xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 3e020389)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_SLAB_ALLOC,
58 	FAULT_DQUOT_INIT,
59 	FAULT_LOCK_OP,
60 	FAULT_MAX,
61 };
62 
63 #ifdef CONFIG_F2FS_FAULT_INJECTION
64 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
65 
66 struct f2fs_fault_info {
67 	atomic_t inject_ops;
68 	unsigned int inject_rate;
69 	unsigned int inject_type;
70 };
71 
72 extern const char *f2fs_fault_name[FAULT_MAX];
73 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
74 #endif
75 
76 /*
77  * For mount options
78  */
79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
80 #define F2FS_MOUNT_DISCARD		0x00000004
81 #define F2FS_MOUNT_NOHEAP		0x00000008
82 #define F2FS_MOUNT_XATTR_USER		0x00000010
83 #define F2FS_MOUNT_POSIX_ACL		0x00000020
84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
85 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
86 #define F2FS_MOUNT_INLINE_DATA		0x00000100
87 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
88 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
89 #define F2FS_MOUNT_NOBARRIER		0x00000800
90 #define F2FS_MOUNT_FASTBOOT		0x00001000
91 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_USRQUOTA		0x00080000
95 #define F2FS_MOUNT_GRPQUOTA		0x00100000
96 #define F2FS_MOUNT_PRJQUOTA		0x00200000
97 #define F2FS_MOUNT_QUOTA		0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
100 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
101 #define F2FS_MOUNT_NORECOVERY		0x04000000
102 #define F2FS_MOUNT_ATGC			0x08000000
103 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
104 #define	F2FS_MOUNT_GC_MERGE		0x20000000
105 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
106 
107 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
108 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
109 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
110 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
111 
112 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
113 		typecheck(unsigned long long, b) &&			\
114 		((long long)((a) - (b)) > 0))
115 
116 typedef u32 block_t;	/*
117 			 * should not change u32, since it is the on-disk block
118 			 * address format, __le32.
119 			 */
120 typedef u32 nid_t;
121 
122 #define COMPRESS_EXT_NUM		16
123 
124 struct f2fs_mount_info {
125 	unsigned int opt;
126 	int write_io_size_bits;		/* Write IO size bits */
127 	block_t root_reserved_blocks;	/* root reserved blocks */
128 	kuid_t s_resuid;		/* reserved blocks for uid */
129 	kgid_t s_resgid;		/* reserved blocks for gid */
130 	int active_logs;		/* # of active logs */
131 	int inline_xattr_size;		/* inline xattr size */
132 #ifdef CONFIG_F2FS_FAULT_INJECTION
133 	struct f2fs_fault_info fault_info;	/* For fault injection */
134 #endif
135 #ifdef CONFIG_QUOTA
136 	/* Names of quota files with journalled quota */
137 	char *s_qf_names[MAXQUOTAS];
138 	int s_jquota_fmt;			/* Format of quota to use */
139 #endif
140 	/* For which write hints are passed down to block layer */
141 	int whint_mode;
142 	int alloc_mode;			/* segment allocation policy */
143 	int fsync_mode;			/* fsync policy */
144 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
145 	int bggc_mode;			/* bggc mode: off, on or sync */
146 	int discard_unit;		/*
147 					 * discard command's offset/size should
148 					 * be aligned to this unit: block,
149 					 * segment or section
150 					 */
151 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
152 	block_t unusable_cap_perc;	/* percentage for cap */
153 	block_t unusable_cap;		/* Amount of space allowed to be
154 					 * unusable when disabling checkpoint
155 					 */
156 
157 	/* For compression */
158 	unsigned char compress_algorithm;	/* algorithm type */
159 	unsigned char compress_log_size;	/* cluster log size */
160 	unsigned char compress_level;		/* compress level */
161 	bool compress_chksum;			/* compressed data chksum */
162 	unsigned char compress_ext_cnt;		/* extension count */
163 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
164 	int compress_mode;			/* compression mode */
165 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
166 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
167 };
168 
169 #define F2FS_FEATURE_ENCRYPT		0x0001
170 #define F2FS_FEATURE_BLKZONED		0x0002
171 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
172 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
173 #define F2FS_FEATURE_PRJQUOTA		0x0010
174 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
175 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
176 #define F2FS_FEATURE_QUOTA_INO		0x0080
177 #define F2FS_FEATURE_INODE_CRTIME	0x0100
178 #define F2FS_FEATURE_LOST_FOUND		0x0200
179 #define F2FS_FEATURE_VERITY		0x0400
180 #define F2FS_FEATURE_SB_CHKSUM		0x0800
181 #define F2FS_FEATURE_CASEFOLD		0x1000
182 #define F2FS_FEATURE_COMPRESSION	0x2000
183 #define F2FS_FEATURE_RO			0x4000
184 
185 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
186 	((raw_super->feature & cpu_to_le32(mask)) != 0)
187 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
188 #define F2FS_SET_FEATURE(sbi, mask)					\
189 	(sbi->raw_super->feature |= cpu_to_le32(mask))
190 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
191 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
192 
193 /*
194  * Default values for user and/or group using reserved blocks
195  */
196 #define	F2FS_DEF_RESUID		0
197 #define	F2FS_DEF_RESGID		0
198 
199 /*
200  * For checkpoint manager
201  */
202 enum {
203 	NAT_BITMAP,
204 	SIT_BITMAP
205 };
206 
207 #define	CP_UMOUNT	0x00000001
208 #define	CP_FASTBOOT	0x00000002
209 #define	CP_SYNC		0x00000004
210 #define	CP_RECOVERY	0x00000008
211 #define	CP_DISCARD	0x00000010
212 #define CP_TRIMMED	0x00000020
213 #define CP_PAUSE	0x00000040
214 #define CP_RESIZE 	0x00000080
215 
216 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
217 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
218 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
219 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
220 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
221 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
222 #define DEF_CP_INTERVAL			60	/* 60 secs */
223 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
224 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
225 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
226 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
227 
228 struct cp_control {
229 	int reason;
230 	__u64 trim_start;
231 	__u64 trim_end;
232 	__u64 trim_minlen;
233 };
234 
235 /*
236  * indicate meta/data type
237  */
238 enum {
239 	META_CP,
240 	META_NAT,
241 	META_SIT,
242 	META_SSA,
243 	META_MAX,
244 	META_POR,
245 	DATA_GENERIC,		/* check range only */
246 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
247 	DATA_GENERIC_ENHANCE_READ,	/*
248 					 * strong check on range and segment
249 					 * bitmap but no warning due to race
250 					 * condition of read on truncated area
251 					 * by extent_cache
252 					 */
253 	META_GENERIC,
254 };
255 
256 /* for the list of ino */
257 enum {
258 	ORPHAN_INO,		/* for orphan ino list */
259 	APPEND_INO,		/* for append ino list */
260 	UPDATE_INO,		/* for update ino list */
261 	TRANS_DIR_INO,		/* for trasactions dir ino list */
262 	FLUSH_INO,		/* for multiple device flushing */
263 	MAX_INO_ENTRY,		/* max. list */
264 };
265 
266 struct ino_entry {
267 	struct list_head list;		/* list head */
268 	nid_t ino;			/* inode number */
269 	unsigned int dirty_device;	/* dirty device bitmap */
270 };
271 
272 /* for the list of inodes to be GCed */
273 struct inode_entry {
274 	struct list_head list;	/* list head */
275 	struct inode *inode;	/* vfs inode pointer */
276 };
277 
278 struct fsync_node_entry {
279 	struct list_head list;	/* list head */
280 	struct page *page;	/* warm node page pointer */
281 	unsigned int seq_id;	/* sequence id */
282 };
283 
284 struct ckpt_req {
285 	struct completion wait;		/* completion for checkpoint done */
286 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
287 	int ret;			/* return code of checkpoint */
288 	ktime_t queue_time;		/* request queued time */
289 };
290 
291 struct ckpt_req_control {
292 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
293 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
294 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
295 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
296 	atomic_t total_ckpt;		/* # of total ckpts */
297 	atomic_t queued_ckpt;		/* # of queued ckpts */
298 	struct llist_head issue_list;	/* list for command issue */
299 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
300 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
301 	unsigned int peak_time;		/* peak wait time in msec until now */
302 };
303 
304 /* for the bitmap indicate blocks to be discarded */
305 struct discard_entry {
306 	struct list_head list;	/* list head */
307 	block_t start_blkaddr;	/* start blockaddr of current segment */
308 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
309 };
310 
311 /* default discard granularity of inner discard thread, unit: block count */
312 #define DEFAULT_DISCARD_GRANULARITY		16
313 
314 /* max discard pend list number */
315 #define MAX_PLIST_NUM		512
316 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
317 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
318 
319 enum {
320 	D_PREP,			/* initial */
321 	D_PARTIAL,		/* partially submitted */
322 	D_SUBMIT,		/* all submitted */
323 	D_DONE,			/* finished */
324 };
325 
326 struct discard_info {
327 	block_t lstart;			/* logical start address */
328 	block_t len;			/* length */
329 	block_t start;			/* actual start address in dev */
330 };
331 
332 struct discard_cmd {
333 	struct rb_node rb_node;		/* rb node located in rb-tree */
334 	union {
335 		struct {
336 			block_t lstart;	/* logical start address */
337 			block_t len;	/* length */
338 			block_t start;	/* actual start address in dev */
339 		};
340 		struct discard_info di;	/* discard info */
341 
342 	};
343 	struct list_head list;		/* command list */
344 	struct completion wait;		/* compleation */
345 	struct block_device *bdev;	/* bdev */
346 	unsigned short ref;		/* reference count */
347 	unsigned char state;		/* state */
348 	unsigned char queued;		/* queued discard */
349 	int error;			/* bio error */
350 	spinlock_t lock;		/* for state/bio_ref updating */
351 	unsigned short bio_ref;		/* bio reference count */
352 };
353 
354 enum {
355 	DPOLICY_BG,
356 	DPOLICY_FORCE,
357 	DPOLICY_FSTRIM,
358 	DPOLICY_UMOUNT,
359 	MAX_DPOLICY,
360 };
361 
362 struct discard_policy {
363 	int type;			/* type of discard */
364 	unsigned int min_interval;	/* used for candidates exist */
365 	unsigned int mid_interval;	/* used for device busy */
366 	unsigned int max_interval;	/* used for candidates not exist */
367 	unsigned int max_requests;	/* # of discards issued per round */
368 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
369 	bool io_aware;			/* issue discard in idle time */
370 	bool sync;			/* submit discard with REQ_SYNC flag */
371 	bool ordered;			/* issue discard by lba order */
372 	bool timeout;			/* discard timeout for put_super */
373 	unsigned int granularity;	/* discard granularity */
374 };
375 
376 struct discard_cmd_control {
377 	struct task_struct *f2fs_issue_discard;	/* discard thread */
378 	struct list_head entry_list;		/* 4KB discard entry list */
379 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
380 	struct list_head wait_list;		/* store on-flushing entries */
381 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
382 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
383 	unsigned int discard_wake;		/* to wake up discard thread */
384 	struct mutex cmd_lock;
385 	unsigned int nr_discards;		/* # of discards in the list */
386 	unsigned int max_discards;		/* max. discards to be issued */
387 	unsigned int discard_granularity;	/* discard granularity */
388 	unsigned int undiscard_blks;		/* # of undiscard blocks */
389 	unsigned int next_pos;			/* next discard position */
390 	atomic_t issued_discard;		/* # of issued discard */
391 	atomic_t queued_discard;		/* # of queued discard */
392 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
393 	struct rb_root_cached root;		/* root of discard rb-tree */
394 	bool rbtree_check;			/* config for consistence check */
395 };
396 
397 /* for the list of fsync inodes, used only during recovery */
398 struct fsync_inode_entry {
399 	struct list_head list;	/* list head */
400 	struct inode *inode;	/* vfs inode pointer */
401 	block_t blkaddr;	/* block address locating the last fsync */
402 	block_t last_dentry;	/* block address locating the last dentry */
403 };
404 
405 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
406 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
407 
408 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
409 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
410 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
411 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
412 
413 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
414 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
415 
416 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
417 {
418 	int before = nats_in_cursum(journal);
419 
420 	journal->n_nats = cpu_to_le16(before + i);
421 	return before;
422 }
423 
424 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
425 {
426 	int before = sits_in_cursum(journal);
427 
428 	journal->n_sits = cpu_to_le16(before + i);
429 	return before;
430 }
431 
432 static inline bool __has_cursum_space(struct f2fs_journal *journal,
433 							int size, int type)
434 {
435 	if (type == NAT_JOURNAL)
436 		return size <= MAX_NAT_JENTRIES(journal);
437 	return size <= MAX_SIT_JENTRIES(journal);
438 }
439 
440 /* for inline stuff */
441 #define DEF_INLINE_RESERVED_SIZE	1
442 static inline int get_extra_isize(struct inode *inode);
443 static inline int get_inline_xattr_addrs(struct inode *inode);
444 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
445 				(CUR_ADDRS_PER_INODE(inode) -		\
446 				get_inline_xattr_addrs(inode) -	\
447 				DEF_INLINE_RESERVED_SIZE))
448 
449 /* for inline dir */
450 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
451 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
452 				BITS_PER_BYTE + 1))
453 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
454 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
455 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
456 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
457 				NR_INLINE_DENTRY(inode) + \
458 				INLINE_DENTRY_BITMAP_SIZE(inode)))
459 
460 /*
461  * For INODE and NODE manager
462  */
463 /* for directory operations */
464 
465 struct f2fs_filename {
466 	/*
467 	 * The filename the user specified.  This is NULL for some
468 	 * filesystem-internal operations, e.g. converting an inline directory
469 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
470 	 */
471 	const struct qstr *usr_fname;
472 
473 	/*
474 	 * The on-disk filename.  For encrypted directories, this is encrypted.
475 	 * This may be NULL for lookups in an encrypted dir without the key.
476 	 */
477 	struct fscrypt_str disk_name;
478 
479 	/* The dirhash of this filename */
480 	f2fs_hash_t hash;
481 
482 #ifdef CONFIG_FS_ENCRYPTION
483 	/*
484 	 * For lookups in encrypted directories: either the buffer backing
485 	 * disk_name, or a buffer that holds the decoded no-key name.
486 	 */
487 	struct fscrypt_str crypto_buf;
488 #endif
489 #ifdef CONFIG_UNICODE
490 	/*
491 	 * For casefolded directories: the casefolded name, but it's left NULL
492 	 * if the original name is not valid Unicode, if the directory is both
493 	 * casefolded and encrypted and its encryption key is unavailable, or if
494 	 * the filesystem is doing an internal operation where usr_fname is also
495 	 * NULL.  In all these cases we fall back to treating the name as an
496 	 * opaque byte sequence.
497 	 */
498 	struct fscrypt_str cf_name;
499 #endif
500 };
501 
502 struct f2fs_dentry_ptr {
503 	struct inode *inode;
504 	void *bitmap;
505 	struct f2fs_dir_entry *dentry;
506 	__u8 (*filename)[F2FS_SLOT_LEN];
507 	int max;
508 	int nr_bitmap;
509 };
510 
511 static inline void make_dentry_ptr_block(struct inode *inode,
512 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
513 {
514 	d->inode = inode;
515 	d->max = NR_DENTRY_IN_BLOCK;
516 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
517 	d->bitmap = t->dentry_bitmap;
518 	d->dentry = t->dentry;
519 	d->filename = t->filename;
520 }
521 
522 static inline void make_dentry_ptr_inline(struct inode *inode,
523 					struct f2fs_dentry_ptr *d, void *t)
524 {
525 	int entry_cnt = NR_INLINE_DENTRY(inode);
526 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
527 	int reserved_size = INLINE_RESERVED_SIZE(inode);
528 
529 	d->inode = inode;
530 	d->max = entry_cnt;
531 	d->nr_bitmap = bitmap_size;
532 	d->bitmap = t;
533 	d->dentry = t + bitmap_size + reserved_size;
534 	d->filename = t + bitmap_size + reserved_size +
535 					SIZE_OF_DIR_ENTRY * entry_cnt;
536 }
537 
538 /*
539  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
540  * as its node offset to distinguish from index node blocks.
541  * But some bits are used to mark the node block.
542  */
543 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
544 				>> OFFSET_BIT_SHIFT)
545 enum {
546 	ALLOC_NODE,			/* allocate a new node page if needed */
547 	LOOKUP_NODE,			/* look up a node without readahead */
548 	LOOKUP_NODE_RA,			/*
549 					 * look up a node with readahead called
550 					 * by get_data_block.
551 					 */
552 };
553 
554 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
555 
556 /* congestion wait timeout value, default: 20ms */
557 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
558 
559 /* maximum retry quota flush count */
560 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
561 
562 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
563 
564 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
565 
566 /* dirty segments threshold for triggering CP */
567 #define DEFAULT_DIRTY_THRESHOLD		4
568 
569 /* for in-memory extent cache entry */
570 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
571 
572 /* number of extent info in extent cache we try to shrink */
573 #define EXTENT_CACHE_SHRINK_NUMBER	128
574 
575 struct rb_entry {
576 	struct rb_node rb_node;		/* rb node located in rb-tree */
577 	union {
578 		struct {
579 			unsigned int ofs;	/* start offset of the entry */
580 			unsigned int len;	/* length of the entry */
581 		};
582 		unsigned long long key;		/* 64-bits key */
583 	} __packed;
584 };
585 
586 struct extent_info {
587 	unsigned int fofs;		/* start offset in a file */
588 	unsigned int len;		/* length of the extent */
589 	u32 blk;			/* start block address of the extent */
590 #ifdef CONFIG_F2FS_FS_COMPRESSION
591 	unsigned int c_len;		/* physical extent length of compressed blocks */
592 #endif
593 };
594 
595 struct extent_node {
596 	struct rb_node rb_node;		/* rb node located in rb-tree */
597 	struct extent_info ei;		/* extent info */
598 	struct list_head list;		/* node in global extent list of sbi */
599 	struct extent_tree *et;		/* extent tree pointer */
600 };
601 
602 struct extent_tree {
603 	nid_t ino;			/* inode number */
604 	struct rb_root_cached root;	/* root of extent info rb-tree */
605 	struct extent_node *cached_en;	/* recently accessed extent node */
606 	struct extent_info largest;	/* largested extent info */
607 	struct list_head list;		/* to be used by sbi->zombie_list */
608 	rwlock_t lock;			/* protect extent info rb-tree */
609 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
610 	bool largest_updated;		/* largest extent updated */
611 };
612 
613 /*
614  * This structure is taken from ext4_map_blocks.
615  *
616  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
617  */
618 #define F2FS_MAP_NEW		(1 << BH_New)
619 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
620 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
621 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
622 				F2FS_MAP_UNWRITTEN)
623 
624 struct f2fs_map_blocks {
625 	struct block_device *m_bdev;	/* for multi-device dio */
626 	block_t m_pblk;
627 	block_t m_lblk;
628 	unsigned int m_len;
629 	unsigned int m_flags;
630 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
631 	pgoff_t *m_next_extent;		/* point to next possible extent */
632 	int m_seg_type;
633 	bool m_may_create;		/* indicate it is from write path */
634 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
635 };
636 
637 /* for flag in get_data_block */
638 enum {
639 	F2FS_GET_BLOCK_DEFAULT,
640 	F2FS_GET_BLOCK_FIEMAP,
641 	F2FS_GET_BLOCK_BMAP,
642 	F2FS_GET_BLOCK_DIO,
643 	F2FS_GET_BLOCK_PRE_DIO,
644 	F2FS_GET_BLOCK_PRE_AIO,
645 	F2FS_GET_BLOCK_PRECACHE,
646 };
647 
648 /*
649  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
650  */
651 #define FADVISE_COLD_BIT	0x01
652 #define FADVISE_LOST_PINO_BIT	0x02
653 #define FADVISE_ENCRYPT_BIT	0x04
654 #define FADVISE_ENC_NAME_BIT	0x08
655 #define FADVISE_KEEP_SIZE_BIT	0x10
656 #define FADVISE_HOT_BIT		0x20
657 #define FADVISE_VERITY_BIT	0x40
658 #define FADVISE_TRUNC_BIT	0x80
659 
660 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
661 
662 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
663 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
664 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
665 
666 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
667 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
668 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
669 
670 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
671 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
672 
673 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
674 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
675 
676 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
677 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
678 
679 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
680 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
681 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
682 
683 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
684 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
685 
686 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
687 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
688 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
689 
690 #define DEF_DIR_LEVEL		0
691 
692 enum {
693 	GC_FAILURE_PIN,
694 	GC_FAILURE_ATOMIC,
695 	MAX_GC_FAILURE
696 };
697 
698 /* used for f2fs_inode_info->flags */
699 enum {
700 	FI_NEW_INODE,		/* indicate newly allocated inode */
701 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
702 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
703 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
704 	FI_INC_LINK,		/* need to increment i_nlink */
705 	FI_ACL_MODE,		/* indicate acl mode */
706 	FI_NO_ALLOC,		/* should not allocate any blocks */
707 	FI_FREE_NID,		/* free allocated nide */
708 	FI_NO_EXTENT,		/* not to use the extent cache */
709 	FI_INLINE_XATTR,	/* used for inline xattr */
710 	FI_INLINE_DATA,		/* used for inline data*/
711 	FI_INLINE_DENTRY,	/* used for inline dentry */
712 	FI_APPEND_WRITE,	/* inode has appended data */
713 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
714 	FI_NEED_IPU,		/* used for ipu per file */
715 	FI_ATOMIC_FILE,		/* indicate atomic file */
716 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
717 	FI_VOLATILE_FILE,	/* indicate volatile file */
718 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
719 	FI_DROP_CACHE,		/* drop dirty page cache */
720 	FI_DATA_EXIST,		/* indicate data exists */
721 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
722 	FI_DO_DEFRAG,		/* indicate defragment is running */
723 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
724 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
725 	FI_HOT_DATA,		/* indicate file is hot */
726 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
727 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
728 	FI_PIN_FILE,		/* indicate file should not be gced */
729 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
730 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
731 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
732 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
733 	FI_MMAP_FILE,		/* indicate file was mmapped */
734 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
735 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
736 	FI_ALIGNED_WRITE,	/* enable aligned write */
737 	FI_MAX,			/* max flag, never be used */
738 };
739 
740 struct f2fs_inode_info {
741 	struct inode vfs_inode;		/* serve a vfs inode */
742 	unsigned long i_flags;		/* keep an inode flags for ioctl */
743 	unsigned char i_advise;		/* use to give file attribute hints */
744 	unsigned char i_dir_level;	/* use for dentry level for large dir */
745 	unsigned int i_current_depth;	/* only for directory depth */
746 	/* for gc failure statistic */
747 	unsigned int i_gc_failures[MAX_GC_FAILURE];
748 	unsigned int i_pino;		/* parent inode number */
749 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
750 
751 	/* Use below internally in f2fs*/
752 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
753 	struct rw_semaphore i_sem;	/* protect fi info */
754 	atomic_t dirty_pages;		/* # of dirty pages */
755 	f2fs_hash_t chash;		/* hash value of given file name */
756 	unsigned int clevel;		/* maximum level of given file name */
757 	struct task_struct *task;	/* lookup and create consistency */
758 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
759 	nid_t i_xattr_nid;		/* node id that contains xattrs */
760 	loff_t	last_disk_size;		/* lastly written file size */
761 	spinlock_t i_size_lock;		/* protect last_disk_size */
762 
763 #ifdef CONFIG_QUOTA
764 	struct dquot *i_dquot[MAXQUOTAS];
765 
766 	/* quota space reservation, managed internally by quota code */
767 	qsize_t i_reserved_quota;
768 #endif
769 	struct list_head dirty_list;	/* dirty list for dirs and files */
770 	struct list_head gdirty_list;	/* linked in global dirty list */
771 	struct list_head inmem_ilist;	/* list for inmem inodes */
772 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
773 	struct task_struct *inmem_task;	/* store inmemory task */
774 	struct mutex inmem_lock;	/* lock for inmemory pages */
775 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
776 
777 	/* avoid racing between foreground op and gc */
778 	struct rw_semaphore i_gc_rwsem[2];
779 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
780 
781 	int i_extra_isize;		/* size of extra space located in i_addr */
782 	kprojid_t i_projid;		/* id for project quota */
783 	int i_inline_xattr_size;	/* inline xattr size */
784 	struct timespec64 i_crtime;	/* inode creation time */
785 	struct timespec64 i_disk_time[4];/* inode disk times */
786 
787 	/* for file compress */
788 	atomic_t i_compr_blocks;		/* # of compressed blocks */
789 	unsigned char i_compress_algorithm;	/* algorithm type */
790 	unsigned char i_log_cluster_size;	/* log of cluster size */
791 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
792 	unsigned short i_compress_flag;		/* compress flag */
793 	unsigned int i_cluster_size;		/* cluster size */
794 };
795 
796 static inline void get_extent_info(struct extent_info *ext,
797 					struct f2fs_extent *i_ext)
798 {
799 	ext->fofs = le32_to_cpu(i_ext->fofs);
800 	ext->blk = le32_to_cpu(i_ext->blk);
801 	ext->len = le32_to_cpu(i_ext->len);
802 }
803 
804 static inline void set_raw_extent(struct extent_info *ext,
805 					struct f2fs_extent *i_ext)
806 {
807 	i_ext->fofs = cpu_to_le32(ext->fofs);
808 	i_ext->blk = cpu_to_le32(ext->blk);
809 	i_ext->len = cpu_to_le32(ext->len);
810 }
811 
812 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
813 						u32 blk, unsigned int len)
814 {
815 	ei->fofs = fofs;
816 	ei->blk = blk;
817 	ei->len = len;
818 #ifdef CONFIG_F2FS_FS_COMPRESSION
819 	ei->c_len = 0;
820 #endif
821 }
822 
823 static inline bool __is_discard_mergeable(struct discard_info *back,
824 			struct discard_info *front, unsigned int max_len)
825 {
826 	return (back->lstart + back->len == front->lstart) &&
827 		(back->len + front->len <= max_len);
828 }
829 
830 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
831 			struct discard_info *back, unsigned int max_len)
832 {
833 	return __is_discard_mergeable(back, cur, max_len);
834 }
835 
836 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
837 			struct discard_info *front, unsigned int max_len)
838 {
839 	return __is_discard_mergeable(cur, front, max_len);
840 }
841 
842 static inline bool __is_extent_mergeable(struct extent_info *back,
843 						struct extent_info *front)
844 {
845 #ifdef CONFIG_F2FS_FS_COMPRESSION
846 	if (back->c_len && back->len != back->c_len)
847 		return false;
848 	if (front->c_len && front->len != front->c_len)
849 		return false;
850 #endif
851 	return (back->fofs + back->len == front->fofs &&
852 			back->blk + back->len == front->blk);
853 }
854 
855 static inline bool __is_back_mergeable(struct extent_info *cur,
856 						struct extent_info *back)
857 {
858 	return __is_extent_mergeable(back, cur);
859 }
860 
861 static inline bool __is_front_mergeable(struct extent_info *cur,
862 						struct extent_info *front)
863 {
864 	return __is_extent_mergeable(cur, front);
865 }
866 
867 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
868 static inline void __try_update_largest_extent(struct extent_tree *et,
869 						struct extent_node *en)
870 {
871 	if (en->ei.len > et->largest.len) {
872 		et->largest = en->ei;
873 		et->largest_updated = true;
874 	}
875 }
876 
877 /*
878  * For free nid management
879  */
880 enum nid_state {
881 	FREE_NID,		/* newly added to free nid list */
882 	PREALLOC_NID,		/* it is preallocated */
883 	MAX_NID_STATE,
884 };
885 
886 enum nat_state {
887 	TOTAL_NAT,
888 	DIRTY_NAT,
889 	RECLAIMABLE_NAT,
890 	MAX_NAT_STATE,
891 };
892 
893 struct f2fs_nm_info {
894 	block_t nat_blkaddr;		/* base disk address of NAT */
895 	nid_t max_nid;			/* maximum possible node ids */
896 	nid_t available_nids;		/* # of available node ids */
897 	nid_t next_scan_nid;		/* the next nid to be scanned */
898 	unsigned int ram_thresh;	/* control the memory footprint */
899 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
900 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
901 
902 	/* NAT cache management */
903 	struct radix_tree_root nat_root;/* root of the nat entry cache */
904 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
905 	struct rw_semaphore nat_tree_lock;	/* protect nat entry tree */
906 	struct list_head nat_entries;	/* cached nat entry list (clean) */
907 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
908 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
909 	unsigned int nat_blocks;	/* # of nat blocks */
910 
911 	/* free node ids management */
912 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
913 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
914 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
915 	spinlock_t nid_list_lock;	/* protect nid lists ops */
916 	struct mutex build_lock;	/* lock for build free nids */
917 	unsigned char **free_nid_bitmap;
918 	unsigned char *nat_block_bitmap;
919 	unsigned short *free_nid_count;	/* free nid count of NAT block */
920 
921 	/* for checkpoint */
922 	char *nat_bitmap;		/* NAT bitmap pointer */
923 
924 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
925 	unsigned char *nat_bits;	/* NAT bits blocks */
926 	unsigned char *full_nat_bits;	/* full NAT pages */
927 	unsigned char *empty_nat_bits;	/* empty NAT pages */
928 #ifdef CONFIG_F2FS_CHECK_FS
929 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
930 #endif
931 	int bitmap_size;		/* bitmap size */
932 };
933 
934 /*
935  * this structure is used as one of function parameters.
936  * all the information are dedicated to a given direct node block determined
937  * by the data offset in a file.
938  */
939 struct dnode_of_data {
940 	struct inode *inode;		/* vfs inode pointer */
941 	struct page *inode_page;	/* its inode page, NULL is possible */
942 	struct page *node_page;		/* cached direct node page */
943 	nid_t nid;			/* node id of the direct node block */
944 	unsigned int ofs_in_node;	/* data offset in the node page */
945 	bool inode_page_locked;		/* inode page is locked or not */
946 	bool node_changed;		/* is node block changed */
947 	char cur_level;			/* level of hole node page */
948 	char max_level;			/* level of current page located */
949 	block_t	data_blkaddr;		/* block address of the node block */
950 };
951 
952 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
953 		struct page *ipage, struct page *npage, nid_t nid)
954 {
955 	memset(dn, 0, sizeof(*dn));
956 	dn->inode = inode;
957 	dn->inode_page = ipage;
958 	dn->node_page = npage;
959 	dn->nid = nid;
960 }
961 
962 /*
963  * For SIT manager
964  *
965  * By default, there are 6 active log areas across the whole main area.
966  * When considering hot and cold data separation to reduce cleaning overhead,
967  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
968  * respectively.
969  * In the current design, you should not change the numbers intentionally.
970  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
971  * logs individually according to the underlying devices. (default: 6)
972  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
973  * data and 8 for node logs.
974  */
975 #define	NR_CURSEG_DATA_TYPE	(3)
976 #define NR_CURSEG_NODE_TYPE	(3)
977 #define NR_CURSEG_INMEM_TYPE	(2)
978 #define NR_CURSEG_RO_TYPE	(2)
979 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
980 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
981 
982 enum {
983 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
984 	CURSEG_WARM_DATA,	/* data blocks */
985 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
986 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
987 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
988 	CURSEG_COLD_NODE,	/* indirect node blocks */
989 	NR_PERSISTENT_LOG,	/* number of persistent log */
990 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
991 				/* pinned file that needs consecutive block address */
992 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
993 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
994 };
995 
996 struct flush_cmd {
997 	struct completion wait;
998 	struct llist_node llnode;
999 	nid_t ino;
1000 	int ret;
1001 };
1002 
1003 struct flush_cmd_control {
1004 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1005 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1006 	atomic_t issued_flush;			/* # of issued flushes */
1007 	atomic_t queued_flush;			/* # of queued flushes */
1008 	struct llist_head issue_list;		/* list for command issue */
1009 	struct llist_node *dispatch_list;	/* list for command dispatch */
1010 };
1011 
1012 struct f2fs_sm_info {
1013 	struct sit_info *sit_info;		/* whole segment information */
1014 	struct free_segmap_info *free_info;	/* free segment information */
1015 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1016 	struct curseg_info *curseg_array;	/* active segment information */
1017 
1018 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
1019 
1020 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1021 	block_t main_blkaddr;		/* start block address of main area */
1022 	block_t ssa_blkaddr;		/* start block address of SSA area */
1023 
1024 	unsigned int segment_count;	/* total # of segments */
1025 	unsigned int main_segments;	/* # of segments in main area */
1026 	unsigned int reserved_segments;	/* # of reserved segments */
1027 	unsigned int ovp_segments;	/* # of overprovision segments */
1028 
1029 	/* a threshold to reclaim prefree segments */
1030 	unsigned int rec_prefree_segments;
1031 
1032 	/* for batched trimming */
1033 	unsigned int trim_sections;		/* # of sections to trim */
1034 
1035 	struct list_head sit_entry_set;	/* sit entry set list */
1036 
1037 	unsigned int ipu_policy;	/* in-place-update policy */
1038 	unsigned int min_ipu_util;	/* in-place-update threshold */
1039 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1040 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1041 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1042 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1043 
1044 	/* for flush command control */
1045 	struct flush_cmd_control *fcc_info;
1046 
1047 	/* for discard command control */
1048 	struct discard_cmd_control *dcc_info;
1049 };
1050 
1051 /*
1052  * For superblock
1053  */
1054 /*
1055  * COUNT_TYPE for monitoring
1056  *
1057  * f2fs monitors the number of several block types such as on-writeback,
1058  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1059  */
1060 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1061 enum count_type {
1062 	F2FS_DIRTY_DENTS,
1063 	F2FS_DIRTY_DATA,
1064 	F2FS_DIRTY_QDATA,
1065 	F2FS_DIRTY_NODES,
1066 	F2FS_DIRTY_META,
1067 	F2FS_INMEM_PAGES,
1068 	F2FS_DIRTY_IMETA,
1069 	F2FS_WB_CP_DATA,
1070 	F2FS_WB_DATA,
1071 	F2FS_RD_DATA,
1072 	F2FS_RD_NODE,
1073 	F2FS_RD_META,
1074 	F2FS_DIO_WRITE,
1075 	F2FS_DIO_READ,
1076 	NR_COUNT_TYPE,
1077 };
1078 
1079 /*
1080  * The below are the page types of bios used in submit_bio().
1081  * The available types are:
1082  * DATA			User data pages. It operates as async mode.
1083  * NODE			Node pages. It operates as async mode.
1084  * META			FS metadata pages such as SIT, NAT, CP.
1085  * NR_PAGE_TYPE		The number of page types.
1086  * META_FLUSH		Make sure the previous pages are written
1087  *			with waiting the bio's completion
1088  * ...			Only can be used with META.
1089  */
1090 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1091 enum page_type {
1092 	DATA,
1093 	NODE,
1094 	META,
1095 	NR_PAGE_TYPE,
1096 	META_FLUSH,
1097 	INMEM,		/* the below types are used by tracepoints only. */
1098 	INMEM_DROP,
1099 	INMEM_INVALIDATE,
1100 	INMEM_REVOKE,
1101 	IPU,
1102 	OPU,
1103 };
1104 
1105 enum temp_type {
1106 	HOT = 0,	/* must be zero for meta bio */
1107 	WARM,
1108 	COLD,
1109 	NR_TEMP_TYPE,
1110 };
1111 
1112 enum need_lock_type {
1113 	LOCK_REQ = 0,
1114 	LOCK_DONE,
1115 	LOCK_RETRY,
1116 };
1117 
1118 enum cp_reason_type {
1119 	CP_NO_NEEDED,
1120 	CP_NON_REGULAR,
1121 	CP_COMPRESSED,
1122 	CP_HARDLINK,
1123 	CP_SB_NEED_CP,
1124 	CP_WRONG_PINO,
1125 	CP_NO_SPC_ROLL,
1126 	CP_NODE_NEED_CP,
1127 	CP_FASTBOOT_MODE,
1128 	CP_SPEC_LOG_NUM,
1129 	CP_RECOVER_DIR,
1130 };
1131 
1132 enum iostat_type {
1133 	/* WRITE IO */
1134 	APP_DIRECT_IO,			/* app direct write IOs */
1135 	APP_BUFFERED_IO,		/* app buffered write IOs */
1136 	APP_WRITE_IO,			/* app write IOs */
1137 	APP_MAPPED_IO,			/* app mapped IOs */
1138 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1139 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1140 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1141 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1142 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1143 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1144 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1145 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1146 
1147 	/* READ IO */
1148 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1149 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1150 	APP_READ_IO,			/* app read IOs */
1151 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1152 	FS_DATA_READ_IO,		/* data read IOs */
1153 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1154 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1155 	FS_NODE_READ_IO,		/* node read IOs */
1156 	FS_META_READ_IO,		/* meta read IOs */
1157 
1158 	/* other */
1159 	FS_DISCARD,			/* discard */
1160 	NR_IO_TYPE,
1161 };
1162 
1163 struct f2fs_io_info {
1164 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1165 	nid_t ino;		/* inode number */
1166 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1167 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1168 	int op;			/* contains REQ_OP_ */
1169 	int op_flags;		/* req_flag_bits */
1170 	block_t new_blkaddr;	/* new block address to be written */
1171 	block_t old_blkaddr;	/* old block address before Cow */
1172 	struct page *page;	/* page to be written */
1173 	struct page *encrypted_page;	/* encrypted page */
1174 	struct page *compressed_page;	/* compressed page */
1175 	struct list_head list;		/* serialize IOs */
1176 	bool submitted;		/* indicate IO submission */
1177 	int need_lock;		/* indicate we need to lock cp_rwsem */
1178 	bool in_list;		/* indicate fio is in io_list */
1179 	bool is_por;		/* indicate IO is from recovery or not */
1180 	bool retry;		/* need to reallocate block address */
1181 	int compr_blocks;	/* # of compressed block addresses */
1182 	bool encrypted;		/* indicate file is encrypted */
1183 	enum iostat_type io_type;	/* io type */
1184 	struct writeback_control *io_wbc; /* writeback control */
1185 	struct bio **bio;		/* bio for ipu */
1186 	sector_t *last_block;		/* last block number in bio */
1187 	unsigned char version;		/* version of the node */
1188 };
1189 
1190 struct bio_entry {
1191 	struct bio *bio;
1192 	struct list_head list;
1193 };
1194 
1195 #define is_read_io(rw) ((rw) == READ)
1196 struct f2fs_bio_info {
1197 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1198 	struct bio *bio;		/* bios to merge */
1199 	sector_t last_block_in_bio;	/* last block number */
1200 	struct f2fs_io_info fio;	/* store buffered io info. */
1201 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1202 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1203 	struct list_head io_list;	/* track fios */
1204 	struct list_head bio_list;	/* bio entry list head */
1205 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1206 };
1207 
1208 #define FDEV(i)				(sbi->devs[i])
1209 #define RDEV(i)				(raw_super->devs[i])
1210 struct f2fs_dev_info {
1211 	struct block_device *bdev;
1212 	char path[MAX_PATH_LEN];
1213 	unsigned int total_segments;
1214 	block_t start_blk;
1215 	block_t end_blk;
1216 #ifdef CONFIG_BLK_DEV_ZONED
1217 	unsigned int nr_blkz;		/* Total number of zones */
1218 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1219 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1220 #endif
1221 };
1222 
1223 enum inode_type {
1224 	DIR_INODE,			/* for dirty dir inode */
1225 	FILE_INODE,			/* for dirty regular/symlink inode */
1226 	DIRTY_META,			/* for all dirtied inode metadata */
1227 	ATOMIC_FILE,			/* for all atomic files */
1228 	NR_INODE_TYPE,
1229 };
1230 
1231 /* for inner inode cache management */
1232 struct inode_management {
1233 	struct radix_tree_root ino_root;	/* ino entry array */
1234 	spinlock_t ino_lock;			/* for ino entry lock */
1235 	struct list_head ino_list;		/* inode list head */
1236 	unsigned long ino_num;			/* number of entries */
1237 };
1238 
1239 /* for GC_AT */
1240 struct atgc_management {
1241 	bool atgc_enabled;			/* ATGC is enabled or not */
1242 	struct rb_root_cached root;		/* root of victim rb-tree */
1243 	struct list_head victim_list;		/* linked with all victim entries */
1244 	unsigned int victim_count;		/* victim count in rb-tree */
1245 	unsigned int candidate_ratio;		/* candidate ratio */
1246 	unsigned int max_candidate_count;	/* max candidate count */
1247 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1248 	unsigned long long age_threshold;	/* age threshold */
1249 };
1250 
1251 /* For s_flag in struct f2fs_sb_info */
1252 enum {
1253 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1254 	SBI_IS_CLOSE,				/* specify unmounting */
1255 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1256 	SBI_POR_DOING,				/* recovery is doing or not */
1257 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1258 	SBI_NEED_CP,				/* need to checkpoint */
1259 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1260 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1261 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1262 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1263 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1264 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1265 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1266 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1267 };
1268 
1269 enum {
1270 	CP_TIME,
1271 	REQ_TIME,
1272 	DISCARD_TIME,
1273 	GC_TIME,
1274 	DISABLE_TIME,
1275 	UMOUNT_DISCARD_TIMEOUT,
1276 	MAX_TIME,
1277 };
1278 
1279 enum {
1280 	GC_NORMAL,
1281 	GC_IDLE_CB,
1282 	GC_IDLE_GREEDY,
1283 	GC_IDLE_AT,
1284 	GC_URGENT_HIGH,
1285 	GC_URGENT_LOW,
1286 	MAX_GC_MODE,
1287 };
1288 
1289 enum {
1290 	BGGC_MODE_ON,		/* background gc is on */
1291 	BGGC_MODE_OFF,		/* background gc is off */
1292 	BGGC_MODE_SYNC,		/*
1293 				 * background gc is on, migrating blocks
1294 				 * like foreground gc
1295 				 */
1296 };
1297 
1298 enum {
1299 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1300 	FS_MODE_LFS,			/* use lfs allocation only */
1301 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1302 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1303 };
1304 
1305 enum {
1306 	WHINT_MODE_OFF,		/* not pass down write hints */
1307 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1308 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1309 };
1310 
1311 enum {
1312 	ALLOC_MODE_DEFAULT,	/* stay default */
1313 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1314 };
1315 
1316 enum fsync_mode {
1317 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1318 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1319 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1320 };
1321 
1322 enum {
1323 	COMPR_MODE_FS,		/*
1324 				 * automatically compress compression
1325 				 * enabled files
1326 				 */
1327 	COMPR_MODE_USER,	/*
1328 				 * automatical compression is disabled.
1329 				 * user can control the file compression
1330 				 * using ioctls
1331 				 */
1332 };
1333 
1334 enum {
1335 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1336 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1337 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1338 };
1339 
1340 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1341 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1342 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1343 
1344 /*
1345  * Layout of f2fs page.private:
1346  *
1347  * Layout A: lowest bit should be 1
1348  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1349  * bit 0	PAGE_PRIVATE_NOT_POINTER
1350  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1351  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1352  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1353  * bit 4	PAGE_PRIVATE_INLINE_INODE
1354  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1355  * bit 6-	f2fs private data
1356  *
1357  * Layout B: lowest bit should be 0
1358  * page.private is a wrapped pointer.
1359  */
1360 enum {
1361 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1362 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1363 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1364 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1365 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1366 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1367 	PAGE_PRIVATE_MAX
1368 };
1369 
1370 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1371 static inline bool page_private_##name(struct page *page) \
1372 { \
1373 	return PagePrivate(page) && \
1374 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1375 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1376 }
1377 
1378 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1379 static inline void set_page_private_##name(struct page *page) \
1380 { \
1381 	if (!PagePrivate(page)) { \
1382 		get_page(page); \
1383 		SetPagePrivate(page); \
1384 		set_page_private(page, 0); \
1385 	} \
1386 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1387 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1388 }
1389 
1390 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1391 static inline void clear_page_private_##name(struct page *page) \
1392 { \
1393 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1394 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1395 		set_page_private(page, 0); \
1396 		if (PagePrivate(page)) { \
1397 			ClearPagePrivate(page); \
1398 			put_page(page); \
1399 		}\
1400 	} \
1401 }
1402 
1403 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1404 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1405 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1406 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1407 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1408 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1409 
1410 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1411 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1412 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1413 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1414 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1415 
1416 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1417 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1418 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1419 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1420 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1421 
1422 static inline unsigned long get_page_private_data(struct page *page)
1423 {
1424 	unsigned long data = page_private(page);
1425 
1426 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1427 		return 0;
1428 	return data >> PAGE_PRIVATE_MAX;
1429 }
1430 
1431 static inline void set_page_private_data(struct page *page, unsigned long data)
1432 {
1433 	if (!PagePrivate(page)) {
1434 		get_page(page);
1435 		SetPagePrivate(page);
1436 		set_page_private(page, 0);
1437 	}
1438 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1439 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1440 }
1441 
1442 static inline void clear_page_private_data(struct page *page)
1443 {
1444 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1445 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1446 		set_page_private(page, 0);
1447 		if (PagePrivate(page)) {
1448 			ClearPagePrivate(page);
1449 			put_page(page);
1450 		}
1451 	}
1452 }
1453 
1454 /* For compression */
1455 enum compress_algorithm_type {
1456 	COMPRESS_LZO,
1457 	COMPRESS_LZ4,
1458 	COMPRESS_ZSTD,
1459 	COMPRESS_LZORLE,
1460 	COMPRESS_MAX,
1461 };
1462 
1463 enum compress_flag {
1464 	COMPRESS_CHKSUM,
1465 	COMPRESS_MAX_FLAG,
1466 };
1467 
1468 #define	COMPRESS_WATERMARK			20
1469 #define	COMPRESS_PERCENT			20
1470 
1471 #define COMPRESS_DATA_RESERVED_SIZE		4
1472 struct compress_data {
1473 	__le32 clen;			/* compressed data size */
1474 	__le32 chksum;			/* compressed data chksum */
1475 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1476 	u8 cdata[];			/* compressed data */
1477 };
1478 
1479 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1480 
1481 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1482 
1483 #define	COMPRESS_LEVEL_OFFSET	8
1484 
1485 /* compress context */
1486 struct compress_ctx {
1487 	struct inode *inode;		/* inode the context belong to */
1488 	pgoff_t cluster_idx;		/* cluster index number */
1489 	unsigned int cluster_size;	/* page count in cluster */
1490 	unsigned int log_cluster_size;	/* log of cluster size */
1491 	struct page **rpages;		/* pages store raw data in cluster */
1492 	unsigned int nr_rpages;		/* total page number in rpages */
1493 	struct page **cpages;		/* pages store compressed data in cluster */
1494 	unsigned int nr_cpages;		/* total page number in cpages */
1495 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1496 	void *rbuf;			/* virtual mapped address on rpages */
1497 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1498 	size_t rlen;			/* valid data length in rbuf */
1499 	size_t clen;			/* valid data length in cbuf */
1500 	void *private;			/* payload buffer for specified compression algorithm */
1501 	void *private2;			/* extra payload buffer */
1502 };
1503 
1504 /* compress context for write IO path */
1505 struct compress_io_ctx {
1506 	u32 magic;			/* magic number to indicate page is compressed */
1507 	struct inode *inode;		/* inode the context belong to */
1508 	struct page **rpages;		/* pages store raw data in cluster */
1509 	unsigned int nr_rpages;		/* total page number in rpages */
1510 	atomic_t pending_pages;		/* in-flight compressed page count */
1511 };
1512 
1513 /* Context for decompressing one cluster on the read IO path */
1514 struct decompress_io_ctx {
1515 	u32 magic;			/* magic number to indicate page is compressed */
1516 	struct inode *inode;		/* inode the context belong to */
1517 	pgoff_t cluster_idx;		/* cluster index number */
1518 	unsigned int cluster_size;	/* page count in cluster */
1519 	unsigned int log_cluster_size;	/* log of cluster size */
1520 	struct page **rpages;		/* pages store raw data in cluster */
1521 	unsigned int nr_rpages;		/* total page number in rpages */
1522 	struct page **cpages;		/* pages store compressed data in cluster */
1523 	unsigned int nr_cpages;		/* total page number in cpages */
1524 	struct page **tpages;		/* temp pages to pad holes in cluster */
1525 	void *rbuf;			/* virtual mapped address on rpages */
1526 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1527 	size_t rlen;			/* valid data length in rbuf */
1528 	size_t clen;			/* valid data length in cbuf */
1529 
1530 	/*
1531 	 * The number of compressed pages remaining to be read in this cluster.
1532 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1533 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1534 	 * is decompressed (or an error is reported).
1535 	 *
1536 	 * If an error occurs before all the pages have been submitted for I/O,
1537 	 * then this will never reach 0.  In this case the I/O submitter is
1538 	 * responsible for calling f2fs_decompress_end_io() instead.
1539 	 */
1540 	atomic_t remaining_pages;
1541 
1542 	/*
1543 	 * Number of references to this decompress_io_ctx.
1544 	 *
1545 	 * One reference is held for I/O completion.  This reference is dropped
1546 	 * after the pagecache pages are updated and unlocked -- either after
1547 	 * decompression (and verity if enabled), or after an error.
1548 	 *
1549 	 * In addition, each compressed page holds a reference while it is in a
1550 	 * bio.  These references are necessary prevent compressed pages from
1551 	 * being freed while they are still in a bio.
1552 	 */
1553 	refcount_t refcnt;
1554 
1555 	bool failed;			/* IO error occurred before decompression? */
1556 	bool need_verity;		/* need fs-verity verification after decompression? */
1557 	void *private;			/* payload buffer for specified decompression algorithm */
1558 	void *private2;			/* extra payload buffer */
1559 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1560 };
1561 
1562 #define NULL_CLUSTER			((unsigned int)(~0))
1563 #define MIN_COMPRESS_LOG_SIZE		2
1564 #define MAX_COMPRESS_LOG_SIZE		8
1565 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1566 
1567 struct f2fs_sb_info {
1568 	struct super_block *sb;			/* pointer to VFS super block */
1569 	struct proc_dir_entry *s_proc;		/* proc entry */
1570 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1571 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1572 	int valid_super_block;			/* valid super block no */
1573 	unsigned long s_flag;				/* flags for sbi */
1574 	struct mutex writepages;		/* mutex for writepages() */
1575 
1576 #ifdef CONFIG_BLK_DEV_ZONED
1577 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1578 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1579 #endif
1580 
1581 	/* for node-related operations */
1582 	struct f2fs_nm_info *nm_info;		/* node manager */
1583 	struct inode *node_inode;		/* cache node blocks */
1584 
1585 	/* for segment-related operations */
1586 	struct f2fs_sm_info *sm_info;		/* segment manager */
1587 
1588 	/* for bio operations */
1589 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1590 	/* keep migration IO order for LFS mode */
1591 	struct rw_semaphore io_order_lock;
1592 	mempool_t *write_io_dummy;		/* Dummy pages */
1593 
1594 	/* for checkpoint */
1595 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1596 	int cur_cp_pack;			/* remain current cp pack */
1597 	spinlock_t cp_lock;			/* for flag in ckpt */
1598 	struct inode *meta_inode;		/* cache meta blocks */
1599 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1600 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1601 	struct rw_semaphore node_write;		/* locking node writes */
1602 	struct rw_semaphore node_change;	/* locking node change */
1603 	wait_queue_head_t cp_wait;
1604 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1605 	long interval_time[MAX_TIME];		/* to store thresholds */
1606 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1607 
1608 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1609 
1610 	spinlock_t fsync_node_lock;		/* for node entry lock */
1611 	struct list_head fsync_node_list;	/* node list head */
1612 	unsigned int fsync_seg_id;		/* sequence id */
1613 	unsigned int fsync_node_num;		/* number of node entries */
1614 
1615 	/* for orphan inode, use 0'th array */
1616 	unsigned int max_orphans;		/* max orphan inodes */
1617 
1618 	/* for inode management */
1619 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1620 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1621 	struct mutex flush_lock;		/* for flush exclusion */
1622 
1623 	/* for extent tree cache */
1624 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1625 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1626 	struct list_head extent_list;		/* lru list for shrinker */
1627 	spinlock_t extent_lock;			/* locking extent lru list */
1628 	atomic_t total_ext_tree;		/* extent tree count */
1629 	struct list_head zombie_list;		/* extent zombie tree list */
1630 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1631 	atomic_t total_ext_node;		/* extent info count */
1632 
1633 	/* basic filesystem units */
1634 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1635 	unsigned int log_blocksize;		/* log2 block size */
1636 	unsigned int blocksize;			/* block size */
1637 	unsigned int root_ino_num;		/* root inode number*/
1638 	unsigned int node_ino_num;		/* node inode number*/
1639 	unsigned int meta_ino_num;		/* meta inode number*/
1640 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1641 	unsigned int blocks_per_seg;		/* blocks per segment */
1642 	unsigned int segs_per_sec;		/* segments per section */
1643 	unsigned int secs_per_zone;		/* sections per zone */
1644 	unsigned int total_sections;		/* total section count */
1645 	unsigned int total_node_count;		/* total node block count */
1646 	unsigned int total_valid_node_count;	/* valid node block count */
1647 	int dir_level;				/* directory level */
1648 	int readdir_ra;				/* readahead inode in readdir */
1649 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1650 
1651 	block_t user_block_count;		/* # of user blocks */
1652 	block_t total_valid_block_count;	/* # of valid blocks */
1653 	block_t discard_blks;			/* discard command candidats */
1654 	block_t last_valid_block_count;		/* for recovery */
1655 	block_t reserved_blocks;		/* configurable reserved blocks */
1656 	block_t current_reserved_blocks;	/* current reserved blocks */
1657 
1658 	/* Additional tracking for no checkpoint mode */
1659 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1660 
1661 	unsigned int nquota_files;		/* # of quota sysfile */
1662 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1663 
1664 	/* # of pages, see count_type */
1665 	atomic_t nr_pages[NR_COUNT_TYPE];
1666 	/* # of allocated blocks */
1667 	struct percpu_counter alloc_valid_block_count;
1668 
1669 	/* writeback control */
1670 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1671 
1672 	/* valid inode count */
1673 	struct percpu_counter total_valid_inode_count;
1674 
1675 	struct f2fs_mount_info mount_opt;	/* mount options */
1676 
1677 	/* for cleaning operations */
1678 	struct rw_semaphore gc_lock;		/*
1679 						 * semaphore for GC, avoid
1680 						 * race between GC and GC or CP
1681 						 */
1682 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1683 	struct atgc_management am;		/* atgc management */
1684 	unsigned int cur_victim_sec;		/* current victim section num */
1685 	unsigned int gc_mode;			/* current GC state */
1686 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1687 	spinlock_t gc_urgent_high_lock;
1688 	bool gc_urgent_high_limited;		/* indicates having limited trial count */
1689 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1690 
1691 	/* for skip statistic */
1692 	unsigned int atomic_files;		/* # of opened atomic file */
1693 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1694 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1695 
1696 	/* threshold for gc trials on pinned files */
1697 	u64 gc_pin_file_threshold;
1698 	struct rw_semaphore pin_sem;
1699 
1700 	/* maximum # of trials to find a victim segment for SSR and GC */
1701 	unsigned int max_victim_search;
1702 	/* migration granularity of garbage collection, unit: segment */
1703 	unsigned int migration_granularity;
1704 
1705 	/*
1706 	 * for stat information.
1707 	 * one is for the LFS mode, and the other is for the SSR mode.
1708 	 */
1709 #ifdef CONFIG_F2FS_STAT_FS
1710 	struct f2fs_stat_info *stat_info;	/* FS status information */
1711 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1712 	unsigned int segment_count[2];		/* # of allocated segments */
1713 	unsigned int block_count[2];		/* # of allocated blocks */
1714 	atomic_t inplace_count;		/* # of inplace update */
1715 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1716 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1717 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1718 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1719 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1720 	atomic_t inline_inode;			/* # of inline_data inodes */
1721 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1722 	atomic_t compr_inode;			/* # of compressed inodes */
1723 	atomic64_t compr_blocks;		/* # of compressed blocks */
1724 	atomic_t vw_cnt;			/* # of volatile writes */
1725 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1726 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1727 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1728 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1729 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1730 #endif
1731 	spinlock_t stat_lock;			/* lock for stat operations */
1732 
1733 	/* to attach REQ_META|REQ_FUA flags */
1734 	unsigned int data_io_flag;
1735 	unsigned int node_io_flag;
1736 
1737 	/* For sysfs suppport */
1738 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1739 	struct completion s_kobj_unregister;
1740 
1741 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1742 	struct completion s_stat_kobj_unregister;
1743 
1744 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1745 	struct completion s_feature_list_kobj_unregister;
1746 
1747 	/* For shrinker support */
1748 	struct list_head s_list;
1749 	struct mutex umount_mutex;
1750 	unsigned int shrinker_run_no;
1751 
1752 	/* For multi devices */
1753 	int s_ndevs;				/* number of devices */
1754 	struct f2fs_dev_info *devs;		/* for device list */
1755 	unsigned int dirty_device;		/* for checkpoint data flush */
1756 	spinlock_t dev_lock;			/* protect dirty_device */
1757 	bool aligned_blksize;			/* all devices has the same logical blksize */
1758 
1759 	/* For write statistics */
1760 	u64 sectors_written_start;
1761 	u64 kbytes_written;
1762 
1763 	/* Reference to checksum algorithm driver via cryptoapi */
1764 	struct crypto_shash *s_chksum_driver;
1765 
1766 	/* Precomputed FS UUID checksum for seeding other checksums */
1767 	__u32 s_chksum_seed;
1768 
1769 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1770 
1771 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1772 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1773 
1774 	/* For reclaimed segs statistics per each GC mode */
1775 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1776 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1777 
1778 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1779 
1780 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1781 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1782 
1783 #ifdef CONFIG_F2FS_FS_COMPRESSION
1784 	struct kmem_cache *page_array_slab;	/* page array entry */
1785 	unsigned int page_array_slab_size;	/* default page array slab size */
1786 
1787 	/* For runtime compression statistics */
1788 	u64 compr_written_block;
1789 	u64 compr_saved_block;
1790 	u32 compr_new_inode;
1791 
1792 	/* For compressed block cache */
1793 	struct inode *compress_inode;		/* cache compressed blocks */
1794 	unsigned int compress_percent;		/* cache page percentage */
1795 	unsigned int compress_watermark;	/* cache page watermark */
1796 	atomic_t compress_page_hit;		/* cache hit count */
1797 #endif
1798 
1799 #ifdef CONFIG_F2FS_IOSTAT
1800 	/* For app/fs IO statistics */
1801 	spinlock_t iostat_lock;
1802 	unsigned long long rw_iostat[NR_IO_TYPE];
1803 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1804 	bool iostat_enable;
1805 	unsigned long iostat_next_period;
1806 	unsigned int iostat_period_ms;
1807 
1808 	/* For io latency related statistics info in one iostat period */
1809 	spinlock_t iostat_lat_lock;
1810 	struct iostat_lat_info *iostat_io_lat;
1811 #endif
1812 };
1813 
1814 #ifdef CONFIG_F2FS_FAULT_INJECTION
1815 #define f2fs_show_injection_info(sbi, type)					\
1816 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1817 		KERN_INFO, sbi->sb->s_id,				\
1818 		f2fs_fault_name[type],					\
1819 		__func__, __builtin_return_address(0))
1820 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1821 {
1822 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1823 
1824 	if (!ffi->inject_rate)
1825 		return false;
1826 
1827 	if (!IS_FAULT_SET(ffi, type))
1828 		return false;
1829 
1830 	atomic_inc(&ffi->inject_ops);
1831 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1832 		atomic_set(&ffi->inject_ops, 0);
1833 		return true;
1834 	}
1835 	return false;
1836 }
1837 #else
1838 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1839 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1840 {
1841 	return false;
1842 }
1843 #endif
1844 
1845 /*
1846  * Test if the mounted volume is a multi-device volume.
1847  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1848  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1849  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1850  */
1851 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1852 {
1853 	return sbi->s_ndevs > 1;
1854 }
1855 
1856 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1857 {
1858 	unsigned long now = jiffies;
1859 
1860 	sbi->last_time[type] = now;
1861 
1862 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1863 	if (type == REQ_TIME) {
1864 		sbi->last_time[DISCARD_TIME] = now;
1865 		sbi->last_time[GC_TIME] = now;
1866 	}
1867 }
1868 
1869 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1870 {
1871 	unsigned long interval = sbi->interval_time[type] * HZ;
1872 
1873 	return time_after(jiffies, sbi->last_time[type] + interval);
1874 }
1875 
1876 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1877 						int type)
1878 {
1879 	unsigned long interval = sbi->interval_time[type] * HZ;
1880 	unsigned int wait_ms = 0;
1881 	long delta;
1882 
1883 	delta = (sbi->last_time[type] + interval) - jiffies;
1884 	if (delta > 0)
1885 		wait_ms = jiffies_to_msecs(delta);
1886 
1887 	return wait_ms;
1888 }
1889 
1890 /*
1891  * Inline functions
1892  */
1893 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1894 			      const void *address, unsigned int length)
1895 {
1896 	struct {
1897 		struct shash_desc shash;
1898 		char ctx[4];
1899 	} desc;
1900 	int err;
1901 
1902 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1903 
1904 	desc.shash.tfm = sbi->s_chksum_driver;
1905 	*(u32 *)desc.ctx = crc;
1906 
1907 	err = crypto_shash_update(&desc.shash, address, length);
1908 	BUG_ON(err);
1909 
1910 	return *(u32 *)desc.ctx;
1911 }
1912 
1913 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1914 			   unsigned int length)
1915 {
1916 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1917 }
1918 
1919 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1920 				  void *buf, size_t buf_size)
1921 {
1922 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1923 }
1924 
1925 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1926 			      const void *address, unsigned int length)
1927 {
1928 	return __f2fs_crc32(sbi, crc, address, length);
1929 }
1930 
1931 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1932 {
1933 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1934 }
1935 
1936 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1937 {
1938 	return sb->s_fs_info;
1939 }
1940 
1941 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1942 {
1943 	return F2FS_SB(inode->i_sb);
1944 }
1945 
1946 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1947 {
1948 	return F2FS_I_SB(mapping->host);
1949 }
1950 
1951 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1952 {
1953 	return F2FS_M_SB(page_file_mapping(page));
1954 }
1955 
1956 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1957 {
1958 	return (struct f2fs_super_block *)(sbi->raw_super);
1959 }
1960 
1961 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1962 {
1963 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1964 }
1965 
1966 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1967 {
1968 	return (struct f2fs_node *)page_address(page);
1969 }
1970 
1971 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1972 {
1973 	return &((struct f2fs_node *)page_address(page))->i;
1974 }
1975 
1976 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1977 {
1978 	return (struct f2fs_nm_info *)(sbi->nm_info);
1979 }
1980 
1981 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1982 {
1983 	return (struct f2fs_sm_info *)(sbi->sm_info);
1984 }
1985 
1986 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1987 {
1988 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1989 }
1990 
1991 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1992 {
1993 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1994 }
1995 
1996 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1997 {
1998 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1999 }
2000 
2001 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2002 {
2003 	return sbi->meta_inode->i_mapping;
2004 }
2005 
2006 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2007 {
2008 	return sbi->node_inode->i_mapping;
2009 }
2010 
2011 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2012 {
2013 	return test_bit(type, &sbi->s_flag);
2014 }
2015 
2016 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2017 {
2018 	set_bit(type, &sbi->s_flag);
2019 }
2020 
2021 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2022 {
2023 	clear_bit(type, &sbi->s_flag);
2024 }
2025 
2026 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2027 {
2028 	return le64_to_cpu(cp->checkpoint_ver);
2029 }
2030 
2031 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2032 {
2033 	if (type < F2FS_MAX_QUOTAS)
2034 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2035 	return 0;
2036 }
2037 
2038 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2039 {
2040 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2041 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2042 }
2043 
2044 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2045 {
2046 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2047 
2048 	return ckpt_flags & f;
2049 }
2050 
2051 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2052 {
2053 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2054 }
2055 
2056 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2057 {
2058 	unsigned int ckpt_flags;
2059 
2060 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2061 	ckpt_flags |= f;
2062 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2063 }
2064 
2065 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2066 {
2067 	unsigned long flags;
2068 
2069 	spin_lock_irqsave(&sbi->cp_lock, flags);
2070 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2071 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2072 }
2073 
2074 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2075 {
2076 	unsigned int ckpt_flags;
2077 
2078 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2079 	ckpt_flags &= (~f);
2080 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2081 }
2082 
2083 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2084 {
2085 	unsigned long flags;
2086 
2087 	spin_lock_irqsave(&sbi->cp_lock, flags);
2088 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2089 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2090 }
2091 
2092 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2093 {
2094 	down_read(&sbi->cp_rwsem);
2095 }
2096 
2097 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2098 {
2099 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2100 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2101 		return 0;
2102 	}
2103 	return down_read_trylock(&sbi->cp_rwsem);
2104 }
2105 
2106 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2107 {
2108 	up_read(&sbi->cp_rwsem);
2109 }
2110 
2111 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2112 {
2113 	down_write(&sbi->cp_rwsem);
2114 }
2115 
2116 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2117 {
2118 	up_write(&sbi->cp_rwsem);
2119 }
2120 
2121 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2122 {
2123 	int reason = CP_SYNC;
2124 
2125 	if (test_opt(sbi, FASTBOOT))
2126 		reason = CP_FASTBOOT;
2127 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2128 		reason = CP_UMOUNT;
2129 	return reason;
2130 }
2131 
2132 static inline bool __remain_node_summaries(int reason)
2133 {
2134 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2135 }
2136 
2137 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2138 {
2139 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2140 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2141 }
2142 
2143 /*
2144  * Check whether the inode has blocks or not
2145  */
2146 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2147 {
2148 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2149 
2150 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2151 }
2152 
2153 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2154 {
2155 	return ofs == XATTR_NODE_OFFSET;
2156 }
2157 
2158 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2159 					struct inode *inode, bool cap)
2160 {
2161 	if (!inode)
2162 		return true;
2163 	if (!test_opt(sbi, RESERVE_ROOT))
2164 		return false;
2165 	if (IS_NOQUOTA(inode))
2166 		return true;
2167 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2168 		return true;
2169 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2170 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2171 		return true;
2172 	if (cap && capable(CAP_SYS_RESOURCE))
2173 		return true;
2174 	return false;
2175 }
2176 
2177 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2178 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2179 				 struct inode *inode, blkcnt_t *count)
2180 {
2181 	blkcnt_t diff = 0, release = 0;
2182 	block_t avail_user_block_count;
2183 	int ret;
2184 
2185 	ret = dquot_reserve_block(inode, *count);
2186 	if (ret)
2187 		return ret;
2188 
2189 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2190 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2191 		release = *count;
2192 		goto release_quota;
2193 	}
2194 
2195 	/*
2196 	 * let's increase this in prior to actual block count change in order
2197 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2198 	 */
2199 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2200 
2201 	spin_lock(&sbi->stat_lock);
2202 	sbi->total_valid_block_count += (block_t)(*count);
2203 	avail_user_block_count = sbi->user_block_count -
2204 					sbi->current_reserved_blocks;
2205 
2206 	if (!__allow_reserved_blocks(sbi, inode, true))
2207 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2208 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2209 		if (avail_user_block_count > sbi->unusable_block_count)
2210 			avail_user_block_count -= sbi->unusable_block_count;
2211 		else
2212 			avail_user_block_count = 0;
2213 	}
2214 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2215 		diff = sbi->total_valid_block_count - avail_user_block_count;
2216 		if (diff > *count)
2217 			diff = *count;
2218 		*count -= diff;
2219 		release = diff;
2220 		sbi->total_valid_block_count -= diff;
2221 		if (!*count) {
2222 			spin_unlock(&sbi->stat_lock);
2223 			goto enospc;
2224 		}
2225 	}
2226 	spin_unlock(&sbi->stat_lock);
2227 
2228 	if (unlikely(release)) {
2229 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2230 		dquot_release_reservation_block(inode, release);
2231 	}
2232 	f2fs_i_blocks_write(inode, *count, true, true);
2233 	return 0;
2234 
2235 enospc:
2236 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2237 release_quota:
2238 	dquot_release_reservation_block(inode, release);
2239 	return -ENOSPC;
2240 }
2241 
2242 __printf(2, 3)
2243 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2244 
2245 #define f2fs_err(sbi, fmt, ...)						\
2246 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2247 #define f2fs_warn(sbi, fmt, ...)					\
2248 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2249 #define f2fs_notice(sbi, fmt, ...)					\
2250 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2251 #define f2fs_info(sbi, fmt, ...)					\
2252 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2253 #define f2fs_debug(sbi, fmt, ...)					\
2254 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2255 
2256 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2257 						struct inode *inode,
2258 						block_t count)
2259 {
2260 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2261 
2262 	spin_lock(&sbi->stat_lock);
2263 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2264 	sbi->total_valid_block_count -= (block_t)count;
2265 	if (sbi->reserved_blocks &&
2266 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2267 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2268 					sbi->current_reserved_blocks + count);
2269 	spin_unlock(&sbi->stat_lock);
2270 	if (unlikely(inode->i_blocks < sectors)) {
2271 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2272 			  inode->i_ino,
2273 			  (unsigned long long)inode->i_blocks,
2274 			  (unsigned long long)sectors);
2275 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2276 		return;
2277 	}
2278 	f2fs_i_blocks_write(inode, count, false, true);
2279 }
2280 
2281 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2282 {
2283 	atomic_inc(&sbi->nr_pages[count_type]);
2284 
2285 	if (count_type == F2FS_DIRTY_DENTS ||
2286 			count_type == F2FS_DIRTY_NODES ||
2287 			count_type == F2FS_DIRTY_META ||
2288 			count_type == F2FS_DIRTY_QDATA ||
2289 			count_type == F2FS_DIRTY_IMETA)
2290 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2291 }
2292 
2293 static inline void inode_inc_dirty_pages(struct inode *inode)
2294 {
2295 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2296 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2297 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2298 	if (IS_NOQUOTA(inode))
2299 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2300 }
2301 
2302 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2303 {
2304 	atomic_dec(&sbi->nr_pages[count_type]);
2305 }
2306 
2307 static inline void inode_dec_dirty_pages(struct inode *inode)
2308 {
2309 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2310 			!S_ISLNK(inode->i_mode))
2311 		return;
2312 
2313 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2314 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2315 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2316 	if (IS_NOQUOTA(inode))
2317 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2318 }
2319 
2320 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2321 {
2322 	return atomic_read(&sbi->nr_pages[count_type]);
2323 }
2324 
2325 static inline int get_dirty_pages(struct inode *inode)
2326 {
2327 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2328 }
2329 
2330 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2331 {
2332 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2333 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2334 						sbi->log_blocks_per_seg;
2335 
2336 	return segs / sbi->segs_per_sec;
2337 }
2338 
2339 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2340 {
2341 	return sbi->total_valid_block_count;
2342 }
2343 
2344 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2345 {
2346 	return sbi->discard_blks;
2347 }
2348 
2349 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2350 {
2351 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2352 
2353 	/* return NAT or SIT bitmap */
2354 	if (flag == NAT_BITMAP)
2355 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2356 	else if (flag == SIT_BITMAP)
2357 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2358 
2359 	return 0;
2360 }
2361 
2362 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2363 {
2364 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2365 }
2366 
2367 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2368 {
2369 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2370 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2371 	int offset;
2372 
2373 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2374 		offset = (flag == SIT_BITMAP) ?
2375 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2376 		/*
2377 		 * if large_nat_bitmap feature is enabled, leave checksum
2378 		 * protection for all nat/sit bitmaps.
2379 		 */
2380 		return tmp_ptr + offset + sizeof(__le32);
2381 	}
2382 
2383 	if (__cp_payload(sbi) > 0) {
2384 		if (flag == NAT_BITMAP)
2385 			return &ckpt->sit_nat_version_bitmap;
2386 		else
2387 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2388 	} else {
2389 		offset = (flag == NAT_BITMAP) ?
2390 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2391 		return tmp_ptr + offset;
2392 	}
2393 }
2394 
2395 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2396 {
2397 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2398 
2399 	if (sbi->cur_cp_pack == 2)
2400 		start_addr += sbi->blocks_per_seg;
2401 	return start_addr;
2402 }
2403 
2404 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2405 {
2406 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2407 
2408 	if (sbi->cur_cp_pack == 1)
2409 		start_addr += sbi->blocks_per_seg;
2410 	return start_addr;
2411 }
2412 
2413 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2414 {
2415 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2416 }
2417 
2418 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2419 {
2420 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2421 }
2422 
2423 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2424 					struct inode *inode, bool is_inode)
2425 {
2426 	block_t	valid_block_count;
2427 	unsigned int valid_node_count, user_block_count;
2428 	int err;
2429 
2430 	if (is_inode) {
2431 		if (inode) {
2432 			err = dquot_alloc_inode(inode);
2433 			if (err)
2434 				return err;
2435 		}
2436 	} else {
2437 		err = dquot_reserve_block(inode, 1);
2438 		if (err)
2439 			return err;
2440 	}
2441 
2442 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2443 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2444 		goto enospc;
2445 	}
2446 
2447 	spin_lock(&sbi->stat_lock);
2448 
2449 	valid_block_count = sbi->total_valid_block_count +
2450 					sbi->current_reserved_blocks + 1;
2451 
2452 	if (!__allow_reserved_blocks(sbi, inode, false))
2453 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2454 	user_block_count = sbi->user_block_count;
2455 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2456 		user_block_count -= sbi->unusable_block_count;
2457 
2458 	if (unlikely(valid_block_count > user_block_count)) {
2459 		spin_unlock(&sbi->stat_lock);
2460 		goto enospc;
2461 	}
2462 
2463 	valid_node_count = sbi->total_valid_node_count + 1;
2464 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2465 		spin_unlock(&sbi->stat_lock);
2466 		goto enospc;
2467 	}
2468 
2469 	sbi->total_valid_node_count++;
2470 	sbi->total_valid_block_count++;
2471 	spin_unlock(&sbi->stat_lock);
2472 
2473 	if (inode) {
2474 		if (is_inode)
2475 			f2fs_mark_inode_dirty_sync(inode, true);
2476 		else
2477 			f2fs_i_blocks_write(inode, 1, true, true);
2478 	}
2479 
2480 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2481 	return 0;
2482 
2483 enospc:
2484 	if (is_inode) {
2485 		if (inode)
2486 			dquot_free_inode(inode);
2487 	} else {
2488 		dquot_release_reservation_block(inode, 1);
2489 	}
2490 	return -ENOSPC;
2491 }
2492 
2493 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2494 					struct inode *inode, bool is_inode)
2495 {
2496 	spin_lock(&sbi->stat_lock);
2497 
2498 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2499 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2500 
2501 	sbi->total_valid_node_count--;
2502 	sbi->total_valid_block_count--;
2503 	if (sbi->reserved_blocks &&
2504 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2505 		sbi->current_reserved_blocks++;
2506 
2507 	spin_unlock(&sbi->stat_lock);
2508 
2509 	if (is_inode) {
2510 		dquot_free_inode(inode);
2511 	} else {
2512 		if (unlikely(inode->i_blocks == 0)) {
2513 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2514 				  inode->i_ino,
2515 				  (unsigned long long)inode->i_blocks);
2516 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2517 			return;
2518 		}
2519 		f2fs_i_blocks_write(inode, 1, false, true);
2520 	}
2521 }
2522 
2523 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2524 {
2525 	return sbi->total_valid_node_count;
2526 }
2527 
2528 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2529 {
2530 	percpu_counter_inc(&sbi->total_valid_inode_count);
2531 }
2532 
2533 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2534 {
2535 	percpu_counter_dec(&sbi->total_valid_inode_count);
2536 }
2537 
2538 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2539 {
2540 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2541 }
2542 
2543 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2544 						pgoff_t index, bool for_write)
2545 {
2546 	struct page *page;
2547 
2548 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2549 		if (!for_write)
2550 			page = find_get_page_flags(mapping, index,
2551 							FGP_LOCK | FGP_ACCESSED);
2552 		else
2553 			page = find_lock_page(mapping, index);
2554 		if (page)
2555 			return page;
2556 
2557 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2558 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2559 							FAULT_PAGE_ALLOC);
2560 			return NULL;
2561 		}
2562 	}
2563 
2564 	if (!for_write)
2565 		return grab_cache_page(mapping, index);
2566 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2567 }
2568 
2569 static inline struct page *f2fs_pagecache_get_page(
2570 				struct address_space *mapping, pgoff_t index,
2571 				int fgp_flags, gfp_t gfp_mask)
2572 {
2573 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2574 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2575 		return NULL;
2576 	}
2577 
2578 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2579 }
2580 
2581 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2582 {
2583 	char *src_kaddr = kmap(src);
2584 	char *dst_kaddr = kmap(dst);
2585 
2586 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2587 	kunmap(dst);
2588 	kunmap(src);
2589 }
2590 
2591 static inline void f2fs_put_page(struct page *page, int unlock)
2592 {
2593 	if (!page)
2594 		return;
2595 
2596 	if (unlock) {
2597 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2598 		unlock_page(page);
2599 	}
2600 	put_page(page);
2601 }
2602 
2603 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2604 {
2605 	if (dn->node_page)
2606 		f2fs_put_page(dn->node_page, 1);
2607 	if (dn->inode_page && dn->node_page != dn->inode_page)
2608 		f2fs_put_page(dn->inode_page, 0);
2609 	dn->node_page = NULL;
2610 	dn->inode_page = NULL;
2611 }
2612 
2613 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2614 					size_t size)
2615 {
2616 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2617 }
2618 
2619 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2620 						gfp_t flags)
2621 {
2622 	void *entry;
2623 
2624 	entry = kmem_cache_alloc(cachep, flags);
2625 	if (!entry)
2626 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2627 	return entry;
2628 }
2629 
2630 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2631 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2632 {
2633 	if (nofail)
2634 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2635 
2636 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2637 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2638 		return NULL;
2639 	}
2640 
2641 	return kmem_cache_alloc(cachep, flags);
2642 }
2643 
2644 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2645 {
2646 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2647 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2648 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2649 		get_pages(sbi, F2FS_DIO_READ) ||
2650 		get_pages(sbi, F2FS_DIO_WRITE))
2651 		return true;
2652 
2653 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2654 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2655 		return true;
2656 
2657 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2658 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2659 		return true;
2660 	return false;
2661 }
2662 
2663 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2664 {
2665 	if (sbi->gc_mode == GC_URGENT_HIGH)
2666 		return true;
2667 
2668 	if (is_inflight_io(sbi, type))
2669 		return false;
2670 
2671 	if (sbi->gc_mode == GC_URGENT_LOW &&
2672 			(type == DISCARD_TIME || type == GC_TIME))
2673 		return true;
2674 
2675 	return f2fs_time_over(sbi, type);
2676 }
2677 
2678 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2679 				unsigned long index, void *item)
2680 {
2681 	while (radix_tree_insert(root, index, item))
2682 		cond_resched();
2683 }
2684 
2685 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2686 
2687 static inline bool IS_INODE(struct page *page)
2688 {
2689 	struct f2fs_node *p = F2FS_NODE(page);
2690 
2691 	return RAW_IS_INODE(p);
2692 }
2693 
2694 static inline int offset_in_addr(struct f2fs_inode *i)
2695 {
2696 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2697 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2698 }
2699 
2700 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2701 {
2702 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2703 }
2704 
2705 static inline int f2fs_has_extra_attr(struct inode *inode);
2706 static inline block_t data_blkaddr(struct inode *inode,
2707 			struct page *node_page, unsigned int offset)
2708 {
2709 	struct f2fs_node *raw_node;
2710 	__le32 *addr_array;
2711 	int base = 0;
2712 	bool is_inode = IS_INODE(node_page);
2713 
2714 	raw_node = F2FS_NODE(node_page);
2715 
2716 	if (is_inode) {
2717 		if (!inode)
2718 			/* from GC path only */
2719 			base = offset_in_addr(&raw_node->i);
2720 		else if (f2fs_has_extra_attr(inode))
2721 			base = get_extra_isize(inode);
2722 	}
2723 
2724 	addr_array = blkaddr_in_node(raw_node);
2725 	return le32_to_cpu(addr_array[base + offset]);
2726 }
2727 
2728 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2729 {
2730 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2731 }
2732 
2733 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2734 {
2735 	int mask;
2736 
2737 	addr += (nr >> 3);
2738 	mask = 1 << (7 - (nr & 0x07));
2739 	return mask & *addr;
2740 }
2741 
2742 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2743 {
2744 	int mask;
2745 
2746 	addr += (nr >> 3);
2747 	mask = 1 << (7 - (nr & 0x07));
2748 	*addr |= mask;
2749 }
2750 
2751 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2752 {
2753 	int mask;
2754 
2755 	addr += (nr >> 3);
2756 	mask = 1 << (7 - (nr & 0x07));
2757 	*addr &= ~mask;
2758 }
2759 
2760 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2761 {
2762 	int mask;
2763 	int ret;
2764 
2765 	addr += (nr >> 3);
2766 	mask = 1 << (7 - (nr & 0x07));
2767 	ret = mask & *addr;
2768 	*addr |= mask;
2769 	return ret;
2770 }
2771 
2772 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2773 {
2774 	int mask;
2775 	int ret;
2776 
2777 	addr += (nr >> 3);
2778 	mask = 1 << (7 - (nr & 0x07));
2779 	ret = mask & *addr;
2780 	*addr &= ~mask;
2781 	return ret;
2782 }
2783 
2784 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2785 {
2786 	int mask;
2787 
2788 	addr += (nr >> 3);
2789 	mask = 1 << (7 - (nr & 0x07));
2790 	*addr ^= mask;
2791 }
2792 
2793 /*
2794  * On-disk inode flags (f2fs_inode::i_flags)
2795  */
2796 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2797 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2798 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2799 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2800 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2801 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2802 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2803 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2804 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2805 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2806 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2807 
2808 /* Flags that should be inherited by new inodes from their parent. */
2809 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2810 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2811 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2812 
2813 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2814 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2815 				F2FS_CASEFOLD_FL))
2816 
2817 /* Flags that are appropriate for non-directories/regular files. */
2818 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2819 
2820 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2821 {
2822 	if (S_ISDIR(mode))
2823 		return flags;
2824 	else if (S_ISREG(mode))
2825 		return flags & F2FS_REG_FLMASK;
2826 	else
2827 		return flags & F2FS_OTHER_FLMASK;
2828 }
2829 
2830 static inline void __mark_inode_dirty_flag(struct inode *inode,
2831 						int flag, bool set)
2832 {
2833 	switch (flag) {
2834 	case FI_INLINE_XATTR:
2835 	case FI_INLINE_DATA:
2836 	case FI_INLINE_DENTRY:
2837 	case FI_NEW_INODE:
2838 		if (set)
2839 			return;
2840 		fallthrough;
2841 	case FI_DATA_EXIST:
2842 	case FI_INLINE_DOTS:
2843 	case FI_PIN_FILE:
2844 	case FI_COMPRESS_RELEASED:
2845 		f2fs_mark_inode_dirty_sync(inode, true);
2846 	}
2847 }
2848 
2849 static inline void set_inode_flag(struct inode *inode, int flag)
2850 {
2851 	set_bit(flag, F2FS_I(inode)->flags);
2852 	__mark_inode_dirty_flag(inode, flag, true);
2853 }
2854 
2855 static inline int is_inode_flag_set(struct inode *inode, int flag)
2856 {
2857 	return test_bit(flag, F2FS_I(inode)->flags);
2858 }
2859 
2860 static inline void clear_inode_flag(struct inode *inode, int flag)
2861 {
2862 	clear_bit(flag, F2FS_I(inode)->flags);
2863 	__mark_inode_dirty_flag(inode, flag, false);
2864 }
2865 
2866 static inline bool f2fs_verity_in_progress(struct inode *inode)
2867 {
2868 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2869 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2870 }
2871 
2872 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2873 {
2874 	F2FS_I(inode)->i_acl_mode = mode;
2875 	set_inode_flag(inode, FI_ACL_MODE);
2876 	f2fs_mark_inode_dirty_sync(inode, false);
2877 }
2878 
2879 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2880 {
2881 	if (inc)
2882 		inc_nlink(inode);
2883 	else
2884 		drop_nlink(inode);
2885 	f2fs_mark_inode_dirty_sync(inode, true);
2886 }
2887 
2888 static inline void f2fs_i_blocks_write(struct inode *inode,
2889 					block_t diff, bool add, bool claim)
2890 {
2891 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2892 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2893 
2894 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2895 	if (add) {
2896 		if (claim)
2897 			dquot_claim_block(inode, diff);
2898 		else
2899 			dquot_alloc_block_nofail(inode, diff);
2900 	} else {
2901 		dquot_free_block(inode, diff);
2902 	}
2903 
2904 	f2fs_mark_inode_dirty_sync(inode, true);
2905 	if (clean || recover)
2906 		set_inode_flag(inode, FI_AUTO_RECOVER);
2907 }
2908 
2909 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2910 {
2911 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2912 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2913 
2914 	if (i_size_read(inode) == i_size)
2915 		return;
2916 
2917 	i_size_write(inode, i_size);
2918 	f2fs_mark_inode_dirty_sync(inode, true);
2919 	if (clean || recover)
2920 		set_inode_flag(inode, FI_AUTO_RECOVER);
2921 }
2922 
2923 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2924 {
2925 	F2FS_I(inode)->i_current_depth = depth;
2926 	f2fs_mark_inode_dirty_sync(inode, true);
2927 }
2928 
2929 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2930 					unsigned int count)
2931 {
2932 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2933 	f2fs_mark_inode_dirty_sync(inode, true);
2934 }
2935 
2936 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2937 {
2938 	F2FS_I(inode)->i_xattr_nid = xnid;
2939 	f2fs_mark_inode_dirty_sync(inode, true);
2940 }
2941 
2942 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2943 {
2944 	F2FS_I(inode)->i_pino = pino;
2945 	f2fs_mark_inode_dirty_sync(inode, true);
2946 }
2947 
2948 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2949 {
2950 	struct f2fs_inode_info *fi = F2FS_I(inode);
2951 
2952 	if (ri->i_inline & F2FS_INLINE_XATTR)
2953 		set_bit(FI_INLINE_XATTR, fi->flags);
2954 	if (ri->i_inline & F2FS_INLINE_DATA)
2955 		set_bit(FI_INLINE_DATA, fi->flags);
2956 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2957 		set_bit(FI_INLINE_DENTRY, fi->flags);
2958 	if (ri->i_inline & F2FS_DATA_EXIST)
2959 		set_bit(FI_DATA_EXIST, fi->flags);
2960 	if (ri->i_inline & F2FS_INLINE_DOTS)
2961 		set_bit(FI_INLINE_DOTS, fi->flags);
2962 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2963 		set_bit(FI_EXTRA_ATTR, fi->flags);
2964 	if (ri->i_inline & F2FS_PIN_FILE)
2965 		set_bit(FI_PIN_FILE, fi->flags);
2966 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2967 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
2968 }
2969 
2970 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2971 {
2972 	ri->i_inline = 0;
2973 
2974 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2975 		ri->i_inline |= F2FS_INLINE_XATTR;
2976 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2977 		ri->i_inline |= F2FS_INLINE_DATA;
2978 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2979 		ri->i_inline |= F2FS_INLINE_DENTRY;
2980 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2981 		ri->i_inline |= F2FS_DATA_EXIST;
2982 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2983 		ri->i_inline |= F2FS_INLINE_DOTS;
2984 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2985 		ri->i_inline |= F2FS_EXTRA_ATTR;
2986 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2987 		ri->i_inline |= F2FS_PIN_FILE;
2988 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
2989 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
2990 }
2991 
2992 static inline int f2fs_has_extra_attr(struct inode *inode)
2993 {
2994 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2995 }
2996 
2997 static inline int f2fs_has_inline_xattr(struct inode *inode)
2998 {
2999 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3000 }
3001 
3002 static inline int f2fs_compressed_file(struct inode *inode)
3003 {
3004 	return S_ISREG(inode->i_mode) &&
3005 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3006 }
3007 
3008 static inline bool f2fs_need_compress_data(struct inode *inode)
3009 {
3010 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3011 
3012 	if (!f2fs_compressed_file(inode))
3013 		return false;
3014 
3015 	if (compress_mode == COMPR_MODE_FS)
3016 		return true;
3017 	else if (compress_mode == COMPR_MODE_USER &&
3018 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3019 		return true;
3020 
3021 	return false;
3022 }
3023 
3024 static inline unsigned int addrs_per_inode(struct inode *inode)
3025 {
3026 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3027 				get_inline_xattr_addrs(inode);
3028 
3029 	if (!f2fs_compressed_file(inode))
3030 		return addrs;
3031 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3032 }
3033 
3034 static inline unsigned int addrs_per_block(struct inode *inode)
3035 {
3036 	if (!f2fs_compressed_file(inode))
3037 		return DEF_ADDRS_PER_BLOCK;
3038 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3039 }
3040 
3041 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3042 {
3043 	struct f2fs_inode *ri = F2FS_INODE(page);
3044 
3045 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3046 					get_inline_xattr_addrs(inode)]);
3047 }
3048 
3049 static inline int inline_xattr_size(struct inode *inode)
3050 {
3051 	if (f2fs_has_inline_xattr(inode))
3052 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3053 	return 0;
3054 }
3055 
3056 static inline int f2fs_has_inline_data(struct inode *inode)
3057 {
3058 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3059 }
3060 
3061 static inline int f2fs_exist_data(struct inode *inode)
3062 {
3063 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3064 }
3065 
3066 static inline int f2fs_has_inline_dots(struct inode *inode)
3067 {
3068 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3069 }
3070 
3071 static inline int f2fs_is_mmap_file(struct inode *inode)
3072 {
3073 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3074 }
3075 
3076 static inline bool f2fs_is_pinned_file(struct inode *inode)
3077 {
3078 	return is_inode_flag_set(inode, FI_PIN_FILE);
3079 }
3080 
3081 static inline bool f2fs_is_atomic_file(struct inode *inode)
3082 {
3083 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3084 }
3085 
3086 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3087 {
3088 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3089 }
3090 
3091 static inline bool f2fs_is_volatile_file(struct inode *inode)
3092 {
3093 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3094 }
3095 
3096 static inline bool f2fs_is_first_block_written(struct inode *inode)
3097 {
3098 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3099 }
3100 
3101 static inline bool f2fs_is_drop_cache(struct inode *inode)
3102 {
3103 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3104 }
3105 
3106 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3107 {
3108 	struct f2fs_inode *ri = F2FS_INODE(page);
3109 	int extra_size = get_extra_isize(inode);
3110 
3111 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3112 }
3113 
3114 static inline int f2fs_has_inline_dentry(struct inode *inode)
3115 {
3116 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3117 }
3118 
3119 static inline int is_file(struct inode *inode, int type)
3120 {
3121 	return F2FS_I(inode)->i_advise & type;
3122 }
3123 
3124 static inline void set_file(struct inode *inode, int type)
3125 {
3126 	if (is_file(inode, type))
3127 		return;
3128 	F2FS_I(inode)->i_advise |= type;
3129 	f2fs_mark_inode_dirty_sync(inode, true);
3130 }
3131 
3132 static inline void clear_file(struct inode *inode, int type)
3133 {
3134 	if (!is_file(inode, type))
3135 		return;
3136 	F2FS_I(inode)->i_advise &= ~type;
3137 	f2fs_mark_inode_dirty_sync(inode, true);
3138 }
3139 
3140 static inline bool f2fs_is_time_consistent(struct inode *inode)
3141 {
3142 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3143 		return false;
3144 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3145 		return false;
3146 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3147 		return false;
3148 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3149 						&F2FS_I(inode)->i_crtime))
3150 		return false;
3151 	return true;
3152 }
3153 
3154 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3155 {
3156 	bool ret;
3157 
3158 	if (dsync) {
3159 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3160 
3161 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3162 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3163 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3164 		return ret;
3165 	}
3166 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3167 			file_keep_isize(inode) ||
3168 			i_size_read(inode) & ~PAGE_MASK)
3169 		return false;
3170 
3171 	if (!f2fs_is_time_consistent(inode))
3172 		return false;
3173 
3174 	spin_lock(&F2FS_I(inode)->i_size_lock);
3175 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3176 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3177 
3178 	return ret;
3179 }
3180 
3181 static inline bool f2fs_readonly(struct super_block *sb)
3182 {
3183 	return sb_rdonly(sb);
3184 }
3185 
3186 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3187 {
3188 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3189 }
3190 
3191 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3192 {
3193 	if (len == 1 && name[0] == '.')
3194 		return true;
3195 
3196 	if (len == 2 && name[0] == '.' && name[1] == '.')
3197 		return true;
3198 
3199 	return false;
3200 }
3201 
3202 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3203 					size_t size, gfp_t flags)
3204 {
3205 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3206 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3207 		return NULL;
3208 	}
3209 
3210 	return kmalloc(size, flags);
3211 }
3212 
3213 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3214 					size_t size, gfp_t flags)
3215 {
3216 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3217 }
3218 
3219 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3220 					size_t size, gfp_t flags)
3221 {
3222 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3223 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3224 		return NULL;
3225 	}
3226 
3227 	return kvmalloc(size, flags);
3228 }
3229 
3230 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3231 					size_t size, gfp_t flags)
3232 {
3233 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3234 }
3235 
3236 static inline int get_extra_isize(struct inode *inode)
3237 {
3238 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3239 }
3240 
3241 static inline int get_inline_xattr_addrs(struct inode *inode)
3242 {
3243 	return F2FS_I(inode)->i_inline_xattr_size;
3244 }
3245 
3246 #define f2fs_get_inode_mode(i) \
3247 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3248 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3249 
3250 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3251 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3252 	offsetof(struct f2fs_inode, i_extra_isize))	\
3253 
3254 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3255 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3256 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3257 		sizeof((f2fs_inode)->field))			\
3258 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3259 
3260 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3261 
3262 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3263 
3264 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3265 					block_t blkaddr, int type);
3266 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3267 					block_t blkaddr, int type)
3268 {
3269 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3270 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3271 			 blkaddr, type);
3272 		f2fs_bug_on(sbi, 1);
3273 	}
3274 }
3275 
3276 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3277 {
3278 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3279 			blkaddr == COMPRESS_ADDR)
3280 		return false;
3281 	return true;
3282 }
3283 
3284 /*
3285  * file.c
3286  */
3287 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3288 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3289 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3290 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3291 int f2fs_truncate(struct inode *inode);
3292 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3293 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3294 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3295 		 struct iattr *attr);
3296 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3297 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3298 int f2fs_precache_extents(struct inode *inode);
3299 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3300 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3301 		      struct dentry *dentry, struct fileattr *fa);
3302 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3303 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3304 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3305 int f2fs_pin_file_control(struct inode *inode, bool inc);
3306 
3307 /*
3308  * inode.c
3309  */
3310 void f2fs_set_inode_flags(struct inode *inode);
3311 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3312 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3313 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3314 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3315 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3316 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3317 void f2fs_update_inode_page(struct inode *inode);
3318 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3319 void f2fs_evict_inode(struct inode *inode);
3320 void f2fs_handle_failed_inode(struct inode *inode);
3321 
3322 /*
3323  * namei.c
3324  */
3325 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3326 							bool hot, bool set);
3327 struct dentry *f2fs_get_parent(struct dentry *child);
3328 
3329 /*
3330  * dir.c
3331  */
3332 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3333 int f2fs_init_casefolded_name(const struct inode *dir,
3334 			      struct f2fs_filename *fname);
3335 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3336 			int lookup, struct f2fs_filename *fname);
3337 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3338 			struct f2fs_filename *fname);
3339 void f2fs_free_filename(struct f2fs_filename *fname);
3340 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3341 			const struct f2fs_filename *fname, int *max_slots);
3342 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3343 			unsigned int start_pos, struct fscrypt_str *fstr);
3344 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3345 			struct f2fs_dentry_ptr *d);
3346 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3347 			const struct f2fs_filename *fname, struct page *dpage);
3348 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3349 			unsigned int current_depth);
3350 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3351 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3352 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3353 					 const struct f2fs_filename *fname,
3354 					 struct page **res_page);
3355 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3356 			const struct qstr *child, struct page **res_page);
3357 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3358 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3359 			struct page **page);
3360 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3361 			struct page *page, struct inode *inode);
3362 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3363 			  const struct f2fs_filename *fname);
3364 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3365 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3366 			unsigned int bit_pos);
3367 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3368 			struct inode *inode, nid_t ino, umode_t mode);
3369 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3370 			struct inode *inode, nid_t ino, umode_t mode);
3371 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3372 			struct inode *inode, nid_t ino, umode_t mode);
3373 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3374 			struct inode *dir, struct inode *inode);
3375 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3376 bool f2fs_empty_dir(struct inode *dir);
3377 
3378 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3379 {
3380 	if (fscrypt_is_nokey_name(dentry))
3381 		return -ENOKEY;
3382 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3383 				inode, inode->i_ino, inode->i_mode);
3384 }
3385 
3386 /*
3387  * super.c
3388  */
3389 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3390 void f2fs_inode_synced(struct inode *inode);
3391 int f2fs_dquot_initialize(struct inode *inode);
3392 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3393 int f2fs_quota_sync(struct super_block *sb, int type);
3394 loff_t max_file_blocks(struct inode *inode);
3395 void f2fs_quota_off_umount(struct super_block *sb);
3396 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3397 int f2fs_sync_fs(struct super_block *sb, int sync);
3398 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3399 
3400 /*
3401  * hash.c
3402  */
3403 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3404 
3405 /*
3406  * node.c
3407  */
3408 struct node_info;
3409 
3410 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3411 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3412 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3413 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3414 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3415 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3416 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3417 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3418 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3419 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3420 				struct node_info *ni, bool checkpoint_context);
3421 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3422 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3423 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3424 int f2fs_truncate_xattr_node(struct inode *inode);
3425 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3426 					unsigned int seq_id);
3427 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3428 int f2fs_remove_inode_page(struct inode *inode);
3429 struct page *f2fs_new_inode_page(struct inode *inode);
3430 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3431 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3432 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3433 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3434 int f2fs_move_node_page(struct page *node_page, int gc_type);
3435 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3436 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3437 			struct writeback_control *wbc, bool atomic,
3438 			unsigned int *seq_id);
3439 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3440 			struct writeback_control *wbc,
3441 			bool do_balance, enum iostat_type io_type);
3442 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3443 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3444 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3445 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3446 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3447 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3448 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3449 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3450 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3451 			unsigned int segno, struct f2fs_summary_block *sum);
3452 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3453 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3454 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3455 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3456 int __init f2fs_create_node_manager_caches(void);
3457 void f2fs_destroy_node_manager_caches(void);
3458 
3459 /*
3460  * segment.c
3461  */
3462 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3463 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3464 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3465 void f2fs_drop_inmem_pages(struct inode *inode);
3466 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3467 int f2fs_commit_inmem_pages(struct inode *inode);
3468 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3469 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3470 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3471 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3472 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3473 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3474 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3475 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3476 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3477 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3478 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3479 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3480 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3481 					struct cp_control *cpc);
3482 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3483 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3484 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3485 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3486 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3487 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3488 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3489 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3490 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3491 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3492 			unsigned int *newseg, bool new_sec, int dir);
3493 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3494 					unsigned int start, unsigned int end);
3495 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3496 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3497 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3498 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3499 					struct cp_control *cpc);
3500 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3501 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3502 					block_t blk_addr);
3503 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3504 						enum iostat_type io_type);
3505 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3506 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3507 			struct f2fs_io_info *fio);
3508 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3509 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3510 			block_t old_blkaddr, block_t new_blkaddr,
3511 			bool recover_curseg, bool recover_newaddr,
3512 			bool from_gc);
3513 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3514 			block_t old_addr, block_t new_addr,
3515 			unsigned char version, bool recover_curseg,
3516 			bool recover_newaddr);
3517 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3518 			block_t old_blkaddr, block_t *new_blkaddr,
3519 			struct f2fs_summary *sum, int type,
3520 			struct f2fs_io_info *fio);
3521 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3522 					block_t blkaddr, unsigned int blkcnt);
3523 void f2fs_wait_on_page_writeback(struct page *page,
3524 			enum page_type type, bool ordered, bool locked);
3525 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3526 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3527 								block_t len);
3528 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3529 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3530 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3531 			unsigned int val, int alloc);
3532 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3533 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3534 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3535 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3536 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3537 int __init f2fs_create_segment_manager_caches(void);
3538 void f2fs_destroy_segment_manager_caches(void);
3539 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3540 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3541 			enum page_type type, enum temp_type temp);
3542 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3543 			unsigned int segno);
3544 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3545 			unsigned int segno);
3546 
3547 #define DEF_FRAGMENT_SIZE	4
3548 #define MIN_FRAGMENT_SIZE	1
3549 #define MAX_FRAGMENT_SIZE	512
3550 
3551 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3552 {
3553 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3554 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3555 }
3556 
3557 /*
3558  * checkpoint.c
3559  */
3560 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3561 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3562 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3563 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3564 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3565 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3566 					block_t blkaddr, int type);
3567 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3568 			int type, bool sync);
3569 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3570 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3571 			long nr_to_write, enum iostat_type io_type);
3572 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3573 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3574 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3575 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3576 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3577 					unsigned int devidx, int type);
3578 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3579 					unsigned int devidx, int type);
3580 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3581 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3582 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3583 void f2fs_add_orphan_inode(struct inode *inode);
3584 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3585 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3586 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3587 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3588 void f2fs_remove_dirty_inode(struct inode *inode);
3589 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3590 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3591 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3592 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3593 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3594 int __init f2fs_create_checkpoint_caches(void);
3595 void f2fs_destroy_checkpoint_caches(void);
3596 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3597 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3598 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3599 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3600 
3601 /*
3602  * data.c
3603  */
3604 int __init f2fs_init_bioset(void);
3605 void f2fs_destroy_bioset(void);
3606 int f2fs_init_bio_entry_cache(void);
3607 void f2fs_destroy_bio_entry_cache(void);
3608 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3609 				struct bio *bio, enum page_type type);
3610 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3611 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3612 				struct inode *inode, struct page *page,
3613 				nid_t ino, enum page_type type);
3614 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3615 					struct bio **bio, struct page *page);
3616 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3617 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3618 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3619 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3620 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3621 			block_t blk_addr, struct bio *bio);
3622 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3623 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3624 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3625 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3626 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3627 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3628 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3629 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3630 			int op_flags, bool for_write);
3631 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3632 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3633 			bool for_write);
3634 struct page *f2fs_get_new_data_page(struct inode *inode,
3635 			struct page *ipage, pgoff_t index, bool new_i_size);
3636 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3637 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3638 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3639 			int create, int flag);
3640 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3641 			u64 start, u64 len);
3642 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3643 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3644 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3645 int f2fs_write_single_data_page(struct page *page, int *submitted,
3646 				struct bio **bio, sector_t *last_block,
3647 				struct writeback_control *wbc,
3648 				enum iostat_type io_type,
3649 				int compr_blocks, bool allow_balance);
3650 void f2fs_write_failed(struct inode *inode, loff_t to);
3651 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3652 			unsigned int length);
3653 int f2fs_release_page(struct page *page, gfp_t wait);
3654 #ifdef CONFIG_MIGRATION
3655 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3656 			struct page *page, enum migrate_mode mode);
3657 #endif
3658 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3659 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3660 int f2fs_init_post_read_processing(void);
3661 void f2fs_destroy_post_read_processing(void);
3662 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3663 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3664 extern const struct iomap_ops f2fs_iomap_ops;
3665 
3666 /*
3667  * gc.c
3668  */
3669 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3670 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3671 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3672 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3673 			unsigned int segno);
3674 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3675 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3676 int __init f2fs_create_garbage_collection_cache(void);
3677 void f2fs_destroy_garbage_collection_cache(void);
3678 
3679 /*
3680  * recovery.c
3681  */
3682 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3683 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3684 int __init f2fs_create_recovery_cache(void);
3685 void f2fs_destroy_recovery_cache(void);
3686 
3687 /*
3688  * debug.c
3689  */
3690 #ifdef CONFIG_F2FS_STAT_FS
3691 struct f2fs_stat_info {
3692 	struct list_head stat_list;
3693 	struct f2fs_sb_info *sbi;
3694 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3695 	int main_area_segs, main_area_sections, main_area_zones;
3696 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3697 	unsigned long long hit_total, total_ext;
3698 	int ext_tree, zombie_tree, ext_node;
3699 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3700 	int ndirty_data, ndirty_qdata;
3701 	int inmem_pages;
3702 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3703 	int nats, dirty_nats, sits, dirty_sits;
3704 	int free_nids, avail_nids, alloc_nids;
3705 	int total_count, utilization;
3706 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3707 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3708 	int nr_dio_read, nr_dio_write;
3709 	unsigned int io_skip_bggc, other_skip_bggc;
3710 	int nr_flushing, nr_flushed, flush_list_empty;
3711 	int nr_discarding, nr_discarded;
3712 	int nr_discard_cmd;
3713 	unsigned int undiscard_blks;
3714 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3715 	unsigned int cur_ckpt_time, peak_ckpt_time;
3716 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3717 	int compr_inode;
3718 	unsigned long long compr_blocks;
3719 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3720 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3721 	unsigned int bimodal, avg_vblocks;
3722 	int util_free, util_valid, util_invalid;
3723 	int rsvd_segs, overp_segs;
3724 	int dirty_count, node_pages, meta_pages, compress_pages;
3725 	int compress_page_hit;
3726 	int prefree_count, call_count, cp_count, bg_cp_count;
3727 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3728 	int bg_node_segs, bg_data_segs;
3729 	int tot_blks, data_blks, node_blks;
3730 	int bg_data_blks, bg_node_blks;
3731 	unsigned long long skipped_atomic_files[2];
3732 	int curseg[NR_CURSEG_TYPE];
3733 	int cursec[NR_CURSEG_TYPE];
3734 	int curzone[NR_CURSEG_TYPE];
3735 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3736 	unsigned int full_seg[NR_CURSEG_TYPE];
3737 	unsigned int valid_blks[NR_CURSEG_TYPE];
3738 
3739 	unsigned int meta_count[META_MAX];
3740 	unsigned int segment_count[2];
3741 	unsigned int block_count[2];
3742 	unsigned int inplace_count;
3743 	unsigned long long base_mem, cache_mem, page_mem;
3744 };
3745 
3746 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3747 {
3748 	return (struct f2fs_stat_info *)sbi->stat_info;
3749 }
3750 
3751 #define stat_inc_cp_count(si)		((si)->cp_count++)
3752 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3753 #define stat_inc_call_count(si)		((si)->call_count++)
3754 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3755 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3756 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3757 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3758 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3759 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3760 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3761 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3762 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3763 #define stat_inc_inline_xattr(inode)					\
3764 	do {								\
3765 		if (f2fs_has_inline_xattr(inode))			\
3766 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3767 	} while (0)
3768 #define stat_dec_inline_xattr(inode)					\
3769 	do {								\
3770 		if (f2fs_has_inline_xattr(inode))			\
3771 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3772 	} while (0)
3773 #define stat_inc_inline_inode(inode)					\
3774 	do {								\
3775 		if (f2fs_has_inline_data(inode))			\
3776 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3777 	} while (0)
3778 #define stat_dec_inline_inode(inode)					\
3779 	do {								\
3780 		if (f2fs_has_inline_data(inode))			\
3781 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3782 	} while (0)
3783 #define stat_inc_inline_dir(inode)					\
3784 	do {								\
3785 		if (f2fs_has_inline_dentry(inode))			\
3786 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3787 	} while (0)
3788 #define stat_dec_inline_dir(inode)					\
3789 	do {								\
3790 		if (f2fs_has_inline_dentry(inode))			\
3791 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3792 	} while (0)
3793 #define stat_inc_compr_inode(inode)					\
3794 	do {								\
3795 		if (f2fs_compressed_file(inode))			\
3796 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3797 	} while (0)
3798 #define stat_dec_compr_inode(inode)					\
3799 	do {								\
3800 		if (f2fs_compressed_file(inode))			\
3801 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3802 	} while (0)
3803 #define stat_add_compr_blocks(inode, blocks)				\
3804 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3805 #define stat_sub_compr_blocks(inode, blocks)				\
3806 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3807 #define stat_inc_meta_count(sbi, blkaddr)				\
3808 	do {								\
3809 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3810 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3811 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3812 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3813 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3814 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3815 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3816 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3817 	} while (0)
3818 #define stat_inc_seg_type(sbi, curseg)					\
3819 		((sbi)->segment_count[(curseg)->alloc_type]++)
3820 #define stat_inc_block_count(sbi, curseg)				\
3821 		((sbi)->block_count[(curseg)->alloc_type]++)
3822 #define stat_inc_inplace_blocks(sbi)					\
3823 		(atomic_inc(&(sbi)->inplace_count))
3824 #define stat_update_max_atomic_write(inode)				\
3825 	do {								\
3826 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3827 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3828 		if (cur > max)						\
3829 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3830 	} while (0)
3831 #define stat_inc_volatile_write(inode)					\
3832 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3833 #define stat_dec_volatile_write(inode)					\
3834 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3835 #define stat_update_max_volatile_write(inode)				\
3836 	do {								\
3837 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3838 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3839 		if (cur > max)						\
3840 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3841 	} while (0)
3842 #define stat_inc_seg_count(sbi, type, gc_type)				\
3843 	do {								\
3844 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3845 		si->tot_segs++;						\
3846 		if ((type) == SUM_TYPE_DATA) {				\
3847 			si->data_segs++;				\
3848 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3849 		} else {						\
3850 			si->node_segs++;				\
3851 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3852 		}							\
3853 	} while (0)
3854 
3855 #define stat_inc_tot_blk_count(si, blks)				\
3856 	((si)->tot_blks += (blks))
3857 
3858 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3859 	do {								\
3860 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3861 		stat_inc_tot_blk_count(si, blks);			\
3862 		si->data_blks += (blks);				\
3863 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3864 	} while (0)
3865 
3866 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3867 	do {								\
3868 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3869 		stat_inc_tot_blk_count(si, blks);			\
3870 		si->node_blks += (blks);				\
3871 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3872 	} while (0)
3873 
3874 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3875 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3876 void __init f2fs_create_root_stats(void);
3877 void f2fs_destroy_root_stats(void);
3878 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3879 #else
3880 #define stat_inc_cp_count(si)				do { } while (0)
3881 #define stat_inc_bg_cp_count(si)			do { } while (0)
3882 #define stat_inc_call_count(si)				do { } while (0)
3883 #define stat_inc_bggc_count(si)				do { } while (0)
3884 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3885 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3886 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3887 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3888 #define stat_inc_total_hit(sbi)				do { } while (0)
3889 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3890 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3891 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3892 #define stat_inc_inline_xattr(inode)			do { } while (0)
3893 #define stat_dec_inline_xattr(inode)			do { } while (0)
3894 #define stat_inc_inline_inode(inode)			do { } while (0)
3895 #define stat_dec_inline_inode(inode)			do { } while (0)
3896 #define stat_inc_inline_dir(inode)			do { } while (0)
3897 #define stat_dec_inline_dir(inode)			do { } while (0)
3898 #define stat_inc_compr_inode(inode)			do { } while (0)
3899 #define stat_dec_compr_inode(inode)			do { } while (0)
3900 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3901 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3902 #define stat_update_max_atomic_write(inode)		do { } while (0)
3903 #define stat_inc_volatile_write(inode)			do { } while (0)
3904 #define stat_dec_volatile_write(inode)			do { } while (0)
3905 #define stat_update_max_volatile_write(inode)		do { } while (0)
3906 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3907 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3908 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3909 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3910 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3911 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3912 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3913 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3914 
3915 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3916 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3917 static inline void __init f2fs_create_root_stats(void) { }
3918 static inline void f2fs_destroy_root_stats(void) { }
3919 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3920 #endif
3921 
3922 extern const struct file_operations f2fs_dir_operations;
3923 extern const struct file_operations f2fs_file_operations;
3924 extern const struct inode_operations f2fs_file_inode_operations;
3925 extern const struct address_space_operations f2fs_dblock_aops;
3926 extern const struct address_space_operations f2fs_node_aops;
3927 extern const struct address_space_operations f2fs_meta_aops;
3928 extern const struct inode_operations f2fs_dir_inode_operations;
3929 extern const struct inode_operations f2fs_symlink_inode_operations;
3930 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3931 extern const struct inode_operations f2fs_special_inode_operations;
3932 extern struct kmem_cache *f2fs_inode_entry_slab;
3933 
3934 /*
3935  * inline.c
3936  */
3937 bool f2fs_may_inline_data(struct inode *inode);
3938 bool f2fs_may_inline_dentry(struct inode *inode);
3939 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3940 void f2fs_truncate_inline_inode(struct inode *inode,
3941 						struct page *ipage, u64 from);
3942 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3943 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3944 int f2fs_convert_inline_inode(struct inode *inode);
3945 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3946 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3947 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3948 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3949 					const struct f2fs_filename *fname,
3950 					struct page **res_page);
3951 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3952 			struct page *ipage);
3953 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3954 			struct inode *inode, nid_t ino, umode_t mode);
3955 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3956 				struct page *page, struct inode *dir,
3957 				struct inode *inode);
3958 bool f2fs_empty_inline_dir(struct inode *dir);
3959 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3960 			struct fscrypt_str *fstr);
3961 int f2fs_inline_data_fiemap(struct inode *inode,
3962 			struct fiemap_extent_info *fieinfo,
3963 			__u64 start, __u64 len);
3964 
3965 /*
3966  * shrinker.c
3967  */
3968 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3969 			struct shrink_control *sc);
3970 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3971 			struct shrink_control *sc);
3972 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3973 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3974 
3975 /*
3976  * extent_cache.c
3977  */
3978 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3979 				struct rb_entry *cached_re, unsigned int ofs);
3980 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3981 				struct rb_root_cached *root,
3982 				struct rb_node **parent,
3983 				unsigned long long key, bool *left_most);
3984 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3985 				struct rb_root_cached *root,
3986 				struct rb_node **parent,
3987 				unsigned int ofs, bool *leftmost);
3988 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3989 		struct rb_entry *cached_re, unsigned int ofs,
3990 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3991 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3992 		bool force, bool *leftmost);
3993 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3994 				struct rb_root_cached *root, bool check_key);
3995 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3996 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3997 void f2fs_drop_extent_tree(struct inode *inode);
3998 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3999 void f2fs_destroy_extent_tree(struct inode *inode);
4000 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4001 			struct extent_info *ei);
4002 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4003 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4004 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4005 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4006 int __init f2fs_create_extent_cache(void);
4007 void f2fs_destroy_extent_cache(void);
4008 
4009 /*
4010  * sysfs.c
4011  */
4012 #define MIN_RA_MUL	2
4013 #define MAX_RA_MUL	256
4014 
4015 int __init f2fs_init_sysfs(void);
4016 void f2fs_exit_sysfs(void);
4017 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4018 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4019 
4020 /* verity.c */
4021 extern const struct fsverity_operations f2fs_verityops;
4022 
4023 /*
4024  * crypto support
4025  */
4026 static inline bool f2fs_encrypted_file(struct inode *inode)
4027 {
4028 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4029 }
4030 
4031 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4032 {
4033 #ifdef CONFIG_FS_ENCRYPTION
4034 	file_set_encrypt(inode);
4035 	f2fs_set_inode_flags(inode);
4036 #endif
4037 }
4038 
4039 /*
4040  * Returns true if the reads of the inode's data need to undergo some
4041  * postprocessing step, like decryption or authenticity verification.
4042  */
4043 static inline bool f2fs_post_read_required(struct inode *inode)
4044 {
4045 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4046 		f2fs_compressed_file(inode);
4047 }
4048 
4049 /*
4050  * compress.c
4051  */
4052 #ifdef CONFIG_F2FS_FS_COMPRESSION
4053 bool f2fs_is_compressed_page(struct page *page);
4054 struct page *f2fs_compress_control_page(struct page *page);
4055 int f2fs_prepare_compress_overwrite(struct inode *inode,
4056 			struct page **pagep, pgoff_t index, void **fsdata);
4057 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4058 					pgoff_t index, unsigned copied);
4059 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4060 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4061 bool f2fs_is_compress_backend_ready(struct inode *inode);
4062 int f2fs_init_compress_mempool(void);
4063 void f2fs_destroy_compress_mempool(void);
4064 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4065 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4066 							block_t blkaddr);
4067 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4068 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4069 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4070 				int index, int nr_pages);
4071 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4072 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4073 int f2fs_write_multi_pages(struct compress_ctx *cc,
4074 						int *submitted,
4075 						struct writeback_control *wbc,
4076 						enum iostat_type io_type);
4077 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4078 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4079 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4080 				unsigned int c_len);
4081 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4082 				unsigned nr_pages, sector_t *last_block_in_bio,
4083 				bool is_readahead, bool for_write);
4084 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4085 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4086 void f2fs_put_page_dic(struct page *page);
4087 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4088 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4089 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4090 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4091 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4092 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4093 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4094 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4095 int __init f2fs_init_compress_cache(void);
4096 void f2fs_destroy_compress_cache(void);
4097 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4098 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4099 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4100 						nid_t ino, block_t blkaddr);
4101 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4102 								block_t blkaddr);
4103 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4104 #define inc_compr_inode_stat(inode)					\
4105 	do {								\
4106 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4107 		sbi->compr_new_inode++;					\
4108 	} while (0)
4109 #define add_compr_block_stat(inode, blocks)				\
4110 	do {								\
4111 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4112 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4113 		sbi->compr_written_block += blocks;			\
4114 		sbi->compr_saved_block += diff;				\
4115 	} while (0)
4116 #else
4117 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4118 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4119 {
4120 	if (!f2fs_compressed_file(inode))
4121 		return true;
4122 	/* not support compression */
4123 	return false;
4124 }
4125 static inline struct page *f2fs_compress_control_page(struct page *page)
4126 {
4127 	WARN_ON_ONCE(1);
4128 	return ERR_PTR(-EINVAL);
4129 }
4130 static inline int f2fs_init_compress_mempool(void) { return 0; }
4131 static inline void f2fs_destroy_compress_mempool(void) { }
4132 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4133 static inline void f2fs_end_read_compressed_page(struct page *page,
4134 						bool failed, block_t blkaddr)
4135 {
4136 	WARN_ON_ONCE(1);
4137 }
4138 static inline void f2fs_put_page_dic(struct page *page)
4139 {
4140 	WARN_ON_ONCE(1);
4141 }
4142 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4143 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4144 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4145 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4146 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4147 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4148 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4149 static inline void f2fs_destroy_compress_cache(void) { }
4150 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4151 				block_t blkaddr) { }
4152 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4153 				struct page *page, nid_t ino, block_t blkaddr) { }
4154 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4155 				struct page *page, block_t blkaddr) { return false; }
4156 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4157 							nid_t ino) { }
4158 #define inc_compr_inode_stat(inode)		do { } while (0)
4159 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4160 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4161 				unsigned int c_len) { }
4162 #endif
4163 
4164 static inline void set_compress_context(struct inode *inode)
4165 {
4166 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4167 
4168 	F2FS_I(inode)->i_compress_algorithm =
4169 			F2FS_OPTION(sbi).compress_algorithm;
4170 	F2FS_I(inode)->i_log_cluster_size =
4171 			F2FS_OPTION(sbi).compress_log_size;
4172 	F2FS_I(inode)->i_compress_flag =
4173 			F2FS_OPTION(sbi).compress_chksum ?
4174 				1 << COMPRESS_CHKSUM : 0;
4175 	F2FS_I(inode)->i_cluster_size =
4176 			1 << F2FS_I(inode)->i_log_cluster_size;
4177 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4178 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4179 			F2FS_OPTION(sbi).compress_level)
4180 		F2FS_I(inode)->i_compress_flag |=
4181 				F2FS_OPTION(sbi).compress_level <<
4182 				COMPRESS_LEVEL_OFFSET;
4183 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4184 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4185 	stat_inc_compr_inode(inode);
4186 	inc_compr_inode_stat(inode);
4187 	f2fs_mark_inode_dirty_sync(inode, true);
4188 }
4189 
4190 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4191 {
4192 	struct f2fs_inode_info *fi = F2FS_I(inode);
4193 
4194 	if (!f2fs_compressed_file(inode))
4195 		return true;
4196 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4197 		return false;
4198 
4199 	fi->i_flags &= ~F2FS_COMPR_FL;
4200 	stat_dec_compr_inode(inode);
4201 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4202 	f2fs_mark_inode_dirty_sync(inode, true);
4203 	return true;
4204 }
4205 
4206 #define F2FS_FEATURE_FUNCS(name, flagname) \
4207 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4208 { \
4209 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4210 }
4211 
4212 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4213 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4214 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4215 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4216 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4217 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4218 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4219 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4220 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4221 F2FS_FEATURE_FUNCS(verity, VERITY);
4222 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4223 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4224 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4225 F2FS_FEATURE_FUNCS(readonly, RO);
4226 
4227 static inline bool f2fs_may_extent_tree(struct inode *inode)
4228 {
4229 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4230 
4231 	if (!test_opt(sbi, EXTENT_CACHE) ||
4232 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4233 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4234 			 !f2fs_sb_has_readonly(sbi)))
4235 		return false;
4236 
4237 	/*
4238 	 * for recovered files during mount do not create extents
4239 	 * if shrinker is not registered.
4240 	 */
4241 	if (list_empty(&sbi->s_list))
4242 		return false;
4243 
4244 	return S_ISREG(inode->i_mode);
4245 }
4246 
4247 #ifdef CONFIG_BLK_DEV_ZONED
4248 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4249 				    block_t blkaddr)
4250 {
4251 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4252 
4253 	return test_bit(zno, FDEV(devi).blkz_seq);
4254 }
4255 #endif
4256 
4257 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4258 {
4259 	return f2fs_sb_has_blkzoned(sbi);
4260 }
4261 
4262 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4263 {
4264 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4265 	       bdev_is_zoned(bdev);
4266 }
4267 
4268 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4269 {
4270 	int i;
4271 
4272 	if (!f2fs_is_multi_device(sbi))
4273 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4274 
4275 	for (i = 0; i < sbi->s_ndevs; i++)
4276 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4277 			return true;
4278 	return false;
4279 }
4280 
4281 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4282 {
4283 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4284 					f2fs_hw_should_discard(sbi);
4285 }
4286 
4287 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4288 {
4289 	int i;
4290 
4291 	if (!f2fs_is_multi_device(sbi))
4292 		return bdev_read_only(sbi->sb->s_bdev);
4293 
4294 	for (i = 0; i < sbi->s_ndevs; i++)
4295 		if (bdev_read_only(FDEV(i).bdev))
4296 			return true;
4297 	return false;
4298 }
4299 
4300 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4301 {
4302 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4303 }
4304 
4305 static inline bool f2fs_may_compress(struct inode *inode)
4306 {
4307 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4308 				f2fs_is_atomic_file(inode) ||
4309 				f2fs_is_volatile_file(inode))
4310 		return false;
4311 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4312 }
4313 
4314 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4315 						u64 blocks, bool add)
4316 {
4317 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4318 	struct f2fs_inode_info *fi = F2FS_I(inode);
4319 
4320 	/* don't update i_compr_blocks if saved blocks were released */
4321 	if (!add && !atomic_read(&fi->i_compr_blocks))
4322 		return;
4323 
4324 	if (add) {
4325 		atomic_add(diff, &fi->i_compr_blocks);
4326 		stat_add_compr_blocks(inode, diff);
4327 	} else {
4328 		atomic_sub(diff, &fi->i_compr_blocks);
4329 		stat_sub_compr_blocks(inode, diff);
4330 	}
4331 	f2fs_mark_inode_dirty_sync(inode, true);
4332 }
4333 
4334 static inline int block_unaligned_IO(struct inode *inode,
4335 				struct kiocb *iocb, struct iov_iter *iter)
4336 {
4337 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4338 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4339 	loff_t offset = iocb->ki_pos;
4340 	unsigned long align = offset | iov_iter_alignment(iter);
4341 
4342 	return align & blocksize_mask;
4343 }
4344 
4345 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4346 								int flag)
4347 {
4348 	if (!f2fs_is_multi_device(sbi))
4349 		return false;
4350 	if (flag != F2FS_GET_BLOCK_DIO)
4351 		return false;
4352 	return sbi->aligned_blksize;
4353 }
4354 
4355 static inline bool f2fs_force_buffered_io(struct inode *inode,
4356 				struct kiocb *iocb, struct iov_iter *iter)
4357 {
4358 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4359 	int rw = iov_iter_rw(iter);
4360 
4361 	if (f2fs_post_read_required(inode))
4362 		return true;
4363 
4364 	/* disallow direct IO if any of devices has unaligned blksize */
4365 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4366 		return true;
4367 	/*
4368 	 * for blkzoned device, fallback direct IO to buffered IO, so
4369 	 * all IOs can be serialized by log-structured write.
4370 	 */
4371 	if (f2fs_sb_has_blkzoned(sbi))
4372 		return true;
4373 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4374 		if (block_unaligned_IO(inode, iocb, iter))
4375 			return true;
4376 		if (F2FS_IO_ALIGNED(sbi))
4377 			return true;
4378 	}
4379 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4380 		return true;
4381 
4382 	return false;
4383 }
4384 
4385 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4386 {
4387 	return fsverity_active(inode) &&
4388 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4389 }
4390 
4391 #ifdef CONFIG_F2FS_FAULT_INJECTION
4392 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4393 							unsigned int type);
4394 #else
4395 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4396 #endif
4397 
4398 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4399 {
4400 #ifdef CONFIG_QUOTA
4401 	if (f2fs_sb_has_quota_ino(sbi))
4402 		return true;
4403 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4404 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4405 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4406 		return true;
4407 #endif
4408 	return false;
4409 }
4410 
4411 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4412 {
4413 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4414 }
4415 
4416 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4417 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4418 
4419 #endif /* _LINUX_F2FS_H */
4420