xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 3fde13f8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_MAX,
58 };
59 
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
62 
63 struct f2fs_fault_info {
64 	atomic_t inject_ops;
65 	unsigned int inject_rate;
66 	unsigned int inject_type;
67 };
68 
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72 
73 /*
74  * For mount options
75  */
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
90 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
91 #define F2FS_MOUNT_USRQUOTA		0x00080000
92 #define F2FS_MOUNT_GRPQUOTA		0x00100000
93 #define F2FS_MOUNT_PRJQUOTA		0x00200000
94 #define F2FS_MOUNT_QUOTA		0x00400000
95 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
96 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
97 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
98 #define F2FS_MOUNT_NORECOVERY		0x04000000
99 #define F2FS_MOUNT_ATGC			0x08000000
100 
101 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
102 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105 
106 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
107 		typecheck(unsigned long long, b) &&			\
108 		((long long)((a) - (b)) > 0))
109 
110 typedef u32 block_t;	/*
111 			 * should not change u32, since it is the on-disk block
112 			 * address format, __le32.
113 			 */
114 typedef u32 nid_t;
115 
116 #define COMPRESS_EXT_NUM		16
117 
118 struct f2fs_mount_info {
119 	unsigned int opt;
120 	int write_io_size_bits;		/* Write IO size bits */
121 	block_t root_reserved_blocks;	/* root reserved blocks */
122 	kuid_t s_resuid;		/* reserved blocks for uid */
123 	kgid_t s_resgid;		/* reserved blocks for gid */
124 	int active_logs;		/* # of active logs */
125 	int inline_xattr_size;		/* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 	struct f2fs_fault_info fault_info;	/* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 	/* Names of quota files with journalled quota */
131 	char *s_qf_names[MAXQUOTAS];
132 	int s_jquota_fmt;			/* Format of quota to use */
133 #endif
134 	/* For which write hints are passed down to block layer */
135 	int whint_mode;
136 	int alloc_mode;			/* segment allocation policy */
137 	int fsync_mode;			/* fsync policy */
138 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
139 	int bggc_mode;			/* bggc mode: off, on or sync */
140 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
141 	block_t unusable_cap_perc;	/* percentage for cap */
142 	block_t unusable_cap;		/* Amount of space allowed to be
143 					 * unusable when disabling checkpoint
144 					 */
145 
146 	/* For compression */
147 	unsigned char compress_algorithm;	/* algorithm type */
148 	unsigned char compress_log_size;	/* cluster log size */
149 	unsigned char compress_level;		/* compress level */
150 	bool compress_chksum;			/* compressed data chksum */
151 	unsigned char compress_ext_cnt;		/* extension count */
152 	int compress_mode;			/* compression mode */
153 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
154 };
155 
156 #define F2FS_FEATURE_ENCRYPT		0x0001
157 #define F2FS_FEATURE_BLKZONED		0x0002
158 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
159 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
160 #define F2FS_FEATURE_PRJQUOTA		0x0010
161 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
162 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
163 #define F2FS_FEATURE_QUOTA_INO		0x0080
164 #define F2FS_FEATURE_INODE_CRTIME	0x0100
165 #define F2FS_FEATURE_LOST_FOUND		0x0200
166 #define F2FS_FEATURE_VERITY		0x0400
167 #define F2FS_FEATURE_SB_CHKSUM		0x0800
168 #define F2FS_FEATURE_CASEFOLD		0x1000
169 #define F2FS_FEATURE_COMPRESSION	0x2000
170 
171 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
172 	((raw_super->feature & cpu_to_le32(mask)) != 0)
173 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
174 #define F2FS_SET_FEATURE(sbi, mask)					\
175 	(sbi->raw_super->feature |= cpu_to_le32(mask))
176 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
177 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
178 
179 /*
180  * Default values for user and/or group using reserved blocks
181  */
182 #define	F2FS_DEF_RESUID		0
183 #define	F2FS_DEF_RESGID		0
184 
185 /*
186  * For checkpoint manager
187  */
188 enum {
189 	NAT_BITMAP,
190 	SIT_BITMAP
191 };
192 
193 #define	CP_UMOUNT	0x00000001
194 #define	CP_FASTBOOT	0x00000002
195 #define	CP_SYNC		0x00000004
196 #define	CP_RECOVERY	0x00000008
197 #define	CP_DISCARD	0x00000010
198 #define CP_TRIMMED	0x00000020
199 #define CP_PAUSE	0x00000040
200 #define CP_RESIZE 	0x00000080
201 
202 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
203 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
204 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
205 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
206 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
207 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
208 #define DEF_CP_INTERVAL			60	/* 60 secs */
209 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
210 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
211 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
212 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
213 
214 struct cp_control {
215 	int reason;
216 	__u64 trim_start;
217 	__u64 trim_end;
218 	__u64 trim_minlen;
219 };
220 
221 /*
222  * indicate meta/data type
223  */
224 enum {
225 	META_CP,
226 	META_NAT,
227 	META_SIT,
228 	META_SSA,
229 	META_MAX,
230 	META_POR,
231 	DATA_GENERIC,		/* check range only */
232 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
233 	DATA_GENERIC_ENHANCE_READ,	/*
234 					 * strong check on range and segment
235 					 * bitmap but no warning due to race
236 					 * condition of read on truncated area
237 					 * by extent_cache
238 					 */
239 	META_GENERIC,
240 };
241 
242 /* for the list of ino */
243 enum {
244 	ORPHAN_INO,		/* for orphan ino list */
245 	APPEND_INO,		/* for append ino list */
246 	UPDATE_INO,		/* for update ino list */
247 	TRANS_DIR_INO,		/* for trasactions dir ino list */
248 	FLUSH_INO,		/* for multiple device flushing */
249 	MAX_INO_ENTRY,		/* max. list */
250 };
251 
252 struct ino_entry {
253 	struct list_head list;		/* list head */
254 	nid_t ino;			/* inode number */
255 	unsigned int dirty_device;	/* dirty device bitmap */
256 };
257 
258 /* for the list of inodes to be GCed */
259 struct inode_entry {
260 	struct list_head list;	/* list head */
261 	struct inode *inode;	/* vfs inode pointer */
262 };
263 
264 struct fsync_node_entry {
265 	struct list_head list;	/* list head */
266 	struct page *page;	/* warm node page pointer */
267 	unsigned int seq_id;	/* sequence id */
268 };
269 
270 /* for the bitmap indicate blocks to be discarded */
271 struct discard_entry {
272 	struct list_head list;	/* list head */
273 	block_t start_blkaddr;	/* start blockaddr of current segment */
274 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
275 };
276 
277 /* default discard granularity of inner discard thread, unit: block count */
278 #define DEFAULT_DISCARD_GRANULARITY		16
279 
280 /* max discard pend list number */
281 #define MAX_PLIST_NUM		512
282 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
283 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
284 
285 enum {
286 	D_PREP,			/* initial */
287 	D_PARTIAL,		/* partially submitted */
288 	D_SUBMIT,		/* all submitted */
289 	D_DONE,			/* finished */
290 };
291 
292 struct discard_info {
293 	block_t lstart;			/* logical start address */
294 	block_t len;			/* length */
295 	block_t start;			/* actual start address in dev */
296 };
297 
298 struct discard_cmd {
299 	struct rb_node rb_node;		/* rb node located in rb-tree */
300 	union {
301 		struct {
302 			block_t lstart;	/* logical start address */
303 			block_t len;	/* length */
304 			block_t start;	/* actual start address in dev */
305 		};
306 		struct discard_info di;	/* discard info */
307 
308 	};
309 	struct list_head list;		/* command list */
310 	struct completion wait;		/* compleation */
311 	struct block_device *bdev;	/* bdev */
312 	unsigned short ref;		/* reference count */
313 	unsigned char state;		/* state */
314 	unsigned char queued;		/* queued discard */
315 	int error;			/* bio error */
316 	spinlock_t lock;		/* for state/bio_ref updating */
317 	unsigned short bio_ref;		/* bio reference count */
318 };
319 
320 enum {
321 	DPOLICY_BG,
322 	DPOLICY_FORCE,
323 	DPOLICY_FSTRIM,
324 	DPOLICY_UMOUNT,
325 	MAX_DPOLICY,
326 };
327 
328 struct discard_policy {
329 	int type;			/* type of discard */
330 	unsigned int min_interval;	/* used for candidates exist */
331 	unsigned int mid_interval;	/* used for device busy */
332 	unsigned int max_interval;	/* used for candidates not exist */
333 	unsigned int max_requests;	/* # of discards issued per round */
334 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
335 	bool io_aware;			/* issue discard in idle time */
336 	bool sync;			/* submit discard with REQ_SYNC flag */
337 	bool ordered;			/* issue discard by lba order */
338 	bool timeout;			/* discard timeout for put_super */
339 	unsigned int granularity;	/* discard granularity */
340 };
341 
342 struct discard_cmd_control {
343 	struct task_struct *f2fs_issue_discard;	/* discard thread */
344 	struct list_head entry_list;		/* 4KB discard entry list */
345 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
346 	struct list_head wait_list;		/* store on-flushing entries */
347 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
348 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
349 	unsigned int discard_wake;		/* to wake up discard thread */
350 	struct mutex cmd_lock;
351 	unsigned int nr_discards;		/* # of discards in the list */
352 	unsigned int max_discards;		/* max. discards to be issued */
353 	unsigned int discard_granularity;	/* discard granularity */
354 	unsigned int undiscard_blks;		/* # of undiscard blocks */
355 	unsigned int next_pos;			/* next discard position */
356 	atomic_t issued_discard;		/* # of issued discard */
357 	atomic_t queued_discard;		/* # of queued discard */
358 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
359 	struct rb_root_cached root;		/* root of discard rb-tree */
360 	bool rbtree_check;			/* config for consistence check */
361 };
362 
363 /* for the list of fsync inodes, used only during recovery */
364 struct fsync_inode_entry {
365 	struct list_head list;	/* list head */
366 	struct inode *inode;	/* vfs inode pointer */
367 	block_t blkaddr;	/* block address locating the last fsync */
368 	block_t last_dentry;	/* block address locating the last dentry */
369 };
370 
371 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
372 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
373 
374 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
375 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
376 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
377 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
378 
379 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
380 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
381 
382 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
383 {
384 	int before = nats_in_cursum(journal);
385 
386 	journal->n_nats = cpu_to_le16(before + i);
387 	return before;
388 }
389 
390 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
391 {
392 	int before = sits_in_cursum(journal);
393 
394 	journal->n_sits = cpu_to_le16(before + i);
395 	return before;
396 }
397 
398 static inline bool __has_cursum_space(struct f2fs_journal *journal,
399 							int size, int type)
400 {
401 	if (type == NAT_JOURNAL)
402 		return size <= MAX_NAT_JENTRIES(journal);
403 	return size <= MAX_SIT_JENTRIES(journal);
404 }
405 
406 /* for inline stuff */
407 #define DEF_INLINE_RESERVED_SIZE	1
408 static inline int get_extra_isize(struct inode *inode);
409 static inline int get_inline_xattr_addrs(struct inode *inode);
410 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
411 				(CUR_ADDRS_PER_INODE(inode) -		\
412 				get_inline_xattr_addrs(inode) -	\
413 				DEF_INLINE_RESERVED_SIZE))
414 
415 /* for inline dir */
416 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
417 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
418 				BITS_PER_BYTE + 1))
419 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
420 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
421 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
422 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
423 				NR_INLINE_DENTRY(inode) + \
424 				INLINE_DENTRY_BITMAP_SIZE(inode)))
425 
426 /*
427  * For INODE and NODE manager
428  */
429 /* for directory operations */
430 
431 struct f2fs_filename {
432 	/*
433 	 * The filename the user specified.  This is NULL for some
434 	 * filesystem-internal operations, e.g. converting an inline directory
435 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
436 	 */
437 	const struct qstr *usr_fname;
438 
439 	/*
440 	 * The on-disk filename.  For encrypted directories, this is encrypted.
441 	 * This may be NULL for lookups in an encrypted dir without the key.
442 	 */
443 	struct fscrypt_str disk_name;
444 
445 	/* The dirhash of this filename */
446 	f2fs_hash_t hash;
447 
448 #ifdef CONFIG_FS_ENCRYPTION
449 	/*
450 	 * For lookups in encrypted directories: either the buffer backing
451 	 * disk_name, or a buffer that holds the decoded no-key name.
452 	 */
453 	struct fscrypt_str crypto_buf;
454 #endif
455 #ifdef CONFIG_UNICODE
456 	/*
457 	 * For casefolded directories: the casefolded name, but it's left NULL
458 	 * if the original name is not valid Unicode, if the directory is both
459 	 * casefolded and encrypted and its encryption key is unavailable, or if
460 	 * the filesystem is doing an internal operation where usr_fname is also
461 	 * NULL.  In all these cases we fall back to treating the name as an
462 	 * opaque byte sequence.
463 	 */
464 	struct fscrypt_str cf_name;
465 #endif
466 };
467 
468 struct f2fs_dentry_ptr {
469 	struct inode *inode;
470 	void *bitmap;
471 	struct f2fs_dir_entry *dentry;
472 	__u8 (*filename)[F2FS_SLOT_LEN];
473 	int max;
474 	int nr_bitmap;
475 };
476 
477 static inline void make_dentry_ptr_block(struct inode *inode,
478 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
479 {
480 	d->inode = inode;
481 	d->max = NR_DENTRY_IN_BLOCK;
482 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
483 	d->bitmap = t->dentry_bitmap;
484 	d->dentry = t->dentry;
485 	d->filename = t->filename;
486 }
487 
488 static inline void make_dentry_ptr_inline(struct inode *inode,
489 					struct f2fs_dentry_ptr *d, void *t)
490 {
491 	int entry_cnt = NR_INLINE_DENTRY(inode);
492 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
493 	int reserved_size = INLINE_RESERVED_SIZE(inode);
494 
495 	d->inode = inode;
496 	d->max = entry_cnt;
497 	d->nr_bitmap = bitmap_size;
498 	d->bitmap = t;
499 	d->dentry = t + bitmap_size + reserved_size;
500 	d->filename = t + bitmap_size + reserved_size +
501 					SIZE_OF_DIR_ENTRY * entry_cnt;
502 }
503 
504 /*
505  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
506  * as its node offset to distinguish from index node blocks.
507  * But some bits are used to mark the node block.
508  */
509 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
510 				>> OFFSET_BIT_SHIFT)
511 enum {
512 	ALLOC_NODE,			/* allocate a new node page if needed */
513 	LOOKUP_NODE,			/* look up a node without readahead */
514 	LOOKUP_NODE_RA,			/*
515 					 * look up a node with readahead called
516 					 * by get_data_block.
517 					 */
518 };
519 
520 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
521 
522 /* congestion wait timeout value, default: 20ms */
523 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
524 
525 /* maximum retry quota flush count */
526 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
527 
528 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
529 
530 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
531 
532 /* for in-memory extent cache entry */
533 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
534 
535 /* number of extent info in extent cache we try to shrink */
536 #define EXTENT_CACHE_SHRINK_NUMBER	128
537 
538 struct rb_entry {
539 	struct rb_node rb_node;		/* rb node located in rb-tree */
540 	union {
541 		struct {
542 			unsigned int ofs;	/* start offset of the entry */
543 			unsigned int len;	/* length of the entry */
544 		};
545 		unsigned long long key;		/* 64-bits key */
546 	} __packed;
547 };
548 
549 struct extent_info {
550 	unsigned int fofs;		/* start offset in a file */
551 	unsigned int len;		/* length of the extent */
552 	u32 blk;			/* start block address of the extent */
553 };
554 
555 struct extent_node {
556 	struct rb_node rb_node;		/* rb node located in rb-tree */
557 	struct extent_info ei;		/* extent info */
558 	struct list_head list;		/* node in global extent list of sbi */
559 	struct extent_tree *et;		/* extent tree pointer */
560 };
561 
562 struct extent_tree {
563 	nid_t ino;			/* inode number */
564 	struct rb_root_cached root;	/* root of extent info rb-tree */
565 	struct extent_node *cached_en;	/* recently accessed extent node */
566 	struct extent_info largest;	/* largested extent info */
567 	struct list_head list;		/* to be used by sbi->zombie_list */
568 	rwlock_t lock;			/* protect extent info rb-tree */
569 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
570 	bool largest_updated;		/* largest extent updated */
571 };
572 
573 /*
574  * This structure is taken from ext4_map_blocks.
575  *
576  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
577  */
578 #define F2FS_MAP_NEW		(1 << BH_New)
579 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
580 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
581 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
582 				F2FS_MAP_UNWRITTEN)
583 
584 struct f2fs_map_blocks {
585 	block_t m_pblk;
586 	block_t m_lblk;
587 	unsigned int m_len;
588 	unsigned int m_flags;
589 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
590 	pgoff_t *m_next_extent;		/* point to next possible extent */
591 	int m_seg_type;
592 	bool m_may_create;		/* indicate it is from write path */
593 };
594 
595 /* for flag in get_data_block */
596 enum {
597 	F2FS_GET_BLOCK_DEFAULT,
598 	F2FS_GET_BLOCK_FIEMAP,
599 	F2FS_GET_BLOCK_BMAP,
600 	F2FS_GET_BLOCK_DIO,
601 	F2FS_GET_BLOCK_PRE_DIO,
602 	F2FS_GET_BLOCK_PRE_AIO,
603 	F2FS_GET_BLOCK_PRECACHE,
604 };
605 
606 /*
607  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
608  */
609 #define FADVISE_COLD_BIT	0x01
610 #define FADVISE_LOST_PINO_BIT	0x02
611 #define FADVISE_ENCRYPT_BIT	0x04
612 #define FADVISE_ENC_NAME_BIT	0x08
613 #define FADVISE_KEEP_SIZE_BIT	0x10
614 #define FADVISE_HOT_BIT		0x20
615 #define FADVISE_VERITY_BIT	0x40
616 
617 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
618 
619 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
620 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
621 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
622 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
623 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
624 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
625 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
626 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
627 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
628 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
629 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
630 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
631 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
632 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
633 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
634 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
635 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
636 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
637 
638 #define DEF_DIR_LEVEL		0
639 
640 enum {
641 	GC_FAILURE_PIN,
642 	GC_FAILURE_ATOMIC,
643 	MAX_GC_FAILURE
644 };
645 
646 /* used for f2fs_inode_info->flags */
647 enum {
648 	FI_NEW_INODE,		/* indicate newly allocated inode */
649 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
650 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
651 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
652 	FI_INC_LINK,		/* need to increment i_nlink */
653 	FI_ACL_MODE,		/* indicate acl mode */
654 	FI_NO_ALLOC,		/* should not allocate any blocks */
655 	FI_FREE_NID,		/* free allocated nide */
656 	FI_NO_EXTENT,		/* not to use the extent cache */
657 	FI_INLINE_XATTR,	/* used for inline xattr */
658 	FI_INLINE_DATA,		/* used for inline data*/
659 	FI_INLINE_DENTRY,	/* used for inline dentry */
660 	FI_APPEND_WRITE,	/* inode has appended data */
661 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
662 	FI_NEED_IPU,		/* used for ipu per file */
663 	FI_ATOMIC_FILE,		/* indicate atomic file */
664 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
665 	FI_VOLATILE_FILE,	/* indicate volatile file */
666 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
667 	FI_DROP_CACHE,		/* drop dirty page cache */
668 	FI_DATA_EXIST,		/* indicate data exists */
669 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
670 	FI_DO_DEFRAG,		/* indicate defragment is running */
671 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
672 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
673 	FI_HOT_DATA,		/* indicate file is hot */
674 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
675 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
676 	FI_PIN_FILE,		/* indicate file should not be gced */
677 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
678 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
679 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
680 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
681 	FI_MMAP_FILE,		/* indicate file was mmapped */
682 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
683 	FI_MAX,			/* max flag, never be used */
684 };
685 
686 struct f2fs_inode_info {
687 	struct inode vfs_inode;		/* serve a vfs inode */
688 	unsigned long i_flags;		/* keep an inode flags for ioctl */
689 	unsigned char i_advise;		/* use to give file attribute hints */
690 	unsigned char i_dir_level;	/* use for dentry level for large dir */
691 	unsigned int i_current_depth;	/* only for directory depth */
692 	/* for gc failure statistic */
693 	unsigned int i_gc_failures[MAX_GC_FAILURE];
694 	unsigned int i_pino;		/* parent inode number */
695 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
696 
697 	/* Use below internally in f2fs*/
698 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
699 	struct rw_semaphore i_sem;	/* protect fi info */
700 	atomic_t dirty_pages;		/* # of dirty pages */
701 	f2fs_hash_t chash;		/* hash value of given file name */
702 	unsigned int clevel;		/* maximum level of given file name */
703 	struct task_struct *task;	/* lookup and create consistency */
704 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
705 	nid_t i_xattr_nid;		/* node id that contains xattrs */
706 	loff_t	last_disk_size;		/* lastly written file size */
707 	spinlock_t i_size_lock;		/* protect last_disk_size */
708 
709 #ifdef CONFIG_QUOTA
710 	struct dquot *i_dquot[MAXQUOTAS];
711 
712 	/* quota space reservation, managed internally by quota code */
713 	qsize_t i_reserved_quota;
714 #endif
715 	struct list_head dirty_list;	/* dirty list for dirs and files */
716 	struct list_head gdirty_list;	/* linked in global dirty list */
717 	struct list_head inmem_ilist;	/* list for inmem inodes */
718 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
719 	struct task_struct *inmem_task;	/* store inmemory task */
720 	struct mutex inmem_lock;	/* lock for inmemory pages */
721 	pgoff_t ra_offset;		/* ongoing readahead offset */
722 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
723 
724 	/* avoid racing between foreground op and gc */
725 	struct rw_semaphore i_gc_rwsem[2];
726 	struct rw_semaphore i_mmap_sem;
727 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
728 
729 	int i_extra_isize;		/* size of extra space located in i_addr */
730 	kprojid_t i_projid;		/* id for project quota */
731 	int i_inline_xattr_size;	/* inline xattr size */
732 	struct timespec64 i_crtime;	/* inode creation time */
733 	struct timespec64 i_disk_time[4];/* inode disk times */
734 
735 	/* for file compress */
736 	atomic_t i_compr_blocks;		/* # of compressed blocks */
737 	unsigned char i_compress_algorithm;	/* algorithm type */
738 	unsigned char i_log_cluster_size;	/* log of cluster size */
739 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
740 	unsigned short i_compress_flag;		/* compress flag */
741 	unsigned int i_cluster_size;		/* cluster size */
742 };
743 
744 static inline void get_extent_info(struct extent_info *ext,
745 					struct f2fs_extent *i_ext)
746 {
747 	ext->fofs = le32_to_cpu(i_ext->fofs);
748 	ext->blk = le32_to_cpu(i_ext->blk);
749 	ext->len = le32_to_cpu(i_ext->len);
750 }
751 
752 static inline void set_raw_extent(struct extent_info *ext,
753 					struct f2fs_extent *i_ext)
754 {
755 	i_ext->fofs = cpu_to_le32(ext->fofs);
756 	i_ext->blk = cpu_to_le32(ext->blk);
757 	i_ext->len = cpu_to_le32(ext->len);
758 }
759 
760 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
761 						u32 blk, unsigned int len)
762 {
763 	ei->fofs = fofs;
764 	ei->blk = blk;
765 	ei->len = len;
766 }
767 
768 static inline bool __is_discard_mergeable(struct discard_info *back,
769 			struct discard_info *front, unsigned int max_len)
770 {
771 	return (back->lstart + back->len == front->lstart) &&
772 		(back->len + front->len <= max_len);
773 }
774 
775 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
776 			struct discard_info *back, unsigned int max_len)
777 {
778 	return __is_discard_mergeable(back, cur, max_len);
779 }
780 
781 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
782 			struct discard_info *front, unsigned int max_len)
783 {
784 	return __is_discard_mergeable(cur, front, max_len);
785 }
786 
787 static inline bool __is_extent_mergeable(struct extent_info *back,
788 						struct extent_info *front)
789 {
790 	return (back->fofs + back->len == front->fofs &&
791 			back->blk + back->len == front->blk);
792 }
793 
794 static inline bool __is_back_mergeable(struct extent_info *cur,
795 						struct extent_info *back)
796 {
797 	return __is_extent_mergeable(back, cur);
798 }
799 
800 static inline bool __is_front_mergeable(struct extent_info *cur,
801 						struct extent_info *front)
802 {
803 	return __is_extent_mergeable(cur, front);
804 }
805 
806 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
807 static inline void __try_update_largest_extent(struct extent_tree *et,
808 						struct extent_node *en)
809 {
810 	if (en->ei.len > et->largest.len) {
811 		et->largest = en->ei;
812 		et->largest_updated = true;
813 	}
814 }
815 
816 /*
817  * For free nid management
818  */
819 enum nid_state {
820 	FREE_NID,		/* newly added to free nid list */
821 	PREALLOC_NID,		/* it is preallocated */
822 	MAX_NID_STATE,
823 };
824 
825 enum nat_state {
826 	TOTAL_NAT,
827 	DIRTY_NAT,
828 	RECLAIMABLE_NAT,
829 	MAX_NAT_STATE,
830 };
831 
832 struct f2fs_nm_info {
833 	block_t nat_blkaddr;		/* base disk address of NAT */
834 	nid_t max_nid;			/* maximum possible node ids */
835 	nid_t available_nids;		/* # of available node ids */
836 	nid_t next_scan_nid;		/* the next nid to be scanned */
837 	unsigned int ram_thresh;	/* control the memory footprint */
838 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
839 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
840 
841 	/* NAT cache management */
842 	struct radix_tree_root nat_root;/* root of the nat entry cache */
843 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
844 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
845 	struct list_head nat_entries;	/* cached nat entry list (clean) */
846 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
847 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
848 	unsigned int nat_blocks;	/* # of nat blocks */
849 
850 	/* free node ids management */
851 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
852 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
853 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
854 	spinlock_t nid_list_lock;	/* protect nid lists ops */
855 	struct mutex build_lock;	/* lock for build free nids */
856 	unsigned char **free_nid_bitmap;
857 	unsigned char *nat_block_bitmap;
858 	unsigned short *free_nid_count;	/* free nid count of NAT block */
859 
860 	/* for checkpoint */
861 	char *nat_bitmap;		/* NAT bitmap pointer */
862 
863 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
864 	unsigned char *nat_bits;	/* NAT bits blocks */
865 	unsigned char *full_nat_bits;	/* full NAT pages */
866 	unsigned char *empty_nat_bits;	/* empty NAT pages */
867 #ifdef CONFIG_F2FS_CHECK_FS
868 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
869 #endif
870 	int bitmap_size;		/* bitmap size */
871 };
872 
873 /*
874  * this structure is used as one of function parameters.
875  * all the information are dedicated to a given direct node block determined
876  * by the data offset in a file.
877  */
878 struct dnode_of_data {
879 	struct inode *inode;		/* vfs inode pointer */
880 	struct page *inode_page;	/* its inode page, NULL is possible */
881 	struct page *node_page;		/* cached direct node page */
882 	nid_t nid;			/* node id of the direct node block */
883 	unsigned int ofs_in_node;	/* data offset in the node page */
884 	bool inode_page_locked;		/* inode page is locked or not */
885 	bool node_changed;		/* is node block changed */
886 	char cur_level;			/* level of hole node page */
887 	char max_level;			/* level of current page located */
888 	block_t	data_blkaddr;		/* block address of the node block */
889 };
890 
891 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
892 		struct page *ipage, struct page *npage, nid_t nid)
893 {
894 	memset(dn, 0, sizeof(*dn));
895 	dn->inode = inode;
896 	dn->inode_page = ipage;
897 	dn->node_page = npage;
898 	dn->nid = nid;
899 }
900 
901 /*
902  * For SIT manager
903  *
904  * By default, there are 6 active log areas across the whole main area.
905  * When considering hot and cold data separation to reduce cleaning overhead,
906  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
907  * respectively.
908  * In the current design, you should not change the numbers intentionally.
909  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
910  * logs individually according to the underlying devices. (default: 6)
911  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
912  * data and 8 for node logs.
913  */
914 #define	NR_CURSEG_DATA_TYPE	(3)
915 #define NR_CURSEG_NODE_TYPE	(3)
916 #define NR_CURSEG_INMEM_TYPE	(2)
917 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
918 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
919 
920 enum {
921 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
922 	CURSEG_WARM_DATA,	/* data blocks */
923 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
924 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
925 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
926 	CURSEG_COLD_NODE,	/* indirect node blocks */
927 	NR_PERSISTENT_LOG,	/* number of persistent log */
928 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
929 				/* pinned file that needs consecutive block address */
930 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
931 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
932 };
933 
934 struct flush_cmd {
935 	struct completion wait;
936 	struct llist_node llnode;
937 	nid_t ino;
938 	int ret;
939 };
940 
941 struct flush_cmd_control {
942 	struct task_struct *f2fs_issue_flush;	/* flush thread */
943 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
944 	atomic_t issued_flush;			/* # of issued flushes */
945 	atomic_t queued_flush;			/* # of queued flushes */
946 	struct llist_head issue_list;		/* list for command issue */
947 	struct llist_node *dispatch_list;	/* list for command dispatch */
948 };
949 
950 struct f2fs_sm_info {
951 	struct sit_info *sit_info;		/* whole segment information */
952 	struct free_segmap_info *free_info;	/* free segment information */
953 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
954 	struct curseg_info *curseg_array;	/* active segment information */
955 
956 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
957 
958 	block_t seg0_blkaddr;		/* block address of 0'th segment */
959 	block_t main_blkaddr;		/* start block address of main area */
960 	block_t ssa_blkaddr;		/* start block address of SSA area */
961 
962 	unsigned int segment_count;	/* total # of segments */
963 	unsigned int main_segments;	/* # of segments in main area */
964 	unsigned int reserved_segments;	/* # of reserved segments */
965 	unsigned int ovp_segments;	/* # of overprovision segments */
966 
967 	/* a threshold to reclaim prefree segments */
968 	unsigned int rec_prefree_segments;
969 
970 	/* for batched trimming */
971 	unsigned int trim_sections;		/* # of sections to trim */
972 
973 	struct list_head sit_entry_set;	/* sit entry set list */
974 
975 	unsigned int ipu_policy;	/* in-place-update policy */
976 	unsigned int min_ipu_util;	/* in-place-update threshold */
977 	unsigned int min_fsync_blocks;	/* threshold for fsync */
978 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
979 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
980 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
981 
982 	/* for flush command control */
983 	struct flush_cmd_control *fcc_info;
984 
985 	/* for discard command control */
986 	struct discard_cmd_control *dcc_info;
987 };
988 
989 /*
990  * For superblock
991  */
992 /*
993  * COUNT_TYPE for monitoring
994  *
995  * f2fs monitors the number of several block types such as on-writeback,
996  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
997  */
998 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
999 enum count_type {
1000 	F2FS_DIRTY_DENTS,
1001 	F2FS_DIRTY_DATA,
1002 	F2FS_DIRTY_QDATA,
1003 	F2FS_DIRTY_NODES,
1004 	F2FS_DIRTY_META,
1005 	F2FS_INMEM_PAGES,
1006 	F2FS_DIRTY_IMETA,
1007 	F2FS_WB_CP_DATA,
1008 	F2FS_WB_DATA,
1009 	F2FS_RD_DATA,
1010 	F2FS_RD_NODE,
1011 	F2FS_RD_META,
1012 	F2FS_DIO_WRITE,
1013 	F2FS_DIO_READ,
1014 	NR_COUNT_TYPE,
1015 };
1016 
1017 /*
1018  * The below are the page types of bios used in submit_bio().
1019  * The available types are:
1020  * DATA			User data pages. It operates as async mode.
1021  * NODE			Node pages. It operates as async mode.
1022  * META			FS metadata pages such as SIT, NAT, CP.
1023  * NR_PAGE_TYPE		The number of page types.
1024  * META_FLUSH		Make sure the previous pages are written
1025  *			with waiting the bio's completion
1026  * ...			Only can be used with META.
1027  */
1028 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1029 enum page_type {
1030 	DATA,
1031 	NODE,
1032 	META,
1033 	NR_PAGE_TYPE,
1034 	META_FLUSH,
1035 	INMEM,		/* the below types are used by tracepoints only. */
1036 	INMEM_DROP,
1037 	INMEM_INVALIDATE,
1038 	INMEM_REVOKE,
1039 	IPU,
1040 	OPU,
1041 };
1042 
1043 enum temp_type {
1044 	HOT = 0,	/* must be zero for meta bio */
1045 	WARM,
1046 	COLD,
1047 	NR_TEMP_TYPE,
1048 };
1049 
1050 enum need_lock_type {
1051 	LOCK_REQ = 0,
1052 	LOCK_DONE,
1053 	LOCK_RETRY,
1054 };
1055 
1056 enum cp_reason_type {
1057 	CP_NO_NEEDED,
1058 	CP_NON_REGULAR,
1059 	CP_COMPRESSED,
1060 	CP_HARDLINK,
1061 	CP_SB_NEED_CP,
1062 	CP_WRONG_PINO,
1063 	CP_NO_SPC_ROLL,
1064 	CP_NODE_NEED_CP,
1065 	CP_FASTBOOT_MODE,
1066 	CP_SPEC_LOG_NUM,
1067 	CP_RECOVER_DIR,
1068 };
1069 
1070 enum iostat_type {
1071 	/* WRITE IO */
1072 	APP_DIRECT_IO,			/* app direct write IOs */
1073 	APP_BUFFERED_IO,		/* app buffered write IOs */
1074 	APP_WRITE_IO,			/* app write IOs */
1075 	APP_MAPPED_IO,			/* app mapped IOs */
1076 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1077 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1078 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1079 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1080 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1081 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1082 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1083 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1084 
1085 	/* READ IO */
1086 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1087 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1088 	APP_READ_IO,			/* app read IOs */
1089 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1090 	FS_DATA_READ_IO,		/* data read IOs */
1091 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1092 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1093 	FS_NODE_READ_IO,		/* node read IOs */
1094 	FS_META_READ_IO,		/* meta read IOs */
1095 
1096 	/* other */
1097 	FS_DISCARD,			/* discard */
1098 	NR_IO_TYPE,
1099 };
1100 
1101 struct f2fs_io_info {
1102 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1103 	nid_t ino;		/* inode number */
1104 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1105 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1106 	int op;			/* contains REQ_OP_ */
1107 	int op_flags;		/* req_flag_bits */
1108 	block_t new_blkaddr;	/* new block address to be written */
1109 	block_t old_blkaddr;	/* old block address before Cow */
1110 	struct page *page;	/* page to be written */
1111 	struct page *encrypted_page;	/* encrypted page */
1112 	struct page *compressed_page;	/* compressed page */
1113 	struct list_head list;		/* serialize IOs */
1114 	bool submitted;		/* indicate IO submission */
1115 	int need_lock;		/* indicate we need to lock cp_rwsem */
1116 	bool in_list;		/* indicate fio is in io_list */
1117 	bool is_por;		/* indicate IO is from recovery or not */
1118 	bool retry;		/* need to reallocate block address */
1119 	int compr_blocks;	/* # of compressed block addresses */
1120 	bool encrypted;		/* indicate file is encrypted */
1121 	enum iostat_type io_type;	/* io type */
1122 	struct writeback_control *io_wbc; /* writeback control */
1123 	struct bio **bio;		/* bio for ipu */
1124 	sector_t *last_block;		/* last block number in bio */
1125 	unsigned char version;		/* version of the node */
1126 };
1127 
1128 struct bio_entry {
1129 	struct bio *bio;
1130 	struct list_head list;
1131 };
1132 
1133 #define is_read_io(rw) ((rw) == READ)
1134 struct f2fs_bio_info {
1135 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1136 	struct bio *bio;		/* bios to merge */
1137 	sector_t last_block_in_bio;	/* last block number */
1138 	struct f2fs_io_info fio;	/* store buffered io info. */
1139 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1140 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1141 	struct list_head io_list;	/* track fios */
1142 	struct list_head bio_list;	/* bio entry list head */
1143 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1144 };
1145 
1146 #define FDEV(i)				(sbi->devs[i])
1147 #define RDEV(i)				(raw_super->devs[i])
1148 struct f2fs_dev_info {
1149 	struct block_device *bdev;
1150 	char path[MAX_PATH_LEN];
1151 	unsigned int total_segments;
1152 	block_t start_blk;
1153 	block_t end_blk;
1154 #ifdef CONFIG_BLK_DEV_ZONED
1155 	unsigned int nr_blkz;		/* Total number of zones */
1156 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1157 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1158 #endif
1159 };
1160 
1161 enum inode_type {
1162 	DIR_INODE,			/* for dirty dir inode */
1163 	FILE_INODE,			/* for dirty regular/symlink inode */
1164 	DIRTY_META,			/* for all dirtied inode metadata */
1165 	ATOMIC_FILE,			/* for all atomic files */
1166 	NR_INODE_TYPE,
1167 };
1168 
1169 /* for inner inode cache management */
1170 struct inode_management {
1171 	struct radix_tree_root ino_root;	/* ino entry array */
1172 	spinlock_t ino_lock;			/* for ino entry lock */
1173 	struct list_head ino_list;		/* inode list head */
1174 	unsigned long ino_num;			/* number of entries */
1175 };
1176 
1177 /* for GC_AT */
1178 struct atgc_management {
1179 	bool atgc_enabled;			/* ATGC is enabled or not */
1180 	struct rb_root_cached root;		/* root of victim rb-tree */
1181 	struct list_head victim_list;		/* linked with all victim entries */
1182 	unsigned int victim_count;		/* victim count in rb-tree */
1183 	unsigned int candidate_ratio;		/* candidate ratio */
1184 	unsigned int max_candidate_count;	/* max candidate count */
1185 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1186 	unsigned long long age_threshold;	/* age threshold */
1187 };
1188 
1189 /* For s_flag in struct f2fs_sb_info */
1190 enum {
1191 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1192 	SBI_IS_CLOSE,				/* specify unmounting */
1193 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1194 	SBI_POR_DOING,				/* recovery is doing or not */
1195 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1196 	SBI_NEED_CP,				/* need to checkpoint */
1197 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1198 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1199 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1200 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1201 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1202 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1203 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1204 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1205 };
1206 
1207 enum {
1208 	CP_TIME,
1209 	REQ_TIME,
1210 	DISCARD_TIME,
1211 	GC_TIME,
1212 	DISABLE_TIME,
1213 	UMOUNT_DISCARD_TIMEOUT,
1214 	MAX_TIME,
1215 };
1216 
1217 enum {
1218 	GC_NORMAL,
1219 	GC_IDLE_CB,
1220 	GC_IDLE_GREEDY,
1221 	GC_IDLE_AT,
1222 	GC_URGENT_HIGH,
1223 	GC_URGENT_LOW,
1224 };
1225 
1226 enum {
1227 	BGGC_MODE_ON,		/* background gc is on */
1228 	BGGC_MODE_OFF,		/* background gc is off */
1229 	BGGC_MODE_SYNC,		/*
1230 				 * background gc is on, migrating blocks
1231 				 * like foreground gc
1232 				 */
1233 };
1234 
1235 enum {
1236 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1237 	FS_MODE_LFS,		/* use lfs allocation only */
1238 };
1239 
1240 enum {
1241 	WHINT_MODE_OFF,		/* not pass down write hints */
1242 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1243 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1244 };
1245 
1246 enum {
1247 	ALLOC_MODE_DEFAULT,	/* stay default */
1248 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1249 };
1250 
1251 enum fsync_mode {
1252 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1253 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1254 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1255 };
1256 
1257 enum {
1258 	COMPR_MODE_FS,		/*
1259 				 * automatically compress compression
1260 				 * enabled files
1261 				 */
1262 	COMPR_MODE_USER,	/*
1263 				 * automatical compression is disabled.
1264 				 * user can control the file compression
1265 				 * using ioctls
1266 				 */
1267 };
1268 
1269 /*
1270  * this value is set in page as a private data which indicate that
1271  * the page is atomically written, and it is in inmem_pages list.
1272  */
1273 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1274 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1275 
1276 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1277 		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1278 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1279 		(page_private(page) == DUMMY_WRITTEN_PAGE)
1280 
1281 #ifdef CONFIG_F2FS_IO_TRACE
1282 #define IS_IO_TRACED_PAGE(page)			\
1283 		(page_private(page) > 0 &&		\
1284 		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1285 #else
1286 #define IS_IO_TRACED_PAGE(page) (0)
1287 #endif
1288 
1289 /* For compression */
1290 enum compress_algorithm_type {
1291 	COMPRESS_LZO,
1292 	COMPRESS_LZ4,
1293 	COMPRESS_ZSTD,
1294 	COMPRESS_LZORLE,
1295 	COMPRESS_MAX,
1296 };
1297 
1298 enum compress_flag {
1299 	COMPRESS_CHKSUM,
1300 	COMPRESS_MAX_FLAG,
1301 };
1302 
1303 #define COMPRESS_DATA_RESERVED_SIZE		4
1304 struct compress_data {
1305 	__le32 clen;			/* compressed data size */
1306 	__le32 chksum;			/* compressed data chksum */
1307 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1308 	u8 cdata[];			/* compressed data */
1309 };
1310 
1311 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1312 
1313 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1314 
1315 #define	COMPRESS_LEVEL_OFFSET	8
1316 
1317 /* compress context */
1318 struct compress_ctx {
1319 	struct inode *inode;		/* inode the context belong to */
1320 	pgoff_t cluster_idx;		/* cluster index number */
1321 	unsigned int cluster_size;	/* page count in cluster */
1322 	unsigned int log_cluster_size;	/* log of cluster size */
1323 	struct page **rpages;		/* pages store raw data in cluster */
1324 	unsigned int nr_rpages;		/* total page number in rpages */
1325 	struct page **cpages;		/* pages store compressed data in cluster */
1326 	unsigned int nr_cpages;		/* total page number in cpages */
1327 	void *rbuf;			/* virtual mapped address on rpages */
1328 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1329 	size_t rlen;			/* valid data length in rbuf */
1330 	size_t clen;			/* valid data length in cbuf */
1331 	void *private;			/* payload buffer for specified compression algorithm */
1332 	void *private2;			/* extra payload buffer */
1333 };
1334 
1335 /* compress context for write IO path */
1336 struct compress_io_ctx {
1337 	u32 magic;			/* magic number to indicate page is compressed */
1338 	struct inode *inode;		/* inode the context belong to */
1339 	struct page **rpages;		/* pages store raw data in cluster */
1340 	unsigned int nr_rpages;		/* total page number in rpages */
1341 	atomic_t pending_pages;		/* in-flight compressed page count */
1342 };
1343 
1344 /* decompress io context for read IO path */
1345 struct decompress_io_ctx {
1346 	u32 magic;			/* magic number to indicate page is compressed */
1347 	struct inode *inode;		/* inode the context belong to */
1348 	pgoff_t cluster_idx;		/* cluster index number */
1349 	unsigned int cluster_size;	/* page count in cluster */
1350 	unsigned int log_cluster_size;	/* log of cluster size */
1351 	struct page **rpages;		/* pages store raw data in cluster */
1352 	unsigned int nr_rpages;		/* total page number in rpages */
1353 	struct page **cpages;		/* pages store compressed data in cluster */
1354 	unsigned int nr_cpages;		/* total page number in cpages */
1355 	struct page **tpages;		/* temp pages to pad holes in cluster */
1356 	void *rbuf;			/* virtual mapped address on rpages */
1357 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1358 	size_t rlen;			/* valid data length in rbuf */
1359 	size_t clen;			/* valid data length in cbuf */
1360 	atomic_t pending_pages;		/* in-flight compressed page count */
1361 	atomic_t verity_pages;		/* in-flight page count for verity */
1362 	bool failed;			/* indicate IO error during decompression */
1363 	void *private;			/* payload buffer for specified decompression algorithm */
1364 	void *private2;			/* extra payload buffer */
1365 };
1366 
1367 #define NULL_CLUSTER			((unsigned int)(~0))
1368 #define MIN_COMPRESS_LOG_SIZE		2
1369 #define MAX_COMPRESS_LOG_SIZE		8
1370 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1371 
1372 struct f2fs_sb_info {
1373 	struct super_block *sb;			/* pointer to VFS super block */
1374 	struct proc_dir_entry *s_proc;		/* proc entry */
1375 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1376 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1377 	int valid_super_block;			/* valid super block no */
1378 	unsigned long s_flag;				/* flags for sbi */
1379 	struct mutex writepages;		/* mutex for writepages() */
1380 
1381 #ifdef CONFIG_BLK_DEV_ZONED
1382 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1383 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1384 #endif
1385 
1386 	/* for node-related operations */
1387 	struct f2fs_nm_info *nm_info;		/* node manager */
1388 	struct inode *node_inode;		/* cache node blocks */
1389 
1390 	/* for segment-related operations */
1391 	struct f2fs_sm_info *sm_info;		/* segment manager */
1392 
1393 	/* for bio operations */
1394 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1395 	/* keep migration IO order for LFS mode */
1396 	struct rw_semaphore io_order_lock;
1397 	mempool_t *write_io_dummy;		/* Dummy pages */
1398 
1399 	/* for checkpoint */
1400 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1401 	int cur_cp_pack;			/* remain current cp pack */
1402 	spinlock_t cp_lock;			/* for flag in ckpt */
1403 	struct inode *meta_inode;		/* cache meta blocks */
1404 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1405 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1406 	struct rw_semaphore node_write;		/* locking node writes */
1407 	struct rw_semaphore node_change;	/* locking node change */
1408 	wait_queue_head_t cp_wait;
1409 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1410 	long interval_time[MAX_TIME];		/* to store thresholds */
1411 
1412 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1413 
1414 	spinlock_t fsync_node_lock;		/* for node entry lock */
1415 	struct list_head fsync_node_list;	/* node list head */
1416 	unsigned int fsync_seg_id;		/* sequence id */
1417 	unsigned int fsync_node_num;		/* number of node entries */
1418 
1419 	/* for orphan inode, use 0'th array */
1420 	unsigned int max_orphans;		/* max orphan inodes */
1421 
1422 	/* for inode management */
1423 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1424 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1425 	struct mutex flush_lock;		/* for flush exclusion */
1426 
1427 	/* for extent tree cache */
1428 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1429 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1430 	struct list_head extent_list;		/* lru list for shrinker */
1431 	spinlock_t extent_lock;			/* locking extent lru list */
1432 	atomic_t total_ext_tree;		/* extent tree count */
1433 	struct list_head zombie_list;		/* extent zombie tree list */
1434 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1435 	atomic_t total_ext_node;		/* extent info count */
1436 
1437 	/* basic filesystem units */
1438 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1439 	unsigned int log_blocksize;		/* log2 block size */
1440 	unsigned int blocksize;			/* block size */
1441 	unsigned int root_ino_num;		/* root inode number*/
1442 	unsigned int node_ino_num;		/* node inode number*/
1443 	unsigned int meta_ino_num;		/* meta inode number*/
1444 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1445 	unsigned int blocks_per_seg;		/* blocks per segment */
1446 	unsigned int segs_per_sec;		/* segments per section */
1447 	unsigned int secs_per_zone;		/* sections per zone */
1448 	unsigned int total_sections;		/* total section count */
1449 	unsigned int total_node_count;		/* total node block count */
1450 	unsigned int total_valid_node_count;	/* valid node block count */
1451 	loff_t max_file_blocks;			/* max block index of file */
1452 	int dir_level;				/* directory level */
1453 	int readdir_ra;				/* readahead inode in readdir */
1454 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1455 
1456 	block_t user_block_count;		/* # of user blocks */
1457 	block_t total_valid_block_count;	/* # of valid blocks */
1458 	block_t discard_blks;			/* discard command candidats */
1459 	block_t last_valid_block_count;		/* for recovery */
1460 	block_t reserved_blocks;		/* configurable reserved blocks */
1461 	block_t current_reserved_blocks;	/* current reserved blocks */
1462 
1463 	/* Additional tracking for no checkpoint mode */
1464 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1465 
1466 	unsigned int nquota_files;		/* # of quota sysfile */
1467 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1468 
1469 	/* # of pages, see count_type */
1470 	atomic_t nr_pages[NR_COUNT_TYPE];
1471 	/* # of allocated blocks */
1472 	struct percpu_counter alloc_valid_block_count;
1473 
1474 	/* writeback control */
1475 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1476 
1477 	/* valid inode count */
1478 	struct percpu_counter total_valid_inode_count;
1479 
1480 	struct f2fs_mount_info mount_opt;	/* mount options */
1481 
1482 	/* for cleaning operations */
1483 	struct rw_semaphore gc_lock;		/*
1484 						 * semaphore for GC, avoid
1485 						 * race between GC and GC or CP
1486 						 */
1487 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1488 	struct atgc_management am;		/* atgc management */
1489 	unsigned int cur_victim_sec;		/* current victim section num */
1490 	unsigned int gc_mode;			/* current GC state */
1491 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1492 
1493 	/* for skip statistic */
1494 	unsigned int atomic_files;		/* # of opened atomic file */
1495 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1496 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1497 
1498 	/* threshold for gc trials on pinned files */
1499 	u64 gc_pin_file_threshold;
1500 	struct rw_semaphore pin_sem;
1501 
1502 	/* maximum # of trials to find a victim segment for SSR and GC */
1503 	unsigned int max_victim_search;
1504 	/* migration granularity of garbage collection, unit: segment */
1505 	unsigned int migration_granularity;
1506 
1507 	/*
1508 	 * for stat information.
1509 	 * one is for the LFS mode, and the other is for the SSR mode.
1510 	 */
1511 #ifdef CONFIG_F2FS_STAT_FS
1512 	struct f2fs_stat_info *stat_info;	/* FS status information */
1513 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1514 	unsigned int segment_count[2];		/* # of allocated segments */
1515 	unsigned int block_count[2];		/* # of allocated blocks */
1516 	atomic_t inplace_count;		/* # of inplace update */
1517 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1518 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1519 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1520 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1521 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1522 	atomic_t inline_inode;			/* # of inline_data inodes */
1523 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1524 	atomic_t compr_inode;			/* # of compressed inodes */
1525 	atomic64_t compr_blocks;		/* # of compressed blocks */
1526 	atomic_t vw_cnt;			/* # of volatile writes */
1527 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1528 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1529 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1530 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1531 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1532 #endif
1533 	spinlock_t stat_lock;			/* lock for stat operations */
1534 
1535 	/* For app/fs IO statistics */
1536 	spinlock_t iostat_lock;
1537 	unsigned long long rw_iostat[NR_IO_TYPE];
1538 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1539 	bool iostat_enable;
1540 	unsigned long iostat_next_period;
1541 	unsigned int iostat_period_ms;
1542 
1543 	/* to attach REQ_META|REQ_FUA flags */
1544 	unsigned int data_io_flag;
1545 	unsigned int node_io_flag;
1546 
1547 	/* For sysfs suppport */
1548 	struct kobject s_kobj;
1549 	struct completion s_kobj_unregister;
1550 
1551 	/* For shrinker support */
1552 	struct list_head s_list;
1553 	int s_ndevs;				/* number of devices */
1554 	struct f2fs_dev_info *devs;		/* for device list */
1555 	unsigned int dirty_device;		/* for checkpoint data flush */
1556 	spinlock_t dev_lock;			/* protect dirty_device */
1557 	struct mutex umount_mutex;
1558 	unsigned int shrinker_run_no;
1559 
1560 	/* For write statistics */
1561 	u64 sectors_written_start;
1562 	u64 kbytes_written;
1563 
1564 	/* Reference to checksum algorithm driver via cryptoapi */
1565 	struct crypto_shash *s_chksum_driver;
1566 
1567 	/* Precomputed FS UUID checksum for seeding other checksums */
1568 	__u32 s_chksum_seed;
1569 
1570 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1571 
1572 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1573 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1574 
1575 #ifdef CONFIG_F2FS_FS_COMPRESSION
1576 	struct kmem_cache *page_array_slab;	/* page array entry */
1577 	unsigned int page_array_slab_size;	/* default page array slab size */
1578 #endif
1579 };
1580 
1581 struct f2fs_private_dio {
1582 	struct inode *inode;
1583 	void *orig_private;
1584 	bio_end_io_t *orig_end_io;
1585 	bool write;
1586 };
1587 
1588 #ifdef CONFIG_F2FS_FAULT_INJECTION
1589 #define f2fs_show_injection_info(sbi, type)					\
1590 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1591 		KERN_INFO, sbi->sb->s_id,				\
1592 		f2fs_fault_name[type],					\
1593 		__func__, __builtin_return_address(0))
1594 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1595 {
1596 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1597 
1598 	if (!ffi->inject_rate)
1599 		return false;
1600 
1601 	if (!IS_FAULT_SET(ffi, type))
1602 		return false;
1603 
1604 	atomic_inc(&ffi->inject_ops);
1605 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1606 		atomic_set(&ffi->inject_ops, 0);
1607 		return true;
1608 	}
1609 	return false;
1610 }
1611 #else
1612 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1613 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1614 {
1615 	return false;
1616 }
1617 #endif
1618 
1619 /*
1620  * Test if the mounted volume is a multi-device volume.
1621  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1622  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1623  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1624  */
1625 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1626 {
1627 	return sbi->s_ndevs > 1;
1628 }
1629 
1630 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1631 {
1632 	unsigned long now = jiffies;
1633 
1634 	sbi->last_time[type] = now;
1635 
1636 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1637 	if (type == REQ_TIME) {
1638 		sbi->last_time[DISCARD_TIME] = now;
1639 		sbi->last_time[GC_TIME] = now;
1640 	}
1641 }
1642 
1643 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1644 {
1645 	unsigned long interval = sbi->interval_time[type] * HZ;
1646 
1647 	return time_after(jiffies, sbi->last_time[type] + interval);
1648 }
1649 
1650 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1651 						int type)
1652 {
1653 	unsigned long interval = sbi->interval_time[type] * HZ;
1654 	unsigned int wait_ms = 0;
1655 	long delta;
1656 
1657 	delta = (sbi->last_time[type] + interval) - jiffies;
1658 	if (delta > 0)
1659 		wait_ms = jiffies_to_msecs(delta);
1660 
1661 	return wait_ms;
1662 }
1663 
1664 /*
1665  * Inline functions
1666  */
1667 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1668 			      const void *address, unsigned int length)
1669 {
1670 	struct {
1671 		struct shash_desc shash;
1672 		char ctx[4];
1673 	} desc;
1674 	int err;
1675 
1676 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1677 
1678 	desc.shash.tfm = sbi->s_chksum_driver;
1679 	*(u32 *)desc.ctx = crc;
1680 
1681 	err = crypto_shash_update(&desc.shash, address, length);
1682 	BUG_ON(err);
1683 
1684 	return *(u32 *)desc.ctx;
1685 }
1686 
1687 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1688 			   unsigned int length)
1689 {
1690 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1691 }
1692 
1693 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1694 				  void *buf, size_t buf_size)
1695 {
1696 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1697 }
1698 
1699 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1700 			      const void *address, unsigned int length)
1701 {
1702 	return __f2fs_crc32(sbi, crc, address, length);
1703 }
1704 
1705 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1706 {
1707 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1708 }
1709 
1710 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1711 {
1712 	return sb->s_fs_info;
1713 }
1714 
1715 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1716 {
1717 	return F2FS_SB(inode->i_sb);
1718 }
1719 
1720 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1721 {
1722 	return F2FS_I_SB(mapping->host);
1723 }
1724 
1725 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1726 {
1727 	return F2FS_M_SB(page_file_mapping(page));
1728 }
1729 
1730 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1731 {
1732 	return (struct f2fs_super_block *)(sbi->raw_super);
1733 }
1734 
1735 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1736 {
1737 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1738 }
1739 
1740 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1741 {
1742 	return (struct f2fs_node *)page_address(page);
1743 }
1744 
1745 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1746 {
1747 	return &((struct f2fs_node *)page_address(page))->i;
1748 }
1749 
1750 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1751 {
1752 	return (struct f2fs_nm_info *)(sbi->nm_info);
1753 }
1754 
1755 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1756 {
1757 	return (struct f2fs_sm_info *)(sbi->sm_info);
1758 }
1759 
1760 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1761 {
1762 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1763 }
1764 
1765 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1766 {
1767 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1768 }
1769 
1770 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1771 {
1772 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1773 }
1774 
1775 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1776 {
1777 	return sbi->meta_inode->i_mapping;
1778 }
1779 
1780 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1781 {
1782 	return sbi->node_inode->i_mapping;
1783 }
1784 
1785 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1786 {
1787 	return test_bit(type, &sbi->s_flag);
1788 }
1789 
1790 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1791 {
1792 	set_bit(type, &sbi->s_flag);
1793 }
1794 
1795 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1796 {
1797 	clear_bit(type, &sbi->s_flag);
1798 }
1799 
1800 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1801 {
1802 	return le64_to_cpu(cp->checkpoint_ver);
1803 }
1804 
1805 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1806 {
1807 	if (type < F2FS_MAX_QUOTAS)
1808 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1809 	return 0;
1810 }
1811 
1812 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1813 {
1814 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1815 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1816 }
1817 
1818 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1819 {
1820 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1821 
1822 	return ckpt_flags & f;
1823 }
1824 
1825 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1826 {
1827 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1828 }
1829 
1830 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1831 {
1832 	unsigned int ckpt_flags;
1833 
1834 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1835 	ckpt_flags |= f;
1836 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1837 }
1838 
1839 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1840 {
1841 	unsigned long flags;
1842 
1843 	spin_lock_irqsave(&sbi->cp_lock, flags);
1844 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1845 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1846 }
1847 
1848 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1849 {
1850 	unsigned int ckpt_flags;
1851 
1852 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1853 	ckpt_flags &= (~f);
1854 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1855 }
1856 
1857 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1858 {
1859 	unsigned long flags;
1860 
1861 	spin_lock_irqsave(&sbi->cp_lock, flags);
1862 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1863 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1864 }
1865 
1866 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1867 {
1868 	unsigned long flags;
1869 	unsigned char *nat_bits;
1870 
1871 	/*
1872 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1873 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1874 	 * so let's rely on regular fsck or unclean shutdown.
1875 	 */
1876 
1877 	if (lock)
1878 		spin_lock_irqsave(&sbi->cp_lock, flags);
1879 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1880 	nat_bits = NM_I(sbi)->nat_bits;
1881 	NM_I(sbi)->nat_bits = NULL;
1882 	if (lock)
1883 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1884 
1885 	kvfree(nat_bits);
1886 }
1887 
1888 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1889 					struct cp_control *cpc)
1890 {
1891 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1892 
1893 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1894 }
1895 
1896 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1897 {
1898 	down_read(&sbi->cp_rwsem);
1899 }
1900 
1901 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1902 {
1903 	return down_read_trylock(&sbi->cp_rwsem);
1904 }
1905 
1906 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1907 {
1908 	up_read(&sbi->cp_rwsem);
1909 }
1910 
1911 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1912 {
1913 	down_write(&sbi->cp_rwsem);
1914 }
1915 
1916 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1917 {
1918 	up_write(&sbi->cp_rwsem);
1919 }
1920 
1921 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1922 {
1923 	int reason = CP_SYNC;
1924 
1925 	if (test_opt(sbi, FASTBOOT))
1926 		reason = CP_FASTBOOT;
1927 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1928 		reason = CP_UMOUNT;
1929 	return reason;
1930 }
1931 
1932 static inline bool __remain_node_summaries(int reason)
1933 {
1934 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1935 }
1936 
1937 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1938 {
1939 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1940 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1941 }
1942 
1943 /*
1944  * Check whether the inode has blocks or not
1945  */
1946 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1947 {
1948 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1949 
1950 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1951 }
1952 
1953 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1954 {
1955 	return ofs == XATTR_NODE_OFFSET;
1956 }
1957 
1958 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1959 					struct inode *inode, bool cap)
1960 {
1961 	if (!inode)
1962 		return true;
1963 	if (!test_opt(sbi, RESERVE_ROOT))
1964 		return false;
1965 	if (IS_NOQUOTA(inode))
1966 		return true;
1967 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1968 		return true;
1969 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1970 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1971 		return true;
1972 	if (cap && capable(CAP_SYS_RESOURCE))
1973 		return true;
1974 	return false;
1975 }
1976 
1977 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1978 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1979 				 struct inode *inode, blkcnt_t *count)
1980 {
1981 	blkcnt_t diff = 0, release = 0;
1982 	block_t avail_user_block_count;
1983 	int ret;
1984 
1985 	ret = dquot_reserve_block(inode, *count);
1986 	if (ret)
1987 		return ret;
1988 
1989 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1990 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
1991 		release = *count;
1992 		goto release_quota;
1993 	}
1994 
1995 	/*
1996 	 * let's increase this in prior to actual block count change in order
1997 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1998 	 */
1999 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2000 
2001 	spin_lock(&sbi->stat_lock);
2002 	sbi->total_valid_block_count += (block_t)(*count);
2003 	avail_user_block_count = sbi->user_block_count -
2004 					sbi->current_reserved_blocks;
2005 
2006 	if (!__allow_reserved_blocks(sbi, inode, true))
2007 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2008 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2009 		if (avail_user_block_count > sbi->unusable_block_count)
2010 			avail_user_block_count -= sbi->unusable_block_count;
2011 		else
2012 			avail_user_block_count = 0;
2013 	}
2014 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2015 		diff = sbi->total_valid_block_count - avail_user_block_count;
2016 		if (diff > *count)
2017 			diff = *count;
2018 		*count -= diff;
2019 		release = diff;
2020 		sbi->total_valid_block_count -= diff;
2021 		if (!*count) {
2022 			spin_unlock(&sbi->stat_lock);
2023 			goto enospc;
2024 		}
2025 	}
2026 	spin_unlock(&sbi->stat_lock);
2027 
2028 	if (unlikely(release)) {
2029 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2030 		dquot_release_reservation_block(inode, release);
2031 	}
2032 	f2fs_i_blocks_write(inode, *count, true, true);
2033 	return 0;
2034 
2035 enospc:
2036 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2037 release_quota:
2038 	dquot_release_reservation_block(inode, release);
2039 	return -ENOSPC;
2040 }
2041 
2042 __printf(2, 3)
2043 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2044 
2045 #define f2fs_err(sbi, fmt, ...)						\
2046 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2047 #define f2fs_warn(sbi, fmt, ...)					\
2048 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2049 #define f2fs_notice(sbi, fmt, ...)					\
2050 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2051 #define f2fs_info(sbi, fmt, ...)					\
2052 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2053 #define f2fs_debug(sbi, fmt, ...)					\
2054 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2055 
2056 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2057 						struct inode *inode,
2058 						block_t count)
2059 {
2060 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2061 
2062 	spin_lock(&sbi->stat_lock);
2063 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2064 	sbi->total_valid_block_count -= (block_t)count;
2065 	if (sbi->reserved_blocks &&
2066 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2067 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2068 					sbi->current_reserved_blocks + count);
2069 	spin_unlock(&sbi->stat_lock);
2070 	if (unlikely(inode->i_blocks < sectors)) {
2071 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2072 			  inode->i_ino,
2073 			  (unsigned long long)inode->i_blocks,
2074 			  (unsigned long long)sectors);
2075 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2076 		return;
2077 	}
2078 	f2fs_i_blocks_write(inode, count, false, true);
2079 }
2080 
2081 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2082 {
2083 	atomic_inc(&sbi->nr_pages[count_type]);
2084 
2085 	if (count_type == F2FS_DIRTY_DENTS ||
2086 			count_type == F2FS_DIRTY_NODES ||
2087 			count_type == F2FS_DIRTY_META ||
2088 			count_type == F2FS_DIRTY_QDATA ||
2089 			count_type == F2FS_DIRTY_IMETA)
2090 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2091 }
2092 
2093 static inline void inode_inc_dirty_pages(struct inode *inode)
2094 {
2095 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2096 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2097 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2098 	if (IS_NOQUOTA(inode))
2099 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2100 }
2101 
2102 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2103 {
2104 	atomic_dec(&sbi->nr_pages[count_type]);
2105 }
2106 
2107 static inline void inode_dec_dirty_pages(struct inode *inode)
2108 {
2109 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2110 			!S_ISLNK(inode->i_mode))
2111 		return;
2112 
2113 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2114 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2115 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2116 	if (IS_NOQUOTA(inode))
2117 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2118 }
2119 
2120 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2121 {
2122 	return atomic_read(&sbi->nr_pages[count_type]);
2123 }
2124 
2125 static inline int get_dirty_pages(struct inode *inode)
2126 {
2127 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2128 }
2129 
2130 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2131 {
2132 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2133 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2134 						sbi->log_blocks_per_seg;
2135 
2136 	return segs / sbi->segs_per_sec;
2137 }
2138 
2139 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2140 {
2141 	return sbi->total_valid_block_count;
2142 }
2143 
2144 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2145 {
2146 	return sbi->discard_blks;
2147 }
2148 
2149 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2150 {
2151 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2152 
2153 	/* return NAT or SIT bitmap */
2154 	if (flag == NAT_BITMAP)
2155 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2156 	else if (flag == SIT_BITMAP)
2157 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2158 
2159 	return 0;
2160 }
2161 
2162 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2163 {
2164 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2165 }
2166 
2167 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2168 {
2169 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2170 	int offset;
2171 
2172 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2173 		offset = (flag == SIT_BITMAP) ?
2174 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2175 		/*
2176 		 * if large_nat_bitmap feature is enabled, leave checksum
2177 		 * protection for all nat/sit bitmaps.
2178 		 */
2179 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2180 	}
2181 
2182 	if (__cp_payload(sbi) > 0) {
2183 		if (flag == NAT_BITMAP)
2184 			return &ckpt->sit_nat_version_bitmap;
2185 		else
2186 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2187 	} else {
2188 		offset = (flag == NAT_BITMAP) ?
2189 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2190 		return &ckpt->sit_nat_version_bitmap + offset;
2191 	}
2192 }
2193 
2194 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2195 {
2196 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2197 
2198 	if (sbi->cur_cp_pack == 2)
2199 		start_addr += sbi->blocks_per_seg;
2200 	return start_addr;
2201 }
2202 
2203 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2204 {
2205 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2206 
2207 	if (sbi->cur_cp_pack == 1)
2208 		start_addr += sbi->blocks_per_seg;
2209 	return start_addr;
2210 }
2211 
2212 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2213 {
2214 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2215 }
2216 
2217 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2218 {
2219 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2220 }
2221 
2222 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2223 					struct inode *inode, bool is_inode)
2224 {
2225 	block_t	valid_block_count;
2226 	unsigned int valid_node_count, user_block_count;
2227 	int err;
2228 
2229 	if (is_inode) {
2230 		if (inode) {
2231 			err = dquot_alloc_inode(inode);
2232 			if (err)
2233 				return err;
2234 		}
2235 	} else {
2236 		err = dquot_reserve_block(inode, 1);
2237 		if (err)
2238 			return err;
2239 	}
2240 
2241 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2242 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2243 		goto enospc;
2244 	}
2245 
2246 	spin_lock(&sbi->stat_lock);
2247 
2248 	valid_block_count = sbi->total_valid_block_count +
2249 					sbi->current_reserved_blocks + 1;
2250 
2251 	if (!__allow_reserved_blocks(sbi, inode, false))
2252 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2253 	user_block_count = sbi->user_block_count;
2254 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2255 		user_block_count -= sbi->unusable_block_count;
2256 
2257 	if (unlikely(valid_block_count > user_block_count)) {
2258 		spin_unlock(&sbi->stat_lock);
2259 		goto enospc;
2260 	}
2261 
2262 	valid_node_count = sbi->total_valid_node_count + 1;
2263 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2264 		spin_unlock(&sbi->stat_lock);
2265 		goto enospc;
2266 	}
2267 
2268 	sbi->total_valid_node_count++;
2269 	sbi->total_valid_block_count++;
2270 	spin_unlock(&sbi->stat_lock);
2271 
2272 	if (inode) {
2273 		if (is_inode)
2274 			f2fs_mark_inode_dirty_sync(inode, true);
2275 		else
2276 			f2fs_i_blocks_write(inode, 1, true, true);
2277 	}
2278 
2279 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2280 	return 0;
2281 
2282 enospc:
2283 	if (is_inode) {
2284 		if (inode)
2285 			dquot_free_inode(inode);
2286 	} else {
2287 		dquot_release_reservation_block(inode, 1);
2288 	}
2289 	return -ENOSPC;
2290 }
2291 
2292 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2293 					struct inode *inode, bool is_inode)
2294 {
2295 	spin_lock(&sbi->stat_lock);
2296 
2297 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2298 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2299 
2300 	sbi->total_valid_node_count--;
2301 	sbi->total_valid_block_count--;
2302 	if (sbi->reserved_blocks &&
2303 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2304 		sbi->current_reserved_blocks++;
2305 
2306 	spin_unlock(&sbi->stat_lock);
2307 
2308 	if (is_inode) {
2309 		dquot_free_inode(inode);
2310 	} else {
2311 		if (unlikely(inode->i_blocks == 0)) {
2312 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2313 				  inode->i_ino,
2314 				  (unsigned long long)inode->i_blocks);
2315 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2316 			return;
2317 		}
2318 		f2fs_i_blocks_write(inode, 1, false, true);
2319 	}
2320 }
2321 
2322 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2323 {
2324 	return sbi->total_valid_node_count;
2325 }
2326 
2327 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2328 {
2329 	percpu_counter_inc(&sbi->total_valid_inode_count);
2330 }
2331 
2332 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2333 {
2334 	percpu_counter_dec(&sbi->total_valid_inode_count);
2335 }
2336 
2337 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2338 {
2339 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2340 }
2341 
2342 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2343 						pgoff_t index, bool for_write)
2344 {
2345 	struct page *page;
2346 
2347 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2348 		if (!for_write)
2349 			page = find_get_page_flags(mapping, index,
2350 							FGP_LOCK | FGP_ACCESSED);
2351 		else
2352 			page = find_lock_page(mapping, index);
2353 		if (page)
2354 			return page;
2355 
2356 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2357 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2358 							FAULT_PAGE_ALLOC);
2359 			return NULL;
2360 		}
2361 	}
2362 
2363 	if (!for_write)
2364 		return grab_cache_page(mapping, index);
2365 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2366 }
2367 
2368 static inline struct page *f2fs_pagecache_get_page(
2369 				struct address_space *mapping, pgoff_t index,
2370 				int fgp_flags, gfp_t gfp_mask)
2371 {
2372 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2373 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2374 		return NULL;
2375 	}
2376 
2377 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2378 }
2379 
2380 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2381 {
2382 	char *src_kaddr = kmap(src);
2383 	char *dst_kaddr = kmap(dst);
2384 
2385 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2386 	kunmap(dst);
2387 	kunmap(src);
2388 }
2389 
2390 static inline void f2fs_put_page(struct page *page, int unlock)
2391 {
2392 	if (!page)
2393 		return;
2394 
2395 	if (unlock) {
2396 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2397 		unlock_page(page);
2398 	}
2399 	put_page(page);
2400 }
2401 
2402 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2403 {
2404 	if (dn->node_page)
2405 		f2fs_put_page(dn->node_page, 1);
2406 	if (dn->inode_page && dn->node_page != dn->inode_page)
2407 		f2fs_put_page(dn->inode_page, 0);
2408 	dn->node_page = NULL;
2409 	dn->inode_page = NULL;
2410 }
2411 
2412 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2413 					size_t size)
2414 {
2415 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2416 }
2417 
2418 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2419 						gfp_t flags)
2420 {
2421 	void *entry;
2422 
2423 	entry = kmem_cache_alloc(cachep, flags);
2424 	if (!entry)
2425 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2426 	return entry;
2427 }
2428 
2429 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2430 {
2431 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2432 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2433 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2434 		get_pages(sbi, F2FS_DIO_READ) ||
2435 		get_pages(sbi, F2FS_DIO_WRITE))
2436 		return true;
2437 
2438 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2439 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2440 		return true;
2441 
2442 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2443 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2444 		return true;
2445 	return false;
2446 }
2447 
2448 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2449 {
2450 	if (sbi->gc_mode == GC_URGENT_HIGH)
2451 		return true;
2452 
2453 	if (is_inflight_io(sbi, type))
2454 		return false;
2455 
2456 	if (sbi->gc_mode == GC_URGENT_LOW &&
2457 			(type == DISCARD_TIME || type == GC_TIME))
2458 		return true;
2459 
2460 	return f2fs_time_over(sbi, type);
2461 }
2462 
2463 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2464 				unsigned long index, void *item)
2465 {
2466 	while (radix_tree_insert(root, index, item))
2467 		cond_resched();
2468 }
2469 
2470 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2471 
2472 static inline bool IS_INODE(struct page *page)
2473 {
2474 	struct f2fs_node *p = F2FS_NODE(page);
2475 
2476 	return RAW_IS_INODE(p);
2477 }
2478 
2479 static inline int offset_in_addr(struct f2fs_inode *i)
2480 {
2481 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2482 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2483 }
2484 
2485 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2486 {
2487 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2488 }
2489 
2490 static inline int f2fs_has_extra_attr(struct inode *inode);
2491 static inline block_t data_blkaddr(struct inode *inode,
2492 			struct page *node_page, unsigned int offset)
2493 {
2494 	struct f2fs_node *raw_node;
2495 	__le32 *addr_array;
2496 	int base = 0;
2497 	bool is_inode = IS_INODE(node_page);
2498 
2499 	raw_node = F2FS_NODE(node_page);
2500 
2501 	if (is_inode) {
2502 		if (!inode)
2503 			/* from GC path only */
2504 			base = offset_in_addr(&raw_node->i);
2505 		else if (f2fs_has_extra_attr(inode))
2506 			base = get_extra_isize(inode);
2507 	}
2508 
2509 	addr_array = blkaddr_in_node(raw_node);
2510 	return le32_to_cpu(addr_array[base + offset]);
2511 }
2512 
2513 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2514 {
2515 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2516 }
2517 
2518 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2519 {
2520 	int mask;
2521 
2522 	addr += (nr >> 3);
2523 	mask = 1 << (7 - (nr & 0x07));
2524 	return mask & *addr;
2525 }
2526 
2527 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2528 {
2529 	int mask;
2530 
2531 	addr += (nr >> 3);
2532 	mask = 1 << (7 - (nr & 0x07));
2533 	*addr |= mask;
2534 }
2535 
2536 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2537 {
2538 	int mask;
2539 
2540 	addr += (nr >> 3);
2541 	mask = 1 << (7 - (nr & 0x07));
2542 	*addr &= ~mask;
2543 }
2544 
2545 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2546 {
2547 	int mask;
2548 	int ret;
2549 
2550 	addr += (nr >> 3);
2551 	mask = 1 << (7 - (nr & 0x07));
2552 	ret = mask & *addr;
2553 	*addr |= mask;
2554 	return ret;
2555 }
2556 
2557 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2558 {
2559 	int mask;
2560 	int ret;
2561 
2562 	addr += (nr >> 3);
2563 	mask = 1 << (7 - (nr & 0x07));
2564 	ret = mask & *addr;
2565 	*addr &= ~mask;
2566 	return ret;
2567 }
2568 
2569 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2570 {
2571 	int mask;
2572 
2573 	addr += (nr >> 3);
2574 	mask = 1 << (7 - (nr & 0x07));
2575 	*addr ^= mask;
2576 }
2577 
2578 /*
2579  * On-disk inode flags (f2fs_inode::i_flags)
2580  */
2581 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2582 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2583 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2584 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2585 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2586 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2587 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2588 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2589 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2590 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2591 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2592 
2593 /* Flags that should be inherited by new inodes from their parent. */
2594 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2595 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2596 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2597 
2598 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2599 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2600 				F2FS_CASEFOLD_FL))
2601 
2602 /* Flags that are appropriate for non-directories/regular files. */
2603 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2604 
2605 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2606 {
2607 	if (S_ISDIR(mode))
2608 		return flags;
2609 	else if (S_ISREG(mode))
2610 		return flags & F2FS_REG_FLMASK;
2611 	else
2612 		return flags & F2FS_OTHER_FLMASK;
2613 }
2614 
2615 static inline void __mark_inode_dirty_flag(struct inode *inode,
2616 						int flag, bool set)
2617 {
2618 	switch (flag) {
2619 	case FI_INLINE_XATTR:
2620 	case FI_INLINE_DATA:
2621 	case FI_INLINE_DENTRY:
2622 	case FI_NEW_INODE:
2623 		if (set)
2624 			return;
2625 		fallthrough;
2626 	case FI_DATA_EXIST:
2627 	case FI_INLINE_DOTS:
2628 	case FI_PIN_FILE:
2629 		f2fs_mark_inode_dirty_sync(inode, true);
2630 	}
2631 }
2632 
2633 static inline void set_inode_flag(struct inode *inode, int flag)
2634 {
2635 	set_bit(flag, F2FS_I(inode)->flags);
2636 	__mark_inode_dirty_flag(inode, flag, true);
2637 }
2638 
2639 static inline int is_inode_flag_set(struct inode *inode, int flag)
2640 {
2641 	return test_bit(flag, F2FS_I(inode)->flags);
2642 }
2643 
2644 static inline void clear_inode_flag(struct inode *inode, int flag)
2645 {
2646 	clear_bit(flag, F2FS_I(inode)->flags);
2647 	__mark_inode_dirty_flag(inode, flag, false);
2648 }
2649 
2650 static inline bool f2fs_verity_in_progress(struct inode *inode)
2651 {
2652 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2653 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2654 }
2655 
2656 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2657 {
2658 	F2FS_I(inode)->i_acl_mode = mode;
2659 	set_inode_flag(inode, FI_ACL_MODE);
2660 	f2fs_mark_inode_dirty_sync(inode, false);
2661 }
2662 
2663 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2664 {
2665 	if (inc)
2666 		inc_nlink(inode);
2667 	else
2668 		drop_nlink(inode);
2669 	f2fs_mark_inode_dirty_sync(inode, true);
2670 }
2671 
2672 static inline void f2fs_i_blocks_write(struct inode *inode,
2673 					block_t diff, bool add, bool claim)
2674 {
2675 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2676 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2677 
2678 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2679 	if (add) {
2680 		if (claim)
2681 			dquot_claim_block(inode, diff);
2682 		else
2683 			dquot_alloc_block_nofail(inode, diff);
2684 	} else {
2685 		dquot_free_block(inode, diff);
2686 	}
2687 
2688 	f2fs_mark_inode_dirty_sync(inode, true);
2689 	if (clean || recover)
2690 		set_inode_flag(inode, FI_AUTO_RECOVER);
2691 }
2692 
2693 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2694 {
2695 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2696 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2697 
2698 	if (i_size_read(inode) == i_size)
2699 		return;
2700 
2701 	i_size_write(inode, i_size);
2702 	f2fs_mark_inode_dirty_sync(inode, true);
2703 	if (clean || recover)
2704 		set_inode_flag(inode, FI_AUTO_RECOVER);
2705 }
2706 
2707 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2708 {
2709 	F2FS_I(inode)->i_current_depth = depth;
2710 	f2fs_mark_inode_dirty_sync(inode, true);
2711 }
2712 
2713 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2714 					unsigned int count)
2715 {
2716 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2717 	f2fs_mark_inode_dirty_sync(inode, true);
2718 }
2719 
2720 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2721 {
2722 	F2FS_I(inode)->i_xattr_nid = xnid;
2723 	f2fs_mark_inode_dirty_sync(inode, true);
2724 }
2725 
2726 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2727 {
2728 	F2FS_I(inode)->i_pino = pino;
2729 	f2fs_mark_inode_dirty_sync(inode, true);
2730 }
2731 
2732 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2733 {
2734 	struct f2fs_inode_info *fi = F2FS_I(inode);
2735 
2736 	if (ri->i_inline & F2FS_INLINE_XATTR)
2737 		set_bit(FI_INLINE_XATTR, fi->flags);
2738 	if (ri->i_inline & F2FS_INLINE_DATA)
2739 		set_bit(FI_INLINE_DATA, fi->flags);
2740 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2741 		set_bit(FI_INLINE_DENTRY, fi->flags);
2742 	if (ri->i_inline & F2FS_DATA_EXIST)
2743 		set_bit(FI_DATA_EXIST, fi->flags);
2744 	if (ri->i_inline & F2FS_INLINE_DOTS)
2745 		set_bit(FI_INLINE_DOTS, fi->flags);
2746 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2747 		set_bit(FI_EXTRA_ATTR, fi->flags);
2748 	if (ri->i_inline & F2FS_PIN_FILE)
2749 		set_bit(FI_PIN_FILE, fi->flags);
2750 }
2751 
2752 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2753 {
2754 	ri->i_inline = 0;
2755 
2756 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2757 		ri->i_inline |= F2FS_INLINE_XATTR;
2758 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2759 		ri->i_inline |= F2FS_INLINE_DATA;
2760 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2761 		ri->i_inline |= F2FS_INLINE_DENTRY;
2762 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2763 		ri->i_inline |= F2FS_DATA_EXIST;
2764 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2765 		ri->i_inline |= F2FS_INLINE_DOTS;
2766 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2767 		ri->i_inline |= F2FS_EXTRA_ATTR;
2768 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2769 		ri->i_inline |= F2FS_PIN_FILE;
2770 }
2771 
2772 static inline int f2fs_has_extra_attr(struct inode *inode)
2773 {
2774 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2775 }
2776 
2777 static inline int f2fs_has_inline_xattr(struct inode *inode)
2778 {
2779 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2780 }
2781 
2782 static inline int f2fs_compressed_file(struct inode *inode)
2783 {
2784 	return S_ISREG(inode->i_mode) &&
2785 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2786 }
2787 
2788 static inline bool f2fs_need_compress_data(struct inode *inode)
2789 {
2790 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2791 
2792 	if (!f2fs_compressed_file(inode))
2793 		return false;
2794 
2795 	if (compress_mode == COMPR_MODE_FS)
2796 		return true;
2797 	else if (compress_mode == COMPR_MODE_USER &&
2798 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2799 		return true;
2800 
2801 	return false;
2802 }
2803 
2804 static inline unsigned int addrs_per_inode(struct inode *inode)
2805 {
2806 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2807 				get_inline_xattr_addrs(inode);
2808 
2809 	if (!f2fs_compressed_file(inode))
2810 		return addrs;
2811 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2812 }
2813 
2814 static inline unsigned int addrs_per_block(struct inode *inode)
2815 {
2816 	if (!f2fs_compressed_file(inode))
2817 		return DEF_ADDRS_PER_BLOCK;
2818 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2819 }
2820 
2821 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2822 {
2823 	struct f2fs_inode *ri = F2FS_INODE(page);
2824 
2825 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2826 					get_inline_xattr_addrs(inode)]);
2827 }
2828 
2829 static inline int inline_xattr_size(struct inode *inode)
2830 {
2831 	if (f2fs_has_inline_xattr(inode))
2832 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2833 	return 0;
2834 }
2835 
2836 static inline int f2fs_has_inline_data(struct inode *inode)
2837 {
2838 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2839 }
2840 
2841 static inline int f2fs_exist_data(struct inode *inode)
2842 {
2843 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2844 }
2845 
2846 static inline int f2fs_has_inline_dots(struct inode *inode)
2847 {
2848 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2849 }
2850 
2851 static inline int f2fs_is_mmap_file(struct inode *inode)
2852 {
2853 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2854 }
2855 
2856 static inline bool f2fs_is_pinned_file(struct inode *inode)
2857 {
2858 	return is_inode_flag_set(inode, FI_PIN_FILE);
2859 }
2860 
2861 static inline bool f2fs_is_atomic_file(struct inode *inode)
2862 {
2863 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2864 }
2865 
2866 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2867 {
2868 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2869 }
2870 
2871 static inline bool f2fs_is_volatile_file(struct inode *inode)
2872 {
2873 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2874 }
2875 
2876 static inline bool f2fs_is_first_block_written(struct inode *inode)
2877 {
2878 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2879 }
2880 
2881 static inline bool f2fs_is_drop_cache(struct inode *inode)
2882 {
2883 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2884 }
2885 
2886 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2887 {
2888 	struct f2fs_inode *ri = F2FS_INODE(page);
2889 	int extra_size = get_extra_isize(inode);
2890 
2891 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2892 }
2893 
2894 static inline int f2fs_has_inline_dentry(struct inode *inode)
2895 {
2896 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2897 }
2898 
2899 static inline int is_file(struct inode *inode, int type)
2900 {
2901 	return F2FS_I(inode)->i_advise & type;
2902 }
2903 
2904 static inline void set_file(struct inode *inode, int type)
2905 {
2906 	F2FS_I(inode)->i_advise |= type;
2907 	f2fs_mark_inode_dirty_sync(inode, true);
2908 }
2909 
2910 static inline void clear_file(struct inode *inode, int type)
2911 {
2912 	F2FS_I(inode)->i_advise &= ~type;
2913 	f2fs_mark_inode_dirty_sync(inode, true);
2914 }
2915 
2916 static inline bool f2fs_is_time_consistent(struct inode *inode)
2917 {
2918 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2919 		return false;
2920 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2921 		return false;
2922 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2923 		return false;
2924 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2925 						&F2FS_I(inode)->i_crtime))
2926 		return false;
2927 	return true;
2928 }
2929 
2930 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2931 {
2932 	bool ret;
2933 
2934 	if (dsync) {
2935 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2936 
2937 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2938 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2939 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2940 		return ret;
2941 	}
2942 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2943 			file_keep_isize(inode) ||
2944 			i_size_read(inode) & ~PAGE_MASK)
2945 		return false;
2946 
2947 	if (!f2fs_is_time_consistent(inode))
2948 		return false;
2949 
2950 	spin_lock(&F2FS_I(inode)->i_size_lock);
2951 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2952 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2953 
2954 	return ret;
2955 }
2956 
2957 static inline bool f2fs_readonly(struct super_block *sb)
2958 {
2959 	return sb_rdonly(sb);
2960 }
2961 
2962 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2963 {
2964 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2965 }
2966 
2967 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2968 {
2969 	if (len == 1 && name[0] == '.')
2970 		return true;
2971 
2972 	if (len == 2 && name[0] == '.' && name[1] == '.')
2973 		return true;
2974 
2975 	return false;
2976 }
2977 
2978 static inline bool f2fs_may_extent_tree(struct inode *inode)
2979 {
2980 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2981 
2982 	if (!test_opt(sbi, EXTENT_CACHE) ||
2983 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
2984 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2985 		return false;
2986 
2987 	/*
2988 	 * for recovered files during mount do not create extents
2989 	 * if shrinker is not registered.
2990 	 */
2991 	if (list_empty(&sbi->s_list))
2992 		return false;
2993 
2994 	return S_ISREG(inode->i_mode);
2995 }
2996 
2997 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2998 					size_t size, gfp_t flags)
2999 {
3000 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3001 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3002 		return NULL;
3003 	}
3004 
3005 	return kmalloc(size, flags);
3006 }
3007 
3008 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3009 					size_t size, gfp_t flags)
3010 {
3011 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3012 }
3013 
3014 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3015 					size_t size, gfp_t flags)
3016 {
3017 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3018 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3019 		return NULL;
3020 	}
3021 
3022 	return kvmalloc(size, flags);
3023 }
3024 
3025 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3026 					size_t size, gfp_t flags)
3027 {
3028 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3029 }
3030 
3031 static inline int get_extra_isize(struct inode *inode)
3032 {
3033 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3034 }
3035 
3036 static inline int get_inline_xattr_addrs(struct inode *inode)
3037 {
3038 	return F2FS_I(inode)->i_inline_xattr_size;
3039 }
3040 
3041 #define f2fs_get_inode_mode(i) \
3042 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3043 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3044 
3045 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3046 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3047 	offsetof(struct f2fs_inode, i_extra_isize))	\
3048 
3049 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3050 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3051 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3052 		sizeof((f2fs_inode)->field))			\
3053 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3054 
3055 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3056 #define MIN_IOSTAT_PERIOD_MS		100
3057 /* maximum period of iostat tracing is 1 day */
3058 #define MAX_IOSTAT_PERIOD_MS		8640000
3059 
3060 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3061 {
3062 	int i;
3063 
3064 	spin_lock(&sbi->iostat_lock);
3065 	for (i = 0; i < NR_IO_TYPE; i++) {
3066 		sbi->rw_iostat[i] = 0;
3067 		sbi->prev_rw_iostat[i] = 0;
3068 	}
3069 	spin_unlock(&sbi->iostat_lock);
3070 }
3071 
3072 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3073 
3074 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3075 			enum iostat_type type, unsigned long long io_bytes)
3076 {
3077 	if (!sbi->iostat_enable)
3078 		return;
3079 	spin_lock(&sbi->iostat_lock);
3080 	sbi->rw_iostat[type] += io_bytes;
3081 
3082 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3083 		sbi->rw_iostat[APP_BUFFERED_IO] =
3084 			sbi->rw_iostat[APP_WRITE_IO] -
3085 			sbi->rw_iostat[APP_DIRECT_IO];
3086 
3087 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3088 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3089 			sbi->rw_iostat[APP_READ_IO] -
3090 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3091 	spin_unlock(&sbi->iostat_lock);
3092 
3093 	f2fs_record_iostat(sbi);
3094 }
3095 
3096 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3097 
3098 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3099 
3100 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3101 					block_t blkaddr, int type);
3102 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3103 					block_t blkaddr, int type)
3104 {
3105 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3106 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3107 			 blkaddr, type);
3108 		f2fs_bug_on(sbi, 1);
3109 	}
3110 }
3111 
3112 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3113 {
3114 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3115 			blkaddr == COMPRESS_ADDR)
3116 		return false;
3117 	return true;
3118 }
3119 
3120 static inline void f2fs_set_page_private(struct page *page,
3121 						unsigned long data)
3122 {
3123 	if (PagePrivate(page))
3124 		return;
3125 
3126 	attach_page_private(page, (void *)data);
3127 }
3128 
3129 static inline void f2fs_clear_page_private(struct page *page)
3130 {
3131 	detach_page_private(page);
3132 }
3133 
3134 /*
3135  * file.c
3136  */
3137 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3138 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3139 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3140 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3141 int f2fs_truncate(struct inode *inode);
3142 int f2fs_getattr(const struct path *path, struct kstat *stat,
3143 			u32 request_mask, unsigned int flags);
3144 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3145 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3146 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3147 int f2fs_precache_extents(struct inode *inode);
3148 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3149 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3150 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3151 int f2fs_pin_file_control(struct inode *inode, bool inc);
3152 
3153 /*
3154  * inode.c
3155  */
3156 void f2fs_set_inode_flags(struct inode *inode);
3157 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3158 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3159 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3160 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3161 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3162 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3163 void f2fs_update_inode_page(struct inode *inode);
3164 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3165 void f2fs_evict_inode(struct inode *inode);
3166 void f2fs_handle_failed_inode(struct inode *inode);
3167 
3168 /*
3169  * namei.c
3170  */
3171 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3172 							bool hot, bool set);
3173 struct dentry *f2fs_get_parent(struct dentry *child);
3174 
3175 /*
3176  * dir.c
3177  */
3178 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3179 int f2fs_init_casefolded_name(const struct inode *dir,
3180 			      struct f2fs_filename *fname);
3181 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3182 			int lookup, struct f2fs_filename *fname);
3183 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3184 			struct f2fs_filename *fname);
3185 void f2fs_free_filename(struct f2fs_filename *fname);
3186 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3187 			const struct f2fs_filename *fname, int *max_slots);
3188 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3189 			unsigned int start_pos, struct fscrypt_str *fstr);
3190 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3191 			struct f2fs_dentry_ptr *d);
3192 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3193 			const struct f2fs_filename *fname, struct page *dpage);
3194 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3195 			unsigned int current_depth);
3196 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3197 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3198 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3199 					 const struct f2fs_filename *fname,
3200 					 struct page **res_page);
3201 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3202 			const struct qstr *child, struct page **res_page);
3203 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3204 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3205 			struct page **page);
3206 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3207 			struct page *page, struct inode *inode);
3208 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3209 			  const struct f2fs_filename *fname);
3210 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3211 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3212 			unsigned int bit_pos);
3213 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3214 			struct inode *inode, nid_t ino, umode_t mode);
3215 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3216 			struct inode *inode, nid_t ino, umode_t mode);
3217 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3218 			struct inode *inode, nid_t ino, umode_t mode);
3219 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3220 			struct inode *dir, struct inode *inode);
3221 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3222 bool f2fs_empty_dir(struct inode *dir);
3223 
3224 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3225 {
3226 	if (fscrypt_is_nokey_name(dentry))
3227 		return -ENOKEY;
3228 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3229 				inode, inode->i_ino, inode->i_mode);
3230 }
3231 
3232 /*
3233  * super.c
3234  */
3235 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3236 void f2fs_inode_synced(struct inode *inode);
3237 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3238 int f2fs_quota_sync(struct super_block *sb, int type);
3239 void f2fs_quota_off_umount(struct super_block *sb);
3240 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3241 int f2fs_sync_fs(struct super_block *sb, int sync);
3242 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3243 
3244 /*
3245  * hash.c
3246  */
3247 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3248 
3249 /*
3250  * node.c
3251  */
3252 struct dnode_of_data;
3253 struct node_info;
3254 
3255 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3256 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3257 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3258 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3259 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3260 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3261 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3262 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3263 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3264 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3265 						struct node_info *ni);
3266 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3267 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3268 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3269 int f2fs_truncate_xattr_node(struct inode *inode);
3270 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3271 					unsigned int seq_id);
3272 int f2fs_remove_inode_page(struct inode *inode);
3273 struct page *f2fs_new_inode_page(struct inode *inode);
3274 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3275 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3276 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3277 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3278 int f2fs_move_node_page(struct page *node_page, int gc_type);
3279 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3280 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3281 			struct writeback_control *wbc, bool atomic,
3282 			unsigned int *seq_id);
3283 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3284 			struct writeback_control *wbc,
3285 			bool do_balance, enum iostat_type io_type);
3286 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3287 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3288 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3289 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3290 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3291 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3292 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3293 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3294 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3295 			unsigned int segno, struct f2fs_summary_block *sum);
3296 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3297 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3298 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3299 int __init f2fs_create_node_manager_caches(void);
3300 void f2fs_destroy_node_manager_caches(void);
3301 
3302 /*
3303  * segment.c
3304  */
3305 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3306 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3307 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3308 void f2fs_drop_inmem_pages(struct inode *inode);
3309 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3310 int f2fs_commit_inmem_pages(struct inode *inode);
3311 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3312 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3313 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3314 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3315 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3316 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3317 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3318 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3319 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3320 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3321 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3322 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3323 					struct cp_control *cpc);
3324 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3325 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3326 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3327 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3328 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3329 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3330 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3331 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3332 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3333 			unsigned int *newseg, bool new_sec, int dir);
3334 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3335 					unsigned int start, unsigned int end);
3336 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3337 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3338 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3339 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3340 					struct cp_control *cpc);
3341 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3342 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3343 					block_t blk_addr);
3344 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3345 						enum iostat_type io_type);
3346 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3347 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3348 			struct f2fs_io_info *fio);
3349 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3350 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3351 			block_t old_blkaddr, block_t new_blkaddr,
3352 			bool recover_curseg, bool recover_newaddr,
3353 			bool from_gc);
3354 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3355 			block_t old_addr, block_t new_addr,
3356 			unsigned char version, bool recover_curseg,
3357 			bool recover_newaddr);
3358 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3359 			block_t old_blkaddr, block_t *new_blkaddr,
3360 			struct f2fs_summary *sum, int type,
3361 			struct f2fs_io_info *fio);
3362 void f2fs_wait_on_page_writeback(struct page *page,
3363 			enum page_type type, bool ordered, bool locked);
3364 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3365 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3366 								block_t len);
3367 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3368 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3369 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3370 			unsigned int val, int alloc);
3371 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3372 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3373 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3374 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3375 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3376 int __init f2fs_create_segment_manager_caches(void);
3377 void f2fs_destroy_segment_manager_caches(void);
3378 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3379 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3380 			enum page_type type, enum temp_type temp);
3381 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3382 			unsigned int segno);
3383 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3384 			unsigned int segno);
3385 
3386 /*
3387  * checkpoint.c
3388  */
3389 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3390 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3391 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3392 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3393 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3394 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3395 					block_t blkaddr, int type);
3396 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3397 			int type, bool sync);
3398 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3399 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3400 			long nr_to_write, enum iostat_type io_type);
3401 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3402 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3403 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3404 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3405 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3406 					unsigned int devidx, int type);
3407 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3408 					unsigned int devidx, int type);
3409 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3410 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3411 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3412 void f2fs_add_orphan_inode(struct inode *inode);
3413 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3414 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3415 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3416 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3417 void f2fs_remove_dirty_inode(struct inode *inode);
3418 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3419 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3420 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3421 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3422 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3423 int __init f2fs_create_checkpoint_caches(void);
3424 void f2fs_destroy_checkpoint_caches(void);
3425 
3426 /*
3427  * data.c
3428  */
3429 int __init f2fs_init_bioset(void);
3430 void f2fs_destroy_bioset(void);
3431 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3432 int f2fs_init_bio_entry_cache(void);
3433 void f2fs_destroy_bio_entry_cache(void);
3434 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3435 				struct bio *bio, enum page_type type);
3436 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3437 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3438 				struct inode *inode, struct page *page,
3439 				nid_t ino, enum page_type type);
3440 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3441 					struct bio **bio, struct page *page);
3442 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3443 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3444 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3445 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3446 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3447 			block_t blk_addr, struct bio *bio);
3448 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3449 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3450 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3451 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3452 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3453 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3454 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3455 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3456 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3457 			int op_flags, bool for_write);
3458 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3459 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3460 			bool for_write);
3461 struct page *f2fs_get_new_data_page(struct inode *inode,
3462 			struct page *ipage, pgoff_t index, bool new_i_size);
3463 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3464 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3465 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3466 			int create, int flag);
3467 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3468 			u64 start, u64 len);
3469 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3470 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3471 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3472 int f2fs_write_single_data_page(struct page *page, int *submitted,
3473 				struct bio **bio, sector_t *last_block,
3474 				struct writeback_control *wbc,
3475 				enum iostat_type io_type,
3476 				int compr_blocks);
3477 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3478 			unsigned int length);
3479 int f2fs_release_page(struct page *page, gfp_t wait);
3480 #ifdef CONFIG_MIGRATION
3481 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3482 			struct page *page, enum migrate_mode mode);
3483 #endif
3484 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3485 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3486 int f2fs_init_post_read_processing(void);
3487 void f2fs_destroy_post_read_processing(void);
3488 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3489 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3490 
3491 /*
3492  * gc.c
3493  */
3494 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3495 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3496 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3497 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3498 			unsigned int segno);
3499 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3500 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3501 int __init f2fs_create_garbage_collection_cache(void);
3502 void f2fs_destroy_garbage_collection_cache(void);
3503 
3504 /*
3505  * recovery.c
3506  */
3507 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3508 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3509 
3510 /*
3511  * debug.c
3512  */
3513 #ifdef CONFIG_F2FS_STAT_FS
3514 struct f2fs_stat_info {
3515 	struct list_head stat_list;
3516 	struct f2fs_sb_info *sbi;
3517 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3518 	int main_area_segs, main_area_sections, main_area_zones;
3519 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3520 	unsigned long long hit_total, total_ext;
3521 	int ext_tree, zombie_tree, ext_node;
3522 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3523 	int ndirty_data, ndirty_qdata;
3524 	int inmem_pages;
3525 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3526 	int nats, dirty_nats, sits, dirty_sits;
3527 	int free_nids, avail_nids, alloc_nids;
3528 	int total_count, utilization;
3529 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3530 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3531 	int nr_dio_read, nr_dio_write;
3532 	unsigned int io_skip_bggc, other_skip_bggc;
3533 	int nr_flushing, nr_flushed, flush_list_empty;
3534 	int nr_discarding, nr_discarded;
3535 	int nr_discard_cmd;
3536 	unsigned int undiscard_blks;
3537 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3538 	int compr_inode;
3539 	unsigned long long compr_blocks;
3540 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3541 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3542 	unsigned int bimodal, avg_vblocks;
3543 	int util_free, util_valid, util_invalid;
3544 	int rsvd_segs, overp_segs;
3545 	int dirty_count, node_pages, meta_pages;
3546 	int prefree_count, call_count, cp_count, bg_cp_count;
3547 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3548 	int bg_node_segs, bg_data_segs;
3549 	int tot_blks, data_blks, node_blks;
3550 	int bg_data_blks, bg_node_blks;
3551 	unsigned long long skipped_atomic_files[2];
3552 	int curseg[NR_CURSEG_TYPE];
3553 	int cursec[NR_CURSEG_TYPE];
3554 	int curzone[NR_CURSEG_TYPE];
3555 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3556 	unsigned int full_seg[NR_CURSEG_TYPE];
3557 	unsigned int valid_blks[NR_CURSEG_TYPE];
3558 
3559 	unsigned int meta_count[META_MAX];
3560 	unsigned int segment_count[2];
3561 	unsigned int block_count[2];
3562 	unsigned int inplace_count;
3563 	unsigned long long base_mem, cache_mem, page_mem;
3564 };
3565 
3566 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3567 {
3568 	return (struct f2fs_stat_info *)sbi->stat_info;
3569 }
3570 
3571 #define stat_inc_cp_count(si)		((si)->cp_count++)
3572 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3573 #define stat_inc_call_count(si)		((si)->call_count++)
3574 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3575 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3576 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3577 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3578 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3579 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3580 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3581 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3582 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3583 #define stat_inc_inline_xattr(inode)					\
3584 	do {								\
3585 		if (f2fs_has_inline_xattr(inode))			\
3586 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3587 	} while (0)
3588 #define stat_dec_inline_xattr(inode)					\
3589 	do {								\
3590 		if (f2fs_has_inline_xattr(inode))			\
3591 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3592 	} while (0)
3593 #define stat_inc_inline_inode(inode)					\
3594 	do {								\
3595 		if (f2fs_has_inline_data(inode))			\
3596 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3597 	} while (0)
3598 #define stat_dec_inline_inode(inode)					\
3599 	do {								\
3600 		if (f2fs_has_inline_data(inode))			\
3601 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3602 	} while (0)
3603 #define stat_inc_inline_dir(inode)					\
3604 	do {								\
3605 		if (f2fs_has_inline_dentry(inode))			\
3606 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3607 	} while (0)
3608 #define stat_dec_inline_dir(inode)					\
3609 	do {								\
3610 		if (f2fs_has_inline_dentry(inode))			\
3611 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3612 	} while (0)
3613 #define stat_inc_compr_inode(inode)					\
3614 	do {								\
3615 		if (f2fs_compressed_file(inode))			\
3616 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3617 	} while (0)
3618 #define stat_dec_compr_inode(inode)					\
3619 	do {								\
3620 		if (f2fs_compressed_file(inode))			\
3621 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3622 	} while (0)
3623 #define stat_add_compr_blocks(inode, blocks)				\
3624 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3625 #define stat_sub_compr_blocks(inode, blocks)				\
3626 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3627 #define stat_inc_meta_count(sbi, blkaddr)				\
3628 	do {								\
3629 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3630 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3631 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3632 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3633 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3634 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3635 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3636 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3637 	} while (0)
3638 #define stat_inc_seg_type(sbi, curseg)					\
3639 		((sbi)->segment_count[(curseg)->alloc_type]++)
3640 #define stat_inc_block_count(sbi, curseg)				\
3641 		((sbi)->block_count[(curseg)->alloc_type]++)
3642 #define stat_inc_inplace_blocks(sbi)					\
3643 		(atomic_inc(&(sbi)->inplace_count))
3644 #define stat_update_max_atomic_write(inode)				\
3645 	do {								\
3646 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3647 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3648 		if (cur > max)						\
3649 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3650 	} while (0)
3651 #define stat_inc_volatile_write(inode)					\
3652 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3653 #define stat_dec_volatile_write(inode)					\
3654 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3655 #define stat_update_max_volatile_write(inode)				\
3656 	do {								\
3657 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3658 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3659 		if (cur > max)						\
3660 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3661 	} while (0)
3662 #define stat_inc_seg_count(sbi, type, gc_type)				\
3663 	do {								\
3664 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3665 		si->tot_segs++;						\
3666 		if ((type) == SUM_TYPE_DATA) {				\
3667 			si->data_segs++;				\
3668 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3669 		} else {						\
3670 			si->node_segs++;				\
3671 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3672 		}							\
3673 	} while (0)
3674 
3675 #define stat_inc_tot_blk_count(si, blks)				\
3676 	((si)->tot_blks += (blks))
3677 
3678 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3679 	do {								\
3680 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3681 		stat_inc_tot_blk_count(si, blks);			\
3682 		si->data_blks += (blks);				\
3683 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3684 	} while (0)
3685 
3686 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3687 	do {								\
3688 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3689 		stat_inc_tot_blk_count(si, blks);			\
3690 		si->node_blks += (blks);				\
3691 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3692 	} while (0)
3693 
3694 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3695 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3696 void __init f2fs_create_root_stats(void);
3697 void f2fs_destroy_root_stats(void);
3698 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3699 #else
3700 #define stat_inc_cp_count(si)				do { } while (0)
3701 #define stat_inc_bg_cp_count(si)			do { } while (0)
3702 #define stat_inc_call_count(si)				do { } while (0)
3703 #define stat_inc_bggc_count(si)				do { } while (0)
3704 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3705 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3706 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3707 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3708 #define stat_inc_total_hit(sbi)				do { } while (0)
3709 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3710 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3711 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3712 #define stat_inc_inline_xattr(inode)			do { } while (0)
3713 #define stat_dec_inline_xattr(inode)			do { } while (0)
3714 #define stat_inc_inline_inode(inode)			do { } while (0)
3715 #define stat_dec_inline_inode(inode)			do { } while (0)
3716 #define stat_inc_inline_dir(inode)			do { } while (0)
3717 #define stat_dec_inline_dir(inode)			do { } while (0)
3718 #define stat_inc_compr_inode(inode)			do { } while (0)
3719 #define stat_dec_compr_inode(inode)			do { } while (0)
3720 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3721 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3722 #define stat_inc_atomic_write(inode)			do { } while (0)
3723 #define stat_dec_atomic_write(inode)			do { } while (0)
3724 #define stat_update_max_atomic_write(inode)		do { } while (0)
3725 #define stat_inc_volatile_write(inode)			do { } while (0)
3726 #define stat_dec_volatile_write(inode)			do { } while (0)
3727 #define stat_update_max_volatile_write(inode)		do { } while (0)
3728 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3729 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3730 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3731 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3732 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3733 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3734 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3735 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3736 
3737 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3738 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3739 static inline void __init f2fs_create_root_stats(void) { }
3740 static inline void f2fs_destroy_root_stats(void) { }
3741 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3742 #endif
3743 
3744 extern const struct file_operations f2fs_dir_operations;
3745 extern const struct file_operations f2fs_file_operations;
3746 extern const struct inode_operations f2fs_file_inode_operations;
3747 extern const struct address_space_operations f2fs_dblock_aops;
3748 extern const struct address_space_operations f2fs_node_aops;
3749 extern const struct address_space_operations f2fs_meta_aops;
3750 extern const struct inode_operations f2fs_dir_inode_operations;
3751 extern const struct inode_operations f2fs_symlink_inode_operations;
3752 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3753 extern const struct inode_operations f2fs_special_inode_operations;
3754 extern struct kmem_cache *f2fs_inode_entry_slab;
3755 
3756 /*
3757  * inline.c
3758  */
3759 bool f2fs_may_inline_data(struct inode *inode);
3760 bool f2fs_may_inline_dentry(struct inode *inode);
3761 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3762 void f2fs_truncate_inline_inode(struct inode *inode,
3763 						struct page *ipage, u64 from);
3764 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3765 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3766 int f2fs_convert_inline_inode(struct inode *inode);
3767 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3768 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3769 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3770 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3771 					const struct f2fs_filename *fname,
3772 					struct page **res_page);
3773 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3774 			struct page *ipage);
3775 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3776 			struct inode *inode, nid_t ino, umode_t mode);
3777 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3778 				struct page *page, struct inode *dir,
3779 				struct inode *inode);
3780 bool f2fs_empty_inline_dir(struct inode *dir);
3781 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3782 			struct fscrypt_str *fstr);
3783 int f2fs_inline_data_fiemap(struct inode *inode,
3784 			struct fiemap_extent_info *fieinfo,
3785 			__u64 start, __u64 len);
3786 
3787 /*
3788  * shrinker.c
3789  */
3790 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3791 			struct shrink_control *sc);
3792 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3793 			struct shrink_control *sc);
3794 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3795 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3796 
3797 /*
3798  * extent_cache.c
3799  */
3800 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3801 				struct rb_entry *cached_re, unsigned int ofs);
3802 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3803 				struct rb_root_cached *root,
3804 				struct rb_node **parent,
3805 				unsigned long long key, bool *left_most);
3806 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3807 				struct rb_root_cached *root,
3808 				struct rb_node **parent,
3809 				unsigned int ofs, bool *leftmost);
3810 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3811 		struct rb_entry *cached_re, unsigned int ofs,
3812 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3813 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3814 		bool force, bool *leftmost);
3815 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3816 				struct rb_root_cached *root, bool check_key);
3817 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3818 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3819 void f2fs_drop_extent_tree(struct inode *inode);
3820 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3821 void f2fs_destroy_extent_tree(struct inode *inode);
3822 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3823 			struct extent_info *ei);
3824 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3825 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3826 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3827 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3828 int __init f2fs_create_extent_cache(void);
3829 void f2fs_destroy_extent_cache(void);
3830 
3831 /*
3832  * sysfs.c
3833  */
3834 int __init f2fs_init_sysfs(void);
3835 void f2fs_exit_sysfs(void);
3836 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3837 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3838 
3839 /* verity.c */
3840 extern const struct fsverity_operations f2fs_verityops;
3841 
3842 /*
3843  * crypto support
3844  */
3845 static inline bool f2fs_encrypted_file(struct inode *inode)
3846 {
3847 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3848 }
3849 
3850 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3851 {
3852 #ifdef CONFIG_FS_ENCRYPTION
3853 	file_set_encrypt(inode);
3854 	f2fs_set_inode_flags(inode);
3855 #endif
3856 }
3857 
3858 /*
3859  * Returns true if the reads of the inode's data need to undergo some
3860  * postprocessing step, like decryption or authenticity verification.
3861  */
3862 static inline bool f2fs_post_read_required(struct inode *inode)
3863 {
3864 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3865 		f2fs_compressed_file(inode);
3866 }
3867 
3868 /*
3869  * compress.c
3870  */
3871 #ifdef CONFIG_F2FS_FS_COMPRESSION
3872 bool f2fs_is_compressed_page(struct page *page);
3873 struct page *f2fs_compress_control_page(struct page *page);
3874 int f2fs_prepare_compress_overwrite(struct inode *inode,
3875 			struct page **pagep, pgoff_t index, void **fsdata);
3876 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3877 					pgoff_t index, unsigned copied);
3878 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3879 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3880 bool f2fs_is_compress_backend_ready(struct inode *inode);
3881 int f2fs_init_compress_mempool(void);
3882 void f2fs_destroy_compress_mempool(void);
3883 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3884 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3885 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3886 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3887 int f2fs_write_multi_pages(struct compress_ctx *cc,
3888 						int *submitted,
3889 						struct writeback_control *wbc,
3890 						enum iostat_type io_type);
3891 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3892 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3893 				unsigned nr_pages, sector_t *last_block_in_bio,
3894 				bool is_readahead, bool for_write);
3895 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3896 void f2fs_free_dic(struct decompress_io_ctx *dic);
3897 void f2fs_decompress_end_io(struct page **rpages,
3898 			unsigned int cluster_size, bool err, bool verity);
3899 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3900 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3901 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3902 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3903 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3904 int __init f2fs_init_compress_cache(void);
3905 void f2fs_destroy_compress_cache(void);
3906 #else
3907 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3908 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3909 {
3910 	if (!f2fs_compressed_file(inode))
3911 		return true;
3912 	/* not support compression */
3913 	return false;
3914 }
3915 static inline struct page *f2fs_compress_control_page(struct page *page)
3916 {
3917 	WARN_ON_ONCE(1);
3918 	return ERR_PTR(-EINVAL);
3919 }
3920 static inline int f2fs_init_compress_mempool(void) { return 0; }
3921 static inline void f2fs_destroy_compress_mempool(void) { }
3922 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3923 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3924 static inline int __init f2fs_init_compress_cache(void) { return 0; }
3925 static inline void f2fs_destroy_compress_cache(void) { }
3926 #endif
3927 
3928 static inline void set_compress_context(struct inode *inode)
3929 {
3930 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3931 
3932 	F2FS_I(inode)->i_compress_algorithm =
3933 			F2FS_OPTION(sbi).compress_algorithm;
3934 	F2FS_I(inode)->i_log_cluster_size =
3935 			F2FS_OPTION(sbi).compress_log_size;
3936 	F2FS_I(inode)->i_compress_flag =
3937 			F2FS_OPTION(sbi).compress_chksum ?
3938 				1 << COMPRESS_CHKSUM : 0;
3939 	F2FS_I(inode)->i_cluster_size =
3940 			1 << F2FS_I(inode)->i_log_cluster_size;
3941 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 &&
3942 			F2FS_OPTION(sbi).compress_level)
3943 		F2FS_I(inode)->i_compress_flag |=
3944 				F2FS_OPTION(sbi).compress_level <<
3945 				COMPRESS_LEVEL_OFFSET;
3946 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3947 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3948 	stat_inc_compr_inode(inode);
3949 	f2fs_mark_inode_dirty_sync(inode, true);
3950 }
3951 
3952 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3953 {
3954 	struct f2fs_inode_info *fi = F2FS_I(inode);
3955 
3956 	if (!f2fs_compressed_file(inode))
3957 		return true;
3958 	if (S_ISREG(inode->i_mode) &&
3959 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3960 		return false;
3961 
3962 	fi->i_flags &= ~F2FS_COMPR_FL;
3963 	stat_dec_compr_inode(inode);
3964 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3965 	f2fs_mark_inode_dirty_sync(inode, true);
3966 	return true;
3967 }
3968 
3969 #define F2FS_FEATURE_FUNCS(name, flagname) \
3970 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3971 { \
3972 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3973 }
3974 
3975 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3976 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3977 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3978 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3979 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3980 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3981 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3982 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3983 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3984 F2FS_FEATURE_FUNCS(verity, VERITY);
3985 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3986 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3987 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3988 
3989 #ifdef CONFIG_BLK_DEV_ZONED
3990 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3991 				    block_t blkaddr)
3992 {
3993 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3994 
3995 	return test_bit(zno, FDEV(devi).blkz_seq);
3996 }
3997 #endif
3998 
3999 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4000 {
4001 	return f2fs_sb_has_blkzoned(sbi);
4002 }
4003 
4004 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4005 {
4006 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4007 	       bdev_is_zoned(bdev);
4008 }
4009 
4010 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4011 {
4012 	int i;
4013 
4014 	if (!f2fs_is_multi_device(sbi))
4015 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4016 
4017 	for (i = 0; i < sbi->s_ndevs; i++)
4018 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4019 			return true;
4020 	return false;
4021 }
4022 
4023 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4024 {
4025 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4026 					f2fs_hw_should_discard(sbi);
4027 }
4028 
4029 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4030 {
4031 	int i;
4032 
4033 	if (!f2fs_is_multi_device(sbi))
4034 		return bdev_read_only(sbi->sb->s_bdev);
4035 
4036 	for (i = 0; i < sbi->s_ndevs; i++)
4037 		if (bdev_read_only(FDEV(i).bdev))
4038 			return true;
4039 	return false;
4040 }
4041 
4042 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4043 {
4044 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4045 }
4046 
4047 static inline bool f2fs_may_compress(struct inode *inode)
4048 {
4049 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4050 				f2fs_is_atomic_file(inode) ||
4051 				f2fs_is_volatile_file(inode))
4052 		return false;
4053 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4054 }
4055 
4056 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4057 						u64 blocks, bool add)
4058 {
4059 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4060 	struct f2fs_inode_info *fi = F2FS_I(inode);
4061 
4062 	/* don't update i_compr_blocks if saved blocks were released */
4063 	if (!add && !atomic_read(&fi->i_compr_blocks))
4064 		return;
4065 
4066 	if (add) {
4067 		atomic_add(diff, &fi->i_compr_blocks);
4068 		stat_add_compr_blocks(inode, diff);
4069 	} else {
4070 		atomic_sub(diff, &fi->i_compr_blocks);
4071 		stat_sub_compr_blocks(inode, diff);
4072 	}
4073 	f2fs_mark_inode_dirty_sync(inode, true);
4074 }
4075 
4076 static inline int block_unaligned_IO(struct inode *inode,
4077 				struct kiocb *iocb, struct iov_iter *iter)
4078 {
4079 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4080 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4081 	loff_t offset = iocb->ki_pos;
4082 	unsigned long align = offset | iov_iter_alignment(iter);
4083 
4084 	return align & blocksize_mask;
4085 }
4086 
4087 static inline int allow_outplace_dio(struct inode *inode,
4088 				struct kiocb *iocb, struct iov_iter *iter)
4089 {
4090 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4091 	int rw = iov_iter_rw(iter);
4092 
4093 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4094 				!block_unaligned_IO(inode, iocb, iter));
4095 }
4096 
4097 static inline bool f2fs_force_buffered_io(struct inode *inode,
4098 				struct kiocb *iocb, struct iov_iter *iter)
4099 {
4100 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4101 	int rw = iov_iter_rw(iter);
4102 
4103 	if (f2fs_post_read_required(inode))
4104 		return true;
4105 	if (f2fs_is_multi_device(sbi))
4106 		return true;
4107 	/*
4108 	 * for blkzoned device, fallback direct IO to buffered IO, so
4109 	 * all IOs can be serialized by log-structured write.
4110 	 */
4111 	if (f2fs_sb_has_blkzoned(sbi))
4112 		return true;
4113 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4114 		if (block_unaligned_IO(inode, iocb, iter))
4115 			return true;
4116 		if (F2FS_IO_ALIGNED(sbi))
4117 			return true;
4118 	}
4119 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4120 					!IS_SWAPFILE(inode))
4121 		return true;
4122 
4123 	return false;
4124 }
4125 
4126 #ifdef CONFIG_F2FS_FAULT_INJECTION
4127 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4128 							unsigned int type);
4129 #else
4130 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4131 #endif
4132 
4133 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4134 {
4135 #ifdef CONFIG_QUOTA
4136 	if (f2fs_sb_has_quota_ino(sbi))
4137 		return true;
4138 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4139 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4140 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4141 		return true;
4142 #endif
4143 	return false;
4144 }
4145 
4146 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4147 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4148 
4149 #endif /* _LINUX_F2FS_H */
4150