1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <crypto/hash.h> 26 27 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 28 #include <linux/fscrypt.h> 29 30 #ifdef CONFIG_F2FS_CHECK_FS 31 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 32 #else 33 #define f2fs_bug_on(sbi, condition) \ 34 do { \ 35 if (unlikely(condition)) { \ 36 WARN_ON(1); \ 37 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 38 } \ 39 } while (0) 40 #endif 41 42 enum { 43 FAULT_KMALLOC, 44 FAULT_KVMALLOC, 45 FAULT_PAGE_ALLOC, 46 FAULT_PAGE_GET, 47 FAULT_ALLOC_BIO, 48 FAULT_ALLOC_NID, 49 FAULT_ORPHAN, 50 FAULT_BLOCK, 51 FAULT_DIR_DEPTH, 52 FAULT_EVICT_INODE, 53 FAULT_TRUNCATE, 54 FAULT_READ_IO, 55 FAULT_CHECKPOINT, 56 FAULT_DISCARD, 57 FAULT_WRITE_IO, 58 FAULT_MAX, 59 }; 60 61 #ifdef CONFIG_F2FS_FAULT_INJECTION 62 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 63 64 struct f2fs_fault_info { 65 atomic_t inject_ops; 66 unsigned int inject_rate; 67 unsigned int inject_type; 68 }; 69 70 extern const char *f2fs_fault_name[FAULT_MAX]; 71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 72 #endif 73 74 /* 75 * For mount options 76 */ 77 #define F2FS_MOUNT_BG_GC 0x00000001 78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 79 #define F2FS_MOUNT_DISCARD 0x00000004 80 #define F2FS_MOUNT_NOHEAP 0x00000008 81 #define F2FS_MOUNT_XATTR_USER 0x00000010 82 #define F2FS_MOUNT_POSIX_ACL 0x00000020 83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 84 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 85 #define F2FS_MOUNT_INLINE_DATA 0x00000100 86 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 87 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 88 #define F2FS_MOUNT_NOBARRIER 0x00000800 89 #define F2FS_MOUNT_FASTBOOT 0x00001000 90 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 91 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 92 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 93 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 94 #define F2FS_MOUNT_ADAPTIVE 0x00020000 95 #define F2FS_MOUNT_LFS 0x00040000 96 #define F2FS_MOUNT_USRQUOTA 0x00080000 97 #define F2FS_MOUNT_GRPQUOTA 0x00100000 98 #define F2FS_MOUNT_PRJQUOTA 0x00200000 99 #define F2FS_MOUNT_QUOTA 0x00400000 100 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 101 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 102 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 103 104 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 105 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 106 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 107 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 108 109 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 110 typecheck(unsigned long long, b) && \ 111 ((long long)((a) - (b)) > 0)) 112 113 typedef u32 block_t; /* 114 * should not change u32, since it is the on-disk block 115 * address format, __le32. 116 */ 117 typedef u32 nid_t; 118 119 struct f2fs_mount_info { 120 unsigned int opt; 121 int write_io_size_bits; /* Write IO size bits */ 122 block_t root_reserved_blocks; /* root reserved blocks */ 123 kuid_t s_resuid; /* reserved blocks for uid */ 124 kgid_t s_resgid; /* reserved blocks for gid */ 125 int active_logs; /* # of active logs */ 126 int inline_xattr_size; /* inline xattr size */ 127 #ifdef CONFIG_F2FS_FAULT_INJECTION 128 struct f2fs_fault_info fault_info; /* For fault injection */ 129 #endif 130 #ifdef CONFIG_QUOTA 131 /* Names of quota files with journalled quota */ 132 char *s_qf_names[MAXQUOTAS]; 133 int s_jquota_fmt; /* Format of quota to use */ 134 #endif 135 /* For which write hints are passed down to block layer */ 136 int whint_mode; 137 int alloc_mode; /* segment allocation policy */ 138 int fsync_mode; /* fsync policy */ 139 bool test_dummy_encryption; /* test dummy encryption */ 140 }; 141 142 #define F2FS_FEATURE_ENCRYPT 0x0001 143 #define F2FS_FEATURE_BLKZONED 0x0002 144 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 145 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 146 #define F2FS_FEATURE_PRJQUOTA 0x0010 147 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 149 #define F2FS_FEATURE_QUOTA_INO 0x0080 150 #define F2FS_FEATURE_INODE_CRTIME 0x0100 151 #define F2FS_FEATURE_LOST_FOUND 0x0200 152 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */ 153 #define F2FS_FEATURE_SB_CHKSUM 0x0800 154 155 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 156 ((raw_super->feature & cpu_to_le32(mask)) != 0) 157 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 158 #define F2FS_SET_FEATURE(sbi, mask) \ 159 (sbi->raw_super->feature |= cpu_to_le32(mask)) 160 #define F2FS_CLEAR_FEATURE(sbi, mask) \ 161 (sbi->raw_super->feature &= ~cpu_to_le32(mask)) 162 163 /* 164 * Default values for user and/or group using reserved blocks 165 */ 166 #define F2FS_DEF_RESUID 0 167 #define F2FS_DEF_RESGID 0 168 169 /* 170 * For checkpoint manager 171 */ 172 enum { 173 NAT_BITMAP, 174 SIT_BITMAP 175 }; 176 177 #define CP_UMOUNT 0x00000001 178 #define CP_FASTBOOT 0x00000002 179 #define CP_SYNC 0x00000004 180 #define CP_RECOVERY 0x00000008 181 #define CP_DISCARD 0x00000010 182 #define CP_TRIMMED 0x00000020 183 #define CP_PAUSE 0x00000040 184 185 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 186 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 187 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 188 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 189 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 190 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 191 #define DEF_CP_INTERVAL 60 /* 60 secs */ 192 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 193 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 194 195 struct cp_control { 196 int reason; 197 __u64 trim_start; 198 __u64 trim_end; 199 __u64 trim_minlen; 200 }; 201 202 /* 203 * indicate meta/data type 204 */ 205 enum { 206 META_CP, 207 META_NAT, 208 META_SIT, 209 META_SSA, 210 META_MAX, 211 META_POR, 212 DATA_GENERIC, 213 META_GENERIC, 214 }; 215 216 /* for the list of ino */ 217 enum { 218 ORPHAN_INO, /* for orphan ino list */ 219 APPEND_INO, /* for append ino list */ 220 UPDATE_INO, /* for update ino list */ 221 TRANS_DIR_INO, /* for trasactions dir ino list */ 222 FLUSH_INO, /* for multiple device flushing */ 223 MAX_INO_ENTRY, /* max. list */ 224 }; 225 226 struct ino_entry { 227 struct list_head list; /* list head */ 228 nid_t ino; /* inode number */ 229 unsigned int dirty_device; /* dirty device bitmap */ 230 }; 231 232 /* for the list of inodes to be GCed */ 233 struct inode_entry { 234 struct list_head list; /* list head */ 235 struct inode *inode; /* vfs inode pointer */ 236 }; 237 238 struct fsync_node_entry { 239 struct list_head list; /* list head */ 240 struct page *page; /* warm node page pointer */ 241 unsigned int seq_id; /* sequence id */ 242 }; 243 244 /* for the bitmap indicate blocks to be discarded */ 245 struct discard_entry { 246 struct list_head list; /* list head */ 247 block_t start_blkaddr; /* start blockaddr of current segment */ 248 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 249 }; 250 251 /* default discard granularity of inner discard thread, unit: block count */ 252 #define DEFAULT_DISCARD_GRANULARITY 16 253 254 /* max discard pend list number */ 255 #define MAX_PLIST_NUM 512 256 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 257 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 258 259 enum { 260 D_PREP, /* initial */ 261 D_PARTIAL, /* partially submitted */ 262 D_SUBMIT, /* all submitted */ 263 D_DONE, /* finished */ 264 }; 265 266 struct discard_info { 267 block_t lstart; /* logical start address */ 268 block_t len; /* length */ 269 block_t start; /* actual start address in dev */ 270 }; 271 272 struct discard_cmd { 273 struct rb_node rb_node; /* rb node located in rb-tree */ 274 union { 275 struct { 276 block_t lstart; /* logical start address */ 277 block_t len; /* length */ 278 block_t start; /* actual start address in dev */ 279 }; 280 struct discard_info di; /* discard info */ 281 282 }; 283 struct list_head list; /* command list */ 284 struct completion wait; /* compleation */ 285 struct block_device *bdev; /* bdev */ 286 unsigned short ref; /* reference count */ 287 unsigned char state; /* state */ 288 unsigned char queued; /* queued discard */ 289 int error; /* bio error */ 290 spinlock_t lock; /* for state/bio_ref updating */ 291 unsigned short bio_ref; /* bio reference count */ 292 }; 293 294 enum { 295 DPOLICY_BG, 296 DPOLICY_FORCE, 297 DPOLICY_FSTRIM, 298 DPOLICY_UMOUNT, 299 MAX_DPOLICY, 300 }; 301 302 struct discard_policy { 303 int type; /* type of discard */ 304 unsigned int min_interval; /* used for candidates exist */ 305 unsigned int mid_interval; /* used for device busy */ 306 unsigned int max_interval; /* used for candidates not exist */ 307 unsigned int max_requests; /* # of discards issued per round */ 308 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 309 bool io_aware; /* issue discard in idle time */ 310 bool sync; /* submit discard with REQ_SYNC flag */ 311 bool ordered; /* issue discard by lba order */ 312 unsigned int granularity; /* discard granularity */ 313 }; 314 315 struct discard_cmd_control { 316 struct task_struct *f2fs_issue_discard; /* discard thread */ 317 struct list_head entry_list; /* 4KB discard entry list */ 318 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 319 struct list_head wait_list; /* store on-flushing entries */ 320 struct list_head fstrim_list; /* in-flight discard from fstrim */ 321 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 322 unsigned int discard_wake; /* to wake up discard thread */ 323 struct mutex cmd_lock; 324 unsigned int nr_discards; /* # of discards in the list */ 325 unsigned int max_discards; /* max. discards to be issued */ 326 unsigned int discard_granularity; /* discard granularity */ 327 unsigned int undiscard_blks; /* # of undiscard blocks */ 328 unsigned int next_pos; /* next discard position */ 329 atomic_t issued_discard; /* # of issued discard */ 330 atomic_t queued_discard; /* # of queued discard */ 331 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 332 struct rb_root_cached root; /* root of discard rb-tree */ 333 bool rbtree_check; /* config for consistence check */ 334 }; 335 336 /* for the list of fsync inodes, used only during recovery */ 337 struct fsync_inode_entry { 338 struct list_head list; /* list head */ 339 struct inode *inode; /* vfs inode pointer */ 340 block_t blkaddr; /* block address locating the last fsync */ 341 block_t last_dentry; /* block address locating the last dentry */ 342 }; 343 344 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 345 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 346 347 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 348 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 349 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 350 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 351 352 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 353 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 354 355 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 356 { 357 int before = nats_in_cursum(journal); 358 359 journal->n_nats = cpu_to_le16(before + i); 360 return before; 361 } 362 363 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 364 { 365 int before = sits_in_cursum(journal); 366 367 journal->n_sits = cpu_to_le16(before + i); 368 return before; 369 } 370 371 static inline bool __has_cursum_space(struct f2fs_journal *journal, 372 int size, int type) 373 { 374 if (type == NAT_JOURNAL) 375 return size <= MAX_NAT_JENTRIES(journal); 376 return size <= MAX_SIT_JENTRIES(journal); 377 } 378 379 /* 380 * ioctl commands 381 */ 382 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 383 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 384 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 385 386 #define F2FS_IOCTL_MAGIC 0xf5 387 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 388 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 389 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 390 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 391 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 392 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 393 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 394 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 395 struct f2fs_defragment) 396 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 397 struct f2fs_move_range) 398 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 399 struct f2fs_flush_device) 400 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 401 struct f2fs_gc_range) 402 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 403 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 404 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 405 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 406 407 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 408 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 409 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 410 411 /* 412 * should be same as XFS_IOC_GOINGDOWN. 413 * Flags for going down operation used by FS_IOC_GOINGDOWN 414 */ 415 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 416 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 417 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 418 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 419 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 420 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */ 421 422 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 423 /* 424 * ioctl commands in 32 bit emulation 425 */ 426 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 427 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 428 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 429 #endif 430 431 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 432 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 433 434 struct f2fs_gc_range { 435 u32 sync; 436 u64 start; 437 u64 len; 438 }; 439 440 struct f2fs_defragment { 441 u64 start; 442 u64 len; 443 }; 444 445 struct f2fs_move_range { 446 u32 dst_fd; /* destination fd */ 447 u64 pos_in; /* start position in src_fd */ 448 u64 pos_out; /* start position in dst_fd */ 449 u64 len; /* size to move */ 450 }; 451 452 struct f2fs_flush_device { 453 u32 dev_num; /* device number to flush */ 454 u32 segments; /* # of segments to flush */ 455 }; 456 457 /* for inline stuff */ 458 #define DEF_INLINE_RESERVED_SIZE 1 459 #define DEF_MIN_INLINE_SIZE 1 460 static inline int get_extra_isize(struct inode *inode); 461 static inline int get_inline_xattr_addrs(struct inode *inode); 462 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 463 (CUR_ADDRS_PER_INODE(inode) - \ 464 get_inline_xattr_addrs(inode) - \ 465 DEF_INLINE_RESERVED_SIZE)) 466 467 /* for inline dir */ 468 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 469 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 470 BITS_PER_BYTE + 1)) 471 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 472 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 473 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 474 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 475 NR_INLINE_DENTRY(inode) + \ 476 INLINE_DENTRY_BITMAP_SIZE(inode))) 477 478 /* 479 * For INODE and NODE manager 480 */ 481 /* for directory operations */ 482 struct f2fs_dentry_ptr { 483 struct inode *inode; 484 void *bitmap; 485 struct f2fs_dir_entry *dentry; 486 __u8 (*filename)[F2FS_SLOT_LEN]; 487 int max; 488 int nr_bitmap; 489 }; 490 491 static inline void make_dentry_ptr_block(struct inode *inode, 492 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 493 { 494 d->inode = inode; 495 d->max = NR_DENTRY_IN_BLOCK; 496 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 497 d->bitmap = t->dentry_bitmap; 498 d->dentry = t->dentry; 499 d->filename = t->filename; 500 } 501 502 static inline void make_dentry_ptr_inline(struct inode *inode, 503 struct f2fs_dentry_ptr *d, void *t) 504 { 505 int entry_cnt = NR_INLINE_DENTRY(inode); 506 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 507 int reserved_size = INLINE_RESERVED_SIZE(inode); 508 509 d->inode = inode; 510 d->max = entry_cnt; 511 d->nr_bitmap = bitmap_size; 512 d->bitmap = t; 513 d->dentry = t + bitmap_size + reserved_size; 514 d->filename = t + bitmap_size + reserved_size + 515 SIZE_OF_DIR_ENTRY * entry_cnt; 516 } 517 518 /* 519 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 520 * as its node offset to distinguish from index node blocks. 521 * But some bits are used to mark the node block. 522 */ 523 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 524 >> OFFSET_BIT_SHIFT) 525 enum { 526 ALLOC_NODE, /* allocate a new node page if needed */ 527 LOOKUP_NODE, /* look up a node without readahead */ 528 LOOKUP_NODE_RA, /* 529 * look up a node with readahead called 530 * by get_data_block. 531 */ 532 }; 533 534 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */ 535 536 /* maximum retry quota flush count */ 537 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 538 539 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 540 541 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 542 543 /* for in-memory extent cache entry */ 544 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 545 546 /* number of extent info in extent cache we try to shrink */ 547 #define EXTENT_CACHE_SHRINK_NUMBER 128 548 549 struct rb_entry { 550 struct rb_node rb_node; /* rb node located in rb-tree */ 551 unsigned int ofs; /* start offset of the entry */ 552 unsigned int len; /* length of the entry */ 553 }; 554 555 struct extent_info { 556 unsigned int fofs; /* start offset in a file */ 557 unsigned int len; /* length of the extent */ 558 u32 blk; /* start block address of the extent */ 559 }; 560 561 struct extent_node { 562 struct rb_node rb_node; /* rb node located in rb-tree */ 563 struct extent_info ei; /* extent info */ 564 struct list_head list; /* node in global extent list of sbi */ 565 struct extent_tree *et; /* extent tree pointer */ 566 }; 567 568 struct extent_tree { 569 nid_t ino; /* inode number */ 570 struct rb_root_cached root; /* root of extent info rb-tree */ 571 struct extent_node *cached_en; /* recently accessed extent node */ 572 struct extent_info largest; /* largested extent info */ 573 struct list_head list; /* to be used by sbi->zombie_list */ 574 rwlock_t lock; /* protect extent info rb-tree */ 575 atomic_t node_cnt; /* # of extent node in rb-tree*/ 576 bool largest_updated; /* largest extent updated */ 577 }; 578 579 /* 580 * This structure is taken from ext4_map_blocks. 581 * 582 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 583 */ 584 #define F2FS_MAP_NEW (1 << BH_New) 585 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 586 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 587 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 588 F2FS_MAP_UNWRITTEN) 589 590 struct f2fs_map_blocks { 591 block_t m_pblk; 592 block_t m_lblk; 593 unsigned int m_len; 594 unsigned int m_flags; 595 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 596 pgoff_t *m_next_extent; /* point to next possible extent */ 597 int m_seg_type; 598 bool m_may_create; /* indicate it is from write path */ 599 }; 600 601 /* for flag in get_data_block */ 602 enum { 603 F2FS_GET_BLOCK_DEFAULT, 604 F2FS_GET_BLOCK_FIEMAP, 605 F2FS_GET_BLOCK_BMAP, 606 F2FS_GET_BLOCK_DIO, 607 F2FS_GET_BLOCK_PRE_DIO, 608 F2FS_GET_BLOCK_PRE_AIO, 609 F2FS_GET_BLOCK_PRECACHE, 610 }; 611 612 /* 613 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 614 */ 615 #define FADVISE_COLD_BIT 0x01 616 #define FADVISE_LOST_PINO_BIT 0x02 617 #define FADVISE_ENCRYPT_BIT 0x04 618 #define FADVISE_ENC_NAME_BIT 0x08 619 #define FADVISE_KEEP_SIZE_BIT 0x10 620 #define FADVISE_HOT_BIT 0x20 621 #define FADVISE_VERITY_BIT 0x40 /* reserved */ 622 623 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 624 625 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 626 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 627 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 628 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 629 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 630 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 631 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 632 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 633 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 634 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 635 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 636 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 637 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 638 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 639 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 640 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 641 642 #define DEF_DIR_LEVEL 0 643 644 enum { 645 GC_FAILURE_PIN, 646 GC_FAILURE_ATOMIC, 647 MAX_GC_FAILURE 648 }; 649 650 struct f2fs_inode_info { 651 struct inode vfs_inode; /* serve a vfs inode */ 652 unsigned long i_flags; /* keep an inode flags for ioctl */ 653 unsigned char i_advise; /* use to give file attribute hints */ 654 unsigned char i_dir_level; /* use for dentry level for large dir */ 655 unsigned int i_current_depth; /* only for directory depth */ 656 /* for gc failure statistic */ 657 unsigned int i_gc_failures[MAX_GC_FAILURE]; 658 unsigned int i_pino; /* parent inode number */ 659 umode_t i_acl_mode; /* keep file acl mode temporarily */ 660 661 /* Use below internally in f2fs*/ 662 unsigned long flags; /* use to pass per-file flags */ 663 struct rw_semaphore i_sem; /* protect fi info */ 664 atomic_t dirty_pages; /* # of dirty pages */ 665 f2fs_hash_t chash; /* hash value of given file name */ 666 unsigned int clevel; /* maximum level of given file name */ 667 struct task_struct *task; /* lookup and create consistency */ 668 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 669 nid_t i_xattr_nid; /* node id that contains xattrs */ 670 loff_t last_disk_size; /* lastly written file size */ 671 672 #ifdef CONFIG_QUOTA 673 struct dquot *i_dquot[MAXQUOTAS]; 674 675 /* quota space reservation, managed internally by quota code */ 676 qsize_t i_reserved_quota; 677 #endif 678 struct list_head dirty_list; /* dirty list for dirs and files */ 679 struct list_head gdirty_list; /* linked in global dirty list */ 680 struct list_head inmem_ilist; /* list for inmem inodes */ 681 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 682 struct task_struct *inmem_task; /* store inmemory task */ 683 struct mutex inmem_lock; /* lock for inmemory pages */ 684 struct extent_tree *extent_tree; /* cached extent_tree entry */ 685 686 /* avoid racing between foreground op and gc */ 687 struct rw_semaphore i_gc_rwsem[2]; 688 struct rw_semaphore i_mmap_sem; 689 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 690 691 int i_extra_isize; /* size of extra space located in i_addr */ 692 kprojid_t i_projid; /* id for project quota */ 693 int i_inline_xattr_size; /* inline xattr size */ 694 struct timespec64 i_crtime; /* inode creation time */ 695 struct timespec64 i_disk_time[4];/* inode disk times */ 696 }; 697 698 static inline void get_extent_info(struct extent_info *ext, 699 struct f2fs_extent *i_ext) 700 { 701 ext->fofs = le32_to_cpu(i_ext->fofs); 702 ext->blk = le32_to_cpu(i_ext->blk); 703 ext->len = le32_to_cpu(i_ext->len); 704 } 705 706 static inline void set_raw_extent(struct extent_info *ext, 707 struct f2fs_extent *i_ext) 708 { 709 i_ext->fofs = cpu_to_le32(ext->fofs); 710 i_ext->blk = cpu_to_le32(ext->blk); 711 i_ext->len = cpu_to_le32(ext->len); 712 } 713 714 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 715 u32 blk, unsigned int len) 716 { 717 ei->fofs = fofs; 718 ei->blk = blk; 719 ei->len = len; 720 } 721 722 static inline bool __is_discard_mergeable(struct discard_info *back, 723 struct discard_info *front, unsigned int max_len) 724 { 725 return (back->lstart + back->len == front->lstart) && 726 (back->len + front->len <= max_len); 727 } 728 729 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 730 struct discard_info *back, unsigned int max_len) 731 { 732 return __is_discard_mergeable(back, cur, max_len); 733 } 734 735 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 736 struct discard_info *front, unsigned int max_len) 737 { 738 return __is_discard_mergeable(cur, front, max_len); 739 } 740 741 static inline bool __is_extent_mergeable(struct extent_info *back, 742 struct extent_info *front) 743 { 744 return (back->fofs + back->len == front->fofs && 745 back->blk + back->len == front->blk); 746 } 747 748 static inline bool __is_back_mergeable(struct extent_info *cur, 749 struct extent_info *back) 750 { 751 return __is_extent_mergeable(back, cur); 752 } 753 754 static inline bool __is_front_mergeable(struct extent_info *cur, 755 struct extent_info *front) 756 { 757 return __is_extent_mergeable(cur, front); 758 } 759 760 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 761 static inline void __try_update_largest_extent(struct extent_tree *et, 762 struct extent_node *en) 763 { 764 if (en->ei.len > et->largest.len) { 765 et->largest = en->ei; 766 et->largest_updated = true; 767 } 768 } 769 770 /* 771 * For free nid management 772 */ 773 enum nid_state { 774 FREE_NID, /* newly added to free nid list */ 775 PREALLOC_NID, /* it is preallocated */ 776 MAX_NID_STATE, 777 }; 778 779 struct f2fs_nm_info { 780 block_t nat_blkaddr; /* base disk address of NAT */ 781 nid_t max_nid; /* maximum possible node ids */ 782 nid_t available_nids; /* # of available node ids */ 783 nid_t next_scan_nid; /* the next nid to be scanned */ 784 unsigned int ram_thresh; /* control the memory footprint */ 785 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 786 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 787 788 /* NAT cache management */ 789 struct radix_tree_root nat_root;/* root of the nat entry cache */ 790 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 791 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 792 struct list_head nat_entries; /* cached nat entry list (clean) */ 793 spinlock_t nat_list_lock; /* protect clean nat entry list */ 794 unsigned int nat_cnt; /* the # of cached nat entries */ 795 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 796 unsigned int nat_blocks; /* # of nat blocks */ 797 798 /* free node ids management */ 799 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 800 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 801 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 802 spinlock_t nid_list_lock; /* protect nid lists ops */ 803 struct mutex build_lock; /* lock for build free nids */ 804 unsigned char **free_nid_bitmap; 805 unsigned char *nat_block_bitmap; 806 unsigned short *free_nid_count; /* free nid count of NAT block */ 807 808 /* for checkpoint */ 809 char *nat_bitmap; /* NAT bitmap pointer */ 810 811 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 812 unsigned char *nat_bits; /* NAT bits blocks */ 813 unsigned char *full_nat_bits; /* full NAT pages */ 814 unsigned char *empty_nat_bits; /* empty NAT pages */ 815 #ifdef CONFIG_F2FS_CHECK_FS 816 char *nat_bitmap_mir; /* NAT bitmap mirror */ 817 #endif 818 int bitmap_size; /* bitmap size */ 819 }; 820 821 /* 822 * this structure is used as one of function parameters. 823 * all the information are dedicated to a given direct node block determined 824 * by the data offset in a file. 825 */ 826 struct dnode_of_data { 827 struct inode *inode; /* vfs inode pointer */ 828 struct page *inode_page; /* its inode page, NULL is possible */ 829 struct page *node_page; /* cached direct node page */ 830 nid_t nid; /* node id of the direct node block */ 831 unsigned int ofs_in_node; /* data offset in the node page */ 832 bool inode_page_locked; /* inode page is locked or not */ 833 bool node_changed; /* is node block changed */ 834 char cur_level; /* level of hole node page */ 835 char max_level; /* level of current page located */ 836 block_t data_blkaddr; /* block address of the node block */ 837 }; 838 839 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 840 struct page *ipage, struct page *npage, nid_t nid) 841 { 842 memset(dn, 0, sizeof(*dn)); 843 dn->inode = inode; 844 dn->inode_page = ipage; 845 dn->node_page = npage; 846 dn->nid = nid; 847 } 848 849 /* 850 * For SIT manager 851 * 852 * By default, there are 6 active log areas across the whole main area. 853 * When considering hot and cold data separation to reduce cleaning overhead, 854 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 855 * respectively. 856 * In the current design, you should not change the numbers intentionally. 857 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 858 * logs individually according to the underlying devices. (default: 6) 859 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 860 * data and 8 for node logs. 861 */ 862 #define NR_CURSEG_DATA_TYPE (3) 863 #define NR_CURSEG_NODE_TYPE (3) 864 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 865 866 enum { 867 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 868 CURSEG_WARM_DATA, /* data blocks */ 869 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 870 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 871 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 872 CURSEG_COLD_NODE, /* indirect node blocks */ 873 NO_CHECK_TYPE, 874 }; 875 876 struct flush_cmd { 877 struct completion wait; 878 struct llist_node llnode; 879 nid_t ino; 880 int ret; 881 }; 882 883 struct flush_cmd_control { 884 struct task_struct *f2fs_issue_flush; /* flush thread */ 885 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 886 atomic_t issued_flush; /* # of issued flushes */ 887 atomic_t queued_flush; /* # of queued flushes */ 888 struct llist_head issue_list; /* list for command issue */ 889 struct llist_node *dispatch_list; /* list for command dispatch */ 890 }; 891 892 struct f2fs_sm_info { 893 struct sit_info *sit_info; /* whole segment information */ 894 struct free_segmap_info *free_info; /* free segment information */ 895 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 896 struct curseg_info *curseg_array; /* active segment information */ 897 898 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 899 900 block_t seg0_blkaddr; /* block address of 0'th segment */ 901 block_t main_blkaddr; /* start block address of main area */ 902 block_t ssa_blkaddr; /* start block address of SSA area */ 903 904 unsigned int segment_count; /* total # of segments */ 905 unsigned int main_segments; /* # of segments in main area */ 906 unsigned int reserved_segments; /* # of reserved segments */ 907 unsigned int ovp_segments; /* # of overprovision segments */ 908 909 /* a threshold to reclaim prefree segments */ 910 unsigned int rec_prefree_segments; 911 912 /* for batched trimming */ 913 unsigned int trim_sections; /* # of sections to trim */ 914 915 struct list_head sit_entry_set; /* sit entry set list */ 916 917 unsigned int ipu_policy; /* in-place-update policy */ 918 unsigned int min_ipu_util; /* in-place-update threshold */ 919 unsigned int min_fsync_blocks; /* threshold for fsync */ 920 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 921 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 922 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 923 924 /* for flush command control */ 925 struct flush_cmd_control *fcc_info; 926 927 /* for discard command control */ 928 struct discard_cmd_control *dcc_info; 929 }; 930 931 /* 932 * For superblock 933 */ 934 /* 935 * COUNT_TYPE for monitoring 936 * 937 * f2fs monitors the number of several block types such as on-writeback, 938 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 939 */ 940 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 941 enum count_type { 942 F2FS_DIRTY_DENTS, 943 F2FS_DIRTY_DATA, 944 F2FS_DIRTY_QDATA, 945 F2FS_DIRTY_NODES, 946 F2FS_DIRTY_META, 947 F2FS_INMEM_PAGES, 948 F2FS_DIRTY_IMETA, 949 F2FS_WB_CP_DATA, 950 F2FS_WB_DATA, 951 F2FS_RD_DATA, 952 F2FS_RD_NODE, 953 F2FS_RD_META, 954 F2FS_DIO_WRITE, 955 F2FS_DIO_READ, 956 NR_COUNT_TYPE, 957 }; 958 959 /* 960 * The below are the page types of bios used in submit_bio(). 961 * The available types are: 962 * DATA User data pages. It operates as async mode. 963 * NODE Node pages. It operates as async mode. 964 * META FS metadata pages such as SIT, NAT, CP. 965 * NR_PAGE_TYPE The number of page types. 966 * META_FLUSH Make sure the previous pages are written 967 * with waiting the bio's completion 968 * ... Only can be used with META. 969 */ 970 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 971 enum page_type { 972 DATA, 973 NODE, 974 META, 975 NR_PAGE_TYPE, 976 META_FLUSH, 977 INMEM, /* the below types are used by tracepoints only. */ 978 INMEM_DROP, 979 INMEM_INVALIDATE, 980 INMEM_REVOKE, 981 IPU, 982 OPU, 983 }; 984 985 enum temp_type { 986 HOT = 0, /* must be zero for meta bio */ 987 WARM, 988 COLD, 989 NR_TEMP_TYPE, 990 }; 991 992 enum need_lock_type { 993 LOCK_REQ = 0, 994 LOCK_DONE, 995 LOCK_RETRY, 996 }; 997 998 enum cp_reason_type { 999 CP_NO_NEEDED, 1000 CP_NON_REGULAR, 1001 CP_HARDLINK, 1002 CP_SB_NEED_CP, 1003 CP_WRONG_PINO, 1004 CP_NO_SPC_ROLL, 1005 CP_NODE_NEED_CP, 1006 CP_FASTBOOT_MODE, 1007 CP_SPEC_LOG_NUM, 1008 CP_RECOVER_DIR, 1009 }; 1010 1011 enum iostat_type { 1012 APP_DIRECT_IO, /* app direct IOs */ 1013 APP_BUFFERED_IO, /* app buffered IOs */ 1014 APP_WRITE_IO, /* app write IOs */ 1015 APP_MAPPED_IO, /* app mapped IOs */ 1016 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1017 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1018 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1019 FS_GC_DATA_IO, /* data IOs from forground gc */ 1020 FS_GC_NODE_IO, /* node IOs from forground gc */ 1021 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1022 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1023 FS_CP_META_IO, /* meta IOs from checkpoint */ 1024 FS_DISCARD, /* discard */ 1025 NR_IO_TYPE, 1026 }; 1027 1028 struct f2fs_io_info { 1029 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1030 nid_t ino; /* inode number */ 1031 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1032 enum temp_type temp; /* contains HOT/WARM/COLD */ 1033 int op; /* contains REQ_OP_ */ 1034 int op_flags; /* req_flag_bits */ 1035 block_t new_blkaddr; /* new block address to be written */ 1036 block_t old_blkaddr; /* old block address before Cow */ 1037 struct page *page; /* page to be written */ 1038 struct page *encrypted_page; /* encrypted page */ 1039 struct list_head list; /* serialize IOs */ 1040 bool submitted; /* indicate IO submission */ 1041 int need_lock; /* indicate we need to lock cp_rwsem */ 1042 bool in_list; /* indicate fio is in io_list */ 1043 bool is_meta; /* indicate borrow meta inode mapping or not */ 1044 bool retry; /* need to reallocate block address */ 1045 enum iostat_type io_type; /* io type */ 1046 struct writeback_control *io_wbc; /* writeback control */ 1047 unsigned char version; /* version of the node */ 1048 }; 1049 1050 #define is_read_io(rw) ((rw) == READ) 1051 struct f2fs_bio_info { 1052 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1053 struct bio *bio; /* bios to merge */ 1054 sector_t last_block_in_bio; /* last block number */ 1055 struct f2fs_io_info fio; /* store buffered io info. */ 1056 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1057 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1058 struct list_head io_list; /* track fios */ 1059 }; 1060 1061 #define FDEV(i) (sbi->devs[i]) 1062 #define RDEV(i) (raw_super->devs[i]) 1063 struct f2fs_dev_info { 1064 struct block_device *bdev; 1065 char path[MAX_PATH_LEN]; 1066 unsigned int total_segments; 1067 block_t start_blk; 1068 block_t end_blk; 1069 #ifdef CONFIG_BLK_DEV_ZONED 1070 unsigned int nr_blkz; /* Total number of zones */ 1071 u8 *blkz_type; /* Array of zones type */ 1072 #endif 1073 }; 1074 1075 enum inode_type { 1076 DIR_INODE, /* for dirty dir inode */ 1077 FILE_INODE, /* for dirty regular/symlink inode */ 1078 DIRTY_META, /* for all dirtied inode metadata */ 1079 ATOMIC_FILE, /* for all atomic files */ 1080 NR_INODE_TYPE, 1081 }; 1082 1083 /* for inner inode cache management */ 1084 struct inode_management { 1085 struct radix_tree_root ino_root; /* ino entry array */ 1086 spinlock_t ino_lock; /* for ino entry lock */ 1087 struct list_head ino_list; /* inode list head */ 1088 unsigned long ino_num; /* number of entries */ 1089 }; 1090 1091 /* For s_flag in struct f2fs_sb_info */ 1092 enum { 1093 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1094 SBI_IS_CLOSE, /* specify unmounting */ 1095 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1096 SBI_POR_DOING, /* recovery is doing or not */ 1097 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1098 SBI_NEED_CP, /* need to checkpoint */ 1099 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1100 SBI_IS_RECOVERED, /* recovered orphan/data */ 1101 SBI_CP_DISABLED, /* CP was disabled last mount */ 1102 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1103 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1104 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1105 }; 1106 1107 enum { 1108 CP_TIME, 1109 REQ_TIME, 1110 DISCARD_TIME, 1111 GC_TIME, 1112 DISABLE_TIME, 1113 MAX_TIME, 1114 }; 1115 1116 enum { 1117 GC_NORMAL, 1118 GC_IDLE_CB, 1119 GC_IDLE_GREEDY, 1120 GC_URGENT, 1121 }; 1122 1123 enum { 1124 WHINT_MODE_OFF, /* not pass down write hints */ 1125 WHINT_MODE_USER, /* try to pass down hints given by users */ 1126 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1127 }; 1128 1129 enum { 1130 ALLOC_MODE_DEFAULT, /* stay default */ 1131 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1132 }; 1133 1134 enum fsync_mode { 1135 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1136 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1137 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1138 }; 1139 1140 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1141 #define DUMMY_ENCRYPTION_ENABLED(sbi) \ 1142 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption)) 1143 #else 1144 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0) 1145 #endif 1146 1147 struct f2fs_sb_info { 1148 struct super_block *sb; /* pointer to VFS super block */ 1149 struct proc_dir_entry *s_proc; /* proc entry */ 1150 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1151 struct rw_semaphore sb_lock; /* lock for raw super block */ 1152 int valid_super_block; /* valid super block no */ 1153 unsigned long s_flag; /* flags for sbi */ 1154 struct mutex writepages; /* mutex for writepages() */ 1155 1156 #ifdef CONFIG_BLK_DEV_ZONED 1157 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1158 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1159 #endif 1160 1161 /* for node-related operations */ 1162 struct f2fs_nm_info *nm_info; /* node manager */ 1163 struct inode *node_inode; /* cache node blocks */ 1164 1165 /* for segment-related operations */ 1166 struct f2fs_sm_info *sm_info; /* segment manager */ 1167 1168 /* for bio operations */ 1169 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1170 /* keep migration IO order for LFS mode */ 1171 struct rw_semaphore io_order_lock; 1172 mempool_t *write_io_dummy; /* Dummy pages */ 1173 1174 /* for checkpoint */ 1175 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1176 int cur_cp_pack; /* remain current cp pack */ 1177 spinlock_t cp_lock; /* for flag in ckpt */ 1178 struct inode *meta_inode; /* cache meta blocks */ 1179 struct mutex cp_mutex; /* checkpoint procedure lock */ 1180 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1181 struct rw_semaphore node_write; /* locking node writes */ 1182 struct rw_semaphore node_change; /* locking node change */ 1183 wait_queue_head_t cp_wait; 1184 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1185 long interval_time[MAX_TIME]; /* to store thresholds */ 1186 1187 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1188 1189 spinlock_t fsync_node_lock; /* for node entry lock */ 1190 struct list_head fsync_node_list; /* node list head */ 1191 unsigned int fsync_seg_id; /* sequence id */ 1192 unsigned int fsync_node_num; /* number of node entries */ 1193 1194 /* for orphan inode, use 0'th array */ 1195 unsigned int max_orphans; /* max orphan inodes */ 1196 1197 /* for inode management */ 1198 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1199 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1200 1201 /* for extent tree cache */ 1202 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1203 struct mutex extent_tree_lock; /* locking extent radix tree */ 1204 struct list_head extent_list; /* lru list for shrinker */ 1205 spinlock_t extent_lock; /* locking extent lru list */ 1206 atomic_t total_ext_tree; /* extent tree count */ 1207 struct list_head zombie_list; /* extent zombie tree list */ 1208 atomic_t total_zombie_tree; /* extent zombie tree count */ 1209 atomic_t total_ext_node; /* extent info count */ 1210 1211 /* basic filesystem units */ 1212 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1213 unsigned int log_blocksize; /* log2 block size */ 1214 unsigned int blocksize; /* block size */ 1215 unsigned int root_ino_num; /* root inode number*/ 1216 unsigned int node_ino_num; /* node inode number*/ 1217 unsigned int meta_ino_num; /* meta inode number*/ 1218 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1219 unsigned int blocks_per_seg; /* blocks per segment */ 1220 unsigned int segs_per_sec; /* segments per section */ 1221 unsigned int secs_per_zone; /* sections per zone */ 1222 unsigned int total_sections; /* total section count */ 1223 unsigned int total_node_count; /* total node block count */ 1224 unsigned int total_valid_node_count; /* valid node block count */ 1225 loff_t max_file_blocks; /* max block index of file */ 1226 int dir_level; /* directory level */ 1227 int readdir_ra; /* readahead inode in readdir */ 1228 1229 block_t user_block_count; /* # of user blocks */ 1230 block_t total_valid_block_count; /* # of valid blocks */ 1231 block_t discard_blks; /* discard command candidats */ 1232 block_t last_valid_block_count; /* for recovery */ 1233 block_t reserved_blocks; /* configurable reserved blocks */ 1234 block_t current_reserved_blocks; /* current reserved blocks */ 1235 1236 /* Additional tracking for no checkpoint mode */ 1237 block_t unusable_block_count; /* # of blocks saved by last cp */ 1238 1239 unsigned int nquota_files; /* # of quota sysfile */ 1240 1241 u32 s_next_generation; /* for NFS support */ 1242 1243 /* # of pages, see count_type */ 1244 atomic_t nr_pages[NR_COUNT_TYPE]; 1245 /* # of allocated blocks */ 1246 struct percpu_counter alloc_valid_block_count; 1247 1248 /* writeback control */ 1249 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1250 1251 /* valid inode count */ 1252 struct percpu_counter total_valid_inode_count; 1253 1254 struct f2fs_mount_info mount_opt; /* mount options */ 1255 1256 /* for cleaning operations */ 1257 struct mutex gc_mutex; /* mutex for GC */ 1258 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1259 unsigned int cur_victim_sec; /* current victim section num */ 1260 unsigned int gc_mode; /* current GC state */ 1261 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1262 /* for skip statistic */ 1263 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1264 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1265 1266 /* threshold for gc trials on pinned files */ 1267 u64 gc_pin_file_threshold; 1268 1269 /* maximum # of trials to find a victim segment for SSR and GC */ 1270 unsigned int max_victim_search; 1271 /* migration granularity of garbage collection, unit: segment */ 1272 unsigned int migration_granularity; 1273 1274 /* 1275 * for stat information. 1276 * one is for the LFS mode, and the other is for the SSR mode. 1277 */ 1278 #ifdef CONFIG_F2FS_STAT_FS 1279 struct f2fs_stat_info *stat_info; /* FS status information */ 1280 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1281 unsigned int segment_count[2]; /* # of allocated segments */ 1282 unsigned int block_count[2]; /* # of allocated blocks */ 1283 atomic_t inplace_count; /* # of inplace update */ 1284 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1285 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1286 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1287 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1288 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1289 atomic_t inline_inode; /* # of inline_data inodes */ 1290 atomic_t inline_dir; /* # of inline_dentry inodes */ 1291 atomic_t aw_cnt; /* # of atomic writes */ 1292 atomic_t vw_cnt; /* # of volatile writes */ 1293 atomic_t max_aw_cnt; /* max # of atomic writes */ 1294 atomic_t max_vw_cnt; /* max # of volatile writes */ 1295 int bg_gc; /* background gc calls */ 1296 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1297 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1298 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1299 #endif 1300 spinlock_t stat_lock; /* lock for stat operations */ 1301 1302 /* For app/fs IO statistics */ 1303 spinlock_t iostat_lock; 1304 unsigned long long write_iostat[NR_IO_TYPE]; 1305 bool iostat_enable; 1306 1307 /* For sysfs suppport */ 1308 struct kobject s_kobj; 1309 struct completion s_kobj_unregister; 1310 1311 /* For shrinker support */ 1312 struct list_head s_list; 1313 int s_ndevs; /* number of devices */ 1314 struct f2fs_dev_info *devs; /* for device list */ 1315 unsigned int dirty_device; /* for checkpoint data flush */ 1316 spinlock_t dev_lock; /* protect dirty_device */ 1317 struct mutex umount_mutex; 1318 unsigned int shrinker_run_no; 1319 1320 /* For write statistics */ 1321 u64 sectors_written_start; 1322 u64 kbytes_written; 1323 1324 /* Reference to checksum algorithm driver via cryptoapi */ 1325 struct crypto_shash *s_chksum_driver; 1326 1327 /* Precomputed FS UUID checksum for seeding other checksums */ 1328 __u32 s_chksum_seed; 1329 }; 1330 1331 struct f2fs_private_dio { 1332 struct inode *inode; 1333 void *orig_private; 1334 bio_end_io_t *orig_end_io; 1335 bool write; 1336 }; 1337 1338 #ifdef CONFIG_F2FS_FAULT_INJECTION 1339 #define f2fs_show_injection_info(type) \ 1340 printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n", \ 1341 KERN_INFO, f2fs_fault_name[type], \ 1342 __func__, __builtin_return_address(0)) 1343 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1344 { 1345 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1346 1347 if (!ffi->inject_rate) 1348 return false; 1349 1350 if (!IS_FAULT_SET(ffi, type)) 1351 return false; 1352 1353 atomic_inc(&ffi->inject_ops); 1354 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1355 atomic_set(&ffi->inject_ops, 0); 1356 return true; 1357 } 1358 return false; 1359 } 1360 #else 1361 #define f2fs_show_injection_info(type) do { } while (0) 1362 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1363 { 1364 return false; 1365 } 1366 #endif 1367 1368 /* For write statistics. Suppose sector size is 512 bytes, 1369 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1370 */ 1371 #define BD_PART_WRITTEN(s) \ 1372 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \ 1373 (s)->sectors_written_start) >> 1) 1374 1375 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1376 { 1377 unsigned long now = jiffies; 1378 1379 sbi->last_time[type] = now; 1380 1381 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1382 if (type == REQ_TIME) { 1383 sbi->last_time[DISCARD_TIME] = now; 1384 sbi->last_time[GC_TIME] = now; 1385 } 1386 } 1387 1388 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1389 { 1390 unsigned long interval = sbi->interval_time[type] * HZ; 1391 1392 return time_after(jiffies, sbi->last_time[type] + interval); 1393 } 1394 1395 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1396 int type) 1397 { 1398 unsigned long interval = sbi->interval_time[type] * HZ; 1399 unsigned int wait_ms = 0; 1400 long delta; 1401 1402 delta = (sbi->last_time[type] + interval) - jiffies; 1403 if (delta > 0) 1404 wait_ms = jiffies_to_msecs(delta); 1405 1406 return wait_ms; 1407 } 1408 1409 /* 1410 * Inline functions 1411 */ 1412 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1413 const void *address, unsigned int length) 1414 { 1415 struct { 1416 struct shash_desc shash; 1417 char ctx[4]; 1418 } desc; 1419 int err; 1420 1421 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1422 1423 desc.shash.tfm = sbi->s_chksum_driver; 1424 desc.shash.flags = 0; 1425 *(u32 *)desc.ctx = crc; 1426 1427 err = crypto_shash_update(&desc.shash, address, length); 1428 BUG_ON(err); 1429 1430 return *(u32 *)desc.ctx; 1431 } 1432 1433 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1434 unsigned int length) 1435 { 1436 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1437 } 1438 1439 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1440 void *buf, size_t buf_size) 1441 { 1442 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1443 } 1444 1445 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1446 const void *address, unsigned int length) 1447 { 1448 return __f2fs_crc32(sbi, crc, address, length); 1449 } 1450 1451 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1452 { 1453 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1454 } 1455 1456 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1457 { 1458 return sb->s_fs_info; 1459 } 1460 1461 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1462 { 1463 return F2FS_SB(inode->i_sb); 1464 } 1465 1466 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1467 { 1468 return F2FS_I_SB(mapping->host); 1469 } 1470 1471 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1472 { 1473 return F2FS_M_SB(page->mapping); 1474 } 1475 1476 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1477 { 1478 return (struct f2fs_super_block *)(sbi->raw_super); 1479 } 1480 1481 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1482 { 1483 return (struct f2fs_checkpoint *)(sbi->ckpt); 1484 } 1485 1486 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1487 { 1488 return (struct f2fs_node *)page_address(page); 1489 } 1490 1491 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1492 { 1493 return &((struct f2fs_node *)page_address(page))->i; 1494 } 1495 1496 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1497 { 1498 return (struct f2fs_nm_info *)(sbi->nm_info); 1499 } 1500 1501 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1502 { 1503 return (struct f2fs_sm_info *)(sbi->sm_info); 1504 } 1505 1506 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1507 { 1508 return (struct sit_info *)(SM_I(sbi)->sit_info); 1509 } 1510 1511 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1512 { 1513 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1514 } 1515 1516 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1517 { 1518 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1519 } 1520 1521 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1522 { 1523 return sbi->meta_inode->i_mapping; 1524 } 1525 1526 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1527 { 1528 return sbi->node_inode->i_mapping; 1529 } 1530 1531 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1532 { 1533 return test_bit(type, &sbi->s_flag); 1534 } 1535 1536 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1537 { 1538 set_bit(type, &sbi->s_flag); 1539 } 1540 1541 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1542 { 1543 clear_bit(type, &sbi->s_flag); 1544 } 1545 1546 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1547 { 1548 return le64_to_cpu(cp->checkpoint_ver); 1549 } 1550 1551 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1552 { 1553 if (type < F2FS_MAX_QUOTAS) 1554 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1555 return 0; 1556 } 1557 1558 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1559 { 1560 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1561 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1562 } 1563 1564 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1565 { 1566 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1567 1568 return ckpt_flags & f; 1569 } 1570 1571 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1572 { 1573 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1574 } 1575 1576 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1577 { 1578 unsigned int ckpt_flags; 1579 1580 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1581 ckpt_flags |= f; 1582 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1583 } 1584 1585 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1586 { 1587 unsigned long flags; 1588 1589 spin_lock_irqsave(&sbi->cp_lock, flags); 1590 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1591 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1592 } 1593 1594 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1595 { 1596 unsigned int ckpt_flags; 1597 1598 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1599 ckpt_flags &= (~f); 1600 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1601 } 1602 1603 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1604 { 1605 unsigned long flags; 1606 1607 spin_lock_irqsave(&sbi->cp_lock, flags); 1608 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1609 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1610 } 1611 1612 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1613 { 1614 unsigned long flags; 1615 1616 /* 1617 * In order to re-enable nat_bits we need to call fsck.f2fs by 1618 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost, 1619 * so let's rely on regular fsck or unclean shutdown. 1620 */ 1621 1622 if (lock) 1623 spin_lock_irqsave(&sbi->cp_lock, flags); 1624 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1625 kvfree(NM_I(sbi)->nat_bits); 1626 NM_I(sbi)->nat_bits = NULL; 1627 if (lock) 1628 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1629 } 1630 1631 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1632 struct cp_control *cpc) 1633 { 1634 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1635 1636 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1637 } 1638 1639 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1640 { 1641 down_read(&sbi->cp_rwsem); 1642 } 1643 1644 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1645 { 1646 return down_read_trylock(&sbi->cp_rwsem); 1647 } 1648 1649 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1650 { 1651 up_read(&sbi->cp_rwsem); 1652 } 1653 1654 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1655 { 1656 down_write(&sbi->cp_rwsem); 1657 } 1658 1659 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1660 { 1661 up_write(&sbi->cp_rwsem); 1662 } 1663 1664 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1665 { 1666 int reason = CP_SYNC; 1667 1668 if (test_opt(sbi, FASTBOOT)) 1669 reason = CP_FASTBOOT; 1670 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1671 reason = CP_UMOUNT; 1672 return reason; 1673 } 1674 1675 static inline bool __remain_node_summaries(int reason) 1676 { 1677 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1678 } 1679 1680 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1681 { 1682 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1683 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1684 } 1685 1686 /* 1687 * Check whether the inode has blocks or not 1688 */ 1689 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1690 { 1691 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1692 1693 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1694 } 1695 1696 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1697 { 1698 return ofs == XATTR_NODE_OFFSET; 1699 } 1700 1701 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1702 struct inode *inode, bool cap) 1703 { 1704 if (!inode) 1705 return true; 1706 if (!test_opt(sbi, RESERVE_ROOT)) 1707 return false; 1708 if (IS_NOQUOTA(inode)) 1709 return true; 1710 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1711 return true; 1712 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1713 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1714 return true; 1715 if (cap && capable(CAP_SYS_RESOURCE)) 1716 return true; 1717 return false; 1718 } 1719 1720 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1721 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1722 struct inode *inode, blkcnt_t *count) 1723 { 1724 blkcnt_t diff = 0, release = 0; 1725 block_t avail_user_block_count; 1726 int ret; 1727 1728 ret = dquot_reserve_block(inode, *count); 1729 if (ret) 1730 return ret; 1731 1732 if (time_to_inject(sbi, FAULT_BLOCK)) { 1733 f2fs_show_injection_info(FAULT_BLOCK); 1734 release = *count; 1735 goto enospc; 1736 } 1737 1738 /* 1739 * let's increase this in prior to actual block count change in order 1740 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1741 */ 1742 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1743 1744 spin_lock(&sbi->stat_lock); 1745 sbi->total_valid_block_count += (block_t)(*count); 1746 avail_user_block_count = sbi->user_block_count - 1747 sbi->current_reserved_blocks; 1748 1749 if (!__allow_reserved_blocks(sbi, inode, true)) 1750 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1751 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1752 avail_user_block_count -= sbi->unusable_block_count; 1753 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1754 diff = sbi->total_valid_block_count - avail_user_block_count; 1755 if (diff > *count) 1756 diff = *count; 1757 *count -= diff; 1758 release = diff; 1759 sbi->total_valid_block_count -= diff; 1760 if (!*count) { 1761 spin_unlock(&sbi->stat_lock); 1762 goto enospc; 1763 } 1764 } 1765 spin_unlock(&sbi->stat_lock); 1766 1767 if (unlikely(release)) { 1768 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1769 dquot_release_reservation_block(inode, release); 1770 } 1771 f2fs_i_blocks_write(inode, *count, true, true); 1772 return 0; 1773 1774 enospc: 1775 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1776 dquot_release_reservation_block(inode, release); 1777 return -ENOSPC; 1778 } 1779 1780 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1781 struct inode *inode, 1782 block_t count) 1783 { 1784 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1785 1786 spin_lock(&sbi->stat_lock); 1787 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1788 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1789 sbi->total_valid_block_count -= (block_t)count; 1790 if (sbi->reserved_blocks && 1791 sbi->current_reserved_blocks < sbi->reserved_blocks) 1792 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1793 sbi->current_reserved_blocks + count); 1794 spin_unlock(&sbi->stat_lock); 1795 f2fs_i_blocks_write(inode, count, false, true); 1796 } 1797 1798 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1799 { 1800 atomic_inc(&sbi->nr_pages[count_type]); 1801 1802 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1803 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA || 1804 count_type == F2FS_RD_DATA || count_type == F2FS_RD_NODE || 1805 count_type == F2FS_RD_META) 1806 return; 1807 1808 set_sbi_flag(sbi, SBI_IS_DIRTY); 1809 } 1810 1811 static inline void inode_inc_dirty_pages(struct inode *inode) 1812 { 1813 atomic_inc(&F2FS_I(inode)->dirty_pages); 1814 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1815 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1816 if (IS_NOQUOTA(inode)) 1817 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1818 } 1819 1820 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1821 { 1822 atomic_dec(&sbi->nr_pages[count_type]); 1823 } 1824 1825 static inline void inode_dec_dirty_pages(struct inode *inode) 1826 { 1827 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1828 !S_ISLNK(inode->i_mode)) 1829 return; 1830 1831 atomic_dec(&F2FS_I(inode)->dirty_pages); 1832 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1833 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1834 if (IS_NOQUOTA(inode)) 1835 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1836 } 1837 1838 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1839 { 1840 return atomic_read(&sbi->nr_pages[count_type]); 1841 } 1842 1843 static inline int get_dirty_pages(struct inode *inode) 1844 { 1845 return atomic_read(&F2FS_I(inode)->dirty_pages); 1846 } 1847 1848 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1849 { 1850 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1851 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1852 sbi->log_blocks_per_seg; 1853 1854 return segs / sbi->segs_per_sec; 1855 } 1856 1857 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1858 { 1859 return sbi->total_valid_block_count; 1860 } 1861 1862 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1863 { 1864 return sbi->discard_blks; 1865 } 1866 1867 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1868 { 1869 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1870 1871 /* return NAT or SIT bitmap */ 1872 if (flag == NAT_BITMAP) 1873 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1874 else if (flag == SIT_BITMAP) 1875 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1876 1877 return 0; 1878 } 1879 1880 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1881 { 1882 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1883 } 1884 1885 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1886 { 1887 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1888 int offset; 1889 1890 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 1891 offset = (flag == SIT_BITMAP) ? 1892 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 1893 return &ckpt->sit_nat_version_bitmap + offset; 1894 } 1895 1896 if (__cp_payload(sbi) > 0) { 1897 if (flag == NAT_BITMAP) 1898 return &ckpt->sit_nat_version_bitmap; 1899 else 1900 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1901 } else { 1902 offset = (flag == NAT_BITMAP) ? 1903 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1904 return &ckpt->sit_nat_version_bitmap + offset; 1905 } 1906 } 1907 1908 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1909 { 1910 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1911 1912 if (sbi->cur_cp_pack == 2) 1913 start_addr += sbi->blocks_per_seg; 1914 return start_addr; 1915 } 1916 1917 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1918 { 1919 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1920 1921 if (sbi->cur_cp_pack == 1) 1922 start_addr += sbi->blocks_per_seg; 1923 return start_addr; 1924 } 1925 1926 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1927 { 1928 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1929 } 1930 1931 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1932 { 1933 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1934 } 1935 1936 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1937 struct inode *inode, bool is_inode) 1938 { 1939 block_t valid_block_count; 1940 unsigned int valid_node_count; 1941 int err; 1942 1943 if (is_inode) { 1944 if (inode) { 1945 err = dquot_alloc_inode(inode); 1946 if (err) 1947 return err; 1948 } 1949 } else { 1950 err = dquot_reserve_block(inode, 1); 1951 if (err) 1952 return err; 1953 } 1954 1955 if (time_to_inject(sbi, FAULT_BLOCK)) { 1956 f2fs_show_injection_info(FAULT_BLOCK); 1957 goto enospc; 1958 } 1959 1960 spin_lock(&sbi->stat_lock); 1961 1962 valid_block_count = sbi->total_valid_block_count + 1963 sbi->current_reserved_blocks + 1; 1964 1965 if (!__allow_reserved_blocks(sbi, inode, false)) 1966 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 1967 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1968 valid_block_count += sbi->unusable_block_count; 1969 1970 if (unlikely(valid_block_count > sbi->user_block_count)) { 1971 spin_unlock(&sbi->stat_lock); 1972 goto enospc; 1973 } 1974 1975 valid_node_count = sbi->total_valid_node_count + 1; 1976 if (unlikely(valid_node_count > sbi->total_node_count)) { 1977 spin_unlock(&sbi->stat_lock); 1978 goto enospc; 1979 } 1980 1981 sbi->total_valid_node_count++; 1982 sbi->total_valid_block_count++; 1983 spin_unlock(&sbi->stat_lock); 1984 1985 if (inode) { 1986 if (is_inode) 1987 f2fs_mark_inode_dirty_sync(inode, true); 1988 else 1989 f2fs_i_blocks_write(inode, 1, true, true); 1990 } 1991 1992 percpu_counter_inc(&sbi->alloc_valid_block_count); 1993 return 0; 1994 1995 enospc: 1996 if (is_inode) { 1997 if (inode) 1998 dquot_free_inode(inode); 1999 } else { 2000 dquot_release_reservation_block(inode, 1); 2001 } 2002 return -ENOSPC; 2003 } 2004 2005 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2006 struct inode *inode, bool is_inode) 2007 { 2008 spin_lock(&sbi->stat_lock); 2009 2010 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 2011 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 2012 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 2013 2014 sbi->total_valid_node_count--; 2015 sbi->total_valid_block_count--; 2016 if (sbi->reserved_blocks && 2017 sbi->current_reserved_blocks < sbi->reserved_blocks) 2018 sbi->current_reserved_blocks++; 2019 2020 spin_unlock(&sbi->stat_lock); 2021 2022 if (is_inode) 2023 dquot_free_inode(inode); 2024 else 2025 f2fs_i_blocks_write(inode, 1, false, true); 2026 } 2027 2028 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2029 { 2030 return sbi->total_valid_node_count; 2031 } 2032 2033 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2034 { 2035 percpu_counter_inc(&sbi->total_valid_inode_count); 2036 } 2037 2038 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2039 { 2040 percpu_counter_dec(&sbi->total_valid_inode_count); 2041 } 2042 2043 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2044 { 2045 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2046 } 2047 2048 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2049 pgoff_t index, bool for_write) 2050 { 2051 struct page *page; 2052 2053 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2054 if (!for_write) 2055 page = find_get_page_flags(mapping, index, 2056 FGP_LOCK | FGP_ACCESSED); 2057 else 2058 page = find_lock_page(mapping, index); 2059 if (page) 2060 return page; 2061 2062 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2063 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 2064 return NULL; 2065 } 2066 } 2067 2068 if (!for_write) 2069 return grab_cache_page(mapping, index); 2070 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 2071 } 2072 2073 static inline struct page *f2fs_pagecache_get_page( 2074 struct address_space *mapping, pgoff_t index, 2075 int fgp_flags, gfp_t gfp_mask) 2076 { 2077 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2078 f2fs_show_injection_info(FAULT_PAGE_GET); 2079 return NULL; 2080 } 2081 2082 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2083 } 2084 2085 static inline void f2fs_copy_page(struct page *src, struct page *dst) 2086 { 2087 char *src_kaddr = kmap(src); 2088 char *dst_kaddr = kmap(dst); 2089 2090 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 2091 kunmap(dst); 2092 kunmap(src); 2093 } 2094 2095 static inline void f2fs_put_page(struct page *page, int unlock) 2096 { 2097 if (!page) 2098 return; 2099 2100 if (unlock) { 2101 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2102 unlock_page(page); 2103 } 2104 put_page(page); 2105 } 2106 2107 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2108 { 2109 if (dn->node_page) 2110 f2fs_put_page(dn->node_page, 1); 2111 if (dn->inode_page && dn->node_page != dn->inode_page) 2112 f2fs_put_page(dn->inode_page, 0); 2113 dn->node_page = NULL; 2114 dn->inode_page = NULL; 2115 } 2116 2117 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2118 size_t size) 2119 { 2120 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2121 } 2122 2123 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2124 gfp_t flags) 2125 { 2126 void *entry; 2127 2128 entry = kmem_cache_alloc(cachep, flags); 2129 if (!entry) 2130 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2131 return entry; 2132 } 2133 2134 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 2135 int npages, bool no_fail) 2136 { 2137 struct bio *bio; 2138 2139 if (no_fail) { 2140 /* No failure on bio allocation */ 2141 bio = bio_alloc(GFP_NOIO, npages); 2142 if (!bio) 2143 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 2144 return bio; 2145 } 2146 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2147 f2fs_show_injection_info(FAULT_ALLOC_BIO); 2148 return NULL; 2149 } 2150 2151 return bio_alloc(GFP_KERNEL, npages); 2152 } 2153 2154 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2155 { 2156 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2157 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2158 get_pages(sbi, F2FS_WB_CP_DATA) || 2159 get_pages(sbi, F2FS_DIO_READ) || 2160 get_pages(sbi, F2FS_DIO_WRITE) || 2161 atomic_read(&SM_I(sbi)->dcc_info->queued_discard) || 2162 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2163 return false; 2164 return f2fs_time_over(sbi, type); 2165 } 2166 2167 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2168 unsigned long index, void *item) 2169 { 2170 while (radix_tree_insert(root, index, item)) 2171 cond_resched(); 2172 } 2173 2174 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2175 2176 static inline bool IS_INODE(struct page *page) 2177 { 2178 struct f2fs_node *p = F2FS_NODE(page); 2179 2180 return RAW_IS_INODE(p); 2181 } 2182 2183 static inline int offset_in_addr(struct f2fs_inode *i) 2184 { 2185 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2186 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2187 } 2188 2189 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2190 { 2191 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2192 } 2193 2194 static inline int f2fs_has_extra_attr(struct inode *inode); 2195 static inline block_t datablock_addr(struct inode *inode, 2196 struct page *node_page, unsigned int offset) 2197 { 2198 struct f2fs_node *raw_node; 2199 __le32 *addr_array; 2200 int base = 0; 2201 bool is_inode = IS_INODE(node_page); 2202 2203 raw_node = F2FS_NODE(node_page); 2204 2205 /* from GC path only */ 2206 if (is_inode) { 2207 if (!inode) 2208 base = offset_in_addr(&raw_node->i); 2209 else if (f2fs_has_extra_attr(inode)) 2210 base = get_extra_isize(inode); 2211 } 2212 2213 addr_array = blkaddr_in_node(raw_node); 2214 return le32_to_cpu(addr_array[base + offset]); 2215 } 2216 2217 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2218 { 2219 int mask; 2220 2221 addr += (nr >> 3); 2222 mask = 1 << (7 - (nr & 0x07)); 2223 return mask & *addr; 2224 } 2225 2226 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2227 { 2228 int mask; 2229 2230 addr += (nr >> 3); 2231 mask = 1 << (7 - (nr & 0x07)); 2232 *addr |= mask; 2233 } 2234 2235 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2236 { 2237 int mask; 2238 2239 addr += (nr >> 3); 2240 mask = 1 << (7 - (nr & 0x07)); 2241 *addr &= ~mask; 2242 } 2243 2244 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2245 { 2246 int mask; 2247 int ret; 2248 2249 addr += (nr >> 3); 2250 mask = 1 << (7 - (nr & 0x07)); 2251 ret = mask & *addr; 2252 *addr |= mask; 2253 return ret; 2254 } 2255 2256 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2257 { 2258 int mask; 2259 int ret; 2260 2261 addr += (nr >> 3); 2262 mask = 1 << (7 - (nr & 0x07)); 2263 ret = mask & *addr; 2264 *addr &= ~mask; 2265 return ret; 2266 } 2267 2268 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2269 { 2270 int mask; 2271 2272 addr += (nr >> 3); 2273 mask = 1 << (7 - (nr & 0x07)); 2274 *addr ^= mask; 2275 } 2276 2277 /* 2278 * Inode flags 2279 */ 2280 #define F2FS_SECRM_FL 0x00000001 /* Secure deletion */ 2281 #define F2FS_UNRM_FL 0x00000002 /* Undelete */ 2282 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2283 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2284 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2285 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2286 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2287 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2288 /* Reserved for compression usage... */ 2289 #define F2FS_DIRTY_FL 0x00000100 2290 #define F2FS_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */ 2291 #define F2FS_NOCOMPR_FL 0x00000400 /* Don't compress */ 2292 #define F2FS_ENCRYPT_FL 0x00000800 /* encrypted file */ 2293 /* End compression flags --- maybe not all used */ 2294 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2295 #define F2FS_IMAGIC_FL 0x00002000 /* AFS directory */ 2296 #define F2FS_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */ 2297 #define F2FS_NOTAIL_FL 0x00008000 /* file tail should not be merged */ 2298 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2299 #define F2FS_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/ 2300 #define F2FS_HUGE_FILE_FL 0x00040000 /* Set to each huge file */ 2301 #define F2FS_EXTENTS_FL 0x00080000 /* Inode uses extents */ 2302 #define F2FS_EA_INODE_FL 0x00200000 /* Inode used for large EA */ 2303 #define F2FS_EOFBLOCKS_FL 0x00400000 /* Blocks allocated beyond EOF */ 2304 #define F2FS_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */ 2305 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2306 #define F2FS_RESERVED_FL 0x80000000 /* reserved for ext4 lib */ 2307 2308 #define F2FS_FL_USER_VISIBLE 0x304BDFFF /* User visible flags */ 2309 #define F2FS_FL_USER_MODIFIABLE 0x204BC0FF /* User modifiable flags */ 2310 2311 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */ 2312 #define F2FS_FL_XFLAG_VISIBLE (F2FS_SYNC_FL | \ 2313 F2FS_IMMUTABLE_FL | \ 2314 F2FS_APPEND_FL | \ 2315 F2FS_NODUMP_FL | \ 2316 F2FS_NOATIME_FL | \ 2317 F2FS_PROJINHERIT_FL) 2318 2319 /* Flags that should be inherited by new inodes from their parent. */ 2320 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\ 2321 F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\ 2322 F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\ 2323 F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\ 2324 F2FS_PROJINHERIT_FL) 2325 2326 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2327 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL)) 2328 2329 /* Flags that are appropriate for non-directories/regular files. */ 2330 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2331 2332 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2333 { 2334 if (S_ISDIR(mode)) 2335 return flags; 2336 else if (S_ISREG(mode)) 2337 return flags & F2FS_REG_FLMASK; 2338 else 2339 return flags & F2FS_OTHER_FLMASK; 2340 } 2341 2342 /* used for f2fs_inode_info->flags */ 2343 enum { 2344 FI_NEW_INODE, /* indicate newly allocated inode */ 2345 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2346 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2347 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2348 FI_INC_LINK, /* need to increment i_nlink */ 2349 FI_ACL_MODE, /* indicate acl mode */ 2350 FI_NO_ALLOC, /* should not allocate any blocks */ 2351 FI_FREE_NID, /* free allocated nide */ 2352 FI_NO_EXTENT, /* not to use the extent cache */ 2353 FI_INLINE_XATTR, /* used for inline xattr */ 2354 FI_INLINE_DATA, /* used for inline data*/ 2355 FI_INLINE_DENTRY, /* used for inline dentry */ 2356 FI_APPEND_WRITE, /* inode has appended data */ 2357 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2358 FI_NEED_IPU, /* used for ipu per file */ 2359 FI_ATOMIC_FILE, /* indicate atomic file */ 2360 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2361 FI_VOLATILE_FILE, /* indicate volatile file */ 2362 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2363 FI_DROP_CACHE, /* drop dirty page cache */ 2364 FI_DATA_EXIST, /* indicate data exists */ 2365 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2366 FI_DO_DEFRAG, /* indicate defragment is running */ 2367 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2368 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2369 FI_HOT_DATA, /* indicate file is hot */ 2370 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2371 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2372 FI_PIN_FILE, /* indicate file should not be gced */ 2373 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 2374 }; 2375 2376 static inline void __mark_inode_dirty_flag(struct inode *inode, 2377 int flag, bool set) 2378 { 2379 switch (flag) { 2380 case FI_INLINE_XATTR: 2381 case FI_INLINE_DATA: 2382 case FI_INLINE_DENTRY: 2383 case FI_NEW_INODE: 2384 if (set) 2385 return; 2386 /* fall through */ 2387 case FI_DATA_EXIST: 2388 case FI_INLINE_DOTS: 2389 case FI_PIN_FILE: 2390 f2fs_mark_inode_dirty_sync(inode, true); 2391 } 2392 } 2393 2394 static inline void set_inode_flag(struct inode *inode, int flag) 2395 { 2396 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2397 set_bit(flag, &F2FS_I(inode)->flags); 2398 __mark_inode_dirty_flag(inode, flag, true); 2399 } 2400 2401 static inline int is_inode_flag_set(struct inode *inode, int flag) 2402 { 2403 return test_bit(flag, &F2FS_I(inode)->flags); 2404 } 2405 2406 static inline void clear_inode_flag(struct inode *inode, int flag) 2407 { 2408 if (test_bit(flag, &F2FS_I(inode)->flags)) 2409 clear_bit(flag, &F2FS_I(inode)->flags); 2410 __mark_inode_dirty_flag(inode, flag, false); 2411 } 2412 2413 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2414 { 2415 F2FS_I(inode)->i_acl_mode = mode; 2416 set_inode_flag(inode, FI_ACL_MODE); 2417 f2fs_mark_inode_dirty_sync(inode, false); 2418 } 2419 2420 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2421 { 2422 if (inc) 2423 inc_nlink(inode); 2424 else 2425 drop_nlink(inode); 2426 f2fs_mark_inode_dirty_sync(inode, true); 2427 } 2428 2429 static inline void f2fs_i_blocks_write(struct inode *inode, 2430 block_t diff, bool add, bool claim) 2431 { 2432 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2433 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2434 2435 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2436 if (add) { 2437 if (claim) 2438 dquot_claim_block(inode, diff); 2439 else 2440 dquot_alloc_block_nofail(inode, diff); 2441 } else { 2442 dquot_free_block(inode, diff); 2443 } 2444 2445 f2fs_mark_inode_dirty_sync(inode, true); 2446 if (clean || recover) 2447 set_inode_flag(inode, FI_AUTO_RECOVER); 2448 } 2449 2450 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2451 { 2452 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2453 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2454 2455 if (i_size_read(inode) == i_size) 2456 return; 2457 2458 i_size_write(inode, i_size); 2459 f2fs_mark_inode_dirty_sync(inode, true); 2460 if (clean || recover) 2461 set_inode_flag(inode, FI_AUTO_RECOVER); 2462 } 2463 2464 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2465 { 2466 F2FS_I(inode)->i_current_depth = depth; 2467 f2fs_mark_inode_dirty_sync(inode, true); 2468 } 2469 2470 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2471 unsigned int count) 2472 { 2473 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2474 f2fs_mark_inode_dirty_sync(inode, true); 2475 } 2476 2477 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2478 { 2479 F2FS_I(inode)->i_xattr_nid = xnid; 2480 f2fs_mark_inode_dirty_sync(inode, true); 2481 } 2482 2483 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2484 { 2485 F2FS_I(inode)->i_pino = pino; 2486 f2fs_mark_inode_dirty_sync(inode, true); 2487 } 2488 2489 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2490 { 2491 struct f2fs_inode_info *fi = F2FS_I(inode); 2492 2493 if (ri->i_inline & F2FS_INLINE_XATTR) 2494 set_bit(FI_INLINE_XATTR, &fi->flags); 2495 if (ri->i_inline & F2FS_INLINE_DATA) 2496 set_bit(FI_INLINE_DATA, &fi->flags); 2497 if (ri->i_inline & F2FS_INLINE_DENTRY) 2498 set_bit(FI_INLINE_DENTRY, &fi->flags); 2499 if (ri->i_inline & F2FS_DATA_EXIST) 2500 set_bit(FI_DATA_EXIST, &fi->flags); 2501 if (ri->i_inline & F2FS_INLINE_DOTS) 2502 set_bit(FI_INLINE_DOTS, &fi->flags); 2503 if (ri->i_inline & F2FS_EXTRA_ATTR) 2504 set_bit(FI_EXTRA_ATTR, &fi->flags); 2505 if (ri->i_inline & F2FS_PIN_FILE) 2506 set_bit(FI_PIN_FILE, &fi->flags); 2507 } 2508 2509 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2510 { 2511 ri->i_inline = 0; 2512 2513 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2514 ri->i_inline |= F2FS_INLINE_XATTR; 2515 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2516 ri->i_inline |= F2FS_INLINE_DATA; 2517 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2518 ri->i_inline |= F2FS_INLINE_DENTRY; 2519 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2520 ri->i_inline |= F2FS_DATA_EXIST; 2521 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2522 ri->i_inline |= F2FS_INLINE_DOTS; 2523 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2524 ri->i_inline |= F2FS_EXTRA_ATTR; 2525 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2526 ri->i_inline |= F2FS_PIN_FILE; 2527 } 2528 2529 static inline int f2fs_has_extra_attr(struct inode *inode) 2530 { 2531 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2532 } 2533 2534 static inline int f2fs_has_inline_xattr(struct inode *inode) 2535 { 2536 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2537 } 2538 2539 static inline unsigned int addrs_per_inode(struct inode *inode) 2540 { 2541 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode); 2542 } 2543 2544 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2545 { 2546 struct f2fs_inode *ri = F2FS_INODE(page); 2547 2548 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2549 get_inline_xattr_addrs(inode)]); 2550 } 2551 2552 static inline int inline_xattr_size(struct inode *inode) 2553 { 2554 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2555 } 2556 2557 static inline int f2fs_has_inline_data(struct inode *inode) 2558 { 2559 return is_inode_flag_set(inode, FI_INLINE_DATA); 2560 } 2561 2562 static inline int f2fs_exist_data(struct inode *inode) 2563 { 2564 return is_inode_flag_set(inode, FI_DATA_EXIST); 2565 } 2566 2567 static inline int f2fs_has_inline_dots(struct inode *inode) 2568 { 2569 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2570 } 2571 2572 static inline bool f2fs_is_pinned_file(struct inode *inode) 2573 { 2574 return is_inode_flag_set(inode, FI_PIN_FILE); 2575 } 2576 2577 static inline bool f2fs_is_atomic_file(struct inode *inode) 2578 { 2579 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2580 } 2581 2582 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2583 { 2584 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2585 } 2586 2587 static inline bool f2fs_is_volatile_file(struct inode *inode) 2588 { 2589 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2590 } 2591 2592 static inline bool f2fs_is_first_block_written(struct inode *inode) 2593 { 2594 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2595 } 2596 2597 static inline bool f2fs_is_drop_cache(struct inode *inode) 2598 { 2599 return is_inode_flag_set(inode, FI_DROP_CACHE); 2600 } 2601 2602 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2603 { 2604 struct f2fs_inode *ri = F2FS_INODE(page); 2605 int extra_size = get_extra_isize(inode); 2606 2607 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2608 } 2609 2610 static inline int f2fs_has_inline_dentry(struct inode *inode) 2611 { 2612 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2613 } 2614 2615 static inline int is_file(struct inode *inode, int type) 2616 { 2617 return F2FS_I(inode)->i_advise & type; 2618 } 2619 2620 static inline void set_file(struct inode *inode, int type) 2621 { 2622 F2FS_I(inode)->i_advise |= type; 2623 f2fs_mark_inode_dirty_sync(inode, true); 2624 } 2625 2626 static inline void clear_file(struct inode *inode, int type) 2627 { 2628 F2FS_I(inode)->i_advise &= ~type; 2629 f2fs_mark_inode_dirty_sync(inode, true); 2630 } 2631 2632 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2633 { 2634 bool ret; 2635 2636 if (dsync) { 2637 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2638 2639 spin_lock(&sbi->inode_lock[DIRTY_META]); 2640 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2641 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2642 return ret; 2643 } 2644 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2645 file_keep_isize(inode) || 2646 i_size_read(inode) & ~PAGE_MASK) 2647 return false; 2648 2649 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 2650 return false; 2651 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 2652 return false; 2653 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 2654 return false; 2655 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 2656 &F2FS_I(inode)->i_crtime)) 2657 return false; 2658 2659 down_read(&F2FS_I(inode)->i_sem); 2660 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2661 up_read(&F2FS_I(inode)->i_sem); 2662 2663 return ret; 2664 } 2665 2666 static inline bool f2fs_readonly(struct super_block *sb) 2667 { 2668 return sb_rdonly(sb); 2669 } 2670 2671 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2672 { 2673 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2674 } 2675 2676 static inline bool is_dot_dotdot(const struct qstr *str) 2677 { 2678 if (str->len == 1 && str->name[0] == '.') 2679 return true; 2680 2681 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2682 return true; 2683 2684 return false; 2685 } 2686 2687 static inline bool f2fs_may_extent_tree(struct inode *inode) 2688 { 2689 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2690 2691 if (!test_opt(sbi, EXTENT_CACHE) || 2692 is_inode_flag_set(inode, FI_NO_EXTENT)) 2693 return false; 2694 2695 /* 2696 * for recovered files during mount do not create extents 2697 * if shrinker is not registered. 2698 */ 2699 if (list_empty(&sbi->s_list)) 2700 return false; 2701 2702 return S_ISREG(inode->i_mode); 2703 } 2704 2705 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2706 size_t size, gfp_t flags) 2707 { 2708 void *ret; 2709 2710 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2711 f2fs_show_injection_info(FAULT_KMALLOC); 2712 return NULL; 2713 } 2714 2715 ret = kmalloc(size, flags); 2716 if (ret) 2717 return ret; 2718 2719 return kvmalloc(size, flags); 2720 } 2721 2722 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2723 size_t size, gfp_t flags) 2724 { 2725 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2726 } 2727 2728 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2729 size_t size, gfp_t flags) 2730 { 2731 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2732 f2fs_show_injection_info(FAULT_KVMALLOC); 2733 return NULL; 2734 } 2735 2736 return kvmalloc(size, flags); 2737 } 2738 2739 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2740 size_t size, gfp_t flags) 2741 { 2742 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2743 } 2744 2745 static inline int get_extra_isize(struct inode *inode) 2746 { 2747 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2748 } 2749 2750 static inline int get_inline_xattr_addrs(struct inode *inode) 2751 { 2752 return F2FS_I(inode)->i_inline_xattr_size; 2753 } 2754 2755 #define f2fs_get_inode_mode(i) \ 2756 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2757 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2758 2759 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2760 (offsetof(struct f2fs_inode, i_extra_end) - \ 2761 offsetof(struct f2fs_inode, i_extra_isize)) \ 2762 2763 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2764 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2765 ((offsetof(typeof(*f2fs_inode), field) + \ 2766 sizeof((f2fs_inode)->field)) \ 2767 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2768 2769 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2770 { 2771 int i; 2772 2773 spin_lock(&sbi->iostat_lock); 2774 for (i = 0; i < NR_IO_TYPE; i++) 2775 sbi->write_iostat[i] = 0; 2776 spin_unlock(&sbi->iostat_lock); 2777 } 2778 2779 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2780 enum iostat_type type, unsigned long long io_bytes) 2781 { 2782 if (!sbi->iostat_enable) 2783 return; 2784 spin_lock(&sbi->iostat_lock); 2785 sbi->write_iostat[type] += io_bytes; 2786 2787 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2788 sbi->write_iostat[APP_BUFFERED_IO] = 2789 sbi->write_iostat[APP_WRITE_IO] - 2790 sbi->write_iostat[APP_DIRECT_IO]; 2791 spin_unlock(&sbi->iostat_lock); 2792 } 2793 2794 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 2795 2796 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META && \ 2797 (!is_read_io(fio->op) || fio->is_meta)) 2798 2799 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 2800 block_t blkaddr, int type); 2801 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2802 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 2803 block_t blkaddr, int type) 2804 { 2805 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 2806 f2fs_msg(sbi->sb, KERN_ERR, 2807 "invalid blkaddr: %u, type: %d, run fsck to fix.", 2808 blkaddr, type); 2809 f2fs_bug_on(sbi, 1); 2810 } 2811 } 2812 2813 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 2814 { 2815 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 2816 return false; 2817 return true; 2818 } 2819 2820 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi, 2821 block_t blkaddr) 2822 { 2823 if (!__is_valid_data_blkaddr(blkaddr)) 2824 return false; 2825 verify_blkaddr(sbi, blkaddr, DATA_GENERIC); 2826 return true; 2827 } 2828 2829 /* 2830 * file.c 2831 */ 2832 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2833 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 2834 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock, 2835 bool buf_write); 2836 int f2fs_truncate(struct inode *inode); 2837 int f2fs_getattr(const struct path *path, struct kstat *stat, 2838 u32 request_mask, unsigned int flags); 2839 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2840 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2841 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2842 int f2fs_precache_extents(struct inode *inode); 2843 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2844 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2845 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 2846 int f2fs_pin_file_control(struct inode *inode, bool inc); 2847 2848 /* 2849 * inode.c 2850 */ 2851 void f2fs_set_inode_flags(struct inode *inode); 2852 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2853 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2854 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2855 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2856 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2857 void f2fs_update_inode(struct inode *inode, struct page *node_page); 2858 void f2fs_update_inode_page(struct inode *inode); 2859 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2860 void f2fs_evict_inode(struct inode *inode); 2861 void f2fs_handle_failed_inode(struct inode *inode); 2862 2863 /* 2864 * namei.c 2865 */ 2866 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 2867 bool hot, bool set); 2868 struct dentry *f2fs_get_parent(struct dentry *child); 2869 2870 /* 2871 * dir.c 2872 */ 2873 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 2874 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname, 2875 f2fs_hash_t namehash, int *max_slots, 2876 struct f2fs_dentry_ptr *d); 2877 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2878 unsigned int start_pos, struct fscrypt_str *fstr); 2879 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 2880 struct f2fs_dentry_ptr *d); 2881 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 2882 const struct qstr *new_name, 2883 const struct qstr *orig_name, struct page *dpage); 2884 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 2885 unsigned int current_depth); 2886 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 2887 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2888 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2889 struct fscrypt_name *fname, struct page **res_page); 2890 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2891 const struct qstr *child, struct page **res_page); 2892 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2893 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2894 struct page **page); 2895 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2896 struct page *page, struct inode *inode); 2897 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2898 const struct qstr *name, f2fs_hash_t name_hash, 2899 unsigned int bit_pos); 2900 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2901 const struct qstr *orig_name, 2902 struct inode *inode, nid_t ino, umode_t mode); 2903 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname, 2904 struct inode *inode, nid_t ino, umode_t mode); 2905 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 2906 struct inode *inode, nid_t ino, umode_t mode); 2907 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2908 struct inode *dir, struct inode *inode); 2909 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2910 bool f2fs_empty_dir(struct inode *dir); 2911 2912 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2913 { 2914 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2915 inode, inode->i_ino, inode->i_mode); 2916 } 2917 2918 /* 2919 * super.c 2920 */ 2921 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2922 void f2fs_inode_synced(struct inode *inode); 2923 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2924 int f2fs_quota_sync(struct super_block *sb, int type); 2925 void f2fs_quota_off_umount(struct super_block *sb); 2926 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2927 int f2fs_sync_fs(struct super_block *sb, int sync); 2928 extern __printf(3, 4) 2929 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2930 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 2931 2932 /* 2933 * hash.c 2934 */ 2935 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2936 struct fscrypt_name *fname); 2937 2938 /* 2939 * node.c 2940 */ 2941 struct dnode_of_data; 2942 struct node_info; 2943 2944 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 2945 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 2946 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 2947 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 2948 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 2949 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 2950 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2951 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2952 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2953 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 2954 struct node_info *ni); 2955 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2956 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2957 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 2958 int f2fs_truncate_xattr_node(struct inode *inode); 2959 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2960 unsigned int seq_id); 2961 int f2fs_remove_inode_page(struct inode *inode); 2962 struct page *f2fs_new_inode_page(struct inode *inode); 2963 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2964 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2965 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2966 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 2967 int f2fs_move_node_page(struct page *node_page, int gc_type); 2968 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2969 struct writeback_control *wbc, bool atomic, 2970 unsigned int *seq_id); 2971 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 2972 struct writeback_control *wbc, 2973 bool do_balance, enum iostat_type io_type); 2974 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2975 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2976 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2977 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2978 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2979 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 2980 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 2981 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2982 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2983 unsigned int segno, struct f2fs_summary_block *sum); 2984 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2985 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 2986 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 2987 int __init f2fs_create_node_manager_caches(void); 2988 void f2fs_destroy_node_manager_caches(void); 2989 2990 /* 2991 * segment.c 2992 */ 2993 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 2994 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 2995 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 2996 void f2fs_drop_inmem_pages(struct inode *inode); 2997 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 2998 int f2fs_commit_inmem_pages(struct inode *inode); 2999 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3000 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 3001 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3002 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3003 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3004 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3005 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3006 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3007 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3008 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3009 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 3010 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3011 struct cp_control *cpc); 3012 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3013 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi); 3014 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3015 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3016 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3017 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3018 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3019 struct cp_control *cpc); 3020 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3021 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3022 block_t blk_addr); 3023 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3024 enum iostat_type io_type); 3025 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3026 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3027 struct f2fs_io_info *fio); 3028 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3029 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3030 block_t old_blkaddr, block_t new_blkaddr, 3031 bool recover_curseg, bool recover_newaddr); 3032 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3033 block_t old_addr, block_t new_addr, 3034 unsigned char version, bool recover_curseg, 3035 bool recover_newaddr); 3036 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3037 block_t old_blkaddr, block_t *new_blkaddr, 3038 struct f2fs_summary *sum, int type, 3039 struct f2fs_io_info *fio, bool add_list); 3040 void f2fs_wait_on_page_writeback(struct page *page, 3041 enum page_type type, bool ordered, bool locked); 3042 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3043 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3044 block_t len); 3045 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3046 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3047 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3048 unsigned int val, int alloc); 3049 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3050 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3051 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3052 int __init f2fs_create_segment_manager_caches(void); 3053 void f2fs_destroy_segment_manager_caches(void); 3054 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3055 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3056 enum page_type type, enum temp_type temp); 3057 3058 /* 3059 * checkpoint.c 3060 */ 3061 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 3062 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3063 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3064 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index); 3065 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3066 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3067 block_t blkaddr, int type); 3068 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3069 int type, bool sync); 3070 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 3071 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3072 long nr_to_write, enum iostat_type io_type); 3073 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3074 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3075 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3076 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3077 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3078 unsigned int devidx, int type); 3079 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3080 unsigned int devidx, int type); 3081 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3082 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3083 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3084 void f2fs_add_orphan_inode(struct inode *inode); 3085 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3086 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3087 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3088 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 3089 void f2fs_remove_dirty_inode(struct inode *inode); 3090 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 3091 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi); 3092 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3093 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3094 int __init f2fs_create_checkpoint_caches(void); 3095 void f2fs_destroy_checkpoint_caches(void); 3096 3097 /* 3098 * data.c 3099 */ 3100 int f2fs_init_post_read_processing(void); 3101 void f2fs_destroy_post_read_processing(void); 3102 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3103 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3104 struct inode *inode, struct page *page, 3105 nid_t ino, enum page_type type); 3106 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3107 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3108 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3109 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3110 block_t blk_addr, struct bio *bio); 3111 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3112 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3113 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3114 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3115 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3116 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3117 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 3118 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3119 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3120 int op_flags, bool for_write); 3121 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 3122 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3123 bool for_write); 3124 struct page *f2fs_get_new_data_page(struct inode *inode, 3125 struct page *ipage, pgoff_t index, bool new_i_size); 3126 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3127 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock); 3128 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3129 int create, int flag); 3130 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3131 u64 start, u64 len); 3132 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3133 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3134 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3135 unsigned int length); 3136 int f2fs_release_page(struct page *page, gfp_t wait); 3137 #ifdef CONFIG_MIGRATION 3138 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 3139 struct page *page, enum migrate_mode mode); 3140 #endif 3141 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3142 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3143 3144 /* 3145 * gc.c 3146 */ 3147 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3148 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3149 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3150 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 3151 unsigned int segno); 3152 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3153 3154 /* 3155 * recovery.c 3156 */ 3157 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3158 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3159 3160 /* 3161 * debug.c 3162 */ 3163 #ifdef CONFIG_F2FS_STAT_FS 3164 struct f2fs_stat_info { 3165 struct list_head stat_list; 3166 struct f2fs_sb_info *sbi; 3167 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3168 int main_area_segs, main_area_sections, main_area_zones; 3169 unsigned long long hit_largest, hit_cached, hit_rbtree; 3170 unsigned long long hit_total, total_ext; 3171 int ext_tree, zombie_tree, ext_node; 3172 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3173 int ndirty_data, ndirty_qdata; 3174 int inmem_pages; 3175 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3176 int nats, dirty_nats, sits, dirty_sits; 3177 int free_nids, avail_nids, alloc_nids; 3178 int total_count, utilization; 3179 int bg_gc, nr_wb_cp_data, nr_wb_data; 3180 int nr_rd_data, nr_rd_node, nr_rd_meta; 3181 int nr_dio_read, nr_dio_write; 3182 unsigned int io_skip_bggc, other_skip_bggc; 3183 int nr_flushing, nr_flushed, flush_list_empty; 3184 int nr_discarding, nr_discarded; 3185 int nr_discard_cmd; 3186 unsigned int undiscard_blks; 3187 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3188 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3189 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3190 unsigned int bimodal, avg_vblocks; 3191 int util_free, util_valid, util_invalid; 3192 int rsvd_segs, overp_segs; 3193 int dirty_count, node_pages, meta_pages; 3194 int prefree_count, call_count, cp_count, bg_cp_count; 3195 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3196 int bg_node_segs, bg_data_segs; 3197 int tot_blks, data_blks, node_blks; 3198 int bg_data_blks, bg_node_blks; 3199 unsigned long long skipped_atomic_files[2]; 3200 int curseg[NR_CURSEG_TYPE]; 3201 int cursec[NR_CURSEG_TYPE]; 3202 int curzone[NR_CURSEG_TYPE]; 3203 3204 unsigned int meta_count[META_MAX]; 3205 unsigned int segment_count[2]; 3206 unsigned int block_count[2]; 3207 unsigned int inplace_count; 3208 unsigned long long base_mem, cache_mem, page_mem; 3209 }; 3210 3211 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3212 { 3213 return (struct f2fs_stat_info *)sbi->stat_info; 3214 } 3215 3216 #define stat_inc_cp_count(si) ((si)->cp_count++) 3217 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3218 #define stat_inc_call_count(si) ((si)->call_count++) 3219 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 3220 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3221 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3222 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3223 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3224 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3225 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3226 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3227 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3228 #define stat_inc_inline_xattr(inode) \ 3229 do { \ 3230 if (f2fs_has_inline_xattr(inode)) \ 3231 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3232 } while (0) 3233 #define stat_dec_inline_xattr(inode) \ 3234 do { \ 3235 if (f2fs_has_inline_xattr(inode)) \ 3236 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3237 } while (0) 3238 #define stat_inc_inline_inode(inode) \ 3239 do { \ 3240 if (f2fs_has_inline_data(inode)) \ 3241 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3242 } while (0) 3243 #define stat_dec_inline_inode(inode) \ 3244 do { \ 3245 if (f2fs_has_inline_data(inode)) \ 3246 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3247 } while (0) 3248 #define stat_inc_inline_dir(inode) \ 3249 do { \ 3250 if (f2fs_has_inline_dentry(inode)) \ 3251 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3252 } while (0) 3253 #define stat_dec_inline_dir(inode) \ 3254 do { \ 3255 if (f2fs_has_inline_dentry(inode)) \ 3256 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3257 } while (0) 3258 #define stat_inc_meta_count(sbi, blkaddr) \ 3259 do { \ 3260 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3261 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3262 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3263 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3264 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3265 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3266 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3267 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3268 } while (0) 3269 #define stat_inc_seg_type(sbi, curseg) \ 3270 ((sbi)->segment_count[(curseg)->alloc_type]++) 3271 #define stat_inc_block_count(sbi, curseg) \ 3272 ((sbi)->block_count[(curseg)->alloc_type]++) 3273 #define stat_inc_inplace_blocks(sbi) \ 3274 (atomic_inc(&(sbi)->inplace_count)) 3275 #define stat_inc_atomic_write(inode) \ 3276 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 3277 #define stat_dec_atomic_write(inode) \ 3278 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 3279 #define stat_update_max_atomic_write(inode) \ 3280 do { \ 3281 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 3282 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3283 if (cur > max) \ 3284 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3285 } while (0) 3286 #define stat_inc_volatile_write(inode) \ 3287 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3288 #define stat_dec_volatile_write(inode) \ 3289 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3290 #define stat_update_max_volatile_write(inode) \ 3291 do { \ 3292 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3293 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3294 if (cur > max) \ 3295 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3296 } while (0) 3297 #define stat_inc_seg_count(sbi, type, gc_type) \ 3298 do { \ 3299 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3300 si->tot_segs++; \ 3301 if ((type) == SUM_TYPE_DATA) { \ 3302 si->data_segs++; \ 3303 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3304 } else { \ 3305 si->node_segs++; \ 3306 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3307 } \ 3308 } while (0) 3309 3310 #define stat_inc_tot_blk_count(si, blks) \ 3311 ((si)->tot_blks += (blks)) 3312 3313 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3314 do { \ 3315 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3316 stat_inc_tot_blk_count(si, blks); \ 3317 si->data_blks += (blks); \ 3318 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3319 } while (0) 3320 3321 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3322 do { \ 3323 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3324 stat_inc_tot_blk_count(si, blks); \ 3325 si->node_blks += (blks); \ 3326 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3327 } while (0) 3328 3329 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3330 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3331 int __init f2fs_create_root_stats(void); 3332 void f2fs_destroy_root_stats(void); 3333 #else 3334 #define stat_inc_cp_count(si) do { } while (0) 3335 #define stat_inc_bg_cp_count(si) do { } while (0) 3336 #define stat_inc_call_count(si) do { } while (0) 3337 #define stat_inc_bggc_count(si) do { } while (0) 3338 #define stat_io_skip_bggc_count(sbi) do { } while (0) 3339 #define stat_other_skip_bggc_count(sbi) do { } while (0) 3340 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3341 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3342 #define stat_inc_total_hit(sb) do { } while (0) 3343 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3344 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3345 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3346 #define stat_inc_inline_xattr(inode) do { } while (0) 3347 #define stat_dec_inline_xattr(inode) do { } while (0) 3348 #define stat_inc_inline_inode(inode) do { } while (0) 3349 #define stat_dec_inline_inode(inode) do { } while (0) 3350 #define stat_inc_inline_dir(inode) do { } while (0) 3351 #define stat_dec_inline_dir(inode) do { } while (0) 3352 #define stat_inc_atomic_write(inode) do { } while (0) 3353 #define stat_dec_atomic_write(inode) do { } while (0) 3354 #define stat_update_max_atomic_write(inode) do { } while (0) 3355 #define stat_inc_volatile_write(inode) do { } while (0) 3356 #define stat_dec_volatile_write(inode) do { } while (0) 3357 #define stat_update_max_volatile_write(inode) do { } while (0) 3358 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 3359 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3360 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3361 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3362 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3363 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3364 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3365 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3366 3367 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3368 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3369 static inline int __init f2fs_create_root_stats(void) { return 0; } 3370 static inline void f2fs_destroy_root_stats(void) { } 3371 #endif 3372 3373 extern const struct file_operations f2fs_dir_operations; 3374 extern const struct file_operations f2fs_file_operations; 3375 extern const struct inode_operations f2fs_file_inode_operations; 3376 extern const struct address_space_operations f2fs_dblock_aops; 3377 extern const struct address_space_operations f2fs_node_aops; 3378 extern const struct address_space_operations f2fs_meta_aops; 3379 extern const struct inode_operations f2fs_dir_inode_operations; 3380 extern const struct inode_operations f2fs_symlink_inode_operations; 3381 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3382 extern const struct inode_operations f2fs_special_inode_operations; 3383 extern struct kmem_cache *f2fs_inode_entry_slab; 3384 3385 /* 3386 * inline.c 3387 */ 3388 bool f2fs_may_inline_data(struct inode *inode); 3389 bool f2fs_may_inline_dentry(struct inode *inode); 3390 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3391 void f2fs_truncate_inline_inode(struct inode *inode, 3392 struct page *ipage, u64 from); 3393 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3394 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3395 int f2fs_convert_inline_inode(struct inode *inode); 3396 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3397 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3398 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3399 struct fscrypt_name *fname, struct page **res_page); 3400 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3401 struct page *ipage); 3402 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3403 const struct qstr *orig_name, 3404 struct inode *inode, nid_t ino, umode_t mode); 3405 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3406 struct page *page, struct inode *dir, 3407 struct inode *inode); 3408 bool f2fs_empty_inline_dir(struct inode *dir); 3409 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3410 struct fscrypt_str *fstr); 3411 int f2fs_inline_data_fiemap(struct inode *inode, 3412 struct fiemap_extent_info *fieinfo, 3413 __u64 start, __u64 len); 3414 3415 /* 3416 * shrinker.c 3417 */ 3418 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3419 struct shrink_control *sc); 3420 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3421 struct shrink_control *sc); 3422 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3423 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3424 3425 /* 3426 * extent_cache.c 3427 */ 3428 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 3429 struct rb_entry *cached_re, unsigned int ofs); 3430 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3431 struct rb_root_cached *root, 3432 struct rb_node **parent, 3433 unsigned int ofs, bool *leftmost); 3434 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 3435 struct rb_entry *cached_re, unsigned int ofs, 3436 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3437 struct rb_node ***insert_p, struct rb_node **insert_parent, 3438 bool force, bool *leftmost); 3439 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3440 struct rb_root_cached *root); 3441 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3442 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3443 void f2fs_drop_extent_tree(struct inode *inode); 3444 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3445 void f2fs_destroy_extent_tree(struct inode *inode); 3446 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3447 struct extent_info *ei); 3448 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3449 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3450 pgoff_t fofs, block_t blkaddr, unsigned int len); 3451 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3452 int __init f2fs_create_extent_cache(void); 3453 void f2fs_destroy_extent_cache(void); 3454 3455 /* 3456 * sysfs.c 3457 */ 3458 int __init f2fs_init_sysfs(void); 3459 void f2fs_exit_sysfs(void); 3460 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3461 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3462 3463 /* 3464 * crypto support 3465 */ 3466 static inline bool f2fs_encrypted_inode(struct inode *inode) 3467 { 3468 return file_is_encrypt(inode); 3469 } 3470 3471 static inline bool f2fs_encrypted_file(struct inode *inode) 3472 { 3473 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3474 } 3475 3476 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3477 { 3478 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3479 file_set_encrypt(inode); 3480 f2fs_set_inode_flags(inode); 3481 #endif 3482 } 3483 3484 /* 3485 * Returns true if the reads of the inode's data need to undergo some 3486 * postprocessing step, like decryption or authenticity verification. 3487 */ 3488 static inline bool f2fs_post_read_required(struct inode *inode) 3489 { 3490 return f2fs_encrypted_file(inode); 3491 } 3492 3493 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3494 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 3495 { \ 3496 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 3497 } 3498 3499 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3500 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3501 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3502 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3503 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3504 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3505 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3506 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3507 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 3508 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 3509 3510 #ifdef CONFIG_BLK_DEV_ZONED 3511 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3512 struct block_device *bdev, block_t blkaddr) 3513 { 3514 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3515 int i; 3516 3517 for (i = 0; i < sbi->s_ndevs; i++) 3518 if (FDEV(i).bdev == bdev) 3519 return FDEV(i).blkz_type[zno]; 3520 return -EINVAL; 3521 } 3522 #endif 3523 3524 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 3525 { 3526 return f2fs_sb_has_blkzoned(sbi); 3527 } 3528 3529 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 3530 { 3531 return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev)); 3532 } 3533 3534 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 3535 { 3536 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 3537 f2fs_hw_should_discard(sbi); 3538 } 3539 3540 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3541 { 3542 clear_opt(sbi, ADAPTIVE); 3543 clear_opt(sbi, LFS); 3544 3545 switch (mt) { 3546 case F2FS_MOUNT_ADAPTIVE: 3547 set_opt(sbi, ADAPTIVE); 3548 break; 3549 case F2FS_MOUNT_LFS: 3550 set_opt(sbi, LFS); 3551 break; 3552 } 3553 } 3554 3555 static inline bool f2fs_may_encrypt(struct inode *inode) 3556 { 3557 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3558 umode_t mode = inode->i_mode; 3559 3560 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3561 #else 3562 return false; 3563 #endif 3564 } 3565 3566 static inline int block_unaligned_IO(struct inode *inode, 3567 struct kiocb *iocb, struct iov_iter *iter) 3568 { 3569 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits); 3570 unsigned int blocksize_mask = (1 << i_blkbits) - 1; 3571 loff_t offset = iocb->ki_pos; 3572 unsigned long align = offset | iov_iter_alignment(iter); 3573 3574 return align & blocksize_mask; 3575 } 3576 3577 static inline int allow_outplace_dio(struct inode *inode, 3578 struct kiocb *iocb, struct iov_iter *iter) 3579 { 3580 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3581 int rw = iov_iter_rw(iter); 3582 3583 return (test_opt(sbi, LFS) && (rw == WRITE) && 3584 !block_unaligned_IO(inode, iocb, iter)); 3585 } 3586 3587 static inline bool f2fs_force_buffered_io(struct inode *inode, 3588 struct kiocb *iocb, struct iov_iter *iter) 3589 { 3590 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3591 int rw = iov_iter_rw(iter); 3592 3593 if (f2fs_post_read_required(inode)) 3594 return true; 3595 if (sbi->s_ndevs) 3596 return true; 3597 /* 3598 * for blkzoned device, fallback direct IO to buffered IO, so 3599 * all IOs can be serialized by log-structured write. 3600 */ 3601 if (f2fs_sb_has_blkzoned(sbi)) 3602 return true; 3603 if (test_opt(sbi, LFS) && (rw == WRITE) && 3604 block_unaligned_IO(inode, iocb, iter)) 3605 return true; 3606 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED)) 3607 return true; 3608 3609 return false; 3610 } 3611 3612 #ifdef CONFIG_F2FS_FAULT_INJECTION 3613 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 3614 unsigned int type); 3615 #else 3616 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 3617 #endif 3618 3619 #endif 3620 3621 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 3622 { 3623 #ifdef CONFIG_QUOTA 3624 if (f2fs_sb_has_quota_ino(sbi)) 3625 return true; 3626 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 3627 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 3628 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 3629 return true; 3630 #endif 3631 return false; 3632 } 3633