 static inline int f2fs_sb_has_quota_ino(struct super_block *sb) 3108 { 3109 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO); 3110 } 3111 3112 #ifdef CONFIG_BLK_DEV_ZONED 3113 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3114 struct block_device *bdev, block_t blkaddr) 3115 { 3116 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3117 int i; 3118 3119 for (i = 0; i < sbi->s_ndevs; i++) 3120 if (FDEV(i).bdev == bdev) 3121 return FDEV(i).blkz_type[zno]; 3122 return -EINVAL; 3123 } 3124 #endif 3125 3126 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 3127 { 3128 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3129 3130 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 3131 } 3132 3133 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3134 { 3135 clear_opt(sbi, ADAPTIVE); 3136 clear_opt(sbi, LFS); 3137 3138 switch (mt) { 3139 case F2FS_MOUNT_ADAPTIVE: 3140 set_opt(sbi, ADAPTIVE); 3141 break; 3142 case F2FS_MOUNT_LFS: 3143 set_opt(sbi, LFS); 3144 break; 3145 } 3146 } 3147 3148 static inline bool f2fs_may_encrypt(struct inode *inode) 3149 { 3150 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3151 umode_t mode = inode->i_mode; 3152 3153 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3154 #else 3155 return 0; 3156 #endif 3157 } 3158 3159 #endif 3160