xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 2fa5ebe3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	unsigned int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
78 #endif
79 
80 /*
81  * For mount options
82  */
83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
84 #define F2FS_MOUNT_DISCARD		0x00000004
85 #define F2FS_MOUNT_NOHEAP		0x00000008
86 #define F2FS_MOUNT_XATTR_USER		0x00000010
87 #define F2FS_MOUNT_POSIX_ACL		0x00000020
88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
89 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
90 #define F2FS_MOUNT_INLINE_DATA		0x00000100
91 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
92 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
93 #define F2FS_MOUNT_NOBARRIER		0x00000800
94 #define F2FS_MOUNT_FASTBOOT		0x00001000
95 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00002000
96 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
97 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
98 #define F2FS_MOUNT_USRQUOTA		0x00080000
99 #define F2FS_MOUNT_GRPQUOTA		0x00100000
100 #define F2FS_MOUNT_PRJQUOTA		0x00200000
101 #define F2FS_MOUNT_QUOTA		0x00400000
102 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
103 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
104 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
105 #define F2FS_MOUNT_NORECOVERY		0x04000000
106 #define F2FS_MOUNT_ATGC			0x08000000
107 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
108 #define	F2FS_MOUNT_GC_MERGE		0x20000000
109 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
110 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x80000000
111 
112 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
113 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
114 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
115 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
116 
117 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
118 		typecheck(unsigned long long, b) &&			\
119 		((long long)((a) - (b)) > 0))
120 
121 typedef u32 block_t;	/*
122 			 * should not change u32, since it is the on-disk block
123 			 * address format, __le32.
124 			 */
125 typedef u32 nid_t;
126 
127 #define COMPRESS_EXT_NUM		16
128 
129 /*
130  * An implementation of an rwsem that is explicitly unfair to readers. This
131  * prevents priority inversion when a low-priority reader acquires the read lock
132  * while sleeping on the write lock but the write lock is needed by
133  * higher-priority clients.
134  */
135 
136 struct f2fs_rwsem {
137         struct rw_semaphore internal_rwsem;
138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
139         wait_queue_head_t read_waiters;
140 #endif
141 };
142 
143 struct f2fs_mount_info {
144 	unsigned int opt;
145 	int write_io_size_bits;		/* Write IO size bits */
146 	block_t root_reserved_blocks;	/* root reserved blocks */
147 	kuid_t s_resuid;		/* reserved blocks for uid */
148 	kgid_t s_resgid;		/* reserved blocks for gid */
149 	int active_logs;		/* # of active logs */
150 	int inline_xattr_size;		/* inline xattr size */
151 #ifdef CONFIG_F2FS_FAULT_INJECTION
152 	struct f2fs_fault_info fault_info;	/* For fault injection */
153 #endif
154 #ifdef CONFIG_QUOTA
155 	/* Names of quota files with journalled quota */
156 	char *s_qf_names[MAXQUOTAS];
157 	int s_jquota_fmt;			/* Format of quota to use */
158 #endif
159 	/* For which write hints are passed down to block layer */
160 	int alloc_mode;			/* segment allocation policy */
161 	int fsync_mode;			/* fsync policy */
162 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
163 	int bggc_mode;			/* bggc mode: off, on or sync */
164 	int memory_mode;		/* memory mode */
165 	int discard_unit;		/*
166 					 * discard command's offset/size should
167 					 * be aligned to this unit: block,
168 					 * segment or section
169 					 */
170 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
171 	block_t unusable_cap_perc;	/* percentage for cap */
172 	block_t unusable_cap;		/* Amount of space allowed to be
173 					 * unusable when disabling checkpoint
174 					 */
175 
176 	/* For compression */
177 	unsigned char compress_algorithm;	/* algorithm type */
178 	unsigned char compress_log_size;	/* cluster log size */
179 	unsigned char compress_level;		/* compress level */
180 	bool compress_chksum;			/* compressed data chksum */
181 	unsigned char compress_ext_cnt;		/* extension count */
182 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
183 	int compress_mode;			/* compression mode */
184 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
185 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
186 };
187 
188 #define F2FS_FEATURE_ENCRYPT		0x0001
189 #define F2FS_FEATURE_BLKZONED		0x0002
190 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
191 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
192 #define F2FS_FEATURE_PRJQUOTA		0x0010
193 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
194 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
195 #define F2FS_FEATURE_QUOTA_INO		0x0080
196 #define F2FS_FEATURE_INODE_CRTIME	0x0100
197 #define F2FS_FEATURE_LOST_FOUND		0x0200
198 #define F2FS_FEATURE_VERITY		0x0400
199 #define F2FS_FEATURE_SB_CHKSUM		0x0800
200 #define F2FS_FEATURE_CASEFOLD		0x1000
201 #define F2FS_FEATURE_COMPRESSION	0x2000
202 #define F2FS_FEATURE_RO			0x4000
203 
204 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
205 	((raw_super->feature & cpu_to_le32(mask)) != 0)
206 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
207 
208 /*
209  * Default values for user and/or group using reserved blocks
210  */
211 #define	F2FS_DEF_RESUID		0
212 #define	F2FS_DEF_RESGID		0
213 
214 /*
215  * For checkpoint manager
216  */
217 enum {
218 	NAT_BITMAP,
219 	SIT_BITMAP
220 };
221 
222 #define	CP_UMOUNT	0x00000001
223 #define	CP_FASTBOOT	0x00000002
224 #define	CP_SYNC		0x00000004
225 #define	CP_RECOVERY	0x00000008
226 #define	CP_DISCARD	0x00000010
227 #define CP_TRIMMED	0x00000020
228 #define CP_PAUSE	0x00000040
229 #define CP_RESIZE 	0x00000080
230 
231 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
232 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
233 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
234 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
235 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
236 #define DEF_CP_INTERVAL			60	/* 60 secs */
237 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
238 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
239 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
240 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
241 
242 struct cp_control {
243 	int reason;
244 	__u64 trim_start;
245 	__u64 trim_end;
246 	__u64 trim_minlen;
247 };
248 
249 /*
250  * indicate meta/data type
251  */
252 enum {
253 	META_CP,
254 	META_NAT,
255 	META_SIT,
256 	META_SSA,
257 	META_MAX,
258 	META_POR,
259 	DATA_GENERIC,		/* check range only */
260 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
261 	DATA_GENERIC_ENHANCE_READ,	/*
262 					 * strong check on range and segment
263 					 * bitmap but no warning due to race
264 					 * condition of read on truncated area
265 					 * by extent_cache
266 					 */
267 	DATA_GENERIC_ENHANCE_UPDATE,	/*
268 					 * strong check on range and segment
269 					 * bitmap for update case
270 					 */
271 	META_GENERIC,
272 };
273 
274 /* for the list of ino */
275 enum {
276 	ORPHAN_INO,		/* for orphan ino list */
277 	APPEND_INO,		/* for append ino list */
278 	UPDATE_INO,		/* for update ino list */
279 	TRANS_DIR_INO,		/* for transactions dir ino list */
280 	FLUSH_INO,		/* for multiple device flushing */
281 	MAX_INO_ENTRY,		/* max. list */
282 };
283 
284 struct ino_entry {
285 	struct list_head list;		/* list head */
286 	nid_t ino;			/* inode number */
287 	unsigned int dirty_device;	/* dirty device bitmap */
288 };
289 
290 /* for the list of inodes to be GCed */
291 struct inode_entry {
292 	struct list_head list;	/* list head */
293 	struct inode *inode;	/* vfs inode pointer */
294 };
295 
296 struct fsync_node_entry {
297 	struct list_head list;	/* list head */
298 	struct page *page;	/* warm node page pointer */
299 	unsigned int seq_id;	/* sequence id */
300 };
301 
302 struct ckpt_req {
303 	struct completion wait;		/* completion for checkpoint done */
304 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
305 	int ret;			/* return code of checkpoint */
306 	ktime_t queue_time;		/* request queued time */
307 };
308 
309 struct ckpt_req_control {
310 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
311 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
312 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
313 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
314 	atomic_t total_ckpt;		/* # of total ckpts */
315 	atomic_t queued_ckpt;		/* # of queued ckpts */
316 	struct llist_head issue_list;	/* list for command issue */
317 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
318 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
319 	unsigned int peak_time;		/* peak wait time in msec until now */
320 };
321 
322 /* for the bitmap indicate blocks to be discarded */
323 struct discard_entry {
324 	struct list_head list;	/* list head */
325 	block_t start_blkaddr;	/* start blockaddr of current segment */
326 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
327 };
328 
329 /* minimum discard granularity, unit: block count */
330 #define MIN_DISCARD_GRANULARITY		1
331 /* default discard granularity of inner discard thread, unit: block count */
332 #define DEFAULT_DISCARD_GRANULARITY		16
333 /* default maximum discard granularity of ordered discard, unit: block count */
334 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
335 
336 /* max discard pend list number */
337 #define MAX_PLIST_NUM		512
338 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
339 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
340 
341 enum {
342 	D_PREP,			/* initial */
343 	D_PARTIAL,		/* partially submitted */
344 	D_SUBMIT,		/* all submitted */
345 	D_DONE,			/* finished */
346 };
347 
348 struct discard_info {
349 	block_t lstart;			/* logical start address */
350 	block_t len;			/* length */
351 	block_t start;			/* actual start address in dev */
352 };
353 
354 struct discard_cmd {
355 	struct rb_node rb_node;		/* rb node located in rb-tree */
356 	union {
357 		struct {
358 			block_t lstart;	/* logical start address */
359 			block_t len;	/* length */
360 			block_t start;	/* actual start address in dev */
361 		};
362 		struct discard_info di;	/* discard info */
363 
364 	};
365 	struct list_head list;		/* command list */
366 	struct completion wait;		/* compleation */
367 	struct block_device *bdev;	/* bdev */
368 	unsigned short ref;		/* reference count */
369 	unsigned char state;		/* state */
370 	unsigned char queued;		/* queued discard */
371 	int error;			/* bio error */
372 	spinlock_t lock;		/* for state/bio_ref updating */
373 	unsigned short bio_ref;		/* bio reference count */
374 };
375 
376 enum {
377 	DPOLICY_BG,
378 	DPOLICY_FORCE,
379 	DPOLICY_FSTRIM,
380 	DPOLICY_UMOUNT,
381 	MAX_DPOLICY,
382 };
383 
384 struct discard_policy {
385 	int type;			/* type of discard */
386 	unsigned int min_interval;	/* used for candidates exist */
387 	unsigned int mid_interval;	/* used for device busy */
388 	unsigned int max_interval;	/* used for candidates not exist */
389 	unsigned int max_requests;	/* # of discards issued per round */
390 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
391 	bool io_aware;			/* issue discard in idle time */
392 	bool sync;			/* submit discard with REQ_SYNC flag */
393 	bool ordered;			/* issue discard by lba order */
394 	bool timeout;			/* discard timeout for put_super */
395 	unsigned int granularity;	/* discard granularity */
396 };
397 
398 struct discard_cmd_control {
399 	struct task_struct *f2fs_issue_discard;	/* discard thread */
400 	struct list_head entry_list;		/* 4KB discard entry list */
401 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
402 	struct list_head wait_list;		/* store on-flushing entries */
403 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
404 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
405 	struct mutex cmd_lock;
406 	unsigned int nr_discards;		/* # of discards in the list */
407 	unsigned int max_discards;		/* max. discards to be issued */
408 	unsigned int max_discard_request;	/* max. discard request per round */
409 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
410 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
411 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
412 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
413 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
414 	unsigned int discard_granularity;	/* discard granularity */
415 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
416 	unsigned int undiscard_blks;		/* # of undiscard blocks */
417 	unsigned int next_pos;			/* next discard position */
418 	atomic_t issued_discard;		/* # of issued discard */
419 	atomic_t queued_discard;		/* # of queued discard */
420 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
421 	struct rb_root_cached root;		/* root of discard rb-tree */
422 	bool rbtree_check;			/* config for consistence check */
423 	bool discard_wake;			/* to wake up discard thread */
424 };
425 
426 /* for the list of fsync inodes, used only during recovery */
427 struct fsync_inode_entry {
428 	struct list_head list;	/* list head */
429 	struct inode *inode;	/* vfs inode pointer */
430 	block_t blkaddr;	/* block address locating the last fsync */
431 	block_t last_dentry;	/* block address locating the last dentry */
432 };
433 
434 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
435 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
436 
437 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
438 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
439 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
440 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
441 
442 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
443 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
444 
445 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
446 {
447 	int before = nats_in_cursum(journal);
448 
449 	journal->n_nats = cpu_to_le16(before + i);
450 	return before;
451 }
452 
453 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
454 {
455 	int before = sits_in_cursum(journal);
456 
457 	journal->n_sits = cpu_to_le16(before + i);
458 	return before;
459 }
460 
461 static inline bool __has_cursum_space(struct f2fs_journal *journal,
462 							int size, int type)
463 {
464 	if (type == NAT_JOURNAL)
465 		return size <= MAX_NAT_JENTRIES(journal);
466 	return size <= MAX_SIT_JENTRIES(journal);
467 }
468 
469 /* for inline stuff */
470 #define DEF_INLINE_RESERVED_SIZE	1
471 static inline int get_extra_isize(struct inode *inode);
472 static inline int get_inline_xattr_addrs(struct inode *inode);
473 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
474 				(CUR_ADDRS_PER_INODE(inode) -		\
475 				get_inline_xattr_addrs(inode) -	\
476 				DEF_INLINE_RESERVED_SIZE))
477 
478 /* for inline dir */
479 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
480 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
481 				BITS_PER_BYTE + 1))
482 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
483 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
484 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
485 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
486 				NR_INLINE_DENTRY(inode) + \
487 				INLINE_DENTRY_BITMAP_SIZE(inode)))
488 
489 /*
490  * For INODE and NODE manager
491  */
492 /* for directory operations */
493 
494 struct f2fs_filename {
495 	/*
496 	 * The filename the user specified.  This is NULL for some
497 	 * filesystem-internal operations, e.g. converting an inline directory
498 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
499 	 */
500 	const struct qstr *usr_fname;
501 
502 	/*
503 	 * The on-disk filename.  For encrypted directories, this is encrypted.
504 	 * This may be NULL for lookups in an encrypted dir without the key.
505 	 */
506 	struct fscrypt_str disk_name;
507 
508 	/* The dirhash of this filename */
509 	f2fs_hash_t hash;
510 
511 #ifdef CONFIG_FS_ENCRYPTION
512 	/*
513 	 * For lookups in encrypted directories: either the buffer backing
514 	 * disk_name, or a buffer that holds the decoded no-key name.
515 	 */
516 	struct fscrypt_str crypto_buf;
517 #endif
518 #if IS_ENABLED(CONFIG_UNICODE)
519 	/*
520 	 * For casefolded directories: the casefolded name, but it's left NULL
521 	 * if the original name is not valid Unicode, if the original name is
522 	 * "." or "..", if the directory is both casefolded and encrypted and
523 	 * its encryption key is unavailable, or if the filesystem is doing an
524 	 * internal operation where usr_fname is also NULL.  In all these cases
525 	 * we fall back to treating the name as an opaque byte sequence.
526 	 */
527 	struct fscrypt_str cf_name;
528 #endif
529 };
530 
531 struct f2fs_dentry_ptr {
532 	struct inode *inode;
533 	void *bitmap;
534 	struct f2fs_dir_entry *dentry;
535 	__u8 (*filename)[F2FS_SLOT_LEN];
536 	int max;
537 	int nr_bitmap;
538 };
539 
540 static inline void make_dentry_ptr_block(struct inode *inode,
541 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
542 {
543 	d->inode = inode;
544 	d->max = NR_DENTRY_IN_BLOCK;
545 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
546 	d->bitmap = t->dentry_bitmap;
547 	d->dentry = t->dentry;
548 	d->filename = t->filename;
549 }
550 
551 static inline void make_dentry_ptr_inline(struct inode *inode,
552 					struct f2fs_dentry_ptr *d, void *t)
553 {
554 	int entry_cnt = NR_INLINE_DENTRY(inode);
555 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
556 	int reserved_size = INLINE_RESERVED_SIZE(inode);
557 
558 	d->inode = inode;
559 	d->max = entry_cnt;
560 	d->nr_bitmap = bitmap_size;
561 	d->bitmap = t;
562 	d->dentry = t + bitmap_size + reserved_size;
563 	d->filename = t + bitmap_size + reserved_size +
564 					SIZE_OF_DIR_ENTRY * entry_cnt;
565 }
566 
567 /*
568  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
569  * as its node offset to distinguish from index node blocks.
570  * But some bits are used to mark the node block.
571  */
572 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
573 				>> OFFSET_BIT_SHIFT)
574 enum {
575 	ALLOC_NODE,			/* allocate a new node page if needed */
576 	LOOKUP_NODE,			/* look up a node without readahead */
577 	LOOKUP_NODE_RA,			/*
578 					 * look up a node with readahead called
579 					 * by get_data_block.
580 					 */
581 };
582 
583 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
584 
585 /* congestion wait timeout value, default: 20ms */
586 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
587 
588 /* maximum retry quota flush count */
589 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
590 
591 /* maximum retry of EIO'ed page */
592 #define MAX_RETRY_PAGE_EIO			100
593 
594 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
595 
596 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
597 
598 /* dirty segments threshold for triggering CP */
599 #define DEFAULT_DIRTY_THRESHOLD		4
600 
601 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
602 #define RECOVERY_MIN_RA_BLOCKS		1
603 
604 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
605 
606 /* for in-memory extent cache entry */
607 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
608 
609 /* number of extent info in extent cache we try to shrink */
610 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
611 
612 /* number of age extent info in extent cache we try to shrink */
613 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
614 #define LAST_AGE_WEIGHT			30
615 #define SAME_AGE_REGION			1024
616 
617 /*
618  * Define data block with age less than 1GB as hot data
619  * define data block with age less than 10GB but more than 1GB as warm data
620  */
621 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
622 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
623 
624 /* extent cache type */
625 enum extent_type {
626 	EX_READ,
627 	EX_BLOCK_AGE,
628 	NR_EXTENT_CACHES,
629 };
630 
631 struct rb_entry {
632 	struct rb_node rb_node;		/* rb node located in rb-tree */
633 	union {
634 		struct {
635 			unsigned int ofs;	/* start offset of the entry */
636 			unsigned int len;	/* length of the entry */
637 		};
638 		unsigned long long key;		/* 64-bits key */
639 	} __packed;
640 };
641 
642 struct extent_info {
643 	unsigned int fofs;		/* start offset in a file */
644 	unsigned int len;		/* length of the extent */
645 	union {
646 		/* read extent_cache */
647 		struct {
648 			/* start block address of the extent */
649 			block_t blk;
650 #ifdef CONFIG_F2FS_FS_COMPRESSION
651 			/* physical extent length of compressed blocks */
652 			unsigned int c_len;
653 #endif
654 		};
655 		/* block age extent_cache */
656 		struct {
657 			/* block age of the extent */
658 			unsigned long long age;
659 			/* last total blocks allocated */
660 			unsigned long long last_blocks;
661 		};
662 	};
663 };
664 
665 struct extent_node {
666 	struct rb_node rb_node;		/* rb node located in rb-tree */
667 	struct extent_info ei;		/* extent info */
668 	struct list_head list;		/* node in global extent list of sbi */
669 	struct extent_tree *et;		/* extent tree pointer */
670 };
671 
672 struct extent_tree {
673 	nid_t ino;			/* inode number */
674 	enum extent_type type;		/* keep the extent tree type */
675 	struct rb_root_cached root;	/* root of extent info rb-tree */
676 	struct extent_node *cached_en;	/* recently accessed extent node */
677 	struct list_head list;		/* to be used by sbi->zombie_list */
678 	rwlock_t lock;			/* protect extent info rb-tree */
679 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
680 	bool largest_updated;		/* largest extent updated */
681 	struct extent_info largest;	/* largest cached extent for EX_READ */
682 };
683 
684 struct extent_tree_info {
685 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
686 	struct mutex extent_tree_lock;	/* locking extent radix tree */
687 	struct list_head extent_list;		/* lru list for shrinker */
688 	spinlock_t extent_lock;			/* locking extent lru list */
689 	atomic_t total_ext_tree;		/* extent tree count */
690 	struct list_head zombie_list;		/* extent zombie tree list */
691 	atomic_t total_zombie_tree;		/* extent zombie tree count */
692 	atomic_t total_ext_node;		/* extent info count */
693 };
694 
695 /*
696  * State of block returned by f2fs_map_blocks.
697  */
698 #define F2FS_MAP_NEW		(1U << 0)
699 #define F2FS_MAP_MAPPED		(1U << 1)
700 #define F2FS_MAP_DELALLOC	(1U << 2)
701 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
702 				F2FS_MAP_DELALLOC)
703 
704 struct f2fs_map_blocks {
705 	struct block_device *m_bdev;	/* for multi-device dio */
706 	block_t m_pblk;
707 	block_t m_lblk;
708 	unsigned int m_len;
709 	unsigned int m_flags;
710 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
711 	pgoff_t *m_next_extent;		/* point to next possible extent */
712 	int m_seg_type;
713 	bool m_may_create;		/* indicate it is from write path */
714 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
715 };
716 
717 /* for flag in get_data_block */
718 enum {
719 	F2FS_GET_BLOCK_DEFAULT,
720 	F2FS_GET_BLOCK_FIEMAP,
721 	F2FS_GET_BLOCK_BMAP,
722 	F2FS_GET_BLOCK_DIO,
723 	F2FS_GET_BLOCK_PRE_DIO,
724 	F2FS_GET_BLOCK_PRE_AIO,
725 	F2FS_GET_BLOCK_PRECACHE,
726 };
727 
728 /*
729  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
730  */
731 #define FADVISE_COLD_BIT	0x01
732 #define FADVISE_LOST_PINO_BIT	0x02
733 #define FADVISE_ENCRYPT_BIT	0x04
734 #define FADVISE_ENC_NAME_BIT	0x08
735 #define FADVISE_KEEP_SIZE_BIT	0x10
736 #define FADVISE_HOT_BIT		0x20
737 #define FADVISE_VERITY_BIT	0x40
738 #define FADVISE_TRUNC_BIT	0x80
739 
740 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
741 
742 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
743 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
744 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
745 
746 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
747 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
748 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
749 
750 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
751 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
752 
753 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
754 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
755 
756 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
757 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
758 
759 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
760 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
761 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
762 
763 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
764 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
765 
766 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
767 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
768 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
769 
770 #define DEF_DIR_LEVEL		0
771 
772 enum {
773 	GC_FAILURE_PIN,
774 	MAX_GC_FAILURE
775 };
776 
777 /* used for f2fs_inode_info->flags */
778 enum {
779 	FI_NEW_INODE,		/* indicate newly allocated inode */
780 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
781 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
782 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
783 	FI_INC_LINK,		/* need to increment i_nlink */
784 	FI_ACL_MODE,		/* indicate acl mode */
785 	FI_NO_ALLOC,		/* should not allocate any blocks */
786 	FI_FREE_NID,		/* free allocated nide */
787 	FI_NO_EXTENT,		/* not to use the extent cache */
788 	FI_INLINE_XATTR,	/* used for inline xattr */
789 	FI_INLINE_DATA,		/* used for inline data*/
790 	FI_INLINE_DENTRY,	/* used for inline dentry */
791 	FI_APPEND_WRITE,	/* inode has appended data */
792 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
793 	FI_NEED_IPU,		/* used for ipu per file */
794 	FI_ATOMIC_FILE,		/* indicate atomic file */
795 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
796 	FI_DROP_CACHE,		/* drop dirty page cache */
797 	FI_DATA_EXIST,		/* indicate data exists */
798 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
799 	FI_SKIP_WRITES,		/* should skip data page writeback */
800 	FI_OPU_WRITE,		/* used for opu per file */
801 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
802 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
803 	FI_HOT_DATA,		/* indicate file is hot */
804 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
805 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
806 	FI_PIN_FILE,		/* indicate file should not be gced */
807 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
808 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
809 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
810 	FI_MMAP_FILE,		/* indicate file was mmapped */
811 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
812 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
813 	FI_ALIGNED_WRITE,	/* enable aligned write */
814 	FI_COW_FILE,		/* indicate COW file */
815 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
816 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
817 	FI_MAX,			/* max flag, never be used */
818 };
819 
820 struct f2fs_inode_info {
821 	struct inode vfs_inode;		/* serve a vfs inode */
822 	unsigned long i_flags;		/* keep an inode flags for ioctl */
823 	unsigned char i_advise;		/* use to give file attribute hints */
824 	unsigned char i_dir_level;	/* use for dentry level for large dir */
825 	unsigned int i_current_depth;	/* only for directory depth */
826 	/* for gc failure statistic */
827 	unsigned int i_gc_failures[MAX_GC_FAILURE];
828 	unsigned int i_pino;		/* parent inode number */
829 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
830 
831 	/* Use below internally in f2fs*/
832 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
833 	struct f2fs_rwsem i_sem;	/* protect fi info */
834 	atomic_t dirty_pages;		/* # of dirty pages */
835 	f2fs_hash_t chash;		/* hash value of given file name */
836 	unsigned int clevel;		/* maximum level of given file name */
837 	struct task_struct *task;	/* lookup and create consistency */
838 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
839 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
840 	nid_t i_xattr_nid;		/* node id that contains xattrs */
841 	loff_t	last_disk_size;		/* lastly written file size */
842 	spinlock_t i_size_lock;		/* protect last_disk_size */
843 
844 #ifdef CONFIG_QUOTA
845 	struct dquot *i_dquot[MAXQUOTAS];
846 
847 	/* quota space reservation, managed internally by quota code */
848 	qsize_t i_reserved_quota;
849 #endif
850 	struct list_head dirty_list;	/* dirty list for dirs and files */
851 	struct list_head gdirty_list;	/* linked in global dirty list */
852 	struct task_struct *atomic_write_task;	/* store atomic write task */
853 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
854 					/* cached extent_tree entry */
855 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
856 
857 	/* avoid racing between foreground op and gc */
858 	struct f2fs_rwsem i_gc_rwsem[2];
859 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
860 
861 	int i_extra_isize;		/* size of extra space located in i_addr */
862 	kprojid_t i_projid;		/* id for project quota */
863 	int i_inline_xattr_size;	/* inline xattr size */
864 	struct timespec64 i_crtime;	/* inode creation time */
865 	struct timespec64 i_disk_time[4];/* inode disk times */
866 
867 	/* for file compress */
868 	atomic_t i_compr_blocks;		/* # of compressed blocks */
869 	unsigned char i_compress_algorithm;	/* algorithm type */
870 	unsigned char i_log_cluster_size;	/* log of cluster size */
871 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
872 	unsigned char i_compress_flag;		/* compress flag */
873 	unsigned int i_cluster_size;		/* cluster size */
874 
875 	unsigned int atomic_write_cnt;
876 	loff_t original_i_size;		/* original i_size before atomic write */
877 };
878 
879 static inline void get_read_extent_info(struct extent_info *ext,
880 					struct f2fs_extent *i_ext)
881 {
882 	ext->fofs = le32_to_cpu(i_ext->fofs);
883 	ext->blk = le32_to_cpu(i_ext->blk);
884 	ext->len = le32_to_cpu(i_ext->len);
885 }
886 
887 static inline void set_raw_read_extent(struct extent_info *ext,
888 					struct f2fs_extent *i_ext)
889 {
890 	i_ext->fofs = cpu_to_le32(ext->fofs);
891 	i_ext->blk = cpu_to_le32(ext->blk);
892 	i_ext->len = cpu_to_le32(ext->len);
893 }
894 
895 static inline bool __is_discard_mergeable(struct discard_info *back,
896 			struct discard_info *front, unsigned int max_len)
897 {
898 	return (back->lstart + back->len == front->lstart) &&
899 		(back->len + front->len <= max_len);
900 }
901 
902 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
903 			struct discard_info *back, unsigned int max_len)
904 {
905 	return __is_discard_mergeable(back, cur, max_len);
906 }
907 
908 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
909 			struct discard_info *front, unsigned int max_len)
910 {
911 	return __is_discard_mergeable(cur, front, max_len);
912 }
913 
914 /*
915  * For free nid management
916  */
917 enum nid_state {
918 	FREE_NID,		/* newly added to free nid list */
919 	PREALLOC_NID,		/* it is preallocated */
920 	MAX_NID_STATE,
921 };
922 
923 enum nat_state {
924 	TOTAL_NAT,
925 	DIRTY_NAT,
926 	RECLAIMABLE_NAT,
927 	MAX_NAT_STATE,
928 };
929 
930 struct f2fs_nm_info {
931 	block_t nat_blkaddr;		/* base disk address of NAT */
932 	nid_t max_nid;			/* maximum possible node ids */
933 	nid_t available_nids;		/* # of available node ids */
934 	nid_t next_scan_nid;		/* the next nid to be scanned */
935 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
936 	unsigned int ram_thresh;	/* control the memory footprint */
937 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
938 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
939 
940 	/* NAT cache management */
941 	struct radix_tree_root nat_root;/* root of the nat entry cache */
942 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
943 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
944 	struct list_head nat_entries;	/* cached nat entry list (clean) */
945 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
946 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
947 	unsigned int nat_blocks;	/* # of nat blocks */
948 
949 	/* free node ids management */
950 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
951 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
952 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
953 	spinlock_t nid_list_lock;	/* protect nid lists ops */
954 	struct mutex build_lock;	/* lock for build free nids */
955 	unsigned char **free_nid_bitmap;
956 	unsigned char *nat_block_bitmap;
957 	unsigned short *free_nid_count;	/* free nid count of NAT block */
958 
959 	/* for checkpoint */
960 	char *nat_bitmap;		/* NAT bitmap pointer */
961 
962 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
963 	unsigned char *nat_bits;	/* NAT bits blocks */
964 	unsigned char *full_nat_bits;	/* full NAT pages */
965 	unsigned char *empty_nat_bits;	/* empty NAT pages */
966 #ifdef CONFIG_F2FS_CHECK_FS
967 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
968 #endif
969 	int bitmap_size;		/* bitmap size */
970 };
971 
972 /*
973  * this structure is used as one of function parameters.
974  * all the information are dedicated to a given direct node block determined
975  * by the data offset in a file.
976  */
977 struct dnode_of_data {
978 	struct inode *inode;		/* vfs inode pointer */
979 	struct page *inode_page;	/* its inode page, NULL is possible */
980 	struct page *node_page;		/* cached direct node page */
981 	nid_t nid;			/* node id of the direct node block */
982 	unsigned int ofs_in_node;	/* data offset in the node page */
983 	bool inode_page_locked;		/* inode page is locked or not */
984 	bool node_changed;		/* is node block changed */
985 	char cur_level;			/* level of hole node page */
986 	char max_level;			/* level of current page located */
987 	block_t	data_blkaddr;		/* block address of the node block */
988 };
989 
990 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
991 		struct page *ipage, struct page *npage, nid_t nid)
992 {
993 	memset(dn, 0, sizeof(*dn));
994 	dn->inode = inode;
995 	dn->inode_page = ipage;
996 	dn->node_page = npage;
997 	dn->nid = nid;
998 }
999 
1000 /*
1001  * For SIT manager
1002  *
1003  * By default, there are 6 active log areas across the whole main area.
1004  * When considering hot and cold data separation to reduce cleaning overhead,
1005  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1006  * respectively.
1007  * In the current design, you should not change the numbers intentionally.
1008  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1009  * logs individually according to the underlying devices. (default: 6)
1010  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1011  * data and 8 for node logs.
1012  */
1013 #define	NR_CURSEG_DATA_TYPE	(3)
1014 #define NR_CURSEG_NODE_TYPE	(3)
1015 #define NR_CURSEG_INMEM_TYPE	(2)
1016 #define NR_CURSEG_RO_TYPE	(2)
1017 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1018 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1019 
1020 enum {
1021 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1022 	CURSEG_WARM_DATA,	/* data blocks */
1023 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1024 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1025 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1026 	CURSEG_COLD_NODE,	/* indirect node blocks */
1027 	NR_PERSISTENT_LOG,	/* number of persistent log */
1028 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1029 				/* pinned file that needs consecutive block address */
1030 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1031 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1032 };
1033 
1034 struct flush_cmd {
1035 	struct completion wait;
1036 	struct llist_node llnode;
1037 	nid_t ino;
1038 	int ret;
1039 };
1040 
1041 struct flush_cmd_control {
1042 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1043 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1044 	atomic_t issued_flush;			/* # of issued flushes */
1045 	atomic_t queued_flush;			/* # of queued flushes */
1046 	struct llist_head issue_list;		/* list for command issue */
1047 	struct llist_node *dispatch_list;	/* list for command dispatch */
1048 };
1049 
1050 struct f2fs_sm_info {
1051 	struct sit_info *sit_info;		/* whole segment information */
1052 	struct free_segmap_info *free_info;	/* free segment information */
1053 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1054 	struct curseg_info *curseg_array;	/* active segment information */
1055 
1056 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1057 
1058 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1059 	block_t main_blkaddr;		/* start block address of main area */
1060 	block_t ssa_blkaddr;		/* start block address of SSA area */
1061 
1062 	unsigned int segment_count;	/* total # of segments */
1063 	unsigned int main_segments;	/* # of segments in main area */
1064 	unsigned int reserved_segments;	/* # of reserved segments */
1065 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1066 	unsigned int ovp_segments;	/* # of overprovision segments */
1067 
1068 	/* a threshold to reclaim prefree segments */
1069 	unsigned int rec_prefree_segments;
1070 
1071 	struct list_head sit_entry_set;	/* sit entry set list */
1072 
1073 	unsigned int ipu_policy;	/* in-place-update policy */
1074 	unsigned int min_ipu_util;	/* in-place-update threshold */
1075 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1076 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1077 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1078 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1079 
1080 	/* for flush command control */
1081 	struct flush_cmd_control *fcc_info;
1082 
1083 	/* for discard command control */
1084 	struct discard_cmd_control *dcc_info;
1085 };
1086 
1087 /*
1088  * For superblock
1089  */
1090 /*
1091  * COUNT_TYPE for monitoring
1092  *
1093  * f2fs monitors the number of several block types such as on-writeback,
1094  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1095  */
1096 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1097 enum count_type {
1098 	F2FS_DIRTY_DENTS,
1099 	F2FS_DIRTY_DATA,
1100 	F2FS_DIRTY_QDATA,
1101 	F2FS_DIRTY_NODES,
1102 	F2FS_DIRTY_META,
1103 	F2FS_DIRTY_IMETA,
1104 	F2FS_WB_CP_DATA,
1105 	F2FS_WB_DATA,
1106 	F2FS_RD_DATA,
1107 	F2FS_RD_NODE,
1108 	F2FS_RD_META,
1109 	F2FS_DIO_WRITE,
1110 	F2FS_DIO_READ,
1111 	NR_COUNT_TYPE,
1112 };
1113 
1114 /*
1115  * The below are the page types of bios used in submit_bio().
1116  * The available types are:
1117  * DATA			User data pages. It operates as async mode.
1118  * NODE			Node pages. It operates as async mode.
1119  * META			FS metadata pages such as SIT, NAT, CP.
1120  * NR_PAGE_TYPE		The number of page types.
1121  * META_FLUSH		Make sure the previous pages are written
1122  *			with waiting the bio's completion
1123  * ...			Only can be used with META.
1124  */
1125 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1126 enum page_type {
1127 	DATA = 0,
1128 	NODE = 1,	/* should not change this */
1129 	META,
1130 	NR_PAGE_TYPE,
1131 	META_FLUSH,
1132 	IPU,		/* the below types are used by tracepoints only. */
1133 	OPU,
1134 };
1135 
1136 enum temp_type {
1137 	HOT = 0,	/* must be zero for meta bio */
1138 	WARM,
1139 	COLD,
1140 	NR_TEMP_TYPE,
1141 };
1142 
1143 enum need_lock_type {
1144 	LOCK_REQ = 0,
1145 	LOCK_DONE,
1146 	LOCK_RETRY,
1147 };
1148 
1149 enum cp_reason_type {
1150 	CP_NO_NEEDED,
1151 	CP_NON_REGULAR,
1152 	CP_COMPRESSED,
1153 	CP_HARDLINK,
1154 	CP_SB_NEED_CP,
1155 	CP_WRONG_PINO,
1156 	CP_NO_SPC_ROLL,
1157 	CP_NODE_NEED_CP,
1158 	CP_FASTBOOT_MODE,
1159 	CP_SPEC_LOG_NUM,
1160 	CP_RECOVER_DIR,
1161 };
1162 
1163 enum iostat_type {
1164 	/* WRITE IO */
1165 	APP_DIRECT_IO,			/* app direct write IOs */
1166 	APP_BUFFERED_IO,		/* app buffered write IOs */
1167 	APP_WRITE_IO,			/* app write IOs */
1168 	APP_MAPPED_IO,			/* app mapped IOs */
1169 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1170 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1171 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1172 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1173 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1174 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1175 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1176 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1177 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1178 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1179 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1180 
1181 	/* READ IO */
1182 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1183 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1184 	APP_READ_IO,			/* app read IOs */
1185 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1186 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1187 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1188 	FS_DATA_READ_IO,		/* data read IOs */
1189 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1190 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1191 	FS_NODE_READ_IO,		/* node read IOs */
1192 	FS_META_READ_IO,		/* meta read IOs */
1193 
1194 	/* other */
1195 	FS_DISCARD_IO,			/* discard */
1196 	FS_FLUSH_IO,			/* flush */
1197 	NR_IO_TYPE,
1198 };
1199 
1200 struct f2fs_io_info {
1201 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1202 	nid_t ino;		/* inode number */
1203 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1204 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1205 	enum req_op op;		/* contains REQ_OP_ */
1206 	blk_opf_t op_flags;	/* req_flag_bits */
1207 	block_t new_blkaddr;	/* new block address to be written */
1208 	block_t old_blkaddr;	/* old block address before Cow */
1209 	struct page *page;	/* page to be written */
1210 	struct page *encrypted_page;	/* encrypted page */
1211 	struct page *compressed_page;	/* compressed page */
1212 	struct list_head list;		/* serialize IOs */
1213 	unsigned int compr_blocks;	/* # of compressed block addresses */
1214 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1215 	unsigned int version:8;		/* version of the node */
1216 	unsigned int submitted:1;	/* indicate IO submission */
1217 	unsigned int in_list:1;		/* indicate fio is in io_list */
1218 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1219 	unsigned int retry:1;		/* need to reallocate block address */
1220 	unsigned int encrypted:1;	/* indicate file is encrypted */
1221 	unsigned int post_read:1;	/* require post read */
1222 	enum iostat_type io_type;	/* io type */
1223 	struct writeback_control *io_wbc; /* writeback control */
1224 	struct bio **bio;		/* bio for ipu */
1225 	sector_t *last_block;		/* last block number in bio */
1226 };
1227 
1228 struct bio_entry {
1229 	struct bio *bio;
1230 	struct list_head list;
1231 };
1232 
1233 #define is_read_io(rw) ((rw) == READ)
1234 struct f2fs_bio_info {
1235 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1236 	struct bio *bio;		/* bios to merge */
1237 	sector_t last_block_in_bio;	/* last block number */
1238 	struct f2fs_io_info fio;	/* store buffered io info. */
1239 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1240 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1241 	struct list_head io_list;	/* track fios */
1242 	struct list_head bio_list;	/* bio entry list head */
1243 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1244 };
1245 
1246 #define FDEV(i)				(sbi->devs[i])
1247 #define RDEV(i)				(raw_super->devs[i])
1248 struct f2fs_dev_info {
1249 	struct block_device *bdev;
1250 	char path[MAX_PATH_LEN];
1251 	unsigned int total_segments;
1252 	block_t start_blk;
1253 	block_t end_blk;
1254 #ifdef CONFIG_BLK_DEV_ZONED
1255 	unsigned int nr_blkz;		/* Total number of zones */
1256 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1257 #endif
1258 };
1259 
1260 enum inode_type {
1261 	DIR_INODE,			/* for dirty dir inode */
1262 	FILE_INODE,			/* for dirty regular/symlink inode */
1263 	DIRTY_META,			/* for all dirtied inode metadata */
1264 	NR_INODE_TYPE,
1265 };
1266 
1267 /* for inner inode cache management */
1268 struct inode_management {
1269 	struct radix_tree_root ino_root;	/* ino entry array */
1270 	spinlock_t ino_lock;			/* for ino entry lock */
1271 	struct list_head ino_list;		/* inode list head */
1272 	unsigned long ino_num;			/* number of entries */
1273 };
1274 
1275 /* for GC_AT */
1276 struct atgc_management {
1277 	bool atgc_enabled;			/* ATGC is enabled or not */
1278 	struct rb_root_cached root;		/* root of victim rb-tree */
1279 	struct list_head victim_list;		/* linked with all victim entries */
1280 	unsigned int victim_count;		/* victim count in rb-tree */
1281 	unsigned int candidate_ratio;		/* candidate ratio */
1282 	unsigned int max_candidate_count;	/* max candidate count */
1283 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1284 	unsigned long long age_threshold;	/* age threshold */
1285 };
1286 
1287 struct f2fs_gc_control {
1288 	unsigned int victim_segno;	/* target victim segment number */
1289 	int init_gc_type;		/* FG_GC or BG_GC */
1290 	bool no_bg_gc;			/* check the space and stop bg_gc */
1291 	bool should_migrate_blocks;	/* should migrate blocks */
1292 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1293 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1294 };
1295 
1296 /* For s_flag in struct f2fs_sb_info */
1297 enum {
1298 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1299 	SBI_IS_CLOSE,				/* specify unmounting */
1300 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1301 	SBI_POR_DOING,				/* recovery is doing or not */
1302 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1303 	SBI_NEED_CP,				/* need to checkpoint */
1304 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1305 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1306 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1307 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1308 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1309 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1310 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1311 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1312 	SBI_IS_FREEZING,			/* freezefs is in process */
1313 };
1314 
1315 enum {
1316 	CP_TIME,
1317 	REQ_TIME,
1318 	DISCARD_TIME,
1319 	GC_TIME,
1320 	DISABLE_TIME,
1321 	UMOUNT_DISCARD_TIMEOUT,
1322 	MAX_TIME,
1323 };
1324 
1325 /* Note that you need to keep synchronization with this gc_mode_names array */
1326 enum {
1327 	GC_NORMAL,
1328 	GC_IDLE_CB,
1329 	GC_IDLE_GREEDY,
1330 	GC_IDLE_AT,
1331 	GC_URGENT_HIGH,
1332 	GC_URGENT_LOW,
1333 	GC_URGENT_MID,
1334 	MAX_GC_MODE,
1335 };
1336 
1337 enum {
1338 	BGGC_MODE_ON,		/* background gc is on */
1339 	BGGC_MODE_OFF,		/* background gc is off */
1340 	BGGC_MODE_SYNC,		/*
1341 				 * background gc is on, migrating blocks
1342 				 * like foreground gc
1343 				 */
1344 };
1345 
1346 enum {
1347 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1348 	FS_MODE_LFS,			/* use lfs allocation only */
1349 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1350 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1351 };
1352 
1353 enum {
1354 	ALLOC_MODE_DEFAULT,	/* stay default */
1355 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1356 };
1357 
1358 enum fsync_mode {
1359 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1360 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1361 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1362 };
1363 
1364 enum {
1365 	COMPR_MODE_FS,		/*
1366 				 * automatically compress compression
1367 				 * enabled files
1368 				 */
1369 	COMPR_MODE_USER,	/*
1370 				 * automatical compression is disabled.
1371 				 * user can control the file compression
1372 				 * using ioctls
1373 				 */
1374 };
1375 
1376 enum {
1377 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1378 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1379 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1380 };
1381 
1382 enum {
1383 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1384 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1385 };
1386 
1387 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1388 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1389 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1390 
1391 /*
1392  * Layout of f2fs page.private:
1393  *
1394  * Layout A: lowest bit should be 1
1395  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1396  * bit 0	PAGE_PRIVATE_NOT_POINTER
1397  * bit 1	PAGE_PRIVATE_DUMMY_WRITE
1398  * bit 2	PAGE_PRIVATE_ONGOING_MIGRATION
1399  * bit 3	PAGE_PRIVATE_INLINE_INODE
1400  * bit 4	PAGE_PRIVATE_REF_RESOURCE
1401  * bit 5-	f2fs private data
1402  *
1403  * Layout B: lowest bit should be 0
1404  * page.private is a wrapped pointer.
1405  */
1406 enum {
1407 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1408 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1409 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1410 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1411 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1412 	PAGE_PRIVATE_MAX
1413 };
1414 
1415 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1416 static inline bool page_private_##name(struct page *page) \
1417 { \
1418 	return PagePrivate(page) && \
1419 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1420 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1421 }
1422 
1423 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1424 static inline void set_page_private_##name(struct page *page) \
1425 { \
1426 	if (!PagePrivate(page)) { \
1427 		get_page(page); \
1428 		SetPagePrivate(page); \
1429 		set_page_private(page, 0); \
1430 	} \
1431 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1432 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1433 }
1434 
1435 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1436 static inline void clear_page_private_##name(struct page *page) \
1437 { \
1438 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1439 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1440 		set_page_private(page, 0); \
1441 		if (PagePrivate(page)) { \
1442 			ClearPagePrivate(page); \
1443 			put_page(page); \
1444 		}\
1445 	} \
1446 }
1447 
1448 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1449 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1450 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1451 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1452 
1453 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1454 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1455 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1456 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1457 
1458 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1459 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1460 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1461 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1462 
1463 static inline unsigned long get_page_private_data(struct page *page)
1464 {
1465 	unsigned long data = page_private(page);
1466 
1467 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1468 		return 0;
1469 	return data >> PAGE_PRIVATE_MAX;
1470 }
1471 
1472 static inline void set_page_private_data(struct page *page, unsigned long data)
1473 {
1474 	if (!PagePrivate(page)) {
1475 		get_page(page);
1476 		SetPagePrivate(page);
1477 		set_page_private(page, 0);
1478 	}
1479 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1480 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1481 }
1482 
1483 static inline void clear_page_private_data(struct page *page)
1484 {
1485 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1486 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1487 		set_page_private(page, 0);
1488 		if (PagePrivate(page)) {
1489 			ClearPagePrivate(page);
1490 			put_page(page);
1491 		}
1492 	}
1493 }
1494 
1495 /* For compression */
1496 enum compress_algorithm_type {
1497 	COMPRESS_LZO,
1498 	COMPRESS_LZ4,
1499 	COMPRESS_ZSTD,
1500 	COMPRESS_LZORLE,
1501 	COMPRESS_MAX,
1502 };
1503 
1504 enum compress_flag {
1505 	COMPRESS_CHKSUM,
1506 	COMPRESS_MAX_FLAG,
1507 };
1508 
1509 #define	COMPRESS_WATERMARK			20
1510 #define	COMPRESS_PERCENT			20
1511 
1512 #define COMPRESS_DATA_RESERVED_SIZE		4
1513 struct compress_data {
1514 	__le32 clen;			/* compressed data size */
1515 	__le32 chksum;			/* compressed data chksum */
1516 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1517 	u8 cdata[];			/* compressed data */
1518 };
1519 
1520 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1521 
1522 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1523 
1524 #define	COMPRESS_LEVEL_OFFSET	8
1525 
1526 /* compress context */
1527 struct compress_ctx {
1528 	struct inode *inode;		/* inode the context belong to */
1529 	pgoff_t cluster_idx;		/* cluster index number */
1530 	unsigned int cluster_size;	/* page count in cluster */
1531 	unsigned int log_cluster_size;	/* log of cluster size */
1532 	struct page **rpages;		/* pages store raw data in cluster */
1533 	unsigned int nr_rpages;		/* total page number in rpages */
1534 	struct page **cpages;		/* pages store compressed data in cluster */
1535 	unsigned int nr_cpages;		/* total page number in cpages */
1536 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1537 	void *rbuf;			/* virtual mapped address on rpages */
1538 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1539 	size_t rlen;			/* valid data length in rbuf */
1540 	size_t clen;			/* valid data length in cbuf */
1541 	void *private;			/* payload buffer for specified compression algorithm */
1542 	void *private2;			/* extra payload buffer */
1543 };
1544 
1545 /* compress context for write IO path */
1546 struct compress_io_ctx {
1547 	u32 magic;			/* magic number to indicate page is compressed */
1548 	struct inode *inode;		/* inode the context belong to */
1549 	struct page **rpages;		/* pages store raw data in cluster */
1550 	unsigned int nr_rpages;		/* total page number in rpages */
1551 	atomic_t pending_pages;		/* in-flight compressed page count */
1552 };
1553 
1554 /* Context for decompressing one cluster on the read IO path */
1555 struct decompress_io_ctx {
1556 	u32 magic;			/* magic number to indicate page is compressed */
1557 	struct inode *inode;		/* inode the context belong to */
1558 	pgoff_t cluster_idx;		/* cluster index number */
1559 	unsigned int cluster_size;	/* page count in cluster */
1560 	unsigned int log_cluster_size;	/* log of cluster size */
1561 	struct page **rpages;		/* pages store raw data in cluster */
1562 	unsigned int nr_rpages;		/* total page number in rpages */
1563 	struct page **cpages;		/* pages store compressed data in cluster */
1564 	unsigned int nr_cpages;		/* total page number in cpages */
1565 	struct page **tpages;		/* temp pages to pad holes in cluster */
1566 	void *rbuf;			/* virtual mapped address on rpages */
1567 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1568 	size_t rlen;			/* valid data length in rbuf */
1569 	size_t clen;			/* valid data length in cbuf */
1570 
1571 	/*
1572 	 * The number of compressed pages remaining to be read in this cluster.
1573 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1574 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1575 	 * is decompressed (or an error is reported).
1576 	 *
1577 	 * If an error occurs before all the pages have been submitted for I/O,
1578 	 * then this will never reach 0.  In this case the I/O submitter is
1579 	 * responsible for calling f2fs_decompress_end_io() instead.
1580 	 */
1581 	atomic_t remaining_pages;
1582 
1583 	/*
1584 	 * Number of references to this decompress_io_ctx.
1585 	 *
1586 	 * One reference is held for I/O completion.  This reference is dropped
1587 	 * after the pagecache pages are updated and unlocked -- either after
1588 	 * decompression (and verity if enabled), or after an error.
1589 	 *
1590 	 * In addition, each compressed page holds a reference while it is in a
1591 	 * bio.  These references are necessary prevent compressed pages from
1592 	 * being freed while they are still in a bio.
1593 	 */
1594 	refcount_t refcnt;
1595 
1596 	bool failed;			/* IO error occurred before decompression? */
1597 	bool need_verity;		/* need fs-verity verification after decompression? */
1598 	void *private;			/* payload buffer for specified decompression algorithm */
1599 	void *private2;			/* extra payload buffer */
1600 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1601 	struct work_struct free_work;	/* work for late free this structure itself */
1602 };
1603 
1604 #define NULL_CLUSTER			((unsigned int)(~0))
1605 #define MIN_COMPRESS_LOG_SIZE		2
1606 #define MAX_COMPRESS_LOG_SIZE		8
1607 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1608 
1609 struct f2fs_sb_info {
1610 	struct super_block *sb;			/* pointer to VFS super block */
1611 	struct proc_dir_entry *s_proc;		/* proc entry */
1612 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1613 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1614 	int valid_super_block;			/* valid super block no */
1615 	unsigned long s_flag;				/* flags for sbi */
1616 	struct mutex writepages;		/* mutex for writepages() */
1617 
1618 #ifdef CONFIG_BLK_DEV_ZONED
1619 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1620 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1621 #endif
1622 
1623 	/* for node-related operations */
1624 	struct f2fs_nm_info *nm_info;		/* node manager */
1625 	struct inode *node_inode;		/* cache node blocks */
1626 
1627 	/* for segment-related operations */
1628 	struct f2fs_sm_info *sm_info;		/* segment manager */
1629 
1630 	/* for bio operations */
1631 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1632 	/* keep migration IO order for LFS mode */
1633 	struct f2fs_rwsem io_order_lock;
1634 	mempool_t *write_io_dummy;		/* Dummy pages */
1635 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1636 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1637 
1638 	/* for checkpoint */
1639 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1640 	int cur_cp_pack;			/* remain current cp pack */
1641 	spinlock_t cp_lock;			/* for flag in ckpt */
1642 	struct inode *meta_inode;		/* cache meta blocks */
1643 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1644 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1645 	struct f2fs_rwsem node_write;		/* locking node writes */
1646 	struct f2fs_rwsem node_change;	/* locking node change */
1647 	wait_queue_head_t cp_wait;
1648 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1649 	long interval_time[MAX_TIME];		/* to store thresholds */
1650 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1651 
1652 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1653 
1654 	spinlock_t fsync_node_lock;		/* for node entry lock */
1655 	struct list_head fsync_node_list;	/* node list head */
1656 	unsigned int fsync_seg_id;		/* sequence id */
1657 	unsigned int fsync_node_num;		/* number of node entries */
1658 
1659 	/* for orphan inode, use 0'th array */
1660 	unsigned int max_orphans;		/* max orphan inodes */
1661 
1662 	/* for inode management */
1663 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1664 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1665 	struct mutex flush_lock;		/* for flush exclusion */
1666 
1667 	/* for extent tree cache */
1668 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1669 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1670 
1671 	/* The threshold used for hot and warm data seperation*/
1672 	unsigned int hot_data_age_threshold;
1673 	unsigned int warm_data_age_threshold;
1674 	unsigned int last_age_weight;
1675 
1676 	/* basic filesystem units */
1677 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1678 	unsigned int log_blocksize;		/* log2 block size */
1679 	unsigned int blocksize;			/* block size */
1680 	unsigned int root_ino_num;		/* root inode number*/
1681 	unsigned int node_ino_num;		/* node inode number*/
1682 	unsigned int meta_ino_num;		/* meta inode number*/
1683 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1684 	unsigned int blocks_per_seg;		/* blocks per segment */
1685 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1686 	unsigned int segs_per_sec;		/* segments per section */
1687 	unsigned int secs_per_zone;		/* sections per zone */
1688 	unsigned int total_sections;		/* total section count */
1689 	unsigned int total_node_count;		/* total node block count */
1690 	unsigned int total_valid_node_count;	/* valid node block count */
1691 	int dir_level;				/* directory level */
1692 	bool readdir_ra;			/* readahead inode in readdir */
1693 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1694 
1695 	block_t user_block_count;		/* # of user blocks */
1696 	block_t total_valid_block_count;	/* # of valid blocks */
1697 	block_t discard_blks;			/* discard command candidats */
1698 	block_t last_valid_block_count;		/* for recovery */
1699 	block_t reserved_blocks;		/* configurable reserved blocks */
1700 	block_t current_reserved_blocks;	/* current reserved blocks */
1701 
1702 	/* Additional tracking for no checkpoint mode */
1703 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1704 
1705 	unsigned int nquota_files;		/* # of quota sysfile */
1706 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1707 
1708 	/* # of pages, see count_type */
1709 	atomic_t nr_pages[NR_COUNT_TYPE];
1710 	/* # of allocated blocks */
1711 	struct percpu_counter alloc_valid_block_count;
1712 	/* # of node block writes as roll forward recovery */
1713 	struct percpu_counter rf_node_block_count;
1714 
1715 	/* writeback control */
1716 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1717 
1718 	/* valid inode count */
1719 	struct percpu_counter total_valid_inode_count;
1720 
1721 	struct f2fs_mount_info mount_opt;	/* mount options */
1722 
1723 	/* for cleaning operations */
1724 	struct f2fs_rwsem gc_lock;		/*
1725 						 * semaphore for GC, avoid
1726 						 * race between GC and GC or CP
1727 						 */
1728 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1729 	struct atgc_management am;		/* atgc management */
1730 	unsigned int cur_victim_sec;		/* current victim section num */
1731 	unsigned int gc_mode;			/* current GC state */
1732 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1733 	spinlock_t gc_remaining_trials_lock;
1734 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1735 	unsigned int gc_remaining_trials;
1736 
1737 	/* for skip statistic */
1738 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1739 
1740 	/* threshold for gc trials on pinned files */
1741 	u64 gc_pin_file_threshold;
1742 	struct f2fs_rwsem pin_sem;
1743 
1744 	/* maximum # of trials to find a victim segment for SSR and GC */
1745 	unsigned int max_victim_search;
1746 	/* migration granularity of garbage collection, unit: segment */
1747 	unsigned int migration_granularity;
1748 
1749 	/*
1750 	 * for stat information.
1751 	 * one is for the LFS mode, and the other is for the SSR mode.
1752 	 */
1753 #ifdef CONFIG_F2FS_STAT_FS
1754 	struct f2fs_stat_info *stat_info;	/* FS status information */
1755 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1756 	unsigned int segment_count[2];		/* # of allocated segments */
1757 	unsigned int block_count[2];		/* # of allocated blocks */
1758 	atomic_t inplace_count;		/* # of inplace update */
1759 	/* # of lookup extent cache */
1760 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1761 	/* # of hit rbtree extent node */
1762 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1763 	/* # of hit cached extent node */
1764 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1765 	/* # of hit largest extent node in read extent cache */
1766 	atomic64_t read_hit_largest;
1767 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1768 	atomic_t inline_inode;			/* # of inline_data inodes */
1769 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1770 	atomic_t compr_inode;			/* # of compressed inodes */
1771 	atomic64_t compr_blocks;		/* # of compressed blocks */
1772 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1773 	atomic_t atomic_files;			/* # of opened atomic file */
1774 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1775 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1776 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1777 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1778 #endif
1779 	spinlock_t stat_lock;			/* lock for stat operations */
1780 
1781 	/* to attach REQ_META|REQ_FUA flags */
1782 	unsigned int data_io_flag;
1783 	unsigned int node_io_flag;
1784 
1785 	/* For sysfs support */
1786 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1787 	struct completion s_kobj_unregister;
1788 
1789 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1790 	struct completion s_stat_kobj_unregister;
1791 
1792 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1793 	struct completion s_feature_list_kobj_unregister;
1794 
1795 	/* For shrinker support */
1796 	struct list_head s_list;
1797 	struct mutex umount_mutex;
1798 	unsigned int shrinker_run_no;
1799 
1800 	/* For multi devices */
1801 	int s_ndevs;				/* number of devices */
1802 	struct f2fs_dev_info *devs;		/* for device list */
1803 	unsigned int dirty_device;		/* for checkpoint data flush */
1804 	spinlock_t dev_lock;			/* protect dirty_device */
1805 	bool aligned_blksize;			/* all devices has the same logical blksize */
1806 
1807 	/* For write statistics */
1808 	u64 sectors_written_start;
1809 	u64 kbytes_written;
1810 
1811 	/* Reference to checksum algorithm driver via cryptoapi */
1812 	struct crypto_shash *s_chksum_driver;
1813 
1814 	/* Precomputed FS UUID checksum for seeding other checksums */
1815 	__u32 s_chksum_seed;
1816 
1817 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1818 
1819 	unsigned char errors[MAX_F2FS_ERRORS];	/* error flags */
1820 	spinlock_t error_lock;			/* protect errors array */
1821 	bool error_dirty;			/* errors of sb is dirty */
1822 
1823 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1824 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1825 
1826 	/* For reclaimed segs statistics per each GC mode */
1827 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1828 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1829 
1830 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1831 
1832 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1833 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1834 
1835 	/* For atomic write statistics */
1836 	atomic64_t current_atomic_write;
1837 	s64 peak_atomic_write;
1838 	u64 committed_atomic_block;
1839 	u64 revoked_atomic_block;
1840 
1841 #ifdef CONFIG_F2FS_FS_COMPRESSION
1842 	struct kmem_cache *page_array_slab;	/* page array entry */
1843 	unsigned int page_array_slab_size;	/* default page array slab size */
1844 
1845 	/* For runtime compression statistics */
1846 	u64 compr_written_block;
1847 	u64 compr_saved_block;
1848 	u32 compr_new_inode;
1849 
1850 	/* For compressed block cache */
1851 	struct inode *compress_inode;		/* cache compressed blocks */
1852 	unsigned int compress_percent;		/* cache page percentage */
1853 	unsigned int compress_watermark;	/* cache page watermark */
1854 	atomic_t compress_page_hit;		/* cache hit count */
1855 #endif
1856 
1857 #ifdef CONFIG_F2FS_IOSTAT
1858 	/* For app/fs IO statistics */
1859 	spinlock_t iostat_lock;
1860 	unsigned long long iostat_count[NR_IO_TYPE];
1861 	unsigned long long iostat_bytes[NR_IO_TYPE];
1862 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1863 	bool iostat_enable;
1864 	unsigned long iostat_next_period;
1865 	unsigned int iostat_period_ms;
1866 
1867 	/* For io latency related statistics info in one iostat period */
1868 	spinlock_t iostat_lat_lock;
1869 	struct iostat_lat_info *iostat_io_lat;
1870 #endif
1871 };
1872 
1873 #ifdef CONFIG_F2FS_FAULT_INJECTION
1874 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1875 									__builtin_return_address(0))
1876 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1877 				const char *func, const char *parent_func)
1878 {
1879 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1880 
1881 	if (!ffi->inject_rate)
1882 		return false;
1883 
1884 	if (!IS_FAULT_SET(ffi, type))
1885 		return false;
1886 
1887 	atomic_inc(&ffi->inject_ops);
1888 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1889 		atomic_set(&ffi->inject_ops, 0);
1890 		printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",
1891 			KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type],
1892 			func, parent_func);
1893 		return true;
1894 	}
1895 	return false;
1896 }
1897 #else
1898 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1899 {
1900 	return false;
1901 }
1902 #endif
1903 
1904 /*
1905  * Test if the mounted volume is a multi-device volume.
1906  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1907  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1908  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1909  */
1910 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1911 {
1912 	return sbi->s_ndevs > 1;
1913 }
1914 
1915 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1916 {
1917 	unsigned long now = jiffies;
1918 
1919 	sbi->last_time[type] = now;
1920 
1921 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1922 	if (type == REQ_TIME) {
1923 		sbi->last_time[DISCARD_TIME] = now;
1924 		sbi->last_time[GC_TIME] = now;
1925 	}
1926 }
1927 
1928 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1929 {
1930 	unsigned long interval = sbi->interval_time[type] * HZ;
1931 
1932 	return time_after(jiffies, sbi->last_time[type] + interval);
1933 }
1934 
1935 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1936 						int type)
1937 {
1938 	unsigned long interval = sbi->interval_time[type] * HZ;
1939 	unsigned int wait_ms = 0;
1940 	long delta;
1941 
1942 	delta = (sbi->last_time[type] + interval) - jiffies;
1943 	if (delta > 0)
1944 		wait_ms = jiffies_to_msecs(delta);
1945 
1946 	return wait_ms;
1947 }
1948 
1949 /*
1950  * Inline functions
1951  */
1952 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1953 			      const void *address, unsigned int length)
1954 {
1955 	struct {
1956 		struct shash_desc shash;
1957 		char ctx[4];
1958 	} desc;
1959 	int err;
1960 
1961 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1962 
1963 	desc.shash.tfm = sbi->s_chksum_driver;
1964 	*(u32 *)desc.ctx = crc;
1965 
1966 	err = crypto_shash_update(&desc.shash, address, length);
1967 	BUG_ON(err);
1968 
1969 	return *(u32 *)desc.ctx;
1970 }
1971 
1972 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1973 			   unsigned int length)
1974 {
1975 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1976 }
1977 
1978 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1979 				  void *buf, size_t buf_size)
1980 {
1981 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1982 }
1983 
1984 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1985 			      const void *address, unsigned int length)
1986 {
1987 	return __f2fs_crc32(sbi, crc, address, length);
1988 }
1989 
1990 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1991 {
1992 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1993 }
1994 
1995 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1996 {
1997 	return sb->s_fs_info;
1998 }
1999 
2000 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2001 {
2002 	return F2FS_SB(inode->i_sb);
2003 }
2004 
2005 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2006 {
2007 	return F2FS_I_SB(mapping->host);
2008 }
2009 
2010 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2011 {
2012 	return F2FS_M_SB(page_file_mapping(page));
2013 }
2014 
2015 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2016 {
2017 	return (struct f2fs_super_block *)(sbi->raw_super);
2018 }
2019 
2020 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2021 {
2022 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2023 }
2024 
2025 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2026 {
2027 	return (struct f2fs_node *)page_address(page);
2028 }
2029 
2030 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2031 {
2032 	return &((struct f2fs_node *)page_address(page))->i;
2033 }
2034 
2035 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2036 {
2037 	return (struct f2fs_nm_info *)(sbi->nm_info);
2038 }
2039 
2040 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2041 {
2042 	return (struct f2fs_sm_info *)(sbi->sm_info);
2043 }
2044 
2045 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2046 {
2047 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2048 }
2049 
2050 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2051 {
2052 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2053 }
2054 
2055 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2056 {
2057 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2058 }
2059 
2060 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2061 {
2062 	return sbi->meta_inode->i_mapping;
2063 }
2064 
2065 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2066 {
2067 	return sbi->node_inode->i_mapping;
2068 }
2069 
2070 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2071 {
2072 	return test_bit(type, &sbi->s_flag);
2073 }
2074 
2075 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2076 {
2077 	set_bit(type, &sbi->s_flag);
2078 }
2079 
2080 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2081 {
2082 	clear_bit(type, &sbi->s_flag);
2083 }
2084 
2085 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2086 {
2087 	return le64_to_cpu(cp->checkpoint_ver);
2088 }
2089 
2090 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2091 {
2092 	if (type < F2FS_MAX_QUOTAS)
2093 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2094 	return 0;
2095 }
2096 
2097 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2098 {
2099 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2100 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2101 }
2102 
2103 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2104 {
2105 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2106 
2107 	return ckpt_flags & f;
2108 }
2109 
2110 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2111 {
2112 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2113 }
2114 
2115 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2116 {
2117 	unsigned int ckpt_flags;
2118 
2119 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2120 	ckpt_flags |= f;
2121 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2122 }
2123 
2124 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2125 {
2126 	unsigned long flags;
2127 
2128 	spin_lock_irqsave(&sbi->cp_lock, flags);
2129 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2130 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2131 }
2132 
2133 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2134 {
2135 	unsigned int ckpt_flags;
2136 
2137 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2138 	ckpt_flags &= (~f);
2139 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2140 }
2141 
2142 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2143 {
2144 	unsigned long flags;
2145 
2146 	spin_lock_irqsave(&sbi->cp_lock, flags);
2147 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2148 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2149 }
2150 
2151 #define init_f2fs_rwsem(sem)					\
2152 do {								\
2153 	static struct lock_class_key __key;			\
2154 								\
2155 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2156 } while (0)
2157 
2158 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2159 		const char *sem_name, struct lock_class_key *key)
2160 {
2161 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2162 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2163 	init_waitqueue_head(&sem->read_waiters);
2164 #endif
2165 }
2166 
2167 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2168 {
2169 	return rwsem_is_locked(&sem->internal_rwsem);
2170 }
2171 
2172 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2173 {
2174 	return rwsem_is_contended(&sem->internal_rwsem);
2175 }
2176 
2177 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2178 {
2179 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2180 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2181 #else
2182 	down_read(&sem->internal_rwsem);
2183 #endif
2184 }
2185 
2186 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2187 {
2188 	return down_read_trylock(&sem->internal_rwsem);
2189 }
2190 
2191 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2192 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2193 {
2194 	down_read_nested(&sem->internal_rwsem, subclass);
2195 }
2196 #else
2197 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2198 #endif
2199 
2200 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2201 {
2202 	up_read(&sem->internal_rwsem);
2203 }
2204 
2205 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2206 {
2207 	down_write(&sem->internal_rwsem);
2208 }
2209 
2210 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2211 {
2212 	return down_write_trylock(&sem->internal_rwsem);
2213 }
2214 
2215 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2216 {
2217 	up_write(&sem->internal_rwsem);
2218 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2219 	wake_up_all(&sem->read_waiters);
2220 #endif
2221 }
2222 
2223 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2224 {
2225 	f2fs_down_read(&sbi->cp_rwsem);
2226 }
2227 
2228 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2229 {
2230 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2231 		return 0;
2232 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2233 }
2234 
2235 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2236 {
2237 	f2fs_up_read(&sbi->cp_rwsem);
2238 }
2239 
2240 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2241 {
2242 	f2fs_down_write(&sbi->cp_rwsem);
2243 }
2244 
2245 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2246 {
2247 	f2fs_up_write(&sbi->cp_rwsem);
2248 }
2249 
2250 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2251 {
2252 	int reason = CP_SYNC;
2253 
2254 	if (test_opt(sbi, FASTBOOT))
2255 		reason = CP_FASTBOOT;
2256 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2257 		reason = CP_UMOUNT;
2258 	return reason;
2259 }
2260 
2261 static inline bool __remain_node_summaries(int reason)
2262 {
2263 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2264 }
2265 
2266 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2267 {
2268 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2269 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2270 }
2271 
2272 /*
2273  * Check whether the inode has blocks or not
2274  */
2275 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2276 {
2277 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2278 
2279 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2280 }
2281 
2282 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2283 {
2284 	return ofs == XATTR_NODE_OFFSET;
2285 }
2286 
2287 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2288 					struct inode *inode, bool cap)
2289 {
2290 	if (!inode)
2291 		return true;
2292 	if (!test_opt(sbi, RESERVE_ROOT))
2293 		return false;
2294 	if (IS_NOQUOTA(inode))
2295 		return true;
2296 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2297 		return true;
2298 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2299 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2300 		return true;
2301 	if (cap && capable(CAP_SYS_RESOURCE))
2302 		return true;
2303 	return false;
2304 }
2305 
2306 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2307 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2308 				 struct inode *inode, blkcnt_t *count)
2309 {
2310 	blkcnt_t diff = 0, release = 0;
2311 	block_t avail_user_block_count;
2312 	int ret;
2313 
2314 	ret = dquot_reserve_block(inode, *count);
2315 	if (ret)
2316 		return ret;
2317 
2318 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2319 		release = *count;
2320 		goto release_quota;
2321 	}
2322 
2323 	/*
2324 	 * let's increase this in prior to actual block count change in order
2325 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2326 	 */
2327 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2328 
2329 	spin_lock(&sbi->stat_lock);
2330 	sbi->total_valid_block_count += (block_t)(*count);
2331 	avail_user_block_count = sbi->user_block_count -
2332 					sbi->current_reserved_blocks;
2333 
2334 	if (!__allow_reserved_blocks(sbi, inode, true))
2335 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2336 
2337 	if (F2FS_IO_ALIGNED(sbi))
2338 		avail_user_block_count -= sbi->blocks_per_seg *
2339 				SM_I(sbi)->additional_reserved_segments;
2340 
2341 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2342 		if (avail_user_block_count > sbi->unusable_block_count)
2343 			avail_user_block_count -= sbi->unusable_block_count;
2344 		else
2345 			avail_user_block_count = 0;
2346 	}
2347 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2348 		diff = sbi->total_valid_block_count - avail_user_block_count;
2349 		if (diff > *count)
2350 			diff = *count;
2351 		*count -= diff;
2352 		release = diff;
2353 		sbi->total_valid_block_count -= diff;
2354 		if (!*count) {
2355 			spin_unlock(&sbi->stat_lock);
2356 			goto enospc;
2357 		}
2358 	}
2359 	spin_unlock(&sbi->stat_lock);
2360 
2361 	if (unlikely(release)) {
2362 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2363 		dquot_release_reservation_block(inode, release);
2364 	}
2365 	f2fs_i_blocks_write(inode, *count, true, true);
2366 	return 0;
2367 
2368 enospc:
2369 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2370 release_quota:
2371 	dquot_release_reservation_block(inode, release);
2372 	return -ENOSPC;
2373 }
2374 
2375 __printf(2, 3)
2376 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2377 
2378 #define f2fs_err(sbi, fmt, ...)						\
2379 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2380 #define f2fs_warn(sbi, fmt, ...)					\
2381 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2382 #define f2fs_notice(sbi, fmt, ...)					\
2383 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2384 #define f2fs_info(sbi, fmt, ...)					\
2385 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2386 #define f2fs_debug(sbi, fmt, ...)					\
2387 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2388 
2389 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2390 						struct inode *inode,
2391 						block_t count)
2392 {
2393 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2394 
2395 	spin_lock(&sbi->stat_lock);
2396 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2397 	sbi->total_valid_block_count -= (block_t)count;
2398 	if (sbi->reserved_blocks &&
2399 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2400 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2401 					sbi->current_reserved_blocks + count);
2402 	spin_unlock(&sbi->stat_lock);
2403 	if (unlikely(inode->i_blocks < sectors)) {
2404 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2405 			  inode->i_ino,
2406 			  (unsigned long long)inode->i_blocks,
2407 			  (unsigned long long)sectors);
2408 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2409 		return;
2410 	}
2411 	f2fs_i_blocks_write(inode, count, false, true);
2412 }
2413 
2414 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2415 {
2416 	atomic_inc(&sbi->nr_pages[count_type]);
2417 
2418 	if (count_type == F2FS_DIRTY_DENTS ||
2419 			count_type == F2FS_DIRTY_NODES ||
2420 			count_type == F2FS_DIRTY_META ||
2421 			count_type == F2FS_DIRTY_QDATA ||
2422 			count_type == F2FS_DIRTY_IMETA)
2423 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2424 }
2425 
2426 static inline void inode_inc_dirty_pages(struct inode *inode)
2427 {
2428 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2429 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2430 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2431 	if (IS_NOQUOTA(inode))
2432 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2433 }
2434 
2435 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2436 {
2437 	atomic_dec(&sbi->nr_pages[count_type]);
2438 }
2439 
2440 static inline void inode_dec_dirty_pages(struct inode *inode)
2441 {
2442 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2443 			!S_ISLNK(inode->i_mode))
2444 		return;
2445 
2446 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2447 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2448 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2449 	if (IS_NOQUOTA(inode))
2450 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2451 }
2452 
2453 static inline void inc_atomic_write_cnt(struct inode *inode)
2454 {
2455 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2456 	struct f2fs_inode_info *fi = F2FS_I(inode);
2457 	u64 current_write;
2458 
2459 	fi->atomic_write_cnt++;
2460 	atomic64_inc(&sbi->current_atomic_write);
2461 	current_write = atomic64_read(&sbi->current_atomic_write);
2462 	if (current_write > sbi->peak_atomic_write)
2463 		sbi->peak_atomic_write = current_write;
2464 }
2465 
2466 static inline void release_atomic_write_cnt(struct inode *inode)
2467 {
2468 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2469 	struct f2fs_inode_info *fi = F2FS_I(inode);
2470 
2471 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2472 	fi->atomic_write_cnt = 0;
2473 }
2474 
2475 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2476 {
2477 	return atomic_read(&sbi->nr_pages[count_type]);
2478 }
2479 
2480 static inline int get_dirty_pages(struct inode *inode)
2481 {
2482 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2483 }
2484 
2485 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2486 {
2487 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2488 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2489 						sbi->log_blocks_per_seg;
2490 
2491 	return segs / sbi->segs_per_sec;
2492 }
2493 
2494 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2495 {
2496 	return sbi->total_valid_block_count;
2497 }
2498 
2499 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2500 {
2501 	return sbi->discard_blks;
2502 }
2503 
2504 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2505 {
2506 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2507 
2508 	/* return NAT or SIT bitmap */
2509 	if (flag == NAT_BITMAP)
2510 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2511 	else if (flag == SIT_BITMAP)
2512 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2513 
2514 	return 0;
2515 }
2516 
2517 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2518 {
2519 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2520 }
2521 
2522 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2523 {
2524 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2525 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2526 	int offset;
2527 
2528 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2529 		offset = (flag == SIT_BITMAP) ?
2530 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2531 		/*
2532 		 * if large_nat_bitmap feature is enabled, leave checksum
2533 		 * protection for all nat/sit bitmaps.
2534 		 */
2535 		return tmp_ptr + offset + sizeof(__le32);
2536 	}
2537 
2538 	if (__cp_payload(sbi) > 0) {
2539 		if (flag == NAT_BITMAP)
2540 			return tmp_ptr;
2541 		else
2542 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2543 	} else {
2544 		offset = (flag == NAT_BITMAP) ?
2545 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2546 		return tmp_ptr + offset;
2547 	}
2548 }
2549 
2550 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2551 {
2552 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2553 
2554 	if (sbi->cur_cp_pack == 2)
2555 		start_addr += sbi->blocks_per_seg;
2556 	return start_addr;
2557 }
2558 
2559 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2560 {
2561 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2562 
2563 	if (sbi->cur_cp_pack == 1)
2564 		start_addr += sbi->blocks_per_seg;
2565 	return start_addr;
2566 }
2567 
2568 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2569 {
2570 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2571 }
2572 
2573 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2574 {
2575 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2576 }
2577 
2578 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2579 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2580 					struct inode *inode, bool is_inode)
2581 {
2582 	block_t	valid_block_count;
2583 	unsigned int valid_node_count, user_block_count;
2584 	int err;
2585 
2586 	if (is_inode) {
2587 		if (inode) {
2588 			err = dquot_alloc_inode(inode);
2589 			if (err)
2590 				return err;
2591 		}
2592 	} else {
2593 		err = dquot_reserve_block(inode, 1);
2594 		if (err)
2595 			return err;
2596 	}
2597 
2598 	if (time_to_inject(sbi, FAULT_BLOCK))
2599 		goto enospc;
2600 
2601 	spin_lock(&sbi->stat_lock);
2602 
2603 	valid_block_count = sbi->total_valid_block_count +
2604 					sbi->current_reserved_blocks + 1;
2605 
2606 	if (!__allow_reserved_blocks(sbi, inode, false))
2607 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2608 
2609 	if (F2FS_IO_ALIGNED(sbi))
2610 		valid_block_count += sbi->blocks_per_seg *
2611 				SM_I(sbi)->additional_reserved_segments;
2612 
2613 	user_block_count = sbi->user_block_count;
2614 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2615 		user_block_count -= sbi->unusable_block_count;
2616 
2617 	if (unlikely(valid_block_count > user_block_count)) {
2618 		spin_unlock(&sbi->stat_lock);
2619 		goto enospc;
2620 	}
2621 
2622 	valid_node_count = sbi->total_valid_node_count + 1;
2623 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2624 		spin_unlock(&sbi->stat_lock);
2625 		goto enospc;
2626 	}
2627 
2628 	sbi->total_valid_node_count++;
2629 	sbi->total_valid_block_count++;
2630 	spin_unlock(&sbi->stat_lock);
2631 
2632 	if (inode) {
2633 		if (is_inode)
2634 			f2fs_mark_inode_dirty_sync(inode, true);
2635 		else
2636 			f2fs_i_blocks_write(inode, 1, true, true);
2637 	}
2638 
2639 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2640 	return 0;
2641 
2642 enospc:
2643 	if (is_inode) {
2644 		if (inode)
2645 			dquot_free_inode(inode);
2646 	} else {
2647 		dquot_release_reservation_block(inode, 1);
2648 	}
2649 	return -ENOSPC;
2650 }
2651 
2652 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2653 					struct inode *inode, bool is_inode)
2654 {
2655 	spin_lock(&sbi->stat_lock);
2656 
2657 	if (unlikely(!sbi->total_valid_block_count ||
2658 			!sbi->total_valid_node_count)) {
2659 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2660 			  sbi->total_valid_block_count,
2661 			  sbi->total_valid_node_count);
2662 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2663 	} else {
2664 		sbi->total_valid_block_count--;
2665 		sbi->total_valid_node_count--;
2666 	}
2667 
2668 	if (sbi->reserved_blocks &&
2669 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2670 		sbi->current_reserved_blocks++;
2671 
2672 	spin_unlock(&sbi->stat_lock);
2673 
2674 	if (is_inode) {
2675 		dquot_free_inode(inode);
2676 	} else {
2677 		if (unlikely(inode->i_blocks == 0)) {
2678 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2679 				  inode->i_ino,
2680 				  (unsigned long long)inode->i_blocks);
2681 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2682 			return;
2683 		}
2684 		f2fs_i_blocks_write(inode, 1, false, true);
2685 	}
2686 }
2687 
2688 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2689 {
2690 	return sbi->total_valid_node_count;
2691 }
2692 
2693 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2694 {
2695 	percpu_counter_inc(&sbi->total_valid_inode_count);
2696 }
2697 
2698 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2699 {
2700 	percpu_counter_dec(&sbi->total_valid_inode_count);
2701 }
2702 
2703 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2704 {
2705 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2706 }
2707 
2708 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2709 						pgoff_t index, bool for_write)
2710 {
2711 	struct page *page;
2712 	unsigned int flags;
2713 
2714 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2715 		if (!for_write)
2716 			page = find_get_page_flags(mapping, index,
2717 							FGP_LOCK | FGP_ACCESSED);
2718 		else
2719 			page = find_lock_page(mapping, index);
2720 		if (page)
2721 			return page;
2722 
2723 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2724 			return NULL;
2725 	}
2726 
2727 	if (!for_write)
2728 		return grab_cache_page(mapping, index);
2729 
2730 	flags = memalloc_nofs_save();
2731 	page = grab_cache_page_write_begin(mapping, index);
2732 	memalloc_nofs_restore(flags);
2733 
2734 	return page;
2735 }
2736 
2737 static inline struct page *f2fs_pagecache_get_page(
2738 				struct address_space *mapping, pgoff_t index,
2739 				int fgp_flags, gfp_t gfp_mask)
2740 {
2741 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2742 		return NULL;
2743 
2744 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2745 }
2746 
2747 static inline void f2fs_put_page(struct page *page, int unlock)
2748 {
2749 	if (!page)
2750 		return;
2751 
2752 	if (unlock) {
2753 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2754 		unlock_page(page);
2755 	}
2756 	put_page(page);
2757 }
2758 
2759 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2760 {
2761 	if (dn->node_page)
2762 		f2fs_put_page(dn->node_page, 1);
2763 	if (dn->inode_page && dn->node_page != dn->inode_page)
2764 		f2fs_put_page(dn->inode_page, 0);
2765 	dn->node_page = NULL;
2766 	dn->inode_page = NULL;
2767 }
2768 
2769 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2770 					size_t size)
2771 {
2772 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2773 }
2774 
2775 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2776 						gfp_t flags)
2777 {
2778 	void *entry;
2779 
2780 	entry = kmem_cache_alloc(cachep, flags);
2781 	if (!entry)
2782 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2783 	return entry;
2784 }
2785 
2786 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2787 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2788 {
2789 	if (nofail)
2790 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2791 
2792 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2793 		return NULL;
2794 
2795 	return kmem_cache_alloc(cachep, flags);
2796 }
2797 
2798 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2799 {
2800 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2801 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2802 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2803 		get_pages(sbi, F2FS_DIO_READ) ||
2804 		get_pages(sbi, F2FS_DIO_WRITE))
2805 		return true;
2806 
2807 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2808 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2809 		return true;
2810 
2811 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2812 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2813 		return true;
2814 	return false;
2815 }
2816 
2817 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2818 {
2819 	if (sbi->gc_mode == GC_URGENT_HIGH)
2820 		return true;
2821 
2822 	if (is_inflight_io(sbi, type))
2823 		return false;
2824 
2825 	if (sbi->gc_mode == GC_URGENT_MID)
2826 		return true;
2827 
2828 	if (sbi->gc_mode == GC_URGENT_LOW &&
2829 			(type == DISCARD_TIME || type == GC_TIME))
2830 		return true;
2831 
2832 	return f2fs_time_over(sbi, type);
2833 }
2834 
2835 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2836 				unsigned long index, void *item)
2837 {
2838 	while (radix_tree_insert(root, index, item))
2839 		cond_resched();
2840 }
2841 
2842 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2843 
2844 static inline bool IS_INODE(struct page *page)
2845 {
2846 	struct f2fs_node *p = F2FS_NODE(page);
2847 
2848 	return RAW_IS_INODE(p);
2849 }
2850 
2851 static inline int offset_in_addr(struct f2fs_inode *i)
2852 {
2853 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2854 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2855 }
2856 
2857 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2858 {
2859 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2860 }
2861 
2862 static inline int f2fs_has_extra_attr(struct inode *inode);
2863 static inline block_t data_blkaddr(struct inode *inode,
2864 			struct page *node_page, unsigned int offset)
2865 {
2866 	struct f2fs_node *raw_node;
2867 	__le32 *addr_array;
2868 	int base = 0;
2869 	bool is_inode = IS_INODE(node_page);
2870 
2871 	raw_node = F2FS_NODE(node_page);
2872 
2873 	if (is_inode) {
2874 		if (!inode)
2875 			/* from GC path only */
2876 			base = offset_in_addr(&raw_node->i);
2877 		else if (f2fs_has_extra_attr(inode))
2878 			base = get_extra_isize(inode);
2879 	}
2880 
2881 	addr_array = blkaddr_in_node(raw_node);
2882 	return le32_to_cpu(addr_array[base + offset]);
2883 }
2884 
2885 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2886 {
2887 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2888 }
2889 
2890 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2891 {
2892 	int mask;
2893 
2894 	addr += (nr >> 3);
2895 	mask = 1 << (7 - (nr & 0x07));
2896 	return mask & *addr;
2897 }
2898 
2899 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2900 {
2901 	int mask;
2902 
2903 	addr += (nr >> 3);
2904 	mask = 1 << (7 - (nr & 0x07));
2905 	*addr |= mask;
2906 }
2907 
2908 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2909 {
2910 	int mask;
2911 
2912 	addr += (nr >> 3);
2913 	mask = 1 << (7 - (nr & 0x07));
2914 	*addr &= ~mask;
2915 }
2916 
2917 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2918 {
2919 	int mask;
2920 	int ret;
2921 
2922 	addr += (nr >> 3);
2923 	mask = 1 << (7 - (nr & 0x07));
2924 	ret = mask & *addr;
2925 	*addr |= mask;
2926 	return ret;
2927 }
2928 
2929 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2930 {
2931 	int mask;
2932 	int ret;
2933 
2934 	addr += (nr >> 3);
2935 	mask = 1 << (7 - (nr & 0x07));
2936 	ret = mask & *addr;
2937 	*addr &= ~mask;
2938 	return ret;
2939 }
2940 
2941 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2942 {
2943 	int mask;
2944 
2945 	addr += (nr >> 3);
2946 	mask = 1 << (7 - (nr & 0x07));
2947 	*addr ^= mask;
2948 }
2949 
2950 /*
2951  * On-disk inode flags (f2fs_inode::i_flags)
2952  */
2953 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2954 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2955 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2956 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2957 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2958 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2959 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2960 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2961 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2962 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2963 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2964 
2965 /* Flags that should be inherited by new inodes from their parent. */
2966 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2967 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2968 			   F2FS_CASEFOLD_FL)
2969 
2970 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2971 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2972 				F2FS_CASEFOLD_FL))
2973 
2974 /* Flags that are appropriate for non-directories/regular files. */
2975 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2976 
2977 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2978 {
2979 	if (S_ISDIR(mode))
2980 		return flags;
2981 	else if (S_ISREG(mode))
2982 		return flags & F2FS_REG_FLMASK;
2983 	else
2984 		return flags & F2FS_OTHER_FLMASK;
2985 }
2986 
2987 static inline void __mark_inode_dirty_flag(struct inode *inode,
2988 						int flag, bool set)
2989 {
2990 	switch (flag) {
2991 	case FI_INLINE_XATTR:
2992 	case FI_INLINE_DATA:
2993 	case FI_INLINE_DENTRY:
2994 	case FI_NEW_INODE:
2995 		if (set)
2996 			return;
2997 		fallthrough;
2998 	case FI_DATA_EXIST:
2999 	case FI_INLINE_DOTS:
3000 	case FI_PIN_FILE:
3001 	case FI_COMPRESS_RELEASED:
3002 		f2fs_mark_inode_dirty_sync(inode, true);
3003 	}
3004 }
3005 
3006 static inline void set_inode_flag(struct inode *inode, int flag)
3007 {
3008 	set_bit(flag, F2FS_I(inode)->flags);
3009 	__mark_inode_dirty_flag(inode, flag, true);
3010 }
3011 
3012 static inline int is_inode_flag_set(struct inode *inode, int flag)
3013 {
3014 	return test_bit(flag, F2FS_I(inode)->flags);
3015 }
3016 
3017 static inline void clear_inode_flag(struct inode *inode, int flag)
3018 {
3019 	clear_bit(flag, F2FS_I(inode)->flags);
3020 	__mark_inode_dirty_flag(inode, flag, false);
3021 }
3022 
3023 static inline bool f2fs_verity_in_progress(struct inode *inode)
3024 {
3025 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3026 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3027 }
3028 
3029 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3030 {
3031 	F2FS_I(inode)->i_acl_mode = mode;
3032 	set_inode_flag(inode, FI_ACL_MODE);
3033 	f2fs_mark_inode_dirty_sync(inode, false);
3034 }
3035 
3036 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3037 {
3038 	if (inc)
3039 		inc_nlink(inode);
3040 	else
3041 		drop_nlink(inode);
3042 	f2fs_mark_inode_dirty_sync(inode, true);
3043 }
3044 
3045 static inline void f2fs_i_blocks_write(struct inode *inode,
3046 					block_t diff, bool add, bool claim)
3047 {
3048 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3049 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3050 
3051 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3052 	if (add) {
3053 		if (claim)
3054 			dquot_claim_block(inode, diff);
3055 		else
3056 			dquot_alloc_block_nofail(inode, diff);
3057 	} else {
3058 		dquot_free_block(inode, diff);
3059 	}
3060 
3061 	f2fs_mark_inode_dirty_sync(inode, true);
3062 	if (clean || recover)
3063 		set_inode_flag(inode, FI_AUTO_RECOVER);
3064 }
3065 
3066 static inline bool f2fs_is_atomic_file(struct inode *inode);
3067 
3068 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3069 {
3070 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3071 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3072 
3073 	if (i_size_read(inode) == i_size)
3074 		return;
3075 
3076 	i_size_write(inode, i_size);
3077 
3078 	if (f2fs_is_atomic_file(inode))
3079 		return;
3080 
3081 	f2fs_mark_inode_dirty_sync(inode, true);
3082 	if (clean || recover)
3083 		set_inode_flag(inode, FI_AUTO_RECOVER);
3084 }
3085 
3086 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3087 {
3088 	F2FS_I(inode)->i_current_depth = depth;
3089 	f2fs_mark_inode_dirty_sync(inode, true);
3090 }
3091 
3092 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3093 					unsigned int count)
3094 {
3095 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3096 	f2fs_mark_inode_dirty_sync(inode, true);
3097 }
3098 
3099 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3100 {
3101 	F2FS_I(inode)->i_xattr_nid = xnid;
3102 	f2fs_mark_inode_dirty_sync(inode, true);
3103 }
3104 
3105 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3106 {
3107 	F2FS_I(inode)->i_pino = pino;
3108 	f2fs_mark_inode_dirty_sync(inode, true);
3109 }
3110 
3111 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3112 {
3113 	struct f2fs_inode_info *fi = F2FS_I(inode);
3114 
3115 	if (ri->i_inline & F2FS_INLINE_XATTR)
3116 		set_bit(FI_INLINE_XATTR, fi->flags);
3117 	if (ri->i_inline & F2FS_INLINE_DATA)
3118 		set_bit(FI_INLINE_DATA, fi->flags);
3119 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3120 		set_bit(FI_INLINE_DENTRY, fi->flags);
3121 	if (ri->i_inline & F2FS_DATA_EXIST)
3122 		set_bit(FI_DATA_EXIST, fi->flags);
3123 	if (ri->i_inline & F2FS_INLINE_DOTS)
3124 		set_bit(FI_INLINE_DOTS, fi->flags);
3125 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3126 		set_bit(FI_EXTRA_ATTR, fi->flags);
3127 	if (ri->i_inline & F2FS_PIN_FILE)
3128 		set_bit(FI_PIN_FILE, fi->flags);
3129 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3130 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3131 }
3132 
3133 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3134 {
3135 	ri->i_inline = 0;
3136 
3137 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3138 		ri->i_inline |= F2FS_INLINE_XATTR;
3139 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3140 		ri->i_inline |= F2FS_INLINE_DATA;
3141 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3142 		ri->i_inline |= F2FS_INLINE_DENTRY;
3143 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3144 		ri->i_inline |= F2FS_DATA_EXIST;
3145 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3146 		ri->i_inline |= F2FS_INLINE_DOTS;
3147 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3148 		ri->i_inline |= F2FS_EXTRA_ATTR;
3149 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3150 		ri->i_inline |= F2FS_PIN_FILE;
3151 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3152 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3153 }
3154 
3155 static inline int f2fs_has_extra_attr(struct inode *inode)
3156 {
3157 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3158 }
3159 
3160 static inline int f2fs_has_inline_xattr(struct inode *inode)
3161 {
3162 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3163 }
3164 
3165 static inline int f2fs_compressed_file(struct inode *inode)
3166 {
3167 	return S_ISREG(inode->i_mode) &&
3168 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3169 }
3170 
3171 static inline bool f2fs_need_compress_data(struct inode *inode)
3172 {
3173 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3174 
3175 	if (!f2fs_compressed_file(inode))
3176 		return false;
3177 
3178 	if (compress_mode == COMPR_MODE_FS)
3179 		return true;
3180 	else if (compress_mode == COMPR_MODE_USER &&
3181 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3182 		return true;
3183 
3184 	return false;
3185 }
3186 
3187 static inline unsigned int addrs_per_inode(struct inode *inode)
3188 {
3189 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3190 				get_inline_xattr_addrs(inode);
3191 
3192 	if (!f2fs_compressed_file(inode))
3193 		return addrs;
3194 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3195 }
3196 
3197 static inline unsigned int addrs_per_block(struct inode *inode)
3198 {
3199 	if (!f2fs_compressed_file(inode))
3200 		return DEF_ADDRS_PER_BLOCK;
3201 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3202 }
3203 
3204 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3205 {
3206 	struct f2fs_inode *ri = F2FS_INODE(page);
3207 
3208 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3209 					get_inline_xattr_addrs(inode)]);
3210 }
3211 
3212 static inline int inline_xattr_size(struct inode *inode)
3213 {
3214 	if (f2fs_has_inline_xattr(inode))
3215 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3216 	return 0;
3217 }
3218 
3219 /*
3220  * Notice: check inline_data flag without inode page lock is unsafe.
3221  * It could change at any time by f2fs_convert_inline_page().
3222  */
3223 static inline int f2fs_has_inline_data(struct inode *inode)
3224 {
3225 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3226 }
3227 
3228 static inline int f2fs_exist_data(struct inode *inode)
3229 {
3230 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3231 }
3232 
3233 static inline int f2fs_has_inline_dots(struct inode *inode)
3234 {
3235 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3236 }
3237 
3238 static inline int f2fs_is_mmap_file(struct inode *inode)
3239 {
3240 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3241 }
3242 
3243 static inline bool f2fs_is_pinned_file(struct inode *inode)
3244 {
3245 	return is_inode_flag_set(inode, FI_PIN_FILE);
3246 }
3247 
3248 static inline bool f2fs_is_atomic_file(struct inode *inode)
3249 {
3250 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3251 }
3252 
3253 static inline bool f2fs_is_cow_file(struct inode *inode)
3254 {
3255 	return is_inode_flag_set(inode, FI_COW_FILE);
3256 }
3257 
3258 static inline bool f2fs_is_first_block_written(struct inode *inode)
3259 {
3260 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3261 }
3262 
3263 static inline bool f2fs_is_drop_cache(struct inode *inode)
3264 {
3265 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3266 }
3267 
3268 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3269 {
3270 	struct f2fs_inode *ri = F2FS_INODE(page);
3271 	int extra_size = get_extra_isize(inode);
3272 
3273 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3274 }
3275 
3276 static inline int f2fs_has_inline_dentry(struct inode *inode)
3277 {
3278 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3279 }
3280 
3281 static inline int is_file(struct inode *inode, int type)
3282 {
3283 	return F2FS_I(inode)->i_advise & type;
3284 }
3285 
3286 static inline void set_file(struct inode *inode, int type)
3287 {
3288 	if (is_file(inode, type))
3289 		return;
3290 	F2FS_I(inode)->i_advise |= type;
3291 	f2fs_mark_inode_dirty_sync(inode, true);
3292 }
3293 
3294 static inline void clear_file(struct inode *inode, int type)
3295 {
3296 	if (!is_file(inode, type))
3297 		return;
3298 	F2FS_I(inode)->i_advise &= ~type;
3299 	f2fs_mark_inode_dirty_sync(inode, true);
3300 }
3301 
3302 static inline bool f2fs_is_time_consistent(struct inode *inode)
3303 {
3304 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3305 		return false;
3306 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3307 		return false;
3308 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3309 		return false;
3310 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3311 						&F2FS_I(inode)->i_crtime))
3312 		return false;
3313 	return true;
3314 }
3315 
3316 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3317 {
3318 	bool ret;
3319 
3320 	if (dsync) {
3321 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3322 
3323 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3324 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3325 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3326 		return ret;
3327 	}
3328 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3329 			file_keep_isize(inode) ||
3330 			i_size_read(inode) & ~PAGE_MASK)
3331 		return false;
3332 
3333 	if (!f2fs_is_time_consistent(inode))
3334 		return false;
3335 
3336 	spin_lock(&F2FS_I(inode)->i_size_lock);
3337 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3338 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3339 
3340 	return ret;
3341 }
3342 
3343 static inline bool f2fs_readonly(struct super_block *sb)
3344 {
3345 	return sb_rdonly(sb);
3346 }
3347 
3348 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3349 {
3350 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3351 }
3352 
3353 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3354 {
3355 	if (len == 1 && name[0] == '.')
3356 		return true;
3357 
3358 	if (len == 2 && name[0] == '.' && name[1] == '.')
3359 		return true;
3360 
3361 	return false;
3362 }
3363 
3364 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3365 					size_t size, gfp_t flags)
3366 {
3367 	if (time_to_inject(sbi, FAULT_KMALLOC))
3368 		return NULL;
3369 
3370 	return kmalloc(size, flags);
3371 }
3372 
3373 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3374 					size_t size, gfp_t flags)
3375 {
3376 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3377 }
3378 
3379 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3380 					size_t size, gfp_t flags)
3381 {
3382 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3383 		return NULL;
3384 
3385 	return kvmalloc(size, flags);
3386 }
3387 
3388 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3389 					size_t size, gfp_t flags)
3390 {
3391 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3392 }
3393 
3394 static inline int get_extra_isize(struct inode *inode)
3395 {
3396 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3397 }
3398 
3399 static inline int get_inline_xattr_addrs(struct inode *inode)
3400 {
3401 	return F2FS_I(inode)->i_inline_xattr_size;
3402 }
3403 
3404 #define f2fs_get_inode_mode(i) \
3405 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3406 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3407 
3408 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3409 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3410 	offsetof(struct f2fs_inode, i_extra_isize))	\
3411 
3412 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3413 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3414 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3415 		sizeof((f2fs_inode)->field))			\
3416 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3417 
3418 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3419 
3420 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3421 
3422 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3423 					block_t blkaddr, int type);
3424 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3425 					block_t blkaddr, int type)
3426 {
3427 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3428 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3429 			 blkaddr, type);
3430 		f2fs_bug_on(sbi, 1);
3431 	}
3432 }
3433 
3434 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3435 {
3436 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3437 			blkaddr == COMPRESS_ADDR)
3438 		return false;
3439 	return true;
3440 }
3441 
3442 /*
3443  * file.c
3444  */
3445 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3446 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3447 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3448 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3449 int f2fs_truncate(struct inode *inode);
3450 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3451 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3452 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3453 		 struct iattr *attr);
3454 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3455 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3456 int f2fs_precache_extents(struct inode *inode);
3457 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3458 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3459 		      struct dentry *dentry, struct fileattr *fa);
3460 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3461 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3462 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3463 int f2fs_pin_file_control(struct inode *inode, bool inc);
3464 
3465 /*
3466  * inode.c
3467  */
3468 void f2fs_set_inode_flags(struct inode *inode);
3469 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3470 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3471 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3472 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3473 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3474 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3475 void f2fs_update_inode_page(struct inode *inode);
3476 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3477 void f2fs_evict_inode(struct inode *inode);
3478 void f2fs_handle_failed_inode(struct inode *inode);
3479 
3480 /*
3481  * namei.c
3482  */
3483 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3484 							bool hot, bool set);
3485 struct dentry *f2fs_get_parent(struct dentry *child);
3486 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3487 		     struct inode **new_inode);
3488 
3489 /*
3490  * dir.c
3491  */
3492 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3493 int f2fs_init_casefolded_name(const struct inode *dir,
3494 			      struct f2fs_filename *fname);
3495 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3496 			int lookup, struct f2fs_filename *fname);
3497 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3498 			struct f2fs_filename *fname);
3499 void f2fs_free_filename(struct f2fs_filename *fname);
3500 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3501 			const struct f2fs_filename *fname, int *max_slots);
3502 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3503 			unsigned int start_pos, struct fscrypt_str *fstr);
3504 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3505 			struct f2fs_dentry_ptr *d);
3506 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3507 			const struct f2fs_filename *fname, struct page *dpage);
3508 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3509 			unsigned int current_depth);
3510 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3511 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3512 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3513 					 const struct f2fs_filename *fname,
3514 					 struct page **res_page);
3515 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3516 			const struct qstr *child, struct page **res_page);
3517 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3518 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3519 			struct page **page);
3520 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3521 			struct page *page, struct inode *inode);
3522 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3523 			  const struct f2fs_filename *fname);
3524 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3525 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3526 			unsigned int bit_pos);
3527 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3528 			struct inode *inode, nid_t ino, umode_t mode);
3529 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3530 			struct inode *inode, nid_t ino, umode_t mode);
3531 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3532 			struct inode *inode, nid_t ino, umode_t mode);
3533 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3534 			struct inode *dir, struct inode *inode);
3535 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3536 bool f2fs_empty_dir(struct inode *dir);
3537 
3538 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3539 {
3540 	if (fscrypt_is_nokey_name(dentry))
3541 		return -ENOKEY;
3542 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3543 				inode, inode->i_ino, inode->i_mode);
3544 }
3545 
3546 /*
3547  * super.c
3548  */
3549 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3550 void f2fs_inode_synced(struct inode *inode);
3551 int f2fs_dquot_initialize(struct inode *inode);
3552 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3553 int f2fs_quota_sync(struct super_block *sb, int type);
3554 loff_t max_file_blocks(struct inode *inode);
3555 void f2fs_quota_off_umount(struct super_block *sb);
3556 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3557 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3558 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3559 int f2fs_sync_fs(struct super_block *sb, int sync);
3560 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3561 
3562 /*
3563  * hash.c
3564  */
3565 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3566 
3567 /*
3568  * node.c
3569  */
3570 struct node_info;
3571 
3572 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3573 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3574 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3575 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3576 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3577 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3578 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3579 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3580 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3581 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3582 				struct node_info *ni, bool checkpoint_context);
3583 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3584 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3585 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3586 int f2fs_truncate_xattr_node(struct inode *inode);
3587 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3588 					unsigned int seq_id);
3589 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3590 int f2fs_remove_inode_page(struct inode *inode);
3591 struct page *f2fs_new_inode_page(struct inode *inode);
3592 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3593 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3594 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3595 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3596 int f2fs_move_node_page(struct page *node_page, int gc_type);
3597 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3598 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3599 			struct writeback_control *wbc, bool atomic,
3600 			unsigned int *seq_id);
3601 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3602 			struct writeback_control *wbc,
3603 			bool do_balance, enum iostat_type io_type);
3604 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3605 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3606 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3607 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3608 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3609 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3610 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3611 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3612 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3613 			unsigned int segno, struct f2fs_summary_block *sum);
3614 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3615 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3616 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3617 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3618 int __init f2fs_create_node_manager_caches(void);
3619 void f2fs_destroy_node_manager_caches(void);
3620 
3621 /*
3622  * segment.c
3623  */
3624 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3625 int f2fs_commit_atomic_write(struct inode *inode);
3626 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3627 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3628 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3629 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3630 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3631 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3632 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3633 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3634 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3635 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3636 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3637 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3638 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3639 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3640 					struct cp_control *cpc);
3641 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3642 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3643 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3644 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3645 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3646 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3647 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3648 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3649 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3650 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3651 			unsigned int *newseg, bool new_sec, int dir);
3652 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3653 					unsigned int start, unsigned int end);
3654 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3655 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3656 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3657 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3658 					struct cp_control *cpc);
3659 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3660 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3661 					block_t blk_addr);
3662 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3663 						enum iostat_type io_type);
3664 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3665 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3666 			struct f2fs_io_info *fio);
3667 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3668 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3669 			block_t old_blkaddr, block_t new_blkaddr,
3670 			bool recover_curseg, bool recover_newaddr,
3671 			bool from_gc);
3672 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3673 			block_t old_addr, block_t new_addr,
3674 			unsigned char version, bool recover_curseg,
3675 			bool recover_newaddr);
3676 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3677 			block_t old_blkaddr, block_t *new_blkaddr,
3678 			struct f2fs_summary *sum, int type,
3679 			struct f2fs_io_info *fio);
3680 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3681 					block_t blkaddr, unsigned int blkcnt);
3682 void f2fs_wait_on_page_writeback(struct page *page,
3683 			enum page_type type, bool ordered, bool locked);
3684 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3685 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3686 								block_t len);
3687 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3688 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3689 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3690 			unsigned int val, int alloc);
3691 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3692 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3693 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3694 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3695 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3696 int __init f2fs_create_segment_manager_caches(void);
3697 void f2fs_destroy_segment_manager_caches(void);
3698 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3699 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3700 			unsigned int segno);
3701 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3702 			unsigned int segno);
3703 
3704 #define DEF_FRAGMENT_SIZE	4
3705 #define MIN_FRAGMENT_SIZE	1
3706 #define MAX_FRAGMENT_SIZE	512
3707 
3708 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3709 {
3710 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3711 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3712 }
3713 
3714 /*
3715  * checkpoint.c
3716  */
3717 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3718 							unsigned char reason);
3719 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3720 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3721 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3722 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3723 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3724 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3725 					block_t blkaddr, int type);
3726 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3727 			int type, bool sync);
3728 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3729 							unsigned int ra_blocks);
3730 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3731 			long nr_to_write, enum iostat_type io_type);
3732 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3733 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3734 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3735 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3736 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3737 					unsigned int devidx, int type);
3738 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3739 					unsigned int devidx, int type);
3740 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3741 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3742 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3743 void f2fs_add_orphan_inode(struct inode *inode);
3744 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3745 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3746 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3747 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3748 void f2fs_remove_dirty_inode(struct inode *inode);
3749 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3750 								bool from_cp);
3751 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3752 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3753 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3754 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3755 int __init f2fs_create_checkpoint_caches(void);
3756 void f2fs_destroy_checkpoint_caches(void);
3757 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3758 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3759 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3760 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3761 
3762 /*
3763  * data.c
3764  */
3765 int __init f2fs_init_bioset(void);
3766 void f2fs_destroy_bioset(void);
3767 int f2fs_init_bio_entry_cache(void);
3768 void f2fs_destroy_bio_entry_cache(void);
3769 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3770 			  enum page_type type);
3771 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3772 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3773 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3774 				struct inode *inode, struct page *page,
3775 				nid_t ino, enum page_type type);
3776 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3777 					struct bio **bio, struct page *page);
3778 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3779 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3780 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3781 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3782 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3783 		block_t blk_addr, sector_t *sector);
3784 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3785 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3786 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3787 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3788 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3789 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3790 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3791 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3792 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3793 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3794 							pgoff_t *next_pgofs);
3795 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3796 			bool for_write);
3797 struct page *f2fs_get_new_data_page(struct inode *inode,
3798 			struct page *ipage, pgoff_t index, bool new_i_size);
3799 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3800 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3801 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3802 			u64 start, u64 len);
3803 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3804 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3805 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3806 int f2fs_write_single_data_page(struct page *page, int *submitted,
3807 				struct bio **bio, sector_t *last_block,
3808 				struct writeback_control *wbc,
3809 				enum iostat_type io_type,
3810 				int compr_blocks, bool allow_balance);
3811 void f2fs_write_failed(struct inode *inode, loff_t to);
3812 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3813 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3814 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3815 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3816 int f2fs_init_post_read_processing(void);
3817 void f2fs_destroy_post_read_processing(void);
3818 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3819 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3820 extern const struct iomap_ops f2fs_iomap_ops;
3821 
3822 /*
3823  * gc.c
3824  */
3825 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3826 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3827 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3828 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3829 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3830 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3831 int __init f2fs_create_garbage_collection_cache(void);
3832 void f2fs_destroy_garbage_collection_cache(void);
3833 
3834 /*
3835  * recovery.c
3836  */
3837 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3838 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3839 int __init f2fs_create_recovery_cache(void);
3840 void f2fs_destroy_recovery_cache(void);
3841 
3842 /*
3843  * debug.c
3844  */
3845 #ifdef CONFIG_F2FS_STAT_FS
3846 struct f2fs_stat_info {
3847 	struct list_head stat_list;
3848 	struct f2fs_sb_info *sbi;
3849 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3850 	int main_area_segs, main_area_sections, main_area_zones;
3851 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3852 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3853 	unsigned long long total_ext[NR_EXTENT_CACHES];
3854 	unsigned long long hit_total[NR_EXTENT_CACHES];
3855 	int ext_tree[NR_EXTENT_CACHES];
3856 	int zombie_tree[NR_EXTENT_CACHES];
3857 	int ext_node[NR_EXTENT_CACHES];
3858 	/* to count memory footprint */
3859 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3860 	/* for read extent cache */
3861 	unsigned long long hit_largest;
3862 	/* for block age extent cache */
3863 	unsigned long long allocated_data_blocks;
3864 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3865 	int ndirty_data, ndirty_qdata;
3866 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3867 	int nats, dirty_nats, sits, dirty_sits;
3868 	int free_nids, avail_nids, alloc_nids;
3869 	int total_count, utilization;
3870 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3871 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3872 	int nr_dio_read, nr_dio_write;
3873 	unsigned int io_skip_bggc, other_skip_bggc;
3874 	int nr_flushing, nr_flushed, flush_list_empty;
3875 	int nr_discarding, nr_discarded;
3876 	int nr_discard_cmd;
3877 	unsigned int undiscard_blks;
3878 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3879 	unsigned int cur_ckpt_time, peak_ckpt_time;
3880 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3881 	int compr_inode, swapfile_inode;
3882 	unsigned long long compr_blocks;
3883 	int aw_cnt, max_aw_cnt;
3884 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3885 	unsigned int bimodal, avg_vblocks;
3886 	int util_free, util_valid, util_invalid;
3887 	int rsvd_segs, overp_segs;
3888 	int dirty_count, node_pages, meta_pages, compress_pages;
3889 	int compress_page_hit;
3890 	int prefree_count, call_count, cp_count, bg_cp_count;
3891 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3892 	int bg_node_segs, bg_data_segs;
3893 	int tot_blks, data_blks, node_blks;
3894 	int bg_data_blks, bg_node_blks;
3895 	int curseg[NR_CURSEG_TYPE];
3896 	int cursec[NR_CURSEG_TYPE];
3897 	int curzone[NR_CURSEG_TYPE];
3898 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3899 	unsigned int full_seg[NR_CURSEG_TYPE];
3900 	unsigned int valid_blks[NR_CURSEG_TYPE];
3901 
3902 	unsigned int meta_count[META_MAX];
3903 	unsigned int segment_count[2];
3904 	unsigned int block_count[2];
3905 	unsigned int inplace_count;
3906 	unsigned long long base_mem, cache_mem, page_mem;
3907 };
3908 
3909 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3910 {
3911 	return (struct f2fs_stat_info *)sbi->stat_info;
3912 }
3913 
3914 #define stat_inc_cp_count(si)		((si)->cp_count++)
3915 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3916 #define stat_inc_call_count(si)		((si)->call_count++)
3917 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3918 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3919 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3920 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3921 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3922 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3923 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3924 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3925 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3926 #define stat_inc_inline_xattr(inode)					\
3927 	do {								\
3928 		if (f2fs_has_inline_xattr(inode))			\
3929 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3930 	} while (0)
3931 #define stat_dec_inline_xattr(inode)					\
3932 	do {								\
3933 		if (f2fs_has_inline_xattr(inode))			\
3934 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3935 	} while (0)
3936 #define stat_inc_inline_inode(inode)					\
3937 	do {								\
3938 		if (f2fs_has_inline_data(inode))			\
3939 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3940 	} while (0)
3941 #define stat_dec_inline_inode(inode)					\
3942 	do {								\
3943 		if (f2fs_has_inline_data(inode))			\
3944 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3945 	} while (0)
3946 #define stat_inc_inline_dir(inode)					\
3947 	do {								\
3948 		if (f2fs_has_inline_dentry(inode))			\
3949 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3950 	} while (0)
3951 #define stat_dec_inline_dir(inode)					\
3952 	do {								\
3953 		if (f2fs_has_inline_dentry(inode))			\
3954 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3955 	} while (0)
3956 #define stat_inc_compr_inode(inode)					\
3957 	do {								\
3958 		if (f2fs_compressed_file(inode))			\
3959 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3960 	} while (0)
3961 #define stat_dec_compr_inode(inode)					\
3962 	do {								\
3963 		if (f2fs_compressed_file(inode))			\
3964 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3965 	} while (0)
3966 #define stat_add_compr_blocks(inode, blocks)				\
3967 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3968 #define stat_sub_compr_blocks(inode, blocks)				\
3969 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3970 #define stat_inc_swapfile_inode(inode)					\
3971 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3972 #define stat_dec_swapfile_inode(inode)					\
3973 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3974 #define stat_inc_atomic_inode(inode)					\
3975 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3976 #define stat_dec_atomic_inode(inode)					\
3977 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3978 #define stat_inc_meta_count(sbi, blkaddr)				\
3979 	do {								\
3980 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3981 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3982 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3983 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3984 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3985 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3986 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3987 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3988 	} while (0)
3989 #define stat_inc_seg_type(sbi, curseg)					\
3990 		((sbi)->segment_count[(curseg)->alloc_type]++)
3991 #define stat_inc_block_count(sbi, curseg)				\
3992 		((sbi)->block_count[(curseg)->alloc_type]++)
3993 #define stat_inc_inplace_blocks(sbi)					\
3994 		(atomic_inc(&(sbi)->inplace_count))
3995 #define stat_update_max_atomic_write(inode)				\
3996 	do {								\
3997 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
3998 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3999 		if (cur > max)						\
4000 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4001 	} while (0)
4002 #define stat_inc_seg_count(sbi, type, gc_type)				\
4003 	do {								\
4004 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4005 		si->tot_segs++;						\
4006 		if ((type) == SUM_TYPE_DATA) {				\
4007 			si->data_segs++;				\
4008 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
4009 		} else {						\
4010 			si->node_segs++;				\
4011 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
4012 		}							\
4013 	} while (0)
4014 
4015 #define stat_inc_tot_blk_count(si, blks)				\
4016 	((si)->tot_blks += (blks))
4017 
4018 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4019 	do {								\
4020 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4021 		stat_inc_tot_blk_count(si, blks);			\
4022 		si->data_blks += (blks);				\
4023 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4024 	} while (0)
4025 
4026 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4027 	do {								\
4028 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4029 		stat_inc_tot_blk_count(si, blks);			\
4030 		si->node_blks += (blks);				\
4031 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4032 	} while (0)
4033 
4034 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4035 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4036 void __init f2fs_create_root_stats(void);
4037 void f2fs_destroy_root_stats(void);
4038 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4039 #else
4040 #define stat_inc_cp_count(si)				do { } while (0)
4041 #define stat_inc_bg_cp_count(si)			do { } while (0)
4042 #define stat_inc_call_count(si)				do { } while (0)
4043 #define stat_inc_bggc_count(si)				do { } while (0)
4044 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4045 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4046 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4047 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4048 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4049 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4050 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4051 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4052 #define stat_inc_inline_xattr(inode)			do { } while (0)
4053 #define stat_dec_inline_xattr(inode)			do { } while (0)
4054 #define stat_inc_inline_inode(inode)			do { } while (0)
4055 #define stat_dec_inline_inode(inode)			do { } while (0)
4056 #define stat_inc_inline_dir(inode)			do { } while (0)
4057 #define stat_dec_inline_dir(inode)			do { } while (0)
4058 #define stat_inc_compr_inode(inode)			do { } while (0)
4059 #define stat_dec_compr_inode(inode)			do { } while (0)
4060 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4061 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4062 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4063 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4064 #define stat_inc_atomic_inode(inode)			do { } while (0)
4065 #define stat_dec_atomic_inode(inode)			do { } while (0)
4066 #define stat_update_max_atomic_write(inode)		do { } while (0)
4067 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4068 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4069 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4070 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4071 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4072 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4073 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4074 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4075 
4076 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4077 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4078 static inline void __init f2fs_create_root_stats(void) { }
4079 static inline void f2fs_destroy_root_stats(void) { }
4080 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4081 #endif
4082 
4083 extern const struct file_operations f2fs_dir_operations;
4084 extern const struct file_operations f2fs_file_operations;
4085 extern const struct inode_operations f2fs_file_inode_operations;
4086 extern const struct address_space_operations f2fs_dblock_aops;
4087 extern const struct address_space_operations f2fs_node_aops;
4088 extern const struct address_space_operations f2fs_meta_aops;
4089 extern const struct inode_operations f2fs_dir_inode_operations;
4090 extern const struct inode_operations f2fs_symlink_inode_operations;
4091 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4092 extern const struct inode_operations f2fs_special_inode_operations;
4093 extern struct kmem_cache *f2fs_inode_entry_slab;
4094 
4095 /*
4096  * inline.c
4097  */
4098 bool f2fs_may_inline_data(struct inode *inode);
4099 bool f2fs_sanity_check_inline_data(struct inode *inode);
4100 bool f2fs_may_inline_dentry(struct inode *inode);
4101 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4102 void f2fs_truncate_inline_inode(struct inode *inode,
4103 						struct page *ipage, u64 from);
4104 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4105 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4106 int f2fs_convert_inline_inode(struct inode *inode);
4107 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4108 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4109 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4110 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4111 					const struct f2fs_filename *fname,
4112 					struct page **res_page);
4113 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4114 			struct page *ipage);
4115 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4116 			struct inode *inode, nid_t ino, umode_t mode);
4117 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4118 				struct page *page, struct inode *dir,
4119 				struct inode *inode);
4120 bool f2fs_empty_inline_dir(struct inode *dir);
4121 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4122 			struct fscrypt_str *fstr);
4123 int f2fs_inline_data_fiemap(struct inode *inode,
4124 			struct fiemap_extent_info *fieinfo,
4125 			__u64 start, __u64 len);
4126 
4127 /*
4128  * shrinker.c
4129  */
4130 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4131 			struct shrink_control *sc);
4132 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4133 			struct shrink_control *sc);
4134 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4135 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4136 
4137 /*
4138  * extent_cache.c
4139  */
4140 bool sanity_check_extent_cache(struct inode *inode);
4141 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4142 				struct rb_entry *cached_re, unsigned int ofs);
4143 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4144 				struct rb_root_cached *root,
4145 				struct rb_node **parent,
4146 				unsigned long long key, bool *left_most);
4147 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4148 				struct rb_root_cached *root,
4149 				struct rb_node **parent,
4150 				unsigned int ofs, bool *leftmost);
4151 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4152 		struct rb_entry *cached_re, unsigned int ofs,
4153 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4154 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4155 		bool force, bool *leftmost);
4156 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4157 				struct rb_root_cached *root, bool check_key);
4158 void f2fs_init_extent_tree(struct inode *inode);
4159 void f2fs_drop_extent_tree(struct inode *inode);
4160 void f2fs_destroy_extent_node(struct inode *inode);
4161 void f2fs_destroy_extent_tree(struct inode *inode);
4162 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4163 int __init f2fs_create_extent_cache(void);
4164 void f2fs_destroy_extent_cache(void);
4165 
4166 /* read extent cache ops */
4167 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4168 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4169 			struct extent_info *ei);
4170 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4171 			block_t *blkaddr);
4172 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4173 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4174 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4175 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4176 			int nr_shrink);
4177 
4178 /* block age extent cache ops */
4179 void f2fs_init_age_extent_tree(struct inode *inode);
4180 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4181 			struct extent_info *ei);
4182 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4183 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4184 			pgoff_t fofs, unsigned int len);
4185 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4186 			int nr_shrink);
4187 
4188 /*
4189  * sysfs.c
4190  */
4191 #define MIN_RA_MUL	2
4192 #define MAX_RA_MUL	256
4193 
4194 int __init f2fs_init_sysfs(void);
4195 void f2fs_exit_sysfs(void);
4196 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4197 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4198 
4199 /* verity.c */
4200 extern const struct fsverity_operations f2fs_verityops;
4201 
4202 /*
4203  * crypto support
4204  */
4205 static inline bool f2fs_encrypted_file(struct inode *inode)
4206 {
4207 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4208 }
4209 
4210 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4211 {
4212 #ifdef CONFIG_FS_ENCRYPTION
4213 	file_set_encrypt(inode);
4214 	f2fs_set_inode_flags(inode);
4215 #endif
4216 }
4217 
4218 /*
4219  * Returns true if the reads of the inode's data need to undergo some
4220  * postprocessing step, like decryption or authenticity verification.
4221  */
4222 static inline bool f2fs_post_read_required(struct inode *inode)
4223 {
4224 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4225 		f2fs_compressed_file(inode);
4226 }
4227 
4228 /*
4229  * compress.c
4230  */
4231 #ifdef CONFIG_F2FS_FS_COMPRESSION
4232 bool f2fs_is_compressed_page(struct page *page);
4233 struct page *f2fs_compress_control_page(struct page *page);
4234 int f2fs_prepare_compress_overwrite(struct inode *inode,
4235 			struct page **pagep, pgoff_t index, void **fsdata);
4236 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4237 					pgoff_t index, unsigned copied);
4238 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4239 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4240 bool f2fs_is_compress_backend_ready(struct inode *inode);
4241 int __init f2fs_init_compress_mempool(void);
4242 void f2fs_destroy_compress_mempool(void);
4243 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4244 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4245 				block_t blkaddr, bool in_task);
4246 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4247 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4248 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4249 				int index, int nr_pages, bool uptodate);
4250 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4251 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4252 int f2fs_write_multi_pages(struct compress_ctx *cc,
4253 						int *submitted,
4254 						struct writeback_control *wbc,
4255 						enum iostat_type io_type);
4256 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4257 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4258 				pgoff_t fofs, block_t blkaddr,
4259 				unsigned int llen, unsigned int c_len);
4260 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4261 				unsigned nr_pages, sector_t *last_block_in_bio,
4262 				bool is_readahead, bool for_write);
4263 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4264 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4265 				bool in_task);
4266 void f2fs_put_page_dic(struct page *page, bool in_task);
4267 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4268 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4269 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4270 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4271 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4272 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4273 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4274 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4275 int __init f2fs_init_compress_cache(void);
4276 void f2fs_destroy_compress_cache(void);
4277 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4278 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4279 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4280 						nid_t ino, block_t blkaddr);
4281 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4282 								block_t blkaddr);
4283 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4284 #define inc_compr_inode_stat(inode)					\
4285 	do {								\
4286 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4287 		sbi->compr_new_inode++;					\
4288 	} while (0)
4289 #define add_compr_block_stat(inode, blocks)				\
4290 	do {								\
4291 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4292 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4293 		sbi->compr_written_block += blocks;			\
4294 		sbi->compr_saved_block += diff;				\
4295 	} while (0)
4296 #else
4297 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4298 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4299 {
4300 	if (!f2fs_compressed_file(inode))
4301 		return true;
4302 	/* not support compression */
4303 	return false;
4304 }
4305 static inline struct page *f2fs_compress_control_page(struct page *page)
4306 {
4307 	WARN_ON_ONCE(1);
4308 	return ERR_PTR(-EINVAL);
4309 }
4310 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4311 static inline void f2fs_destroy_compress_mempool(void) { }
4312 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4313 				bool in_task) { }
4314 static inline void f2fs_end_read_compressed_page(struct page *page,
4315 				bool failed, block_t blkaddr, bool in_task)
4316 {
4317 	WARN_ON_ONCE(1);
4318 }
4319 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4320 {
4321 	WARN_ON_ONCE(1);
4322 }
4323 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4324 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4325 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4326 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4327 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4328 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4329 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4330 static inline void f2fs_destroy_compress_cache(void) { }
4331 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4332 				block_t blkaddr) { }
4333 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4334 				struct page *page, nid_t ino, block_t blkaddr) { }
4335 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4336 				struct page *page, block_t blkaddr) { return false; }
4337 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4338 							nid_t ino) { }
4339 #define inc_compr_inode_stat(inode)		do { } while (0)
4340 static inline void f2fs_update_read_extent_tree_range_compressed(
4341 				struct inode *inode,
4342 				pgoff_t fofs, block_t blkaddr,
4343 				unsigned int llen, unsigned int c_len) { }
4344 #endif
4345 
4346 static inline int set_compress_context(struct inode *inode)
4347 {
4348 #ifdef CONFIG_F2FS_FS_COMPRESSION
4349 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4350 
4351 	F2FS_I(inode)->i_compress_algorithm =
4352 			F2FS_OPTION(sbi).compress_algorithm;
4353 	F2FS_I(inode)->i_log_cluster_size =
4354 			F2FS_OPTION(sbi).compress_log_size;
4355 	F2FS_I(inode)->i_compress_flag =
4356 			F2FS_OPTION(sbi).compress_chksum ?
4357 				1 << COMPRESS_CHKSUM : 0;
4358 	F2FS_I(inode)->i_cluster_size =
4359 			1 << F2FS_I(inode)->i_log_cluster_size;
4360 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4361 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4362 			F2FS_OPTION(sbi).compress_level)
4363 		F2FS_I(inode)->i_compress_level =
4364 				F2FS_OPTION(sbi).compress_level;
4365 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4366 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4367 	stat_inc_compr_inode(inode);
4368 	inc_compr_inode_stat(inode);
4369 	f2fs_mark_inode_dirty_sync(inode, true);
4370 	return 0;
4371 #else
4372 	return -EOPNOTSUPP;
4373 #endif
4374 }
4375 
4376 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4377 {
4378 	struct f2fs_inode_info *fi = F2FS_I(inode);
4379 
4380 	if (!f2fs_compressed_file(inode))
4381 		return true;
4382 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4383 		return false;
4384 
4385 	fi->i_flags &= ~F2FS_COMPR_FL;
4386 	stat_dec_compr_inode(inode);
4387 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4388 	f2fs_mark_inode_dirty_sync(inode, true);
4389 	return true;
4390 }
4391 
4392 #define F2FS_FEATURE_FUNCS(name, flagname) \
4393 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4394 { \
4395 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4396 }
4397 
4398 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4399 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4400 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4401 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4402 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4403 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4404 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4405 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4406 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4407 F2FS_FEATURE_FUNCS(verity, VERITY);
4408 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4409 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4410 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4411 F2FS_FEATURE_FUNCS(readonly, RO);
4412 
4413 #ifdef CONFIG_BLK_DEV_ZONED
4414 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4415 				    block_t blkaddr)
4416 {
4417 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4418 
4419 	return test_bit(zno, FDEV(devi).blkz_seq);
4420 }
4421 #endif
4422 
4423 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4424 {
4425 	return f2fs_sb_has_blkzoned(sbi);
4426 }
4427 
4428 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4429 {
4430 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4431 }
4432 
4433 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4434 {
4435 	int i;
4436 
4437 	if (!f2fs_is_multi_device(sbi))
4438 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4439 
4440 	for (i = 0; i < sbi->s_ndevs; i++)
4441 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4442 			return true;
4443 	return false;
4444 }
4445 
4446 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4447 {
4448 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4449 					f2fs_hw_should_discard(sbi);
4450 }
4451 
4452 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4453 {
4454 	int i;
4455 
4456 	if (!f2fs_is_multi_device(sbi))
4457 		return bdev_read_only(sbi->sb->s_bdev);
4458 
4459 	for (i = 0; i < sbi->s_ndevs; i++)
4460 		if (bdev_read_only(FDEV(i).bdev))
4461 			return true;
4462 	return false;
4463 }
4464 
4465 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4466 {
4467 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4468 }
4469 
4470 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4471 {
4472 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4473 }
4474 
4475 static inline bool f2fs_may_compress(struct inode *inode)
4476 {
4477 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4478 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4479 		return false;
4480 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4481 }
4482 
4483 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4484 						u64 blocks, bool add)
4485 {
4486 	struct f2fs_inode_info *fi = F2FS_I(inode);
4487 	int diff = fi->i_cluster_size - blocks;
4488 
4489 	/* don't update i_compr_blocks if saved blocks were released */
4490 	if (!add && !atomic_read(&fi->i_compr_blocks))
4491 		return;
4492 
4493 	if (add) {
4494 		atomic_add(diff, &fi->i_compr_blocks);
4495 		stat_add_compr_blocks(inode, diff);
4496 	} else {
4497 		atomic_sub(diff, &fi->i_compr_blocks);
4498 		stat_sub_compr_blocks(inode, diff);
4499 	}
4500 	f2fs_mark_inode_dirty_sync(inode, true);
4501 }
4502 
4503 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4504 								int flag)
4505 {
4506 	if (!f2fs_is_multi_device(sbi))
4507 		return false;
4508 	if (flag != F2FS_GET_BLOCK_DIO)
4509 		return false;
4510 	return sbi->aligned_blksize;
4511 }
4512 
4513 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4514 {
4515 	return fsverity_active(inode) &&
4516 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4517 }
4518 
4519 #ifdef CONFIG_F2FS_FAULT_INJECTION
4520 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4521 							unsigned int type);
4522 #else
4523 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4524 #endif
4525 
4526 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4527 {
4528 #ifdef CONFIG_QUOTA
4529 	if (f2fs_sb_has_quota_ino(sbi))
4530 		return true;
4531 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4532 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4533 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4534 		return true;
4535 #endif
4536 	return false;
4537 }
4538 
4539 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4540 {
4541 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4542 }
4543 
4544 static inline void f2fs_io_schedule_timeout(long timeout)
4545 {
4546 	set_current_state(TASK_UNINTERRUPTIBLE);
4547 	io_schedule_timeout(timeout);
4548 }
4549 
4550 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4551 					enum page_type type)
4552 {
4553 	if (unlikely(f2fs_cp_error(sbi)))
4554 		return;
4555 
4556 	if (ofs == sbi->page_eio_ofs[type]) {
4557 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4558 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4559 	} else {
4560 		sbi->page_eio_ofs[type] = ofs;
4561 		sbi->page_eio_cnt[type] = 0;
4562 	}
4563 }
4564 
4565 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4566 {
4567 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4568 }
4569 
4570 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4571 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4572 
4573 #endif /* _LINUX_F2FS_H */
4574