1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/fscrypto.h> 26 #include <crypto/hash.h> 27 28 #ifdef CONFIG_F2FS_CHECK_FS 29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 30 #else 31 #define f2fs_bug_on(sbi, condition) \ 32 do { \ 33 if (unlikely(condition)) { \ 34 WARN_ON(1); \ 35 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 36 } \ 37 } while (0) 38 #endif 39 40 /* 41 * For mount options 42 */ 43 #define F2FS_MOUNT_BG_GC 0x00000001 44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 45 #define F2FS_MOUNT_DISCARD 0x00000004 46 #define F2FS_MOUNT_NOHEAP 0x00000008 47 #define F2FS_MOUNT_XATTR_USER 0x00000010 48 #define F2FS_MOUNT_POSIX_ACL 0x00000020 49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 50 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 51 #define F2FS_MOUNT_INLINE_DATA 0x00000100 52 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 53 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 54 #define F2FS_MOUNT_NOBARRIER 0x00000800 55 #define F2FS_MOUNT_FASTBOOT 0x00001000 56 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 57 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 58 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 59 60 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 61 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 62 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 63 64 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 65 typecheck(unsigned long long, b) && \ 66 ((long long)((a) - (b)) > 0)) 67 68 typedef u32 block_t; /* 69 * should not change u32, since it is the on-disk block 70 * address format, __le32. 71 */ 72 typedef u32 nid_t; 73 74 struct f2fs_mount_info { 75 unsigned int opt; 76 }; 77 78 #define F2FS_FEATURE_ENCRYPT 0x0001 79 80 #define F2FS_HAS_FEATURE(sb, mask) \ 81 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 82 #define F2FS_SET_FEATURE(sb, mask) \ 83 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 84 #define F2FS_CLEAR_FEATURE(sb, mask) \ 85 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 86 87 /* 88 * For checkpoint manager 89 */ 90 enum { 91 NAT_BITMAP, 92 SIT_BITMAP 93 }; 94 95 enum { 96 CP_UMOUNT, 97 CP_FASTBOOT, 98 CP_SYNC, 99 CP_RECOVERY, 100 CP_DISCARD, 101 }; 102 103 #define DEF_BATCHED_TRIM_SECTIONS 32 104 #define BATCHED_TRIM_SEGMENTS(sbi) \ 105 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 106 #define BATCHED_TRIM_BLOCKS(sbi) \ 107 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 108 #define DEF_CP_INTERVAL 60 /* 60 secs */ 109 #define DEF_IDLE_INTERVAL 120 /* 2 mins */ 110 111 struct cp_control { 112 int reason; 113 __u64 trim_start; 114 __u64 trim_end; 115 __u64 trim_minlen; 116 __u64 trimmed; 117 }; 118 119 /* 120 * For CP/NAT/SIT/SSA readahead 121 */ 122 enum { 123 META_CP, 124 META_NAT, 125 META_SIT, 126 META_SSA, 127 META_POR, 128 }; 129 130 /* for the list of ino */ 131 enum { 132 ORPHAN_INO, /* for orphan ino list */ 133 APPEND_INO, /* for append ino list */ 134 UPDATE_INO, /* for update ino list */ 135 MAX_INO_ENTRY, /* max. list */ 136 }; 137 138 struct ino_entry { 139 struct list_head list; /* list head */ 140 nid_t ino; /* inode number */ 141 }; 142 143 /* for the list of inodes to be GCed */ 144 struct inode_entry { 145 struct list_head list; /* list head */ 146 struct inode *inode; /* vfs inode pointer */ 147 }; 148 149 /* for the list of blockaddresses to be discarded */ 150 struct discard_entry { 151 struct list_head list; /* list head */ 152 block_t blkaddr; /* block address to be discarded */ 153 int len; /* # of consecutive blocks of the discard */ 154 }; 155 156 /* for the list of fsync inodes, used only during recovery */ 157 struct fsync_inode_entry { 158 struct list_head list; /* list head */ 159 struct inode *inode; /* vfs inode pointer */ 160 block_t blkaddr; /* block address locating the last fsync */ 161 block_t last_dentry; /* block address locating the last dentry */ 162 block_t last_inode; /* block address locating the last inode */ 163 }; 164 165 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) 166 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) 167 168 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) 169 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) 170 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) 171 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) 172 173 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 174 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 175 176 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 177 { 178 int before = nats_in_cursum(journal); 179 journal->n_nats = cpu_to_le16(before + i); 180 return before; 181 } 182 183 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 184 { 185 int before = sits_in_cursum(journal); 186 journal->n_sits = cpu_to_le16(before + i); 187 return before; 188 } 189 190 static inline bool __has_cursum_space(struct f2fs_journal *journal, 191 int size, int type) 192 { 193 if (type == NAT_JOURNAL) 194 return size <= MAX_NAT_JENTRIES(journal); 195 return size <= MAX_SIT_JENTRIES(journal); 196 } 197 198 /* 199 * ioctl commands 200 */ 201 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 202 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 203 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 204 205 #define F2FS_IOCTL_MAGIC 0xf5 206 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 207 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 208 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 209 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 210 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 211 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 212 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 213 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 214 215 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 216 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 217 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 218 219 /* 220 * should be same as XFS_IOC_GOINGDOWN. 221 * Flags for going down operation used by FS_IOC_GOINGDOWN 222 */ 223 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 224 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 225 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 226 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 227 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 228 229 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 230 /* 231 * ioctl commands in 32 bit emulation 232 */ 233 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 234 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 235 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 236 #endif 237 238 struct f2fs_defragment { 239 u64 start; 240 u64 len; 241 }; 242 243 /* 244 * For INODE and NODE manager 245 */ 246 /* for directory operations */ 247 struct f2fs_dentry_ptr { 248 struct inode *inode; 249 const void *bitmap; 250 struct f2fs_dir_entry *dentry; 251 __u8 (*filename)[F2FS_SLOT_LEN]; 252 int max; 253 }; 254 255 static inline void make_dentry_ptr(struct inode *inode, 256 struct f2fs_dentry_ptr *d, void *src, int type) 257 { 258 d->inode = inode; 259 260 if (type == 1) { 261 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 262 d->max = NR_DENTRY_IN_BLOCK; 263 d->bitmap = &t->dentry_bitmap; 264 d->dentry = t->dentry; 265 d->filename = t->filename; 266 } else { 267 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 268 d->max = NR_INLINE_DENTRY; 269 d->bitmap = &t->dentry_bitmap; 270 d->dentry = t->dentry; 271 d->filename = t->filename; 272 } 273 } 274 275 /* 276 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 277 * as its node offset to distinguish from index node blocks. 278 * But some bits are used to mark the node block. 279 */ 280 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 281 >> OFFSET_BIT_SHIFT) 282 enum { 283 ALLOC_NODE, /* allocate a new node page if needed */ 284 LOOKUP_NODE, /* look up a node without readahead */ 285 LOOKUP_NODE_RA, /* 286 * look up a node with readahead called 287 * by get_data_block. 288 */ 289 }; 290 291 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 292 293 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 294 295 /* vector size for gang look-up from extent cache that consists of radix tree */ 296 #define EXT_TREE_VEC_SIZE 64 297 298 /* for in-memory extent cache entry */ 299 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 300 301 /* number of extent info in extent cache we try to shrink */ 302 #define EXTENT_CACHE_SHRINK_NUMBER 128 303 304 struct extent_info { 305 unsigned int fofs; /* start offset in a file */ 306 u32 blk; /* start block address of the extent */ 307 unsigned int len; /* length of the extent */ 308 }; 309 310 struct extent_node { 311 struct rb_node rb_node; /* rb node located in rb-tree */ 312 struct list_head list; /* node in global extent list of sbi */ 313 struct extent_info ei; /* extent info */ 314 struct extent_tree *et; /* extent tree pointer */ 315 }; 316 317 struct extent_tree { 318 nid_t ino; /* inode number */ 319 struct rb_root root; /* root of extent info rb-tree */ 320 struct extent_node *cached_en; /* recently accessed extent node */ 321 struct extent_info largest; /* largested extent info */ 322 struct list_head list; /* to be used by sbi->zombie_list */ 323 rwlock_t lock; /* protect extent info rb-tree */ 324 atomic_t node_cnt; /* # of extent node in rb-tree*/ 325 }; 326 327 /* 328 * This structure is taken from ext4_map_blocks. 329 * 330 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 331 */ 332 #define F2FS_MAP_NEW (1 << BH_New) 333 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 334 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 335 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 336 F2FS_MAP_UNWRITTEN) 337 338 struct f2fs_map_blocks { 339 block_t m_pblk; 340 block_t m_lblk; 341 unsigned int m_len; 342 unsigned int m_flags; 343 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 344 }; 345 346 /* for flag in get_data_block */ 347 #define F2FS_GET_BLOCK_READ 0 348 #define F2FS_GET_BLOCK_DIO 1 349 #define F2FS_GET_BLOCK_FIEMAP 2 350 #define F2FS_GET_BLOCK_BMAP 3 351 #define F2FS_GET_BLOCK_PRE_DIO 4 352 #define F2FS_GET_BLOCK_PRE_AIO 5 353 354 /* 355 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 356 */ 357 #define FADVISE_COLD_BIT 0x01 358 #define FADVISE_LOST_PINO_BIT 0x02 359 #define FADVISE_ENCRYPT_BIT 0x04 360 #define FADVISE_ENC_NAME_BIT 0x08 361 362 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 363 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 364 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 365 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 366 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 367 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 368 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 369 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 370 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 371 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 372 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 373 374 #define DEF_DIR_LEVEL 0 375 376 struct f2fs_inode_info { 377 struct inode vfs_inode; /* serve a vfs inode */ 378 unsigned long i_flags; /* keep an inode flags for ioctl */ 379 unsigned char i_advise; /* use to give file attribute hints */ 380 unsigned char i_dir_level; /* use for dentry level for large dir */ 381 unsigned int i_current_depth; /* use only in directory structure */ 382 unsigned int i_pino; /* parent inode number */ 383 umode_t i_acl_mode; /* keep file acl mode temporarily */ 384 385 /* Use below internally in f2fs*/ 386 unsigned long flags; /* use to pass per-file flags */ 387 struct rw_semaphore i_sem; /* protect fi info */ 388 atomic_t dirty_pages; /* # of dirty pages */ 389 f2fs_hash_t chash; /* hash value of given file name */ 390 unsigned int clevel; /* maximum level of given file name */ 391 nid_t i_xattr_nid; /* node id that contains xattrs */ 392 unsigned long long xattr_ver; /* cp version of xattr modification */ 393 394 struct list_head dirty_list; /* linked in global dirty list */ 395 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 396 struct mutex inmem_lock; /* lock for inmemory pages */ 397 struct extent_tree *extent_tree; /* cached extent_tree entry */ 398 }; 399 400 static inline void get_extent_info(struct extent_info *ext, 401 struct f2fs_extent i_ext) 402 { 403 ext->fofs = le32_to_cpu(i_ext.fofs); 404 ext->blk = le32_to_cpu(i_ext.blk); 405 ext->len = le32_to_cpu(i_ext.len); 406 } 407 408 static inline void set_raw_extent(struct extent_info *ext, 409 struct f2fs_extent *i_ext) 410 { 411 i_ext->fofs = cpu_to_le32(ext->fofs); 412 i_ext->blk = cpu_to_le32(ext->blk); 413 i_ext->len = cpu_to_le32(ext->len); 414 } 415 416 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 417 u32 blk, unsigned int len) 418 { 419 ei->fofs = fofs; 420 ei->blk = blk; 421 ei->len = len; 422 } 423 424 static inline bool __is_extent_same(struct extent_info *ei1, 425 struct extent_info *ei2) 426 { 427 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 428 ei1->len == ei2->len); 429 } 430 431 static inline bool __is_extent_mergeable(struct extent_info *back, 432 struct extent_info *front) 433 { 434 return (back->fofs + back->len == front->fofs && 435 back->blk + back->len == front->blk); 436 } 437 438 static inline bool __is_back_mergeable(struct extent_info *cur, 439 struct extent_info *back) 440 { 441 return __is_extent_mergeable(back, cur); 442 } 443 444 static inline bool __is_front_mergeable(struct extent_info *cur, 445 struct extent_info *front) 446 { 447 return __is_extent_mergeable(cur, front); 448 } 449 450 static inline void __try_update_largest_extent(struct extent_tree *et, 451 struct extent_node *en) 452 { 453 if (en->ei.len > et->largest.len) 454 et->largest = en->ei; 455 } 456 457 struct f2fs_nm_info { 458 block_t nat_blkaddr; /* base disk address of NAT */ 459 nid_t max_nid; /* maximum possible node ids */ 460 nid_t available_nids; /* maximum available node ids */ 461 nid_t next_scan_nid; /* the next nid to be scanned */ 462 unsigned int ram_thresh; /* control the memory footprint */ 463 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 464 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 465 466 /* NAT cache management */ 467 struct radix_tree_root nat_root;/* root of the nat entry cache */ 468 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 469 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 470 struct list_head nat_entries; /* cached nat entry list (clean) */ 471 unsigned int nat_cnt; /* the # of cached nat entries */ 472 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 473 474 /* free node ids management */ 475 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 476 struct list_head free_nid_list; /* a list for free nids */ 477 spinlock_t free_nid_list_lock; /* protect free nid list */ 478 unsigned int fcnt; /* the number of free node id */ 479 struct mutex build_lock; /* lock for build free nids */ 480 481 /* for checkpoint */ 482 char *nat_bitmap; /* NAT bitmap pointer */ 483 int bitmap_size; /* bitmap size */ 484 }; 485 486 /* 487 * this structure is used as one of function parameters. 488 * all the information are dedicated to a given direct node block determined 489 * by the data offset in a file. 490 */ 491 struct dnode_of_data { 492 struct inode *inode; /* vfs inode pointer */ 493 struct page *inode_page; /* its inode page, NULL is possible */ 494 struct page *node_page; /* cached direct node page */ 495 nid_t nid; /* node id of the direct node block */ 496 unsigned int ofs_in_node; /* data offset in the node page */ 497 bool inode_page_locked; /* inode page is locked or not */ 498 bool node_changed; /* is node block changed */ 499 char cur_level; /* level of hole node page */ 500 char max_level; /* level of current page located */ 501 block_t data_blkaddr; /* block address of the node block */ 502 }; 503 504 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 505 struct page *ipage, struct page *npage, nid_t nid) 506 { 507 memset(dn, 0, sizeof(*dn)); 508 dn->inode = inode; 509 dn->inode_page = ipage; 510 dn->node_page = npage; 511 dn->nid = nid; 512 } 513 514 /* 515 * For SIT manager 516 * 517 * By default, there are 6 active log areas across the whole main area. 518 * When considering hot and cold data separation to reduce cleaning overhead, 519 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 520 * respectively. 521 * In the current design, you should not change the numbers intentionally. 522 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 523 * logs individually according to the underlying devices. (default: 6) 524 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 525 * data and 8 for node logs. 526 */ 527 #define NR_CURSEG_DATA_TYPE (3) 528 #define NR_CURSEG_NODE_TYPE (3) 529 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 530 531 enum { 532 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 533 CURSEG_WARM_DATA, /* data blocks */ 534 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 535 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 536 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 537 CURSEG_COLD_NODE, /* indirect node blocks */ 538 NO_CHECK_TYPE, 539 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 540 }; 541 542 struct flush_cmd { 543 struct completion wait; 544 struct llist_node llnode; 545 int ret; 546 }; 547 548 struct flush_cmd_control { 549 struct task_struct *f2fs_issue_flush; /* flush thread */ 550 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 551 struct llist_head issue_list; /* list for command issue */ 552 struct llist_node *dispatch_list; /* list for command dispatch */ 553 }; 554 555 struct f2fs_sm_info { 556 struct sit_info *sit_info; /* whole segment information */ 557 struct free_segmap_info *free_info; /* free segment information */ 558 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 559 struct curseg_info *curseg_array; /* active segment information */ 560 561 block_t seg0_blkaddr; /* block address of 0'th segment */ 562 block_t main_blkaddr; /* start block address of main area */ 563 block_t ssa_blkaddr; /* start block address of SSA area */ 564 565 unsigned int segment_count; /* total # of segments */ 566 unsigned int main_segments; /* # of segments in main area */ 567 unsigned int reserved_segments; /* # of reserved segments */ 568 unsigned int ovp_segments; /* # of overprovision segments */ 569 570 /* a threshold to reclaim prefree segments */ 571 unsigned int rec_prefree_segments; 572 573 /* for small discard management */ 574 struct list_head discard_list; /* 4KB discard list */ 575 int nr_discards; /* # of discards in the list */ 576 int max_discards; /* max. discards to be issued */ 577 578 /* for batched trimming */ 579 unsigned int trim_sections; /* # of sections to trim */ 580 581 struct list_head sit_entry_set; /* sit entry set list */ 582 583 unsigned int ipu_policy; /* in-place-update policy */ 584 unsigned int min_ipu_util; /* in-place-update threshold */ 585 unsigned int min_fsync_blocks; /* threshold for fsync */ 586 587 /* for flush command control */ 588 struct flush_cmd_control *cmd_control_info; 589 590 }; 591 592 /* 593 * For superblock 594 */ 595 /* 596 * COUNT_TYPE for monitoring 597 * 598 * f2fs monitors the number of several block types such as on-writeback, 599 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 600 */ 601 enum count_type { 602 F2FS_WRITEBACK, 603 F2FS_DIRTY_DENTS, 604 F2FS_DIRTY_DATA, 605 F2FS_DIRTY_NODES, 606 F2FS_DIRTY_META, 607 F2FS_INMEM_PAGES, 608 NR_COUNT_TYPE, 609 }; 610 611 /* 612 * The below are the page types of bios used in submit_bio(). 613 * The available types are: 614 * DATA User data pages. It operates as async mode. 615 * NODE Node pages. It operates as async mode. 616 * META FS metadata pages such as SIT, NAT, CP. 617 * NR_PAGE_TYPE The number of page types. 618 * META_FLUSH Make sure the previous pages are written 619 * with waiting the bio's completion 620 * ... Only can be used with META. 621 */ 622 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 623 enum page_type { 624 DATA, 625 NODE, 626 META, 627 NR_PAGE_TYPE, 628 META_FLUSH, 629 INMEM, /* the below types are used by tracepoints only. */ 630 INMEM_DROP, 631 INMEM_REVOKE, 632 IPU, 633 OPU, 634 }; 635 636 struct f2fs_io_info { 637 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 638 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 639 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 640 block_t new_blkaddr; /* new block address to be written */ 641 block_t old_blkaddr; /* old block address before Cow */ 642 struct page *page; /* page to be written */ 643 struct page *encrypted_page; /* encrypted page */ 644 }; 645 646 #define is_read_io(rw) (((rw) & 1) == READ) 647 struct f2fs_bio_info { 648 struct f2fs_sb_info *sbi; /* f2fs superblock */ 649 struct bio *bio; /* bios to merge */ 650 sector_t last_block_in_bio; /* last block number */ 651 struct f2fs_io_info fio; /* store buffered io info. */ 652 struct rw_semaphore io_rwsem; /* blocking op for bio */ 653 }; 654 655 enum inode_type { 656 DIR_INODE, /* for dirty dir inode */ 657 FILE_INODE, /* for dirty regular/symlink inode */ 658 NR_INODE_TYPE, 659 }; 660 661 /* for inner inode cache management */ 662 struct inode_management { 663 struct radix_tree_root ino_root; /* ino entry array */ 664 spinlock_t ino_lock; /* for ino entry lock */ 665 struct list_head ino_list; /* inode list head */ 666 unsigned long ino_num; /* number of entries */ 667 }; 668 669 /* For s_flag in struct f2fs_sb_info */ 670 enum { 671 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 672 SBI_IS_CLOSE, /* specify unmounting */ 673 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 674 SBI_POR_DOING, /* recovery is doing or not */ 675 }; 676 677 enum { 678 CP_TIME, 679 REQ_TIME, 680 MAX_TIME, 681 }; 682 683 struct f2fs_sb_info { 684 struct super_block *sb; /* pointer to VFS super block */ 685 struct proc_dir_entry *s_proc; /* proc entry */ 686 struct f2fs_super_block *raw_super; /* raw super block pointer */ 687 int valid_super_block; /* valid super block no */ 688 int s_flag; /* flags for sbi */ 689 690 /* for node-related operations */ 691 struct f2fs_nm_info *nm_info; /* node manager */ 692 struct inode *node_inode; /* cache node blocks */ 693 694 /* for segment-related operations */ 695 struct f2fs_sm_info *sm_info; /* segment manager */ 696 697 /* for bio operations */ 698 struct f2fs_bio_info read_io; /* for read bios */ 699 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 700 701 /* for checkpoint */ 702 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 703 struct inode *meta_inode; /* cache meta blocks */ 704 struct mutex cp_mutex; /* checkpoint procedure lock */ 705 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 706 struct rw_semaphore node_write; /* locking node writes */ 707 struct mutex writepages; /* mutex for writepages() */ 708 wait_queue_head_t cp_wait; 709 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 710 long interval_time[MAX_TIME]; /* to store thresholds */ 711 712 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 713 714 /* for orphan inode, use 0'th array */ 715 unsigned int max_orphans; /* max orphan inodes */ 716 717 /* for inode management */ 718 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 719 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 720 721 /* for extent tree cache */ 722 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 723 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 724 struct list_head extent_list; /* lru list for shrinker */ 725 spinlock_t extent_lock; /* locking extent lru list */ 726 atomic_t total_ext_tree; /* extent tree count */ 727 struct list_head zombie_list; /* extent zombie tree list */ 728 atomic_t total_zombie_tree; /* extent zombie tree count */ 729 atomic_t total_ext_node; /* extent info count */ 730 731 /* basic filesystem units */ 732 unsigned int log_sectors_per_block; /* log2 sectors per block */ 733 unsigned int log_blocksize; /* log2 block size */ 734 unsigned int blocksize; /* block size */ 735 unsigned int root_ino_num; /* root inode number*/ 736 unsigned int node_ino_num; /* node inode number*/ 737 unsigned int meta_ino_num; /* meta inode number*/ 738 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 739 unsigned int blocks_per_seg; /* blocks per segment */ 740 unsigned int segs_per_sec; /* segments per section */ 741 unsigned int secs_per_zone; /* sections per zone */ 742 unsigned int total_sections; /* total section count */ 743 unsigned int total_node_count; /* total node block count */ 744 unsigned int total_valid_node_count; /* valid node block count */ 745 unsigned int total_valid_inode_count; /* valid inode count */ 746 loff_t max_file_blocks; /* max block index of file */ 747 int active_logs; /* # of active logs */ 748 int dir_level; /* directory level */ 749 750 block_t user_block_count; /* # of user blocks */ 751 block_t total_valid_block_count; /* # of valid blocks */ 752 block_t alloc_valid_block_count; /* # of allocated blocks */ 753 block_t discard_blks; /* discard command candidats */ 754 block_t last_valid_block_count; /* for recovery */ 755 u32 s_next_generation; /* for NFS support */ 756 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 757 758 struct f2fs_mount_info mount_opt; /* mount options */ 759 760 /* for cleaning operations */ 761 struct mutex gc_mutex; /* mutex for GC */ 762 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 763 unsigned int cur_victim_sec; /* current victim section num */ 764 765 /* maximum # of trials to find a victim segment for SSR and GC */ 766 unsigned int max_victim_search; 767 768 /* 769 * for stat information. 770 * one is for the LFS mode, and the other is for the SSR mode. 771 */ 772 #ifdef CONFIG_F2FS_STAT_FS 773 struct f2fs_stat_info *stat_info; /* FS status information */ 774 unsigned int segment_count[2]; /* # of allocated segments */ 775 unsigned int block_count[2]; /* # of allocated blocks */ 776 atomic_t inplace_count; /* # of inplace update */ 777 atomic64_t total_hit_ext; /* # of lookup extent cache */ 778 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 779 atomic64_t read_hit_largest; /* # of hit largest extent node */ 780 atomic64_t read_hit_cached; /* # of hit cached extent node */ 781 atomic_t inline_xattr; /* # of inline_xattr inodes */ 782 atomic_t inline_inode; /* # of inline_data inodes */ 783 atomic_t inline_dir; /* # of inline_dentry inodes */ 784 int bg_gc; /* background gc calls */ 785 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 786 #endif 787 unsigned int last_victim[2]; /* last victim segment # */ 788 spinlock_t stat_lock; /* lock for stat operations */ 789 790 /* For sysfs suppport */ 791 struct kobject s_kobj; 792 struct completion s_kobj_unregister; 793 794 /* For shrinker support */ 795 struct list_head s_list; 796 struct mutex umount_mutex; 797 unsigned int shrinker_run_no; 798 799 /* For write statistics */ 800 u64 sectors_written_start; 801 u64 kbytes_written; 802 803 /* Reference to checksum algorithm driver via cryptoapi */ 804 struct crypto_shash *s_chksum_driver; 805 }; 806 807 /* For write statistics. Suppose sector size is 512 bytes, 808 * and the return value is in kbytes. s is of struct f2fs_sb_info. 809 */ 810 #define BD_PART_WRITTEN(s) \ 811 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \ 812 s->sectors_written_start) >> 1) 813 814 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 815 { 816 sbi->last_time[type] = jiffies; 817 } 818 819 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 820 { 821 struct timespec ts = {sbi->interval_time[type], 0}; 822 unsigned long interval = timespec_to_jiffies(&ts); 823 824 return time_after(jiffies, sbi->last_time[type] + interval); 825 } 826 827 static inline bool is_idle(struct f2fs_sb_info *sbi) 828 { 829 struct block_device *bdev = sbi->sb->s_bdev; 830 struct request_queue *q = bdev_get_queue(bdev); 831 struct request_list *rl = &q->root_rl; 832 833 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 834 return 0; 835 836 return f2fs_time_over(sbi, REQ_TIME); 837 } 838 839 /* 840 * Inline functions 841 */ 842 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 843 unsigned int length) 844 { 845 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 846 u32 *ctx = (u32 *)shash_desc_ctx(shash); 847 int err; 848 849 shash->tfm = sbi->s_chksum_driver; 850 shash->flags = 0; 851 *ctx = F2FS_SUPER_MAGIC; 852 853 err = crypto_shash_update(shash, address, length); 854 BUG_ON(err); 855 856 return *ctx; 857 } 858 859 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 860 void *buf, size_t buf_size) 861 { 862 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 863 } 864 865 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 866 { 867 return container_of(inode, struct f2fs_inode_info, vfs_inode); 868 } 869 870 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 871 { 872 return sb->s_fs_info; 873 } 874 875 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 876 { 877 return F2FS_SB(inode->i_sb); 878 } 879 880 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 881 { 882 return F2FS_I_SB(mapping->host); 883 } 884 885 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 886 { 887 return F2FS_M_SB(page->mapping); 888 } 889 890 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 891 { 892 return (struct f2fs_super_block *)(sbi->raw_super); 893 } 894 895 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 896 { 897 return (struct f2fs_checkpoint *)(sbi->ckpt); 898 } 899 900 static inline struct f2fs_node *F2FS_NODE(struct page *page) 901 { 902 return (struct f2fs_node *)page_address(page); 903 } 904 905 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 906 { 907 return &((struct f2fs_node *)page_address(page))->i; 908 } 909 910 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 911 { 912 return (struct f2fs_nm_info *)(sbi->nm_info); 913 } 914 915 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 916 { 917 return (struct f2fs_sm_info *)(sbi->sm_info); 918 } 919 920 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 921 { 922 return (struct sit_info *)(SM_I(sbi)->sit_info); 923 } 924 925 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 926 { 927 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 928 } 929 930 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 931 { 932 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 933 } 934 935 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 936 { 937 return sbi->meta_inode->i_mapping; 938 } 939 940 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 941 { 942 return sbi->node_inode->i_mapping; 943 } 944 945 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 946 { 947 return sbi->s_flag & (0x01 << type); 948 } 949 950 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 951 { 952 sbi->s_flag |= (0x01 << type); 953 } 954 955 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 956 { 957 sbi->s_flag &= ~(0x01 << type); 958 } 959 960 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 961 { 962 return le64_to_cpu(cp->checkpoint_ver); 963 } 964 965 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 966 { 967 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 968 return ckpt_flags & f; 969 } 970 971 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 972 { 973 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 974 ckpt_flags |= f; 975 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 976 } 977 978 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 979 { 980 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 981 ckpt_flags &= (~f); 982 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 983 } 984 985 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 986 { 987 down_read(&sbi->cp_rwsem); 988 } 989 990 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 991 { 992 up_read(&sbi->cp_rwsem); 993 } 994 995 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 996 { 997 down_write(&sbi->cp_rwsem); 998 } 999 1000 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1001 { 1002 up_write(&sbi->cp_rwsem); 1003 } 1004 1005 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1006 { 1007 int reason = CP_SYNC; 1008 1009 if (test_opt(sbi, FASTBOOT)) 1010 reason = CP_FASTBOOT; 1011 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1012 reason = CP_UMOUNT; 1013 return reason; 1014 } 1015 1016 static inline bool __remain_node_summaries(int reason) 1017 { 1018 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1019 } 1020 1021 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1022 { 1023 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) || 1024 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG)); 1025 } 1026 1027 /* 1028 * Check whether the given nid is within node id range. 1029 */ 1030 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1031 { 1032 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1033 return -EINVAL; 1034 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1035 return -EINVAL; 1036 return 0; 1037 } 1038 1039 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1040 1041 /* 1042 * Check whether the inode has blocks or not 1043 */ 1044 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1045 { 1046 if (F2FS_I(inode)->i_xattr_nid) 1047 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1048 else 1049 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1050 } 1051 1052 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1053 { 1054 return ofs == XATTR_NODE_OFFSET; 1055 } 1056 1057 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1058 struct inode *inode, blkcnt_t count) 1059 { 1060 block_t valid_block_count; 1061 1062 spin_lock(&sbi->stat_lock); 1063 valid_block_count = 1064 sbi->total_valid_block_count + (block_t)count; 1065 if (unlikely(valid_block_count > sbi->user_block_count)) { 1066 spin_unlock(&sbi->stat_lock); 1067 return false; 1068 } 1069 inode->i_blocks += count; 1070 sbi->total_valid_block_count = valid_block_count; 1071 sbi->alloc_valid_block_count += (block_t)count; 1072 spin_unlock(&sbi->stat_lock); 1073 return true; 1074 } 1075 1076 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1077 struct inode *inode, 1078 blkcnt_t count) 1079 { 1080 spin_lock(&sbi->stat_lock); 1081 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1082 f2fs_bug_on(sbi, inode->i_blocks < count); 1083 inode->i_blocks -= count; 1084 sbi->total_valid_block_count -= (block_t)count; 1085 spin_unlock(&sbi->stat_lock); 1086 } 1087 1088 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1089 { 1090 atomic_inc(&sbi->nr_pages[count_type]); 1091 set_sbi_flag(sbi, SBI_IS_DIRTY); 1092 } 1093 1094 static inline void inode_inc_dirty_pages(struct inode *inode) 1095 { 1096 atomic_inc(&F2FS_I(inode)->dirty_pages); 1097 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1098 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1099 } 1100 1101 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1102 { 1103 atomic_dec(&sbi->nr_pages[count_type]); 1104 } 1105 1106 static inline void inode_dec_dirty_pages(struct inode *inode) 1107 { 1108 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1109 !S_ISLNK(inode->i_mode)) 1110 return; 1111 1112 atomic_dec(&F2FS_I(inode)->dirty_pages); 1113 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1114 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1115 } 1116 1117 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 1118 { 1119 return atomic_read(&sbi->nr_pages[count_type]); 1120 } 1121 1122 static inline int get_dirty_pages(struct inode *inode) 1123 { 1124 return atomic_read(&F2FS_I(inode)->dirty_pages); 1125 } 1126 1127 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1128 { 1129 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1130 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 1131 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 1132 } 1133 1134 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1135 { 1136 return sbi->total_valid_block_count; 1137 } 1138 1139 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1140 { 1141 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1142 1143 /* return NAT or SIT bitmap */ 1144 if (flag == NAT_BITMAP) 1145 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1146 else if (flag == SIT_BITMAP) 1147 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1148 1149 return 0; 1150 } 1151 1152 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1153 { 1154 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1155 } 1156 1157 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1158 { 1159 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1160 int offset; 1161 1162 if (__cp_payload(sbi) > 0) { 1163 if (flag == NAT_BITMAP) 1164 return &ckpt->sit_nat_version_bitmap; 1165 else 1166 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1167 } else { 1168 offset = (flag == NAT_BITMAP) ? 1169 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1170 return &ckpt->sit_nat_version_bitmap + offset; 1171 } 1172 } 1173 1174 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1175 { 1176 block_t start_addr; 1177 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1178 unsigned long long ckpt_version = cur_cp_version(ckpt); 1179 1180 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1181 1182 /* 1183 * odd numbered checkpoint should at cp segment 0 1184 * and even segment must be at cp segment 1 1185 */ 1186 if (!(ckpt_version & 1)) 1187 start_addr += sbi->blocks_per_seg; 1188 1189 return start_addr; 1190 } 1191 1192 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1193 { 1194 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1195 } 1196 1197 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1198 struct inode *inode) 1199 { 1200 block_t valid_block_count; 1201 unsigned int valid_node_count; 1202 1203 spin_lock(&sbi->stat_lock); 1204 1205 valid_block_count = sbi->total_valid_block_count + 1; 1206 if (unlikely(valid_block_count > sbi->user_block_count)) { 1207 spin_unlock(&sbi->stat_lock); 1208 return false; 1209 } 1210 1211 valid_node_count = sbi->total_valid_node_count + 1; 1212 if (unlikely(valid_node_count > sbi->total_node_count)) { 1213 spin_unlock(&sbi->stat_lock); 1214 return false; 1215 } 1216 1217 if (inode) 1218 inode->i_blocks++; 1219 1220 sbi->alloc_valid_block_count++; 1221 sbi->total_valid_node_count++; 1222 sbi->total_valid_block_count++; 1223 spin_unlock(&sbi->stat_lock); 1224 1225 return true; 1226 } 1227 1228 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1229 struct inode *inode) 1230 { 1231 spin_lock(&sbi->stat_lock); 1232 1233 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1234 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1235 f2fs_bug_on(sbi, !inode->i_blocks); 1236 1237 inode->i_blocks--; 1238 sbi->total_valid_node_count--; 1239 sbi->total_valid_block_count--; 1240 1241 spin_unlock(&sbi->stat_lock); 1242 } 1243 1244 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1245 { 1246 return sbi->total_valid_node_count; 1247 } 1248 1249 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1250 { 1251 spin_lock(&sbi->stat_lock); 1252 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count); 1253 sbi->total_valid_inode_count++; 1254 spin_unlock(&sbi->stat_lock); 1255 } 1256 1257 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1258 { 1259 spin_lock(&sbi->stat_lock); 1260 f2fs_bug_on(sbi, !sbi->total_valid_inode_count); 1261 sbi->total_valid_inode_count--; 1262 spin_unlock(&sbi->stat_lock); 1263 } 1264 1265 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 1266 { 1267 return sbi->total_valid_inode_count; 1268 } 1269 1270 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1271 pgoff_t index, bool for_write) 1272 { 1273 if (!for_write) 1274 return grab_cache_page(mapping, index); 1275 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1276 } 1277 1278 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1279 { 1280 char *src_kaddr = kmap(src); 1281 char *dst_kaddr = kmap(dst); 1282 1283 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1284 kunmap(dst); 1285 kunmap(src); 1286 } 1287 1288 static inline void f2fs_put_page(struct page *page, int unlock) 1289 { 1290 if (!page) 1291 return; 1292 1293 if (unlock) { 1294 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1295 unlock_page(page); 1296 } 1297 page_cache_release(page); 1298 } 1299 1300 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1301 { 1302 if (dn->node_page) 1303 f2fs_put_page(dn->node_page, 1); 1304 if (dn->inode_page && dn->node_page != dn->inode_page) 1305 f2fs_put_page(dn->inode_page, 0); 1306 dn->node_page = NULL; 1307 dn->inode_page = NULL; 1308 } 1309 1310 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1311 size_t size) 1312 { 1313 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1314 } 1315 1316 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1317 gfp_t flags) 1318 { 1319 void *entry; 1320 1321 entry = kmem_cache_alloc(cachep, flags); 1322 if (!entry) 1323 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1324 return entry; 1325 } 1326 1327 static inline struct bio *f2fs_bio_alloc(int npages) 1328 { 1329 struct bio *bio; 1330 1331 /* No failure on bio allocation */ 1332 bio = bio_alloc(GFP_NOIO, npages); 1333 if (!bio) 1334 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1335 return bio; 1336 } 1337 1338 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1339 unsigned long index, void *item) 1340 { 1341 while (radix_tree_insert(root, index, item)) 1342 cond_resched(); 1343 } 1344 1345 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1346 1347 static inline bool IS_INODE(struct page *page) 1348 { 1349 struct f2fs_node *p = F2FS_NODE(page); 1350 return RAW_IS_INODE(p); 1351 } 1352 1353 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1354 { 1355 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1356 } 1357 1358 static inline block_t datablock_addr(struct page *node_page, 1359 unsigned int offset) 1360 { 1361 struct f2fs_node *raw_node; 1362 __le32 *addr_array; 1363 raw_node = F2FS_NODE(node_page); 1364 addr_array = blkaddr_in_node(raw_node); 1365 return le32_to_cpu(addr_array[offset]); 1366 } 1367 1368 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1369 { 1370 int mask; 1371 1372 addr += (nr >> 3); 1373 mask = 1 << (7 - (nr & 0x07)); 1374 return mask & *addr; 1375 } 1376 1377 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1378 { 1379 int mask; 1380 1381 addr += (nr >> 3); 1382 mask = 1 << (7 - (nr & 0x07)); 1383 *addr |= mask; 1384 } 1385 1386 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1387 { 1388 int mask; 1389 1390 addr += (nr >> 3); 1391 mask = 1 << (7 - (nr & 0x07)); 1392 *addr &= ~mask; 1393 } 1394 1395 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1396 { 1397 int mask; 1398 int ret; 1399 1400 addr += (nr >> 3); 1401 mask = 1 << (7 - (nr & 0x07)); 1402 ret = mask & *addr; 1403 *addr |= mask; 1404 return ret; 1405 } 1406 1407 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1408 { 1409 int mask; 1410 int ret; 1411 1412 addr += (nr >> 3); 1413 mask = 1 << (7 - (nr & 0x07)); 1414 ret = mask & *addr; 1415 *addr &= ~mask; 1416 return ret; 1417 } 1418 1419 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1420 { 1421 int mask; 1422 1423 addr += (nr >> 3); 1424 mask = 1 << (7 - (nr & 0x07)); 1425 *addr ^= mask; 1426 } 1427 1428 /* used for f2fs_inode_info->flags */ 1429 enum { 1430 FI_NEW_INODE, /* indicate newly allocated inode */ 1431 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1432 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1433 FI_INC_LINK, /* need to increment i_nlink */ 1434 FI_ACL_MODE, /* indicate acl mode */ 1435 FI_NO_ALLOC, /* should not allocate any blocks */ 1436 FI_FREE_NID, /* free allocated nide */ 1437 FI_UPDATE_DIR, /* should update inode block for consistency */ 1438 FI_DELAY_IPUT, /* used for the recovery */ 1439 FI_NO_EXTENT, /* not to use the extent cache */ 1440 FI_INLINE_XATTR, /* used for inline xattr */ 1441 FI_INLINE_DATA, /* used for inline data*/ 1442 FI_INLINE_DENTRY, /* used for inline dentry */ 1443 FI_APPEND_WRITE, /* inode has appended data */ 1444 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1445 FI_NEED_IPU, /* used for ipu per file */ 1446 FI_ATOMIC_FILE, /* indicate atomic file */ 1447 FI_VOLATILE_FILE, /* indicate volatile file */ 1448 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1449 FI_DROP_CACHE, /* drop dirty page cache */ 1450 FI_DATA_EXIST, /* indicate data exists */ 1451 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1452 FI_DO_DEFRAG, /* indicate defragment is running */ 1453 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1454 }; 1455 1456 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 1457 { 1458 if (!test_bit(flag, &fi->flags)) 1459 set_bit(flag, &fi->flags); 1460 } 1461 1462 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 1463 { 1464 return test_bit(flag, &fi->flags); 1465 } 1466 1467 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1468 { 1469 if (test_bit(flag, &fi->flags)) 1470 clear_bit(flag, &fi->flags); 1471 } 1472 1473 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 1474 { 1475 fi->i_acl_mode = mode; 1476 set_inode_flag(fi, FI_ACL_MODE); 1477 } 1478 1479 static inline void get_inline_info(struct f2fs_inode_info *fi, 1480 struct f2fs_inode *ri) 1481 { 1482 if (ri->i_inline & F2FS_INLINE_XATTR) 1483 set_inode_flag(fi, FI_INLINE_XATTR); 1484 if (ri->i_inline & F2FS_INLINE_DATA) 1485 set_inode_flag(fi, FI_INLINE_DATA); 1486 if (ri->i_inline & F2FS_INLINE_DENTRY) 1487 set_inode_flag(fi, FI_INLINE_DENTRY); 1488 if (ri->i_inline & F2FS_DATA_EXIST) 1489 set_inode_flag(fi, FI_DATA_EXIST); 1490 if (ri->i_inline & F2FS_INLINE_DOTS) 1491 set_inode_flag(fi, FI_INLINE_DOTS); 1492 } 1493 1494 static inline void set_raw_inline(struct f2fs_inode_info *fi, 1495 struct f2fs_inode *ri) 1496 { 1497 ri->i_inline = 0; 1498 1499 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 1500 ri->i_inline |= F2FS_INLINE_XATTR; 1501 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 1502 ri->i_inline |= F2FS_INLINE_DATA; 1503 if (is_inode_flag_set(fi, FI_INLINE_DENTRY)) 1504 ri->i_inline |= F2FS_INLINE_DENTRY; 1505 if (is_inode_flag_set(fi, FI_DATA_EXIST)) 1506 ri->i_inline |= F2FS_DATA_EXIST; 1507 if (is_inode_flag_set(fi, FI_INLINE_DOTS)) 1508 ri->i_inline |= F2FS_INLINE_DOTS; 1509 } 1510 1511 static inline int f2fs_has_inline_xattr(struct inode *inode) 1512 { 1513 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR); 1514 } 1515 1516 static inline unsigned int addrs_per_inode(struct inode *inode) 1517 { 1518 if (f2fs_has_inline_xattr(inode)) 1519 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1520 return DEF_ADDRS_PER_INODE; 1521 } 1522 1523 static inline void *inline_xattr_addr(struct page *page) 1524 { 1525 struct f2fs_inode *ri = F2FS_INODE(page); 1526 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1527 F2FS_INLINE_XATTR_ADDRS]); 1528 } 1529 1530 static inline int inline_xattr_size(struct inode *inode) 1531 { 1532 if (f2fs_has_inline_xattr(inode)) 1533 return F2FS_INLINE_XATTR_ADDRS << 2; 1534 else 1535 return 0; 1536 } 1537 1538 static inline int f2fs_has_inline_data(struct inode *inode) 1539 { 1540 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1541 } 1542 1543 static inline void f2fs_clear_inline_inode(struct inode *inode) 1544 { 1545 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); 1546 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1547 } 1548 1549 static inline int f2fs_exist_data(struct inode *inode) 1550 { 1551 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST); 1552 } 1553 1554 static inline int f2fs_has_inline_dots(struct inode *inode) 1555 { 1556 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS); 1557 } 1558 1559 static inline bool f2fs_is_atomic_file(struct inode *inode) 1560 { 1561 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE); 1562 } 1563 1564 static inline bool f2fs_is_volatile_file(struct inode *inode) 1565 { 1566 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE); 1567 } 1568 1569 static inline bool f2fs_is_first_block_written(struct inode *inode) 1570 { 1571 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 1572 } 1573 1574 static inline bool f2fs_is_drop_cache(struct inode *inode) 1575 { 1576 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE); 1577 } 1578 1579 static inline void *inline_data_addr(struct page *page) 1580 { 1581 struct f2fs_inode *ri = F2FS_INODE(page); 1582 return (void *)&(ri->i_addr[1]); 1583 } 1584 1585 static inline int f2fs_has_inline_dentry(struct inode *inode) 1586 { 1587 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY); 1588 } 1589 1590 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1591 { 1592 if (!f2fs_has_inline_dentry(dir)) 1593 kunmap(page); 1594 } 1595 1596 static inline int is_file(struct inode *inode, int type) 1597 { 1598 return F2FS_I(inode)->i_advise & type; 1599 } 1600 1601 static inline void set_file(struct inode *inode, int type) 1602 { 1603 F2FS_I(inode)->i_advise |= type; 1604 } 1605 1606 static inline void clear_file(struct inode *inode, int type) 1607 { 1608 F2FS_I(inode)->i_advise &= ~type; 1609 } 1610 1611 static inline int f2fs_readonly(struct super_block *sb) 1612 { 1613 return sb->s_flags & MS_RDONLY; 1614 } 1615 1616 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1617 { 1618 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1619 } 1620 1621 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi) 1622 { 1623 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1624 sbi->sb->s_flags |= MS_RDONLY; 1625 } 1626 1627 static inline bool is_dot_dotdot(const struct qstr *str) 1628 { 1629 if (str->len == 1 && str->name[0] == '.') 1630 return true; 1631 1632 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1633 return true; 1634 1635 return false; 1636 } 1637 1638 static inline bool f2fs_may_extent_tree(struct inode *inode) 1639 { 1640 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1641 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) 1642 return false; 1643 1644 return S_ISREG(inode->i_mode); 1645 } 1646 1647 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 1648 { 1649 void *ret; 1650 1651 ret = kmalloc(size, flags | __GFP_NOWARN); 1652 if (!ret) 1653 ret = __vmalloc(size, flags, PAGE_KERNEL); 1654 return ret; 1655 } 1656 1657 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 1658 { 1659 void *ret; 1660 1661 ret = kzalloc(size, flags | __GFP_NOWARN); 1662 if (!ret) 1663 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 1664 return ret; 1665 } 1666 1667 #define get_inode_mode(i) \ 1668 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1669 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1670 1671 /* get offset of first page in next direct node */ 1672 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \ 1673 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \ 1674 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \ 1675 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode)) 1676 1677 /* 1678 * file.c 1679 */ 1680 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1681 void truncate_data_blocks(struct dnode_of_data *); 1682 int truncate_blocks(struct inode *, u64, bool); 1683 int f2fs_truncate(struct inode *, bool); 1684 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1685 int f2fs_setattr(struct dentry *, struct iattr *); 1686 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1687 int truncate_data_blocks_range(struct dnode_of_data *, int); 1688 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1689 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1690 1691 /* 1692 * inode.c 1693 */ 1694 void f2fs_set_inode_flags(struct inode *); 1695 struct inode *f2fs_iget(struct super_block *, unsigned long); 1696 int try_to_free_nats(struct f2fs_sb_info *, int); 1697 int update_inode(struct inode *, struct page *); 1698 int update_inode_page(struct inode *); 1699 int f2fs_write_inode(struct inode *, struct writeback_control *); 1700 void f2fs_evict_inode(struct inode *); 1701 void handle_failed_inode(struct inode *); 1702 1703 /* 1704 * namei.c 1705 */ 1706 struct dentry *f2fs_get_parent(struct dentry *child); 1707 1708 /* 1709 * dir.c 1710 */ 1711 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX]; 1712 void set_de_type(struct f2fs_dir_entry *, umode_t); 1713 1714 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *, 1715 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1716 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1717 unsigned int, struct fscrypt_str *); 1718 void do_make_empty_dir(struct inode *, struct inode *, 1719 struct f2fs_dentry_ptr *); 1720 struct page *init_inode_metadata(struct inode *, struct inode *, 1721 const struct qstr *, struct page *); 1722 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1723 int room_for_filename(const void *, int, int); 1724 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *); 1725 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1726 struct page **); 1727 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1728 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1729 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1730 struct page *, struct inode *); 1731 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 1732 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1733 const struct qstr *, f2fs_hash_t , unsigned int); 1734 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1735 umode_t); 1736 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1737 struct inode *); 1738 int f2fs_do_tmpfile(struct inode *, struct inode *); 1739 bool f2fs_empty_dir(struct inode *); 1740 1741 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1742 { 1743 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1744 inode, inode->i_ino, inode->i_mode); 1745 } 1746 1747 /* 1748 * super.c 1749 */ 1750 int f2fs_commit_super(struct f2fs_sb_info *, bool); 1751 int f2fs_sync_fs(struct super_block *, int); 1752 extern __printf(3, 4) 1753 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1754 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 1755 1756 /* 1757 * hash.c 1758 */ 1759 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1760 1761 /* 1762 * node.c 1763 */ 1764 struct dnode_of_data; 1765 struct node_info; 1766 1767 bool available_free_memory(struct f2fs_sb_info *, int); 1768 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 1769 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1770 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1771 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1772 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t); 1773 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1774 int truncate_inode_blocks(struct inode *, pgoff_t); 1775 int truncate_xattr_node(struct inode *, struct page *); 1776 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1777 int remove_inode_page(struct inode *); 1778 struct page *new_inode_page(struct inode *); 1779 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1780 void ra_node_page(struct f2fs_sb_info *, nid_t); 1781 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1782 struct page *get_node_page_ra(struct page *, int); 1783 void sync_inode_page(struct dnode_of_data *); 1784 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 1785 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1786 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1787 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1788 int try_to_free_nids(struct f2fs_sb_info *, int); 1789 void recover_inline_xattr(struct inode *, struct page *); 1790 void recover_xattr_data(struct inode *, struct page *, block_t); 1791 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1792 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1793 struct f2fs_summary_block *); 1794 void flush_nat_entries(struct f2fs_sb_info *); 1795 int build_node_manager(struct f2fs_sb_info *); 1796 void destroy_node_manager(struct f2fs_sb_info *); 1797 int __init create_node_manager_caches(void); 1798 void destroy_node_manager_caches(void); 1799 1800 /* 1801 * segment.c 1802 */ 1803 void register_inmem_page(struct inode *, struct page *); 1804 void drop_inmem_pages(struct inode *); 1805 int commit_inmem_pages(struct inode *); 1806 void f2fs_balance_fs(struct f2fs_sb_info *, bool); 1807 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1808 int f2fs_issue_flush(struct f2fs_sb_info *); 1809 int create_flush_cmd_control(struct f2fs_sb_info *); 1810 void destroy_flush_cmd_control(struct f2fs_sb_info *); 1811 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1812 bool is_checkpointed_data(struct f2fs_sb_info *, block_t); 1813 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 1814 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 1815 void release_discard_addrs(struct f2fs_sb_info *); 1816 bool discard_next_dnode(struct f2fs_sb_info *, block_t); 1817 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 1818 void allocate_new_segments(struct f2fs_sb_info *); 1819 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 1820 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1821 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 1822 void write_meta_page(struct f2fs_sb_info *, struct page *); 1823 void write_node_page(unsigned int, struct f2fs_io_info *); 1824 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 1825 void rewrite_data_page(struct f2fs_io_info *); 1826 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *, 1827 block_t, block_t, bool, bool); 1828 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 1829 block_t, block_t, unsigned char, bool, bool); 1830 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1831 block_t, block_t *, struct f2fs_summary *, int); 1832 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool); 1833 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t); 1834 void write_data_summaries(struct f2fs_sb_info *, block_t); 1835 void write_node_summaries(struct f2fs_sb_info *, block_t); 1836 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int); 1837 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 1838 int build_segment_manager(struct f2fs_sb_info *); 1839 void destroy_segment_manager(struct f2fs_sb_info *); 1840 int __init create_segment_manager_caches(void); 1841 void destroy_segment_manager_caches(void); 1842 1843 /* 1844 * checkpoint.c 1845 */ 1846 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1847 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1848 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t); 1849 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 1850 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool); 1851 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 1852 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1853 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type); 1854 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type); 1855 void release_ino_entry(struct f2fs_sb_info *); 1856 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 1857 int acquire_orphan_inode(struct f2fs_sb_info *); 1858 void release_orphan_inode(struct f2fs_sb_info *); 1859 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1860 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1861 int recover_orphan_inodes(struct f2fs_sb_info *); 1862 int get_valid_checkpoint(struct f2fs_sb_info *); 1863 void update_dirty_page(struct inode *, struct page *); 1864 void add_dirty_dir_inode(struct inode *); 1865 void remove_dirty_inode(struct inode *); 1866 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type); 1867 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 1868 void init_ino_entry_info(struct f2fs_sb_info *); 1869 int __init create_checkpoint_caches(void); 1870 void destroy_checkpoint_caches(void); 1871 1872 /* 1873 * data.c 1874 */ 1875 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1876 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *, 1877 struct page *, nid_t, enum page_type, int); 1878 void f2fs_flush_merged_bios(struct f2fs_sb_info *); 1879 int f2fs_submit_page_bio(struct f2fs_io_info *); 1880 void f2fs_submit_page_mbio(struct f2fs_io_info *); 1881 void set_data_blkaddr(struct dnode_of_data *); 1882 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t); 1883 int reserve_new_block(struct dnode_of_data *); 1884 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 1885 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *); 1886 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1887 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool); 1888 struct page *find_data_page(struct inode *, pgoff_t); 1889 struct page *get_lock_data_page(struct inode *, pgoff_t, bool); 1890 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1891 int do_write_data_page(struct f2fs_io_info *); 1892 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int); 1893 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 1894 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 1895 int f2fs_release_page(struct page *, gfp_t); 1896 1897 /* 1898 * gc.c 1899 */ 1900 int start_gc_thread(struct f2fs_sb_info *); 1901 void stop_gc_thread(struct f2fs_sb_info *); 1902 block_t start_bidx_of_node(unsigned int, struct inode *); 1903 int f2fs_gc(struct f2fs_sb_info *, bool); 1904 void build_gc_manager(struct f2fs_sb_info *); 1905 1906 /* 1907 * recovery.c 1908 */ 1909 int recover_fsync_data(struct f2fs_sb_info *); 1910 bool space_for_roll_forward(struct f2fs_sb_info *); 1911 1912 /* 1913 * debug.c 1914 */ 1915 #ifdef CONFIG_F2FS_STAT_FS 1916 struct f2fs_stat_info { 1917 struct list_head stat_list; 1918 struct f2fs_sb_info *sbi; 1919 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1920 int main_area_segs, main_area_sections, main_area_zones; 1921 unsigned long long hit_largest, hit_cached, hit_rbtree; 1922 unsigned long long hit_total, total_ext; 1923 int ext_tree, zombie_tree, ext_node; 1924 int ndirty_node, ndirty_meta; 1925 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files; 1926 int nats, dirty_nats, sits, dirty_sits, fnids; 1927 int total_count, utilization; 1928 int bg_gc, inmem_pages, wb_pages; 1929 int inline_xattr, inline_inode, inline_dir; 1930 unsigned int valid_count, valid_node_count, valid_inode_count; 1931 unsigned int bimodal, avg_vblocks; 1932 int util_free, util_valid, util_invalid; 1933 int rsvd_segs, overp_segs; 1934 int dirty_count, node_pages, meta_pages; 1935 int prefree_count, call_count, cp_count, bg_cp_count; 1936 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1937 int bg_node_segs, bg_data_segs; 1938 int tot_blks, data_blks, node_blks; 1939 int bg_data_blks, bg_node_blks; 1940 int curseg[NR_CURSEG_TYPE]; 1941 int cursec[NR_CURSEG_TYPE]; 1942 int curzone[NR_CURSEG_TYPE]; 1943 1944 unsigned int segment_count[2]; 1945 unsigned int block_count[2]; 1946 unsigned int inplace_count; 1947 unsigned long long base_mem, cache_mem, page_mem; 1948 }; 1949 1950 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 1951 { 1952 return (struct f2fs_stat_info *)sbi->stat_info; 1953 } 1954 1955 #define stat_inc_cp_count(si) ((si)->cp_count++) 1956 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 1957 #define stat_inc_call_count(si) ((si)->call_count++) 1958 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 1959 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 1960 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 1961 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 1962 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 1963 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 1964 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 1965 #define stat_inc_inline_xattr(inode) \ 1966 do { \ 1967 if (f2fs_has_inline_xattr(inode)) \ 1968 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 1969 } while (0) 1970 #define stat_dec_inline_xattr(inode) \ 1971 do { \ 1972 if (f2fs_has_inline_xattr(inode)) \ 1973 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 1974 } while (0) 1975 #define stat_inc_inline_inode(inode) \ 1976 do { \ 1977 if (f2fs_has_inline_data(inode)) \ 1978 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 1979 } while (0) 1980 #define stat_dec_inline_inode(inode) \ 1981 do { \ 1982 if (f2fs_has_inline_data(inode)) \ 1983 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 1984 } while (0) 1985 #define stat_inc_inline_dir(inode) \ 1986 do { \ 1987 if (f2fs_has_inline_dentry(inode)) \ 1988 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 1989 } while (0) 1990 #define stat_dec_inline_dir(inode) \ 1991 do { \ 1992 if (f2fs_has_inline_dentry(inode)) \ 1993 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 1994 } while (0) 1995 #define stat_inc_seg_type(sbi, curseg) \ 1996 ((sbi)->segment_count[(curseg)->alloc_type]++) 1997 #define stat_inc_block_count(sbi, curseg) \ 1998 ((sbi)->block_count[(curseg)->alloc_type]++) 1999 #define stat_inc_inplace_blocks(sbi) \ 2000 (atomic_inc(&(sbi)->inplace_count)) 2001 #define stat_inc_seg_count(sbi, type, gc_type) \ 2002 do { \ 2003 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2004 (si)->tot_segs++; \ 2005 if (type == SUM_TYPE_DATA) { \ 2006 si->data_segs++; \ 2007 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2008 } else { \ 2009 si->node_segs++; \ 2010 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2011 } \ 2012 } while (0) 2013 2014 #define stat_inc_tot_blk_count(si, blks) \ 2015 (si->tot_blks += (blks)) 2016 2017 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2018 do { \ 2019 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2020 stat_inc_tot_blk_count(si, blks); \ 2021 si->data_blks += (blks); \ 2022 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2023 } while (0) 2024 2025 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2026 do { \ 2027 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2028 stat_inc_tot_blk_count(si, blks); \ 2029 si->node_blks += (blks); \ 2030 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2031 } while (0) 2032 2033 int f2fs_build_stats(struct f2fs_sb_info *); 2034 void f2fs_destroy_stats(struct f2fs_sb_info *); 2035 int __init f2fs_create_root_stats(void); 2036 void f2fs_destroy_root_stats(void); 2037 #else 2038 #define stat_inc_cp_count(si) 2039 #define stat_inc_bg_cp_count(si) 2040 #define stat_inc_call_count(si) 2041 #define stat_inc_bggc_count(si) 2042 #define stat_inc_dirty_inode(sbi, type) 2043 #define stat_dec_dirty_inode(sbi, type) 2044 #define stat_inc_total_hit(sb) 2045 #define stat_inc_rbtree_node_hit(sb) 2046 #define stat_inc_largest_node_hit(sbi) 2047 #define stat_inc_cached_node_hit(sbi) 2048 #define stat_inc_inline_xattr(inode) 2049 #define stat_dec_inline_xattr(inode) 2050 #define stat_inc_inline_inode(inode) 2051 #define stat_dec_inline_inode(inode) 2052 #define stat_inc_inline_dir(inode) 2053 #define stat_dec_inline_dir(inode) 2054 #define stat_inc_seg_type(sbi, curseg) 2055 #define stat_inc_block_count(sbi, curseg) 2056 #define stat_inc_inplace_blocks(sbi) 2057 #define stat_inc_seg_count(sbi, type, gc_type) 2058 #define stat_inc_tot_blk_count(si, blks) 2059 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2060 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2061 2062 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2063 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2064 static inline int __init f2fs_create_root_stats(void) { return 0; } 2065 static inline void f2fs_destroy_root_stats(void) { } 2066 #endif 2067 2068 extern const struct file_operations f2fs_dir_operations; 2069 extern const struct file_operations f2fs_file_operations; 2070 extern const struct inode_operations f2fs_file_inode_operations; 2071 extern const struct address_space_operations f2fs_dblock_aops; 2072 extern const struct address_space_operations f2fs_node_aops; 2073 extern const struct address_space_operations f2fs_meta_aops; 2074 extern const struct inode_operations f2fs_dir_inode_operations; 2075 extern const struct inode_operations f2fs_symlink_inode_operations; 2076 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2077 extern const struct inode_operations f2fs_special_inode_operations; 2078 extern struct kmem_cache *inode_entry_slab; 2079 2080 /* 2081 * inline.c 2082 */ 2083 bool f2fs_may_inline_data(struct inode *); 2084 bool f2fs_may_inline_dentry(struct inode *); 2085 void read_inline_data(struct page *, struct page *); 2086 bool truncate_inline_inode(struct page *, u64); 2087 int f2fs_read_inline_data(struct inode *, struct page *); 2088 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 2089 int f2fs_convert_inline_inode(struct inode *); 2090 int f2fs_write_inline_data(struct inode *, struct page *); 2091 bool recover_inline_data(struct inode *, struct page *); 2092 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 2093 struct fscrypt_name *, struct page **); 2094 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **); 2095 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 2096 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *, 2097 nid_t, umode_t); 2098 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 2099 struct inode *, struct inode *); 2100 bool f2fs_empty_inline_dir(struct inode *); 2101 int f2fs_read_inline_dir(struct file *, struct dir_context *, 2102 struct fscrypt_str *); 2103 int f2fs_inline_data_fiemap(struct inode *, 2104 struct fiemap_extent_info *, __u64, __u64); 2105 2106 /* 2107 * shrinker.c 2108 */ 2109 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 2110 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2111 void f2fs_join_shrinker(struct f2fs_sb_info *); 2112 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2113 2114 /* 2115 * extent_cache.c 2116 */ 2117 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2118 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2119 unsigned int f2fs_destroy_extent_node(struct inode *); 2120 void f2fs_destroy_extent_tree(struct inode *); 2121 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2122 void f2fs_update_extent_cache(struct dnode_of_data *); 2123 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2124 pgoff_t, block_t, unsigned int); 2125 void init_extent_cache_info(struct f2fs_sb_info *); 2126 int __init create_extent_cache(void); 2127 void destroy_extent_cache(void); 2128 2129 /* 2130 * crypto support 2131 */ 2132 static inline bool f2fs_encrypted_inode(struct inode *inode) 2133 { 2134 return file_is_encrypt(inode); 2135 } 2136 2137 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2138 { 2139 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2140 file_set_encrypt(inode); 2141 #endif 2142 } 2143 2144 static inline bool f2fs_bio_encrypted(struct bio *bio) 2145 { 2146 return bio->bi_private != NULL; 2147 } 2148 2149 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2150 { 2151 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2152 } 2153 2154 static inline bool f2fs_may_encrypt(struct inode *inode) 2155 { 2156 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2157 umode_t mode = inode->i_mode; 2158 2159 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2160 #else 2161 return 0; 2162 #endif 2163 } 2164 2165 #ifndef CONFIG_F2FS_FS_ENCRYPTION 2166 #define fscrypt_set_d_op(i) 2167 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx 2168 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx 2169 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page 2170 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page 2171 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages 2172 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page 2173 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page 2174 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range 2175 #define fscrypt_process_policy fscrypt_notsupp_process_policy 2176 #define fscrypt_get_policy fscrypt_notsupp_get_policy 2177 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context 2178 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context 2179 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info 2180 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info 2181 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename 2182 #define fscrypt_free_filename fscrypt_notsupp_free_filename 2183 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size 2184 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer 2185 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer 2186 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr 2187 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk 2188 #endif 2189 #endif 2190