xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 300a8429)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_SLAB_ALLOC,
58 	FAULT_DQUOT_INIT,
59 	FAULT_LOCK_OP,
60 	FAULT_MAX,
61 };
62 
63 #ifdef CONFIG_F2FS_FAULT_INJECTION
64 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
65 
66 struct f2fs_fault_info {
67 	atomic_t inject_ops;
68 	unsigned int inject_rate;
69 	unsigned int inject_type;
70 };
71 
72 extern const char *f2fs_fault_name[FAULT_MAX];
73 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
74 #endif
75 
76 /*
77  * For mount options
78  */
79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
80 #define F2FS_MOUNT_DISCARD		0x00000004
81 #define F2FS_MOUNT_NOHEAP		0x00000008
82 #define F2FS_MOUNT_XATTR_USER		0x00000010
83 #define F2FS_MOUNT_POSIX_ACL		0x00000020
84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
85 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
86 #define F2FS_MOUNT_INLINE_DATA		0x00000100
87 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
88 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
89 #define F2FS_MOUNT_NOBARRIER		0x00000800
90 #define F2FS_MOUNT_FASTBOOT		0x00001000
91 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_USRQUOTA		0x00080000
95 #define F2FS_MOUNT_GRPQUOTA		0x00100000
96 #define F2FS_MOUNT_PRJQUOTA		0x00200000
97 #define F2FS_MOUNT_QUOTA		0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
100 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
101 #define F2FS_MOUNT_NORECOVERY		0x04000000
102 #define F2FS_MOUNT_ATGC			0x08000000
103 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
104 #define	F2FS_MOUNT_GC_MERGE		0x20000000
105 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
106 
107 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
108 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
109 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
110 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
111 
112 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
113 		typecheck(unsigned long long, b) &&			\
114 		((long long)((a) - (b)) > 0))
115 
116 typedef u32 block_t;	/*
117 			 * should not change u32, since it is the on-disk block
118 			 * address format, __le32.
119 			 */
120 typedef u32 nid_t;
121 
122 #define COMPRESS_EXT_NUM		16
123 
124 struct f2fs_mount_info {
125 	unsigned int opt;
126 	int write_io_size_bits;		/* Write IO size bits */
127 	block_t root_reserved_blocks;	/* root reserved blocks */
128 	kuid_t s_resuid;		/* reserved blocks for uid */
129 	kgid_t s_resgid;		/* reserved blocks for gid */
130 	int active_logs;		/* # of active logs */
131 	int inline_xattr_size;		/* inline xattr size */
132 #ifdef CONFIG_F2FS_FAULT_INJECTION
133 	struct f2fs_fault_info fault_info;	/* For fault injection */
134 #endif
135 #ifdef CONFIG_QUOTA
136 	/* Names of quota files with journalled quota */
137 	char *s_qf_names[MAXQUOTAS];
138 	int s_jquota_fmt;			/* Format of quota to use */
139 #endif
140 	/* For which write hints are passed down to block layer */
141 	int whint_mode;
142 	int alloc_mode;			/* segment allocation policy */
143 	int fsync_mode;			/* fsync policy */
144 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
145 	int bggc_mode;			/* bggc mode: off, on or sync */
146 	int discard_unit;		/*
147 					 * discard command's offset/size should
148 					 * be aligned to this unit: block,
149 					 * segment or section
150 					 */
151 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
152 	block_t unusable_cap_perc;	/* percentage for cap */
153 	block_t unusable_cap;		/* Amount of space allowed to be
154 					 * unusable when disabling checkpoint
155 					 */
156 
157 	/* For compression */
158 	unsigned char compress_algorithm;	/* algorithm type */
159 	unsigned char compress_log_size;	/* cluster log size */
160 	unsigned char compress_level;		/* compress level */
161 	bool compress_chksum;			/* compressed data chksum */
162 	unsigned char compress_ext_cnt;		/* extension count */
163 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
164 	int compress_mode;			/* compression mode */
165 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
166 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
167 };
168 
169 #define F2FS_FEATURE_ENCRYPT		0x0001
170 #define F2FS_FEATURE_BLKZONED		0x0002
171 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
172 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
173 #define F2FS_FEATURE_PRJQUOTA		0x0010
174 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
175 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
176 #define F2FS_FEATURE_QUOTA_INO		0x0080
177 #define F2FS_FEATURE_INODE_CRTIME	0x0100
178 #define F2FS_FEATURE_LOST_FOUND		0x0200
179 #define F2FS_FEATURE_VERITY		0x0400
180 #define F2FS_FEATURE_SB_CHKSUM		0x0800
181 #define F2FS_FEATURE_CASEFOLD		0x1000
182 #define F2FS_FEATURE_COMPRESSION	0x2000
183 #define F2FS_FEATURE_RO			0x4000
184 
185 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
186 	((raw_super->feature & cpu_to_le32(mask)) != 0)
187 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
188 #define F2FS_SET_FEATURE(sbi, mask)					\
189 	(sbi->raw_super->feature |= cpu_to_le32(mask))
190 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
191 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
192 
193 /*
194  * Default values for user and/or group using reserved blocks
195  */
196 #define	F2FS_DEF_RESUID		0
197 #define	F2FS_DEF_RESGID		0
198 
199 /*
200  * For checkpoint manager
201  */
202 enum {
203 	NAT_BITMAP,
204 	SIT_BITMAP
205 };
206 
207 #define	CP_UMOUNT	0x00000001
208 #define	CP_FASTBOOT	0x00000002
209 #define	CP_SYNC		0x00000004
210 #define	CP_RECOVERY	0x00000008
211 #define	CP_DISCARD	0x00000010
212 #define CP_TRIMMED	0x00000020
213 #define CP_PAUSE	0x00000040
214 #define CP_RESIZE 	0x00000080
215 
216 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
217 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
218 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
219 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
220 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
221 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
222 #define DEF_CP_INTERVAL			60	/* 60 secs */
223 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
224 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
225 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
226 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
227 
228 struct cp_control {
229 	int reason;
230 	__u64 trim_start;
231 	__u64 trim_end;
232 	__u64 trim_minlen;
233 };
234 
235 /*
236  * indicate meta/data type
237  */
238 enum {
239 	META_CP,
240 	META_NAT,
241 	META_SIT,
242 	META_SSA,
243 	META_MAX,
244 	META_POR,
245 	DATA_GENERIC,		/* check range only */
246 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
247 	DATA_GENERIC_ENHANCE_READ,	/*
248 					 * strong check on range and segment
249 					 * bitmap but no warning due to race
250 					 * condition of read on truncated area
251 					 * by extent_cache
252 					 */
253 	META_GENERIC,
254 };
255 
256 /* for the list of ino */
257 enum {
258 	ORPHAN_INO,		/* for orphan ino list */
259 	APPEND_INO,		/* for append ino list */
260 	UPDATE_INO,		/* for update ino list */
261 	TRANS_DIR_INO,		/* for trasactions dir ino list */
262 	FLUSH_INO,		/* for multiple device flushing */
263 	MAX_INO_ENTRY,		/* max. list */
264 };
265 
266 struct ino_entry {
267 	struct list_head list;		/* list head */
268 	nid_t ino;			/* inode number */
269 	unsigned int dirty_device;	/* dirty device bitmap */
270 };
271 
272 /* for the list of inodes to be GCed */
273 struct inode_entry {
274 	struct list_head list;	/* list head */
275 	struct inode *inode;	/* vfs inode pointer */
276 };
277 
278 struct fsync_node_entry {
279 	struct list_head list;	/* list head */
280 	struct page *page;	/* warm node page pointer */
281 	unsigned int seq_id;	/* sequence id */
282 };
283 
284 struct ckpt_req {
285 	struct completion wait;		/* completion for checkpoint done */
286 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
287 	int ret;			/* return code of checkpoint */
288 	ktime_t queue_time;		/* request queued time */
289 };
290 
291 struct ckpt_req_control {
292 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
293 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
294 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
295 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
296 	atomic_t total_ckpt;		/* # of total ckpts */
297 	atomic_t queued_ckpt;		/* # of queued ckpts */
298 	struct llist_head issue_list;	/* list for command issue */
299 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
300 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
301 	unsigned int peak_time;		/* peak wait time in msec until now */
302 };
303 
304 /* for the bitmap indicate blocks to be discarded */
305 struct discard_entry {
306 	struct list_head list;	/* list head */
307 	block_t start_blkaddr;	/* start blockaddr of current segment */
308 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
309 };
310 
311 /* default discard granularity of inner discard thread, unit: block count */
312 #define DEFAULT_DISCARD_GRANULARITY		16
313 
314 /* max discard pend list number */
315 #define MAX_PLIST_NUM		512
316 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
317 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
318 
319 enum {
320 	D_PREP,			/* initial */
321 	D_PARTIAL,		/* partially submitted */
322 	D_SUBMIT,		/* all submitted */
323 	D_DONE,			/* finished */
324 };
325 
326 struct discard_info {
327 	block_t lstart;			/* logical start address */
328 	block_t len;			/* length */
329 	block_t start;			/* actual start address in dev */
330 };
331 
332 struct discard_cmd {
333 	struct rb_node rb_node;		/* rb node located in rb-tree */
334 	union {
335 		struct {
336 			block_t lstart;	/* logical start address */
337 			block_t len;	/* length */
338 			block_t start;	/* actual start address in dev */
339 		};
340 		struct discard_info di;	/* discard info */
341 
342 	};
343 	struct list_head list;		/* command list */
344 	struct completion wait;		/* compleation */
345 	struct block_device *bdev;	/* bdev */
346 	unsigned short ref;		/* reference count */
347 	unsigned char state;		/* state */
348 	unsigned char queued;		/* queued discard */
349 	int error;			/* bio error */
350 	spinlock_t lock;		/* for state/bio_ref updating */
351 	unsigned short bio_ref;		/* bio reference count */
352 };
353 
354 enum {
355 	DPOLICY_BG,
356 	DPOLICY_FORCE,
357 	DPOLICY_FSTRIM,
358 	DPOLICY_UMOUNT,
359 	MAX_DPOLICY,
360 };
361 
362 struct discard_policy {
363 	int type;			/* type of discard */
364 	unsigned int min_interval;	/* used for candidates exist */
365 	unsigned int mid_interval;	/* used for device busy */
366 	unsigned int max_interval;	/* used for candidates not exist */
367 	unsigned int max_requests;	/* # of discards issued per round */
368 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
369 	bool io_aware;			/* issue discard in idle time */
370 	bool sync;			/* submit discard with REQ_SYNC flag */
371 	bool ordered;			/* issue discard by lba order */
372 	bool timeout;			/* discard timeout for put_super */
373 	unsigned int granularity;	/* discard granularity */
374 };
375 
376 struct discard_cmd_control {
377 	struct task_struct *f2fs_issue_discard;	/* discard thread */
378 	struct list_head entry_list;		/* 4KB discard entry list */
379 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
380 	struct list_head wait_list;		/* store on-flushing entries */
381 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
382 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
383 	unsigned int discard_wake;		/* to wake up discard thread */
384 	struct mutex cmd_lock;
385 	unsigned int nr_discards;		/* # of discards in the list */
386 	unsigned int max_discards;		/* max. discards to be issued */
387 	unsigned int discard_granularity;	/* discard granularity */
388 	unsigned int undiscard_blks;		/* # of undiscard blocks */
389 	unsigned int next_pos;			/* next discard position */
390 	atomic_t issued_discard;		/* # of issued discard */
391 	atomic_t queued_discard;		/* # of queued discard */
392 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
393 	struct rb_root_cached root;		/* root of discard rb-tree */
394 	bool rbtree_check;			/* config for consistence check */
395 };
396 
397 /* for the list of fsync inodes, used only during recovery */
398 struct fsync_inode_entry {
399 	struct list_head list;	/* list head */
400 	struct inode *inode;	/* vfs inode pointer */
401 	block_t blkaddr;	/* block address locating the last fsync */
402 	block_t last_dentry;	/* block address locating the last dentry */
403 };
404 
405 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
406 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
407 
408 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
409 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
410 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
411 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
412 
413 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
414 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
415 
416 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
417 {
418 	int before = nats_in_cursum(journal);
419 
420 	journal->n_nats = cpu_to_le16(before + i);
421 	return before;
422 }
423 
424 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
425 {
426 	int before = sits_in_cursum(journal);
427 
428 	journal->n_sits = cpu_to_le16(before + i);
429 	return before;
430 }
431 
432 static inline bool __has_cursum_space(struct f2fs_journal *journal,
433 							int size, int type)
434 {
435 	if (type == NAT_JOURNAL)
436 		return size <= MAX_NAT_JENTRIES(journal);
437 	return size <= MAX_SIT_JENTRIES(journal);
438 }
439 
440 /* for inline stuff */
441 #define DEF_INLINE_RESERVED_SIZE	1
442 static inline int get_extra_isize(struct inode *inode);
443 static inline int get_inline_xattr_addrs(struct inode *inode);
444 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
445 				(CUR_ADDRS_PER_INODE(inode) -		\
446 				get_inline_xattr_addrs(inode) -	\
447 				DEF_INLINE_RESERVED_SIZE))
448 
449 /* for inline dir */
450 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
451 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
452 				BITS_PER_BYTE + 1))
453 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
454 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
455 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
456 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
457 				NR_INLINE_DENTRY(inode) + \
458 				INLINE_DENTRY_BITMAP_SIZE(inode)))
459 
460 /*
461  * For INODE and NODE manager
462  */
463 /* for directory operations */
464 
465 struct f2fs_filename {
466 	/*
467 	 * The filename the user specified.  This is NULL for some
468 	 * filesystem-internal operations, e.g. converting an inline directory
469 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
470 	 */
471 	const struct qstr *usr_fname;
472 
473 	/*
474 	 * The on-disk filename.  For encrypted directories, this is encrypted.
475 	 * This may be NULL for lookups in an encrypted dir without the key.
476 	 */
477 	struct fscrypt_str disk_name;
478 
479 	/* The dirhash of this filename */
480 	f2fs_hash_t hash;
481 
482 #ifdef CONFIG_FS_ENCRYPTION
483 	/*
484 	 * For lookups in encrypted directories: either the buffer backing
485 	 * disk_name, or a buffer that holds the decoded no-key name.
486 	 */
487 	struct fscrypt_str crypto_buf;
488 #endif
489 #ifdef CONFIG_UNICODE
490 	/*
491 	 * For casefolded directories: the casefolded name, but it's left NULL
492 	 * if the original name is not valid Unicode, if the directory is both
493 	 * casefolded and encrypted and its encryption key is unavailable, or if
494 	 * the filesystem is doing an internal operation where usr_fname is also
495 	 * NULL.  In all these cases we fall back to treating the name as an
496 	 * opaque byte sequence.
497 	 */
498 	struct fscrypt_str cf_name;
499 #endif
500 };
501 
502 struct f2fs_dentry_ptr {
503 	struct inode *inode;
504 	void *bitmap;
505 	struct f2fs_dir_entry *dentry;
506 	__u8 (*filename)[F2FS_SLOT_LEN];
507 	int max;
508 	int nr_bitmap;
509 };
510 
511 static inline void make_dentry_ptr_block(struct inode *inode,
512 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
513 {
514 	d->inode = inode;
515 	d->max = NR_DENTRY_IN_BLOCK;
516 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
517 	d->bitmap = t->dentry_bitmap;
518 	d->dentry = t->dentry;
519 	d->filename = t->filename;
520 }
521 
522 static inline void make_dentry_ptr_inline(struct inode *inode,
523 					struct f2fs_dentry_ptr *d, void *t)
524 {
525 	int entry_cnt = NR_INLINE_DENTRY(inode);
526 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
527 	int reserved_size = INLINE_RESERVED_SIZE(inode);
528 
529 	d->inode = inode;
530 	d->max = entry_cnt;
531 	d->nr_bitmap = bitmap_size;
532 	d->bitmap = t;
533 	d->dentry = t + bitmap_size + reserved_size;
534 	d->filename = t + bitmap_size + reserved_size +
535 					SIZE_OF_DIR_ENTRY * entry_cnt;
536 }
537 
538 /*
539  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
540  * as its node offset to distinguish from index node blocks.
541  * But some bits are used to mark the node block.
542  */
543 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
544 				>> OFFSET_BIT_SHIFT)
545 enum {
546 	ALLOC_NODE,			/* allocate a new node page if needed */
547 	LOOKUP_NODE,			/* look up a node without readahead */
548 	LOOKUP_NODE_RA,			/*
549 					 * look up a node with readahead called
550 					 * by get_data_block.
551 					 */
552 };
553 
554 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
555 
556 /* congestion wait timeout value, default: 20ms */
557 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
558 
559 /* maximum retry quota flush count */
560 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
561 
562 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
563 
564 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
565 
566 /* dirty segments threshold for triggering CP */
567 #define DEFAULT_DIRTY_THRESHOLD		4
568 
569 /* for in-memory extent cache entry */
570 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
571 
572 /* number of extent info in extent cache we try to shrink */
573 #define EXTENT_CACHE_SHRINK_NUMBER	128
574 
575 struct rb_entry {
576 	struct rb_node rb_node;		/* rb node located in rb-tree */
577 	union {
578 		struct {
579 			unsigned int ofs;	/* start offset of the entry */
580 			unsigned int len;	/* length of the entry */
581 		};
582 		unsigned long long key;		/* 64-bits key */
583 	} __packed;
584 };
585 
586 struct extent_info {
587 	unsigned int fofs;		/* start offset in a file */
588 	unsigned int len;		/* length of the extent */
589 	u32 blk;			/* start block address of the extent */
590 #ifdef CONFIG_F2FS_FS_COMPRESSION
591 	unsigned int c_len;		/* physical extent length of compressed blocks */
592 #endif
593 };
594 
595 struct extent_node {
596 	struct rb_node rb_node;		/* rb node located in rb-tree */
597 	struct extent_info ei;		/* extent info */
598 	struct list_head list;		/* node in global extent list of sbi */
599 	struct extent_tree *et;		/* extent tree pointer */
600 };
601 
602 struct extent_tree {
603 	nid_t ino;			/* inode number */
604 	struct rb_root_cached root;	/* root of extent info rb-tree */
605 	struct extent_node *cached_en;	/* recently accessed extent node */
606 	struct extent_info largest;	/* largested extent info */
607 	struct list_head list;		/* to be used by sbi->zombie_list */
608 	rwlock_t lock;			/* protect extent info rb-tree */
609 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
610 	bool largest_updated;		/* largest extent updated */
611 };
612 
613 /*
614  * This structure is taken from ext4_map_blocks.
615  *
616  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
617  */
618 #define F2FS_MAP_NEW		(1 << BH_New)
619 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
620 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
621 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
622 				F2FS_MAP_UNWRITTEN)
623 
624 struct f2fs_map_blocks {
625 	struct block_device *m_bdev;	/* for multi-device dio */
626 	block_t m_pblk;
627 	block_t m_lblk;
628 	unsigned int m_len;
629 	unsigned int m_flags;
630 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
631 	pgoff_t *m_next_extent;		/* point to next possible extent */
632 	int m_seg_type;
633 	bool m_may_create;		/* indicate it is from write path */
634 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
635 };
636 
637 /* for flag in get_data_block */
638 enum {
639 	F2FS_GET_BLOCK_DEFAULT,
640 	F2FS_GET_BLOCK_FIEMAP,
641 	F2FS_GET_BLOCK_BMAP,
642 	F2FS_GET_BLOCK_DIO,
643 	F2FS_GET_BLOCK_PRE_DIO,
644 	F2FS_GET_BLOCK_PRE_AIO,
645 	F2FS_GET_BLOCK_PRECACHE,
646 };
647 
648 /*
649  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
650  */
651 #define FADVISE_COLD_BIT	0x01
652 #define FADVISE_LOST_PINO_BIT	0x02
653 #define FADVISE_ENCRYPT_BIT	0x04
654 #define FADVISE_ENC_NAME_BIT	0x08
655 #define FADVISE_KEEP_SIZE_BIT	0x10
656 #define FADVISE_HOT_BIT		0x20
657 #define FADVISE_VERITY_BIT	0x40
658 #define FADVISE_TRUNC_BIT	0x80
659 
660 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
661 
662 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
663 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
664 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
665 
666 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
667 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
668 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
669 
670 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
671 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
672 
673 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
674 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
675 
676 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
677 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
678 
679 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
680 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
681 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
682 
683 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
684 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
685 
686 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
687 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
688 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
689 
690 #define DEF_DIR_LEVEL		0
691 
692 enum {
693 	GC_FAILURE_PIN,
694 	GC_FAILURE_ATOMIC,
695 	MAX_GC_FAILURE
696 };
697 
698 /* used for f2fs_inode_info->flags */
699 enum {
700 	FI_NEW_INODE,		/* indicate newly allocated inode */
701 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
702 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
703 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
704 	FI_INC_LINK,		/* need to increment i_nlink */
705 	FI_ACL_MODE,		/* indicate acl mode */
706 	FI_NO_ALLOC,		/* should not allocate any blocks */
707 	FI_FREE_NID,		/* free allocated nide */
708 	FI_NO_EXTENT,		/* not to use the extent cache */
709 	FI_INLINE_XATTR,	/* used for inline xattr */
710 	FI_INLINE_DATA,		/* used for inline data*/
711 	FI_INLINE_DENTRY,	/* used for inline dentry */
712 	FI_APPEND_WRITE,	/* inode has appended data */
713 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
714 	FI_NEED_IPU,		/* used for ipu per file */
715 	FI_ATOMIC_FILE,		/* indicate atomic file */
716 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
717 	FI_VOLATILE_FILE,	/* indicate volatile file */
718 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
719 	FI_DROP_CACHE,		/* drop dirty page cache */
720 	FI_DATA_EXIST,		/* indicate data exists */
721 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
722 	FI_DO_DEFRAG,		/* indicate defragment is running */
723 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
724 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
725 	FI_HOT_DATA,		/* indicate file is hot */
726 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
727 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
728 	FI_PIN_FILE,		/* indicate file should not be gced */
729 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
730 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
731 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
732 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
733 	FI_MMAP_FILE,		/* indicate file was mmapped */
734 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
735 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
736 	FI_ALIGNED_WRITE,	/* enable aligned write */
737 	FI_MAX,			/* max flag, never be used */
738 };
739 
740 struct f2fs_inode_info {
741 	struct inode vfs_inode;		/* serve a vfs inode */
742 	unsigned long i_flags;		/* keep an inode flags for ioctl */
743 	unsigned char i_advise;		/* use to give file attribute hints */
744 	unsigned char i_dir_level;	/* use for dentry level for large dir */
745 	unsigned int i_current_depth;	/* only for directory depth */
746 	/* for gc failure statistic */
747 	unsigned int i_gc_failures[MAX_GC_FAILURE];
748 	unsigned int i_pino;		/* parent inode number */
749 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
750 
751 	/* Use below internally in f2fs*/
752 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
753 	struct rw_semaphore i_sem;	/* protect fi info */
754 	atomic_t dirty_pages;		/* # of dirty pages */
755 	f2fs_hash_t chash;		/* hash value of given file name */
756 	unsigned int clevel;		/* maximum level of given file name */
757 	struct task_struct *task;	/* lookup and create consistency */
758 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
759 	nid_t i_xattr_nid;		/* node id that contains xattrs */
760 	loff_t	last_disk_size;		/* lastly written file size */
761 	spinlock_t i_size_lock;		/* protect last_disk_size */
762 
763 #ifdef CONFIG_QUOTA
764 	struct dquot *i_dquot[MAXQUOTAS];
765 
766 	/* quota space reservation, managed internally by quota code */
767 	qsize_t i_reserved_quota;
768 #endif
769 	struct list_head dirty_list;	/* dirty list for dirs and files */
770 	struct list_head gdirty_list;	/* linked in global dirty list */
771 	struct list_head inmem_ilist;	/* list for inmem inodes */
772 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
773 	struct task_struct *inmem_task;	/* store inmemory task */
774 	struct mutex inmem_lock;	/* lock for inmemory pages */
775 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
776 
777 	/* avoid racing between foreground op and gc */
778 	struct rw_semaphore i_gc_rwsem[2];
779 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
780 
781 	int i_extra_isize;		/* size of extra space located in i_addr */
782 	kprojid_t i_projid;		/* id for project quota */
783 	int i_inline_xattr_size;	/* inline xattr size */
784 	struct timespec64 i_crtime;	/* inode creation time */
785 	struct timespec64 i_disk_time[4];/* inode disk times */
786 
787 	/* for file compress */
788 	atomic_t i_compr_blocks;		/* # of compressed blocks */
789 	unsigned char i_compress_algorithm;	/* algorithm type */
790 	unsigned char i_log_cluster_size;	/* log of cluster size */
791 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
792 	unsigned short i_compress_flag;		/* compress flag */
793 	unsigned int i_cluster_size;		/* cluster size */
794 };
795 
796 static inline void get_extent_info(struct extent_info *ext,
797 					struct f2fs_extent *i_ext)
798 {
799 	ext->fofs = le32_to_cpu(i_ext->fofs);
800 	ext->blk = le32_to_cpu(i_ext->blk);
801 	ext->len = le32_to_cpu(i_ext->len);
802 }
803 
804 static inline void set_raw_extent(struct extent_info *ext,
805 					struct f2fs_extent *i_ext)
806 {
807 	i_ext->fofs = cpu_to_le32(ext->fofs);
808 	i_ext->blk = cpu_to_le32(ext->blk);
809 	i_ext->len = cpu_to_le32(ext->len);
810 }
811 
812 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
813 						u32 blk, unsigned int len)
814 {
815 	ei->fofs = fofs;
816 	ei->blk = blk;
817 	ei->len = len;
818 #ifdef CONFIG_F2FS_FS_COMPRESSION
819 	ei->c_len = 0;
820 #endif
821 }
822 
823 static inline bool __is_discard_mergeable(struct discard_info *back,
824 			struct discard_info *front, unsigned int max_len)
825 {
826 	return (back->lstart + back->len == front->lstart) &&
827 		(back->len + front->len <= max_len);
828 }
829 
830 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
831 			struct discard_info *back, unsigned int max_len)
832 {
833 	return __is_discard_mergeable(back, cur, max_len);
834 }
835 
836 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
837 			struct discard_info *front, unsigned int max_len)
838 {
839 	return __is_discard_mergeable(cur, front, max_len);
840 }
841 
842 static inline bool __is_extent_mergeable(struct extent_info *back,
843 						struct extent_info *front)
844 {
845 #ifdef CONFIG_F2FS_FS_COMPRESSION
846 	if (back->c_len && back->len != back->c_len)
847 		return false;
848 	if (front->c_len && front->len != front->c_len)
849 		return false;
850 #endif
851 	return (back->fofs + back->len == front->fofs &&
852 			back->blk + back->len == front->blk);
853 }
854 
855 static inline bool __is_back_mergeable(struct extent_info *cur,
856 						struct extent_info *back)
857 {
858 	return __is_extent_mergeable(back, cur);
859 }
860 
861 static inline bool __is_front_mergeable(struct extent_info *cur,
862 						struct extent_info *front)
863 {
864 	return __is_extent_mergeable(cur, front);
865 }
866 
867 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
868 static inline void __try_update_largest_extent(struct extent_tree *et,
869 						struct extent_node *en)
870 {
871 	if (en->ei.len > et->largest.len) {
872 		et->largest = en->ei;
873 		et->largest_updated = true;
874 	}
875 }
876 
877 /*
878  * For free nid management
879  */
880 enum nid_state {
881 	FREE_NID,		/* newly added to free nid list */
882 	PREALLOC_NID,		/* it is preallocated */
883 	MAX_NID_STATE,
884 };
885 
886 enum nat_state {
887 	TOTAL_NAT,
888 	DIRTY_NAT,
889 	RECLAIMABLE_NAT,
890 	MAX_NAT_STATE,
891 };
892 
893 struct f2fs_nm_info {
894 	block_t nat_blkaddr;		/* base disk address of NAT */
895 	nid_t max_nid;			/* maximum possible node ids */
896 	nid_t available_nids;		/* # of available node ids */
897 	nid_t next_scan_nid;		/* the next nid to be scanned */
898 	unsigned int ram_thresh;	/* control the memory footprint */
899 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
900 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
901 
902 	/* NAT cache management */
903 	struct radix_tree_root nat_root;/* root of the nat entry cache */
904 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
905 	struct rw_semaphore nat_tree_lock;	/* protect nat entry tree */
906 	struct list_head nat_entries;	/* cached nat entry list (clean) */
907 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
908 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
909 	unsigned int nat_blocks;	/* # of nat blocks */
910 
911 	/* free node ids management */
912 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
913 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
914 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
915 	spinlock_t nid_list_lock;	/* protect nid lists ops */
916 	struct mutex build_lock;	/* lock for build free nids */
917 	unsigned char **free_nid_bitmap;
918 	unsigned char *nat_block_bitmap;
919 	unsigned short *free_nid_count;	/* free nid count of NAT block */
920 
921 	/* for checkpoint */
922 	char *nat_bitmap;		/* NAT bitmap pointer */
923 
924 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
925 	unsigned char *nat_bits;	/* NAT bits blocks */
926 	unsigned char *full_nat_bits;	/* full NAT pages */
927 	unsigned char *empty_nat_bits;	/* empty NAT pages */
928 #ifdef CONFIG_F2FS_CHECK_FS
929 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
930 #endif
931 	int bitmap_size;		/* bitmap size */
932 };
933 
934 /*
935  * this structure is used as one of function parameters.
936  * all the information are dedicated to a given direct node block determined
937  * by the data offset in a file.
938  */
939 struct dnode_of_data {
940 	struct inode *inode;		/* vfs inode pointer */
941 	struct page *inode_page;	/* its inode page, NULL is possible */
942 	struct page *node_page;		/* cached direct node page */
943 	nid_t nid;			/* node id of the direct node block */
944 	unsigned int ofs_in_node;	/* data offset in the node page */
945 	bool inode_page_locked;		/* inode page is locked or not */
946 	bool node_changed;		/* is node block changed */
947 	char cur_level;			/* level of hole node page */
948 	char max_level;			/* level of current page located */
949 	block_t	data_blkaddr;		/* block address of the node block */
950 };
951 
952 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
953 		struct page *ipage, struct page *npage, nid_t nid)
954 {
955 	memset(dn, 0, sizeof(*dn));
956 	dn->inode = inode;
957 	dn->inode_page = ipage;
958 	dn->node_page = npage;
959 	dn->nid = nid;
960 }
961 
962 /*
963  * For SIT manager
964  *
965  * By default, there are 6 active log areas across the whole main area.
966  * When considering hot and cold data separation to reduce cleaning overhead,
967  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
968  * respectively.
969  * In the current design, you should not change the numbers intentionally.
970  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
971  * logs individually according to the underlying devices. (default: 6)
972  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
973  * data and 8 for node logs.
974  */
975 #define	NR_CURSEG_DATA_TYPE	(3)
976 #define NR_CURSEG_NODE_TYPE	(3)
977 #define NR_CURSEG_INMEM_TYPE	(2)
978 #define NR_CURSEG_RO_TYPE	(2)
979 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
980 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
981 
982 enum {
983 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
984 	CURSEG_WARM_DATA,	/* data blocks */
985 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
986 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
987 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
988 	CURSEG_COLD_NODE,	/* indirect node blocks */
989 	NR_PERSISTENT_LOG,	/* number of persistent log */
990 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
991 				/* pinned file that needs consecutive block address */
992 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
993 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
994 };
995 
996 struct flush_cmd {
997 	struct completion wait;
998 	struct llist_node llnode;
999 	nid_t ino;
1000 	int ret;
1001 };
1002 
1003 struct flush_cmd_control {
1004 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1005 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1006 	atomic_t issued_flush;			/* # of issued flushes */
1007 	atomic_t queued_flush;			/* # of queued flushes */
1008 	struct llist_head issue_list;		/* list for command issue */
1009 	struct llist_node *dispatch_list;	/* list for command dispatch */
1010 };
1011 
1012 struct f2fs_sm_info {
1013 	struct sit_info *sit_info;		/* whole segment information */
1014 	struct free_segmap_info *free_info;	/* free segment information */
1015 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1016 	struct curseg_info *curseg_array;	/* active segment information */
1017 
1018 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
1019 
1020 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1021 	block_t main_blkaddr;		/* start block address of main area */
1022 	block_t ssa_blkaddr;		/* start block address of SSA area */
1023 
1024 	unsigned int segment_count;	/* total # of segments */
1025 	unsigned int main_segments;	/* # of segments in main area */
1026 	unsigned int reserved_segments;	/* # of reserved segments */
1027 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1028 	unsigned int ovp_segments;	/* # of overprovision segments */
1029 
1030 	/* a threshold to reclaim prefree segments */
1031 	unsigned int rec_prefree_segments;
1032 
1033 	/* for batched trimming */
1034 	unsigned int trim_sections;		/* # of sections to trim */
1035 
1036 	struct list_head sit_entry_set;	/* sit entry set list */
1037 
1038 	unsigned int ipu_policy;	/* in-place-update policy */
1039 	unsigned int min_ipu_util;	/* in-place-update threshold */
1040 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1041 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1042 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1043 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1044 
1045 	/* for flush command control */
1046 	struct flush_cmd_control *fcc_info;
1047 
1048 	/* for discard command control */
1049 	struct discard_cmd_control *dcc_info;
1050 };
1051 
1052 /*
1053  * For superblock
1054  */
1055 /*
1056  * COUNT_TYPE for monitoring
1057  *
1058  * f2fs monitors the number of several block types such as on-writeback,
1059  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1060  */
1061 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1062 enum count_type {
1063 	F2FS_DIRTY_DENTS,
1064 	F2FS_DIRTY_DATA,
1065 	F2FS_DIRTY_QDATA,
1066 	F2FS_DIRTY_NODES,
1067 	F2FS_DIRTY_META,
1068 	F2FS_INMEM_PAGES,
1069 	F2FS_DIRTY_IMETA,
1070 	F2FS_WB_CP_DATA,
1071 	F2FS_WB_DATA,
1072 	F2FS_RD_DATA,
1073 	F2FS_RD_NODE,
1074 	F2FS_RD_META,
1075 	F2FS_DIO_WRITE,
1076 	F2FS_DIO_READ,
1077 	NR_COUNT_TYPE,
1078 };
1079 
1080 /*
1081  * The below are the page types of bios used in submit_bio().
1082  * The available types are:
1083  * DATA			User data pages. It operates as async mode.
1084  * NODE			Node pages. It operates as async mode.
1085  * META			FS metadata pages such as SIT, NAT, CP.
1086  * NR_PAGE_TYPE		The number of page types.
1087  * META_FLUSH		Make sure the previous pages are written
1088  *			with waiting the bio's completion
1089  * ...			Only can be used with META.
1090  */
1091 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1092 enum page_type {
1093 	DATA,
1094 	NODE,
1095 	META,
1096 	NR_PAGE_TYPE,
1097 	META_FLUSH,
1098 	INMEM,		/* the below types are used by tracepoints only. */
1099 	INMEM_DROP,
1100 	INMEM_INVALIDATE,
1101 	INMEM_REVOKE,
1102 	IPU,
1103 	OPU,
1104 };
1105 
1106 enum temp_type {
1107 	HOT = 0,	/* must be zero for meta bio */
1108 	WARM,
1109 	COLD,
1110 	NR_TEMP_TYPE,
1111 };
1112 
1113 enum need_lock_type {
1114 	LOCK_REQ = 0,
1115 	LOCK_DONE,
1116 	LOCK_RETRY,
1117 };
1118 
1119 enum cp_reason_type {
1120 	CP_NO_NEEDED,
1121 	CP_NON_REGULAR,
1122 	CP_COMPRESSED,
1123 	CP_HARDLINK,
1124 	CP_SB_NEED_CP,
1125 	CP_WRONG_PINO,
1126 	CP_NO_SPC_ROLL,
1127 	CP_NODE_NEED_CP,
1128 	CP_FASTBOOT_MODE,
1129 	CP_SPEC_LOG_NUM,
1130 	CP_RECOVER_DIR,
1131 };
1132 
1133 enum iostat_type {
1134 	/* WRITE IO */
1135 	APP_DIRECT_IO,			/* app direct write IOs */
1136 	APP_BUFFERED_IO,		/* app buffered write IOs */
1137 	APP_WRITE_IO,			/* app write IOs */
1138 	APP_MAPPED_IO,			/* app mapped IOs */
1139 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1140 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1141 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1142 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1143 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1144 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1145 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1146 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1147 
1148 	/* READ IO */
1149 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1150 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1151 	APP_READ_IO,			/* app read IOs */
1152 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1153 	FS_DATA_READ_IO,		/* data read IOs */
1154 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1155 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1156 	FS_NODE_READ_IO,		/* node read IOs */
1157 	FS_META_READ_IO,		/* meta read IOs */
1158 
1159 	/* other */
1160 	FS_DISCARD,			/* discard */
1161 	NR_IO_TYPE,
1162 };
1163 
1164 struct f2fs_io_info {
1165 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1166 	nid_t ino;		/* inode number */
1167 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1168 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1169 	int op;			/* contains REQ_OP_ */
1170 	int op_flags;		/* req_flag_bits */
1171 	block_t new_blkaddr;	/* new block address to be written */
1172 	block_t old_blkaddr;	/* old block address before Cow */
1173 	struct page *page;	/* page to be written */
1174 	struct page *encrypted_page;	/* encrypted page */
1175 	struct page *compressed_page;	/* compressed page */
1176 	struct list_head list;		/* serialize IOs */
1177 	bool submitted;		/* indicate IO submission */
1178 	int need_lock;		/* indicate we need to lock cp_rwsem */
1179 	bool in_list;		/* indicate fio is in io_list */
1180 	bool is_por;		/* indicate IO is from recovery or not */
1181 	bool retry;		/* need to reallocate block address */
1182 	int compr_blocks;	/* # of compressed block addresses */
1183 	bool encrypted;		/* indicate file is encrypted */
1184 	enum iostat_type io_type;	/* io type */
1185 	struct writeback_control *io_wbc; /* writeback control */
1186 	struct bio **bio;		/* bio for ipu */
1187 	sector_t *last_block;		/* last block number in bio */
1188 	unsigned char version;		/* version of the node */
1189 };
1190 
1191 struct bio_entry {
1192 	struct bio *bio;
1193 	struct list_head list;
1194 };
1195 
1196 #define is_read_io(rw) ((rw) == READ)
1197 struct f2fs_bio_info {
1198 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1199 	struct bio *bio;		/* bios to merge */
1200 	sector_t last_block_in_bio;	/* last block number */
1201 	struct f2fs_io_info fio;	/* store buffered io info. */
1202 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1203 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1204 	struct list_head io_list;	/* track fios */
1205 	struct list_head bio_list;	/* bio entry list head */
1206 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1207 };
1208 
1209 #define FDEV(i)				(sbi->devs[i])
1210 #define RDEV(i)				(raw_super->devs[i])
1211 struct f2fs_dev_info {
1212 	struct block_device *bdev;
1213 	char path[MAX_PATH_LEN];
1214 	unsigned int total_segments;
1215 	block_t start_blk;
1216 	block_t end_blk;
1217 #ifdef CONFIG_BLK_DEV_ZONED
1218 	unsigned int nr_blkz;		/* Total number of zones */
1219 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1220 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1221 #endif
1222 };
1223 
1224 enum inode_type {
1225 	DIR_INODE,			/* for dirty dir inode */
1226 	FILE_INODE,			/* for dirty regular/symlink inode */
1227 	DIRTY_META,			/* for all dirtied inode metadata */
1228 	ATOMIC_FILE,			/* for all atomic files */
1229 	NR_INODE_TYPE,
1230 };
1231 
1232 /* for inner inode cache management */
1233 struct inode_management {
1234 	struct radix_tree_root ino_root;	/* ino entry array */
1235 	spinlock_t ino_lock;			/* for ino entry lock */
1236 	struct list_head ino_list;		/* inode list head */
1237 	unsigned long ino_num;			/* number of entries */
1238 };
1239 
1240 /* for GC_AT */
1241 struct atgc_management {
1242 	bool atgc_enabled;			/* ATGC is enabled or not */
1243 	struct rb_root_cached root;		/* root of victim rb-tree */
1244 	struct list_head victim_list;		/* linked with all victim entries */
1245 	unsigned int victim_count;		/* victim count in rb-tree */
1246 	unsigned int candidate_ratio;		/* candidate ratio */
1247 	unsigned int max_candidate_count;	/* max candidate count */
1248 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1249 	unsigned long long age_threshold;	/* age threshold */
1250 };
1251 
1252 /* For s_flag in struct f2fs_sb_info */
1253 enum {
1254 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1255 	SBI_IS_CLOSE,				/* specify unmounting */
1256 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1257 	SBI_POR_DOING,				/* recovery is doing or not */
1258 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1259 	SBI_NEED_CP,				/* need to checkpoint */
1260 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1261 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1262 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1263 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1264 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1265 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1266 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1267 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1268 };
1269 
1270 enum {
1271 	CP_TIME,
1272 	REQ_TIME,
1273 	DISCARD_TIME,
1274 	GC_TIME,
1275 	DISABLE_TIME,
1276 	UMOUNT_DISCARD_TIMEOUT,
1277 	MAX_TIME,
1278 };
1279 
1280 enum {
1281 	GC_NORMAL,
1282 	GC_IDLE_CB,
1283 	GC_IDLE_GREEDY,
1284 	GC_IDLE_AT,
1285 	GC_URGENT_HIGH,
1286 	GC_URGENT_LOW,
1287 	MAX_GC_MODE,
1288 };
1289 
1290 enum {
1291 	BGGC_MODE_ON,		/* background gc is on */
1292 	BGGC_MODE_OFF,		/* background gc is off */
1293 	BGGC_MODE_SYNC,		/*
1294 				 * background gc is on, migrating blocks
1295 				 * like foreground gc
1296 				 */
1297 };
1298 
1299 enum {
1300 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1301 	FS_MODE_LFS,			/* use lfs allocation only */
1302 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1303 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1304 };
1305 
1306 enum {
1307 	WHINT_MODE_OFF,		/* not pass down write hints */
1308 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1309 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1310 };
1311 
1312 enum {
1313 	ALLOC_MODE_DEFAULT,	/* stay default */
1314 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1315 };
1316 
1317 enum fsync_mode {
1318 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1319 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1320 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1321 };
1322 
1323 enum {
1324 	COMPR_MODE_FS,		/*
1325 				 * automatically compress compression
1326 				 * enabled files
1327 				 */
1328 	COMPR_MODE_USER,	/*
1329 				 * automatical compression is disabled.
1330 				 * user can control the file compression
1331 				 * using ioctls
1332 				 */
1333 };
1334 
1335 enum {
1336 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1337 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1338 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1339 };
1340 
1341 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1342 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1343 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1344 
1345 /*
1346  * Layout of f2fs page.private:
1347  *
1348  * Layout A: lowest bit should be 1
1349  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1350  * bit 0	PAGE_PRIVATE_NOT_POINTER
1351  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1352  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1353  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1354  * bit 4	PAGE_PRIVATE_INLINE_INODE
1355  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1356  * bit 6-	f2fs private data
1357  *
1358  * Layout B: lowest bit should be 0
1359  * page.private is a wrapped pointer.
1360  */
1361 enum {
1362 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1363 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1364 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1365 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1366 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1367 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1368 	PAGE_PRIVATE_MAX
1369 };
1370 
1371 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1372 static inline bool page_private_##name(struct page *page) \
1373 { \
1374 	return PagePrivate(page) && \
1375 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1376 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1377 }
1378 
1379 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1380 static inline void set_page_private_##name(struct page *page) \
1381 { \
1382 	if (!PagePrivate(page)) { \
1383 		get_page(page); \
1384 		SetPagePrivate(page); \
1385 		set_page_private(page, 0); \
1386 	} \
1387 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1388 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1389 }
1390 
1391 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1392 static inline void clear_page_private_##name(struct page *page) \
1393 { \
1394 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1395 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1396 		set_page_private(page, 0); \
1397 		if (PagePrivate(page)) { \
1398 			ClearPagePrivate(page); \
1399 			put_page(page); \
1400 		}\
1401 	} \
1402 }
1403 
1404 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1405 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1406 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1407 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1408 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1409 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1410 
1411 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1412 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1413 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1414 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1415 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1416 
1417 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1418 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1419 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1420 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1421 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1422 
1423 static inline unsigned long get_page_private_data(struct page *page)
1424 {
1425 	unsigned long data = page_private(page);
1426 
1427 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1428 		return 0;
1429 	return data >> PAGE_PRIVATE_MAX;
1430 }
1431 
1432 static inline void set_page_private_data(struct page *page, unsigned long data)
1433 {
1434 	if (!PagePrivate(page)) {
1435 		get_page(page);
1436 		SetPagePrivate(page);
1437 		set_page_private(page, 0);
1438 	}
1439 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1440 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1441 }
1442 
1443 static inline void clear_page_private_data(struct page *page)
1444 {
1445 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1446 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1447 		set_page_private(page, 0);
1448 		if (PagePrivate(page)) {
1449 			ClearPagePrivate(page);
1450 			put_page(page);
1451 		}
1452 	}
1453 }
1454 
1455 /* For compression */
1456 enum compress_algorithm_type {
1457 	COMPRESS_LZO,
1458 	COMPRESS_LZ4,
1459 	COMPRESS_ZSTD,
1460 	COMPRESS_LZORLE,
1461 	COMPRESS_MAX,
1462 };
1463 
1464 enum compress_flag {
1465 	COMPRESS_CHKSUM,
1466 	COMPRESS_MAX_FLAG,
1467 };
1468 
1469 #define	COMPRESS_WATERMARK			20
1470 #define	COMPRESS_PERCENT			20
1471 
1472 #define COMPRESS_DATA_RESERVED_SIZE		4
1473 struct compress_data {
1474 	__le32 clen;			/* compressed data size */
1475 	__le32 chksum;			/* compressed data chksum */
1476 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1477 	u8 cdata[];			/* compressed data */
1478 };
1479 
1480 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1481 
1482 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1483 
1484 #define	COMPRESS_LEVEL_OFFSET	8
1485 
1486 /* compress context */
1487 struct compress_ctx {
1488 	struct inode *inode;		/* inode the context belong to */
1489 	pgoff_t cluster_idx;		/* cluster index number */
1490 	unsigned int cluster_size;	/* page count in cluster */
1491 	unsigned int log_cluster_size;	/* log of cluster size */
1492 	struct page **rpages;		/* pages store raw data in cluster */
1493 	unsigned int nr_rpages;		/* total page number in rpages */
1494 	struct page **cpages;		/* pages store compressed data in cluster */
1495 	unsigned int nr_cpages;		/* total page number in cpages */
1496 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1497 	void *rbuf;			/* virtual mapped address on rpages */
1498 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1499 	size_t rlen;			/* valid data length in rbuf */
1500 	size_t clen;			/* valid data length in cbuf */
1501 	void *private;			/* payload buffer for specified compression algorithm */
1502 	void *private2;			/* extra payload buffer */
1503 };
1504 
1505 /* compress context for write IO path */
1506 struct compress_io_ctx {
1507 	u32 magic;			/* magic number to indicate page is compressed */
1508 	struct inode *inode;		/* inode the context belong to */
1509 	struct page **rpages;		/* pages store raw data in cluster */
1510 	unsigned int nr_rpages;		/* total page number in rpages */
1511 	atomic_t pending_pages;		/* in-flight compressed page count */
1512 };
1513 
1514 /* Context for decompressing one cluster on the read IO path */
1515 struct decompress_io_ctx {
1516 	u32 magic;			/* magic number to indicate page is compressed */
1517 	struct inode *inode;		/* inode the context belong to */
1518 	pgoff_t cluster_idx;		/* cluster index number */
1519 	unsigned int cluster_size;	/* page count in cluster */
1520 	unsigned int log_cluster_size;	/* log of cluster size */
1521 	struct page **rpages;		/* pages store raw data in cluster */
1522 	unsigned int nr_rpages;		/* total page number in rpages */
1523 	struct page **cpages;		/* pages store compressed data in cluster */
1524 	unsigned int nr_cpages;		/* total page number in cpages */
1525 	struct page **tpages;		/* temp pages to pad holes in cluster */
1526 	void *rbuf;			/* virtual mapped address on rpages */
1527 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1528 	size_t rlen;			/* valid data length in rbuf */
1529 	size_t clen;			/* valid data length in cbuf */
1530 
1531 	/*
1532 	 * The number of compressed pages remaining to be read in this cluster.
1533 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1534 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1535 	 * is decompressed (or an error is reported).
1536 	 *
1537 	 * If an error occurs before all the pages have been submitted for I/O,
1538 	 * then this will never reach 0.  In this case the I/O submitter is
1539 	 * responsible for calling f2fs_decompress_end_io() instead.
1540 	 */
1541 	atomic_t remaining_pages;
1542 
1543 	/*
1544 	 * Number of references to this decompress_io_ctx.
1545 	 *
1546 	 * One reference is held for I/O completion.  This reference is dropped
1547 	 * after the pagecache pages are updated and unlocked -- either after
1548 	 * decompression (and verity if enabled), or after an error.
1549 	 *
1550 	 * In addition, each compressed page holds a reference while it is in a
1551 	 * bio.  These references are necessary prevent compressed pages from
1552 	 * being freed while they are still in a bio.
1553 	 */
1554 	refcount_t refcnt;
1555 
1556 	bool failed;			/* IO error occurred before decompression? */
1557 	bool need_verity;		/* need fs-verity verification after decompression? */
1558 	void *private;			/* payload buffer for specified decompression algorithm */
1559 	void *private2;			/* extra payload buffer */
1560 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1561 };
1562 
1563 #define NULL_CLUSTER			((unsigned int)(~0))
1564 #define MIN_COMPRESS_LOG_SIZE		2
1565 #define MAX_COMPRESS_LOG_SIZE		8
1566 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1567 
1568 struct f2fs_sb_info {
1569 	struct super_block *sb;			/* pointer to VFS super block */
1570 	struct proc_dir_entry *s_proc;		/* proc entry */
1571 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1572 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1573 	int valid_super_block;			/* valid super block no */
1574 	unsigned long s_flag;				/* flags for sbi */
1575 	struct mutex writepages;		/* mutex for writepages() */
1576 
1577 #ifdef CONFIG_BLK_DEV_ZONED
1578 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1579 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1580 #endif
1581 
1582 	/* for node-related operations */
1583 	struct f2fs_nm_info *nm_info;		/* node manager */
1584 	struct inode *node_inode;		/* cache node blocks */
1585 
1586 	/* for segment-related operations */
1587 	struct f2fs_sm_info *sm_info;		/* segment manager */
1588 
1589 	/* for bio operations */
1590 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1591 	/* keep migration IO order for LFS mode */
1592 	struct rw_semaphore io_order_lock;
1593 	mempool_t *write_io_dummy;		/* Dummy pages */
1594 
1595 	/* for checkpoint */
1596 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1597 	int cur_cp_pack;			/* remain current cp pack */
1598 	spinlock_t cp_lock;			/* for flag in ckpt */
1599 	struct inode *meta_inode;		/* cache meta blocks */
1600 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1601 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1602 	struct rw_semaphore node_write;		/* locking node writes */
1603 	struct rw_semaphore node_change;	/* locking node change */
1604 	wait_queue_head_t cp_wait;
1605 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1606 	long interval_time[MAX_TIME];		/* to store thresholds */
1607 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1608 
1609 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1610 
1611 	spinlock_t fsync_node_lock;		/* for node entry lock */
1612 	struct list_head fsync_node_list;	/* node list head */
1613 	unsigned int fsync_seg_id;		/* sequence id */
1614 	unsigned int fsync_node_num;		/* number of node entries */
1615 
1616 	/* for orphan inode, use 0'th array */
1617 	unsigned int max_orphans;		/* max orphan inodes */
1618 
1619 	/* for inode management */
1620 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1621 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1622 	struct mutex flush_lock;		/* for flush exclusion */
1623 
1624 	/* for extent tree cache */
1625 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1626 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1627 	struct list_head extent_list;		/* lru list for shrinker */
1628 	spinlock_t extent_lock;			/* locking extent lru list */
1629 	atomic_t total_ext_tree;		/* extent tree count */
1630 	struct list_head zombie_list;		/* extent zombie tree list */
1631 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1632 	atomic_t total_ext_node;		/* extent info count */
1633 
1634 	/* basic filesystem units */
1635 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1636 	unsigned int log_blocksize;		/* log2 block size */
1637 	unsigned int blocksize;			/* block size */
1638 	unsigned int root_ino_num;		/* root inode number*/
1639 	unsigned int node_ino_num;		/* node inode number*/
1640 	unsigned int meta_ino_num;		/* meta inode number*/
1641 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1642 	unsigned int blocks_per_seg;		/* blocks per segment */
1643 	unsigned int segs_per_sec;		/* segments per section */
1644 	unsigned int secs_per_zone;		/* sections per zone */
1645 	unsigned int total_sections;		/* total section count */
1646 	unsigned int total_node_count;		/* total node block count */
1647 	unsigned int total_valid_node_count;	/* valid node block count */
1648 	int dir_level;				/* directory level */
1649 	int readdir_ra;				/* readahead inode in readdir */
1650 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1651 
1652 	block_t user_block_count;		/* # of user blocks */
1653 	block_t total_valid_block_count;	/* # of valid blocks */
1654 	block_t discard_blks;			/* discard command candidats */
1655 	block_t last_valid_block_count;		/* for recovery */
1656 	block_t reserved_blocks;		/* configurable reserved blocks */
1657 	block_t current_reserved_blocks;	/* current reserved blocks */
1658 
1659 	/* Additional tracking for no checkpoint mode */
1660 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1661 
1662 	unsigned int nquota_files;		/* # of quota sysfile */
1663 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1664 
1665 	/* # of pages, see count_type */
1666 	atomic_t nr_pages[NR_COUNT_TYPE];
1667 	/* # of allocated blocks */
1668 	struct percpu_counter alloc_valid_block_count;
1669 
1670 	/* writeback control */
1671 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1672 
1673 	/* valid inode count */
1674 	struct percpu_counter total_valid_inode_count;
1675 
1676 	struct f2fs_mount_info mount_opt;	/* mount options */
1677 
1678 	/* for cleaning operations */
1679 	struct rw_semaphore gc_lock;		/*
1680 						 * semaphore for GC, avoid
1681 						 * race between GC and GC or CP
1682 						 */
1683 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1684 	struct atgc_management am;		/* atgc management */
1685 	unsigned int cur_victim_sec;		/* current victim section num */
1686 	unsigned int gc_mode;			/* current GC state */
1687 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1688 	spinlock_t gc_urgent_high_lock;
1689 	bool gc_urgent_high_limited;		/* indicates having limited trial count */
1690 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1691 
1692 	/* for skip statistic */
1693 	unsigned int atomic_files;		/* # of opened atomic file */
1694 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1695 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1696 
1697 	/* threshold for gc trials on pinned files */
1698 	u64 gc_pin_file_threshold;
1699 	struct rw_semaphore pin_sem;
1700 
1701 	/* maximum # of trials to find a victim segment for SSR and GC */
1702 	unsigned int max_victim_search;
1703 	/* migration granularity of garbage collection, unit: segment */
1704 	unsigned int migration_granularity;
1705 
1706 	/*
1707 	 * for stat information.
1708 	 * one is for the LFS mode, and the other is for the SSR mode.
1709 	 */
1710 #ifdef CONFIG_F2FS_STAT_FS
1711 	struct f2fs_stat_info *stat_info;	/* FS status information */
1712 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1713 	unsigned int segment_count[2];		/* # of allocated segments */
1714 	unsigned int block_count[2];		/* # of allocated blocks */
1715 	atomic_t inplace_count;		/* # of inplace update */
1716 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1717 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1718 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1719 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1720 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1721 	atomic_t inline_inode;			/* # of inline_data inodes */
1722 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1723 	atomic_t compr_inode;			/* # of compressed inodes */
1724 	atomic64_t compr_blocks;		/* # of compressed blocks */
1725 	atomic_t vw_cnt;			/* # of volatile writes */
1726 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1727 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1728 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1729 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1730 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1731 #endif
1732 	spinlock_t stat_lock;			/* lock for stat operations */
1733 
1734 	/* to attach REQ_META|REQ_FUA flags */
1735 	unsigned int data_io_flag;
1736 	unsigned int node_io_flag;
1737 
1738 	/* For sysfs suppport */
1739 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1740 	struct completion s_kobj_unregister;
1741 
1742 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1743 	struct completion s_stat_kobj_unregister;
1744 
1745 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1746 	struct completion s_feature_list_kobj_unregister;
1747 
1748 	/* For shrinker support */
1749 	struct list_head s_list;
1750 	struct mutex umount_mutex;
1751 	unsigned int shrinker_run_no;
1752 
1753 	/* For multi devices */
1754 	int s_ndevs;				/* number of devices */
1755 	struct f2fs_dev_info *devs;		/* for device list */
1756 	unsigned int dirty_device;		/* for checkpoint data flush */
1757 	spinlock_t dev_lock;			/* protect dirty_device */
1758 	bool aligned_blksize;			/* all devices has the same logical blksize */
1759 
1760 	/* For write statistics */
1761 	u64 sectors_written_start;
1762 	u64 kbytes_written;
1763 
1764 	/* Reference to checksum algorithm driver via cryptoapi */
1765 	struct crypto_shash *s_chksum_driver;
1766 
1767 	/* Precomputed FS UUID checksum for seeding other checksums */
1768 	__u32 s_chksum_seed;
1769 
1770 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1771 
1772 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1773 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1774 
1775 	/* For reclaimed segs statistics per each GC mode */
1776 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1777 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1778 
1779 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1780 
1781 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1782 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1783 
1784 #ifdef CONFIG_F2FS_FS_COMPRESSION
1785 	struct kmem_cache *page_array_slab;	/* page array entry */
1786 	unsigned int page_array_slab_size;	/* default page array slab size */
1787 
1788 	/* For runtime compression statistics */
1789 	u64 compr_written_block;
1790 	u64 compr_saved_block;
1791 	u32 compr_new_inode;
1792 
1793 	/* For compressed block cache */
1794 	struct inode *compress_inode;		/* cache compressed blocks */
1795 	unsigned int compress_percent;		/* cache page percentage */
1796 	unsigned int compress_watermark;	/* cache page watermark */
1797 	atomic_t compress_page_hit;		/* cache hit count */
1798 #endif
1799 
1800 #ifdef CONFIG_F2FS_IOSTAT
1801 	/* For app/fs IO statistics */
1802 	spinlock_t iostat_lock;
1803 	unsigned long long rw_iostat[NR_IO_TYPE];
1804 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1805 	bool iostat_enable;
1806 	unsigned long iostat_next_period;
1807 	unsigned int iostat_period_ms;
1808 
1809 	/* For io latency related statistics info in one iostat period */
1810 	spinlock_t iostat_lat_lock;
1811 	struct iostat_lat_info *iostat_io_lat;
1812 #endif
1813 };
1814 
1815 #ifdef CONFIG_F2FS_FAULT_INJECTION
1816 #define f2fs_show_injection_info(sbi, type)					\
1817 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1818 		KERN_INFO, sbi->sb->s_id,				\
1819 		f2fs_fault_name[type],					\
1820 		__func__, __builtin_return_address(0))
1821 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1822 {
1823 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1824 
1825 	if (!ffi->inject_rate)
1826 		return false;
1827 
1828 	if (!IS_FAULT_SET(ffi, type))
1829 		return false;
1830 
1831 	atomic_inc(&ffi->inject_ops);
1832 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1833 		atomic_set(&ffi->inject_ops, 0);
1834 		return true;
1835 	}
1836 	return false;
1837 }
1838 #else
1839 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1840 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1841 {
1842 	return false;
1843 }
1844 #endif
1845 
1846 /*
1847  * Test if the mounted volume is a multi-device volume.
1848  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1849  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1850  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1851  */
1852 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1853 {
1854 	return sbi->s_ndevs > 1;
1855 }
1856 
1857 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1858 {
1859 	unsigned long now = jiffies;
1860 
1861 	sbi->last_time[type] = now;
1862 
1863 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1864 	if (type == REQ_TIME) {
1865 		sbi->last_time[DISCARD_TIME] = now;
1866 		sbi->last_time[GC_TIME] = now;
1867 	}
1868 }
1869 
1870 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1871 {
1872 	unsigned long interval = sbi->interval_time[type] * HZ;
1873 
1874 	return time_after(jiffies, sbi->last_time[type] + interval);
1875 }
1876 
1877 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1878 						int type)
1879 {
1880 	unsigned long interval = sbi->interval_time[type] * HZ;
1881 	unsigned int wait_ms = 0;
1882 	long delta;
1883 
1884 	delta = (sbi->last_time[type] + interval) - jiffies;
1885 	if (delta > 0)
1886 		wait_ms = jiffies_to_msecs(delta);
1887 
1888 	return wait_ms;
1889 }
1890 
1891 /*
1892  * Inline functions
1893  */
1894 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1895 			      const void *address, unsigned int length)
1896 {
1897 	struct {
1898 		struct shash_desc shash;
1899 		char ctx[4];
1900 	} desc;
1901 	int err;
1902 
1903 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1904 
1905 	desc.shash.tfm = sbi->s_chksum_driver;
1906 	*(u32 *)desc.ctx = crc;
1907 
1908 	err = crypto_shash_update(&desc.shash, address, length);
1909 	BUG_ON(err);
1910 
1911 	return *(u32 *)desc.ctx;
1912 }
1913 
1914 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1915 			   unsigned int length)
1916 {
1917 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1918 }
1919 
1920 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1921 				  void *buf, size_t buf_size)
1922 {
1923 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1924 }
1925 
1926 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1927 			      const void *address, unsigned int length)
1928 {
1929 	return __f2fs_crc32(sbi, crc, address, length);
1930 }
1931 
1932 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1933 {
1934 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1935 }
1936 
1937 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1938 {
1939 	return sb->s_fs_info;
1940 }
1941 
1942 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1943 {
1944 	return F2FS_SB(inode->i_sb);
1945 }
1946 
1947 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1948 {
1949 	return F2FS_I_SB(mapping->host);
1950 }
1951 
1952 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1953 {
1954 	return F2FS_M_SB(page_file_mapping(page));
1955 }
1956 
1957 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1958 {
1959 	return (struct f2fs_super_block *)(sbi->raw_super);
1960 }
1961 
1962 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1963 {
1964 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1965 }
1966 
1967 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1968 {
1969 	return (struct f2fs_node *)page_address(page);
1970 }
1971 
1972 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1973 {
1974 	return &((struct f2fs_node *)page_address(page))->i;
1975 }
1976 
1977 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1978 {
1979 	return (struct f2fs_nm_info *)(sbi->nm_info);
1980 }
1981 
1982 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1983 {
1984 	return (struct f2fs_sm_info *)(sbi->sm_info);
1985 }
1986 
1987 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1988 {
1989 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1990 }
1991 
1992 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1993 {
1994 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1995 }
1996 
1997 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1998 {
1999 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2000 }
2001 
2002 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2003 {
2004 	return sbi->meta_inode->i_mapping;
2005 }
2006 
2007 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2008 {
2009 	return sbi->node_inode->i_mapping;
2010 }
2011 
2012 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2013 {
2014 	return test_bit(type, &sbi->s_flag);
2015 }
2016 
2017 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2018 {
2019 	set_bit(type, &sbi->s_flag);
2020 }
2021 
2022 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2023 {
2024 	clear_bit(type, &sbi->s_flag);
2025 }
2026 
2027 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2028 {
2029 	return le64_to_cpu(cp->checkpoint_ver);
2030 }
2031 
2032 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2033 {
2034 	if (type < F2FS_MAX_QUOTAS)
2035 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2036 	return 0;
2037 }
2038 
2039 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2040 {
2041 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2042 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2043 }
2044 
2045 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2046 {
2047 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2048 
2049 	return ckpt_flags & f;
2050 }
2051 
2052 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2053 {
2054 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2055 }
2056 
2057 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2058 {
2059 	unsigned int ckpt_flags;
2060 
2061 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2062 	ckpt_flags |= f;
2063 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2064 }
2065 
2066 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2067 {
2068 	unsigned long flags;
2069 
2070 	spin_lock_irqsave(&sbi->cp_lock, flags);
2071 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2072 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2073 }
2074 
2075 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2076 {
2077 	unsigned int ckpt_flags;
2078 
2079 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2080 	ckpt_flags &= (~f);
2081 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2082 }
2083 
2084 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2085 {
2086 	unsigned long flags;
2087 
2088 	spin_lock_irqsave(&sbi->cp_lock, flags);
2089 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2090 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2091 }
2092 
2093 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2094 {
2095 	down_read(&sbi->cp_rwsem);
2096 }
2097 
2098 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2099 {
2100 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2101 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2102 		return 0;
2103 	}
2104 	return down_read_trylock(&sbi->cp_rwsem);
2105 }
2106 
2107 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2108 {
2109 	up_read(&sbi->cp_rwsem);
2110 }
2111 
2112 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2113 {
2114 	down_write(&sbi->cp_rwsem);
2115 }
2116 
2117 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2118 {
2119 	up_write(&sbi->cp_rwsem);
2120 }
2121 
2122 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2123 {
2124 	int reason = CP_SYNC;
2125 
2126 	if (test_opt(sbi, FASTBOOT))
2127 		reason = CP_FASTBOOT;
2128 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2129 		reason = CP_UMOUNT;
2130 	return reason;
2131 }
2132 
2133 static inline bool __remain_node_summaries(int reason)
2134 {
2135 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2136 }
2137 
2138 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2139 {
2140 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2141 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2142 }
2143 
2144 /*
2145  * Check whether the inode has blocks or not
2146  */
2147 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2148 {
2149 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2150 
2151 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2152 }
2153 
2154 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2155 {
2156 	return ofs == XATTR_NODE_OFFSET;
2157 }
2158 
2159 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2160 					struct inode *inode, bool cap)
2161 {
2162 	if (!inode)
2163 		return true;
2164 	if (!test_opt(sbi, RESERVE_ROOT))
2165 		return false;
2166 	if (IS_NOQUOTA(inode))
2167 		return true;
2168 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2169 		return true;
2170 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2171 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2172 		return true;
2173 	if (cap && capable(CAP_SYS_RESOURCE))
2174 		return true;
2175 	return false;
2176 }
2177 
2178 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2179 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2180 				 struct inode *inode, blkcnt_t *count)
2181 {
2182 	blkcnt_t diff = 0, release = 0;
2183 	block_t avail_user_block_count;
2184 	int ret;
2185 
2186 	ret = dquot_reserve_block(inode, *count);
2187 	if (ret)
2188 		return ret;
2189 
2190 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2191 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2192 		release = *count;
2193 		goto release_quota;
2194 	}
2195 
2196 	/*
2197 	 * let's increase this in prior to actual block count change in order
2198 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2199 	 */
2200 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2201 
2202 	spin_lock(&sbi->stat_lock);
2203 	sbi->total_valid_block_count += (block_t)(*count);
2204 	avail_user_block_count = sbi->user_block_count -
2205 					sbi->current_reserved_blocks;
2206 
2207 	if (!__allow_reserved_blocks(sbi, inode, true))
2208 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2209 
2210 	if (F2FS_IO_ALIGNED(sbi))
2211 		avail_user_block_count -= sbi->blocks_per_seg *
2212 				SM_I(sbi)->additional_reserved_segments;
2213 
2214 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2215 		if (avail_user_block_count > sbi->unusable_block_count)
2216 			avail_user_block_count -= sbi->unusable_block_count;
2217 		else
2218 			avail_user_block_count = 0;
2219 	}
2220 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2221 		diff = sbi->total_valid_block_count - avail_user_block_count;
2222 		if (diff > *count)
2223 			diff = *count;
2224 		*count -= diff;
2225 		release = diff;
2226 		sbi->total_valid_block_count -= diff;
2227 		if (!*count) {
2228 			spin_unlock(&sbi->stat_lock);
2229 			goto enospc;
2230 		}
2231 	}
2232 	spin_unlock(&sbi->stat_lock);
2233 
2234 	if (unlikely(release)) {
2235 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2236 		dquot_release_reservation_block(inode, release);
2237 	}
2238 	f2fs_i_blocks_write(inode, *count, true, true);
2239 	return 0;
2240 
2241 enospc:
2242 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2243 release_quota:
2244 	dquot_release_reservation_block(inode, release);
2245 	return -ENOSPC;
2246 }
2247 
2248 __printf(2, 3)
2249 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2250 
2251 #define f2fs_err(sbi, fmt, ...)						\
2252 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2253 #define f2fs_warn(sbi, fmt, ...)					\
2254 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2255 #define f2fs_notice(sbi, fmt, ...)					\
2256 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2257 #define f2fs_info(sbi, fmt, ...)					\
2258 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2259 #define f2fs_debug(sbi, fmt, ...)					\
2260 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2261 
2262 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2263 						struct inode *inode,
2264 						block_t count)
2265 {
2266 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2267 
2268 	spin_lock(&sbi->stat_lock);
2269 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2270 	sbi->total_valid_block_count -= (block_t)count;
2271 	if (sbi->reserved_blocks &&
2272 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2273 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2274 					sbi->current_reserved_blocks + count);
2275 	spin_unlock(&sbi->stat_lock);
2276 	if (unlikely(inode->i_blocks < sectors)) {
2277 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2278 			  inode->i_ino,
2279 			  (unsigned long long)inode->i_blocks,
2280 			  (unsigned long long)sectors);
2281 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2282 		return;
2283 	}
2284 	f2fs_i_blocks_write(inode, count, false, true);
2285 }
2286 
2287 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2288 {
2289 	atomic_inc(&sbi->nr_pages[count_type]);
2290 
2291 	if (count_type == F2FS_DIRTY_DENTS ||
2292 			count_type == F2FS_DIRTY_NODES ||
2293 			count_type == F2FS_DIRTY_META ||
2294 			count_type == F2FS_DIRTY_QDATA ||
2295 			count_type == F2FS_DIRTY_IMETA)
2296 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2297 }
2298 
2299 static inline void inode_inc_dirty_pages(struct inode *inode)
2300 {
2301 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2302 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2303 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2304 	if (IS_NOQUOTA(inode))
2305 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2306 }
2307 
2308 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2309 {
2310 	atomic_dec(&sbi->nr_pages[count_type]);
2311 }
2312 
2313 static inline void inode_dec_dirty_pages(struct inode *inode)
2314 {
2315 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2316 			!S_ISLNK(inode->i_mode))
2317 		return;
2318 
2319 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2320 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2321 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2322 	if (IS_NOQUOTA(inode))
2323 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2324 }
2325 
2326 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2327 {
2328 	return atomic_read(&sbi->nr_pages[count_type]);
2329 }
2330 
2331 static inline int get_dirty_pages(struct inode *inode)
2332 {
2333 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2334 }
2335 
2336 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2337 {
2338 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2339 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2340 						sbi->log_blocks_per_seg;
2341 
2342 	return segs / sbi->segs_per_sec;
2343 }
2344 
2345 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2346 {
2347 	return sbi->total_valid_block_count;
2348 }
2349 
2350 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2351 {
2352 	return sbi->discard_blks;
2353 }
2354 
2355 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2356 {
2357 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2358 
2359 	/* return NAT or SIT bitmap */
2360 	if (flag == NAT_BITMAP)
2361 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2362 	else if (flag == SIT_BITMAP)
2363 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2364 
2365 	return 0;
2366 }
2367 
2368 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2369 {
2370 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2371 }
2372 
2373 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2374 {
2375 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2376 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2377 	int offset;
2378 
2379 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2380 		offset = (flag == SIT_BITMAP) ?
2381 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2382 		/*
2383 		 * if large_nat_bitmap feature is enabled, leave checksum
2384 		 * protection for all nat/sit bitmaps.
2385 		 */
2386 		return tmp_ptr + offset + sizeof(__le32);
2387 	}
2388 
2389 	if (__cp_payload(sbi) > 0) {
2390 		if (flag == NAT_BITMAP)
2391 			return &ckpt->sit_nat_version_bitmap;
2392 		else
2393 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2394 	} else {
2395 		offset = (flag == NAT_BITMAP) ?
2396 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2397 		return tmp_ptr + offset;
2398 	}
2399 }
2400 
2401 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2402 {
2403 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2404 
2405 	if (sbi->cur_cp_pack == 2)
2406 		start_addr += sbi->blocks_per_seg;
2407 	return start_addr;
2408 }
2409 
2410 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2411 {
2412 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2413 
2414 	if (sbi->cur_cp_pack == 1)
2415 		start_addr += sbi->blocks_per_seg;
2416 	return start_addr;
2417 }
2418 
2419 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2420 {
2421 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2422 }
2423 
2424 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2425 {
2426 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2427 }
2428 
2429 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2430 					struct inode *inode, bool is_inode)
2431 {
2432 	block_t	valid_block_count;
2433 	unsigned int valid_node_count, user_block_count;
2434 	int err;
2435 
2436 	if (is_inode) {
2437 		if (inode) {
2438 			err = dquot_alloc_inode(inode);
2439 			if (err)
2440 				return err;
2441 		}
2442 	} else {
2443 		err = dquot_reserve_block(inode, 1);
2444 		if (err)
2445 			return err;
2446 	}
2447 
2448 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2449 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2450 		goto enospc;
2451 	}
2452 
2453 	spin_lock(&sbi->stat_lock);
2454 
2455 	valid_block_count = sbi->total_valid_block_count +
2456 					sbi->current_reserved_blocks + 1;
2457 
2458 	if (!__allow_reserved_blocks(sbi, inode, false))
2459 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2460 
2461 	if (F2FS_IO_ALIGNED(sbi))
2462 		valid_block_count += sbi->blocks_per_seg *
2463 				SM_I(sbi)->additional_reserved_segments;
2464 
2465 	user_block_count = sbi->user_block_count;
2466 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2467 		user_block_count -= sbi->unusable_block_count;
2468 
2469 	if (unlikely(valid_block_count > user_block_count)) {
2470 		spin_unlock(&sbi->stat_lock);
2471 		goto enospc;
2472 	}
2473 
2474 	valid_node_count = sbi->total_valid_node_count + 1;
2475 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2476 		spin_unlock(&sbi->stat_lock);
2477 		goto enospc;
2478 	}
2479 
2480 	sbi->total_valid_node_count++;
2481 	sbi->total_valid_block_count++;
2482 	spin_unlock(&sbi->stat_lock);
2483 
2484 	if (inode) {
2485 		if (is_inode)
2486 			f2fs_mark_inode_dirty_sync(inode, true);
2487 		else
2488 			f2fs_i_blocks_write(inode, 1, true, true);
2489 	}
2490 
2491 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2492 	return 0;
2493 
2494 enospc:
2495 	if (is_inode) {
2496 		if (inode)
2497 			dquot_free_inode(inode);
2498 	} else {
2499 		dquot_release_reservation_block(inode, 1);
2500 	}
2501 	return -ENOSPC;
2502 }
2503 
2504 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2505 					struct inode *inode, bool is_inode)
2506 {
2507 	spin_lock(&sbi->stat_lock);
2508 
2509 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2510 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2511 
2512 	sbi->total_valid_node_count--;
2513 	sbi->total_valid_block_count--;
2514 	if (sbi->reserved_blocks &&
2515 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2516 		sbi->current_reserved_blocks++;
2517 
2518 	spin_unlock(&sbi->stat_lock);
2519 
2520 	if (is_inode) {
2521 		dquot_free_inode(inode);
2522 	} else {
2523 		if (unlikely(inode->i_blocks == 0)) {
2524 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2525 				  inode->i_ino,
2526 				  (unsigned long long)inode->i_blocks);
2527 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2528 			return;
2529 		}
2530 		f2fs_i_blocks_write(inode, 1, false, true);
2531 	}
2532 }
2533 
2534 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2535 {
2536 	return sbi->total_valid_node_count;
2537 }
2538 
2539 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2540 {
2541 	percpu_counter_inc(&sbi->total_valid_inode_count);
2542 }
2543 
2544 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2545 {
2546 	percpu_counter_dec(&sbi->total_valid_inode_count);
2547 }
2548 
2549 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2550 {
2551 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2552 }
2553 
2554 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2555 						pgoff_t index, bool for_write)
2556 {
2557 	struct page *page;
2558 
2559 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2560 		if (!for_write)
2561 			page = find_get_page_flags(mapping, index,
2562 							FGP_LOCK | FGP_ACCESSED);
2563 		else
2564 			page = find_lock_page(mapping, index);
2565 		if (page)
2566 			return page;
2567 
2568 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2569 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2570 							FAULT_PAGE_ALLOC);
2571 			return NULL;
2572 		}
2573 	}
2574 
2575 	if (!for_write)
2576 		return grab_cache_page(mapping, index);
2577 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2578 }
2579 
2580 static inline struct page *f2fs_pagecache_get_page(
2581 				struct address_space *mapping, pgoff_t index,
2582 				int fgp_flags, gfp_t gfp_mask)
2583 {
2584 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2585 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2586 		return NULL;
2587 	}
2588 
2589 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2590 }
2591 
2592 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2593 {
2594 	char *src_kaddr = kmap(src);
2595 	char *dst_kaddr = kmap(dst);
2596 
2597 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2598 	kunmap(dst);
2599 	kunmap(src);
2600 }
2601 
2602 static inline void f2fs_put_page(struct page *page, int unlock)
2603 {
2604 	if (!page)
2605 		return;
2606 
2607 	if (unlock) {
2608 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2609 		unlock_page(page);
2610 	}
2611 	put_page(page);
2612 }
2613 
2614 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2615 {
2616 	if (dn->node_page)
2617 		f2fs_put_page(dn->node_page, 1);
2618 	if (dn->inode_page && dn->node_page != dn->inode_page)
2619 		f2fs_put_page(dn->inode_page, 0);
2620 	dn->node_page = NULL;
2621 	dn->inode_page = NULL;
2622 }
2623 
2624 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2625 					size_t size)
2626 {
2627 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2628 }
2629 
2630 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2631 						gfp_t flags)
2632 {
2633 	void *entry;
2634 
2635 	entry = kmem_cache_alloc(cachep, flags);
2636 	if (!entry)
2637 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2638 	return entry;
2639 }
2640 
2641 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2642 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2643 {
2644 	if (nofail)
2645 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2646 
2647 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2648 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2649 		return NULL;
2650 	}
2651 
2652 	return kmem_cache_alloc(cachep, flags);
2653 }
2654 
2655 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2656 {
2657 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2658 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2659 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2660 		get_pages(sbi, F2FS_DIO_READ) ||
2661 		get_pages(sbi, F2FS_DIO_WRITE))
2662 		return true;
2663 
2664 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2665 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2666 		return true;
2667 
2668 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2669 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2670 		return true;
2671 	return false;
2672 }
2673 
2674 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2675 {
2676 	if (sbi->gc_mode == GC_URGENT_HIGH)
2677 		return true;
2678 
2679 	if (is_inflight_io(sbi, type))
2680 		return false;
2681 
2682 	if (sbi->gc_mode == GC_URGENT_LOW &&
2683 			(type == DISCARD_TIME || type == GC_TIME))
2684 		return true;
2685 
2686 	return f2fs_time_over(sbi, type);
2687 }
2688 
2689 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2690 				unsigned long index, void *item)
2691 {
2692 	while (radix_tree_insert(root, index, item))
2693 		cond_resched();
2694 }
2695 
2696 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2697 
2698 static inline bool IS_INODE(struct page *page)
2699 {
2700 	struct f2fs_node *p = F2FS_NODE(page);
2701 
2702 	return RAW_IS_INODE(p);
2703 }
2704 
2705 static inline int offset_in_addr(struct f2fs_inode *i)
2706 {
2707 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2708 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2709 }
2710 
2711 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2712 {
2713 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2714 }
2715 
2716 static inline int f2fs_has_extra_attr(struct inode *inode);
2717 static inline block_t data_blkaddr(struct inode *inode,
2718 			struct page *node_page, unsigned int offset)
2719 {
2720 	struct f2fs_node *raw_node;
2721 	__le32 *addr_array;
2722 	int base = 0;
2723 	bool is_inode = IS_INODE(node_page);
2724 
2725 	raw_node = F2FS_NODE(node_page);
2726 
2727 	if (is_inode) {
2728 		if (!inode)
2729 			/* from GC path only */
2730 			base = offset_in_addr(&raw_node->i);
2731 		else if (f2fs_has_extra_attr(inode))
2732 			base = get_extra_isize(inode);
2733 	}
2734 
2735 	addr_array = blkaddr_in_node(raw_node);
2736 	return le32_to_cpu(addr_array[base + offset]);
2737 }
2738 
2739 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2740 {
2741 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2742 }
2743 
2744 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2745 {
2746 	int mask;
2747 
2748 	addr += (nr >> 3);
2749 	mask = 1 << (7 - (nr & 0x07));
2750 	return mask & *addr;
2751 }
2752 
2753 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2754 {
2755 	int mask;
2756 
2757 	addr += (nr >> 3);
2758 	mask = 1 << (7 - (nr & 0x07));
2759 	*addr |= mask;
2760 }
2761 
2762 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2763 {
2764 	int mask;
2765 
2766 	addr += (nr >> 3);
2767 	mask = 1 << (7 - (nr & 0x07));
2768 	*addr &= ~mask;
2769 }
2770 
2771 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2772 {
2773 	int mask;
2774 	int ret;
2775 
2776 	addr += (nr >> 3);
2777 	mask = 1 << (7 - (nr & 0x07));
2778 	ret = mask & *addr;
2779 	*addr |= mask;
2780 	return ret;
2781 }
2782 
2783 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2784 {
2785 	int mask;
2786 	int ret;
2787 
2788 	addr += (nr >> 3);
2789 	mask = 1 << (7 - (nr & 0x07));
2790 	ret = mask & *addr;
2791 	*addr &= ~mask;
2792 	return ret;
2793 }
2794 
2795 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2796 {
2797 	int mask;
2798 
2799 	addr += (nr >> 3);
2800 	mask = 1 << (7 - (nr & 0x07));
2801 	*addr ^= mask;
2802 }
2803 
2804 /*
2805  * On-disk inode flags (f2fs_inode::i_flags)
2806  */
2807 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2808 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2809 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2810 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2811 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2812 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2813 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2814 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2815 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2816 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2817 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2818 
2819 /* Flags that should be inherited by new inodes from their parent. */
2820 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2821 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2822 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2823 
2824 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2825 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2826 				F2FS_CASEFOLD_FL))
2827 
2828 /* Flags that are appropriate for non-directories/regular files. */
2829 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2830 
2831 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2832 {
2833 	if (S_ISDIR(mode))
2834 		return flags;
2835 	else if (S_ISREG(mode))
2836 		return flags & F2FS_REG_FLMASK;
2837 	else
2838 		return flags & F2FS_OTHER_FLMASK;
2839 }
2840 
2841 static inline void __mark_inode_dirty_flag(struct inode *inode,
2842 						int flag, bool set)
2843 {
2844 	switch (flag) {
2845 	case FI_INLINE_XATTR:
2846 	case FI_INLINE_DATA:
2847 	case FI_INLINE_DENTRY:
2848 	case FI_NEW_INODE:
2849 		if (set)
2850 			return;
2851 		fallthrough;
2852 	case FI_DATA_EXIST:
2853 	case FI_INLINE_DOTS:
2854 	case FI_PIN_FILE:
2855 	case FI_COMPRESS_RELEASED:
2856 		f2fs_mark_inode_dirty_sync(inode, true);
2857 	}
2858 }
2859 
2860 static inline void set_inode_flag(struct inode *inode, int flag)
2861 {
2862 	set_bit(flag, F2FS_I(inode)->flags);
2863 	__mark_inode_dirty_flag(inode, flag, true);
2864 }
2865 
2866 static inline int is_inode_flag_set(struct inode *inode, int flag)
2867 {
2868 	return test_bit(flag, F2FS_I(inode)->flags);
2869 }
2870 
2871 static inline void clear_inode_flag(struct inode *inode, int flag)
2872 {
2873 	clear_bit(flag, F2FS_I(inode)->flags);
2874 	__mark_inode_dirty_flag(inode, flag, false);
2875 }
2876 
2877 static inline bool f2fs_verity_in_progress(struct inode *inode)
2878 {
2879 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2880 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2881 }
2882 
2883 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2884 {
2885 	F2FS_I(inode)->i_acl_mode = mode;
2886 	set_inode_flag(inode, FI_ACL_MODE);
2887 	f2fs_mark_inode_dirty_sync(inode, false);
2888 }
2889 
2890 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2891 {
2892 	if (inc)
2893 		inc_nlink(inode);
2894 	else
2895 		drop_nlink(inode);
2896 	f2fs_mark_inode_dirty_sync(inode, true);
2897 }
2898 
2899 static inline void f2fs_i_blocks_write(struct inode *inode,
2900 					block_t diff, bool add, bool claim)
2901 {
2902 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2903 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2904 
2905 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2906 	if (add) {
2907 		if (claim)
2908 			dquot_claim_block(inode, diff);
2909 		else
2910 			dquot_alloc_block_nofail(inode, diff);
2911 	} else {
2912 		dquot_free_block(inode, diff);
2913 	}
2914 
2915 	f2fs_mark_inode_dirty_sync(inode, true);
2916 	if (clean || recover)
2917 		set_inode_flag(inode, FI_AUTO_RECOVER);
2918 }
2919 
2920 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2921 {
2922 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2923 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2924 
2925 	if (i_size_read(inode) == i_size)
2926 		return;
2927 
2928 	i_size_write(inode, i_size);
2929 	f2fs_mark_inode_dirty_sync(inode, true);
2930 	if (clean || recover)
2931 		set_inode_flag(inode, FI_AUTO_RECOVER);
2932 }
2933 
2934 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2935 {
2936 	F2FS_I(inode)->i_current_depth = depth;
2937 	f2fs_mark_inode_dirty_sync(inode, true);
2938 }
2939 
2940 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2941 					unsigned int count)
2942 {
2943 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2944 	f2fs_mark_inode_dirty_sync(inode, true);
2945 }
2946 
2947 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2948 {
2949 	F2FS_I(inode)->i_xattr_nid = xnid;
2950 	f2fs_mark_inode_dirty_sync(inode, true);
2951 }
2952 
2953 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2954 {
2955 	F2FS_I(inode)->i_pino = pino;
2956 	f2fs_mark_inode_dirty_sync(inode, true);
2957 }
2958 
2959 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2960 {
2961 	struct f2fs_inode_info *fi = F2FS_I(inode);
2962 
2963 	if (ri->i_inline & F2FS_INLINE_XATTR)
2964 		set_bit(FI_INLINE_XATTR, fi->flags);
2965 	if (ri->i_inline & F2FS_INLINE_DATA)
2966 		set_bit(FI_INLINE_DATA, fi->flags);
2967 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2968 		set_bit(FI_INLINE_DENTRY, fi->flags);
2969 	if (ri->i_inline & F2FS_DATA_EXIST)
2970 		set_bit(FI_DATA_EXIST, fi->flags);
2971 	if (ri->i_inline & F2FS_INLINE_DOTS)
2972 		set_bit(FI_INLINE_DOTS, fi->flags);
2973 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2974 		set_bit(FI_EXTRA_ATTR, fi->flags);
2975 	if (ri->i_inline & F2FS_PIN_FILE)
2976 		set_bit(FI_PIN_FILE, fi->flags);
2977 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2978 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
2979 }
2980 
2981 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2982 {
2983 	ri->i_inline = 0;
2984 
2985 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2986 		ri->i_inline |= F2FS_INLINE_XATTR;
2987 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2988 		ri->i_inline |= F2FS_INLINE_DATA;
2989 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2990 		ri->i_inline |= F2FS_INLINE_DENTRY;
2991 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2992 		ri->i_inline |= F2FS_DATA_EXIST;
2993 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2994 		ri->i_inline |= F2FS_INLINE_DOTS;
2995 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2996 		ri->i_inline |= F2FS_EXTRA_ATTR;
2997 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2998 		ri->i_inline |= F2FS_PIN_FILE;
2999 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3000 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3001 }
3002 
3003 static inline int f2fs_has_extra_attr(struct inode *inode)
3004 {
3005 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3006 }
3007 
3008 static inline int f2fs_has_inline_xattr(struct inode *inode)
3009 {
3010 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3011 }
3012 
3013 static inline int f2fs_compressed_file(struct inode *inode)
3014 {
3015 	return S_ISREG(inode->i_mode) &&
3016 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3017 }
3018 
3019 static inline bool f2fs_need_compress_data(struct inode *inode)
3020 {
3021 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3022 
3023 	if (!f2fs_compressed_file(inode))
3024 		return false;
3025 
3026 	if (compress_mode == COMPR_MODE_FS)
3027 		return true;
3028 	else if (compress_mode == COMPR_MODE_USER &&
3029 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3030 		return true;
3031 
3032 	return false;
3033 }
3034 
3035 static inline unsigned int addrs_per_inode(struct inode *inode)
3036 {
3037 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3038 				get_inline_xattr_addrs(inode);
3039 
3040 	if (!f2fs_compressed_file(inode))
3041 		return addrs;
3042 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3043 }
3044 
3045 static inline unsigned int addrs_per_block(struct inode *inode)
3046 {
3047 	if (!f2fs_compressed_file(inode))
3048 		return DEF_ADDRS_PER_BLOCK;
3049 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3050 }
3051 
3052 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3053 {
3054 	struct f2fs_inode *ri = F2FS_INODE(page);
3055 
3056 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3057 					get_inline_xattr_addrs(inode)]);
3058 }
3059 
3060 static inline int inline_xattr_size(struct inode *inode)
3061 {
3062 	if (f2fs_has_inline_xattr(inode))
3063 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3064 	return 0;
3065 }
3066 
3067 static inline int f2fs_has_inline_data(struct inode *inode)
3068 {
3069 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3070 }
3071 
3072 static inline int f2fs_exist_data(struct inode *inode)
3073 {
3074 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3075 }
3076 
3077 static inline int f2fs_has_inline_dots(struct inode *inode)
3078 {
3079 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3080 }
3081 
3082 static inline int f2fs_is_mmap_file(struct inode *inode)
3083 {
3084 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3085 }
3086 
3087 static inline bool f2fs_is_pinned_file(struct inode *inode)
3088 {
3089 	return is_inode_flag_set(inode, FI_PIN_FILE);
3090 }
3091 
3092 static inline bool f2fs_is_atomic_file(struct inode *inode)
3093 {
3094 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3095 }
3096 
3097 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3098 {
3099 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3100 }
3101 
3102 static inline bool f2fs_is_volatile_file(struct inode *inode)
3103 {
3104 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3105 }
3106 
3107 static inline bool f2fs_is_first_block_written(struct inode *inode)
3108 {
3109 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3110 }
3111 
3112 static inline bool f2fs_is_drop_cache(struct inode *inode)
3113 {
3114 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3115 }
3116 
3117 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3118 {
3119 	struct f2fs_inode *ri = F2FS_INODE(page);
3120 	int extra_size = get_extra_isize(inode);
3121 
3122 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3123 }
3124 
3125 static inline int f2fs_has_inline_dentry(struct inode *inode)
3126 {
3127 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3128 }
3129 
3130 static inline int is_file(struct inode *inode, int type)
3131 {
3132 	return F2FS_I(inode)->i_advise & type;
3133 }
3134 
3135 static inline void set_file(struct inode *inode, int type)
3136 {
3137 	if (is_file(inode, type))
3138 		return;
3139 	F2FS_I(inode)->i_advise |= type;
3140 	f2fs_mark_inode_dirty_sync(inode, true);
3141 }
3142 
3143 static inline void clear_file(struct inode *inode, int type)
3144 {
3145 	if (!is_file(inode, type))
3146 		return;
3147 	F2FS_I(inode)->i_advise &= ~type;
3148 	f2fs_mark_inode_dirty_sync(inode, true);
3149 }
3150 
3151 static inline bool f2fs_is_time_consistent(struct inode *inode)
3152 {
3153 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3154 		return false;
3155 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3156 		return false;
3157 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3158 		return false;
3159 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3160 						&F2FS_I(inode)->i_crtime))
3161 		return false;
3162 	return true;
3163 }
3164 
3165 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3166 {
3167 	bool ret;
3168 
3169 	if (dsync) {
3170 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3171 
3172 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3173 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3174 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3175 		return ret;
3176 	}
3177 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3178 			file_keep_isize(inode) ||
3179 			i_size_read(inode) & ~PAGE_MASK)
3180 		return false;
3181 
3182 	if (!f2fs_is_time_consistent(inode))
3183 		return false;
3184 
3185 	spin_lock(&F2FS_I(inode)->i_size_lock);
3186 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3187 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3188 
3189 	return ret;
3190 }
3191 
3192 static inline bool f2fs_readonly(struct super_block *sb)
3193 {
3194 	return sb_rdonly(sb);
3195 }
3196 
3197 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3198 {
3199 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3200 }
3201 
3202 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3203 {
3204 	if (len == 1 && name[0] == '.')
3205 		return true;
3206 
3207 	if (len == 2 && name[0] == '.' && name[1] == '.')
3208 		return true;
3209 
3210 	return false;
3211 }
3212 
3213 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3214 					size_t size, gfp_t flags)
3215 {
3216 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3217 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3218 		return NULL;
3219 	}
3220 
3221 	return kmalloc(size, flags);
3222 }
3223 
3224 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3225 					size_t size, gfp_t flags)
3226 {
3227 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3228 }
3229 
3230 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3231 					size_t size, gfp_t flags)
3232 {
3233 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3234 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3235 		return NULL;
3236 	}
3237 
3238 	return kvmalloc(size, flags);
3239 }
3240 
3241 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3242 					size_t size, gfp_t flags)
3243 {
3244 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3245 }
3246 
3247 static inline int get_extra_isize(struct inode *inode)
3248 {
3249 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3250 }
3251 
3252 static inline int get_inline_xattr_addrs(struct inode *inode)
3253 {
3254 	return F2FS_I(inode)->i_inline_xattr_size;
3255 }
3256 
3257 #define f2fs_get_inode_mode(i) \
3258 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3259 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3260 
3261 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3262 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3263 	offsetof(struct f2fs_inode, i_extra_isize))	\
3264 
3265 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3266 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3267 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3268 		sizeof((f2fs_inode)->field))			\
3269 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3270 
3271 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3272 
3273 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3274 
3275 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3276 					block_t blkaddr, int type);
3277 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3278 					block_t blkaddr, int type)
3279 {
3280 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3281 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3282 			 blkaddr, type);
3283 		f2fs_bug_on(sbi, 1);
3284 	}
3285 }
3286 
3287 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3288 {
3289 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3290 			blkaddr == COMPRESS_ADDR)
3291 		return false;
3292 	return true;
3293 }
3294 
3295 /*
3296  * file.c
3297  */
3298 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3299 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3300 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3301 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3302 int f2fs_truncate(struct inode *inode);
3303 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3304 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3305 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3306 		 struct iattr *attr);
3307 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3308 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3309 int f2fs_precache_extents(struct inode *inode);
3310 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3311 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3312 		      struct dentry *dentry, struct fileattr *fa);
3313 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3314 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3315 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3316 int f2fs_pin_file_control(struct inode *inode, bool inc);
3317 
3318 /*
3319  * inode.c
3320  */
3321 void f2fs_set_inode_flags(struct inode *inode);
3322 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3323 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3324 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3325 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3326 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3327 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3328 void f2fs_update_inode_page(struct inode *inode);
3329 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3330 void f2fs_evict_inode(struct inode *inode);
3331 void f2fs_handle_failed_inode(struct inode *inode);
3332 
3333 /*
3334  * namei.c
3335  */
3336 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3337 							bool hot, bool set);
3338 struct dentry *f2fs_get_parent(struct dentry *child);
3339 
3340 /*
3341  * dir.c
3342  */
3343 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3344 int f2fs_init_casefolded_name(const struct inode *dir,
3345 			      struct f2fs_filename *fname);
3346 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3347 			int lookup, struct f2fs_filename *fname);
3348 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3349 			struct f2fs_filename *fname);
3350 void f2fs_free_filename(struct f2fs_filename *fname);
3351 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3352 			const struct f2fs_filename *fname, int *max_slots);
3353 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3354 			unsigned int start_pos, struct fscrypt_str *fstr);
3355 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3356 			struct f2fs_dentry_ptr *d);
3357 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3358 			const struct f2fs_filename *fname, struct page *dpage);
3359 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3360 			unsigned int current_depth);
3361 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3362 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3363 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3364 					 const struct f2fs_filename *fname,
3365 					 struct page **res_page);
3366 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3367 			const struct qstr *child, struct page **res_page);
3368 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3369 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3370 			struct page **page);
3371 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3372 			struct page *page, struct inode *inode);
3373 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3374 			  const struct f2fs_filename *fname);
3375 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3376 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3377 			unsigned int bit_pos);
3378 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3379 			struct inode *inode, nid_t ino, umode_t mode);
3380 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3381 			struct inode *inode, nid_t ino, umode_t mode);
3382 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3383 			struct inode *inode, nid_t ino, umode_t mode);
3384 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3385 			struct inode *dir, struct inode *inode);
3386 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3387 bool f2fs_empty_dir(struct inode *dir);
3388 
3389 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3390 {
3391 	if (fscrypt_is_nokey_name(dentry))
3392 		return -ENOKEY;
3393 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3394 				inode, inode->i_ino, inode->i_mode);
3395 }
3396 
3397 /*
3398  * super.c
3399  */
3400 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3401 void f2fs_inode_synced(struct inode *inode);
3402 int f2fs_dquot_initialize(struct inode *inode);
3403 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3404 int f2fs_quota_sync(struct super_block *sb, int type);
3405 loff_t max_file_blocks(struct inode *inode);
3406 void f2fs_quota_off_umount(struct super_block *sb);
3407 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3408 int f2fs_sync_fs(struct super_block *sb, int sync);
3409 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3410 
3411 /*
3412  * hash.c
3413  */
3414 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3415 
3416 /*
3417  * node.c
3418  */
3419 struct node_info;
3420 
3421 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3422 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3423 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3424 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3425 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3426 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3427 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3428 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3429 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3430 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3431 				struct node_info *ni, bool checkpoint_context);
3432 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3433 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3434 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3435 int f2fs_truncate_xattr_node(struct inode *inode);
3436 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3437 					unsigned int seq_id);
3438 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3439 int f2fs_remove_inode_page(struct inode *inode);
3440 struct page *f2fs_new_inode_page(struct inode *inode);
3441 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3442 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3443 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3444 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3445 int f2fs_move_node_page(struct page *node_page, int gc_type);
3446 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3447 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3448 			struct writeback_control *wbc, bool atomic,
3449 			unsigned int *seq_id);
3450 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3451 			struct writeback_control *wbc,
3452 			bool do_balance, enum iostat_type io_type);
3453 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3454 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3455 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3456 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3457 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3458 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3459 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3460 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3461 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3462 			unsigned int segno, struct f2fs_summary_block *sum);
3463 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3464 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3465 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3466 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3467 int __init f2fs_create_node_manager_caches(void);
3468 void f2fs_destroy_node_manager_caches(void);
3469 
3470 /*
3471  * segment.c
3472  */
3473 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3474 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3475 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3476 void f2fs_drop_inmem_pages(struct inode *inode);
3477 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3478 int f2fs_commit_inmem_pages(struct inode *inode);
3479 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3480 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3481 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3482 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3483 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3484 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3485 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3486 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3487 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3488 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3489 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3490 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3491 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3492 					struct cp_control *cpc);
3493 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3494 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3495 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3496 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3497 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3498 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3499 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3500 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3501 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3502 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3503 			unsigned int *newseg, bool new_sec, int dir);
3504 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3505 					unsigned int start, unsigned int end);
3506 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3507 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3508 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3509 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3510 					struct cp_control *cpc);
3511 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3512 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3513 					block_t blk_addr);
3514 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3515 						enum iostat_type io_type);
3516 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3517 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3518 			struct f2fs_io_info *fio);
3519 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3520 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3521 			block_t old_blkaddr, block_t new_blkaddr,
3522 			bool recover_curseg, bool recover_newaddr,
3523 			bool from_gc);
3524 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3525 			block_t old_addr, block_t new_addr,
3526 			unsigned char version, bool recover_curseg,
3527 			bool recover_newaddr);
3528 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3529 			block_t old_blkaddr, block_t *new_blkaddr,
3530 			struct f2fs_summary *sum, int type,
3531 			struct f2fs_io_info *fio);
3532 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3533 					block_t blkaddr, unsigned int blkcnt);
3534 void f2fs_wait_on_page_writeback(struct page *page,
3535 			enum page_type type, bool ordered, bool locked);
3536 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3537 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3538 								block_t len);
3539 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3540 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3541 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3542 			unsigned int val, int alloc);
3543 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3544 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3545 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3546 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3547 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3548 int __init f2fs_create_segment_manager_caches(void);
3549 void f2fs_destroy_segment_manager_caches(void);
3550 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3551 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3552 			enum page_type type, enum temp_type temp);
3553 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3554 			unsigned int segno);
3555 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3556 			unsigned int segno);
3557 
3558 #define DEF_FRAGMENT_SIZE	4
3559 #define MIN_FRAGMENT_SIZE	1
3560 #define MAX_FRAGMENT_SIZE	512
3561 
3562 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3563 {
3564 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3565 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3566 }
3567 
3568 /*
3569  * checkpoint.c
3570  */
3571 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3572 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3573 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3574 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3575 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3576 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3577 					block_t blkaddr, int type);
3578 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3579 			int type, bool sync);
3580 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3581 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3582 			long nr_to_write, enum iostat_type io_type);
3583 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3584 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3585 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3586 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3587 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3588 					unsigned int devidx, int type);
3589 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3590 					unsigned int devidx, int type);
3591 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3592 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3593 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3594 void f2fs_add_orphan_inode(struct inode *inode);
3595 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3596 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3597 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3598 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3599 void f2fs_remove_dirty_inode(struct inode *inode);
3600 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3601 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3602 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3603 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3604 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3605 int __init f2fs_create_checkpoint_caches(void);
3606 void f2fs_destroy_checkpoint_caches(void);
3607 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3608 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3609 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3610 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3611 
3612 /*
3613  * data.c
3614  */
3615 int __init f2fs_init_bioset(void);
3616 void f2fs_destroy_bioset(void);
3617 int f2fs_init_bio_entry_cache(void);
3618 void f2fs_destroy_bio_entry_cache(void);
3619 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3620 				struct bio *bio, enum page_type type);
3621 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3622 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3623 				struct inode *inode, struct page *page,
3624 				nid_t ino, enum page_type type);
3625 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3626 					struct bio **bio, struct page *page);
3627 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3628 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3629 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3630 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3631 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3632 			block_t blk_addr, struct bio *bio);
3633 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3634 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3635 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3636 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3637 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3638 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3639 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3640 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3641 			int op_flags, bool for_write);
3642 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3643 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3644 			bool for_write);
3645 struct page *f2fs_get_new_data_page(struct inode *inode,
3646 			struct page *ipage, pgoff_t index, bool new_i_size);
3647 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3648 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3649 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3650 			int create, int flag);
3651 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3652 			u64 start, u64 len);
3653 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3654 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3655 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3656 int f2fs_write_single_data_page(struct page *page, int *submitted,
3657 				struct bio **bio, sector_t *last_block,
3658 				struct writeback_control *wbc,
3659 				enum iostat_type io_type,
3660 				int compr_blocks, bool allow_balance);
3661 void f2fs_write_failed(struct inode *inode, loff_t to);
3662 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3663 			unsigned int length);
3664 int f2fs_release_page(struct page *page, gfp_t wait);
3665 #ifdef CONFIG_MIGRATION
3666 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3667 			struct page *page, enum migrate_mode mode);
3668 #endif
3669 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3670 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3671 int f2fs_init_post_read_processing(void);
3672 void f2fs_destroy_post_read_processing(void);
3673 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3674 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3675 extern const struct iomap_ops f2fs_iomap_ops;
3676 
3677 /*
3678  * gc.c
3679  */
3680 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3681 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3682 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3683 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3684 			unsigned int segno);
3685 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3686 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3687 int __init f2fs_create_garbage_collection_cache(void);
3688 void f2fs_destroy_garbage_collection_cache(void);
3689 
3690 /*
3691  * recovery.c
3692  */
3693 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3694 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3695 int __init f2fs_create_recovery_cache(void);
3696 void f2fs_destroy_recovery_cache(void);
3697 
3698 /*
3699  * debug.c
3700  */
3701 #ifdef CONFIG_F2FS_STAT_FS
3702 struct f2fs_stat_info {
3703 	struct list_head stat_list;
3704 	struct f2fs_sb_info *sbi;
3705 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3706 	int main_area_segs, main_area_sections, main_area_zones;
3707 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3708 	unsigned long long hit_total, total_ext;
3709 	int ext_tree, zombie_tree, ext_node;
3710 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3711 	int ndirty_data, ndirty_qdata;
3712 	int inmem_pages;
3713 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3714 	int nats, dirty_nats, sits, dirty_sits;
3715 	int free_nids, avail_nids, alloc_nids;
3716 	int total_count, utilization;
3717 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3718 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3719 	int nr_dio_read, nr_dio_write;
3720 	unsigned int io_skip_bggc, other_skip_bggc;
3721 	int nr_flushing, nr_flushed, flush_list_empty;
3722 	int nr_discarding, nr_discarded;
3723 	int nr_discard_cmd;
3724 	unsigned int undiscard_blks;
3725 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3726 	unsigned int cur_ckpt_time, peak_ckpt_time;
3727 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3728 	int compr_inode;
3729 	unsigned long long compr_blocks;
3730 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3731 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3732 	unsigned int bimodal, avg_vblocks;
3733 	int util_free, util_valid, util_invalid;
3734 	int rsvd_segs, overp_segs;
3735 	int dirty_count, node_pages, meta_pages, compress_pages;
3736 	int compress_page_hit;
3737 	int prefree_count, call_count, cp_count, bg_cp_count;
3738 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3739 	int bg_node_segs, bg_data_segs;
3740 	int tot_blks, data_blks, node_blks;
3741 	int bg_data_blks, bg_node_blks;
3742 	unsigned long long skipped_atomic_files[2];
3743 	int curseg[NR_CURSEG_TYPE];
3744 	int cursec[NR_CURSEG_TYPE];
3745 	int curzone[NR_CURSEG_TYPE];
3746 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3747 	unsigned int full_seg[NR_CURSEG_TYPE];
3748 	unsigned int valid_blks[NR_CURSEG_TYPE];
3749 
3750 	unsigned int meta_count[META_MAX];
3751 	unsigned int segment_count[2];
3752 	unsigned int block_count[2];
3753 	unsigned int inplace_count;
3754 	unsigned long long base_mem, cache_mem, page_mem;
3755 };
3756 
3757 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3758 {
3759 	return (struct f2fs_stat_info *)sbi->stat_info;
3760 }
3761 
3762 #define stat_inc_cp_count(si)		((si)->cp_count++)
3763 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3764 #define stat_inc_call_count(si)		((si)->call_count++)
3765 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3766 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3767 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3768 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3769 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3770 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3771 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3772 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3773 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3774 #define stat_inc_inline_xattr(inode)					\
3775 	do {								\
3776 		if (f2fs_has_inline_xattr(inode))			\
3777 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3778 	} while (0)
3779 #define stat_dec_inline_xattr(inode)					\
3780 	do {								\
3781 		if (f2fs_has_inline_xattr(inode))			\
3782 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3783 	} while (0)
3784 #define stat_inc_inline_inode(inode)					\
3785 	do {								\
3786 		if (f2fs_has_inline_data(inode))			\
3787 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3788 	} while (0)
3789 #define stat_dec_inline_inode(inode)					\
3790 	do {								\
3791 		if (f2fs_has_inline_data(inode))			\
3792 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3793 	} while (0)
3794 #define stat_inc_inline_dir(inode)					\
3795 	do {								\
3796 		if (f2fs_has_inline_dentry(inode))			\
3797 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3798 	} while (0)
3799 #define stat_dec_inline_dir(inode)					\
3800 	do {								\
3801 		if (f2fs_has_inline_dentry(inode))			\
3802 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3803 	} while (0)
3804 #define stat_inc_compr_inode(inode)					\
3805 	do {								\
3806 		if (f2fs_compressed_file(inode))			\
3807 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3808 	} while (0)
3809 #define stat_dec_compr_inode(inode)					\
3810 	do {								\
3811 		if (f2fs_compressed_file(inode))			\
3812 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3813 	} while (0)
3814 #define stat_add_compr_blocks(inode, blocks)				\
3815 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3816 #define stat_sub_compr_blocks(inode, blocks)				\
3817 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3818 #define stat_inc_meta_count(sbi, blkaddr)				\
3819 	do {								\
3820 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3821 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3822 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3823 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3824 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3825 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3826 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3827 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3828 	} while (0)
3829 #define stat_inc_seg_type(sbi, curseg)					\
3830 		((sbi)->segment_count[(curseg)->alloc_type]++)
3831 #define stat_inc_block_count(sbi, curseg)				\
3832 		((sbi)->block_count[(curseg)->alloc_type]++)
3833 #define stat_inc_inplace_blocks(sbi)					\
3834 		(atomic_inc(&(sbi)->inplace_count))
3835 #define stat_update_max_atomic_write(inode)				\
3836 	do {								\
3837 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3838 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3839 		if (cur > max)						\
3840 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3841 	} while (0)
3842 #define stat_inc_volatile_write(inode)					\
3843 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3844 #define stat_dec_volatile_write(inode)					\
3845 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3846 #define stat_update_max_volatile_write(inode)				\
3847 	do {								\
3848 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3849 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3850 		if (cur > max)						\
3851 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3852 	} while (0)
3853 #define stat_inc_seg_count(sbi, type, gc_type)				\
3854 	do {								\
3855 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3856 		si->tot_segs++;						\
3857 		if ((type) == SUM_TYPE_DATA) {				\
3858 			si->data_segs++;				\
3859 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3860 		} else {						\
3861 			si->node_segs++;				\
3862 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3863 		}							\
3864 	} while (0)
3865 
3866 #define stat_inc_tot_blk_count(si, blks)				\
3867 	((si)->tot_blks += (blks))
3868 
3869 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3870 	do {								\
3871 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3872 		stat_inc_tot_blk_count(si, blks);			\
3873 		si->data_blks += (blks);				\
3874 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3875 	} while (0)
3876 
3877 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3878 	do {								\
3879 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3880 		stat_inc_tot_blk_count(si, blks);			\
3881 		si->node_blks += (blks);				\
3882 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3883 	} while (0)
3884 
3885 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3886 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3887 void __init f2fs_create_root_stats(void);
3888 void f2fs_destroy_root_stats(void);
3889 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3890 #else
3891 #define stat_inc_cp_count(si)				do { } while (0)
3892 #define stat_inc_bg_cp_count(si)			do { } while (0)
3893 #define stat_inc_call_count(si)				do { } while (0)
3894 #define stat_inc_bggc_count(si)				do { } while (0)
3895 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3896 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3897 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3898 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3899 #define stat_inc_total_hit(sbi)				do { } while (0)
3900 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3901 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3902 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3903 #define stat_inc_inline_xattr(inode)			do { } while (0)
3904 #define stat_dec_inline_xattr(inode)			do { } while (0)
3905 #define stat_inc_inline_inode(inode)			do { } while (0)
3906 #define stat_dec_inline_inode(inode)			do { } while (0)
3907 #define stat_inc_inline_dir(inode)			do { } while (0)
3908 #define stat_dec_inline_dir(inode)			do { } while (0)
3909 #define stat_inc_compr_inode(inode)			do { } while (0)
3910 #define stat_dec_compr_inode(inode)			do { } while (0)
3911 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3912 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3913 #define stat_update_max_atomic_write(inode)		do { } while (0)
3914 #define stat_inc_volatile_write(inode)			do { } while (0)
3915 #define stat_dec_volatile_write(inode)			do { } while (0)
3916 #define stat_update_max_volatile_write(inode)		do { } while (0)
3917 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3918 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3919 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3920 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3921 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3922 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3923 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3924 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3925 
3926 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3927 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3928 static inline void __init f2fs_create_root_stats(void) { }
3929 static inline void f2fs_destroy_root_stats(void) { }
3930 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3931 #endif
3932 
3933 extern const struct file_operations f2fs_dir_operations;
3934 extern const struct file_operations f2fs_file_operations;
3935 extern const struct inode_operations f2fs_file_inode_operations;
3936 extern const struct address_space_operations f2fs_dblock_aops;
3937 extern const struct address_space_operations f2fs_node_aops;
3938 extern const struct address_space_operations f2fs_meta_aops;
3939 extern const struct inode_operations f2fs_dir_inode_operations;
3940 extern const struct inode_operations f2fs_symlink_inode_operations;
3941 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3942 extern const struct inode_operations f2fs_special_inode_operations;
3943 extern struct kmem_cache *f2fs_inode_entry_slab;
3944 
3945 /*
3946  * inline.c
3947  */
3948 bool f2fs_may_inline_data(struct inode *inode);
3949 bool f2fs_may_inline_dentry(struct inode *inode);
3950 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3951 void f2fs_truncate_inline_inode(struct inode *inode,
3952 						struct page *ipage, u64 from);
3953 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3954 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3955 int f2fs_convert_inline_inode(struct inode *inode);
3956 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3957 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3958 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3959 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3960 					const struct f2fs_filename *fname,
3961 					struct page **res_page);
3962 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3963 			struct page *ipage);
3964 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3965 			struct inode *inode, nid_t ino, umode_t mode);
3966 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3967 				struct page *page, struct inode *dir,
3968 				struct inode *inode);
3969 bool f2fs_empty_inline_dir(struct inode *dir);
3970 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3971 			struct fscrypt_str *fstr);
3972 int f2fs_inline_data_fiemap(struct inode *inode,
3973 			struct fiemap_extent_info *fieinfo,
3974 			__u64 start, __u64 len);
3975 
3976 /*
3977  * shrinker.c
3978  */
3979 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3980 			struct shrink_control *sc);
3981 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3982 			struct shrink_control *sc);
3983 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3984 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3985 
3986 /*
3987  * extent_cache.c
3988  */
3989 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3990 				struct rb_entry *cached_re, unsigned int ofs);
3991 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3992 				struct rb_root_cached *root,
3993 				struct rb_node **parent,
3994 				unsigned long long key, bool *left_most);
3995 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3996 				struct rb_root_cached *root,
3997 				struct rb_node **parent,
3998 				unsigned int ofs, bool *leftmost);
3999 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4000 		struct rb_entry *cached_re, unsigned int ofs,
4001 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4002 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4003 		bool force, bool *leftmost);
4004 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4005 				struct rb_root_cached *root, bool check_key);
4006 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4007 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4008 void f2fs_drop_extent_tree(struct inode *inode);
4009 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4010 void f2fs_destroy_extent_tree(struct inode *inode);
4011 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4012 			struct extent_info *ei);
4013 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4014 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4015 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4016 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4017 int __init f2fs_create_extent_cache(void);
4018 void f2fs_destroy_extent_cache(void);
4019 
4020 /*
4021  * sysfs.c
4022  */
4023 #define MIN_RA_MUL	2
4024 #define MAX_RA_MUL	256
4025 
4026 int __init f2fs_init_sysfs(void);
4027 void f2fs_exit_sysfs(void);
4028 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4029 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4030 
4031 /* verity.c */
4032 extern const struct fsverity_operations f2fs_verityops;
4033 
4034 /*
4035  * crypto support
4036  */
4037 static inline bool f2fs_encrypted_file(struct inode *inode)
4038 {
4039 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4040 }
4041 
4042 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4043 {
4044 #ifdef CONFIG_FS_ENCRYPTION
4045 	file_set_encrypt(inode);
4046 	f2fs_set_inode_flags(inode);
4047 #endif
4048 }
4049 
4050 /*
4051  * Returns true if the reads of the inode's data need to undergo some
4052  * postprocessing step, like decryption or authenticity verification.
4053  */
4054 static inline bool f2fs_post_read_required(struct inode *inode)
4055 {
4056 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4057 		f2fs_compressed_file(inode);
4058 }
4059 
4060 /*
4061  * compress.c
4062  */
4063 #ifdef CONFIG_F2FS_FS_COMPRESSION
4064 bool f2fs_is_compressed_page(struct page *page);
4065 struct page *f2fs_compress_control_page(struct page *page);
4066 int f2fs_prepare_compress_overwrite(struct inode *inode,
4067 			struct page **pagep, pgoff_t index, void **fsdata);
4068 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4069 					pgoff_t index, unsigned copied);
4070 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4071 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4072 bool f2fs_is_compress_backend_ready(struct inode *inode);
4073 int f2fs_init_compress_mempool(void);
4074 void f2fs_destroy_compress_mempool(void);
4075 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4076 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4077 							block_t blkaddr);
4078 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4079 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4080 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4081 				int index, int nr_pages);
4082 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4083 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4084 int f2fs_write_multi_pages(struct compress_ctx *cc,
4085 						int *submitted,
4086 						struct writeback_control *wbc,
4087 						enum iostat_type io_type);
4088 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4089 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4090 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4091 				unsigned int c_len);
4092 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4093 				unsigned nr_pages, sector_t *last_block_in_bio,
4094 				bool is_readahead, bool for_write);
4095 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4096 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4097 void f2fs_put_page_dic(struct page *page);
4098 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4099 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4100 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4101 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4102 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4103 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4104 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4105 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4106 int __init f2fs_init_compress_cache(void);
4107 void f2fs_destroy_compress_cache(void);
4108 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4109 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4110 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4111 						nid_t ino, block_t blkaddr);
4112 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4113 								block_t blkaddr);
4114 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4115 #define inc_compr_inode_stat(inode)					\
4116 	do {								\
4117 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4118 		sbi->compr_new_inode++;					\
4119 	} while (0)
4120 #define add_compr_block_stat(inode, blocks)				\
4121 	do {								\
4122 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4123 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4124 		sbi->compr_written_block += blocks;			\
4125 		sbi->compr_saved_block += diff;				\
4126 	} while (0)
4127 #else
4128 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4129 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4130 {
4131 	if (!f2fs_compressed_file(inode))
4132 		return true;
4133 	/* not support compression */
4134 	return false;
4135 }
4136 static inline struct page *f2fs_compress_control_page(struct page *page)
4137 {
4138 	WARN_ON_ONCE(1);
4139 	return ERR_PTR(-EINVAL);
4140 }
4141 static inline int f2fs_init_compress_mempool(void) { return 0; }
4142 static inline void f2fs_destroy_compress_mempool(void) { }
4143 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4144 static inline void f2fs_end_read_compressed_page(struct page *page,
4145 						bool failed, block_t blkaddr)
4146 {
4147 	WARN_ON_ONCE(1);
4148 }
4149 static inline void f2fs_put_page_dic(struct page *page)
4150 {
4151 	WARN_ON_ONCE(1);
4152 }
4153 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4154 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4155 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4156 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4157 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4158 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4159 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4160 static inline void f2fs_destroy_compress_cache(void) { }
4161 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4162 				block_t blkaddr) { }
4163 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4164 				struct page *page, nid_t ino, block_t blkaddr) { }
4165 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4166 				struct page *page, block_t blkaddr) { return false; }
4167 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4168 							nid_t ino) { }
4169 #define inc_compr_inode_stat(inode)		do { } while (0)
4170 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4171 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4172 				unsigned int c_len) { }
4173 #endif
4174 
4175 static inline void set_compress_context(struct inode *inode)
4176 {
4177 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4178 
4179 	F2FS_I(inode)->i_compress_algorithm =
4180 			F2FS_OPTION(sbi).compress_algorithm;
4181 	F2FS_I(inode)->i_log_cluster_size =
4182 			F2FS_OPTION(sbi).compress_log_size;
4183 	F2FS_I(inode)->i_compress_flag =
4184 			F2FS_OPTION(sbi).compress_chksum ?
4185 				1 << COMPRESS_CHKSUM : 0;
4186 	F2FS_I(inode)->i_cluster_size =
4187 			1 << F2FS_I(inode)->i_log_cluster_size;
4188 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4189 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4190 			F2FS_OPTION(sbi).compress_level)
4191 		F2FS_I(inode)->i_compress_flag |=
4192 				F2FS_OPTION(sbi).compress_level <<
4193 				COMPRESS_LEVEL_OFFSET;
4194 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4195 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4196 	stat_inc_compr_inode(inode);
4197 	inc_compr_inode_stat(inode);
4198 	f2fs_mark_inode_dirty_sync(inode, true);
4199 }
4200 
4201 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4202 {
4203 	struct f2fs_inode_info *fi = F2FS_I(inode);
4204 
4205 	if (!f2fs_compressed_file(inode))
4206 		return true;
4207 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4208 		return false;
4209 
4210 	fi->i_flags &= ~F2FS_COMPR_FL;
4211 	stat_dec_compr_inode(inode);
4212 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4213 	f2fs_mark_inode_dirty_sync(inode, true);
4214 	return true;
4215 }
4216 
4217 #define F2FS_FEATURE_FUNCS(name, flagname) \
4218 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4219 { \
4220 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4221 }
4222 
4223 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4224 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4225 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4226 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4227 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4228 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4229 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4230 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4231 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4232 F2FS_FEATURE_FUNCS(verity, VERITY);
4233 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4234 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4235 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4236 F2FS_FEATURE_FUNCS(readonly, RO);
4237 
4238 static inline bool f2fs_may_extent_tree(struct inode *inode)
4239 {
4240 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4241 
4242 	if (!test_opt(sbi, EXTENT_CACHE) ||
4243 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4244 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4245 			 !f2fs_sb_has_readonly(sbi)))
4246 		return false;
4247 
4248 	/*
4249 	 * for recovered files during mount do not create extents
4250 	 * if shrinker is not registered.
4251 	 */
4252 	if (list_empty(&sbi->s_list))
4253 		return false;
4254 
4255 	return S_ISREG(inode->i_mode);
4256 }
4257 
4258 #ifdef CONFIG_BLK_DEV_ZONED
4259 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4260 				    block_t blkaddr)
4261 {
4262 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4263 
4264 	return test_bit(zno, FDEV(devi).blkz_seq);
4265 }
4266 #endif
4267 
4268 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4269 {
4270 	return f2fs_sb_has_blkzoned(sbi);
4271 }
4272 
4273 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4274 {
4275 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4276 	       bdev_is_zoned(bdev);
4277 }
4278 
4279 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4280 {
4281 	int i;
4282 
4283 	if (!f2fs_is_multi_device(sbi))
4284 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4285 
4286 	for (i = 0; i < sbi->s_ndevs; i++)
4287 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4288 			return true;
4289 	return false;
4290 }
4291 
4292 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4293 {
4294 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4295 					f2fs_hw_should_discard(sbi);
4296 }
4297 
4298 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4299 {
4300 	int i;
4301 
4302 	if (!f2fs_is_multi_device(sbi))
4303 		return bdev_read_only(sbi->sb->s_bdev);
4304 
4305 	for (i = 0; i < sbi->s_ndevs; i++)
4306 		if (bdev_read_only(FDEV(i).bdev))
4307 			return true;
4308 	return false;
4309 }
4310 
4311 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4312 {
4313 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4314 }
4315 
4316 static inline bool f2fs_may_compress(struct inode *inode)
4317 {
4318 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4319 				f2fs_is_atomic_file(inode) ||
4320 				f2fs_is_volatile_file(inode))
4321 		return false;
4322 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4323 }
4324 
4325 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4326 						u64 blocks, bool add)
4327 {
4328 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4329 	struct f2fs_inode_info *fi = F2FS_I(inode);
4330 
4331 	/* don't update i_compr_blocks if saved blocks were released */
4332 	if (!add && !atomic_read(&fi->i_compr_blocks))
4333 		return;
4334 
4335 	if (add) {
4336 		atomic_add(diff, &fi->i_compr_blocks);
4337 		stat_add_compr_blocks(inode, diff);
4338 	} else {
4339 		atomic_sub(diff, &fi->i_compr_blocks);
4340 		stat_sub_compr_blocks(inode, diff);
4341 	}
4342 	f2fs_mark_inode_dirty_sync(inode, true);
4343 }
4344 
4345 static inline int block_unaligned_IO(struct inode *inode,
4346 				struct kiocb *iocb, struct iov_iter *iter)
4347 {
4348 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4349 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4350 	loff_t offset = iocb->ki_pos;
4351 	unsigned long align = offset | iov_iter_alignment(iter);
4352 
4353 	return align & blocksize_mask;
4354 }
4355 
4356 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4357 								int flag)
4358 {
4359 	if (!f2fs_is_multi_device(sbi))
4360 		return false;
4361 	if (flag != F2FS_GET_BLOCK_DIO)
4362 		return false;
4363 	return sbi->aligned_blksize;
4364 }
4365 
4366 static inline bool f2fs_force_buffered_io(struct inode *inode,
4367 				struct kiocb *iocb, struct iov_iter *iter)
4368 {
4369 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4370 	int rw = iov_iter_rw(iter);
4371 
4372 	if (f2fs_post_read_required(inode))
4373 		return true;
4374 
4375 	/* disallow direct IO if any of devices has unaligned blksize */
4376 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4377 		return true;
4378 	/*
4379 	 * for blkzoned device, fallback direct IO to buffered IO, so
4380 	 * all IOs can be serialized by log-structured write.
4381 	 */
4382 	if (f2fs_sb_has_blkzoned(sbi))
4383 		return true;
4384 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4385 		if (block_unaligned_IO(inode, iocb, iter))
4386 			return true;
4387 		if (F2FS_IO_ALIGNED(sbi))
4388 			return true;
4389 	}
4390 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4391 		return true;
4392 
4393 	return false;
4394 }
4395 
4396 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4397 {
4398 	return fsverity_active(inode) &&
4399 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4400 }
4401 
4402 #ifdef CONFIG_F2FS_FAULT_INJECTION
4403 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4404 							unsigned int type);
4405 #else
4406 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4407 #endif
4408 
4409 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4410 {
4411 #ifdef CONFIG_QUOTA
4412 	if (f2fs_sb_has_quota_ino(sbi))
4413 		return true;
4414 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4415 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4416 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4417 		return true;
4418 #endif
4419 	return false;
4420 }
4421 
4422 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4423 {
4424 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4425 }
4426 
4427 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4428 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4429 
4430 #endif /* _LINUX_F2FS_H */
4431