xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 428e3bcf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
28 #include <linux/fscrypt.h>
29 
30 #ifdef CONFIG_F2FS_CHECK_FS
31 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
32 #else
33 #define f2fs_bug_on(sbi, condition)					\
34 	do {								\
35 		if (unlikely(condition)) {				\
36 			WARN_ON(1);					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 		}							\
39 	} while (0)
40 #endif
41 
42 enum {
43 	FAULT_KMALLOC,
44 	FAULT_KVMALLOC,
45 	FAULT_PAGE_ALLOC,
46 	FAULT_PAGE_GET,
47 	FAULT_ALLOC_BIO,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_TRUNCATE,
54 	FAULT_READ_IO,
55 	FAULT_CHECKPOINT,
56 	FAULT_DISCARD,
57 	FAULT_WRITE_IO,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_BG_GC		0x00000001
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_ADAPTIVE		0x00020000
95 #define F2FS_MOUNT_LFS			0x00040000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	bool test_dummy_encryption;	/* test dummy encryption */
140 };
141 
142 #define F2FS_FEATURE_ENCRYPT		0x0001
143 #define F2FS_FEATURE_BLKZONED		0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
146 #define F2FS_FEATURE_PRJQUOTA		0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
149 #define F2FS_FEATURE_QUOTA_INO		0x0080
150 #define F2FS_FEATURE_INODE_CRTIME	0x0100
151 #define F2FS_FEATURE_LOST_FOUND		0x0200
152 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
153 #define F2FS_FEATURE_SB_CHKSUM		0x0800
154 
155 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
156 	((raw_super->feature & cpu_to_le32(mask)) != 0)
157 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
158 #define F2FS_SET_FEATURE(sbi, mask)					\
159 	(sbi->raw_super->feature |= cpu_to_le32(mask))
160 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
161 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
162 
163 /*
164  * Default values for user and/or group using reserved blocks
165  */
166 #define	F2FS_DEF_RESUID		0
167 #define	F2FS_DEF_RESGID		0
168 
169 /*
170  * For checkpoint manager
171  */
172 enum {
173 	NAT_BITMAP,
174 	SIT_BITMAP
175 };
176 
177 #define	CP_UMOUNT	0x00000001
178 #define	CP_FASTBOOT	0x00000002
179 #define	CP_SYNC		0x00000004
180 #define	CP_RECOVERY	0x00000008
181 #define	CP_DISCARD	0x00000010
182 #define CP_TRIMMED	0x00000020
183 #define CP_PAUSE	0x00000040
184 
185 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
186 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
187 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
188 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
189 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
190 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
191 #define DEF_CP_INTERVAL			60	/* 60 secs */
192 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
193 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
194 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
195 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
196 
197 struct cp_control {
198 	int reason;
199 	__u64 trim_start;
200 	__u64 trim_end;
201 	__u64 trim_minlen;
202 };
203 
204 /*
205  * indicate meta/data type
206  */
207 enum {
208 	META_CP,
209 	META_NAT,
210 	META_SIT,
211 	META_SSA,
212 	META_MAX,
213 	META_POR,
214 	DATA_GENERIC,
215 	META_GENERIC,
216 };
217 
218 /* for the list of ino */
219 enum {
220 	ORPHAN_INO,		/* for orphan ino list */
221 	APPEND_INO,		/* for append ino list */
222 	UPDATE_INO,		/* for update ino list */
223 	TRANS_DIR_INO,		/* for trasactions dir ino list */
224 	FLUSH_INO,		/* for multiple device flushing */
225 	MAX_INO_ENTRY,		/* max. list */
226 };
227 
228 struct ino_entry {
229 	struct list_head list;		/* list head */
230 	nid_t ino;			/* inode number */
231 	unsigned int dirty_device;	/* dirty device bitmap */
232 };
233 
234 /* for the list of inodes to be GCed */
235 struct inode_entry {
236 	struct list_head list;	/* list head */
237 	struct inode *inode;	/* vfs inode pointer */
238 };
239 
240 struct fsync_node_entry {
241 	struct list_head list;	/* list head */
242 	struct page *page;	/* warm node page pointer */
243 	unsigned int seq_id;	/* sequence id */
244 };
245 
246 /* for the bitmap indicate blocks to be discarded */
247 struct discard_entry {
248 	struct list_head list;	/* list head */
249 	block_t start_blkaddr;	/* start blockaddr of current segment */
250 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
251 };
252 
253 /* default discard granularity of inner discard thread, unit: block count */
254 #define DEFAULT_DISCARD_GRANULARITY		16
255 
256 /* max discard pend list number */
257 #define MAX_PLIST_NUM		512
258 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
259 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
260 
261 enum {
262 	D_PREP,			/* initial */
263 	D_PARTIAL,		/* partially submitted */
264 	D_SUBMIT,		/* all submitted */
265 	D_DONE,			/* finished */
266 };
267 
268 struct discard_info {
269 	block_t lstart;			/* logical start address */
270 	block_t len;			/* length */
271 	block_t start;			/* actual start address in dev */
272 };
273 
274 struct discard_cmd {
275 	struct rb_node rb_node;		/* rb node located in rb-tree */
276 	union {
277 		struct {
278 			block_t lstart;	/* logical start address */
279 			block_t len;	/* length */
280 			block_t start;	/* actual start address in dev */
281 		};
282 		struct discard_info di;	/* discard info */
283 
284 	};
285 	struct list_head list;		/* command list */
286 	struct completion wait;		/* compleation */
287 	struct block_device *bdev;	/* bdev */
288 	unsigned short ref;		/* reference count */
289 	unsigned char state;		/* state */
290 	unsigned char queued;		/* queued discard */
291 	int error;			/* bio error */
292 	spinlock_t lock;		/* for state/bio_ref updating */
293 	unsigned short bio_ref;		/* bio reference count */
294 };
295 
296 enum {
297 	DPOLICY_BG,
298 	DPOLICY_FORCE,
299 	DPOLICY_FSTRIM,
300 	DPOLICY_UMOUNT,
301 	MAX_DPOLICY,
302 };
303 
304 struct discard_policy {
305 	int type;			/* type of discard */
306 	unsigned int min_interval;	/* used for candidates exist */
307 	unsigned int mid_interval;	/* used for device busy */
308 	unsigned int max_interval;	/* used for candidates not exist */
309 	unsigned int max_requests;	/* # of discards issued per round */
310 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
311 	bool io_aware;			/* issue discard in idle time */
312 	bool sync;			/* submit discard with REQ_SYNC flag */
313 	bool ordered;			/* issue discard by lba order */
314 	unsigned int granularity;	/* discard granularity */
315 	int timeout;			/* discard timeout for put_super */
316 };
317 
318 struct discard_cmd_control {
319 	struct task_struct *f2fs_issue_discard;	/* discard thread */
320 	struct list_head entry_list;		/* 4KB discard entry list */
321 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
322 	struct list_head wait_list;		/* store on-flushing entries */
323 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
324 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
325 	unsigned int discard_wake;		/* to wake up discard thread */
326 	struct mutex cmd_lock;
327 	unsigned int nr_discards;		/* # of discards in the list */
328 	unsigned int max_discards;		/* max. discards to be issued */
329 	unsigned int discard_granularity;	/* discard granularity */
330 	unsigned int undiscard_blks;		/* # of undiscard blocks */
331 	unsigned int next_pos;			/* next discard position */
332 	atomic_t issued_discard;		/* # of issued discard */
333 	atomic_t queued_discard;		/* # of queued discard */
334 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
335 	struct rb_root_cached root;		/* root of discard rb-tree */
336 	bool rbtree_check;			/* config for consistence check */
337 };
338 
339 /* for the list of fsync inodes, used only during recovery */
340 struct fsync_inode_entry {
341 	struct list_head list;	/* list head */
342 	struct inode *inode;	/* vfs inode pointer */
343 	block_t blkaddr;	/* block address locating the last fsync */
344 	block_t last_dentry;	/* block address locating the last dentry */
345 };
346 
347 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
348 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
349 
350 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
351 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
352 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
353 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
354 
355 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
356 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
357 
358 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
359 {
360 	int before = nats_in_cursum(journal);
361 
362 	journal->n_nats = cpu_to_le16(before + i);
363 	return before;
364 }
365 
366 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
367 {
368 	int before = sits_in_cursum(journal);
369 
370 	journal->n_sits = cpu_to_le16(before + i);
371 	return before;
372 }
373 
374 static inline bool __has_cursum_space(struct f2fs_journal *journal,
375 							int size, int type)
376 {
377 	if (type == NAT_JOURNAL)
378 		return size <= MAX_NAT_JENTRIES(journal);
379 	return size <= MAX_SIT_JENTRIES(journal);
380 }
381 
382 /*
383  * ioctl commands
384  */
385 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
386 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
387 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
388 
389 #define F2FS_IOCTL_MAGIC		0xf5
390 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
391 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
392 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
393 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
394 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
395 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
396 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
397 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
398 						struct f2fs_defragment)
399 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
400 						struct f2fs_move_range)
401 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
402 						struct f2fs_flush_device)
403 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
404 						struct f2fs_gc_range)
405 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
406 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
407 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
408 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
409 
410 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
411 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
412 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
413 
414 /*
415  * should be same as XFS_IOC_GOINGDOWN.
416  * Flags for going down operation used by FS_IOC_GOINGDOWN
417  */
418 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
419 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
420 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
421 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
422 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
423 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
424 
425 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
426 /*
427  * ioctl commands in 32 bit emulation
428  */
429 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
430 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
431 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
432 #endif
433 
434 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
435 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
436 
437 struct f2fs_gc_range {
438 	u32 sync;
439 	u64 start;
440 	u64 len;
441 };
442 
443 struct f2fs_defragment {
444 	u64 start;
445 	u64 len;
446 };
447 
448 struct f2fs_move_range {
449 	u32 dst_fd;		/* destination fd */
450 	u64 pos_in;		/* start position in src_fd */
451 	u64 pos_out;		/* start position in dst_fd */
452 	u64 len;		/* size to move */
453 };
454 
455 struct f2fs_flush_device {
456 	u32 dev_num;		/* device number to flush */
457 	u32 segments;		/* # of segments to flush */
458 };
459 
460 /* for inline stuff */
461 #define DEF_INLINE_RESERVED_SIZE	1
462 static inline int get_extra_isize(struct inode *inode);
463 static inline int get_inline_xattr_addrs(struct inode *inode);
464 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
465 				(CUR_ADDRS_PER_INODE(inode) -		\
466 				get_inline_xattr_addrs(inode) -	\
467 				DEF_INLINE_RESERVED_SIZE))
468 
469 /* for inline dir */
470 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
471 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
472 				BITS_PER_BYTE + 1))
473 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
474 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
475 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
476 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
477 				NR_INLINE_DENTRY(inode) + \
478 				INLINE_DENTRY_BITMAP_SIZE(inode)))
479 
480 /*
481  * For INODE and NODE manager
482  */
483 /* for directory operations */
484 struct f2fs_dentry_ptr {
485 	struct inode *inode;
486 	void *bitmap;
487 	struct f2fs_dir_entry *dentry;
488 	__u8 (*filename)[F2FS_SLOT_LEN];
489 	int max;
490 	int nr_bitmap;
491 };
492 
493 static inline void make_dentry_ptr_block(struct inode *inode,
494 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
495 {
496 	d->inode = inode;
497 	d->max = NR_DENTRY_IN_BLOCK;
498 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
499 	d->bitmap = t->dentry_bitmap;
500 	d->dentry = t->dentry;
501 	d->filename = t->filename;
502 }
503 
504 static inline void make_dentry_ptr_inline(struct inode *inode,
505 					struct f2fs_dentry_ptr *d, void *t)
506 {
507 	int entry_cnt = NR_INLINE_DENTRY(inode);
508 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
509 	int reserved_size = INLINE_RESERVED_SIZE(inode);
510 
511 	d->inode = inode;
512 	d->max = entry_cnt;
513 	d->nr_bitmap = bitmap_size;
514 	d->bitmap = t;
515 	d->dentry = t + bitmap_size + reserved_size;
516 	d->filename = t + bitmap_size + reserved_size +
517 					SIZE_OF_DIR_ENTRY * entry_cnt;
518 }
519 
520 /*
521  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
522  * as its node offset to distinguish from index node blocks.
523  * But some bits are used to mark the node block.
524  */
525 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
526 				>> OFFSET_BIT_SHIFT)
527 enum {
528 	ALLOC_NODE,			/* allocate a new node page if needed */
529 	LOOKUP_NODE,			/* look up a node without readahead */
530 	LOOKUP_NODE_RA,			/*
531 					 * look up a node with readahead called
532 					 * by get_data_block.
533 					 */
534 };
535 
536 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
537 
538 /* maximum retry quota flush count */
539 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
540 
541 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
542 
543 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
544 
545 /* for in-memory extent cache entry */
546 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
547 
548 /* number of extent info in extent cache we try to shrink */
549 #define EXTENT_CACHE_SHRINK_NUMBER	128
550 
551 struct rb_entry {
552 	struct rb_node rb_node;		/* rb node located in rb-tree */
553 	unsigned int ofs;		/* start offset of the entry */
554 	unsigned int len;		/* length of the entry */
555 };
556 
557 struct extent_info {
558 	unsigned int fofs;		/* start offset in a file */
559 	unsigned int len;		/* length of the extent */
560 	u32 blk;			/* start block address of the extent */
561 };
562 
563 struct extent_node {
564 	struct rb_node rb_node;		/* rb node located in rb-tree */
565 	struct extent_info ei;		/* extent info */
566 	struct list_head list;		/* node in global extent list of sbi */
567 	struct extent_tree *et;		/* extent tree pointer */
568 };
569 
570 struct extent_tree {
571 	nid_t ino;			/* inode number */
572 	struct rb_root_cached root;	/* root of extent info rb-tree */
573 	struct extent_node *cached_en;	/* recently accessed extent node */
574 	struct extent_info largest;	/* largested extent info */
575 	struct list_head list;		/* to be used by sbi->zombie_list */
576 	rwlock_t lock;			/* protect extent info rb-tree */
577 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
578 	bool largest_updated;		/* largest extent updated */
579 };
580 
581 /*
582  * This structure is taken from ext4_map_blocks.
583  *
584  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
585  */
586 #define F2FS_MAP_NEW		(1 << BH_New)
587 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
588 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
589 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
590 				F2FS_MAP_UNWRITTEN)
591 
592 struct f2fs_map_blocks {
593 	block_t m_pblk;
594 	block_t m_lblk;
595 	unsigned int m_len;
596 	unsigned int m_flags;
597 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
598 	pgoff_t *m_next_extent;		/* point to next possible extent */
599 	int m_seg_type;
600 	bool m_may_create;		/* indicate it is from write path */
601 };
602 
603 /* for flag in get_data_block */
604 enum {
605 	F2FS_GET_BLOCK_DEFAULT,
606 	F2FS_GET_BLOCK_FIEMAP,
607 	F2FS_GET_BLOCK_BMAP,
608 	F2FS_GET_BLOCK_DIO,
609 	F2FS_GET_BLOCK_PRE_DIO,
610 	F2FS_GET_BLOCK_PRE_AIO,
611 	F2FS_GET_BLOCK_PRECACHE,
612 };
613 
614 /*
615  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
616  */
617 #define FADVISE_COLD_BIT	0x01
618 #define FADVISE_LOST_PINO_BIT	0x02
619 #define FADVISE_ENCRYPT_BIT	0x04
620 #define FADVISE_ENC_NAME_BIT	0x08
621 #define FADVISE_KEEP_SIZE_BIT	0x10
622 #define FADVISE_HOT_BIT		0x20
623 #define FADVISE_VERITY_BIT	0x40	/* reserved */
624 
625 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
626 
627 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
628 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
629 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
630 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
631 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
632 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
633 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
634 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
635 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
636 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
637 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
638 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
639 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
640 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
641 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
642 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
643 
644 #define DEF_DIR_LEVEL		0
645 
646 enum {
647 	GC_FAILURE_PIN,
648 	GC_FAILURE_ATOMIC,
649 	MAX_GC_FAILURE
650 };
651 
652 struct f2fs_inode_info {
653 	struct inode vfs_inode;		/* serve a vfs inode */
654 	unsigned long i_flags;		/* keep an inode flags for ioctl */
655 	unsigned char i_advise;		/* use to give file attribute hints */
656 	unsigned char i_dir_level;	/* use for dentry level for large dir */
657 	unsigned int i_current_depth;	/* only for directory depth */
658 	/* for gc failure statistic */
659 	unsigned int i_gc_failures[MAX_GC_FAILURE];
660 	unsigned int i_pino;		/* parent inode number */
661 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
662 
663 	/* Use below internally in f2fs*/
664 	unsigned long flags;		/* use to pass per-file flags */
665 	struct rw_semaphore i_sem;	/* protect fi info */
666 	atomic_t dirty_pages;		/* # of dirty pages */
667 	f2fs_hash_t chash;		/* hash value of given file name */
668 	unsigned int clevel;		/* maximum level of given file name */
669 	struct task_struct *task;	/* lookup and create consistency */
670 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
671 	nid_t i_xattr_nid;		/* node id that contains xattrs */
672 	loff_t	last_disk_size;		/* lastly written file size */
673 
674 #ifdef CONFIG_QUOTA
675 	struct dquot *i_dquot[MAXQUOTAS];
676 
677 	/* quota space reservation, managed internally by quota code */
678 	qsize_t i_reserved_quota;
679 #endif
680 	struct list_head dirty_list;	/* dirty list for dirs and files */
681 	struct list_head gdirty_list;	/* linked in global dirty list */
682 	struct list_head inmem_ilist;	/* list for inmem inodes */
683 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
684 	struct task_struct *inmem_task;	/* store inmemory task */
685 	struct mutex inmem_lock;	/* lock for inmemory pages */
686 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
687 
688 	/* avoid racing between foreground op and gc */
689 	struct rw_semaphore i_gc_rwsem[2];
690 	struct rw_semaphore i_mmap_sem;
691 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
692 
693 	int i_extra_isize;		/* size of extra space located in i_addr */
694 	kprojid_t i_projid;		/* id for project quota */
695 	int i_inline_xattr_size;	/* inline xattr size */
696 	struct timespec64 i_crtime;	/* inode creation time */
697 	struct timespec64 i_disk_time[4];/* inode disk times */
698 };
699 
700 static inline void get_extent_info(struct extent_info *ext,
701 					struct f2fs_extent *i_ext)
702 {
703 	ext->fofs = le32_to_cpu(i_ext->fofs);
704 	ext->blk = le32_to_cpu(i_ext->blk);
705 	ext->len = le32_to_cpu(i_ext->len);
706 }
707 
708 static inline void set_raw_extent(struct extent_info *ext,
709 					struct f2fs_extent *i_ext)
710 {
711 	i_ext->fofs = cpu_to_le32(ext->fofs);
712 	i_ext->blk = cpu_to_le32(ext->blk);
713 	i_ext->len = cpu_to_le32(ext->len);
714 }
715 
716 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
717 						u32 blk, unsigned int len)
718 {
719 	ei->fofs = fofs;
720 	ei->blk = blk;
721 	ei->len = len;
722 }
723 
724 static inline bool __is_discard_mergeable(struct discard_info *back,
725 			struct discard_info *front, unsigned int max_len)
726 {
727 	return (back->lstart + back->len == front->lstart) &&
728 		(back->len + front->len <= max_len);
729 }
730 
731 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
732 			struct discard_info *back, unsigned int max_len)
733 {
734 	return __is_discard_mergeable(back, cur, max_len);
735 }
736 
737 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
738 			struct discard_info *front, unsigned int max_len)
739 {
740 	return __is_discard_mergeable(cur, front, max_len);
741 }
742 
743 static inline bool __is_extent_mergeable(struct extent_info *back,
744 						struct extent_info *front)
745 {
746 	return (back->fofs + back->len == front->fofs &&
747 			back->blk + back->len == front->blk);
748 }
749 
750 static inline bool __is_back_mergeable(struct extent_info *cur,
751 						struct extent_info *back)
752 {
753 	return __is_extent_mergeable(back, cur);
754 }
755 
756 static inline bool __is_front_mergeable(struct extent_info *cur,
757 						struct extent_info *front)
758 {
759 	return __is_extent_mergeable(cur, front);
760 }
761 
762 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
763 static inline void __try_update_largest_extent(struct extent_tree *et,
764 						struct extent_node *en)
765 {
766 	if (en->ei.len > et->largest.len) {
767 		et->largest = en->ei;
768 		et->largest_updated = true;
769 	}
770 }
771 
772 /*
773  * For free nid management
774  */
775 enum nid_state {
776 	FREE_NID,		/* newly added to free nid list */
777 	PREALLOC_NID,		/* it is preallocated */
778 	MAX_NID_STATE,
779 };
780 
781 struct f2fs_nm_info {
782 	block_t nat_blkaddr;		/* base disk address of NAT */
783 	nid_t max_nid;			/* maximum possible node ids */
784 	nid_t available_nids;		/* # of available node ids */
785 	nid_t next_scan_nid;		/* the next nid to be scanned */
786 	unsigned int ram_thresh;	/* control the memory footprint */
787 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
788 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
789 
790 	/* NAT cache management */
791 	struct radix_tree_root nat_root;/* root of the nat entry cache */
792 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
793 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
794 	struct list_head nat_entries;	/* cached nat entry list (clean) */
795 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
796 	unsigned int nat_cnt;		/* the # of cached nat entries */
797 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
798 	unsigned int nat_blocks;	/* # of nat blocks */
799 
800 	/* free node ids management */
801 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
802 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
803 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
804 	spinlock_t nid_list_lock;	/* protect nid lists ops */
805 	struct mutex build_lock;	/* lock for build free nids */
806 	unsigned char **free_nid_bitmap;
807 	unsigned char *nat_block_bitmap;
808 	unsigned short *free_nid_count;	/* free nid count of NAT block */
809 
810 	/* for checkpoint */
811 	char *nat_bitmap;		/* NAT bitmap pointer */
812 
813 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
814 	unsigned char *nat_bits;	/* NAT bits blocks */
815 	unsigned char *full_nat_bits;	/* full NAT pages */
816 	unsigned char *empty_nat_bits;	/* empty NAT pages */
817 #ifdef CONFIG_F2FS_CHECK_FS
818 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
819 #endif
820 	int bitmap_size;		/* bitmap size */
821 };
822 
823 /*
824  * this structure is used as one of function parameters.
825  * all the information are dedicated to a given direct node block determined
826  * by the data offset in a file.
827  */
828 struct dnode_of_data {
829 	struct inode *inode;		/* vfs inode pointer */
830 	struct page *inode_page;	/* its inode page, NULL is possible */
831 	struct page *node_page;		/* cached direct node page */
832 	nid_t nid;			/* node id of the direct node block */
833 	unsigned int ofs_in_node;	/* data offset in the node page */
834 	bool inode_page_locked;		/* inode page is locked or not */
835 	bool node_changed;		/* is node block changed */
836 	char cur_level;			/* level of hole node page */
837 	char max_level;			/* level of current page located */
838 	block_t	data_blkaddr;		/* block address of the node block */
839 };
840 
841 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
842 		struct page *ipage, struct page *npage, nid_t nid)
843 {
844 	memset(dn, 0, sizeof(*dn));
845 	dn->inode = inode;
846 	dn->inode_page = ipage;
847 	dn->node_page = npage;
848 	dn->nid = nid;
849 }
850 
851 /*
852  * For SIT manager
853  *
854  * By default, there are 6 active log areas across the whole main area.
855  * When considering hot and cold data separation to reduce cleaning overhead,
856  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
857  * respectively.
858  * In the current design, you should not change the numbers intentionally.
859  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
860  * logs individually according to the underlying devices. (default: 6)
861  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
862  * data and 8 for node logs.
863  */
864 #define	NR_CURSEG_DATA_TYPE	(3)
865 #define NR_CURSEG_NODE_TYPE	(3)
866 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
867 
868 enum {
869 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
870 	CURSEG_WARM_DATA,	/* data blocks */
871 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
872 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
873 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
874 	CURSEG_COLD_NODE,	/* indirect node blocks */
875 	NO_CHECK_TYPE,
876 };
877 
878 struct flush_cmd {
879 	struct completion wait;
880 	struct llist_node llnode;
881 	nid_t ino;
882 	int ret;
883 };
884 
885 struct flush_cmd_control {
886 	struct task_struct *f2fs_issue_flush;	/* flush thread */
887 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
888 	atomic_t issued_flush;			/* # of issued flushes */
889 	atomic_t queued_flush;			/* # of queued flushes */
890 	struct llist_head issue_list;		/* list for command issue */
891 	struct llist_node *dispatch_list;	/* list for command dispatch */
892 };
893 
894 struct f2fs_sm_info {
895 	struct sit_info *sit_info;		/* whole segment information */
896 	struct free_segmap_info *free_info;	/* free segment information */
897 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
898 	struct curseg_info *curseg_array;	/* active segment information */
899 
900 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
901 
902 	block_t seg0_blkaddr;		/* block address of 0'th segment */
903 	block_t main_blkaddr;		/* start block address of main area */
904 	block_t ssa_blkaddr;		/* start block address of SSA area */
905 
906 	unsigned int segment_count;	/* total # of segments */
907 	unsigned int main_segments;	/* # of segments in main area */
908 	unsigned int reserved_segments;	/* # of reserved segments */
909 	unsigned int ovp_segments;	/* # of overprovision segments */
910 
911 	/* a threshold to reclaim prefree segments */
912 	unsigned int rec_prefree_segments;
913 
914 	/* for batched trimming */
915 	unsigned int trim_sections;		/* # of sections to trim */
916 
917 	struct list_head sit_entry_set;	/* sit entry set list */
918 
919 	unsigned int ipu_policy;	/* in-place-update policy */
920 	unsigned int min_ipu_util;	/* in-place-update threshold */
921 	unsigned int min_fsync_blocks;	/* threshold for fsync */
922 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
923 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
924 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
925 
926 	/* for flush command control */
927 	struct flush_cmd_control *fcc_info;
928 
929 	/* for discard command control */
930 	struct discard_cmd_control *dcc_info;
931 };
932 
933 /*
934  * For superblock
935  */
936 /*
937  * COUNT_TYPE for monitoring
938  *
939  * f2fs monitors the number of several block types such as on-writeback,
940  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
941  */
942 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
943 enum count_type {
944 	F2FS_DIRTY_DENTS,
945 	F2FS_DIRTY_DATA,
946 	F2FS_DIRTY_QDATA,
947 	F2FS_DIRTY_NODES,
948 	F2FS_DIRTY_META,
949 	F2FS_INMEM_PAGES,
950 	F2FS_DIRTY_IMETA,
951 	F2FS_WB_CP_DATA,
952 	F2FS_WB_DATA,
953 	F2FS_RD_DATA,
954 	F2FS_RD_NODE,
955 	F2FS_RD_META,
956 	F2FS_DIO_WRITE,
957 	F2FS_DIO_READ,
958 	NR_COUNT_TYPE,
959 };
960 
961 /*
962  * The below are the page types of bios used in submit_bio().
963  * The available types are:
964  * DATA			User data pages. It operates as async mode.
965  * NODE			Node pages. It operates as async mode.
966  * META			FS metadata pages such as SIT, NAT, CP.
967  * NR_PAGE_TYPE		The number of page types.
968  * META_FLUSH		Make sure the previous pages are written
969  *			with waiting the bio's completion
970  * ...			Only can be used with META.
971  */
972 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
973 enum page_type {
974 	DATA,
975 	NODE,
976 	META,
977 	NR_PAGE_TYPE,
978 	META_FLUSH,
979 	INMEM,		/* the below types are used by tracepoints only. */
980 	INMEM_DROP,
981 	INMEM_INVALIDATE,
982 	INMEM_REVOKE,
983 	IPU,
984 	OPU,
985 };
986 
987 enum temp_type {
988 	HOT = 0,	/* must be zero for meta bio */
989 	WARM,
990 	COLD,
991 	NR_TEMP_TYPE,
992 };
993 
994 enum need_lock_type {
995 	LOCK_REQ = 0,
996 	LOCK_DONE,
997 	LOCK_RETRY,
998 };
999 
1000 enum cp_reason_type {
1001 	CP_NO_NEEDED,
1002 	CP_NON_REGULAR,
1003 	CP_HARDLINK,
1004 	CP_SB_NEED_CP,
1005 	CP_WRONG_PINO,
1006 	CP_NO_SPC_ROLL,
1007 	CP_NODE_NEED_CP,
1008 	CP_FASTBOOT_MODE,
1009 	CP_SPEC_LOG_NUM,
1010 	CP_RECOVER_DIR,
1011 };
1012 
1013 enum iostat_type {
1014 	APP_DIRECT_IO,			/* app direct IOs */
1015 	APP_BUFFERED_IO,		/* app buffered IOs */
1016 	APP_WRITE_IO,			/* app write IOs */
1017 	APP_MAPPED_IO,			/* app mapped IOs */
1018 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1019 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1020 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1021 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1022 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1023 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1024 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1025 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1026 	FS_DISCARD,			/* discard */
1027 	NR_IO_TYPE,
1028 };
1029 
1030 struct f2fs_io_info {
1031 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1032 	nid_t ino;		/* inode number */
1033 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1034 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1035 	int op;			/* contains REQ_OP_ */
1036 	int op_flags;		/* req_flag_bits */
1037 	block_t new_blkaddr;	/* new block address to be written */
1038 	block_t old_blkaddr;	/* old block address before Cow */
1039 	struct page *page;	/* page to be written */
1040 	struct page *encrypted_page;	/* encrypted page */
1041 	struct list_head list;		/* serialize IOs */
1042 	bool submitted;		/* indicate IO submission */
1043 	int need_lock;		/* indicate we need to lock cp_rwsem */
1044 	bool in_list;		/* indicate fio is in io_list */
1045 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1046 	bool retry;		/* need to reallocate block address */
1047 	enum iostat_type io_type;	/* io type */
1048 	struct writeback_control *io_wbc; /* writeback control */
1049 	unsigned char version;		/* version of the node */
1050 };
1051 
1052 #define is_read_io(rw) ((rw) == READ)
1053 struct f2fs_bio_info {
1054 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1055 	struct bio *bio;		/* bios to merge */
1056 	sector_t last_block_in_bio;	/* last block number */
1057 	struct f2fs_io_info fio;	/* store buffered io info. */
1058 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1059 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1060 	struct list_head io_list;	/* track fios */
1061 };
1062 
1063 #define FDEV(i)				(sbi->devs[i])
1064 #define RDEV(i)				(raw_super->devs[i])
1065 struct f2fs_dev_info {
1066 	struct block_device *bdev;
1067 	char path[MAX_PATH_LEN];
1068 	unsigned int total_segments;
1069 	block_t start_blk;
1070 	block_t end_blk;
1071 #ifdef CONFIG_BLK_DEV_ZONED
1072 	unsigned int nr_blkz;			/* Total number of zones */
1073 	u8 *blkz_type;				/* Array of zones type */
1074 #endif
1075 };
1076 
1077 enum inode_type {
1078 	DIR_INODE,			/* for dirty dir inode */
1079 	FILE_INODE,			/* for dirty regular/symlink inode */
1080 	DIRTY_META,			/* for all dirtied inode metadata */
1081 	ATOMIC_FILE,			/* for all atomic files */
1082 	NR_INODE_TYPE,
1083 };
1084 
1085 /* for inner inode cache management */
1086 struct inode_management {
1087 	struct radix_tree_root ino_root;	/* ino entry array */
1088 	spinlock_t ino_lock;			/* for ino entry lock */
1089 	struct list_head ino_list;		/* inode list head */
1090 	unsigned long ino_num;			/* number of entries */
1091 };
1092 
1093 /* For s_flag in struct f2fs_sb_info */
1094 enum {
1095 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1096 	SBI_IS_CLOSE,				/* specify unmounting */
1097 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1098 	SBI_POR_DOING,				/* recovery is doing or not */
1099 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1100 	SBI_NEED_CP,				/* need to checkpoint */
1101 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1102 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1103 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1104 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1105 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1106 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1107 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1108 };
1109 
1110 enum {
1111 	CP_TIME,
1112 	REQ_TIME,
1113 	DISCARD_TIME,
1114 	GC_TIME,
1115 	DISABLE_TIME,
1116 	UMOUNT_DISCARD_TIMEOUT,
1117 	MAX_TIME,
1118 };
1119 
1120 enum {
1121 	GC_NORMAL,
1122 	GC_IDLE_CB,
1123 	GC_IDLE_GREEDY,
1124 	GC_URGENT,
1125 };
1126 
1127 enum {
1128 	WHINT_MODE_OFF,		/* not pass down write hints */
1129 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1130 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1131 };
1132 
1133 enum {
1134 	ALLOC_MODE_DEFAULT,	/* stay default */
1135 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1136 };
1137 
1138 enum fsync_mode {
1139 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1140 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1141 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1142 };
1143 
1144 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1145 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1146 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1147 #else
1148 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1149 #endif
1150 
1151 struct f2fs_sb_info {
1152 	struct super_block *sb;			/* pointer to VFS super block */
1153 	struct proc_dir_entry *s_proc;		/* proc entry */
1154 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1155 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1156 	int valid_super_block;			/* valid super block no */
1157 	unsigned long s_flag;				/* flags for sbi */
1158 	struct mutex writepages;		/* mutex for writepages() */
1159 
1160 #ifdef CONFIG_BLK_DEV_ZONED
1161 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1162 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1163 #endif
1164 
1165 	/* for node-related operations */
1166 	struct f2fs_nm_info *nm_info;		/* node manager */
1167 	struct inode *node_inode;		/* cache node blocks */
1168 
1169 	/* for segment-related operations */
1170 	struct f2fs_sm_info *sm_info;		/* segment manager */
1171 
1172 	/* for bio operations */
1173 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1174 	/* keep migration IO order for LFS mode */
1175 	struct rw_semaphore io_order_lock;
1176 	mempool_t *write_io_dummy;		/* Dummy pages */
1177 
1178 	/* for checkpoint */
1179 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1180 	int cur_cp_pack;			/* remain current cp pack */
1181 	spinlock_t cp_lock;			/* for flag in ckpt */
1182 	struct inode *meta_inode;		/* cache meta blocks */
1183 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1184 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1185 	struct rw_semaphore node_write;		/* locking node writes */
1186 	struct rw_semaphore node_change;	/* locking node change */
1187 	wait_queue_head_t cp_wait;
1188 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1189 	long interval_time[MAX_TIME];		/* to store thresholds */
1190 
1191 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1192 
1193 	spinlock_t fsync_node_lock;		/* for node entry lock */
1194 	struct list_head fsync_node_list;	/* node list head */
1195 	unsigned int fsync_seg_id;		/* sequence id */
1196 	unsigned int fsync_node_num;		/* number of node entries */
1197 
1198 	/* for orphan inode, use 0'th array */
1199 	unsigned int max_orphans;		/* max orphan inodes */
1200 
1201 	/* for inode management */
1202 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1203 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1204 
1205 	/* for extent tree cache */
1206 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1207 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1208 	struct list_head extent_list;		/* lru list for shrinker */
1209 	spinlock_t extent_lock;			/* locking extent lru list */
1210 	atomic_t total_ext_tree;		/* extent tree count */
1211 	struct list_head zombie_list;		/* extent zombie tree list */
1212 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1213 	atomic_t total_ext_node;		/* extent info count */
1214 
1215 	/* basic filesystem units */
1216 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1217 	unsigned int log_blocksize;		/* log2 block size */
1218 	unsigned int blocksize;			/* block size */
1219 	unsigned int root_ino_num;		/* root inode number*/
1220 	unsigned int node_ino_num;		/* node inode number*/
1221 	unsigned int meta_ino_num;		/* meta inode number*/
1222 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1223 	unsigned int blocks_per_seg;		/* blocks per segment */
1224 	unsigned int segs_per_sec;		/* segments per section */
1225 	unsigned int secs_per_zone;		/* sections per zone */
1226 	unsigned int total_sections;		/* total section count */
1227 	unsigned int total_node_count;		/* total node block count */
1228 	unsigned int total_valid_node_count;	/* valid node block count */
1229 	loff_t max_file_blocks;			/* max block index of file */
1230 	int dir_level;				/* directory level */
1231 	int readdir_ra;				/* readahead inode in readdir */
1232 
1233 	block_t user_block_count;		/* # of user blocks */
1234 	block_t total_valid_block_count;	/* # of valid blocks */
1235 	block_t discard_blks;			/* discard command candidats */
1236 	block_t last_valid_block_count;		/* for recovery */
1237 	block_t reserved_blocks;		/* configurable reserved blocks */
1238 	block_t current_reserved_blocks;	/* current reserved blocks */
1239 
1240 	/* Additional tracking for no checkpoint mode */
1241 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1242 
1243 	unsigned int nquota_files;		/* # of quota sysfile */
1244 
1245 	/* # of pages, see count_type */
1246 	atomic_t nr_pages[NR_COUNT_TYPE];
1247 	/* # of allocated blocks */
1248 	struct percpu_counter alloc_valid_block_count;
1249 
1250 	/* writeback control */
1251 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1252 
1253 	/* valid inode count */
1254 	struct percpu_counter total_valid_inode_count;
1255 
1256 	struct f2fs_mount_info mount_opt;	/* mount options */
1257 
1258 	/* for cleaning operations */
1259 	struct mutex gc_mutex;			/* mutex for GC */
1260 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1261 	unsigned int cur_victim_sec;		/* current victim section num */
1262 	unsigned int gc_mode;			/* current GC state */
1263 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1264 	/* for skip statistic */
1265 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1266 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1267 
1268 	/* threshold for gc trials on pinned files */
1269 	u64 gc_pin_file_threshold;
1270 
1271 	/* maximum # of trials to find a victim segment for SSR and GC */
1272 	unsigned int max_victim_search;
1273 	/* migration granularity of garbage collection, unit: segment */
1274 	unsigned int migration_granularity;
1275 
1276 	/*
1277 	 * for stat information.
1278 	 * one is for the LFS mode, and the other is for the SSR mode.
1279 	 */
1280 #ifdef CONFIG_F2FS_STAT_FS
1281 	struct f2fs_stat_info *stat_info;	/* FS status information */
1282 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1283 	unsigned int segment_count[2];		/* # of allocated segments */
1284 	unsigned int block_count[2];		/* # of allocated blocks */
1285 	atomic_t inplace_count;		/* # of inplace update */
1286 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1287 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1288 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1289 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1290 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1291 	atomic_t inline_inode;			/* # of inline_data inodes */
1292 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1293 	atomic_t aw_cnt;			/* # of atomic writes */
1294 	atomic_t vw_cnt;			/* # of volatile writes */
1295 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1296 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1297 	int bg_gc;				/* background gc calls */
1298 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1299 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1300 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1301 #endif
1302 	spinlock_t stat_lock;			/* lock for stat operations */
1303 
1304 	/* For app/fs IO statistics */
1305 	spinlock_t iostat_lock;
1306 	unsigned long long write_iostat[NR_IO_TYPE];
1307 	bool iostat_enable;
1308 
1309 	/* For sysfs suppport */
1310 	struct kobject s_kobj;
1311 	struct completion s_kobj_unregister;
1312 
1313 	/* For shrinker support */
1314 	struct list_head s_list;
1315 	int s_ndevs;				/* number of devices */
1316 	struct f2fs_dev_info *devs;		/* for device list */
1317 	unsigned int dirty_device;		/* for checkpoint data flush */
1318 	spinlock_t dev_lock;			/* protect dirty_device */
1319 	struct mutex umount_mutex;
1320 	unsigned int shrinker_run_no;
1321 
1322 	/* For write statistics */
1323 	u64 sectors_written_start;
1324 	u64 kbytes_written;
1325 
1326 	/* Reference to checksum algorithm driver via cryptoapi */
1327 	struct crypto_shash *s_chksum_driver;
1328 
1329 	/* Precomputed FS UUID checksum for seeding other checksums */
1330 	__u32 s_chksum_seed;
1331 };
1332 
1333 struct f2fs_private_dio {
1334 	struct inode *inode;
1335 	void *orig_private;
1336 	bio_end_io_t *orig_end_io;
1337 	bool write;
1338 };
1339 
1340 #ifdef CONFIG_F2FS_FAULT_INJECTION
1341 #define f2fs_show_injection_info(type)					\
1342 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n",	\
1343 		KERN_INFO, f2fs_fault_name[type],			\
1344 		__func__, __builtin_return_address(0))
1345 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1346 {
1347 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1348 
1349 	if (!ffi->inject_rate)
1350 		return false;
1351 
1352 	if (!IS_FAULT_SET(ffi, type))
1353 		return false;
1354 
1355 	atomic_inc(&ffi->inject_ops);
1356 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1357 		atomic_set(&ffi->inject_ops, 0);
1358 		return true;
1359 	}
1360 	return false;
1361 }
1362 #else
1363 #define f2fs_show_injection_info(type) do { } while (0)
1364 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1365 {
1366 	return false;
1367 }
1368 #endif
1369 
1370 /* For write statistics. Suppose sector size is 512 bytes,
1371  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1372  */
1373 #define BD_PART_WRITTEN(s)						 \
1374 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1375 		(s)->sectors_written_start) >> 1)
1376 
1377 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1378 {
1379 	unsigned long now = jiffies;
1380 
1381 	sbi->last_time[type] = now;
1382 
1383 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1384 	if (type == REQ_TIME) {
1385 		sbi->last_time[DISCARD_TIME] = now;
1386 		sbi->last_time[GC_TIME] = now;
1387 	}
1388 }
1389 
1390 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1391 {
1392 	unsigned long interval = sbi->interval_time[type] * HZ;
1393 
1394 	return time_after(jiffies, sbi->last_time[type] + interval);
1395 }
1396 
1397 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1398 						int type)
1399 {
1400 	unsigned long interval = sbi->interval_time[type] * HZ;
1401 	unsigned int wait_ms = 0;
1402 	long delta;
1403 
1404 	delta = (sbi->last_time[type] + interval) - jiffies;
1405 	if (delta > 0)
1406 		wait_ms = jiffies_to_msecs(delta);
1407 
1408 	return wait_ms;
1409 }
1410 
1411 /*
1412  * Inline functions
1413  */
1414 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1415 			      const void *address, unsigned int length)
1416 {
1417 	struct {
1418 		struct shash_desc shash;
1419 		char ctx[4];
1420 	} desc;
1421 	int err;
1422 
1423 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1424 
1425 	desc.shash.tfm = sbi->s_chksum_driver;
1426 	desc.shash.flags = 0;
1427 	*(u32 *)desc.ctx = crc;
1428 
1429 	err = crypto_shash_update(&desc.shash, address, length);
1430 	BUG_ON(err);
1431 
1432 	return *(u32 *)desc.ctx;
1433 }
1434 
1435 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1436 			   unsigned int length)
1437 {
1438 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1439 }
1440 
1441 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1442 				  void *buf, size_t buf_size)
1443 {
1444 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1445 }
1446 
1447 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1448 			      const void *address, unsigned int length)
1449 {
1450 	return __f2fs_crc32(sbi, crc, address, length);
1451 }
1452 
1453 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1454 {
1455 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1456 }
1457 
1458 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1459 {
1460 	return sb->s_fs_info;
1461 }
1462 
1463 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1464 {
1465 	return F2FS_SB(inode->i_sb);
1466 }
1467 
1468 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1469 {
1470 	return F2FS_I_SB(mapping->host);
1471 }
1472 
1473 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1474 {
1475 	return F2FS_M_SB(page->mapping);
1476 }
1477 
1478 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1479 {
1480 	return (struct f2fs_super_block *)(sbi->raw_super);
1481 }
1482 
1483 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1484 {
1485 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1486 }
1487 
1488 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1489 {
1490 	return (struct f2fs_node *)page_address(page);
1491 }
1492 
1493 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1494 {
1495 	return &((struct f2fs_node *)page_address(page))->i;
1496 }
1497 
1498 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1499 {
1500 	return (struct f2fs_nm_info *)(sbi->nm_info);
1501 }
1502 
1503 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1504 {
1505 	return (struct f2fs_sm_info *)(sbi->sm_info);
1506 }
1507 
1508 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1509 {
1510 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1511 }
1512 
1513 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1514 {
1515 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1516 }
1517 
1518 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1519 {
1520 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1521 }
1522 
1523 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1524 {
1525 	return sbi->meta_inode->i_mapping;
1526 }
1527 
1528 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1529 {
1530 	return sbi->node_inode->i_mapping;
1531 }
1532 
1533 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1534 {
1535 	return test_bit(type, &sbi->s_flag);
1536 }
1537 
1538 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1539 {
1540 	set_bit(type, &sbi->s_flag);
1541 }
1542 
1543 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1544 {
1545 	clear_bit(type, &sbi->s_flag);
1546 }
1547 
1548 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1549 {
1550 	return le64_to_cpu(cp->checkpoint_ver);
1551 }
1552 
1553 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1554 {
1555 	if (type < F2FS_MAX_QUOTAS)
1556 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1557 	return 0;
1558 }
1559 
1560 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1561 {
1562 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1563 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1564 }
1565 
1566 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1567 {
1568 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1569 
1570 	return ckpt_flags & f;
1571 }
1572 
1573 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1574 {
1575 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1576 }
1577 
1578 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1579 {
1580 	unsigned int ckpt_flags;
1581 
1582 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1583 	ckpt_flags |= f;
1584 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1585 }
1586 
1587 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1588 {
1589 	unsigned long flags;
1590 
1591 	spin_lock_irqsave(&sbi->cp_lock, flags);
1592 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1593 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1594 }
1595 
1596 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1597 {
1598 	unsigned int ckpt_flags;
1599 
1600 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1601 	ckpt_flags &= (~f);
1602 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1603 }
1604 
1605 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1606 {
1607 	unsigned long flags;
1608 
1609 	spin_lock_irqsave(&sbi->cp_lock, flags);
1610 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1611 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1612 }
1613 
1614 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1615 {
1616 	unsigned long flags;
1617 
1618 	/*
1619 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1620 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1621 	 * so let's rely on regular fsck or unclean shutdown.
1622 	 */
1623 
1624 	if (lock)
1625 		spin_lock_irqsave(&sbi->cp_lock, flags);
1626 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1627 	kvfree(NM_I(sbi)->nat_bits);
1628 	NM_I(sbi)->nat_bits = NULL;
1629 	if (lock)
1630 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1631 }
1632 
1633 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1634 					struct cp_control *cpc)
1635 {
1636 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1637 
1638 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1639 }
1640 
1641 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1642 {
1643 	down_read(&sbi->cp_rwsem);
1644 }
1645 
1646 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1647 {
1648 	return down_read_trylock(&sbi->cp_rwsem);
1649 }
1650 
1651 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1652 {
1653 	up_read(&sbi->cp_rwsem);
1654 }
1655 
1656 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1657 {
1658 	down_write(&sbi->cp_rwsem);
1659 }
1660 
1661 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1662 {
1663 	up_write(&sbi->cp_rwsem);
1664 }
1665 
1666 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1667 {
1668 	int reason = CP_SYNC;
1669 
1670 	if (test_opt(sbi, FASTBOOT))
1671 		reason = CP_FASTBOOT;
1672 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1673 		reason = CP_UMOUNT;
1674 	return reason;
1675 }
1676 
1677 static inline bool __remain_node_summaries(int reason)
1678 {
1679 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1680 }
1681 
1682 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1683 {
1684 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1685 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1686 }
1687 
1688 /*
1689  * Check whether the inode has blocks or not
1690  */
1691 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1692 {
1693 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1694 
1695 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1696 }
1697 
1698 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1699 {
1700 	return ofs == XATTR_NODE_OFFSET;
1701 }
1702 
1703 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1704 					struct inode *inode, bool cap)
1705 {
1706 	if (!inode)
1707 		return true;
1708 	if (!test_opt(sbi, RESERVE_ROOT))
1709 		return false;
1710 	if (IS_NOQUOTA(inode))
1711 		return true;
1712 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1713 		return true;
1714 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1715 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1716 		return true;
1717 	if (cap && capable(CAP_SYS_RESOURCE))
1718 		return true;
1719 	return false;
1720 }
1721 
1722 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1723 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1724 				 struct inode *inode, blkcnt_t *count)
1725 {
1726 	blkcnt_t diff = 0, release = 0;
1727 	block_t avail_user_block_count;
1728 	int ret;
1729 
1730 	ret = dquot_reserve_block(inode, *count);
1731 	if (ret)
1732 		return ret;
1733 
1734 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1735 		f2fs_show_injection_info(FAULT_BLOCK);
1736 		release = *count;
1737 		goto enospc;
1738 	}
1739 
1740 	/*
1741 	 * let's increase this in prior to actual block count change in order
1742 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1743 	 */
1744 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1745 
1746 	spin_lock(&sbi->stat_lock);
1747 	sbi->total_valid_block_count += (block_t)(*count);
1748 	avail_user_block_count = sbi->user_block_count -
1749 					sbi->current_reserved_blocks;
1750 
1751 	if (!__allow_reserved_blocks(sbi, inode, true))
1752 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1753 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1754 		avail_user_block_count -= sbi->unusable_block_count;
1755 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1756 		diff = sbi->total_valid_block_count - avail_user_block_count;
1757 		if (diff > *count)
1758 			diff = *count;
1759 		*count -= diff;
1760 		release = diff;
1761 		sbi->total_valid_block_count -= diff;
1762 		if (!*count) {
1763 			spin_unlock(&sbi->stat_lock);
1764 			goto enospc;
1765 		}
1766 	}
1767 	spin_unlock(&sbi->stat_lock);
1768 
1769 	if (unlikely(release)) {
1770 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1771 		dquot_release_reservation_block(inode, release);
1772 	}
1773 	f2fs_i_blocks_write(inode, *count, true, true);
1774 	return 0;
1775 
1776 enospc:
1777 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1778 	dquot_release_reservation_block(inode, release);
1779 	return -ENOSPC;
1780 }
1781 
1782 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1783 						struct inode *inode,
1784 						block_t count)
1785 {
1786 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1787 
1788 	spin_lock(&sbi->stat_lock);
1789 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1790 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1791 	sbi->total_valid_block_count -= (block_t)count;
1792 	if (sbi->reserved_blocks &&
1793 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1794 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1795 					sbi->current_reserved_blocks + count);
1796 	spin_unlock(&sbi->stat_lock);
1797 	f2fs_i_blocks_write(inode, count, false, true);
1798 }
1799 
1800 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1801 {
1802 	atomic_inc(&sbi->nr_pages[count_type]);
1803 
1804 	if (count_type == F2FS_DIRTY_DENTS ||
1805 			count_type == F2FS_DIRTY_NODES ||
1806 			count_type == F2FS_DIRTY_META ||
1807 			count_type == F2FS_DIRTY_QDATA ||
1808 			count_type == F2FS_DIRTY_IMETA)
1809 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1810 }
1811 
1812 static inline void inode_inc_dirty_pages(struct inode *inode)
1813 {
1814 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1815 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1816 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1817 	if (IS_NOQUOTA(inode))
1818 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1819 }
1820 
1821 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1822 {
1823 	atomic_dec(&sbi->nr_pages[count_type]);
1824 }
1825 
1826 static inline void inode_dec_dirty_pages(struct inode *inode)
1827 {
1828 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1829 			!S_ISLNK(inode->i_mode))
1830 		return;
1831 
1832 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1833 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1834 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1835 	if (IS_NOQUOTA(inode))
1836 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1837 }
1838 
1839 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1840 {
1841 	return atomic_read(&sbi->nr_pages[count_type]);
1842 }
1843 
1844 static inline int get_dirty_pages(struct inode *inode)
1845 {
1846 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1847 }
1848 
1849 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1850 {
1851 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1852 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1853 						sbi->log_blocks_per_seg;
1854 
1855 	return segs / sbi->segs_per_sec;
1856 }
1857 
1858 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1859 {
1860 	return sbi->total_valid_block_count;
1861 }
1862 
1863 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1864 {
1865 	return sbi->discard_blks;
1866 }
1867 
1868 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1869 {
1870 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1871 
1872 	/* return NAT or SIT bitmap */
1873 	if (flag == NAT_BITMAP)
1874 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1875 	else if (flag == SIT_BITMAP)
1876 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1877 
1878 	return 0;
1879 }
1880 
1881 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1882 {
1883 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1884 }
1885 
1886 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1887 {
1888 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1889 	int offset;
1890 
1891 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1892 		offset = (flag == SIT_BITMAP) ?
1893 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1894 		return &ckpt->sit_nat_version_bitmap + offset;
1895 	}
1896 
1897 	if (__cp_payload(sbi) > 0) {
1898 		if (flag == NAT_BITMAP)
1899 			return &ckpt->sit_nat_version_bitmap;
1900 		else
1901 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1902 	} else {
1903 		offset = (flag == NAT_BITMAP) ?
1904 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1905 		return &ckpt->sit_nat_version_bitmap + offset;
1906 	}
1907 }
1908 
1909 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1910 {
1911 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1912 
1913 	if (sbi->cur_cp_pack == 2)
1914 		start_addr += sbi->blocks_per_seg;
1915 	return start_addr;
1916 }
1917 
1918 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1919 {
1920 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1921 
1922 	if (sbi->cur_cp_pack == 1)
1923 		start_addr += sbi->blocks_per_seg;
1924 	return start_addr;
1925 }
1926 
1927 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1928 {
1929 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1930 }
1931 
1932 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1933 {
1934 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1935 }
1936 
1937 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1938 					struct inode *inode, bool is_inode)
1939 {
1940 	block_t	valid_block_count;
1941 	unsigned int valid_node_count;
1942 	int err;
1943 
1944 	if (is_inode) {
1945 		if (inode) {
1946 			err = dquot_alloc_inode(inode);
1947 			if (err)
1948 				return err;
1949 		}
1950 	} else {
1951 		err = dquot_reserve_block(inode, 1);
1952 		if (err)
1953 			return err;
1954 	}
1955 
1956 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1957 		f2fs_show_injection_info(FAULT_BLOCK);
1958 		goto enospc;
1959 	}
1960 
1961 	spin_lock(&sbi->stat_lock);
1962 
1963 	valid_block_count = sbi->total_valid_block_count +
1964 					sbi->current_reserved_blocks + 1;
1965 
1966 	if (!__allow_reserved_blocks(sbi, inode, false))
1967 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1968 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1969 		valid_block_count += sbi->unusable_block_count;
1970 
1971 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1972 		spin_unlock(&sbi->stat_lock);
1973 		goto enospc;
1974 	}
1975 
1976 	valid_node_count = sbi->total_valid_node_count + 1;
1977 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1978 		spin_unlock(&sbi->stat_lock);
1979 		goto enospc;
1980 	}
1981 
1982 	sbi->total_valid_node_count++;
1983 	sbi->total_valid_block_count++;
1984 	spin_unlock(&sbi->stat_lock);
1985 
1986 	if (inode) {
1987 		if (is_inode)
1988 			f2fs_mark_inode_dirty_sync(inode, true);
1989 		else
1990 			f2fs_i_blocks_write(inode, 1, true, true);
1991 	}
1992 
1993 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1994 	return 0;
1995 
1996 enospc:
1997 	if (is_inode) {
1998 		if (inode)
1999 			dquot_free_inode(inode);
2000 	} else {
2001 		dquot_release_reservation_block(inode, 1);
2002 	}
2003 	return -ENOSPC;
2004 }
2005 
2006 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2007 					struct inode *inode, bool is_inode)
2008 {
2009 	spin_lock(&sbi->stat_lock);
2010 
2011 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2012 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2013 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
2014 
2015 	sbi->total_valid_node_count--;
2016 	sbi->total_valid_block_count--;
2017 	if (sbi->reserved_blocks &&
2018 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2019 		sbi->current_reserved_blocks++;
2020 
2021 	spin_unlock(&sbi->stat_lock);
2022 
2023 	if (is_inode)
2024 		dquot_free_inode(inode);
2025 	else
2026 		f2fs_i_blocks_write(inode, 1, false, true);
2027 }
2028 
2029 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2030 {
2031 	return sbi->total_valid_node_count;
2032 }
2033 
2034 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2035 {
2036 	percpu_counter_inc(&sbi->total_valid_inode_count);
2037 }
2038 
2039 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2040 {
2041 	percpu_counter_dec(&sbi->total_valid_inode_count);
2042 }
2043 
2044 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2045 {
2046 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2047 }
2048 
2049 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2050 						pgoff_t index, bool for_write)
2051 {
2052 	struct page *page;
2053 
2054 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2055 		if (!for_write)
2056 			page = find_get_page_flags(mapping, index,
2057 							FGP_LOCK | FGP_ACCESSED);
2058 		else
2059 			page = find_lock_page(mapping, index);
2060 		if (page)
2061 			return page;
2062 
2063 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2064 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2065 			return NULL;
2066 		}
2067 	}
2068 
2069 	if (!for_write)
2070 		return grab_cache_page(mapping, index);
2071 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2072 }
2073 
2074 static inline struct page *f2fs_pagecache_get_page(
2075 				struct address_space *mapping, pgoff_t index,
2076 				int fgp_flags, gfp_t gfp_mask)
2077 {
2078 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2079 		f2fs_show_injection_info(FAULT_PAGE_GET);
2080 		return NULL;
2081 	}
2082 
2083 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2084 }
2085 
2086 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2087 {
2088 	char *src_kaddr = kmap(src);
2089 	char *dst_kaddr = kmap(dst);
2090 
2091 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2092 	kunmap(dst);
2093 	kunmap(src);
2094 }
2095 
2096 static inline void f2fs_put_page(struct page *page, int unlock)
2097 {
2098 	if (!page)
2099 		return;
2100 
2101 	if (unlock) {
2102 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2103 		unlock_page(page);
2104 	}
2105 	put_page(page);
2106 }
2107 
2108 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2109 {
2110 	if (dn->node_page)
2111 		f2fs_put_page(dn->node_page, 1);
2112 	if (dn->inode_page && dn->node_page != dn->inode_page)
2113 		f2fs_put_page(dn->inode_page, 0);
2114 	dn->node_page = NULL;
2115 	dn->inode_page = NULL;
2116 }
2117 
2118 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2119 					size_t size)
2120 {
2121 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2122 }
2123 
2124 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2125 						gfp_t flags)
2126 {
2127 	void *entry;
2128 
2129 	entry = kmem_cache_alloc(cachep, flags);
2130 	if (!entry)
2131 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2132 	return entry;
2133 }
2134 
2135 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2136 						int npages, bool no_fail)
2137 {
2138 	struct bio *bio;
2139 
2140 	if (no_fail) {
2141 		/* No failure on bio allocation */
2142 		bio = bio_alloc(GFP_NOIO, npages);
2143 		if (!bio)
2144 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2145 		return bio;
2146 	}
2147 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2148 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2149 		return NULL;
2150 	}
2151 
2152 	return bio_alloc(GFP_KERNEL, npages);
2153 }
2154 
2155 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2156 {
2157 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2158 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2159 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2160 		get_pages(sbi, F2FS_DIO_READ) ||
2161 		get_pages(sbi, F2FS_DIO_WRITE))
2162 		return false;
2163 
2164 	if (SM_I(sbi) && SM_I(sbi)->dcc_info &&
2165 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2166 		return false;
2167 
2168 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2169 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2170 		return false;
2171 
2172 	return f2fs_time_over(sbi, type);
2173 }
2174 
2175 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2176 				unsigned long index, void *item)
2177 {
2178 	while (radix_tree_insert(root, index, item))
2179 		cond_resched();
2180 }
2181 
2182 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2183 
2184 static inline bool IS_INODE(struct page *page)
2185 {
2186 	struct f2fs_node *p = F2FS_NODE(page);
2187 
2188 	return RAW_IS_INODE(p);
2189 }
2190 
2191 static inline int offset_in_addr(struct f2fs_inode *i)
2192 {
2193 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2194 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2195 }
2196 
2197 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2198 {
2199 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2200 }
2201 
2202 static inline int f2fs_has_extra_attr(struct inode *inode);
2203 static inline block_t datablock_addr(struct inode *inode,
2204 			struct page *node_page, unsigned int offset)
2205 {
2206 	struct f2fs_node *raw_node;
2207 	__le32 *addr_array;
2208 	int base = 0;
2209 	bool is_inode = IS_INODE(node_page);
2210 
2211 	raw_node = F2FS_NODE(node_page);
2212 
2213 	/* from GC path only */
2214 	if (is_inode) {
2215 		if (!inode)
2216 			base = offset_in_addr(&raw_node->i);
2217 		else if (f2fs_has_extra_attr(inode))
2218 			base = get_extra_isize(inode);
2219 	}
2220 
2221 	addr_array = blkaddr_in_node(raw_node);
2222 	return le32_to_cpu(addr_array[base + offset]);
2223 }
2224 
2225 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2226 {
2227 	int mask;
2228 
2229 	addr += (nr >> 3);
2230 	mask = 1 << (7 - (nr & 0x07));
2231 	return mask & *addr;
2232 }
2233 
2234 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2235 {
2236 	int mask;
2237 
2238 	addr += (nr >> 3);
2239 	mask = 1 << (7 - (nr & 0x07));
2240 	*addr |= mask;
2241 }
2242 
2243 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2244 {
2245 	int mask;
2246 
2247 	addr += (nr >> 3);
2248 	mask = 1 << (7 - (nr & 0x07));
2249 	*addr &= ~mask;
2250 }
2251 
2252 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2253 {
2254 	int mask;
2255 	int ret;
2256 
2257 	addr += (nr >> 3);
2258 	mask = 1 << (7 - (nr & 0x07));
2259 	ret = mask & *addr;
2260 	*addr |= mask;
2261 	return ret;
2262 }
2263 
2264 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2265 {
2266 	int mask;
2267 	int ret;
2268 
2269 	addr += (nr >> 3);
2270 	mask = 1 << (7 - (nr & 0x07));
2271 	ret = mask & *addr;
2272 	*addr &= ~mask;
2273 	return ret;
2274 }
2275 
2276 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2277 {
2278 	int mask;
2279 
2280 	addr += (nr >> 3);
2281 	mask = 1 << (7 - (nr & 0x07));
2282 	*addr ^= mask;
2283 }
2284 
2285 /*
2286  * Inode flags
2287  */
2288 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2289 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2290 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2291 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2292 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2293 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2294 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2295 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2296 /* Reserved for compression usage... */
2297 #define F2FS_DIRTY_FL			0x00000100
2298 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2299 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2300 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2301 /* End compression flags --- maybe not all used */
2302 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2303 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2304 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2305 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2306 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2307 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2308 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2309 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2310 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2311 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2312 #define F2FS_NOCOW_FL			0x00800000 /* Do not cow file */
2313 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2314 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2315 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2316 
2317 #define F2FS_FL_USER_VISIBLE		0x30CBDFFF /* User visible flags */
2318 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2319 
2320 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2321 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2322 					 F2FS_IMMUTABLE_FL | \
2323 					 F2FS_APPEND_FL | \
2324 					 F2FS_NODUMP_FL | \
2325 					 F2FS_NOATIME_FL | \
2326 					 F2FS_PROJINHERIT_FL)
2327 
2328 /* Flags that should be inherited by new inodes from their parent. */
2329 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2330 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2331 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2332 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2333 			   F2FS_PROJINHERIT_FL)
2334 
2335 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2336 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2337 
2338 /* Flags that are appropriate for non-directories/regular files. */
2339 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2340 
2341 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2342 {
2343 	if (S_ISDIR(mode))
2344 		return flags;
2345 	else if (S_ISREG(mode))
2346 		return flags & F2FS_REG_FLMASK;
2347 	else
2348 		return flags & F2FS_OTHER_FLMASK;
2349 }
2350 
2351 /* used for f2fs_inode_info->flags */
2352 enum {
2353 	FI_NEW_INODE,		/* indicate newly allocated inode */
2354 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2355 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2356 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2357 	FI_INC_LINK,		/* need to increment i_nlink */
2358 	FI_ACL_MODE,		/* indicate acl mode */
2359 	FI_NO_ALLOC,		/* should not allocate any blocks */
2360 	FI_FREE_NID,		/* free allocated nide */
2361 	FI_NO_EXTENT,		/* not to use the extent cache */
2362 	FI_INLINE_XATTR,	/* used for inline xattr */
2363 	FI_INLINE_DATA,		/* used for inline data*/
2364 	FI_INLINE_DENTRY,	/* used for inline dentry */
2365 	FI_APPEND_WRITE,	/* inode has appended data */
2366 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2367 	FI_NEED_IPU,		/* used for ipu per file */
2368 	FI_ATOMIC_FILE,		/* indicate atomic file */
2369 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2370 	FI_VOLATILE_FILE,	/* indicate volatile file */
2371 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2372 	FI_DROP_CACHE,		/* drop dirty page cache */
2373 	FI_DATA_EXIST,		/* indicate data exists */
2374 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2375 	FI_DO_DEFRAG,		/* indicate defragment is running */
2376 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2377 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2378 	FI_HOT_DATA,		/* indicate file is hot */
2379 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2380 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2381 	FI_PIN_FILE,		/* indicate file should not be gced */
2382 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2383 };
2384 
2385 static inline void __mark_inode_dirty_flag(struct inode *inode,
2386 						int flag, bool set)
2387 {
2388 	switch (flag) {
2389 	case FI_INLINE_XATTR:
2390 	case FI_INLINE_DATA:
2391 	case FI_INLINE_DENTRY:
2392 	case FI_NEW_INODE:
2393 		if (set)
2394 			return;
2395 		/* fall through */
2396 	case FI_DATA_EXIST:
2397 	case FI_INLINE_DOTS:
2398 	case FI_PIN_FILE:
2399 		f2fs_mark_inode_dirty_sync(inode, true);
2400 	}
2401 }
2402 
2403 static inline void set_inode_flag(struct inode *inode, int flag)
2404 {
2405 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2406 		set_bit(flag, &F2FS_I(inode)->flags);
2407 	__mark_inode_dirty_flag(inode, flag, true);
2408 }
2409 
2410 static inline int is_inode_flag_set(struct inode *inode, int flag)
2411 {
2412 	return test_bit(flag, &F2FS_I(inode)->flags);
2413 }
2414 
2415 static inline void clear_inode_flag(struct inode *inode, int flag)
2416 {
2417 	if (test_bit(flag, &F2FS_I(inode)->flags))
2418 		clear_bit(flag, &F2FS_I(inode)->flags);
2419 	__mark_inode_dirty_flag(inode, flag, false);
2420 }
2421 
2422 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2423 {
2424 	F2FS_I(inode)->i_acl_mode = mode;
2425 	set_inode_flag(inode, FI_ACL_MODE);
2426 	f2fs_mark_inode_dirty_sync(inode, false);
2427 }
2428 
2429 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2430 {
2431 	if (inc)
2432 		inc_nlink(inode);
2433 	else
2434 		drop_nlink(inode);
2435 	f2fs_mark_inode_dirty_sync(inode, true);
2436 }
2437 
2438 static inline void f2fs_i_blocks_write(struct inode *inode,
2439 					block_t diff, bool add, bool claim)
2440 {
2441 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2442 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2443 
2444 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2445 	if (add) {
2446 		if (claim)
2447 			dquot_claim_block(inode, diff);
2448 		else
2449 			dquot_alloc_block_nofail(inode, diff);
2450 	} else {
2451 		dquot_free_block(inode, diff);
2452 	}
2453 
2454 	f2fs_mark_inode_dirty_sync(inode, true);
2455 	if (clean || recover)
2456 		set_inode_flag(inode, FI_AUTO_RECOVER);
2457 }
2458 
2459 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2460 {
2461 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2462 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2463 
2464 	if (i_size_read(inode) == i_size)
2465 		return;
2466 
2467 	i_size_write(inode, i_size);
2468 	f2fs_mark_inode_dirty_sync(inode, true);
2469 	if (clean || recover)
2470 		set_inode_flag(inode, FI_AUTO_RECOVER);
2471 }
2472 
2473 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2474 {
2475 	F2FS_I(inode)->i_current_depth = depth;
2476 	f2fs_mark_inode_dirty_sync(inode, true);
2477 }
2478 
2479 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2480 					unsigned int count)
2481 {
2482 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2483 	f2fs_mark_inode_dirty_sync(inode, true);
2484 }
2485 
2486 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2487 {
2488 	F2FS_I(inode)->i_xattr_nid = xnid;
2489 	f2fs_mark_inode_dirty_sync(inode, true);
2490 }
2491 
2492 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2493 {
2494 	F2FS_I(inode)->i_pino = pino;
2495 	f2fs_mark_inode_dirty_sync(inode, true);
2496 }
2497 
2498 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2499 {
2500 	struct f2fs_inode_info *fi = F2FS_I(inode);
2501 
2502 	if (ri->i_inline & F2FS_INLINE_XATTR)
2503 		set_bit(FI_INLINE_XATTR, &fi->flags);
2504 	if (ri->i_inline & F2FS_INLINE_DATA)
2505 		set_bit(FI_INLINE_DATA, &fi->flags);
2506 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2507 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2508 	if (ri->i_inline & F2FS_DATA_EXIST)
2509 		set_bit(FI_DATA_EXIST, &fi->flags);
2510 	if (ri->i_inline & F2FS_INLINE_DOTS)
2511 		set_bit(FI_INLINE_DOTS, &fi->flags);
2512 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2513 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2514 	if (ri->i_inline & F2FS_PIN_FILE)
2515 		set_bit(FI_PIN_FILE, &fi->flags);
2516 }
2517 
2518 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2519 {
2520 	ri->i_inline = 0;
2521 
2522 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2523 		ri->i_inline |= F2FS_INLINE_XATTR;
2524 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2525 		ri->i_inline |= F2FS_INLINE_DATA;
2526 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2527 		ri->i_inline |= F2FS_INLINE_DENTRY;
2528 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2529 		ri->i_inline |= F2FS_DATA_EXIST;
2530 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2531 		ri->i_inline |= F2FS_INLINE_DOTS;
2532 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2533 		ri->i_inline |= F2FS_EXTRA_ATTR;
2534 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2535 		ri->i_inline |= F2FS_PIN_FILE;
2536 }
2537 
2538 static inline int f2fs_has_extra_attr(struct inode *inode)
2539 {
2540 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2541 }
2542 
2543 static inline int f2fs_has_inline_xattr(struct inode *inode)
2544 {
2545 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2546 }
2547 
2548 static inline unsigned int addrs_per_inode(struct inode *inode)
2549 {
2550 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2551 }
2552 
2553 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2554 {
2555 	struct f2fs_inode *ri = F2FS_INODE(page);
2556 
2557 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2558 					get_inline_xattr_addrs(inode)]);
2559 }
2560 
2561 static inline int inline_xattr_size(struct inode *inode)
2562 {
2563 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2564 }
2565 
2566 static inline int f2fs_has_inline_data(struct inode *inode)
2567 {
2568 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2569 }
2570 
2571 static inline int f2fs_exist_data(struct inode *inode)
2572 {
2573 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2574 }
2575 
2576 static inline int f2fs_has_inline_dots(struct inode *inode)
2577 {
2578 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2579 }
2580 
2581 static inline bool f2fs_is_pinned_file(struct inode *inode)
2582 {
2583 	return is_inode_flag_set(inode, FI_PIN_FILE);
2584 }
2585 
2586 static inline bool f2fs_is_atomic_file(struct inode *inode)
2587 {
2588 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2589 }
2590 
2591 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2592 {
2593 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2594 }
2595 
2596 static inline bool f2fs_is_volatile_file(struct inode *inode)
2597 {
2598 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2599 }
2600 
2601 static inline bool f2fs_is_first_block_written(struct inode *inode)
2602 {
2603 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2604 }
2605 
2606 static inline bool f2fs_is_drop_cache(struct inode *inode)
2607 {
2608 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2609 }
2610 
2611 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2612 {
2613 	struct f2fs_inode *ri = F2FS_INODE(page);
2614 	int extra_size = get_extra_isize(inode);
2615 
2616 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2617 }
2618 
2619 static inline int f2fs_has_inline_dentry(struct inode *inode)
2620 {
2621 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2622 }
2623 
2624 static inline int is_file(struct inode *inode, int type)
2625 {
2626 	return F2FS_I(inode)->i_advise & type;
2627 }
2628 
2629 static inline void set_file(struct inode *inode, int type)
2630 {
2631 	F2FS_I(inode)->i_advise |= type;
2632 	f2fs_mark_inode_dirty_sync(inode, true);
2633 }
2634 
2635 static inline void clear_file(struct inode *inode, int type)
2636 {
2637 	F2FS_I(inode)->i_advise &= ~type;
2638 	f2fs_mark_inode_dirty_sync(inode, true);
2639 }
2640 
2641 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2642 {
2643 	bool ret;
2644 
2645 	if (dsync) {
2646 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2647 
2648 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2649 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2650 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2651 		return ret;
2652 	}
2653 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2654 			file_keep_isize(inode) ||
2655 			i_size_read(inode) & ~PAGE_MASK)
2656 		return false;
2657 
2658 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2659 		return false;
2660 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2661 		return false;
2662 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2663 		return false;
2664 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2665 						&F2FS_I(inode)->i_crtime))
2666 		return false;
2667 
2668 	down_read(&F2FS_I(inode)->i_sem);
2669 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2670 	up_read(&F2FS_I(inode)->i_sem);
2671 
2672 	return ret;
2673 }
2674 
2675 static inline bool f2fs_readonly(struct super_block *sb)
2676 {
2677 	return sb_rdonly(sb);
2678 }
2679 
2680 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2681 {
2682 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2683 }
2684 
2685 static inline bool is_dot_dotdot(const struct qstr *str)
2686 {
2687 	if (str->len == 1 && str->name[0] == '.')
2688 		return true;
2689 
2690 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2691 		return true;
2692 
2693 	return false;
2694 }
2695 
2696 static inline bool f2fs_may_extent_tree(struct inode *inode)
2697 {
2698 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2699 
2700 	if (!test_opt(sbi, EXTENT_CACHE) ||
2701 			is_inode_flag_set(inode, FI_NO_EXTENT))
2702 		return false;
2703 
2704 	/*
2705 	 * for recovered files during mount do not create extents
2706 	 * if shrinker is not registered.
2707 	 */
2708 	if (list_empty(&sbi->s_list))
2709 		return false;
2710 
2711 	return S_ISREG(inode->i_mode);
2712 }
2713 
2714 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2715 					size_t size, gfp_t flags)
2716 {
2717 	void *ret;
2718 
2719 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2720 		f2fs_show_injection_info(FAULT_KMALLOC);
2721 		return NULL;
2722 	}
2723 
2724 	ret = kmalloc(size, flags);
2725 	if (ret)
2726 		return ret;
2727 
2728 	return kvmalloc(size, flags);
2729 }
2730 
2731 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2732 					size_t size, gfp_t flags)
2733 {
2734 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2735 }
2736 
2737 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2738 					size_t size, gfp_t flags)
2739 {
2740 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2741 		f2fs_show_injection_info(FAULT_KVMALLOC);
2742 		return NULL;
2743 	}
2744 
2745 	return kvmalloc(size, flags);
2746 }
2747 
2748 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2749 					size_t size, gfp_t flags)
2750 {
2751 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2752 }
2753 
2754 static inline int get_extra_isize(struct inode *inode)
2755 {
2756 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2757 }
2758 
2759 static inline int get_inline_xattr_addrs(struct inode *inode)
2760 {
2761 	return F2FS_I(inode)->i_inline_xattr_size;
2762 }
2763 
2764 #define f2fs_get_inode_mode(i) \
2765 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2766 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2767 
2768 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2769 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2770 	offsetof(struct f2fs_inode, i_extra_isize))	\
2771 
2772 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2773 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2774 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2775 		sizeof((f2fs_inode)->field))			\
2776 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2777 
2778 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2779 {
2780 	int i;
2781 
2782 	spin_lock(&sbi->iostat_lock);
2783 	for (i = 0; i < NR_IO_TYPE; i++)
2784 		sbi->write_iostat[i] = 0;
2785 	spin_unlock(&sbi->iostat_lock);
2786 }
2787 
2788 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2789 			enum iostat_type type, unsigned long long io_bytes)
2790 {
2791 	if (!sbi->iostat_enable)
2792 		return;
2793 	spin_lock(&sbi->iostat_lock);
2794 	sbi->write_iostat[type] += io_bytes;
2795 
2796 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2797 		sbi->write_iostat[APP_BUFFERED_IO] =
2798 			sbi->write_iostat[APP_WRITE_IO] -
2799 			sbi->write_iostat[APP_DIRECT_IO];
2800 	spin_unlock(&sbi->iostat_lock);
2801 }
2802 
2803 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2804 
2805 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META &&	\
2806 				(!is_read_io((fio)->op) || (fio)->is_meta))
2807 
2808 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2809 					block_t blkaddr, int type);
2810 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2811 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2812 					block_t blkaddr, int type)
2813 {
2814 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2815 		f2fs_msg(sbi->sb, KERN_ERR,
2816 			"invalid blkaddr: %u, type: %d, run fsck to fix.",
2817 			blkaddr, type);
2818 		f2fs_bug_on(sbi, 1);
2819 	}
2820 }
2821 
2822 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2823 {
2824 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2825 		return false;
2826 	return true;
2827 }
2828 
2829 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2830 						block_t blkaddr)
2831 {
2832 	if (!__is_valid_data_blkaddr(blkaddr))
2833 		return false;
2834 	verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2835 	return true;
2836 }
2837 
2838 /*
2839  * file.c
2840  */
2841 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2842 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2843 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2844 int f2fs_truncate(struct inode *inode);
2845 int f2fs_getattr(const struct path *path, struct kstat *stat,
2846 			u32 request_mask, unsigned int flags);
2847 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2848 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2849 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2850 int f2fs_precache_extents(struct inode *inode);
2851 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2852 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2853 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2854 int f2fs_pin_file_control(struct inode *inode, bool inc);
2855 
2856 /*
2857  * inode.c
2858  */
2859 void f2fs_set_inode_flags(struct inode *inode);
2860 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2861 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2862 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2863 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2864 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2865 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2866 void f2fs_update_inode_page(struct inode *inode);
2867 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2868 void f2fs_evict_inode(struct inode *inode);
2869 void f2fs_handle_failed_inode(struct inode *inode);
2870 
2871 /*
2872  * namei.c
2873  */
2874 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2875 							bool hot, bool set);
2876 struct dentry *f2fs_get_parent(struct dentry *child);
2877 
2878 /*
2879  * dir.c
2880  */
2881 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2882 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2883 			f2fs_hash_t namehash, int *max_slots,
2884 			struct f2fs_dentry_ptr *d);
2885 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2886 			unsigned int start_pos, struct fscrypt_str *fstr);
2887 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2888 			struct f2fs_dentry_ptr *d);
2889 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2890 			const struct qstr *new_name,
2891 			const struct qstr *orig_name, struct page *dpage);
2892 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2893 			unsigned int current_depth);
2894 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2895 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2896 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2897 			struct fscrypt_name *fname, struct page **res_page);
2898 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2899 			const struct qstr *child, struct page **res_page);
2900 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2901 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2902 			struct page **page);
2903 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2904 			struct page *page, struct inode *inode);
2905 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2906 			const struct qstr *name, f2fs_hash_t name_hash,
2907 			unsigned int bit_pos);
2908 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2909 			const struct qstr *orig_name,
2910 			struct inode *inode, nid_t ino, umode_t mode);
2911 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2912 			struct inode *inode, nid_t ino, umode_t mode);
2913 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2914 			struct inode *inode, nid_t ino, umode_t mode);
2915 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2916 			struct inode *dir, struct inode *inode);
2917 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2918 bool f2fs_empty_dir(struct inode *dir);
2919 
2920 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2921 {
2922 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2923 				inode, inode->i_ino, inode->i_mode);
2924 }
2925 
2926 /*
2927  * super.c
2928  */
2929 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2930 void f2fs_inode_synced(struct inode *inode);
2931 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2932 int f2fs_quota_sync(struct super_block *sb, int type);
2933 void f2fs_quota_off_umount(struct super_block *sb);
2934 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2935 int f2fs_sync_fs(struct super_block *sb, int sync);
2936 extern __printf(3, 4)
2937 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2938 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2939 
2940 /*
2941  * hash.c
2942  */
2943 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2944 				struct fscrypt_name *fname);
2945 
2946 /*
2947  * node.c
2948  */
2949 struct dnode_of_data;
2950 struct node_info;
2951 
2952 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2953 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2954 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2955 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2956 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2957 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2958 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2959 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2960 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2961 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2962 						struct node_info *ni);
2963 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2964 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2965 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2966 int f2fs_truncate_xattr_node(struct inode *inode);
2967 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2968 					unsigned int seq_id);
2969 int f2fs_remove_inode_page(struct inode *inode);
2970 struct page *f2fs_new_inode_page(struct inode *inode);
2971 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2972 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2973 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2974 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2975 int f2fs_move_node_page(struct page *node_page, int gc_type);
2976 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2977 			struct writeback_control *wbc, bool atomic,
2978 			unsigned int *seq_id);
2979 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2980 			struct writeback_control *wbc,
2981 			bool do_balance, enum iostat_type io_type);
2982 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2983 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2984 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2985 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2986 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2987 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2988 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2989 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2990 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2991 			unsigned int segno, struct f2fs_summary_block *sum);
2992 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2993 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2994 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2995 int __init f2fs_create_node_manager_caches(void);
2996 void f2fs_destroy_node_manager_caches(void);
2997 
2998 /*
2999  * segment.c
3000  */
3001 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3002 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3003 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3004 void f2fs_drop_inmem_pages(struct inode *inode);
3005 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3006 int f2fs_commit_inmem_pages(struct inode *inode);
3007 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3008 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3009 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3010 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3011 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3012 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3013 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3014 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3015 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3016 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3017 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3018 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3019 					struct cp_control *cpc);
3020 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3021 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
3022 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3023 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3024 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3025 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3026 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3027 					struct cp_control *cpc);
3028 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3029 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3030 					block_t blk_addr);
3031 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3032 						enum iostat_type io_type);
3033 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3034 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3035 			struct f2fs_io_info *fio);
3036 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3037 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3038 			block_t old_blkaddr, block_t new_blkaddr,
3039 			bool recover_curseg, bool recover_newaddr);
3040 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3041 			block_t old_addr, block_t new_addr,
3042 			unsigned char version, bool recover_curseg,
3043 			bool recover_newaddr);
3044 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3045 			block_t old_blkaddr, block_t *new_blkaddr,
3046 			struct f2fs_summary *sum, int type,
3047 			struct f2fs_io_info *fio, bool add_list);
3048 void f2fs_wait_on_page_writeback(struct page *page,
3049 			enum page_type type, bool ordered, bool locked);
3050 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3051 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3052 								block_t len);
3053 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3054 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3055 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3056 			unsigned int val, int alloc);
3057 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3058 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3059 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3060 int __init f2fs_create_segment_manager_caches(void);
3061 void f2fs_destroy_segment_manager_caches(void);
3062 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3063 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3064 			enum page_type type, enum temp_type temp);
3065 
3066 /*
3067  * checkpoint.c
3068  */
3069 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3070 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3071 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3072 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3073 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3074 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3075 					block_t blkaddr, int type);
3076 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3077 			int type, bool sync);
3078 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3079 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3080 			long nr_to_write, enum iostat_type io_type);
3081 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3082 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3083 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3084 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3085 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3086 					unsigned int devidx, int type);
3087 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3088 					unsigned int devidx, int type);
3089 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3090 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3091 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3092 void f2fs_add_orphan_inode(struct inode *inode);
3093 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3094 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3095 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3096 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3097 void f2fs_remove_dirty_inode(struct inode *inode);
3098 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3099 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3100 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3101 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3102 int __init f2fs_create_checkpoint_caches(void);
3103 void f2fs_destroy_checkpoint_caches(void);
3104 
3105 /*
3106  * data.c
3107  */
3108 int f2fs_init_post_read_processing(void);
3109 void f2fs_destroy_post_read_processing(void);
3110 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3111 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3112 				struct inode *inode, struct page *page,
3113 				nid_t ino, enum page_type type);
3114 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3115 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3116 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3117 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3118 			block_t blk_addr, struct bio *bio);
3119 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3120 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3121 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3122 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3123 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3124 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3125 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3126 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3127 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3128 			int op_flags, bool for_write);
3129 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3130 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3131 			bool for_write);
3132 struct page *f2fs_get_new_data_page(struct inode *inode,
3133 			struct page *ipage, pgoff_t index, bool new_i_size);
3134 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3135 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3136 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3137 			int create, int flag);
3138 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3139 			u64 start, u64 len);
3140 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3141 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3142 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3143 			unsigned int length);
3144 int f2fs_release_page(struct page *page, gfp_t wait);
3145 #ifdef CONFIG_MIGRATION
3146 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3147 			struct page *page, enum migrate_mode mode);
3148 #endif
3149 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3150 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3151 
3152 /*
3153  * gc.c
3154  */
3155 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3156 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3157 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3158 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3159 			unsigned int segno);
3160 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3161 
3162 /*
3163  * recovery.c
3164  */
3165 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3166 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3167 
3168 /*
3169  * debug.c
3170  */
3171 #ifdef CONFIG_F2FS_STAT_FS
3172 struct f2fs_stat_info {
3173 	struct list_head stat_list;
3174 	struct f2fs_sb_info *sbi;
3175 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3176 	int main_area_segs, main_area_sections, main_area_zones;
3177 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3178 	unsigned long long hit_total, total_ext;
3179 	int ext_tree, zombie_tree, ext_node;
3180 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3181 	int ndirty_data, ndirty_qdata;
3182 	int inmem_pages;
3183 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3184 	int nats, dirty_nats, sits, dirty_sits;
3185 	int free_nids, avail_nids, alloc_nids;
3186 	int total_count, utilization;
3187 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3188 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3189 	int nr_dio_read, nr_dio_write;
3190 	unsigned int io_skip_bggc, other_skip_bggc;
3191 	int nr_flushing, nr_flushed, flush_list_empty;
3192 	int nr_discarding, nr_discarded;
3193 	int nr_discard_cmd;
3194 	unsigned int undiscard_blks;
3195 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3196 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3197 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3198 	unsigned int bimodal, avg_vblocks;
3199 	int util_free, util_valid, util_invalid;
3200 	int rsvd_segs, overp_segs;
3201 	int dirty_count, node_pages, meta_pages;
3202 	int prefree_count, call_count, cp_count, bg_cp_count;
3203 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3204 	int bg_node_segs, bg_data_segs;
3205 	int tot_blks, data_blks, node_blks;
3206 	int bg_data_blks, bg_node_blks;
3207 	unsigned long long skipped_atomic_files[2];
3208 	int curseg[NR_CURSEG_TYPE];
3209 	int cursec[NR_CURSEG_TYPE];
3210 	int curzone[NR_CURSEG_TYPE];
3211 
3212 	unsigned int meta_count[META_MAX];
3213 	unsigned int segment_count[2];
3214 	unsigned int block_count[2];
3215 	unsigned int inplace_count;
3216 	unsigned long long base_mem, cache_mem, page_mem;
3217 };
3218 
3219 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3220 {
3221 	return (struct f2fs_stat_info *)sbi->stat_info;
3222 }
3223 
3224 #define stat_inc_cp_count(si)		((si)->cp_count++)
3225 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3226 #define stat_inc_call_count(si)		((si)->call_count++)
3227 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3228 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3229 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3230 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3231 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3232 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3233 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3234 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3235 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3236 #define stat_inc_inline_xattr(inode)					\
3237 	do {								\
3238 		if (f2fs_has_inline_xattr(inode))			\
3239 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3240 	} while (0)
3241 #define stat_dec_inline_xattr(inode)					\
3242 	do {								\
3243 		if (f2fs_has_inline_xattr(inode))			\
3244 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3245 	} while (0)
3246 #define stat_inc_inline_inode(inode)					\
3247 	do {								\
3248 		if (f2fs_has_inline_data(inode))			\
3249 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3250 	} while (0)
3251 #define stat_dec_inline_inode(inode)					\
3252 	do {								\
3253 		if (f2fs_has_inline_data(inode))			\
3254 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3255 	} while (0)
3256 #define stat_inc_inline_dir(inode)					\
3257 	do {								\
3258 		if (f2fs_has_inline_dentry(inode))			\
3259 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3260 	} while (0)
3261 #define stat_dec_inline_dir(inode)					\
3262 	do {								\
3263 		if (f2fs_has_inline_dentry(inode))			\
3264 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3265 	} while (0)
3266 #define stat_inc_meta_count(sbi, blkaddr)				\
3267 	do {								\
3268 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3269 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3270 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3271 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3272 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3273 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3274 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3275 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3276 	} while (0)
3277 #define stat_inc_seg_type(sbi, curseg)					\
3278 		((sbi)->segment_count[(curseg)->alloc_type]++)
3279 #define stat_inc_block_count(sbi, curseg)				\
3280 		((sbi)->block_count[(curseg)->alloc_type]++)
3281 #define stat_inc_inplace_blocks(sbi)					\
3282 		(atomic_inc(&(sbi)->inplace_count))
3283 #define stat_inc_atomic_write(inode)					\
3284 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3285 #define stat_dec_atomic_write(inode)					\
3286 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3287 #define stat_update_max_atomic_write(inode)				\
3288 	do {								\
3289 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3290 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3291 		if (cur > max)						\
3292 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3293 	} while (0)
3294 #define stat_inc_volatile_write(inode)					\
3295 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3296 #define stat_dec_volatile_write(inode)					\
3297 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3298 #define stat_update_max_volatile_write(inode)				\
3299 	do {								\
3300 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3301 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3302 		if (cur > max)						\
3303 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3304 	} while (0)
3305 #define stat_inc_seg_count(sbi, type, gc_type)				\
3306 	do {								\
3307 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3308 		si->tot_segs++;						\
3309 		if ((type) == SUM_TYPE_DATA) {				\
3310 			si->data_segs++;				\
3311 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3312 		} else {						\
3313 			si->node_segs++;				\
3314 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3315 		}							\
3316 	} while (0)
3317 
3318 #define stat_inc_tot_blk_count(si, blks)				\
3319 	((si)->tot_blks += (blks))
3320 
3321 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3322 	do {								\
3323 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3324 		stat_inc_tot_blk_count(si, blks);			\
3325 		si->data_blks += (blks);				\
3326 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3327 	} while (0)
3328 
3329 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3330 	do {								\
3331 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3332 		stat_inc_tot_blk_count(si, blks);			\
3333 		si->node_blks += (blks);				\
3334 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3335 	} while (0)
3336 
3337 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3338 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3339 void __init f2fs_create_root_stats(void);
3340 void f2fs_destroy_root_stats(void);
3341 #else
3342 #define stat_inc_cp_count(si)				do { } while (0)
3343 #define stat_inc_bg_cp_count(si)			do { } while (0)
3344 #define stat_inc_call_count(si)				do { } while (0)
3345 #define stat_inc_bggc_count(si)				do { } while (0)
3346 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3347 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3348 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3349 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3350 #define stat_inc_total_hit(sb)				do { } while (0)
3351 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3352 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3353 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3354 #define stat_inc_inline_xattr(inode)			do { } while (0)
3355 #define stat_dec_inline_xattr(inode)			do { } while (0)
3356 #define stat_inc_inline_inode(inode)			do { } while (0)
3357 #define stat_dec_inline_inode(inode)			do { } while (0)
3358 #define stat_inc_inline_dir(inode)			do { } while (0)
3359 #define stat_dec_inline_dir(inode)			do { } while (0)
3360 #define stat_inc_atomic_write(inode)			do { } while (0)
3361 #define stat_dec_atomic_write(inode)			do { } while (0)
3362 #define stat_update_max_atomic_write(inode)		do { } while (0)
3363 #define stat_inc_volatile_write(inode)			do { } while (0)
3364 #define stat_dec_volatile_write(inode)			do { } while (0)
3365 #define stat_update_max_volatile_write(inode)		do { } while (0)
3366 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3367 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3368 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3369 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3370 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3371 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3372 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3373 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3374 
3375 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3376 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3377 static inline void __init f2fs_create_root_stats(void) { }
3378 static inline void f2fs_destroy_root_stats(void) { }
3379 #endif
3380 
3381 extern const struct file_operations f2fs_dir_operations;
3382 extern const struct file_operations f2fs_file_operations;
3383 extern const struct inode_operations f2fs_file_inode_operations;
3384 extern const struct address_space_operations f2fs_dblock_aops;
3385 extern const struct address_space_operations f2fs_node_aops;
3386 extern const struct address_space_operations f2fs_meta_aops;
3387 extern const struct inode_operations f2fs_dir_inode_operations;
3388 extern const struct inode_operations f2fs_symlink_inode_operations;
3389 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3390 extern const struct inode_operations f2fs_special_inode_operations;
3391 extern struct kmem_cache *f2fs_inode_entry_slab;
3392 
3393 /*
3394  * inline.c
3395  */
3396 bool f2fs_may_inline_data(struct inode *inode);
3397 bool f2fs_may_inline_dentry(struct inode *inode);
3398 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3399 void f2fs_truncate_inline_inode(struct inode *inode,
3400 						struct page *ipage, u64 from);
3401 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3402 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3403 int f2fs_convert_inline_inode(struct inode *inode);
3404 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3405 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3406 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3407 			struct fscrypt_name *fname, struct page **res_page);
3408 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3409 			struct page *ipage);
3410 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3411 			const struct qstr *orig_name,
3412 			struct inode *inode, nid_t ino, umode_t mode);
3413 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3414 				struct page *page, struct inode *dir,
3415 				struct inode *inode);
3416 bool f2fs_empty_inline_dir(struct inode *dir);
3417 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3418 			struct fscrypt_str *fstr);
3419 int f2fs_inline_data_fiemap(struct inode *inode,
3420 			struct fiemap_extent_info *fieinfo,
3421 			__u64 start, __u64 len);
3422 
3423 /*
3424  * shrinker.c
3425  */
3426 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3427 			struct shrink_control *sc);
3428 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3429 			struct shrink_control *sc);
3430 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3431 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3432 
3433 /*
3434  * extent_cache.c
3435  */
3436 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3437 				struct rb_entry *cached_re, unsigned int ofs);
3438 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3439 				struct rb_root_cached *root,
3440 				struct rb_node **parent,
3441 				unsigned int ofs, bool *leftmost);
3442 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3443 		struct rb_entry *cached_re, unsigned int ofs,
3444 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3445 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3446 		bool force, bool *leftmost);
3447 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3448 						struct rb_root_cached *root);
3449 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3450 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3451 void f2fs_drop_extent_tree(struct inode *inode);
3452 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3453 void f2fs_destroy_extent_tree(struct inode *inode);
3454 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3455 			struct extent_info *ei);
3456 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3457 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3458 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3459 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3460 int __init f2fs_create_extent_cache(void);
3461 void f2fs_destroy_extent_cache(void);
3462 
3463 /*
3464  * sysfs.c
3465  */
3466 int __init f2fs_init_sysfs(void);
3467 void f2fs_exit_sysfs(void);
3468 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3469 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3470 
3471 /*
3472  * crypto support
3473  */
3474 static inline bool f2fs_encrypted_inode(struct inode *inode)
3475 {
3476 	return file_is_encrypt(inode);
3477 }
3478 
3479 static inline bool f2fs_encrypted_file(struct inode *inode)
3480 {
3481 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3482 }
3483 
3484 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3485 {
3486 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3487 	file_set_encrypt(inode);
3488 	f2fs_set_inode_flags(inode);
3489 #endif
3490 }
3491 
3492 /*
3493  * Returns true if the reads of the inode's data need to undergo some
3494  * postprocessing step, like decryption or authenticity verification.
3495  */
3496 static inline bool f2fs_post_read_required(struct inode *inode)
3497 {
3498 	return f2fs_encrypted_file(inode);
3499 }
3500 
3501 #define F2FS_FEATURE_FUNCS(name, flagname) \
3502 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3503 { \
3504 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3505 }
3506 
3507 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3508 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3509 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3510 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3511 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3512 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3513 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3514 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3515 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3516 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3517 
3518 #ifdef CONFIG_BLK_DEV_ZONED
3519 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3520 			struct block_device *bdev, block_t blkaddr)
3521 {
3522 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3523 	int i;
3524 
3525 	for (i = 0; i < sbi->s_ndevs; i++)
3526 		if (FDEV(i).bdev == bdev)
3527 			return FDEV(i).blkz_type[zno];
3528 	return -EINVAL;
3529 }
3530 #endif
3531 
3532 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3533 {
3534 	return f2fs_sb_has_blkzoned(sbi);
3535 }
3536 
3537 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3538 {
3539 	return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3540 }
3541 
3542 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3543 {
3544 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3545 					f2fs_hw_should_discard(sbi);
3546 }
3547 
3548 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3549 {
3550 	clear_opt(sbi, ADAPTIVE);
3551 	clear_opt(sbi, LFS);
3552 
3553 	switch (mt) {
3554 	case F2FS_MOUNT_ADAPTIVE:
3555 		set_opt(sbi, ADAPTIVE);
3556 		break;
3557 	case F2FS_MOUNT_LFS:
3558 		set_opt(sbi, LFS);
3559 		break;
3560 	}
3561 }
3562 
3563 static inline bool f2fs_may_encrypt(struct inode *inode)
3564 {
3565 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3566 	umode_t mode = inode->i_mode;
3567 
3568 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3569 #else
3570 	return false;
3571 #endif
3572 }
3573 
3574 static inline int block_unaligned_IO(struct inode *inode,
3575 				struct kiocb *iocb, struct iov_iter *iter)
3576 {
3577 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3578 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3579 	loff_t offset = iocb->ki_pos;
3580 	unsigned long align = offset | iov_iter_alignment(iter);
3581 
3582 	return align & blocksize_mask;
3583 }
3584 
3585 static inline int allow_outplace_dio(struct inode *inode,
3586 				struct kiocb *iocb, struct iov_iter *iter)
3587 {
3588 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3589 	int rw = iov_iter_rw(iter);
3590 
3591 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3592 				!block_unaligned_IO(inode, iocb, iter));
3593 }
3594 
3595 static inline bool f2fs_force_buffered_io(struct inode *inode,
3596 				struct kiocb *iocb, struct iov_iter *iter)
3597 {
3598 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3599 	int rw = iov_iter_rw(iter);
3600 
3601 	if (f2fs_post_read_required(inode))
3602 		return true;
3603 	if (sbi->s_ndevs)
3604 		return true;
3605 	/*
3606 	 * for blkzoned device, fallback direct IO to buffered IO, so
3607 	 * all IOs can be serialized by log-structured write.
3608 	 */
3609 	if (f2fs_sb_has_blkzoned(sbi))
3610 		return true;
3611 	if (test_opt(sbi, LFS) && (rw == WRITE) &&
3612 				block_unaligned_IO(inode, iocb, iter))
3613 		return true;
3614 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3615 		return true;
3616 
3617 	return false;
3618 }
3619 
3620 #ifdef CONFIG_F2FS_FAULT_INJECTION
3621 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3622 							unsigned int type);
3623 #else
3624 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3625 #endif
3626 
3627 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3628 {
3629 #ifdef CONFIG_QUOTA
3630 	if (f2fs_sb_has_quota_ino(sbi))
3631 		return true;
3632 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3633 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3634 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3635 		return true;
3636 #endif
3637 	return false;
3638 }
3639 
3640 #endif
3641