xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 4215d054)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_NID,
47 	FAULT_ORPHAN,
48 	FAULT_BLOCK,
49 	FAULT_DIR_DEPTH,
50 	FAULT_EVICT_INODE,
51 	FAULT_TRUNCATE,
52 	FAULT_READ_IO,
53 	FAULT_CHECKPOINT,
54 	FAULT_DISCARD,
55 	FAULT_WRITE_IO,
56 	FAULT_MAX,
57 };
58 
59 #ifdef CONFIG_F2FS_FAULT_INJECTION
60 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern const char *f2fs_fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
76 #define F2FS_MOUNT_DISCARD		0x00000004
77 #define F2FS_MOUNT_NOHEAP		0x00000008
78 #define F2FS_MOUNT_XATTR_USER		0x00000010
79 #define F2FS_MOUNT_POSIX_ACL		0x00000020
80 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
81 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
82 #define F2FS_MOUNT_INLINE_DATA		0x00000100
83 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
84 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
85 #define F2FS_MOUNT_NOBARRIER		0x00000800
86 #define F2FS_MOUNT_FASTBOOT		0x00001000
87 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
88 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
90 #define F2FS_MOUNT_USRQUOTA		0x00080000
91 #define F2FS_MOUNT_GRPQUOTA		0x00100000
92 #define F2FS_MOUNT_PRJQUOTA		0x00200000
93 #define F2FS_MOUNT_QUOTA		0x00400000
94 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
95 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
96 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
97 #define F2FS_MOUNT_NORECOVERY		0x04000000
98 #define F2FS_MOUNT_ATGC			0x08000000
99 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
100 #define	F2FS_MOUNT_GC_MERGE		0x20000000
101 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
102 
103 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107 
108 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109 		typecheck(unsigned long long, b) &&			\
110 		((long long)((a) - (b)) > 0))
111 
112 typedef u32 block_t;	/*
113 			 * should not change u32, since it is the on-disk block
114 			 * address format, __le32.
115 			 */
116 typedef u32 nid_t;
117 
118 #define COMPRESS_EXT_NUM		16
119 
120 struct f2fs_mount_info {
121 	unsigned int opt;
122 	int write_io_size_bits;		/* Write IO size bits */
123 	block_t root_reserved_blocks;	/* root reserved blocks */
124 	kuid_t s_resuid;		/* reserved blocks for uid */
125 	kgid_t s_resgid;		/* reserved blocks for gid */
126 	int active_logs;		/* # of active logs */
127 	int inline_xattr_size;		/* inline xattr size */
128 #ifdef CONFIG_F2FS_FAULT_INJECTION
129 	struct f2fs_fault_info fault_info;	/* For fault injection */
130 #endif
131 #ifdef CONFIG_QUOTA
132 	/* Names of quota files with journalled quota */
133 	char *s_qf_names[MAXQUOTAS];
134 	int s_jquota_fmt;			/* Format of quota to use */
135 #endif
136 	/* For which write hints are passed down to block layer */
137 	int whint_mode;
138 	int alloc_mode;			/* segment allocation policy */
139 	int fsync_mode;			/* fsync policy */
140 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
141 	int bggc_mode;			/* bggc mode: off, on or sync */
142 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
143 	block_t unusable_cap_perc;	/* percentage for cap */
144 	block_t unusable_cap;		/* Amount of space allowed to be
145 					 * unusable when disabling checkpoint
146 					 */
147 
148 	/* For compression */
149 	unsigned char compress_algorithm;	/* algorithm type */
150 	unsigned char compress_log_size;	/* cluster log size */
151 	unsigned char compress_level;		/* compress level */
152 	bool compress_chksum;			/* compressed data chksum */
153 	unsigned char compress_ext_cnt;		/* extension count */
154 	int compress_mode;			/* compression mode */
155 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
156 };
157 
158 #define F2FS_FEATURE_ENCRYPT		0x0001
159 #define F2FS_FEATURE_BLKZONED		0x0002
160 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
161 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
162 #define F2FS_FEATURE_PRJQUOTA		0x0010
163 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
164 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
165 #define F2FS_FEATURE_QUOTA_INO		0x0080
166 #define F2FS_FEATURE_INODE_CRTIME	0x0100
167 #define F2FS_FEATURE_LOST_FOUND		0x0200
168 #define F2FS_FEATURE_VERITY		0x0400
169 #define F2FS_FEATURE_SB_CHKSUM		0x0800
170 #define F2FS_FEATURE_CASEFOLD		0x1000
171 #define F2FS_FEATURE_COMPRESSION	0x2000
172 #define F2FS_FEATURE_RO			0x4000
173 
174 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
175 	((raw_super->feature & cpu_to_le32(mask)) != 0)
176 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
177 #define F2FS_SET_FEATURE(sbi, mask)					\
178 	(sbi->raw_super->feature |= cpu_to_le32(mask))
179 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
180 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
181 
182 /*
183  * Default values for user and/or group using reserved blocks
184  */
185 #define	F2FS_DEF_RESUID		0
186 #define	F2FS_DEF_RESGID		0
187 
188 /*
189  * For checkpoint manager
190  */
191 enum {
192 	NAT_BITMAP,
193 	SIT_BITMAP
194 };
195 
196 #define	CP_UMOUNT	0x00000001
197 #define	CP_FASTBOOT	0x00000002
198 #define	CP_SYNC		0x00000004
199 #define	CP_RECOVERY	0x00000008
200 #define	CP_DISCARD	0x00000010
201 #define CP_TRIMMED	0x00000020
202 #define CP_PAUSE	0x00000040
203 #define CP_RESIZE 	0x00000080
204 
205 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
206 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
207 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
208 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
209 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
210 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
211 #define DEF_CP_INTERVAL			60	/* 60 secs */
212 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
213 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
214 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
215 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
216 
217 struct cp_control {
218 	int reason;
219 	__u64 trim_start;
220 	__u64 trim_end;
221 	__u64 trim_minlen;
222 };
223 
224 /*
225  * indicate meta/data type
226  */
227 enum {
228 	META_CP,
229 	META_NAT,
230 	META_SIT,
231 	META_SSA,
232 	META_MAX,
233 	META_POR,
234 	DATA_GENERIC,		/* check range only */
235 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
236 	DATA_GENERIC_ENHANCE_READ,	/*
237 					 * strong check on range and segment
238 					 * bitmap but no warning due to race
239 					 * condition of read on truncated area
240 					 * by extent_cache
241 					 */
242 	META_GENERIC,
243 };
244 
245 /* for the list of ino */
246 enum {
247 	ORPHAN_INO,		/* for orphan ino list */
248 	APPEND_INO,		/* for append ino list */
249 	UPDATE_INO,		/* for update ino list */
250 	TRANS_DIR_INO,		/* for trasactions dir ino list */
251 	FLUSH_INO,		/* for multiple device flushing */
252 	MAX_INO_ENTRY,		/* max. list */
253 };
254 
255 struct ino_entry {
256 	struct list_head list;		/* list head */
257 	nid_t ino;			/* inode number */
258 	unsigned int dirty_device;	/* dirty device bitmap */
259 };
260 
261 /* for the list of inodes to be GCed */
262 struct inode_entry {
263 	struct list_head list;	/* list head */
264 	struct inode *inode;	/* vfs inode pointer */
265 };
266 
267 struct fsync_node_entry {
268 	struct list_head list;	/* list head */
269 	struct page *page;	/* warm node page pointer */
270 	unsigned int seq_id;	/* sequence id */
271 };
272 
273 struct ckpt_req {
274 	struct completion wait;		/* completion for checkpoint done */
275 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
276 	int ret;			/* return code of checkpoint */
277 	ktime_t queue_time;		/* request queued time */
278 };
279 
280 struct ckpt_req_control {
281 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
282 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
283 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
284 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
285 	atomic_t total_ckpt;		/* # of total ckpts */
286 	atomic_t queued_ckpt;		/* # of queued ckpts */
287 	struct llist_head issue_list;	/* list for command issue */
288 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
289 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
290 	unsigned int peak_time;		/* peak wait time in msec until now */
291 };
292 
293 /* for the bitmap indicate blocks to be discarded */
294 struct discard_entry {
295 	struct list_head list;	/* list head */
296 	block_t start_blkaddr;	/* start blockaddr of current segment */
297 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
298 };
299 
300 /* default discard granularity of inner discard thread, unit: block count */
301 #define DEFAULT_DISCARD_GRANULARITY		16
302 
303 /* max discard pend list number */
304 #define MAX_PLIST_NUM		512
305 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
306 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
307 
308 enum {
309 	D_PREP,			/* initial */
310 	D_PARTIAL,		/* partially submitted */
311 	D_SUBMIT,		/* all submitted */
312 	D_DONE,			/* finished */
313 };
314 
315 struct discard_info {
316 	block_t lstart;			/* logical start address */
317 	block_t len;			/* length */
318 	block_t start;			/* actual start address in dev */
319 };
320 
321 struct discard_cmd {
322 	struct rb_node rb_node;		/* rb node located in rb-tree */
323 	union {
324 		struct {
325 			block_t lstart;	/* logical start address */
326 			block_t len;	/* length */
327 			block_t start;	/* actual start address in dev */
328 		};
329 		struct discard_info di;	/* discard info */
330 
331 	};
332 	struct list_head list;		/* command list */
333 	struct completion wait;		/* compleation */
334 	struct block_device *bdev;	/* bdev */
335 	unsigned short ref;		/* reference count */
336 	unsigned char state;		/* state */
337 	unsigned char queued;		/* queued discard */
338 	int error;			/* bio error */
339 	spinlock_t lock;		/* for state/bio_ref updating */
340 	unsigned short bio_ref;		/* bio reference count */
341 };
342 
343 enum {
344 	DPOLICY_BG,
345 	DPOLICY_FORCE,
346 	DPOLICY_FSTRIM,
347 	DPOLICY_UMOUNT,
348 	MAX_DPOLICY,
349 };
350 
351 struct discard_policy {
352 	int type;			/* type of discard */
353 	unsigned int min_interval;	/* used for candidates exist */
354 	unsigned int mid_interval;	/* used for device busy */
355 	unsigned int max_interval;	/* used for candidates not exist */
356 	unsigned int max_requests;	/* # of discards issued per round */
357 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
358 	bool io_aware;			/* issue discard in idle time */
359 	bool sync;			/* submit discard with REQ_SYNC flag */
360 	bool ordered;			/* issue discard by lba order */
361 	bool timeout;			/* discard timeout for put_super */
362 	unsigned int granularity;	/* discard granularity */
363 };
364 
365 struct discard_cmd_control {
366 	struct task_struct *f2fs_issue_discard;	/* discard thread */
367 	struct list_head entry_list;		/* 4KB discard entry list */
368 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
369 	struct list_head wait_list;		/* store on-flushing entries */
370 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
371 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
372 	unsigned int discard_wake;		/* to wake up discard thread */
373 	struct mutex cmd_lock;
374 	unsigned int nr_discards;		/* # of discards in the list */
375 	unsigned int max_discards;		/* max. discards to be issued */
376 	unsigned int discard_granularity;	/* discard granularity */
377 	unsigned int undiscard_blks;		/* # of undiscard blocks */
378 	unsigned int next_pos;			/* next discard position */
379 	atomic_t issued_discard;		/* # of issued discard */
380 	atomic_t queued_discard;		/* # of queued discard */
381 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
382 	struct rb_root_cached root;		/* root of discard rb-tree */
383 	bool rbtree_check;			/* config for consistence check */
384 };
385 
386 /* for the list of fsync inodes, used only during recovery */
387 struct fsync_inode_entry {
388 	struct list_head list;	/* list head */
389 	struct inode *inode;	/* vfs inode pointer */
390 	block_t blkaddr;	/* block address locating the last fsync */
391 	block_t last_dentry;	/* block address locating the last dentry */
392 };
393 
394 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
395 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
396 
397 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
398 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
399 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
400 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
401 
402 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
403 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
404 
405 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
406 {
407 	int before = nats_in_cursum(journal);
408 
409 	journal->n_nats = cpu_to_le16(before + i);
410 	return before;
411 }
412 
413 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
414 {
415 	int before = sits_in_cursum(journal);
416 
417 	journal->n_sits = cpu_to_le16(before + i);
418 	return before;
419 }
420 
421 static inline bool __has_cursum_space(struct f2fs_journal *journal,
422 							int size, int type)
423 {
424 	if (type == NAT_JOURNAL)
425 		return size <= MAX_NAT_JENTRIES(journal);
426 	return size <= MAX_SIT_JENTRIES(journal);
427 }
428 
429 /* for inline stuff */
430 #define DEF_INLINE_RESERVED_SIZE	1
431 static inline int get_extra_isize(struct inode *inode);
432 static inline int get_inline_xattr_addrs(struct inode *inode);
433 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
434 				(CUR_ADDRS_PER_INODE(inode) -		\
435 				get_inline_xattr_addrs(inode) -	\
436 				DEF_INLINE_RESERVED_SIZE))
437 
438 /* for inline dir */
439 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
440 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
441 				BITS_PER_BYTE + 1))
442 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
443 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
444 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
445 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
446 				NR_INLINE_DENTRY(inode) + \
447 				INLINE_DENTRY_BITMAP_SIZE(inode)))
448 
449 /*
450  * For INODE and NODE manager
451  */
452 /* for directory operations */
453 
454 struct f2fs_filename {
455 	/*
456 	 * The filename the user specified.  This is NULL for some
457 	 * filesystem-internal operations, e.g. converting an inline directory
458 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
459 	 */
460 	const struct qstr *usr_fname;
461 
462 	/*
463 	 * The on-disk filename.  For encrypted directories, this is encrypted.
464 	 * This may be NULL for lookups in an encrypted dir without the key.
465 	 */
466 	struct fscrypt_str disk_name;
467 
468 	/* The dirhash of this filename */
469 	f2fs_hash_t hash;
470 
471 #ifdef CONFIG_FS_ENCRYPTION
472 	/*
473 	 * For lookups in encrypted directories: either the buffer backing
474 	 * disk_name, or a buffer that holds the decoded no-key name.
475 	 */
476 	struct fscrypt_str crypto_buf;
477 #endif
478 #ifdef CONFIG_UNICODE
479 	/*
480 	 * For casefolded directories: the casefolded name, but it's left NULL
481 	 * if the original name is not valid Unicode, if the directory is both
482 	 * casefolded and encrypted and its encryption key is unavailable, or if
483 	 * the filesystem is doing an internal operation where usr_fname is also
484 	 * NULL.  In all these cases we fall back to treating the name as an
485 	 * opaque byte sequence.
486 	 */
487 	struct fscrypt_str cf_name;
488 #endif
489 };
490 
491 struct f2fs_dentry_ptr {
492 	struct inode *inode;
493 	void *bitmap;
494 	struct f2fs_dir_entry *dentry;
495 	__u8 (*filename)[F2FS_SLOT_LEN];
496 	int max;
497 	int nr_bitmap;
498 };
499 
500 static inline void make_dentry_ptr_block(struct inode *inode,
501 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
502 {
503 	d->inode = inode;
504 	d->max = NR_DENTRY_IN_BLOCK;
505 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
506 	d->bitmap = t->dentry_bitmap;
507 	d->dentry = t->dentry;
508 	d->filename = t->filename;
509 }
510 
511 static inline void make_dentry_ptr_inline(struct inode *inode,
512 					struct f2fs_dentry_ptr *d, void *t)
513 {
514 	int entry_cnt = NR_INLINE_DENTRY(inode);
515 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
516 	int reserved_size = INLINE_RESERVED_SIZE(inode);
517 
518 	d->inode = inode;
519 	d->max = entry_cnt;
520 	d->nr_bitmap = bitmap_size;
521 	d->bitmap = t;
522 	d->dentry = t + bitmap_size + reserved_size;
523 	d->filename = t + bitmap_size + reserved_size +
524 					SIZE_OF_DIR_ENTRY * entry_cnt;
525 }
526 
527 /*
528  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
529  * as its node offset to distinguish from index node blocks.
530  * But some bits are used to mark the node block.
531  */
532 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
533 				>> OFFSET_BIT_SHIFT)
534 enum {
535 	ALLOC_NODE,			/* allocate a new node page if needed */
536 	LOOKUP_NODE,			/* look up a node without readahead */
537 	LOOKUP_NODE_RA,			/*
538 					 * look up a node with readahead called
539 					 * by get_data_block.
540 					 */
541 };
542 
543 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
544 
545 /* congestion wait timeout value, default: 20ms */
546 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
547 
548 /* maximum retry quota flush count */
549 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
550 
551 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
552 
553 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
554 
555 /* for in-memory extent cache entry */
556 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
557 
558 /* number of extent info in extent cache we try to shrink */
559 #define EXTENT_CACHE_SHRINK_NUMBER	128
560 
561 struct rb_entry {
562 	struct rb_node rb_node;		/* rb node located in rb-tree */
563 	union {
564 		struct {
565 			unsigned int ofs;	/* start offset of the entry */
566 			unsigned int len;	/* length of the entry */
567 		};
568 		unsigned long long key;		/* 64-bits key */
569 	} __packed;
570 };
571 
572 struct extent_info {
573 	unsigned int fofs;		/* start offset in a file */
574 	unsigned int len;		/* length of the extent */
575 	u32 blk;			/* start block address of the extent */
576 };
577 
578 struct extent_node {
579 	struct rb_node rb_node;		/* rb node located in rb-tree */
580 	struct extent_info ei;		/* extent info */
581 	struct list_head list;		/* node in global extent list of sbi */
582 	struct extent_tree *et;		/* extent tree pointer */
583 };
584 
585 struct extent_tree {
586 	nid_t ino;			/* inode number */
587 	struct rb_root_cached root;	/* root of extent info rb-tree */
588 	struct extent_node *cached_en;	/* recently accessed extent node */
589 	struct extent_info largest;	/* largested extent info */
590 	struct list_head list;		/* to be used by sbi->zombie_list */
591 	rwlock_t lock;			/* protect extent info rb-tree */
592 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
593 	bool largest_updated;		/* largest extent updated */
594 };
595 
596 /*
597  * This structure is taken from ext4_map_blocks.
598  *
599  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
600  */
601 #define F2FS_MAP_NEW		(1 << BH_New)
602 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
603 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
604 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
605 				F2FS_MAP_UNWRITTEN)
606 
607 struct f2fs_map_blocks {
608 	block_t m_pblk;
609 	block_t m_lblk;
610 	unsigned int m_len;
611 	unsigned int m_flags;
612 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
613 	pgoff_t *m_next_extent;		/* point to next possible extent */
614 	int m_seg_type;
615 	bool m_may_create;		/* indicate it is from write path */
616 };
617 
618 /* for flag in get_data_block */
619 enum {
620 	F2FS_GET_BLOCK_DEFAULT,
621 	F2FS_GET_BLOCK_FIEMAP,
622 	F2FS_GET_BLOCK_BMAP,
623 	F2FS_GET_BLOCK_DIO,
624 	F2FS_GET_BLOCK_PRE_DIO,
625 	F2FS_GET_BLOCK_PRE_AIO,
626 	F2FS_GET_BLOCK_PRECACHE,
627 };
628 
629 /*
630  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
631  */
632 #define FADVISE_COLD_BIT	0x01
633 #define FADVISE_LOST_PINO_BIT	0x02
634 #define FADVISE_ENCRYPT_BIT	0x04
635 #define FADVISE_ENC_NAME_BIT	0x08
636 #define FADVISE_KEEP_SIZE_BIT	0x10
637 #define FADVISE_HOT_BIT		0x20
638 #define FADVISE_VERITY_BIT	0x40
639 
640 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
641 
642 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
643 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
644 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
645 
646 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
647 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
648 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
649 
650 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
651 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
652 
653 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
654 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
655 
656 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
657 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
658 
659 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
660 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
661 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
662 
663 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
664 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
665 
666 #define DEF_DIR_LEVEL		0
667 
668 enum {
669 	GC_FAILURE_PIN,
670 	GC_FAILURE_ATOMIC,
671 	MAX_GC_FAILURE
672 };
673 
674 /* used for f2fs_inode_info->flags */
675 enum {
676 	FI_NEW_INODE,		/* indicate newly allocated inode */
677 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
678 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
679 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
680 	FI_INC_LINK,		/* need to increment i_nlink */
681 	FI_ACL_MODE,		/* indicate acl mode */
682 	FI_NO_ALLOC,		/* should not allocate any blocks */
683 	FI_FREE_NID,		/* free allocated nide */
684 	FI_NO_EXTENT,		/* not to use the extent cache */
685 	FI_INLINE_XATTR,	/* used for inline xattr */
686 	FI_INLINE_DATA,		/* used for inline data*/
687 	FI_INLINE_DENTRY,	/* used for inline dentry */
688 	FI_APPEND_WRITE,	/* inode has appended data */
689 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
690 	FI_NEED_IPU,		/* used for ipu per file */
691 	FI_ATOMIC_FILE,		/* indicate atomic file */
692 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
693 	FI_VOLATILE_FILE,	/* indicate volatile file */
694 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
695 	FI_DROP_CACHE,		/* drop dirty page cache */
696 	FI_DATA_EXIST,		/* indicate data exists */
697 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
698 	FI_DO_DEFRAG,		/* indicate defragment is running */
699 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
700 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
701 	FI_HOT_DATA,		/* indicate file is hot */
702 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
703 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
704 	FI_PIN_FILE,		/* indicate file should not be gced */
705 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
706 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
707 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
708 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
709 	FI_MMAP_FILE,		/* indicate file was mmapped */
710 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
711 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
712 	FI_ALIGNED_WRITE,	/* enable aligned write */
713 	FI_MAX,			/* max flag, never be used */
714 };
715 
716 struct f2fs_inode_info {
717 	struct inode vfs_inode;		/* serve a vfs inode */
718 	unsigned long i_flags;		/* keep an inode flags for ioctl */
719 	unsigned char i_advise;		/* use to give file attribute hints */
720 	unsigned char i_dir_level;	/* use for dentry level for large dir */
721 	unsigned int i_current_depth;	/* only for directory depth */
722 	/* for gc failure statistic */
723 	unsigned int i_gc_failures[MAX_GC_FAILURE];
724 	unsigned int i_pino;		/* parent inode number */
725 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
726 
727 	/* Use below internally in f2fs*/
728 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
729 	struct rw_semaphore i_sem;	/* protect fi info */
730 	atomic_t dirty_pages;		/* # of dirty pages */
731 	f2fs_hash_t chash;		/* hash value of given file name */
732 	unsigned int clevel;		/* maximum level of given file name */
733 	struct task_struct *task;	/* lookup and create consistency */
734 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
735 	nid_t i_xattr_nid;		/* node id that contains xattrs */
736 	loff_t	last_disk_size;		/* lastly written file size */
737 	spinlock_t i_size_lock;		/* protect last_disk_size */
738 
739 #ifdef CONFIG_QUOTA
740 	struct dquot *i_dquot[MAXQUOTAS];
741 
742 	/* quota space reservation, managed internally by quota code */
743 	qsize_t i_reserved_quota;
744 #endif
745 	struct list_head dirty_list;	/* dirty list for dirs and files */
746 	struct list_head gdirty_list;	/* linked in global dirty list */
747 	struct list_head inmem_ilist;	/* list for inmem inodes */
748 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
749 	struct task_struct *inmem_task;	/* store inmemory task */
750 	struct mutex inmem_lock;	/* lock for inmemory pages */
751 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
752 
753 	/* avoid racing between foreground op and gc */
754 	struct rw_semaphore i_gc_rwsem[2];
755 	struct rw_semaphore i_mmap_sem;
756 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
757 
758 	int i_extra_isize;		/* size of extra space located in i_addr */
759 	kprojid_t i_projid;		/* id for project quota */
760 	int i_inline_xattr_size;	/* inline xattr size */
761 	struct timespec64 i_crtime;	/* inode creation time */
762 	struct timespec64 i_disk_time[4];/* inode disk times */
763 
764 	/* for file compress */
765 	atomic_t i_compr_blocks;		/* # of compressed blocks */
766 	unsigned char i_compress_algorithm;	/* algorithm type */
767 	unsigned char i_log_cluster_size;	/* log of cluster size */
768 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
769 	unsigned short i_compress_flag;		/* compress flag */
770 	unsigned int i_cluster_size;		/* cluster size */
771 };
772 
773 static inline void get_extent_info(struct extent_info *ext,
774 					struct f2fs_extent *i_ext)
775 {
776 	ext->fofs = le32_to_cpu(i_ext->fofs);
777 	ext->blk = le32_to_cpu(i_ext->blk);
778 	ext->len = le32_to_cpu(i_ext->len);
779 }
780 
781 static inline void set_raw_extent(struct extent_info *ext,
782 					struct f2fs_extent *i_ext)
783 {
784 	i_ext->fofs = cpu_to_le32(ext->fofs);
785 	i_ext->blk = cpu_to_le32(ext->blk);
786 	i_ext->len = cpu_to_le32(ext->len);
787 }
788 
789 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
790 						u32 blk, unsigned int len)
791 {
792 	ei->fofs = fofs;
793 	ei->blk = blk;
794 	ei->len = len;
795 }
796 
797 static inline bool __is_discard_mergeable(struct discard_info *back,
798 			struct discard_info *front, unsigned int max_len)
799 {
800 	return (back->lstart + back->len == front->lstart) &&
801 		(back->len + front->len <= max_len);
802 }
803 
804 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
805 			struct discard_info *back, unsigned int max_len)
806 {
807 	return __is_discard_mergeable(back, cur, max_len);
808 }
809 
810 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
811 			struct discard_info *front, unsigned int max_len)
812 {
813 	return __is_discard_mergeable(cur, front, max_len);
814 }
815 
816 static inline bool __is_extent_mergeable(struct extent_info *back,
817 						struct extent_info *front)
818 {
819 	return (back->fofs + back->len == front->fofs &&
820 			back->blk + back->len == front->blk);
821 }
822 
823 static inline bool __is_back_mergeable(struct extent_info *cur,
824 						struct extent_info *back)
825 {
826 	return __is_extent_mergeable(back, cur);
827 }
828 
829 static inline bool __is_front_mergeable(struct extent_info *cur,
830 						struct extent_info *front)
831 {
832 	return __is_extent_mergeable(cur, front);
833 }
834 
835 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
836 static inline void __try_update_largest_extent(struct extent_tree *et,
837 						struct extent_node *en)
838 {
839 	if (en->ei.len > et->largest.len) {
840 		et->largest = en->ei;
841 		et->largest_updated = true;
842 	}
843 }
844 
845 /*
846  * For free nid management
847  */
848 enum nid_state {
849 	FREE_NID,		/* newly added to free nid list */
850 	PREALLOC_NID,		/* it is preallocated */
851 	MAX_NID_STATE,
852 };
853 
854 enum nat_state {
855 	TOTAL_NAT,
856 	DIRTY_NAT,
857 	RECLAIMABLE_NAT,
858 	MAX_NAT_STATE,
859 };
860 
861 struct f2fs_nm_info {
862 	block_t nat_blkaddr;		/* base disk address of NAT */
863 	nid_t max_nid;			/* maximum possible node ids */
864 	nid_t available_nids;		/* # of available node ids */
865 	nid_t next_scan_nid;		/* the next nid to be scanned */
866 	unsigned int ram_thresh;	/* control the memory footprint */
867 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
868 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
869 
870 	/* NAT cache management */
871 	struct radix_tree_root nat_root;/* root of the nat entry cache */
872 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
873 	struct rw_semaphore nat_tree_lock;	/* protect nat entry tree */
874 	struct list_head nat_entries;	/* cached nat entry list (clean) */
875 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
876 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
877 	unsigned int nat_blocks;	/* # of nat blocks */
878 
879 	/* free node ids management */
880 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
881 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
882 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
883 	spinlock_t nid_list_lock;	/* protect nid lists ops */
884 	struct mutex build_lock;	/* lock for build free nids */
885 	unsigned char **free_nid_bitmap;
886 	unsigned char *nat_block_bitmap;
887 	unsigned short *free_nid_count;	/* free nid count of NAT block */
888 
889 	/* for checkpoint */
890 	char *nat_bitmap;		/* NAT bitmap pointer */
891 
892 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
893 	unsigned char *nat_bits;	/* NAT bits blocks */
894 	unsigned char *full_nat_bits;	/* full NAT pages */
895 	unsigned char *empty_nat_bits;	/* empty NAT pages */
896 #ifdef CONFIG_F2FS_CHECK_FS
897 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
898 #endif
899 	int bitmap_size;		/* bitmap size */
900 };
901 
902 /*
903  * this structure is used as one of function parameters.
904  * all the information are dedicated to a given direct node block determined
905  * by the data offset in a file.
906  */
907 struct dnode_of_data {
908 	struct inode *inode;		/* vfs inode pointer */
909 	struct page *inode_page;	/* its inode page, NULL is possible */
910 	struct page *node_page;		/* cached direct node page */
911 	nid_t nid;			/* node id of the direct node block */
912 	unsigned int ofs_in_node;	/* data offset in the node page */
913 	bool inode_page_locked;		/* inode page is locked or not */
914 	bool node_changed;		/* is node block changed */
915 	char cur_level;			/* level of hole node page */
916 	char max_level;			/* level of current page located */
917 	block_t	data_blkaddr;		/* block address of the node block */
918 };
919 
920 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
921 		struct page *ipage, struct page *npage, nid_t nid)
922 {
923 	memset(dn, 0, sizeof(*dn));
924 	dn->inode = inode;
925 	dn->inode_page = ipage;
926 	dn->node_page = npage;
927 	dn->nid = nid;
928 }
929 
930 /*
931  * For SIT manager
932  *
933  * By default, there are 6 active log areas across the whole main area.
934  * When considering hot and cold data separation to reduce cleaning overhead,
935  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
936  * respectively.
937  * In the current design, you should not change the numbers intentionally.
938  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
939  * logs individually according to the underlying devices. (default: 6)
940  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
941  * data and 8 for node logs.
942  */
943 #define	NR_CURSEG_DATA_TYPE	(3)
944 #define NR_CURSEG_NODE_TYPE	(3)
945 #define NR_CURSEG_INMEM_TYPE	(2)
946 #define NR_CURSEG_RO_TYPE	(2)
947 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
948 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
949 
950 enum {
951 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
952 	CURSEG_WARM_DATA,	/* data blocks */
953 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
954 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
955 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
956 	CURSEG_COLD_NODE,	/* indirect node blocks */
957 	NR_PERSISTENT_LOG,	/* number of persistent log */
958 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
959 				/* pinned file that needs consecutive block address */
960 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
961 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
962 };
963 
964 struct flush_cmd {
965 	struct completion wait;
966 	struct llist_node llnode;
967 	nid_t ino;
968 	int ret;
969 };
970 
971 struct flush_cmd_control {
972 	struct task_struct *f2fs_issue_flush;	/* flush thread */
973 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
974 	atomic_t issued_flush;			/* # of issued flushes */
975 	atomic_t queued_flush;			/* # of queued flushes */
976 	struct llist_head issue_list;		/* list for command issue */
977 	struct llist_node *dispatch_list;	/* list for command dispatch */
978 };
979 
980 struct f2fs_sm_info {
981 	struct sit_info *sit_info;		/* whole segment information */
982 	struct free_segmap_info *free_info;	/* free segment information */
983 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
984 	struct curseg_info *curseg_array;	/* active segment information */
985 
986 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
987 
988 	block_t seg0_blkaddr;		/* block address of 0'th segment */
989 	block_t main_blkaddr;		/* start block address of main area */
990 	block_t ssa_blkaddr;		/* start block address of SSA area */
991 
992 	unsigned int segment_count;	/* total # of segments */
993 	unsigned int main_segments;	/* # of segments in main area */
994 	unsigned int reserved_segments;	/* # of reserved segments */
995 	unsigned int ovp_segments;	/* # of overprovision segments */
996 
997 	/* a threshold to reclaim prefree segments */
998 	unsigned int rec_prefree_segments;
999 
1000 	/* for batched trimming */
1001 	unsigned int trim_sections;		/* # of sections to trim */
1002 
1003 	struct list_head sit_entry_set;	/* sit entry set list */
1004 
1005 	unsigned int ipu_policy;	/* in-place-update policy */
1006 	unsigned int min_ipu_util;	/* in-place-update threshold */
1007 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1008 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1009 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1010 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1011 
1012 	/* for flush command control */
1013 	struct flush_cmd_control *fcc_info;
1014 
1015 	/* for discard command control */
1016 	struct discard_cmd_control *dcc_info;
1017 };
1018 
1019 /*
1020  * For superblock
1021  */
1022 /*
1023  * COUNT_TYPE for monitoring
1024  *
1025  * f2fs monitors the number of several block types such as on-writeback,
1026  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1027  */
1028 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1029 enum count_type {
1030 	F2FS_DIRTY_DENTS,
1031 	F2FS_DIRTY_DATA,
1032 	F2FS_DIRTY_QDATA,
1033 	F2FS_DIRTY_NODES,
1034 	F2FS_DIRTY_META,
1035 	F2FS_INMEM_PAGES,
1036 	F2FS_DIRTY_IMETA,
1037 	F2FS_WB_CP_DATA,
1038 	F2FS_WB_DATA,
1039 	F2FS_RD_DATA,
1040 	F2FS_RD_NODE,
1041 	F2FS_RD_META,
1042 	F2FS_DIO_WRITE,
1043 	F2FS_DIO_READ,
1044 	NR_COUNT_TYPE,
1045 };
1046 
1047 /*
1048  * The below are the page types of bios used in submit_bio().
1049  * The available types are:
1050  * DATA			User data pages. It operates as async mode.
1051  * NODE			Node pages. It operates as async mode.
1052  * META			FS metadata pages such as SIT, NAT, CP.
1053  * NR_PAGE_TYPE		The number of page types.
1054  * META_FLUSH		Make sure the previous pages are written
1055  *			with waiting the bio's completion
1056  * ...			Only can be used with META.
1057  */
1058 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1059 enum page_type {
1060 	DATA,
1061 	NODE,
1062 	META,
1063 	NR_PAGE_TYPE,
1064 	META_FLUSH,
1065 	INMEM,		/* the below types are used by tracepoints only. */
1066 	INMEM_DROP,
1067 	INMEM_INVALIDATE,
1068 	INMEM_REVOKE,
1069 	IPU,
1070 	OPU,
1071 };
1072 
1073 enum temp_type {
1074 	HOT = 0,	/* must be zero for meta bio */
1075 	WARM,
1076 	COLD,
1077 	NR_TEMP_TYPE,
1078 };
1079 
1080 enum need_lock_type {
1081 	LOCK_REQ = 0,
1082 	LOCK_DONE,
1083 	LOCK_RETRY,
1084 };
1085 
1086 enum cp_reason_type {
1087 	CP_NO_NEEDED,
1088 	CP_NON_REGULAR,
1089 	CP_COMPRESSED,
1090 	CP_HARDLINK,
1091 	CP_SB_NEED_CP,
1092 	CP_WRONG_PINO,
1093 	CP_NO_SPC_ROLL,
1094 	CP_NODE_NEED_CP,
1095 	CP_FASTBOOT_MODE,
1096 	CP_SPEC_LOG_NUM,
1097 	CP_RECOVER_DIR,
1098 };
1099 
1100 enum iostat_type {
1101 	/* WRITE IO */
1102 	APP_DIRECT_IO,			/* app direct write IOs */
1103 	APP_BUFFERED_IO,		/* app buffered write IOs */
1104 	APP_WRITE_IO,			/* app write IOs */
1105 	APP_MAPPED_IO,			/* app mapped IOs */
1106 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1107 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1108 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1109 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1110 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1111 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1112 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1113 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1114 
1115 	/* READ IO */
1116 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1117 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1118 	APP_READ_IO,			/* app read IOs */
1119 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1120 	FS_DATA_READ_IO,		/* data read IOs */
1121 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1122 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1123 	FS_NODE_READ_IO,		/* node read IOs */
1124 	FS_META_READ_IO,		/* meta read IOs */
1125 
1126 	/* other */
1127 	FS_DISCARD,			/* discard */
1128 	NR_IO_TYPE,
1129 };
1130 
1131 struct f2fs_io_info {
1132 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1133 	nid_t ino;		/* inode number */
1134 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1135 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1136 	int op;			/* contains REQ_OP_ */
1137 	int op_flags;		/* req_flag_bits */
1138 	block_t new_blkaddr;	/* new block address to be written */
1139 	block_t old_blkaddr;	/* old block address before Cow */
1140 	struct page *page;	/* page to be written */
1141 	struct page *encrypted_page;	/* encrypted page */
1142 	struct page *compressed_page;	/* compressed page */
1143 	struct list_head list;		/* serialize IOs */
1144 	bool submitted;		/* indicate IO submission */
1145 	int need_lock;		/* indicate we need to lock cp_rwsem */
1146 	bool in_list;		/* indicate fio is in io_list */
1147 	bool is_por;		/* indicate IO is from recovery or not */
1148 	bool retry;		/* need to reallocate block address */
1149 	int compr_blocks;	/* # of compressed block addresses */
1150 	bool encrypted;		/* indicate file is encrypted */
1151 	enum iostat_type io_type;	/* io type */
1152 	struct writeback_control *io_wbc; /* writeback control */
1153 	struct bio **bio;		/* bio for ipu */
1154 	sector_t *last_block;		/* last block number in bio */
1155 	unsigned char version;		/* version of the node */
1156 };
1157 
1158 struct bio_entry {
1159 	struct bio *bio;
1160 	struct list_head list;
1161 };
1162 
1163 #define is_read_io(rw) ((rw) == READ)
1164 struct f2fs_bio_info {
1165 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1166 	struct bio *bio;		/* bios to merge */
1167 	sector_t last_block_in_bio;	/* last block number */
1168 	struct f2fs_io_info fio;	/* store buffered io info. */
1169 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1170 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1171 	struct list_head io_list;	/* track fios */
1172 	struct list_head bio_list;	/* bio entry list head */
1173 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1174 };
1175 
1176 #define FDEV(i)				(sbi->devs[i])
1177 #define RDEV(i)				(raw_super->devs[i])
1178 struct f2fs_dev_info {
1179 	struct block_device *bdev;
1180 	char path[MAX_PATH_LEN];
1181 	unsigned int total_segments;
1182 	block_t start_blk;
1183 	block_t end_blk;
1184 #ifdef CONFIG_BLK_DEV_ZONED
1185 	unsigned int nr_blkz;		/* Total number of zones */
1186 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1187 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1188 #endif
1189 };
1190 
1191 enum inode_type {
1192 	DIR_INODE,			/* for dirty dir inode */
1193 	FILE_INODE,			/* for dirty regular/symlink inode */
1194 	DIRTY_META,			/* for all dirtied inode metadata */
1195 	ATOMIC_FILE,			/* for all atomic files */
1196 	NR_INODE_TYPE,
1197 };
1198 
1199 /* for inner inode cache management */
1200 struct inode_management {
1201 	struct radix_tree_root ino_root;	/* ino entry array */
1202 	spinlock_t ino_lock;			/* for ino entry lock */
1203 	struct list_head ino_list;		/* inode list head */
1204 	unsigned long ino_num;			/* number of entries */
1205 };
1206 
1207 /* for GC_AT */
1208 struct atgc_management {
1209 	bool atgc_enabled;			/* ATGC is enabled or not */
1210 	struct rb_root_cached root;		/* root of victim rb-tree */
1211 	struct list_head victim_list;		/* linked with all victim entries */
1212 	unsigned int victim_count;		/* victim count in rb-tree */
1213 	unsigned int candidate_ratio;		/* candidate ratio */
1214 	unsigned int max_candidate_count;	/* max candidate count */
1215 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1216 	unsigned long long age_threshold;	/* age threshold */
1217 };
1218 
1219 /* For s_flag in struct f2fs_sb_info */
1220 enum {
1221 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1222 	SBI_IS_CLOSE,				/* specify unmounting */
1223 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1224 	SBI_POR_DOING,				/* recovery is doing or not */
1225 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1226 	SBI_NEED_CP,				/* need to checkpoint */
1227 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1228 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1229 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1230 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1231 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1232 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1233 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1234 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1235 };
1236 
1237 enum {
1238 	CP_TIME,
1239 	REQ_TIME,
1240 	DISCARD_TIME,
1241 	GC_TIME,
1242 	DISABLE_TIME,
1243 	UMOUNT_DISCARD_TIMEOUT,
1244 	MAX_TIME,
1245 };
1246 
1247 enum {
1248 	GC_NORMAL,
1249 	GC_IDLE_CB,
1250 	GC_IDLE_GREEDY,
1251 	GC_IDLE_AT,
1252 	GC_URGENT_HIGH,
1253 	GC_URGENT_LOW,
1254 };
1255 
1256 enum {
1257 	BGGC_MODE_ON,		/* background gc is on */
1258 	BGGC_MODE_OFF,		/* background gc is off */
1259 	BGGC_MODE_SYNC,		/*
1260 				 * background gc is on, migrating blocks
1261 				 * like foreground gc
1262 				 */
1263 };
1264 
1265 enum {
1266 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1267 	FS_MODE_LFS,		/* use lfs allocation only */
1268 };
1269 
1270 enum {
1271 	WHINT_MODE_OFF,		/* not pass down write hints */
1272 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1273 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1274 };
1275 
1276 enum {
1277 	ALLOC_MODE_DEFAULT,	/* stay default */
1278 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1279 };
1280 
1281 enum fsync_mode {
1282 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1283 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1284 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1285 };
1286 
1287 enum {
1288 	COMPR_MODE_FS,		/*
1289 				 * automatically compress compression
1290 				 * enabled files
1291 				 */
1292 	COMPR_MODE_USER,	/*
1293 				 * automatical compression is disabled.
1294 				 * user can control the file compression
1295 				 * using ioctls
1296 				 */
1297 };
1298 
1299 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1300 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1301 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1302 
1303 /*
1304  * Layout of f2fs page.private:
1305  *
1306  * Layout A: lowest bit should be 1
1307  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1308  * bit 0	PAGE_PRIVATE_NOT_POINTER
1309  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1310  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1311  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1312  * bit 4	PAGE_PRIVATE_INLINE_INODE
1313  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1314  * bit 6-	f2fs private data
1315  *
1316  * Layout B: lowest bit should be 0
1317  * page.private is a wrapped pointer.
1318  */
1319 enum {
1320 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1321 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1322 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1323 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1324 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1325 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1326 	PAGE_PRIVATE_MAX
1327 };
1328 
1329 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1330 static inline bool page_private_##name(struct page *page) \
1331 { \
1332 	return test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1333 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1334 }
1335 
1336 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1337 static inline void set_page_private_##name(struct page *page) \
1338 { \
1339 	if (!PagePrivate(page)) { \
1340 		get_page(page); \
1341 		SetPagePrivate(page); \
1342 	} \
1343 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1344 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1345 }
1346 
1347 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1348 static inline void clear_page_private_##name(struct page *page) \
1349 { \
1350 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1351 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1352 		set_page_private(page, 0); \
1353 		if (PagePrivate(page)) { \
1354 			ClearPagePrivate(page); \
1355 			put_page(page); \
1356 		}\
1357 	} \
1358 }
1359 
1360 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1361 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1362 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1363 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1364 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1365 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1366 
1367 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1368 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1369 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1370 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1371 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1372 
1373 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1374 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1375 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1376 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1377 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1378 
1379 static inline unsigned long get_page_private_data(struct page *page)
1380 {
1381 	unsigned long data = page_private(page);
1382 
1383 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1384 		return 0;
1385 	return data >> PAGE_PRIVATE_MAX;
1386 }
1387 
1388 static inline void set_page_private_data(struct page *page, unsigned long data)
1389 {
1390 	if (!PagePrivate(page)) {
1391 		get_page(page);
1392 		SetPagePrivate(page);
1393 	}
1394 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1395 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1396 }
1397 
1398 static inline void clear_page_private_data(struct page *page)
1399 {
1400 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1401 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1402 		set_page_private(page, 0);
1403 		if (PagePrivate(page)) {
1404 			ClearPagePrivate(page);
1405 			put_page(page);
1406 		}
1407 	}
1408 }
1409 
1410 /* For compression */
1411 enum compress_algorithm_type {
1412 	COMPRESS_LZO,
1413 	COMPRESS_LZ4,
1414 	COMPRESS_ZSTD,
1415 	COMPRESS_LZORLE,
1416 	COMPRESS_MAX,
1417 };
1418 
1419 enum compress_flag {
1420 	COMPRESS_CHKSUM,
1421 	COMPRESS_MAX_FLAG,
1422 };
1423 
1424 #define	COMPRESS_WATERMARK			20
1425 #define	COMPRESS_PERCENT			20
1426 
1427 #define COMPRESS_DATA_RESERVED_SIZE		4
1428 struct compress_data {
1429 	__le32 clen;			/* compressed data size */
1430 	__le32 chksum;			/* compressed data chksum */
1431 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1432 	u8 cdata[];			/* compressed data */
1433 };
1434 
1435 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1436 
1437 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1438 
1439 #define	COMPRESS_LEVEL_OFFSET	8
1440 
1441 /* compress context */
1442 struct compress_ctx {
1443 	struct inode *inode;		/* inode the context belong to */
1444 	pgoff_t cluster_idx;		/* cluster index number */
1445 	unsigned int cluster_size;	/* page count in cluster */
1446 	unsigned int log_cluster_size;	/* log of cluster size */
1447 	struct page **rpages;		/* pages store raw data in cluster */
1448 	unsigned int nr_rpages;		/* total page number in rpages */
1449 	struct page **cpages;		/* pages store compressed data in cluster */
1450 	unsigned int nr_cpages;		/* total page number in cpages */
1451 	void *rbuf;			/* virtual mapped address on rpages */
1452 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1453 	size_t rlen;			/* valid data length in rbuf */
1454 	size_t clen;			/* valid data length in cbuf */
1455 	void *private;			/* payload buffer for specified compression algorithm */
1456 	void *private2;			/* extra payload buffer */
1457 };
1458 
1459 /* compress context for write IO path */
1460 struct compress_io_ctx {
1461 	u32 magic;			/* magic number to indicate page is compressed */
1462 	struct inode *inode;		/* inode the context belong to */
1463 	struct page **rpages;		/* pages store raw data in cluster */
1464 	unsigned int nr_rpages;		/* total page number in rpages */
1465 	atomic_t pending_pages;		/* in-flight compressed page count */
1466 };
1467 
1468 /* Context for decompressing one cluster on the read IO path */
1469 struct decompress_io_ctx {
1470 	u32 magic;			/* magic number to indicate page is compressed */
1471 	struct inode *inode;		/* inode the context belong to */
1472 	pgoff_t cluster_idx;		/* cluster index number */
1473 	unsigned int cluster_size;	/* page count in cluster */
1474 	unsigned int log_cluster_size;	/* log of cluster size */
1475 	struct page **rpages;		/* pages store raw data in cluster */
1476 	unsigned int nr_rpages;		/* total page number in rpages */
1477 	struct page **cpages;		/* pages store compressed data in cluster */
1478 	unsigned int nr_cpages;		/* total page number in cpages */
1479 	struct page **tpages;		/* temp pages to pad holes in cluster */
1480 	void *rbuf;			/* virtual mapped address on rpages */
1481 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1482 	size_t rlen;			/* valid data length in rbuf */
1483 	size_t clen;			/* valid data length in cbuf */
1484 
1485 	/*
1486 	 * The number of compressed pages remaining to be read in this cluster.
1487 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1488 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1489 	 * is decompressed (or an error is reported).
1490 	 *
1491 	 * If an error occurs before all the pages have been submitted for I/O,
1492 	 * then this will never reach 0.  In this case the I/O submitter is
1493 	 * responsible for calling f2fs_decompress_end_io() instead.
1494 	 */
1495 	atomic_t remaining_pages;
1496 
1497 	/*
1498 	 * Number of references to this decompress_io_ctx.
1499 	 *
1500 	 * One reference is held for I/O completion.  This reference is dropped
1501 	 * after the pagecache pages are updated and unlocked -- either after
1502 	 * decompression (and verity if enabled), or after an error.
1503 	 *
1504 	 * In addition, each compressed page holds a reference while it is in a
1505 	 * bio.  These references are necessary prevent compressed pages from
1506 	 * being freed while they are still in a bio.
1507 	 */
1508 	refcount_t refcnt;
1509 
1510 	bool failed;			/* IO error occurred before decompression? */
1511 	bool need_verity;		/* need fs-verity verification after decompression? */
1512 	void *private;			/* payload buffer for specified decompression algorithm */
1513 	void *private2;			/* extra payload buffer */
1514 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1515 };
1516 
1517 #define NULL_CLUSTER			((unsigned int)(~0))
1518 #define MIN_COMPRESS_LOG_SIZE		2
1519 #define MAX_COMPRESS_LOG_SIZE		8
1520 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1521 
1522 struct f2fs_sb_info {
1523 	struct super_block *sb;			/* pointer to VFS super block */
1524 	struct proc_dir_entry *s_proc;		/* proc entry */
1525 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1526 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1527 	int valid_super_block;			/* valid super block no */
1528 	unsigned long s_flag;				/* flags for sbi */
1529 	struct mutex writepages;		/* mutex for writepages() */
1530 
1531 #ifdef CONFIG_BLK_DEV_ZONED
1532 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1533 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1534 #endif
1535 
1536 	/* for node-related operations */
1537 	struct f2fs_nm_info *nm_info;		/* node manager */
1538 	struct inode *node_inode;		/* cache node blocks */
1539 
1540 	/* for segment-related operations */
1541 	struct f2fs_sm_info *sm_info;		/* segment manager */
1542 
1543 	/* for bio operations */
1544 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1545 	/* keep migration IO order for LFS mode */
1546 	struct rw_semaphore io_order_lock;
1547 	mempool_t *write_io_dummy;		/* Dummy pages */
1548 
1549 	/* for checkpoint */
1550 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1551 	int cur_cp_pack;			/* remain current cp pack */
1552 	spinlock_t cp_lock;			/* for flag in ckpt */
1553 	struct inode *meta_inode;		/* cache meta blocks */
1554 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1555 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1556 	struct rw_semaphore node_write;		/* locking node writes */
1557 	struct rw_semaphore node_change;	/* locking node change */
1558 	wait_queue_head_t cp_wait;
1559 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1560 	long interval_time[MAX_TIME];		/* to store thresholds */
1561 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1562 
1563 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1564 
1565 	spinlock_t fsync_node_lock;		/* for node entry lock */
1566 	struct list_head fsync_node_list;	/* node list head */
1567 	unsigned int fsync_seg_id;		/* sequence id */
1568 	unsigned int fsync_node_num;		/* number of node entries */
1569 
1570 	/* for orphan inode, use 0'th array */
1571 	unsigned int max_orphans;		/* max orphan inodes */
1572 
1573 	/* for inode management */
1574 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1575 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1576 	struct mutex flush_lock;		/* for flush exclusion */
1577 
1578 	/* for extent tree cache */
1579 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1580 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1581 	struct list_head extent_list;		/* lru list for shrinker */
1582 	spinlock_t extent_lock;			/* locking extent lru list */
1583 	atomic_t total_ext_tree;		/* extent tree count */
1584 	struct list_head zombie_list;		/* extent zombie tree list */
1585 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1586 	atomic_t total_ext_node;		/* extent info count */
1587 
1588 	/* basic filesystem units */
1589 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1590 	unsigned int log_blocksize;		/* log2 block size */
1591 	unsigned int blocksize;			/* block size */
1592 	unsigned int root_ino_num;		/* root inode number*/
1593 	unsigned int node_ino_num;		/* node inode number*/
1594 	unsigned int meta_ino_num;		/* meta inode number*/
1595 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1596 	unsigned int blocks_per_seg;		/* blocks per segment */
1597 	unsigned int segs_per_sec;		/* segments per section */
1598 	unsigned int secs_per_zone;		/* sections per zone */
1599 	unsigned int total_sections;		/* total section count */
1600 	unsigned int total_node_count;		/* total node block count */
1601 	unsigned int total_valid_node_count;	/* valid node block count */
1602 	int dir_level;				/* directory level */
1603 	int readdir_ra;				/* readahead inode in readdir */
1604 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1605 
1606 	block_t user_block_count;		/* # of user blocks */
1607 	block_t total_valid_block_count;	/* # of valid blocks */
1608 	block_t discard_blks;			/* discard command candidats */
1609 	block_t last_valid_block_count;		/* for recovery */
1610 	block_t reserved_blocks;		/* configurable reserved blocks */
1611 	block_t current_reserved_blocks;	/* current reserved blocks */
1612 
1613 	/* Additional tracking for no checkpoint mode */
1614 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1615 
1616 	unsigned int nquota_files;		/* # of quota sysfile */
1617 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1618 
1619 	/* # of pages, see count_type */
1620 	atomic_t nr_pages[NR_COUNT_TYPE];
1621 	/* # of allocated blocks */
1622 	struct percpu_counter alloc_valid_block_count;
1623 
1624 	/* writeback control */
1625 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1626 
1627 	/* valid inode count */
1628 	struct percpu_counter total_valid_inode_count;
1629 
1630 	struct f2fs_mount_info mount_opt;	/* mount options */
1631 
1632 	/* for cleaning operations */
1633 	struct rw_semaphore gc_lock;		/*
1634 						 * semaphore for GC, avoid
1635 						 * race between GC and GC or CP
1636 						 */
1637 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1638 	struct atgc_management am;		/* atgc management */
1639 	unsigned int cur_victim_sec;		/* current victim section num */
1640 	unsigned int gc_mode;			/* current GC state */
1641 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1642 
1643 	/* for skip statistic */
1644 	unsigned int atomic_files;		/* # of opened atomic file */
1645 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1646 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1647 
1648 	/* threshold for gc trials on pinned files */
1649 	u64 gc_pin_file_threshold;
1650 	struct rw_semaphore pin_sem;
1651 
1652 	/* maximum # of trials to find a victim segment for SSR and GC */
1653 	unsigned int max_victim_search;
1654 	/* migration granularity of garbage collection, unit: segment */
1655 	unsigned int migration_granularity;
1656 
1657 	/*
1658 	 * for stat information.
1659 	 * one is for the LFS mode, and the other is for the SSR mode.
1660 	 */
1661 #ifdef CONFIG_F2FS_STAT_FS
1662 	struct f2fs_stat_info *stat_info;	/* FS status information */
1663 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1664 	unsigned int segment_count[2];		/* # of allocated segments */
1665 	unsigned int block_count[2];		/* # of allocated blocks */
1666 	atomic_t inplace_count;		/* # of inplace update */
1667 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1668 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1669 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1670 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1671 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1672 	atomic_t inline_inode;			/* # of inline_data inodes */
1673 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1674 	atomic_t compr_inode;			/* # of compressed inodes */
1675 	atomic64_t compr_blocks;		/* # of compressed blocks */
1676 	atomic_t vw_cnt;			/* # of volatile writes */
1677 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1678 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1679 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1680 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1681 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1682 #endif
1683 	spinlock_t stat_lock;			/* lock for stat operations */
1684 
1685 	/* For app/fs IO statistics */
1686 	spinlock_t iostat_lock;
1687 	unsigned long long rw_iostat[NR_IO_TYPE];
1688 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1689 	bool iostat_enable;
1690 	unsigned long iostat_next_period;
1691 	unsigned int iostat_period_ms;
1692 
1693 	/* to attach REQ_META|REQ_FUA flags */
1694 	unsigned int data_io_flag;
1695 	unsigned int node_io_flag;
1696 
1697 	/* For sysfs suppport */
1698 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1699 	struct completion s_kobj_unregister;
1700 
1701 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1702 	struct completion s_stat_kobj_unregister;
1703 
1704 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1705 	struct completion s_feature_list_kobj_unregister;
1706 
1707 	/* For shrinker support */
1708 	struct list_head s_list;
1709 	int s_ndevs;				/* number of devices */
1710 	struct f2fs_dev_info *devs;		/* for device list */
1711 	unsigned int dirty_device;		/* for checkpoint data flush */
1712 	spinlock_t dev_lock;			/* protect dirty_device */
1713 	struct mutex umount_mutex;
1714 	unsigned int shrinker_run_no;
1715 
1716 	/* For write statistics */
1717 	u64 sectors_written_start;
1718 	u64 kbytes_written;
1719 
1720 	/* Reference to checksum algorithm driver via cryptoapi */
1721 	struct crypto_shash *s_chksum_driver;
1722 
1723 	/* Precomputed FS UUID checksum for seeding other checksums */
1724 	__u32 s_chksum_seed;
1725 
1726 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1727 
1728 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1729 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1730 
1731 #ifdef CONFIG_F2FS_FS_COMPRESSION
1732 	struct kmem_cache *page_array_slab;	/* page array entry */
1733 	unsigned int page_array_slab_size;	/* default page array slab size */
1734 
1735 	/* For runtime compression statistics */
1736 	u64 compr_written_block;
1737 	u64 compr_saved_block;
1738 	u32 compr_new_inode;
1739 
1740 	/* For compressed block cache */
1741 	struct inode *compress_inode;		/* cache compressed blocks */
1742 	unsigned int compress_percent;		/* cache page percentage */
1743 	unsigned int compress_watermark;	/* cache page watermark */
1744 	atomic_t compress_page_hit;		/* cache hit count */
1745 #endif
1746 };
1747 
1748 struct f2fs_private_dio {
1749 	struct inode *inode;
1750 	void *orig_private;
1751 	bio_end_io_t *orig_end_io;
1752 	bool write;
1753 };
1754 
1755 #ifdef CONFIG_F2FS_FAULT_INJECTION
1756 #define f2fs_show_injection_info(sbi, type)					\
1757 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1758 		KERN_INFO, sbi->sb->s_id,				\
1759 		f2fs_fault_name[type],					\
1760 		__func__, __builtin_return_address(0))
1761 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1762 {
1763 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1764 
1765 	if (!ffi->inject_rate)
1766 		return false;
1767 
1768 	if (!IS_FAULT_SET(ffi, type))
1769 		return false;
1770 
1771 	atomic_inc(&ffi->inject_ops);
1772 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1773 		atomic_set(&ffi->inject_ops, 0);
1774 		return true;
1775 	}
1776 	return false;
1777 }
1778 #else
1779 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1780 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1781 {
1782 	return false;
1783 }
1784 #endif
1785 
1786 /*
1787  * Test if the mounted volume is a multi-device volume.
1788  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1789  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1790  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1791  */
1792 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1793 {
1794 	return sbi->s_ndevs > 1;
1795 }
1796 
1797 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1798 {
1799 	unsigned long now = jiffies;
1800 
1801 	sbi->last_time[type] = now;
1802 
1803 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1804 	if (type == REQ_TIME) {
1805 		sbi->last_time[DISCARD_TIME] = now;
1806 		sbi->last_time[GC_TIME] = now;
1807 	}
1808 }
1809 
1810 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1811 {
1812 	unsigned long interval = sbi->interval_time[type] * HZ;
1813 
1814 	return time_after(jiffies, sbi->last_time[type] + interval);
1815 }
1816 
1817 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1818 						int type)
1819 {
1820 	unsigned long interval = sbi->interval_time[type] * HZ;
1821 	unsigned int wait_ms = 0;
1822 	long delta;
1823 
1824 	delta = (sbi->last_time[type] + interval) - jiffies;
1825 	if (delta > 0)
1826 		wait_ms = jiffies_to_msecs(delta);
1827 
1828 	return wait_ms;
1829 }
1830 
1831 /*
1832  * Inline functions
1833  */
1834 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1835 			      const void *address, unsigned int length)
1836 {
1837 	struct {
1838 		struct shash_desc shash;
1839 		char ctx[4];
1840 	} desc;
1841 	int err;
1842 
1843 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1844 
1845 	desc.shash.tfm = sbi->s_chksum_driver;
1846 	*(u32 *)desc.ctx = crc;
1847 
1848 	err = crypto_shash_update(&desc.shash, address, length);
1849 	BUG_ON(err);
1850 
1851 	return *(u32 *)desc.ctx;
1852 }
1853 
1854 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1855 			   unsigned int length)
1856 {
1857 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1858 }
1859 
1860 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1861 				  void *buf, size_t buf_size)
1862 {
1863 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1864 }
1865 
1866 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1867 			      const void *address, unsigned int length)
1868 {
1869 	return __f2fs_crc32(sbi, crc, address, length);
1870 }
1871 
1872 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1873 {
1874 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1875 }
1876 
1877 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1878 {
1879 	return sb->s_fs_info;
1880 }
1881 
1882 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1883 {
1884 	return F2FS_SB(inode->i_sb);
1885 }
1886 
1887 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1888 {
1889 	return F2FS_I_SB(mapping->host);
1890 }
1891 
1892 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1893 {
1894 	return F2FS_M_SB(page_file_mapping(page));
1895 }
1896 
1897 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1898 {
1899 	return (struct f2fs_super_block *)(sbi->raw_super);
1900 }
1901 
1902 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1903 {
1904 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1905 }
1906 
1907 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1908 {
1909 	return (struct f2fs_node *)page_address(page);
1910 }
1911 
1912 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1913 {
1914 	return &((struct f2fs_node *)page_address(page))->i;
1915 }
1916 
1917 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1918 {
1919 	return (struct f2fs_nm_info *)(sbi->nm_info);
1920 }
1921 
1922 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1923 {
1924 	return (struct f2fs_sm_info *)(sbi->sm_info);
1925 }
1926 
1927 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1928 {
1929 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1930 }
1931 
1932 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1933 {
1934 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1935 }
1936 
1937 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1938 {
1939 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1940 }
1941 
1942 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1943 {
1944 	return sbi->meta_inode->i_mapping;
1945 }
1946 
1947 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1948 {
1949 	return sbi->node_inode->i_mapping;
1950 }
1951 
1952 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1953 {
1954 	return test_bit(type, &sbi->s_flag);
1955 }
1956 
1957 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1958 {
1959 	set_bit(type, &sbi->s_flag);
1960 }
1961 
1962 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1963 {
1964 	clear_bit(type, &sbi->s_flag);
1965 }
1966 
1967 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1968 {
1969 	return le64_to_cpu(cp->checkpoint_ver);
1970 }
1971 
1972 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1973 {
1974 	if (type < F2FS_MAX_QUOTAS)
1975 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1976 	return 0;
1977 }
1978 
1979 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1980 {
1981 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1982 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1983 }
1984 
1985 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1986 {
1987 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1988 
1989 	return ckpt_flags & f;
1990 }
1991 
1992 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1993 {
1994 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1995 }
1996 
1997 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1998 {
1999 	unsigned int ckpt_flags;
2000 
2001 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2002 	ckpt_flags |= f;
2003 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2004 }
2005 
2006 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2007 {
2008 	unsigned long flags;
2009 
2010 	spin_lock_irqsave(&sbi->cp_lock, flags);
2011 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2012 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2013 }
2014 
2015 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2016 {
2017 	unsigned int ckpt_flags;
2018 
2019 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2020 	ckpt_flags &= (~f);
2021 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2022 }
2023 
2024 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2025 {
2026 	unsigned long flags;
2027 
2028 	spin_lock_irqsave(&sbi->cp_lock, flags);
2029 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2030 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2031 }
2032 
2033 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2034 {
2035 	unsigned long flags;
2036 	unsigned char *nat_bits;
2037 
2038 	/*
2039 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
2040 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2041 	 * so let's rely on regular fsck or unclean shutdown.
2042 	 */
2043 
2044 	if (lock)
2045 		spin_lock_irqsave(&sbi->cp_lock, flags);
2046 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2047 	nat_bits = NM_I(sbi)->nat_bits;
2048 	NM_I(sbi)->nat_bits = NULL;
2049 	if (lock)
2050 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
2051 
2052 	kvfree(nat_bits);
2053 }
2054 
2055 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2056 					struct cp_control *cpc)
2057 {
2058 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2059 
2060 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2061 }
2062 
2063 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2064 {
2065 	down_read(&sbi->cp_rwsem);
2066 }
2067 
2068 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2069 {
2070 	return down_read_trylock(&sbi->cp_rwsem);
2071 }
2072 
2073 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2074 {
2075 	up_read(&sbi->cp_rwsem);
2076 }
2077 
2078 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2079 {
2080 	down_write(&sbi->cp_rwsem);
2081 }
2082 
2083 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2084 {
2085 	up_write(&sbi->cp_rwsem);
2086 }
2087 
2088 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2089 {
2090 	int reason = CP_SYNC;
2091 
2092 	if (test_opt(sbi, FASTBOOT))
2093 		reason = CP_FASTBOOT;
2094 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2095 		reason = CP_UMOUNT;
2096 	return reason;
2097 }
2098 
2099 static inline bool __remain_node_summaries(int reason)
2100 {
2101 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2102 }
2103 
2104 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2105 {
2106 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2107 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2108 }
2109 
2110 /*
2111  * Check whether the inode has blocks or not
2112  */
2113 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2114 {
2115 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2116 
2117 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2118 }
2119 
2120 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2121 {
2122 	return ofs == XATTR_NODE_OFFSET;
2123 }
2124 
2125 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2126 					struct inode *inode, bool cap)
2127 {
2128 	if (!inode)
2129 		return true;
2130 	if (!test_opt(sbi, RESERVE_ROOT))
2131 		return false;
2132 	if (IS_NOQUOTA(inode))
2133 		return true;
2134 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2135 		return true;
2136 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2137 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2138 		return true;
2139 	if (cap && capable(CAP_SYS_RESOURCE))
2140 		return true;
2141 	return false;
2142 }
2143 
2144 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2145 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2146 				 struct inode *inode, blkcnt_t *count)
2147 {
2148 	blkcnt_t diff = 0, release = 0;
2149 	block_t avail_user_block_count;
2150 	int ret;
2151 
2152 	ret = dquot_reserve_block(inode, *count);
2153 	if (ret)
2154 		return ret;
2155 
2156 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2157 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2158 		release = *count;
2159 		goto release_quota;
2160 	}
2161 
2162 	/*
2163 	 * let's increase this in prior to actual block count change in order
2164 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2165 	 */
2166 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2167 
2168 	spin_lock(&sbi->stat_lock);
2169 	sbi->total_valid_block_count += (block_t)(*count);
2170 	avail_user_block_count = sbi->user_block_count -
2171 					sbi->current_reserved_blocks;
2172 
2173 	if (!__allow_reserved_blocks(sbi, inode, true))
2174 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2175 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2176 		if (avail_user_block_count > sbi->unusable_block_count)
2177 			avail_user_block_count -= sbi->unusable_block_count;
2178 		else
2179 			avail_user_block_count = 0;
2180 	}
2181 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2182 		diff = sbi->total_valid_block_count - avail_user_block_count;
2183 		if (diff > *count)
2184 			diff = *count;
2185 		*count -= diff;
2186 		release = diff;
2187 		sbi->total_valid_block_count -= diff;
2188 		if (!*count) {
2189 			spin_unlock(&sbi->stat_lock);
2190 			goto enospc;
2191 		}
2192 	}
2193 	spin_unlock(&sbi->stat_lock);
2194 
2195 	if (unlikely(release)) {
2196 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2197 		dquot_release_reservation_block(inode, release);
2198 	}
2199 	f2fs_i_blocks_write(inode, *count, true, true);
2200 	return 0;
2201 
2202 enospc:
2203 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2204 release_quota:
2205 	dquot_release_reservation_block(inode, release);
2206 	return -ENOSPC;
2207 }
2208 
2209 __printf(2, 3)
2210 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2211 
2212 #define f2fs_err(sbi, fmt, ...)						\
2213 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2214 #define f2fs_warn(sbi, fmt, ...)					\
2215 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2216 #define f2fs_notice(sbi, fmt, ...)					\
2217 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2218 #define f2fs_info(sbi, fmt, ...)					\
2219 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2220 #define f2fs_debug(sbi, fmt, ...)					\
2221 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2222 
2223 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2224 						struct inode *inode,
2225 						block_t count)
2226 {
2227 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2228 
2229 	spin_lock(&sbi->stat_lock);
2230 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2231 	sbi->total_valid_block_count -= (block_t)count;
2232 	if (sbi->reserved_blocks &&
2233 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2234 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2235 					sbi->current_reserved_blocks + count);
2236 	spin_unlock(&sbi->stat_lock);
2237 	if (unlikely(inode->i_blocks < sectors)) {
2238 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2239 			  inode->i_ino,
2240 			  (unsigned long long)inode->i_blocks,
2241 			  (unsigned long long)sectors);
2242 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2243 		return;
2244 	}
2245 	f2fs_i_blocks_write(inode, count, false, true);
2246 }
2247 
2248 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2249 {
2250 	atomic_inc(&sbi->nr_pages[count_type]);
2251 
2252 	if (count_type == F2FS_DIRTY_DENTS ||
2253 			count_type == F2FS_DIRTY_NODES ||
2254 			count_type == F2FS_DIRTY_META ||
2255 			count_type == F2FS_DIRTY_QDATA ||
2256 			count_type == F2FS_DIRTY_IMETA)
2257 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2258 }
2259 
2260 static inline void inode_inc_dirty_pages(struct inode *inode)
2261 {
2262 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2263 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2264 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2265 	if (IS_NOQUOTA(inode))
2266 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2267 }
2268 
2269 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2270 {
2271 	atomic_dec(&sbi->nr_pages[count_type]);
2272 }
2273 
2274 static inline void inode_dec_dirty_pages(struct inode *inode)
2275 {
2276 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2277 			!S_ISLNK(inode->i_mode))
2278 		return;
2279 
2280 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2281 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2282 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2283 	if (IS_NOQUOTA(inode))
2284 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2285 }
2286 
2287 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2288 {
2289 	return atomic_read(&sbi->nr_pages[count_type]);
2290 }
2291 
2292 static inline int get_dirty_pages(struct inode *inode)
2293 {
2294 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2295 }
2296 
2297 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2298 {
2299 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2300 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2301 						sbi->log_blocks_per_seg;
2302 
2303 	return segs / sbi->segs_per_sec;
2304 }
2305 
2306 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2307 {
2308 	return sbi->total_valid_block_count;
2309 }
2310 
2311 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2312 {
2313 	return sbi->discard_blks;
2314 }
2315 
2316 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2317 {
2318 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2319 
2320 	/* return NAT or SIT bitmap */
2321 	if (flag == NAT_BITMAP)
2322 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2323 	else if (flag == SIT_BITMAP)
2324 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2325 
2326 	return 0;
2327 }
2328 
2329 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2330 {
2331 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2332 }
2333 
2334 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2335 {
2336 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2337 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2338 	int offset;
2339 
2340 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2341 		offset = (flag == SIT_BITMAP) ?
2342 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2343 		/*
2344 		 * if large_nat_bitmap feature is enabled, leave checksum
2345 		 * protection for all nat/sit bitmaps.
2346 		 */
2347 		return tmp_ptr + offset + sizeof(__le32);
2348 	}
2349 
2350 	if (__cp_payload(sbi) > 0) {
2351 		if (flag == NAT_BITMAP)
2352 			return &ckpt->sit_nat_version_bitmap;
2353 		else
2354 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2355 	} else {
2356 		offset = (flag == NAT_BITMAP) ?
2357 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2358 		return tmp_ptr + offset;
2359 	}
2360 }
2361 
2362 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2363 {
2364 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2365 
2366 	if (sbi->cur_cp_pack == 2)
2367 		start_addr += sbi->blocks_per_seg;
2368 	return start_addr;
2369 }
2370 
2371 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2372 {
2373 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2374 
2375 	if (sbi->cur_cp_pack == 1)
2376 		start_addr += sbi->blocks_per_seg;
2377 	return start_addr;
2378 }
2379 
2380 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2381 {
2382 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2383 }
2384 
2385 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2386 {
2387 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2388 }
2389 
2390 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2391 					struct inode *inode, bool is_inode)
2392 {
2393 	block_t	valid_block_count;
2394 	unsigned int valid_node_count, user_block_count;
2395 	int err;
2396 
2397 	if (is_inode) {
2398 		if (inode) {
2399 			err = dquot_alloc_inode(inode);
2400 			if (err)
2401 				return err;
2402 		}
2403 	} else {
2404 		err = dquot_reserve_block(inode, 1);
2405 		if (err)
2406 			return err;
2407 	}
2408 
2409 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2410 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2411 		goto enospc;
2412 	}
2413 
2414 	spin_lock(&sbi->stat_lock);
2415 
2416 	valid_block_count = sbi->total_valid_block_count +
2417 					sbi->current_reserved_blocks + 1;
2418 
2419 	if (!__allow_reserved_blocks(sbi, inode, false))
2420 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2421 	user_block_count = sbi->user_block_count;
2422 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2423 		user_block_count -= sbi->unusable_block_count;
2424 
2425 	if (unlikely(valid_block_count > user_block_count)) {
2426 		spin_unlock(&sbi->stat_lock);
2427 		goto enospc;
2428 	}
2429 
2430 	valid_node_count = sbi->total_valid_node_count + 1;
2431 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2432 		spin_unlock(&sbi->stat_lock);
2433 		goto enospc;
2434 	}
2435 
2436 	sbi->total_valid_node_count++;
2437 	sbi->total_valid_block_count++;
2438 	spin_unlock(&sbi->stat_lock);
2439 
2440 	if (inode) {
2441 		if (is_inode)
2442 			f2fs_mark_inode_dirty_sync(inode, true);
2443 		else
2444 			f2fs_i_blocks_write(inode, 1, true, true);
2445 	}
2446 
2447 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2448 	return 0;
2449 
2450 enospc:
2451 	if (is_inode) {
2452 		if (inode)
2453 			dquot_free_inode(inode);
2454 	} else {
2455 		dquot_release_reservation_block(inode, 1);
2456 	}
2457 	return -ENOSPC;
2458 }
2459 
2460 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2461 					struct inode *inode, bool is_inode)
2462 {
2463 	spin_lock(&sbi->stat_lock);
2464 
2465 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2466 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2467 
2468 	sbi->total_valid_node_count--;
2469 	sbi->total_valid_block_count--;
2470 	if (sbi->reserved_blocks &&
2471 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2472 		sbi->current_reserved_blocks++;
2473 
2474 	spin_unlock(&sbi->stat_lock);
2475 
2476 	if (is_inode) {
2477 		dquot_free_inode(inode);
2478 	} else {
2479 		if (unlikely(inode->i_blocks == 0)) {
2480 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2481 				  inode->i_ino,
2482 				  (unsigned long long)inode->i_blocks);
2483 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2484 			return;
2485 		}
2486 		f2fs_i_blocks_write(inode, 1, false, true);
2487 	}
2488 }
2489 
2490 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2491 {
2492 	return sbi->total_valid_node_count;
2493 }
2494 
2495 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2496 {
2497 	percpu_counter_inc(&sbi->total_valid_inode_count);
2498 }
2499 
2500 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2501 {
2502 	percpu_counter_dec(&sbi->total_valid_inode_count);
2503 }
2504 
2505 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2506 {
2507 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2508 }
2509 
2510 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2511 						pgoff_t index, bool for_write)
2512 {
2513 	struct page *page;
2514 
2515 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2516 		if (!for_write)
2517 			page = find_get_page_flags(mapping, index,
2518 							FGP_LOCK | FGP_ACCESSED);
2519 		else
2520 			page = find_lock_page(mapping, index);
2521 		if (page)
2522 			return page;
2523 
2524 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2525 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2526 							FAULT_PAGE_ALLOC);
2527 			return NULL;
2528 		}
2529 	}
2530 
2531 	if (!for_write)
2532 		return grab_cache_page(mapping, index);
2533 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2534 }
2535 
2536 static inline struct page *f2fs_pagecache_get_page(
2537 				struct address_space *mapping, pgoff_t index,
2538 				int fgp_flags, gfp_t gfp_mask)
2539 {
2540 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2541 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2542 		return NULL;
2543 	}
2544 
2545 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2546 }
2547 
2548 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2549 {
2550 	char *src_kaddr = kmap(src);
2551 	char *dst_kaddr = kmap(dst);
2552 
2553 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2554 	kunmap(dst);
2555 	kunmap(src);
2556 }
2557 
2558 static inline void f2fs_put_page(struct page *page, int unlock)
2559 {
2560 	if (!page)
2561 		return;
2562 
2563 	if (unlock) {
2564 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2565 		unlock_page(page);
2566 	}
2567 	put_page(page);
2568 }
2569 
2570 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2571 {
2572 	if (dn->node_page)
2573 		f2fs_put_page(dn->node_page, 1);
2574 	if (dn->inode_page && dn->node_page != dn->inode_page)
2575 		f2fs_put_page(dn->inode_page, 0);
2576 	dn->node_page = NULL;
2577 	dn->inode_page = NULL;
2578 }
2579 
2580 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2581 					size_t size)
2582 {
2583 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2584 }
2585 
2586 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2587 						gfp_t flags)
2588 {
2589 	void *entry;
2590 
2591 	entry = kmem_cache_alloc(cachep, flags);
2592 	if (!entry)
2593 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2594 	return entry;
2595 }
2596 
2597 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2598 {
2599 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2600 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2601 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2602 		get_pages(sbi, F2FS_DIO_READ) ||
2603 		get_pages(sbi, F2FS_DIO_WRITE))
2604 		return true;
2605 
2606 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2607 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2608 		return true;
2609 
2610 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2611 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2612 		return true;
2613 	return false;
2614 }
2615 
2616 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2617 {
2618 	if (sbi->gc_mode == GC_URGENT_HIGH)
2619 		return true;
2620 
2621 	if (is_inflight_io(sbi, type))
2622 		return false;
2623 
2624 	if (sbi->gc_mode == GC_URGENT_LOW &&
2625 			(type == DISCARD_TIME || type == GC_TIME))
2626 		return true;
2627 
2628 	return f2fs_time_over(sbi, type);
2629 }
2630 
2631 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2632 				unsigned long index, void *item)
2633 {
2634 	while (radix_tree_insert(root, index, item))
2635 		cond_resched();
2636 }
2637 
2638 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2639 
2640 static inline bool IS_INODE(struct page *page)
2641 {
2642 	struct f2fs_node *p = F2FS_NODE(page);
2643 
2644 	return RAW_IS_INODE(p);
2645 }
2646 
2647 static inline int offset_in_addr(struct f2fs_inode *i)
2648 {
2649 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2650 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2651 }
2652 
2653 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2654 {
2655 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2656 }
2657 
2658 static inline int f2fs_has_extra_attr(struct inode *inode);
2659 static inline block_t data_blkaddr(struct inode *inode,
2660 			struct page *node_page, unsigned int offset)
2661 {
2662 	struct f2fs_node *raw_node;
2663 	__le32 *addr_array;
2664 	int base = 0;
2665 	bool is_inode = IS_INODE(node_page);
2666 
2667 	raw_node = F2FS_NODE(node_page);
2668 
2669 	if (is_inode) {
2670 		if (!inode)
2671 			/* from GC path only */
2672 			base = offset_in_addr(&raw_node->i);
2673 		else if (f2fs_has_extra_attr(inode))
2674 			base = get_extra_isize(inode);
2675 	}
2676 
2677 	addr_array = blkaddr_in_node(raw_node);
2678 	return le32_to_cpu(addr_array[base + offset]);
2679 }
2680 
2681 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2682 {
2683 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2684 }
2685 
2686 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2687 {
2688 	int mask;
2689 
2690 	addr += (nr >> 3);
2691 	mask = 1 << (7 - (nr & 0x07));
2692 	return mask & *addr;
2693 }
2694 
2695 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2696 {
2697 	int mask;
2698 
2699 	addr += (nr >> 3);
2700 	mask = 1 << (7 - (nr & 0x07));
2701 	*addr |= mask;
2702 }
2703 
2704 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2705 {
2706 	int mask;
2707 
2708 	addr += (nr >> 3);
2709 	mask = 1 << (7 - (nr & 0x07));
2710 	*addr &= ~mask;
2711 }
2712 
2713 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2714 {
2715 	int mask;
2716 	int ret;
2717 
2718 	addr += (nr >> 3);
2719 	mask = 1 << (7 - (nr & 0x07));
2720 	ret = mask & *addr;
2721 	*addr |= mask;
2722 	return ret;
2723 }
2724 
2725 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2726 {
2727 	int mask;
2728 	int ret;
2729 
2730 	addr += (nr >> 3);
2731 	mask = 1 << (7 - (nr & 0x07));
2732 	ret = mask & *addr;
2733 	*addr &= ~mask;
2734 	return ret;
2735 }
2736 
2737 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2738 {
2739 	int mask;
2740 
2741 	addr += (nr >> 3);
2742 	mask = 1 << (7 - (nr & 0x07));
2743 	*addr ^= mask;
2744 }
2745 
2746 /*
2747  * On-disk inode flags (f2fs_inode::i_flags)
2748  */
2749 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2750 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2751 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2752 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2753 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2754 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2755 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2756 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2757 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2758 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2759 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2760 
2761 /* Flags that should be inherited by new inodes from their parent. */
2762 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2763 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2764 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2765 
2766 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2767 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2768 				F2FS_CASEFOLD_FL))
2769 
2770 /* Flags that are appropriate for non-directories/regular files. */
2771 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2772 
2773 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2774 {
2775 	if (S_ISDIR(mode))
2776 		return flags;
2777 	else if (S_ISREG(mode))
2778 		return flags & F2FS_REG_FLMASK;
2779 	else
2780 		return flags & F2FS_OTHER_FLMASK;
2781 }
2782 
2783 static inline void __mark_inode_dirty_flag(struct inode *inode,
2784 						int flag, bool set)
2785 {
2786 	switch (flag) {
2787 	case FI_INLINE_XATTR:
2788 	case FI_INLINE_DATA:
2789 	case FI_INLINE_DENTRY:
2790 	case FI_NEW_INODE:
2791 		if (set)
2792 			return;
2793 		fallthrough;
2794 	case FI_DATA_EXIST:
2795 	case FI_INLINE_DOTS:
2796 	case FI_PIN_FILE:
2797 	case FI_COMPRESS_RELEASED:
2798 		f2fs_mark_inode_dirty_sync(inode, true);
2799 	}
2800 }
2801 
2802 static inline void set_inode_flag(struct inode *inode, int flag)
2803 {
2804 	set_bit(flag, F2FS_I(inode)->flags);
2805 	__mark_inode_dirty_flag(inode, flag, true);
2806 }
2807 
2808 static inline int is_inode_flag_set(struct inode *inode, int flag)
2809 {
2810 	return test_bit(flag, F2FS_I(inode)->flags);
2811 }
2812 
2813 static inline void clear_inode_flag(struct inode *inode, int flag)
2814 {
2815 	clear_bit(flag, F2FS_I(inode)->flags);
2816 	__mark_inode_dirty_flag(inode, flag, false);
2817 }
2818 
2819 static inline bool f2fs_verity_in_progress(struct inode *inode)
2820 {
2821 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2822 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2823 }
2824 
2825 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2826 {
2827 	F2FS_I(inode)->i_acl_mode = mode;
2828 	set_inode_flag(inode, FI_ACL_MODE);
2829 	f2fs_mark_inode_dirty_sync(inode, false);
2830 }
2831 
2832 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2833 {
2834 	if (inc)
2835 		inc_nlink(inode);
2836 	else
2837 		drop_nlink(inode);
2838 	f2fs_mark_inode_dirty_sync(inode, true);
2839 }
2840 
2841 static inline void f2fs_i_blocks_write(struct inode *inode,
2842 					block_t diff, bool add, bool claim)
2843 {
2844 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2845 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2846 
2847 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2848 	if (add) {
2849 		if (claim)
2850 			dquot_claim_block(inode, diff);
2851 		else
2852 			dquot_alloc_block_nofail(inode, diff);
2853 	} else {
2854 		dquot_free_block(inode, diff);
2855 	}
2856 
2857 	f2fs_mark_inode_dirty_sync(inode, true);
2858 	if (clean || recover)
2859 		set_inode_flag(inode, FI_AUTO_RECOVER);
2860 }
2861 
2862 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2863 {
2864 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2865 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2866 
2867 	if (i_size_read(inode) == i_size)
2868 		return;
2869 
2870 	i_size_write(inode, i_size);
2871 	f2fs_mark_inode_dirty_sync(inode, true);
2872 	if (clean || recover)
2873 		set_inode_flag(inode, FI_AUTO_RECOVER);
2874 }
2875 
2876 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2877 {
2878 	F2FS_I(inode)->i_current_depth = depth;
2879 	f2fs_mark_inode_dirty_sync(inode, true);
2880 }
2881 
2882 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2883 					unsigned int count)
2884 {
2885 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2886 	f2fs_mark_inode_dirty_sync(inode, true);
2887 }
2888 
2889 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2890 {
2891 	F2FS_I(inode)->i_xattr_nid = xnid;
2892 	f2fs_mark_inode_dirty_sync(inode, true);
2893 }
2894 
2895 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2896 {
2897 	F2FS_I(inode)->i_pino = pino;
2898 	f2fs_mark_inode_dirty_sync(inode, true);
2899 }
2900 
2901 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2902 {
2903 	struct f2fs_inode_info *fi = F2FS_I(inode);
2904 
2905 	if (ri->i_inline & F2FS_INLINE_XATTR)
2906 		set_bit(FI_INLINE_XATTR, fi->flags);
2907 	if (ri->i_inline & F2FS_INLINE_DATA)
2908 		set_bit(FI_INLINE_DATA, fi->flags);
2909 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2910 		set_bit(FI_INLINE_DENTRY, fi->flags);
2911 	if (ri->i_inline & F2FS_DATA_EXIST)
2912 		set_bit(FI_DATA_EXIST, fi->flags);
2913 	if (ri->i_inline & F2FS_INLINE_DOTS)
2914 		set_bit(FI_INLINE_DOTS, fi->flags);
2915 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2916 		set_bit(FI_EXTRA_ATTR, fi->flags);
2917 	if (ri->i_inline & F2FS_PIN_FILE)
2918 		set_bit(FI_PIN_FILE, fi->flags);
2919 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2920 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
2921 }
2922 
2923 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2924 {
2925 	ri->i_inline = 0;
2926 
2927 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2928 		ri->i_inline |= F2FS_INLINE_XATTR;
2929 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2930 		ri->i_inline |= F2FS_INLINE_DATA;
2931 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2932 		ri->i_inline |= F2FS_INLINE_DENTRY;
2933 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2934 		ri->i_inline |= F2FS_DATA_EXIST;
2935 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2936 		ri->i_inline |= F2FS_INLINE_DOTS;
2937 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2938 		ri->i_inline |= F2FS_EXTRA_ATTR;
2939 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2940 		ri->i_inline |= F2FS_PIN_FILE;
2941 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
2942 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
2943 }
2944 
2945 static inline int f2fs_has_extra_attr(struct inode *inode)
2946 {
2947 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2948 }
2949 
2950 static inline int f2fs_has_inline_xattr(struct inode *inode)
2951 {
2952 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2953 }
2954 
2955 static inline int f2fs_compressed_file(struct inode *inode)
2956 {
2957 	return S_ISREG(inode->i_mode) &&
2958 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2959 }
2960 
2961 static inline bool f2fs_need_compress_data(struct inode *inode)
2962 {
2963 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2964 
2965 	if (!f2fs_compressed_file(inode))
2966 		return false;
2967 
2968 	if (compress_mode == COMPR_MODE_FS)
2969 		return true;
2970 	else if (compress_mode == COMPR_MODE_USER &&
2971 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2972 		return true;
2973 
2974 	return false;
2975 }
2976 
2977 static inline unsigned int addrs_per_inode(struct inode *inode)
2978 {
2979 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2980 				get_inline_xattr_addrs(inode);
2981 
2982 	if (!f2fs_compressed_file(inode))
2983 		return addrs;
2984 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2985 }
2986 
2987 static inline unsigned int addrs_per_block(struct inode *inode)
2988 {
2989 	if (!f2fs_compressed_file(inode))
2990 		return DEF_ADDRS_PER_BLOCK;
2991 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2992 }
2993 
2994 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2995 {
2996 	struct f2fs_inode *ri = F2FS_INODE(page);
2997 
2998 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2999 					get_inline_xattr_addrs(inode)]);
3000 }
3001 
3002 static inline int inline_xattr_size(struct inode *inode)
3003 {
3004 	if (f2fs_has_inline_xattr(inode))
3005 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3006 	return 0;
3007 }
3008 
3009 static inline int f2fs_has_inline_data(struct inode *inode)
3010 {
3011 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3012 }
3013 
3014 static inline int f2fs_exist_data(struct inode *inode)
3015 {
3016 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3017 }
3018 
3019 static inline int f2fs_has_inline_dots(struct inode *inode)
3020 {
3021 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3022 }
3023 
3024 static inline int f2fs_is_mmap_file(struct inode *inode)
3025 {
3026 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3027 }
3028 
3029 static inline bool f2fs_is_pinned_file(struct inode *inode)
3030 {
3031 	return is_inode_flag_set(inode, FI_PIN_FILE);
3032 }
3033 
3034 static inline bool f2fs_is_atomic_file(struct inode *inode)
3035 {
3036 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3037 }
3038 
3039 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3040 {
3041 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3042 }
3043 
3044 static inline bool f2fs_is_volatile_file(struct inode *inode)
3045 {
3046 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3047 }
3048 
3049 static inline bool f2fs_is_first_block_written(struct inode *inode)
3050 {
3051 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3052 }
3053 
3054 static inline bool f2fs_is_drop_cache(struct inode *inode)
3055 {
3056 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3057 }
3058 
3059 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3060 {
3061 	struct f2fs_inode *ri = F2FS_INODE(page);
3062 	int extra_size = get_extra_isize(inode);
3063 
3064 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3065 }
3066 
3067 static inline int f2fs_has_inline_dentry(struct inode *inode)
3068 {
3069 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3070 }
3071 
3072 static inline int is_file(struct inode *inode, int type)
3073 {
3074 	return F2FS_I(inode)->i_advise & type;
3075 }
3076 
3077 static inline void set_file(struct inode *inode, int type)
3078 {
3079 	F2FS_I(inode)->i_advise |= type;
3080 	f2fs_mark_inode_dirty_sync(inode, true);
3081 }
3082 
3083 static inline void clear_file(struct inode *inode, int type)
3084 {
3085 	F2FS_I(inode)->i_advise &= ~type;
3086 	f2fs_mark_inode_dirty_sync(inode, true);
3087 }
3088 
3089 static inline bool f2fs_is_time_consistent(struct inode *inode)
3090 {
3091 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3092 		return false;
3093 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3094 		return false;
3095 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3096 		return false;
3097 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3098 						&F2FS_I(inode)->i_crtime))
3099 		return false;
3100 	return true;
3101 }
3102 
3103 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3104 {
3105 	bool ret;
3106 
3107 	if (dsync) {
3108 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3109 
3110 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3111 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3112 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3113 		return ret;
3114 	}
3115 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3116 			file_keep_isize(inode) ||
3117 			i_size_read(inode) & ~PAGE_MASK)
3118 		return false;
3119 
3120 	if (!f2fs_is_time_consistent(inode))
3121 		return false;
3122 
3123 	spin_lock(&F2FS_I(inode)->i_size_lock);
3124 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3125 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3126 
3127 	return ret;
3128 }
3129 
3130 static inline bool f2fs_readonly(struct super_block *sb)
3131 {
3132 	return sb_rdonly(sb);
3133 }
3134 
3135 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3136 {
3137 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3138 }
3139 
3140 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3141 {
3142 	if (len == 1 && name[0] == '.')
3143 		return true;
3144 
3145 	if (len == 2 && name[0] == '.' && name[1] == '.')
3146 		return true;
3147 
3148 	return false;
3149 }
3150 
3151 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3152 					size_t size, gfp_t flags)
3153 {
3154 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3155 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3156 		return NULL;
3157 	}
3158 
3159 	return kmalloc(size, flags);
3160 }
3161 
3162 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3163 					size_t size, gfp_t flags)
3164 {
3165 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3166 }
3167 
3168 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3169 					size_t size, gfp_t flags)
3170 {
3171 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3172 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3173 		return NULL;
3174 	}
3175 
3176 	return kvmalloc(size, flags);
3177 }
3178 
3179 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3180 					size_t size, gfp_t flags)
3181 {
3182 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3183 }
3184 
3185 static inline int get_extra_isize(struct inode *inode)
3186 {
3187 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3188 }
3189 
3190 static inline int get_inline_xattr_addrs(struct inode *inode)
3191 {
3192 	return F2FS_I(inode)->i_inline_xattr_size;
3193 }
3194 
3195 #define f2fs_get_inode_mode(i) \
3196 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3197 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3198 
3199 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3200 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3201 	offsetof(struct f2fs_inode, i_extra_isize))	\
3202 
3203 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3204 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3205 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3206 		sizeof((f2fs_inode)->field))			\
3207 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3208 
3209 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3210 #define MIN_IOSTAT_PERIOD_MS		100
3211 /* maximum period of iostat tracing is 1 day */
3212 #define MAX_IOSTAT_PERIOD_MS		8640000
3213 
3214 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3215 {
3216 	int i;
3217 
3218 	spin_lock(&sbi->iostat_lock);
3219 	for (i = 0; i < NR_IO_TYPE; i++) {
3220 		sbi->rw_iostat[i] = 0;
3221 		sbi->prev_rw_iostat[i] = 0;
3222 	}
3223 	spin_unlock(&sbi->iostat_lock);
3224 }
3225 
3226 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3227 
3228 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3229 			enum iostat_type type, unsigned long long io_bytes)
3230 {
3231 	if (!sbi->iostat_enable)
3232 		return;
3233 	spin_lock(&sbi->iostat_lock);
3234 	sbi->rw_iostat[type] += io_bytes;
3235 
3236 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3237 		sbi->rw_iostat[APP_BUFFERED_IO] =
3238 			sbi->rw_iostat[APP_WRITE_IO] -
3239 			sbi->rw_iostat[APP_DIRECT_IO];
3240 
3241 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3242 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3243 			sbi->rw_iostat[APP_READ_IO] -
3244 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3245 	spin_unlock(&sbi->iostat_lock);
3246 
3247 	f2fs_record_iostat(sbi);
3248 }
3249 
3250 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3251 
3252 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3253 
3254 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3255 					block_t blkaddr, int type);
3256 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3257 					block_t blkaddr, int type)
3258 {
3259 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3260 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3261 			 blkaddr, type);
3262 		f2fs_bug_on(sbi, 1);
3263 	}
3264 }
3265 
3266 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3267 {
3268 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3269 			blkaddr == COMPRESS_ADDR)
3270 		return false;
3271 	return true;
3272 }
3273 
3274 /*
3275  * file.c
3276  */
3277 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3278 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3279 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3280 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3281 int f2fs_truncate(struct inode *inode);
3282 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3283 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3284 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3285 		 struct iattr *attr);
3286 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3287 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3288 int f2fs_precache_extents(struct inode *inode);
3289 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3290 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3291 		      struct dentry *dentry, struct fileattr *fa);
3292 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3293 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3294 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3295 int f2fs_pin_file_control(struct inode *inode, bool inc);
3296 
3297 /*
3298  * inode.c
3299  */
3300 void f2fs_set_inode_flags(struct inode *inode);
3301 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3302 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3303 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3304 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3305 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3306 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3307 void f2fs_update_inode_page(struct inode *inode);
3308 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3309 void f2fs_evict_inode(struct inode *inode);
3310 void f2fs_handle_failed_inode(struct inode *inode);
3311 
3312 /*
3313  * namei.c
3314  */
3315 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3316 							bool hot, bool set);
3317 struct dentry *f2fs_get_parent(struct dentry *child);
3318 
3319 /*
3320  * dir.c
3321  */
3322 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3323 int f2fs_init_casefolded_name(const struct inode *dir,
3324 			      struct f2fs_filename *fname);
3325 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3326 			int lookup, struct f2fs_filename *fname);
3327 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3328 			struct f2fs_filename *fname);
3329 void f2fs_free_filename(struct f2fs_filename *fname);
3330 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3331 			const struct f2fs_filename *fname, int *max_slots);
3332 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3333 			unsigned int start_pos, struct fscrypt_str *fstr);
3334 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3335 			struct f2fs_dentry_ptr *d);
3336 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3337 			const struct f2fs_filename *fname, struct page *dpage);
3338 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3339 			unsigned int current_depth);
3340 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3341 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3342 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3343 					 const struct f2fs_filename *fname,
3344 					 struct page **res_page);
3345 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3346 			const struct qstr *child, struct page **res_page);
3347 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3348 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3349 			struct page **page);
3350 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3351 			struct page *page, struct inode *inode);
3352 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3353 			  const struct f2fs_filename *fname);
3354 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3355 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3356 			unsigned int bit_pos);
3357 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3358 			struct inode *inode, nid_t ino, umode_t mode);
3359 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3360 			struct inode *inode, nid_t ino, umode_t mode);
3361 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3362 			struct inode *inode, nid_t ino, umode_t mode);
3363 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3364 			struct inode *dir, struct inode *inode);
3365 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3366 bool f2fs_empty_dir(struct inode *dir);
3367 
3368 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3369 {
3370 	if (fscrypt_is_nokey_name(dentry))
3371 		return -ENOKEY;
3372 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3373 				inode, inode->i_ino, inode->i_mode);
3374 }
3375 
3376 /*
3377  * super.c
3378  */
3379 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3380 void f2fs_inode_synced(struct inode *inode);
3381 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3382 int f2fs_quota_sync(struct super_block *sb, int type);
3383 loff_t max_file_blocks(struct inode *inode);
3384 void f2fs_quota_off_umount(struct super_block *sb);
3385 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3386 int f2fs_sync_fs(struct super_block *sb, int sync);
3387 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3388 
3389 /*
3390  * hash.c
3391  */
3392 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3393 
3394 /*
3395  * node.c
3396  */
3397 struct node_info;
3398 
3399 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3400 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3401 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3402 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3403 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3404 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3405 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3406 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3407 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3408 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3409 						struct node_info *ni);
3410 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3411 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3412 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3413 int f2fs_truncate_xattr_node(struct inode *inode);
3414 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3415 					unsigned int seq_id);
3416 int f2fs_remove_inode_page(struct inode *inode);
3417 struct page *f2fs_new_inode_page(struct inode *inode);
3418 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3419 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3420 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3421 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3422 int f2fs_move_node_page(struct page *node_page, int gc_type);
3423 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3424 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3425 			struct writeback_control *wbc, bool atomic,
3426 			unsigned int *seq_id);
3427 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3428 			struct writeback_control *wbc,
3429 			bool do_balance, enum iostat_type io_type);
3430 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3431 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3432 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3433 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3434 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3435 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3436 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3437 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3438 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3439 			unsigned int segno, struct f2fs_summary_block *sum);
3440 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3441 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3442 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3443 int __init f2fs_create_node_manager_caches(void);
3444 void f2fs_destroy_node_manager_caches(void);
3445 
3446 /*
3447  * segment.c
3448  */
3449 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3450 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3451 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3452 void f2fs_drop_inmem_pages(struct inode *inode);
3453 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3454 int f2fs_commit_inmem_pages(struct inode *inode);
3455 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3456 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3457 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3458 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3459 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3460 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3461 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3462 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3463 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3464 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3465 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3466 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3467 					struct cp_control *cpc);
3468 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3469 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3470 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3471 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3472 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3473 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3474 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3475 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3476 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3477 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3478 			unsigned int *newseg, bool new_sec, int dir);
3479 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3480 					unsigned int start, unsigned int end);
3481 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3482 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3483 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3484 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3485 					struct cp_control *cpc);
3486 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3487 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3488 					block_t blk_addr);
3489 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3490 						enum iostat_type io_type);
3491 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3492 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3493 			struct f2fs_io_info *fio);
3494 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3495 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3496 			block_t old_blkaddr, block_t new_blkaddr,
3497 			bool recover_curseg, bool recover_newaddr,
3498 			bool from_gc);
3499 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3500 			block_t old_addr, block_t new_addr,
3501 			unsigned char version, bool recover_curseg,
3502 			bool recover_newaddr);
3503 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3504 			block_t old_blkaddr, block_t *new_blkaddr,
3505 			struct f2fs_summary *sum, int type,
3506 			struct f2fs_io_info *fio);
3507 void f2fs_wait_on_page_writeback(struct page *page,
3508 			enum page_type type, bool ordered, bool locked);
3509 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3510 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3511 								block_t len);
3512 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3513 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3514 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3515 			unsigned int val, int alloc);
3516 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3517 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3518 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3519 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3520 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3521 int __init f2fs_create_segment_manager_caches(void);
3522 void f2fs_destroy_segment_manager_caches(void);
3523 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3524 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3525 			enum page_type type, enum temp_type temp);
3526 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3527 			unsigned int segno);
3528 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3529 			unsigned int segno);
3530 
3531 /*
3532  * checkpoint.c
3533  */
3534 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3535 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3536 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3537 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3538 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3539 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3540 					block_t blkaddr, int type);
3541 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3542 			int type, bool sync);
3543 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3544 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3545 			long nr_to_write, enum iostat_type io_type);
3546 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3547 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3548 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3549 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3550 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3551 					unsigned int devidx, int type);
3552 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3553 					unsigned int devidx, int type);
3554 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3555 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3556 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3557 void f2fs_add_orphan_inode(struct inode *inode);
3558 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3559 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3560 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3561 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3562 void f2fs_remove_dirty_inode(struct inode *inode);
3563 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3564 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3565 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3566 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3567 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3568 int __init f2fs_create_checkpoint_caches(void);
3569 void f2fs_destroy_checkpoint_caches(void);
3570 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3571 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3572 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3573 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3574 
3575 /*
3576  * data.c
3577  */
3578 int __init f2fs_init_bioset(void);
3579 void f2fs_destroy_bioset(void);
3580 int f2fs_init_bio_entry_cache(void);
3581 void f2fs_destroy_bio_entry_cache(void);
3582 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3583 				struct bio *bio, enum page_type type);
3584 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3585 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3586 				struct inode *inode, struct page *page,
3587 				nid_t ino, enum page_type type);
3588 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3589 					struct bio **bio, struct page *page);
3590 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3591 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3592 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3593 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3594 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3595 			block_t blk_addr, struct bio *bio);
3596 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3597 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3598 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3599 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3600 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3601 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3602 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3603 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3604 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3605 			int op_flags, bool for_write);
3606 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3607 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3608 			bool for_write);
3609 struct page *f2fs_get_new_data_page(struct inode *inode,
3610 			struct page *ipage, pgoff_t index, bool new_i_size);
3611 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3612 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3613 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3614 			int create, int flag);
3615 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3616 			u64 start, u64 len);
3617 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3618 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3619 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3620 int f2fs_write_single_data_page(struct page *page, int *submitted,
3621 				struct bio **bio, sector_t *last_block,
3622 				struct writeback_control *wbc,
3623 				enum iostat_type io_type,
3624 				int compr_blocks, bool allow_balance);
3625 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3626 			unsigned int length);
3627 int f2fs_release_page(struct page *page, gfp_t wait);
3628 #ifdef CONFIG_MIGRATION
3629 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3630 			struct page *page, enum migrate_mode mode);
3631 #endif
3632 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3633 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3634 int f2fs_init_post_read_processing(void);
3635 void f2fs_destroy_post_read_processing(void);
3636 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3637 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3638 
3639 /*
3640  * gc.c
3641  */
3642 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3643 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3644 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3645 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3646 			unsigned int segno);
3647 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3648 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3649 int __init f2fs_create_garbage_collection_cache(void);
3650 void f2fs_destroy_garbage_collection_cache(void);
3651 
3652 /*
3653  * recovery.c
3654  */
3655 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3656 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3657 int __init f2fs_create_recovery_cache(void);
3658 void f2fs_destroy_recovery_cache(void);
3659 
3660 /*
3661  * debug.c
3662  */
3663 #ifdef CONFIG_F2FS_STAT_FS
3664 struct f2fs_stat_info {
3665 	struct list_head stat_list;
3666 	struct f2fs_sb_info *sbi;
3667 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3668 	int main_area_segs, main_area_sections, main_area_zones;
3669 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3670 	unsigned long long hit_total, total_ext;
3671 	int ext_tree, zombie_tree, ext_node;
3672 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3673 	int ndirty_data, ndirty_qdata;
3674 	int inmem_pages;
3675 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3676 	int nats, dirty_nats, sits, dirty_sits;
3677 	int free_nids, avail_nids, alloc_nids;
3678 	int total_count, utilization;
3679 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3680 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3681 	int nr_dio_read, nr_dio_write;
3682 	unsigned int io_skip_bggc, other_skip_bggc;
3683 	int nr_flushing, nr_flushed, flush_list_empty;
3684 	int nr_discarding, nr_discarded;
3685 	int nr_discard_cmd;
3686 	unsigned int undiscard_blks;
3687 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3688 	unsigned int cur_ckpt_time, peak_ckpt_time;
3689 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3690 	int compr_inode;
3691 	unsigned long long compr_blocks;
3692 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3693 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3694 	unsigned int bimodal, avg_vblocks;
3695 	int util_free, util_valid, util_invalid;
3696 	int rsvd_segs, overp_segs;
3697 	int dirty_count, node_pages, meta_pages, compress_pages;
3698 	int compress_page_hit;
3699 	int prefree_count, call_count, cp_count, bg_cp_count;
3700 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3701 	int bg_node_segs, bg_data_segs;
3702 	int tot_blks, data_blks, node_blks;
3703 	int bg_data_blks, bg_node_blks;
3704 	unsigned long long skipped_atomic_files[2];
3705 	int curseg[NR_CURSEG_TYPE];
3706 	int cursec[NR_CURSEG_TYPE];
3707 	int curzone[NR_CURSEG_TYPE];
3708 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3709 	unsigned int full_seg[NR_CURSEG_TYPE];
3710 	unsigned int valid_blks[NR_CURSEG_TYPE];
3711 
3712 	unsigned int meta_count[META_MAX];
3713 	unsigned int segment_count[2];
3714 	unsigned int block_count[2];
3715 	unsigned int inplace_count;
3716 	unsigned long long base_mem, cache_mem, page_mem;
3717 };
3718 
3719 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3720 {
3721 	return (struct f2fs_stat_info *)sbi->stat_info;
3722 }
3723 
3724 #define stat_inc_cp_count(si)		((si)->cp_count++)
3725 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3726 #define stat_inc_call_count(si)		((si)->call_count++)
3727 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3728 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3729 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3730 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3731 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3732 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3733 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3734 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3735 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3736 #define stat_inc_inline_xattr(inode)					\
3737 	do {								\
3738 		if (f2fs_has_inline_xattr(inode))			\
3739 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3740 	} while (0)
3741 #define stat_dec_inline_xattr(inode)					\
3742 	do {								\
3743 		if (f2fs_has_inline_xattr(inode))			\
3744 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3745 	} while (0)
3746 #define stat_inc_inline_inode(inode)					\
3747 	do {								\
3748 		if (f2fs_has_inline_data(inode))			\
3749 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3750 	} while (0)
3751 #define stat_dec_inline_inode(inode)					\
3752 	do {								\
3753 		if (f2fs_has_inline_data(inode))			\
3754 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3755 	} while (0)
3756 #define stat_inc_inline_dir(inode)					\
3757 	do {								\
3758 		if (f2fs_has_inline_dentry(inode))			\
3759 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3760 	} while (0)
3761 #define stat_dec_inline_dir(inode)					\
3762 	do {								\
3763 		if (f2fs_has_inline_dentry(inode))			\
3764 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3765 	} while (0)
3766 #define stat_inc_compr_inode(inode)					\
3767 	do {								\
3768 		if (f2fs_compressed_file(inode))			\
3769 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3770 	} while (0)
3771 #define stat_dec_compr_inode(inode)					\
3772 	do {								\
3773 		if (f2fs_compressed_file(inode))			\
3774 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3775 	} while (0)
3776 #define stat_add_compr_blocks(inode, blocks)				\
3777 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3778 #define stat_sub_compr_blocks(inode, blocks)				\
3779 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3780 #define stat_inc_meta_count(sbi, blkaddr)				\
3781 	do {								\
3782 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3783 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3784 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3785 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3786 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3787 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3788 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3789 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3790 	} while (0)
3791 #define stat_inc_seg_type(sbi, curseg)					\
3792 		((sbi)->segment_count[(curseg)->alloc_type]++)
3793 #define stat_inc_block_count(sbi, curseg)				\
3794 		((sbi)->block_count[(curseg)->alloc_type]++)
3795 #define stat_inc_inplace_blocks(sbi)					\
3796 		(atomic_inc(&(sbi)->inplace_count))
3797 #define stat_update_max_atomic_write(inode)				\
3798 	do {								\
3799 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3800 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3801 		if (cur > max)						\
3802 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3803 	} while (0)
3804 #define stat_inc_volatile_write(inode)					\
3805 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3806 #define stat_dec_volatile_write(inode)					\
3807 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3808 #define stat_update_max_volatile_write(inode)				\
3809 	do {								\
3810 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3811 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3812 		if (cur > max)						\
3813 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3814 	} while (0)
3815 #define stat_inc_seg_count(sbi, type, gc_type)				\
3816 	do {								\
3817 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3818 		si->tot_segs++;						\
3819 		if ((type) == SUM_TYPE_DATA) {				\
3820 			si->data_segs++;				\
3821 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3822 		} else {						\
3823 			si->node_segs++;				\
3824 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3825 		}							\
3826 	} while (0)
3827 
3828 #define stat_inc_tot_blk_count(si, blks)				\
3829 	((si)->tot_blks += (blks))
3830 
3831 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3832 	do {								\
3833 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3834 		stat_inc_tot_blk_count(si, blks);			\
3835 		si->data_blks += (blks);				\
3836 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3837 	} while (0)
3838 
3839 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3840 	do {								\
3841 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3842 		stat_inc_tot_blk_count(si, blks);			\
3843 		si->node_blks += (blks);				\
3844 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3845 	} while (0)
3846 
3847 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3848 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3849 void __init f2fs_create_root_stats(void);
3850 void f2fs_destroy_root_stats(void);
3851 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3852 #else
3853 #define stat_inc_cp_count(si)				do { } while (0)
3854 #define stat_inc_bg_cp_count(si)			do { } while (0)
3855 #define stat_inc_call_count(si)				do { } while (0)
3856 #define stat_inc_bggc_count(si)				do { } while (0)
3857 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3858 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3859 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3860 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3861 #define stat_inc_total_hit(sbi)				do { } while (0)
3862 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3863 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3864 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3865 #define stat_inc_inline_xattr(inode)			do { } while (0)
3866 #define stat_dec_inline_xattr(inode)			do { } while (0)
3867 #define stat_inc_inline_inode(inode)			do { } while (0)
3868 #define stat_dec_inline_inode(inode)			do { } while (0)
3869 #define stat_inc_inline_dir(inode)			do { } while (0)
3870 #define stat_dec_inline_dir(inode)			do { } while (0)
3871 #define stat_inc_compr_inode(inode)			do { } while (0)
3872 #define stat_dec_compr_inode(inode)			do { } while (0)
3873 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3874 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3875 #define stat_update_max_atomic_write(inode)		do { } while (0)
3876 #define stat_inc_volatile_write(inode)			do { } while (0)
3877 #define stat_dec_volatile_write(inode)			do { } while (0)
3878 #define stat_update_max_volatile_write(inode)		do { } while (0)
3879 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3880 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3881 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3882 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3883 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3884 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3885 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3886 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3887 
3888 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3889 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3890 static inline void __init f2fs_create_root_stats(void) { }
3891 static inline void f2fs_destroy_root_stats(void) { }
3892 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3893 #endif
3894 
3895 extern const struct file_operations f2fs_dir_operations;
3896 extern const struct file_operations f2fs_file_operations;
3897 extern const struct inode_operations f2fs_file_inode_operations;
3898 extern const struct address_space_operations f2fs_dblock_aops;
3899 extern const struct address_space_operations f2fs_node_aops;
3900 extern const struct address_space_operations f2fs_meta_aops;
3901 extern const struct inode_operations f2fs_dir_inode_operations;
3902 extern const struct inode_operations f2fs_symlink_inode_operations;
3903 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3904 extern const struct inode_operations f2fs_special_inode_operations;
3905 extern struct kmem_cache *f2fs_inode_entry_slab;
3906 
3907 /*
3908  * inline.c
3909  */
3910 bool f2fs_may_inline_data(struct inode *inode);
3911 bool f2fs_may_inline_dentry(struct inode *inode);
3912 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3913 void f2fs_truncate_inline_inode(struct inode *inode,
3914 						struct page *ipage, u64 from);
3915 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3916 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3917 int f2fs_convert_inline_inode(struct inode *inode);
3918 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3919 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3920 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3921 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3922 					const struct f2fs_filename *fname,
3923 					struct page **res_page);
3924 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3925 			struct page *ipage);
3926 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3927 			struct inode *inode, nid_t ino, umode_t mode);
3928 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3929 				struct page *page, struct inode *dir,
3930 				struct inode *inode);
3931 bool f2fs_empty_inline_dir(struct inode *dir);
3932 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3933 			struct fscrypt_str *fstr);
3934 int f2fs_inline_data_fiemap(struct inode *inode,
3935 			struct fiemap_extent_info *fieinfo,
3936 			__u64 start, __u64 len);
3937 
3938 /*
3939  * shrinker.c
3940  */
3941 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3942 			struct shrink_control *sc);
3943 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3944 			struct shrink_control *sc);
3945 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3946 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3947 
3948 /*
3949  * extent_cache.c
3950  */
3951 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3952 				struct rb_entry *cached_re, unsigned int ofs);
3953 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3954 				struct rb_root_cached *root,
3955 				struct rb_node **parent,
3956 				unsigned long long key, bool *left_most);
3957 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3958 				struct rb_root_cached *root,
3959 				struct rb_node **parent,
3960 				unsigned int ofs, bool *leftmost);
3961 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3962 		struct rb_entry *cached_re, unsigned int ofs,
3963 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3964 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3965 		bool force, bool *leftmost);
3966 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3967 				struct rb_root_cached *root, bool check_key);
3968 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3969 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3970 void f2fs_drop_extent_tree(struct inode *inode);
3971 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3972 void f2fs_destroy_extent_tree(struct inode *inode);
3973 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3974 			struct extent_info *ei);
3975 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3976 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3977 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3978 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3979 int __init f2fs_create_extent_cache(void);
3980 void f2fs_destroy_extent_cache(void);
3981 
3982 /*
3983  * sysfs.c
3984  */
3985 int __init f2fs_init_sysfs(void);
3986 void f2fs_exit_sysfs(void);
3987 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3988 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3989 
3990 /* verity.c */
3991 extern const struct fsverity_operations f2fs_verityops;
3992 
3993 /*
3994  * crypto support
3995  */
3996 static inline bool f2fs_encrypted_file(struct inode *inode)
3997 {
3998 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3999 }
4000 
4001 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4002 {
4003 #ifdef CONFIG_FS_ENCRYPTION
4004 	file_set_encrypt(inode);
4005 	f2fs_set_inode_flags(inode);
4006 #endif
4007 }
4008 
4009 /*
4010  * Returns true if the reads of the inode's data need to undergo some
4011  * postprocessing step, like decryption or authenticity verification.
4012  */
4013 static inline bool f2fs_post_read_required(struct inode *inode)
4014 {
4015 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4016 		f2fs_compressed_file(inode);
4017 }
4018 
4019 /*
4020  * compress.c
4021  */
4022 #ifdef CONFIG_F2FS_FS_COMPRESSION
4023 bool f2fs_is_compressed_page(struct page *page);
4024 struct page *f2fs_compress_control_page(struct page *page);
4025 int f2fs_prepare_compress_overwrite(struct inode *inode,
4026 			struct page **pagep, pgoff_t index, void **fsdata);
4027 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4028 					pgoff_t index, unsigned copied);
4029 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4030 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4031 bool f2fs_is_compress_backend_ready(struct inode *inode);
4032 int f2fs_init_compress_mempool(void);
4033 void f2fs_destroy_compress_mempool(void);
4034 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4035 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4036 							block_t blkaddr);
4037 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4038 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4039 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4040 int f2fs_write_multi_pages(struct compress_ctx *cc,
4041 						int *submitted,
4042 						struct writeback_control *wbc,
4043 						enum iostat_type io_type);
4044 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4045 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4046 				unsigned nr_pages, sector_t *last_block_in_bio,
4047 				bool is_readahead, bool for_write);
4048 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4049 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4050 void f2fs_put_page_dic(struct page *page);
4051 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4052 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4053 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4054 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4055 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4056 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4057 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4058 int __init f2fs_init_compress_cache(void);
4059 void f2fs_destroy_compress_cache(void);
4060 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4061 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4062 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4063 						nid_t ino, block_t blkaddr);
4064 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4065 								block_t blkaddr);
4066 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4067 #define inc_compr_inode_stat(inode)					\
4068 	do {								\
4069 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4070 		sbi->compr_new_inode++;					\
4071 	} while (0)
4072 #define add_compr_block_stat(inode, blocks)				\
4073 	do {								\
4074 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4075 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4076 		sbi->compr_written_block += blocks;			\
4077 		sbi->compr_saved_block += diff;				\
4078 	} while (0)
4079 #else
4080 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4081 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4082 {
4083 	if (!f2fs_compressed_file(inode))
4084 		return true;
4085 	/* not support compression */
4086 	return false;
4087 }
4088 static inline struct page *f2fs_compress_control_page(struct page *page)
4089 {
4090 	WARN_ON_ONCE(1);
4091 	return ERR_PTR(-EINVAL);
4092 }
4093 static inline int f2fs_init_compress_mempool(void) { return 0; }
4094 static inline void f2fs_destroy_compress_mempool(void) { }
4095 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4096 static inline void f2fs_end_read_compressed_page(struct page *page,
4097 						bool failed, block_t blkaddr)
4098 {
4099 	WARN_ON_ONCE(1);
4100 }
4101 static inline void f2fs_put_page_dic(struct page *page)
4102 {
4103 	WARN_ON_ONCE(1);
4104 }
4105 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4106 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4107 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4108 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4109 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4110 static inline void f2fs_destroy_compress_cache(void) { }
4111 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4112 				block_t blkaddr) { }
4113 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4114 				struct page *page, nid_t ino, block_t blkaddr) { }
4115 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4116 				struct page *page, block_t blkaddr) { return false; }
4117 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4118 							nid_t ino) { }
4119 #define inc_compr_inode_stat(inode)		do { } while (0)
4120 #endif
4121 
4122 static inline void set_compress_context(struct inode *inode)
4123 {
4124 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4125 
4126 	F2FS_I(inode)->i_compress_algorithm =
4127 			F2FS_OPTION(sbi).compress_algorithm;
4128 	F2FS_I(inode)->i_log_cluster_size =
4129 			F2FS_OPTION(sbi).compress_log_size;
4130 	F2FS_I(inode)->i_compress_flag =
4131 			F2FS_OPTION(sbi).compress_chksum ?
4132 				1 << COMPRESS_CHKSUM : 0;
4133 	F2FS_I(inode)->i_cluster_size =
4134 			1 << F2FS_I(inode)->i_log_cluster_size;
4135 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 &&
4136 			F2FS_OPTION(sbi).compress_level)
4137 		F2FS_I(inode)->i_compress_flag |=
4138 				F2FS_OPTION(sbi).compress_level <<
4139 				COMPRESS_LEVEL_OFFSET;
4140 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4141 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4142 	stat_inc_compr_inode(inode);
4143 	inc_compr_inode_stat(inode);
4144 	f2fs_mark_inode_dirty_sync(inode, true);
4145 }
4146 
4147 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4148 {
4149 	struct f2fs_inode_info *fi = F2FS_I(inode);
4150 
4151 	if (!f2fs_compressed_file(inode))
4152 		return true;
4153 	if (S_ISREG(inode->i_mode) &&
4154 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
4155 		return false;
4156 
4157 	fi->i_flags &= ~F2FS_COMPR_FL;
4158 	stat_dec_compr_inode(inode);
4159 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4160 	f2fs_mark_inode_dirty_sync(inode, true);
4161 	return true;
4162 }
4163 
4164 #define F2FS_FEATURE_FUNCS(name, flagname) \
4165 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4166 { \
4167 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4168 }
4169 
4170 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4171 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4172 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4173 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4174 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4175 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4176 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4177 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4178 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4179 F2FS_FEATURE_FUNCS(verity, VERITY);
4180 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4181 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4182 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4183 F2FS_FEATURE_FUNCS(readonly, RO);
4184 
4185 static inline bool f2fs_may_extent_tree(struct inode *inode)
4186 {
4187 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4188 
4189 	if (!test_opt(sbi, EXTENT_CACHE) ||
4190 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4191 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4192 			 !f2fs_sb_has_readonly(sbi)))
4193 		return false;
4194 
4195 	/*
4196 	 * for recovered files during mount do not create extents
4197 	 * if shrinker is not registered.
4198 	 */
4199 	if (list_empty(&sbi->s_list))
4200 		return false;
4201 
4202 	return S_ISREG(inode->i_mode);
4203 }
4204 
4205 #ifdef CONFIG_BLK_DEV_ZONED
4206 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4207 				    block_t blkaddr)
4208 {
4209 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4210 
4211 	return test_bit(zno, FDEV(devi).blkz_seq);
4212 }
4213 #endif
4214 
4215 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4216 {
4217 	return f2fs_sb_has_blkzoned(sbi);
4218 }
4219 
4220 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4221 {
4222 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4223 	       bdev_is_zoned(bdev);
4224 }
4225 
4226 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4227 {
4228 	int i;
4229 
4230 	if (!f2fs_is_multi_device(sbi))
4231 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4232 
4233 	for (i = 0; i < sbi->s_ndevs; i++)
4234 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4235 			return true;
4236 	return false;
4237 }
4238 
4239 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4240 {
4241 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4242 					f2fs_hw_should_discard(sbi);
4243 }
4244 
4245 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4246 {
4247 	int i;
4248 
4249 	if (!f2fs_is_multi_device(sbi))
4250 		return bdev_read_only(sbi->sb->s_bdev);
4251 
4252 	for (i = 0; i < sbi->s_ndevs; i++)
4253 		if (bdev_read_only(FDEV(i).bdev))
4254 			return true;
4255 	return false;
4256 }
4257 
4258 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4259 {
4260 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4261 }
4262 
4263 static inline bool f2fs_may_compress(struct inode *inode)
4264 {
4265 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4266 				f2fs_is_atomic_file(inode) ||
4267 				f2fs_is_volatile_file(inode))
4268 		return false;
4269 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4270 }
4271 
4272 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4273 						u64 blocks, bool add)
4274 {
4275 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4276 	struct f2fs_inode_info *fi = F2FS_I(inode);
4277 
4278 	/* don't update i_compr_blocks if saved blocks were released */
4279 	if (!add && !atomic_read(&fi->i_compr_blocks))
4280 		return;
4281 
4282 	if (add) {
4283 		atomic_add(diff, &fi->i_compr_blocks);
4284 		stat_add_compr_blocks(inode, diff);
4285 	} else {
4286 		atomic_sub(diff, &fi->i_compr_blocks);
4287 		stat_sub_compr_blocks(inode, diff);
4288 	}
4289 	f2fs_mark_inode_dirty_sync(inode, true);
4290 }
4291 
4292 static inline int block_unaligned_IO(struct inode *inode,
4293 				struct kiocb *iocb, struct iov_iter *iter)
4294 {
4295 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4296 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4297 	loff_t offset = iocb->ki_pos;
4298 	unsigned long align = offset | iov_iter_alignment(iter);
4299 
4300 	return align & blocksize_mask;
4301 }
4302 
4303 static inline int allow_outplace_dio(struct inode *inode,
4304 				struct kiocb *iocb, struct iov_iter *iter)
4305 {
4306 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4307 	int rw = iov_iter_rw(iter);
4308 
4309 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4310 				!block_unaligned_IO(inode, iocb, iter));
4311 }
4312 
4313 static inline bool f2fs_force_buffered_io(struct inode *inode,
4314 				struct kiocb *iocb, struct iov_iter *iter)
4315 {
4316 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4317 	int rw = iov_iter_rw(iter);
4318 
4319 	if (f2fs_post_read_required(inode))
4320 		return true;
4321 	if (f2fs_is_multi_device(sbi))
4322 		return true;
4323 	/*
4324 	 * for blkzoned device, fallback direct IO to buffered IO, so
4325 	 * all IOs can be serialized by log-structured write.
4326 	 */
4327 	if (f2fs_sb_has_blkzoned(sbi))
4328 		return true;
4329 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4330 		if (block_unaligned_IO(inode, iocb, iter))
4331 			return true;
4332 		if (F2FS_IO_ALIGNED(sbi))
4333 			return true;
4334 	}
4335 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4336 		return true;
4337 
4338 	return false;
4339 }
4340 
4341 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4342 {
4343 	return fsverity_active(inode) &&
4344 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4345 }
4346 
4347 #ifdef CONFIG_F2FS_FAULT_INJECTION
4348 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4349 							unsigned int type);
4350 #else
4351 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4352 #endif
4353 
4354 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4355 {
4356 #ifdef CONFIG_QUOTA
4357 	if (f2fs_sb_has_quota_ino(sbi))
4358 		return true;
4359 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4360 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4361 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4362 		return true;
4363 #endif
4364 	return false;
4365 }
4366 
4367 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4368 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4369 
4370 #endif /* _LINUX_F2FS_H */
4371