1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 23 #ifdef CONFIG_F2FS_CHECK_FS 24 #define f2fs_bug_on(condition) BUG_ON(condition) 25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y) 26 #else 27 #define f2fs_bug_on(condition) 28 #define f2fs_down_write(x, y) down_write(x) 29 #endif 30 31 /* 32 * For mount options 33 */ 34 #define F2FS_MOUNT_BG_GC 0x00000001 35 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 36 #define F2FS_MOUNT_DISCARD 0x00000004 37 #define F2FS_MOUNT_NOHEAP 0x00000008 38 #define F2FS_MOUNT_XATTR_USER 0x00000010 39 #define F2FS_MOUNT_POSIX_ACL 0x00000020 40 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 41 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 42 #define F2FS_MOUNT_INLINE_DATA 0x00000100 43 44 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 45 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 46 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 47 48 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 49 typecheck(unsigned long long, b) && \ 50 ((long long)((a) - (b)) > 0)) 51 52 typedef u32 block_t; /* 53 * should not change u32, since it is the on-disk block 54 * address format, __le32. 55 */ 56 typedef u32 nid_t; 57 58 struct f2fs_mount_info { 59 unsigned int opt; 60 }; 61 62 #define CRCPOLY_LE 0xedb88320 63 64 static inline __u32 f2fs_crc32(void *buf, size_t len) 65 { 66 unsigned char *p = (unsigned char *)buf; 67 __u32 crc = F2FS_SUPER_MAGIC; 68 int i; 69 70 while (len--) { 71 crc ^= *p++; 72 for (i = 0; i < 8; i++) 73 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 74 } 75 return crc; 76 } 77 78 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size) 79 { 80 return f2fs_crc32(buf, buf_size) == blk_crc; 81 } 82 83 /* 84 * For checkpoint manager 85 */ 86 enum { 87 NAT_BITMAP, 88 SIT_BITMAP 89 }; 90 91 /* for the list of orphan inodes */ 92 struct orphan_inode_entry { 93 struct list_head list; /* list head */ 94 nid_t ino; /* inode number */ 95 }; 96 97 /* for the list of directory inodes */ 98 struct dir_inode_entry { 99 struct list_head list; /* list head */ 100 struct inode *inode; /* vfs inode pointer */ 101 }; 102 103 /* for the list of blockaddresses to be discarded */ 104 struct discard_entry { 105 struct list_head list; /* list head */ 106 block_t blkaddr; /* block address to be discarded */ 107 int len; /* # of consecutive blocks of the discard */ 108 }; 109 110 /* for the list of fsync inodes, used only during recovery */ 111 struct fsync_inode_entry { 112 struct list_head list; /* list head */ 113 struct inode *inode; /* vfs inode pointer */ 114 block_t blkaddr; /* block address locating the last inode */ 115 }; 116 117 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) 118 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) 119 120 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) 121 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) 122 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) 123 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) 124 125 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) 126 { 127 int before = nats_in_cursum(rs); 128 rs->n_nats = cpu_to_le16(before + i); 129 return before; 130 } 131 132 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) 133 { 134 int before = sits_in_cursum(rs); 135 rs->n_sits = cpu_to_le16(before + i); 136 return before; 137 } 138 139 /* 140 * ioctl commands 141 */ 142 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 143 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 144 145 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 146 /* 147 * ioctl commands in 32 bit emulation 148 */ 149 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 150 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 151 #endif 152 153 /* 154 * For INODE and NODE manager 155 */ 156 /* 157 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 158 * as its node offset to distinguish from index node blocks. 159 * But some bits are used to mark the node block. 160 */ 161 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 162 >> OFFSET_BIT_SHIFT) 163 enum { 164 ALLOC_NODE, /* allocate a new node page if needed */ 165 LOOKUP_NODE, /* look up a node without readahead */ 166 LOOKUP_NODE_RA, /* 167 * look up a node with readahead called 168 * by get_data_block. 169 */ 170 }; 171 172 #define F2FS_LINK_MAX 32000 /* maximum link count per file */ 173 174 /* for in-memory extent cache entry */ 175 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */ 176 177 struct extent_info { 178 rwlock_t ext_lock; /* rwlock for consistency */ 179 unsigned int fofs; /* start offset in a file */ 180 u32 blk_addr; /* start block address of the extent */ 181 unsigned int len; /* length of the extent */ 182 }; 183 184 /* 185 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 186 */ 187 #define FADVISE_COLD_BIT 0x01 188 #define FADVISE_LOST_PINO_BIT 0x02 189 190 struct f2fs_inode_info { 191 struct inode vfs_inode; /* serve a vfs inode */ 192 unsigned long i_flags; /* keep an inode flags for ioctl */ 193 unsigned char i_advise; /* use to give file attribute hints */ 194 unsigned int i_current_depth; /* use only in directory structure */ 195 unsigned int i_pino; /* parent inode number */ 196 umode_t i_acl_mode; /* keep file acl mode temporarily */ 197 198 /* Use below internally in f2fs*/ 199 unsigned long flags; /* use to pass per-file flags */ 200 atomic_t dirty_dents; /* # of dirty dentry pages */ 201 f2fs_hash_t chash; /* hash value of given file name */ 202 unsigned int clevel; /* maximum level of given file name */ 203 nid_t i_xattr_nid; /* node id that contains xattrs */ 204 unsigned long long xattr_ver; /* cp version of xattr modification */ 205 struct extent_info ext; /* in-memory extent cache entry */ 206 }; 207 208 static inline void get_extent_info(struct extent_info *ext, 209 struct f2fs_extent i_ext) 210 { 211 write_lock(&ext->ext_lock); 212 ext->fofs = le32_to_cpu(i_ext.fofs); 213 ext->blk_addr = le32_to_cpu(i_ext.blk_addr); 214 ext->len = le32_to_cpu(i_ext.len); 215 write_unlock(&ext->ext_lock); 216 } 217 218 static inline void set_raw_extent(struct extent_info *ext, 219 struct f2fs_extent *i_ext) 220 { 221 read_lock(&ext->ext_lock); 222 i_ext->fofs = cpu_to_le32(ext->fofs); 223 i_ext->blk_addr = cpu_to_le32(ext->blk_addr); 224 i_ext->len = cpu_to_le32(ext->len); 225 read_unlock(&ext->ext_lock); 226 } 227 228 struct f2fs_nm_info { 229 block_t nat_blkaddr; /* base disk address of NAT */ 230 nid_t max_nid; /* maximum possible node ids */ 231 nid_t next_scan_nid; /* the next nid to be scanned */ 232 233 /* NAT cache management */ 234 struct radix_tree_root nat_root;/* root of the nat entry cache */ 235 rwlock_t nat_tree_lock; /* protect nat_tree_lock */ 236 unsigned int nat_cnt; /* the # of cached nat entries */ 237 struct list_head nat_entries; /* cached nat entry list (clean) */ 238 struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */ 239 240 /* free node ids management */ 241 struct list_head free_nid_list; /* a list for free nids */ 242 spinlock_t free_nid_list_lock; /* protect free nid list */ 243 unsigned int fcnt; /* the number of free node id */ 244 struct mutex build_lock; /* lock for build free nids */ 245 246 /* for checkpoint */ 247 char *nat_bitmap; /* NAT bitmap pointer */ 248 int bitmap_size; /* bitmap size */ 249 }; 250 251 /* 252 * this structure is used as one of function parameters. 253 * all the information are dedicated to a given direct node block determined 254 * by the data offset in a file. 255 */ 256 struct dnode_of_data { 257 struct inode *inode; /* vfs inode pointer */ 258 struct page *inode_page; /* its inode page, NULL is possible */ 259 struct page *node_page; /* cached direct node page */ 260 nid_t nid; /* node id of the direct node block */ 261 unsigned int ofs_in_node; /* data offset in the node page */ 262 bool inode_page_locked; /* inode page is locked or not */ 263 block_t data_blkaddr; /* block address of the node block */ 264 }; 265 266 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 267 struct page *ipage, struct page *npage, nid_t nid) 268 { 269 memset(dn, 0, sizeof(*dn)); 270 dn->inode = inode; 271 dn->inode_page = ipage; 272 dn->node_page = npage; 273 dn->nid = nid; 274 } 275 276 /* 277 * For SIT manager 278 * 279 * By default, there are 6 active log areas across the whole main area. 280 * When considering hot and cold data separation to reduce cleaning overhead, 281 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 282 * respectively. 283 * In the current design, you should not change the numbers intentionally. 284 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 285 * logs individually according to the underlying devices. (default: 6) 286 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 287 * data and 8 for node logs. 288 */ 289 #define NR_CURSEG_DATA_TYPE (3) 290 #define NR_CURSEG_NODE_TYPE (3) 291 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 292 293 enum { 294 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 295 CURSEG_WARM_DATA, /* data blocks */ 296 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 297 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 298 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 299 CURSEG_COLD_NODE, /* indirect node blocks */ 300 NO_CHECK_TYPE 301 }; 302 303 struct f2fs_sm_info { 304 struct sit_info *sit_info; /* whole segment information */ 305 struct free_segmap_info *free_info; /* free segment information */ 306 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 307 struct curseg_info *curseg_array; /* active segment information */ 308 309 struct list_head wblist_head; /* list of under-writeback pages */ 310 spinlock_t wblist_lock; /* lock for checkpoint */ 311 312 block_t seg0_blkaddr; /* block address of 0'th segment */ 313 block_t main_blkaddr; /* start block address of main area */ 314 block_t ssa_blkaddr; /* start block address of SSA area */ 315 316 unsigned int segment_count; /* total # of segments */ 317 unsigned int main_segments; /* # of segments in main area */ 318 unsigned int reserved_segments; /* # of reserved segments */ 319 unsigned int ovp_segments; /* # of overprovision segments */ 320 321 /* a threshold to reclaim prefree segments */ 322 unsigned int rec_prefree_segments; 323 324 /* for small discard management */ 325 struct list_head discard_list; /* 4KB discard list */ 326 int nr_discards; /* # of discards in the list */ 327 int max_discards; /* max. discards to be issued */ 328 329 unsigned int ipu_policy; /* in-place-update policy */ 330 unsigned int min_ipu_util; /* in-place-update threshold */ 331 }; 332 333 /* 334 * For superblock 335 */ 336 /* 337 * COUNT_TYPE for monitoring 338 * 339 * f2fs monitors the number of several block types such as on-writeback, 340 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 341 */ 342 enum count_type { 343 F2FS_WRITEBACK, 344 F2FS_DIRTY_DENTS, 345 F2FS_DIRTY_NODES, 346 F2FS_DIRTY_META, 347 NR_COUNT_TYPE, 348 }; 349 350 /* 351 * The below are the page types of bios used in submti_bio(). 352 * The available types are: 353 * DATA User data pages. It operates as async mode. 354 * NODE Node pages. It operates as async mode. 355 * META FS metadata pages such as SIT, NAT, CP. 356 * NR_PAGE_TYPE The number of page types. 357 * META_FLUSH Make sure the previous pages are written 358 * with waiting the bio's completion 359 * ... Only can be used with META. 360 */ 361 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 362 enum page_type { 363 DATA, 364 NODE, 365 META, 366 NR_PAGE_TYPE, 367 META_FLUSH, 368 }; 369 370 struct f2fs_io_info { 371 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 372 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 373 }; 374 375 #define is_read_io(rw) (((rw) & 1) == READ) 376 struct f2fs_bio_info { 377 struct f2fs_sb_info *sbi; /* f2fs superblock */ 378 struct bio *bio; /* bios to merge */ 379 sector_t last_block_in_bio; /* last block number */ 380 struct f2fs_io_info fio; /* store buffered io info. */ 381 struct mutex io_mutex; /* mutex for bio */ 382 }; 383 384 struct f2fs_sb_info { 385 struct super_block *sb; /* pointer to VFS super block */ 386 struct proc_dir_entry *s_proc; /* proc entry */ 387 struct buffer_head *raw_super_buf; /* buffer head of raw sb */ 388 struct f2fs_super_block *raw_super; /* raw super block pointer */ 389 int s_dirty; /* dirty flag for checkpoint */ 390 391 /* for node-related operations */ 392 struct f2fs_nm_info *nm_info; /* node manager */ 393 struct inode *node_inode; /* cache node blocks */ 394 395 /* for segment-related operations */ 396 struct f2fs_sm_info *sm_info; /* segment manager */ 397 398 /* for bio operations */ 399 struct f2fs_bio_info read_io; /* for read bios */ 400 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 401 402 /* for checkpoint */ 403 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 404 struct inode *meta_inode; /* cache meta blocks */ 405 struct mutex cp_mutex; /* checkpoint procedure lock */ 406 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 407 struct mutex node_write; /* locking node writes */ 408 struct mutex writepages; /* mutex for writepages() */ 409 bool por_doing; /* recovery is doing or not */ 410 bool on_build_free_nids; /* build_free_nids is doing */ 411 wait_queue_head_t cp_wait; 412 413 /* for orphan inode management */ 414 struct list_head orphan_inode_list; /* orphan inode list */ 415 spinlock_t orphan_inode_lock; /* for orphan inode list */ 416 unsigned int n_orphans; /* # of orphan inodes */ 417 unsigned int max_orphans; /* max orphan inodes */ 418 419 /* for directory inode management */ 420 struct list_head dir_inode_list; /* dir inode list */ 421 spinlock_t dir_inode_lock; /* for dir inode list lock */ 422 423 /* basic file system units */ 424 unsigned int log_sectors_per_block; /* log2 sectors per block */ 425 unsigned int log_blocksize; /* log2 block size */ 426 unsigned int blocksize; /* block size */ 427 unsigned int root_ino_num; /* root inode number*/ 428 unsigned int node_ino_num; /* node inode number*/ 429 unsigned int meta_ino_num; /* meta inode number*/ 430 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 431 unsigned int blocks_per_seg; /* blocks per segment */ 432 unsigned int segs_per_sec; /* segments per section */ 433 unsigned int secs_per_zone; /* sections per zone */ 434 unsigned int total_sections; /* total section count */ 435 unsigned int total_node_count; /* total node block count */ 436 unsigned int total_valid_node_count; /* valid node block count */ 437 unsigned int total_valid_inode_count; /* valid inode count */ 438 int active_logs; /* # of active logs */ 439 440 block_t user_block_count; /* # of user blocks */ 441 block_t total_valid_block_count; /* # of valid blocks */ 442 block_t alloc_valid_block_count; /* # of allocated blocks */ 443 block_t last_valid_block_count; /* for recovery */ 444 u32 s_next_generation; /* for NFS support */ 445 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 446 447 struct f2fs_mount_info mount_opt; /* mount options */ 448 449 /* for cleaning operations */ 450 struct mutex gc_mutex; /* mutex for GC */ 451 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 452 unsigned int cur_victim_sec; /* current victim section num */ 453 454 /* maximum # of trials to find a victim segment for SSR and GC */ 455 unsigned int max_victim_search; 456 457 /* 458 * for stat information. 459 * one is for the LFS mode, and the other is for the SSR mode. 460 */ 461 #ifdef CONFIG_F2FS_STAT_FS 462 struct f2fs_stat_info *stat_info; /* FS status information */ 463 unsigned int segment_count[2]; /* # of allocated segments */ 464 unsigned int block_count[2]; /* # of allocated blocks */ 465 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */ 466 int inline_inode; /* # of inline_data inodes */ 467 int bg_gc; /* background gc calls */ 468 unsigned int n_dirty_dirs; /* # of dir inodes */ 469 #endif 470 unsigned int last_victim[2]; /* last victim segment # */ 471 spinlock_t stat_lock; /* lock for stat operations */ 472 473 /* For sysfs suppport */ 474 struct kobject s_kobj; 475 struct completion s_kobj_unregister; 476 }; 477 478 /* 479 * Inline functions 480 */ 481 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 482 { 483 return container_of(inode, struct f2fs_inode_info, vfs_inode); 484 } 485 486 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 487 { 488 return sb->s_fs_info; 489 } 490 491 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 492 { 493 return (struct f2fs_super_block *)(sbi->raw_super); 494 } 495 496 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 497 { 498 return (struct f2fs_checkpoint *)(sbi->ckpt); 499 } 500 501 static inline struct f2fs_node *F2FS_NODE(struct page *page) 502 { 503 return (struct f2fs_node *)page_address(page); 504 } 505 506 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 507 { 508 return &((struct f2fs_node *)page_address(page))->i; 509 } 510 511 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 512 { 513 return (struct f2fs_nm_info *)(sbi->nm_info); 514 } 515 516 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 517 { 518 return (struct f2fs_sm_info *)(sbi->sm_info); 519 } 520 521 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 522 { 523 return (struct sit_info *)(SM_I(sbi)->sit_info); 524 } 525 526 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 527 { 528 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 529 } 530 531 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 532 { 533 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 534 } 535 536 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 537 { 538 return sbi->meta_inode->i_mapping; 539 } 540 541 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 542 { 543 return sbi->node_inode->i_mapping; 544 } 545 546 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi) 547 { 548 sbi->s_dirty = 1; 549 } 550 551 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi) 552 { 553 sbi->s_dirty = 0; 554 } 555 556 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 557 { 558 return le64_to_cpu(cp->checkpoint_ver); 559 } 560 561 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 562 { 563 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 564 return ckpt_flags & f; 565 } 566 567 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 568 { 569 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 570 ckpt_flags |= f; 571 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 572 } 573 574 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 575 { 576 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 577 ckpt_flags &= (~f); 578 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 579 } 580 581 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 582 { 583 down_read(&sbi->cp_rwsem); 584 } 585 586 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 587 { 588 up_read(&sbi->cp_rwsem); 589 } 590 591 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 592 { 593 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex); 594 } 595 596 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 597 { 598 up_write(&sbi->cp_rwsem); 599 } 600 601 /* 602 * Check whether the given nid is within node id range. 603 */ 604 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 605 { 606 WARN_ON((nid >= NM_I(sbi)->max_nid)); 607 if (unlikely(nid >= NM_I(sbi)->max_nid)) 608 return -EINVAL; 609 return 0; 610 } 611 612 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 613 614 /* 615 * Check whether the inode has blocks or not 616 */ 617 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 618 { 619 if (F2FS_I(inode)->i_xattr_nid) 620 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 621 else 622 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 623 } 624 625 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 626 struct inode *inode, blkcnt_t count) 627 { 628 block_t valid_block_count; 629 630 spin_lock(&sbi->stat_lock); 631 valid_block_count = 632 sbi->total_valid_block_count + (block_t)count; 633 if (unlikely(valid_block_count > sbi->user_block_count)) { 634 spin_unlock(&sbi->stat_lock); 635 return false; 636 } 637 inode->i_blocks += count; 638 sbi->total_valid_block_count = valid_block_count; 639 sbi->alloc_valid_block_count += (block_t)count; 640 spin_unlock(&sbi->stat_lock); 641 return true; 642 } 643 644 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 645 struct inode *inode, 646 blkcnt_t count) 647 { 648 spin_lock(&sbi->stat_lock); 649 f2fs_bug_on(sbi->total_valid_block_count < (block_t) count); 650 f2fs_bug_on(inode->i_blocks < count); 651 inode->i_blocks -= count; 652 sbi->total_valid_block_count -= (block_t)count; 653 spin_unlock(&sbi->stat_lock); 654 } 655 656 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 657 { 658 atomic_inc(&sbi->nr_pages[count_type]); 659 F2FS_SET_SB_DIRT(sbi); 660 } 661 662 static inline void inode_inc_dirty_dents(struct inode *inode) 663 { 664 atomic_inc(&F2FS_I(inode)->dirty_dents); 665 } 666 667 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 668 { 669 atomic_dec(&sbi->nr_pages[count_type]); 670 } 671 672 static inline void inode_dec_dirty_dents(struct inode *inode) 673 { 674 atomic_dec(&F2FS_I(inode)->dirty_dents); 675 } 676 677 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 678 { 679 return atomic_read(&sbi->nr_pages[count_type]); 680 } 681 682 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 683 { 684 unsigned int pages_per_sec = sbi->segs_per_sec * 685 (1 << sbi->log_blocks_per_seg); 686 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 687 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 688 } 689 690 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 691 { 692 block_t ret; 693 spin_lock(&sbi->stat_lock); 694 ret = sbi->total_valid_block_count; 695 spin_unlock(&sbi->stat_lock); 696 return ret; 697 } 698 699 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 700 { 701 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 702 703 /* return NAT or SIT bitmap */ 704 if (flag == NAT_BITMAP) 705 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 706 else if (flag == SIT_BITMAP) 707 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 708 709 return 0; 710 } 711 712 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 713 { 714 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 715 int offset = (flag == NAT_BITMAP) ? 716 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 717 return &ckpt->sit_nat_version_bitmap + offset; 718 } 719 720 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 721 { 722 block_t start_addr; 723 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 724 unsigned long long ckpt_version = cur_cp_version(ckpt); 725 726 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 727 728 /* 729 * odd numbered checkpoint should at cp segment 0 730 * and even segent must be at cp segment 1 731 */ 732 if (!(ckpt_version & 1)) 733 start_addr += sbi->blocks_per_seg; 734 735 return start_addr; 736 } 737 738 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 739 { 740 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 741 } 742 743 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 744 struct inode *inode) 745 { 746 block_t valid_block_count; 747 unsigned int valid_node_count; 748 749 spin_lock(&sbi->stat_lock); 750 751 valid_block_count = sbi->total_valid_block_count + 1; 752 if (unlikely(valid_block_count > sbi->user_block_count)) { 753 spin_unlock(&sbi->stat_lock); 754 return false; 755 } 756 757 valid_node_count = sbi->total_valid_node_count + 1; 758 if (unlikely(valid_node_count > sbi->total_node_count)) { 759 spin_unlock(&sbi->stat_lock); 760 return false; 761 } 762 763 if (inode) 764 inode->i_blocks++; 765 766 sbi->alloc_valid_block_count++; 767 sbi->total_valid_node_count++; 768 sbi->total_valid_block_count++; 769 spin_unlock(&sbi->stat_lock); 770 771 return true; 772 } 773 774 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 775 struct inode *inode) 776 { 777 spin_lock(&sbi->stat_lock); 778 779 f2fs_bug_on(!sbi->total_valid_block_count); 780 f2fs_bug_on(!sbi->total_valid_node_count); 781 f2fs_bug_on(!inode->i_blocks); 782 783 inode->i_blocks--; 784 sbi->total_valid_node_count--; 785 sbi->total_valid_block_count--; 786 787 spin_unlock(&sbi->stat_lock); 788 } 789 790 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 791 { 792 unsigned int ret; 793 spin_lock(&sbi->stat_lock); 794 ret = sbi->total_valid_node_count; 795 spin_unlock(&sbi->stat_lock); 796 return ret; 797 } 798 799 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 800 { 801 spin_lock(&sbi->stat_lock); 802 f2fs_bug_on(sbi->total_valid_inode_count == sbi->total_node_count); 803 sbi->total_valid_inode_count++; 804 spin_unlock(&sbi->stat_lock); 805 } 806 807 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 808 { 809 spin_lock(&sbi->stat_lock); 810 f2fs_bug_on(!sbi->total_valid_inode_count); 811 sbi->total_valid_inode_count--; 812 spin_unlock(&sbi->stat_lock); 813 } 814 815 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 816 { 817 unsigned int ret; 818 spin_lock(&sbi->stat_lock); 819 ret = sbi->total_valid_inode_count; 820 spin_unlock(&sbi->stat_lock); 821 return ret; 822 } 823 824 static inline void f2fs_put_page(struct page *page, int unlock) 825 { 826 if (!page) 827 return; 828 829 if (unlock) { 830 f2fs_bug_on(!PageLocked(page)); 831 unlock_page(page); 832 } 833 page_cache_release(page); 834 } 835 836 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 837 { 838 if (dn->node_page) 839 f2fs_put_page(dn->node_page, 1); 840 if (dn->inode_page && dn->node_page != dn->inode_page) 841 f2fs_put_page(dn->inode_page, 0); 842 dn->node_page = NULL; 843 dn->inode_page = NULL; 844 } 845 846 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 847 size_t size, void (*ctor)(void *)) 848 { 849 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, ctor); 850 } 851 852 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 853 gfp_t flags) 854 { 855 void *entry; 856 retry: 857 entry = kmem_cache_alloc(cachep, flags); 858 if (!entry) { 859 cond_resched(); 860 goto retry; 861 } 862 863 return entry; 864 } 865 866 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 867 868 static inline bool IS_INODE(struct page *page) 869 { 870 struct f2fs_node *p = F2FS_NODE(page); 871 return RAW_IS_INODE(p); 872 } 873 874 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 875 { 876 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 877 } 878 879 static inline block_t datablock_addr(struct page *node_page, 880 unsigned int offset) 881 { 882 struct f2fs_node *raw_node; 883 __le32 *addr_array; 884 raw_node = F2FS_NODE(node_page); 885 addr_array = blkaddr_in_node(raw_node); 886 return le32_to_cpu(addr_array[offset]); 887 } 888 889 static inline int f2fs_test_bit(unsigned int nr, char *addr) 890 { 891 int mask; 892 893 addr += (nr >> 3); 894 mask = 1 << (7 - (nr & 0x07)); 895 return mask & *addr; 896 } 897 898 static inline int f2fs_set_bit(unsigned int nr, char *addr) 899 { 900 int mask; 901 int ret; 902 903 addr += (nr >> 3); 904 mask = 1 << (7 - (nr & 0x07)); 905 ret = mask & *addr; 906 *addr |= mask; 907 return ret; 908 } 909 910 static inline int f2fs_clear_bit(unsigned int nr, char *addr) 911 { 912 int mask; 913 int ret; 914 915 addr += (nr >> 3); 916 mask = 1 << (7 - (nr & 0x07)); 917 ret = mask & *addr; 918 *addr &= ~mask; 919 return ret; 920 } 921 922 /* used for f2fs_inode_info->flags */ 923 enum { 924 FI_NEW_INODE, /* indicate newly allocated inode */ 925 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 926 FI_INC_LINK, /* need to increment i_nlink */ 927 FI_ACL_MODE, /* indicate acl mode */ 928 FI_NO_ALLOC, /* should not allocate any blocks */ 929 FI_UPDATE_DIR, /* should update inode block for consistency */ 930 FI_DELAY_IPUT, /* used for the recovery */ 931 FI_NO_EXTENT, /* not to use the extent cache */ 932 FI_INLINE_XATTR, /* used for inline xattr */ 933 FI_INLINE_DATA, /* used for inline data*/ 934 }; 935 936 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 937 { 938 set_bit(flag, &fi->flags); 939 } 940 941 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 942 { 943 return test_bit(flag, &fi->flags); 944 } 945 946 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 947 { 948 clear_bit(flag, &fi->flags); 949 } 950 951 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 952 { 953 fi->i_acl_mode = mode; 954 set_inode_flag(fi, FI_ACL_MODE); 955 } 956 957 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag) 958 { 959 if (is_inode_flag_set(fi, FI_ACL_MODE)) { 960 clear_inode_flag(fi, FI_ACL_MODE); 961 return 1; 962 } 963 return 0; 964 } 965 966 static inline void get_inline_info(struct f2fs_inode_info *fi, 967 struct f2fs_inode *ri) 968 { 969 if (ri->i_inline & F2FS_INLINE_XATTR) 970 set_inode_flag(fi, FI_INLINE_XATTR); 971 if (ri->i_inline & F2FS_INLINE_DATA) 972 set_inode_flag(fi, FI_INLINE_DATA); 973 } 974 975 static inline void set_raw_inline(struct f2fs_inode_info *fi, 976 struct f2fs_inode *ri) 977 { 978 ri->i_inline = 0; 979 980 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 981 ri->i_inline |= F2FS_INLINE_XATTR; 982 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 983 ri->i_inline |= F2FS_INLINE_DATA; 984 } 985 986 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi) 987 { 988 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 989 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 990 return DEF_ADDRS_PER_INODE; 991 } 992 993 static inline void *inline_xattr_addr(struct page *page) 994 { 995 struct f2fs_inode *ri; 996 ri = (struct f2fs_inode *)page_address(page); 997 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 998 F2FS_INLINE_XATTR_ADDRS]); 999 } 1000 1001 static inline int inline_xattr_size(struct inode *inode) 1002 { 1003 if (is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR)) 1004 return F2FS_INLINE_XATTR_ADDRS << 2; 1005 else 1006 return 0; 1007 } 1008 1009 static inline int f2fs_has_inline_data(struct inode *inode) 1010 { 1011 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1012 } 1013 1014 static inline void *inline_data_addr(struct page *page) 1015 { 1016 struct f2fs_inode *ri; 1017 ri = (struct f2fs_inode *)page_address(page); 1018 return (void *)&(ri->i_addr[1]); 1019 } 1020 1021 static inline int f2fs_readonly(struct super_block *sb) 1022 { 1023 return sb->s_flags & MS_RDONLY; 1024 } 1025 1026 #define get_inode_mode(i) \ 1027 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1028 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1029 1030 /* 1031 * file.c 1032 */ 1033 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1034 void truncate_data_blocks(struct dnode_of_data *); 1035 int truncate_blocks(struct inode *, u64); 1036 void f2fs_truncate(struct inode *); 1037 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1038 int f2fs_setattr(struct dentry *, struct iattr *); 1039 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1040 int truncate_data_blocks_range(struct dnode_of_data *, int); 1041 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1042 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1043 1044 /* 1045 * inode.c 1046 */ 1047 void f2fs_set_inode_flags(struct inode *); 1048 struct inode *f2fs_iget(struct super_block *, unsigned long); 1049 int try_to_free_nats(struct f2fs_sb_info *, int); 1050 void update_inode(struct inode *, struct page *); 1051 int update_inode_page(struct inode *); 1052 int f2fs_write_inode(struct inode *, struct writeback_control *); 1053 void f2fs_evict_inode(struct inode *); 1054 1055 /* 1056 * namei.c 1057 */ 1058 struct dentry *f2fs_get_parent(struct dentry *child); 1059 1060 /* 1061 * dir.c 1062 */ 1063 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1064 struct page **); 1065 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1066 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1067 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1068 struct page *, struct inode *); 1069 int update_dent_inode(struct inode *, const struct qstr *); 1070 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *); 1071 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *); 1072 int f2fs_make_empty(struct inode *, struct inode *); 1073 bool f2fs_empty_dir(struct inode *); 1074 1075 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1076 { 1077 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name, 1078 inode); 1079 } 1080 1081 /* 1082 * super.c 1083 */ 1084 int f2fs_sync_fs(struct super_block *, int); 1085 extern __printf(3, 4) 1086 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1087 1088 /* 1089 * hash.c 1090 */ 1091 f2fs_hash_t f2fs_dentry_hash(const char *, size_t); 1092 1093 /* 1094 * node.c 1095 */ 1096 struct dnode_of_data; 1097 struct node_info; 1098 1099 int is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1100 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1101 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1102 int truncate_inode_blocks(struct inode *, pgoff_t); 1103 int truncate_xattr_node(struct inode *, struct page *); 1104 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1105 void remove_inode_page(struct inode *); 1106 struct page *new_inode_page(struct inode *, const struct qstr *); 1107 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1108 void ra_node_page(struct f2fs_sb_info *, nid_t); 1109 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1110 struct page *get_node_page_ra(struct page *, int); 1111 void sync_inode_page(struct dnode_of_data *); 1112 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 1113 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1114 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1115 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1116 void recover_node_page(struct f2fs_sb_info *, struct page *, 1117 struct f2fs_summary *, struct node_info *, block_t); 1118 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1119 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1120 struct f2fs_summary_block *); 1121 void flush_nat_entries(struct f2fs_sb_info *); 1122 int build_node_manager(struct f2fs_sb_info *); 1123 void destroy_node_manager(struct f2fs_sb_info *); 1124 int __init create_node_manager_caches(void); 1125 void destroy_node_manager_caches(void); 1126 1127 /* 1128 * segment.c 1129 */ 1130 void f2fs_balance_fs(struct f2fs_sb_info *); 1131 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1132 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1133 void clear_prefree_segments(struct f2fs_sb_info *); 1134 int npages_for_summary_flush(struct f2fs_sb_info *); 1135 void allocate_new_segments(struct f2fs_sb_info *); 1136 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1137 void write_meta_page(struct f2fs_sb_info *, struct page *); 1138 void write_node_page(struct f2fs_sb_info *, struct page *, 1139 struct f2fs_io_info *, unsigned int, block_t, block_t *); 1140 void write_data_page(struct page *, struct dnode_of_data *, block_t *, 1141 struct f2fs_io_info *); 1142 void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *); 1143 void recover_data_page(struct f2fs_sb_info *, struct page *, 1144 struct f2fs_summary *, block_t, block_t); 1145 void rewrite_node_page(struct f2fs_sb_info *, struct page *, 1146 struct f2fs_summary *, block_t, block_t); 1147 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1148 block_t, block_t *, struct f2fs_summary *, int); 1149 void f2fs_wait_on_page_writeback(struct page *, enum page_type); 1150 void write_data_summaries(struct f2fs_sb_info *, block_t); 1151 void write_node_summaries(struct f2fs_sb_info *, block_t); 1152 int lookup_journal_in_cursum(struct f2fs_summary_block *, 1153 int, unsigned int, int); 1154 void flush_sit_entries(struct f2fs_sb_info *); 1155 int build_segment_manager(struct f2fs_sb_info *); 1156 void destroy_segment_manager(struct f2fs_sb_info *); 1157 int __init create_segment_manager_caches(void); 1158 void destroy_segment_manager_caches(void); 1159 1160 /* 1161 * checkpoint.c 1162 */ 1163 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1164 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1165 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1166 int acquire_orphan_inode(struct f2fs_sb_info *); 1167 void release_orphan_inode(struct f2fs_sb_info *); 1168 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1169 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1170 void recover_orphan_inodes(struct f2fs_sb_info *); 1171 int get_valid_checkpoint(struct f2fs_sb_info *); 1172 void set_dirty_dir_page(struct inode *, struct page *); 1173 void add_dirty_dir_inode(struct inode *); 1174 void remove_dirty_dir_inode(struct inode *); 1175 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *, nid_t); 1176 void sync_dirty_dir_inodes(struct f2fs_sb_info *); 1177 void write_checkpoint(struct f2fs_sb_info *, bool); 1178 void init_orphan_info(struct f2fs_sb_info *); 1179 int __init create_checkpoint_caches(void); 1180 void destroy_checkpoint_caches(void); 1181 1182 /* 1183 * data.c 1184 */ 1185 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1186 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int); 1187 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t, 1188 struct f2fs_io_info *); 1189 int reserve_new_block(struct dnode_of_data *); 1190 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1191 void update_extent_cache(block_t, struct dnode_of_data *); 1192 struct page *find_data_page(struct inode *, pgoff_t, bool); 1193 struct page *get_lock_data_page(struct inode *, pgoff_t); 1194 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1195 int do_write_data_page(struct page *, struct f2fs_io_info *); 1196 1197 /* 1198 * gc.c 1199 */ 1200 int start_gc_thread(struct f2fs_sb_info *); 1201 void stop_gc_thread(struct f2fs_sb_info *); 1202 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *); 1203 int f2fs_gc(struct f2fs_sb_info *); 1204 void build_gc_manager(struct f2fs_sb_info *); 1205 int __init create_gc_caches(void); 1206 void destroy_gc_caches(void); 1207 1208 /* 1209 * recovery.c 1210 */ 1211 int recover_fsync_data(struct f2fs_sb_info *); 1212 bool space_for_roll_forward(struct f2fs_sb_info *); 1213 1214 /* 1215 * debug.c 1216 */ 1217 #ifdef CONFIG_F2FS_STAT_FS 1218 struct f2fs_stat_info { 1219 struct list_head stat_list; 1220 struct f2fs_sb_info *sbi; 1221 struct mutex stat_lock; 1222 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1223 int main_area_segs, main_area_sections, main_area_zones; 1224 int hit_ext, total_ext; 1225 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; 1226 int nats, sits, fnids; 1227 int total_count, utilization; 1228 int bg_gc, inline_inode; 1229 unsigned int valid_count, valid_node_count, valid_inode_count; 1230 unsigned int bimodal, avg_vblocks; 1231 int util_free, util_valid, util_invalid; 1232 int rsvd_segs, overp_segs; 1233 int dirty_count, node_pages, meta_pages; 1234 int prefree_count, call_count; 1235 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1236 int tot_blks, data_blks, node_blks; 1237 int curseg[NR_CURSEG_TYPE]; 1238 int cursec[NR_CURSEG_TYPE]; 1239 int curzone[NR_CURSEG_TYPE]; 1240 1241 unsigned int segment_count[2]; 1242 unsigned int block_count[2]; 1243 unsigned base_mem, cache_mem; 1244 }; 1245 1246 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 1247 { 1248 return (struct f2fs_stat_info *)sbi->stat_info; 1249 } 1250 1251 #define stat_inc_call_count(si) ((si)->call_count++) 1252 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 1253 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++) 1254 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--) 1255 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++) 1256 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++) 1257 #define stat_inc_inline_inode(inode) \ 1258 do { \ 1259 if (f2fs_has_inline_data(inode)) \ 1260 ((F2FS_SB(inode->i_sb))->inline_inode++); \ 1261 } while (0) 1262 #define stat_dec_inline_inode(inode) \ 1263 do { \ 1264 if (f2fs_has_inline_data(inode)) \ 1265 ((F2FS_SB(inode->i_sb))->inline_inode--); \ 1266 } while (0) 1267 1268 #define stat_inc_seg_type(sbi, curseg) \ 1269 ((sbi)->segment_count[(curseg)->alloc_type]++) 1270 #define stat_inc_block_count(sbi, curseg) \ 1271 ((sbi)->block_count[(curseg)->alloc_type]++) 1272 1273 #define stat_inc_seg_count(sbi, type) \ 1274 do { \ 1275 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1276 (si)->tot_segs++; \ 1277 if (type == SUM_TYPE_DATA) \ 1278 si->data_segs++; \ 1279 else \ 1280 si->node_segs++; \ 1281 } while (0) 1282 1283 #define stat_inc_tot_blk_count(si, blks) \ 1284 (si->tot_blks += (blks)) 1285 1286 #define stat_inc_data_blk_count(sbi, blks) \ 1287 do { \ 1288 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1289 stat_inc_tot_blk_count(si, blks); \ 1290 si->data_blks += (blks); \ 1291 } while (0) 1292 1293 #define stat_inc_node_blk_count(sbi, blks) \ 1294 do { \ 1295 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1296 stat_inc_tot_blk_count(si, blks); \ 1297 si->node_blks += (blks); \ 1298 } while (0) 1299 1300 int f2fs_build_stats(struct f2fs_sb_info *); 1301 void f2fs_destroy_stats(struct f2fs_sb_info *); 1302 void __init f2fs_create_root_stats(void); 1303 void f2fs_destroy_root_stats(void); 1304 #else 1305 #define stat_inc_call_count(si) 1306 #define stat_inc_bggc_count(si) 1307 #define stat_inc_dirty_dir(sbi) 1308 #define stat_dec_dirty_dir(sbi) 1309 #define stat_inc_total_hit(sb) 1310 #define stat_inc_read_hit(sb) 1311 #define stat_inc_inline_inode(inode) 1312 #define stat_dec_inline_inode(inode) 1313 #define stat_inc_seg_type(sbi, curseg) 1314 #define stat_inc_block_count(sbi, curseg) 1315 #define stat_inc_seg_count(si, type) 1316 #define stat_inc_tot_blk_count(si, blks) 1317 #define stat_inc_data_blk_count(si, blks) 1318 #define stat_inc_node_blk_count(sbi, blks) 1319 1320 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 1321 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 1322 static inline void __init f2fs_create_root_stats(void) { } 1323 static inline void f2fs_destroy_root_stats(void) { } 1324 #endif 1325 1326 extern const struct file_operations f2fs_dir_operations; 1327 extern const struct file_operations f2fs_file_operations; 1328 extern const struct inode_operations f2fs_file_inode_operations; 1329 extern const struct address_space_operations f2fs_dblock_aops; 1330 extern const struct address_space_operations f2fs_node_aops; 1331 extern const struct address_space_operations f2fs_meta_aops; 1332 extern const struct inode_operations f2fs_dir_inode_operations; 1333 extern const struct inode_operations f2fs_symlink_inode_operations; 1334 extern const struct inode_operations f2fs_special_inode_operations; 1335 1336 /* 1337 * inline.c 1338 */ 1339 bool f2fs_may_inline(struct inode *); 1340 int f2fs_read_inline_data(struct inode *, struct page *); 1341 int f2fs_convert_inline_data(struct inode *, pgoff_t); 1342 int f2fs_write_inline_data(struct inode *, struct page *, unsigned int); 1343 int recover_inline_data(struct inode *, struct page *); 1344 #endif 1345