xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 275876e2)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(condition)	BUG_ON(condition)
25 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(condition)
28 #define f2fs_down_write(x, y)	down_write(x)
29 #endif
30 
31 /*
32  * For mount options
33  */
34 #define F2FS_MOUNT_BG_GC		0x00000001
35 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
36 #define F2FS_MOUNT_DISCARD		0x00000004
37 #define F2FS_MOUNT_NOHEAP		0x00000008
38 #define F2FS_MOUNT_XATTR_USER		0x00000010
39 #define F2FS_MOUNT_POSIX_ACL		0x00000020
40 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
41 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
42 #define F2FS_MOUNT_INLINE_DATA		0x00000100
43 #define F2FS_MOUNT_FLUSH_MERGE		0x00000200
44 #define F2FS_MOUNT_NOBARRIER		0x00000400
45 
46 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
47 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
48 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
49 
50 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
51 		typecheck(unsigned long long, b) &&			\
52 		((long long)((a) - (b)) > 0))
53 
54 typedef u32 block_t;	/*
55 			 * should not change u32, since it is the on-disk block
56 			 * address format, __le32.
57 			 */
58 typedef u32 nid_t;
59 
60 struct f2fs_mount_info {
61 	unsigned int	opt;
62 };
63 
64 #define CRCPOLY_LE 0xedb88320
65 
66 static inline __u32 f2fs_crc32(void *buf, size_t len)
67 {
68 	unsigned char *p = (unsigned char *)buf;
69 	__u32 crc = F2FS_SUPER_MAGIC;
70 	int i;
71 
72 	while (len--) {
73 		crc ^= *p++;
74 		for (i = 0; i < 8; i++)
75 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
76 	}
77 	return crc;
78 }
79 
80 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
81 {
82 	return f2fs_crc32(buf, buf_size) == blk_crc;
83 }
84 
85 /*
86  * For checkpoint manager
87  */
88 enum {
89 	NAT_BITMAP,
90 	SIT_BITMAP
91 };
92 
93 /*
94  * For CP/NAT/SIT/SSA readahead
95  */
96 enum {
97 	META_CP,
98 	META_NAT,
99 	META_SIT,
100 	META_SSA
101 };
102 
103 /* for the list of ino */
104 enum {
105 	ORPHAN_INO,		/* for orphan ino list */
106 	APPEND_INO,		/* for append ino list */
107 	UPDATE_INO,		/* for update ino list */
108 	MAX_INO_ENTRY,		/* max. list */
109 };
110 
111 struct ino_entry {
112 	struct list_head list;	/* list head */
113 	nid_t ino;		/* inode number */
114 };
115 
116 /* for the list of directory inodes */
117 struct dir_inode_entry {
118 	struct list_head list;	/* list head */
119 	struct inode *inode;	/* vfs inode pointer */
120 };
121 
122 /* for the list of blockaddresses to be discarded */
123 struct discard_entry {
124 	struct list_head list;	/* list head */
125 	block_t blkaddr;	/* block address to be discarded */
126 	int len;		/* # of consecutive blocks of the discard */
127 };
128 
129 /* for the list of fsync inodes, used only during recovery */
130 struct fsync_inode_entry {
131 	struct list_head list;	/* list head */
132 	struct inode *inode;	/* vfs inode pointer */
133 	block_t blkaddr;	/* block address locating the last inode */
134 };
135 
136 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
137 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
138 
139 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
140 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
141 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
142 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
143 
144 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
145 {
146 	int before = nats_in_cursum(rs);
147 	rs->n_nats = cpu_to_le16(before + i);
148 	return before;
149 }
150 
151 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
152 {
153 	int before = sits_in_cursum(rs);
154 	rs->n_sits = cpu_to_le16(before + i);
155 	return before;
156 }
157 
158 /*
159  * ioctl commands
160  */
161 #define F2FS_IOC_GETFLAGS               FS_IOC_GETFLAGS
162 #define F2FS_IOC_SETFLAGS               FS_IOC_SETFLAGS
163 
164 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
165 /*
166  * ioctl commands in 32 bit emulation
167  */
168 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
169 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
170 #endif
171 
172 /*
173  * For INODE and NODE manager
174  */
175 /*
176  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
177  * as its node offset to distinguish from index node blocks.
178  * But some bits are used to mark the node block.
179  */
180 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
181 				>> OFFSET_BIT_SHIFT)
182 enum {
183 	ALLOC_NODE,			/* allocate a new node page if needed */
184 	LOOKUP_NODE,			/* look up a node without readahead */
185 	LOOKUP_NODE_RA,			/*
186 					 * look up a node with readahead called
187 					 * by get_data_block.
188 					 */
189 };
190 
191 #define F2FS_LINK_MAX		32000	/* maximum link count per file */
192 
193 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
194 
195 /* for in-memory extent cache entry */
196 #define F2FS_MIN_EXTENT_LEN	16	/* minimum extent length */
197 
198 struct extent_info {
199 	rwlock_t ext_lock;	/* rwlock for consistency */
200 	unsigned int fofs;	/* start offset in a file */
201 	u32 blk_addr;		/* start block address of the extent */
202 	unsigned int len;	/* length of the extent */
203 };
204 
205 /*
206  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
207  */
208 #define FADVISE_COLD_BIT	0x01
209 #define FADVISE_LOST_PINO_BIT	0x02
210 
211 #define DEF_DIR_LEVEL		0
212 
213 struct f2fs_inode_info {
214 	struct inode vfs_inode;		/* serve a vfs inode */
215 	unsigned long i_flags;		/* keep an inode flags for ioctl */
216 	unsigned char i_advise;		/* use to give file attribute hints */
217 	unsigned char i_dir_level;	/* use for dentry level for large dir */
218 	unsigned int i_current_depth;	/* use only in directory structure */
219 	unsigned int i_pino;		/* parent inode number */
220 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
221 
222 	/* Use below internally in f2fs*/
223 	unsigned long flags;		/* use to pass per-file flags */
224 	struct rw_semaphore i_sem;	/* protect fi info */
225 	atomic_t dirty_dents;		/* # of dirty dentry pages */
226 	f2fs_hash_t chash;		/* hash value of given file name */
227 	unsigned int clevel;		/* maximum level of given file name */
228 	nid_t i_xattr_nid;		/* node id that contains xattrs */
229 	unsigned long long xattr_ver;	/* cp version of xattr modification */
230 	struct extent_info ext;		/* in-memory extent cache entry */
231 	struct dir_inode_entry *dirty_dir;	/* the pointer of dirty dir */
232 };
233 
234 static inline void get_extent_info(struct extent_info *ext,
235 					struct f2fs_extent i_ext)
236 {
237 	write_lock(&ext->ext_lock);
238 	ext->fofs = le32_to_cpu(i_ext.fofs);
239 	ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
240 	ext->len = le32_to_cpu(i_ext.len);
241 	write_unlock(&ext->ext_lock);
242 }
243 
244 static inline void set_raw_extent(struct extent_info *ext,
245 					struct f2fs_extent *i_ext)
246 {
247 	read_lock(&ext->ext_lock);
248 	i_ext->fofs = cpu_to_le32(ext->fofs);
249 	i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
250 	i_ext->len = cpu_to_le32(ext->len);
251 	read_unlock(&ext->ext_lock);
252 }
253 
254 struct f2fs_nm_info {
255 	block_t nat_blkaddr;		/* base disk address of NAT */
256 	nid_t max_nid;			/* maximum possible node ids */
257 	nid_t available_nids;		/* maximum available node ids */
258 	nid_t next_scan_nid;		/* the next nid to be scanned */
259 	unsigned int ram_thresh;	/* control the memory footprint */
260 
261 	/* NAT cache management */
262 	struct radix_tree_root nat_root;/* root of the nat entry cache */
263 	rwlock_t nat_tree_lock;		/* protect nat_tree_lock */
264 	unsigned int nat_cnt;		/* the # of cached nat entries */
265 	struct list_head nat_entries;	/* cached nat entry list (clean) */
266 	struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */
267 	struct list_head nat_entry_set;	/* nat entry set list */
268 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
269 
270 	/* free node ids management */
271 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
272 	struct list_head free_nid_list;	/* a list for free nids */
273 	spinlock_t free_nid_list_lock;	/* protect free nid list */
274 	unsigned int fcnt;		/* the number of free node id */
275 	struct mutex build_lock;	/* lock for build free nids */
276 
277 	/* for checkpoint */
278 	char *nat_bitmap;		/* NAT bitmap pointer */
279 	int bitmap_size;		/* bitmap size */
280 };
281 
282 /*
283  * this structure is used as one of function parameters.
284  * all the information are dedicated to a given direct node block determined
285  * by the data offset in a file.
286  */
287 struct dnode_of_data {
288 	struct inode *inode;		/* vfs inode pointer */
289 	struct page *inode_page;	/* its inode page, NULL is possible */
290 	struct page *node_page;		/* cached direct node page */
291 	nid_t nid;			/* node id of the direct node block */
292 	unsigned int ofs_in_node;	/* data offset in the node page */
293 	bool inode_page_locked;		/* inode page is locked or not */
294 	block_t	data_blkaddr;		/* block address of the node block */
295 };
296 
297 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
298 		struct page *ipage, struct page *npage, nid_t nid)
299 {
300 	memset(dn, 0, sizeof(*dn));
301 	dn->inode = inode;
302 	dn->inode_page = ipage;
303 	dn->node_page = npage;
304 	dn->nid = nid;
305 }
306 
307 /*
308  * For SIT manager
309  *
310  * By default, there are 6 active log areas across the whole main area.
311  * When considering hot and cold data separation to reduce cleaning overhead,
312  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
313  * respectively.
314  * In the current design, you should not change the numbers intentionally.
315  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
316  * logs individually according to the underlying devices. (default: 6)
317  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
318  * data and 8 for node logs.
319  */
320 #define	NR_CURSEG_DATA_TYPE	(3)
321 #define NR_CURSEG_NODE_TYPE	(3)
322 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
323 
324 enum {
325 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
326 	CURSEG_WARM_DATA,	/* data blocks */
327 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
328 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
329 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
330 	CURSEG_COLD_NODE,	/* indirect node blocks */
331 	NO_CHECK_TYPE
332 };
333 
334 struct flush_cmd {
335 	struct flush_cmd *next;
336 	struct completion wait;
337 	int ret;
338 };
339 
340 struct flush_cmd_control {
341 	struct task_struct *f2fs_issue_flush;	/* flush thread */
342 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
343 	struct flush_cmd *issue_list;		/* list for command issue */
344 	struct flush_cmd *dispatch_list;	/* list for command dispatch */
345 	spinlock_t issue_lock;			/* for issue list lock */
346 	struct flush_cmd *issue_tail;		/* list tail of issue list */
347 };
348 
349 struct f2fs_sm_info {
350 	struct sit_info *sit_info;		/* whole segment information */
351 	struct free_segmap_info *free_info;	/* free segment information */
352 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
353 	struct curseg_info *curseg_array;	/* active segment information */
354 
355 	block_t seg0_blkaddr;		/* block address of 0'th segment */
356 	block_t main_blkaddr;		/* start block address of main area */
357 	block_t ssa_blkaddr;		/* start block address of SSA area */
358 
359 	unsigned int segment_count;	/* total # of segments */
360 	unsigned int main_segments;	/* # of segments in main area */
361 	unsigned int reserved_segments;	/* # of reserved segments */
362 	unsigned int ovp_segments;	/* # of overprovision segments */
363 
364 	/* a threshold to reclaim prefree segments */
365 	unsigned int rec_prefree_segments;
366 
367 	/* for small discard management */
368 	struct list_head discard_list;		/* 4KB discard list */
369 	int nr_discards;			/* # of discards in the list */
370 	int max_discards;			/* max. discards to be issued */
371 
372 	unsigned int ipu_policy;	/* in-place-update policy */
373 	unsigned int min_ipu_util;	/* in-place-update threshold */
374 
375 	/* for flush command control */
376 	struct flush_cmd_control *cmd_control_info;
377 
378 };
379 
380 /*
381  * For superblock
382  */
383 /*
384  * COUNT_TYPE for monitoring
385  *
386  * f2fs monitors the number of several block types such as on-writeback,
387  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
388  */
389 enum count_type {
390 	F2FS_WRITEBACK,
391 	F2FS_DIRTY_DENTS,
392 	F2FS_DIRTY_NODES,
393 	F2FS_DIRTY_META,
394 	NR_COUNT_TYPE,
395 };
396 
397 /*
398  * The below are the page types of bios used in submti_bio().
399  * The available types are:
400  * DATA			User data pages. It operates as async mode.
401  * NODE			Node pages. It operates as async mode.
402  * META			FS metadata pages such as SIT, NAT, CP.
403  * NR_PAGE_TYPE		The number of page types.
404  * META_FLUSH		Make sure the previous pages are written
405  *			with waiting the bio's completion
406  * ...			Only can be used with META.
407  */
408 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
409 enum page_type {
410 	DATA,
411 	NODE,
412 	META,
413 	NR_PAGE_TYPE,
414 	META_FLUSH,
415 };
416 
417 struct f2fs_io_info {
418 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
419 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
420 };
421 
422 #define is_read_io(rw)	(((rw) & 1) == READ)
423 struct f2fs_bio_info {
424 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
425 	struct bio *bio;		/* bios to merge */
426 	sector_t last_block_in_bio;	/* last block number */
427 	struct f2fs_io_info fio;	/* store buffered io info. */
428 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
429 };
430 
431 struct f2fs_sb_info {
432 	struct super_block *sb;			/* pointer to VFS super block */
433 	struct proc_dir_entry *s_proc;		/* proc entry */
434 	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
435 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
436 	int s_dirty;				/* dirty flag for checkpoint */
437 
438 	/* for node-related operations */
439 	struct f2fs_nm_info *nm_info;		/* node manager */
440 	struct inode *node_inode;		/* cache node blocks */
441 
442 	/* for segment-related operations */
443 	struct f2fs_sm_info *sm_info;		/* segment manager */
444 
445 	/* for bio operations */
446 	struct f2fs_bio_info read_io;			/* for read bios */
447 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
448 	struct completion *wait_io;		/* for completion bios */
449 
450 	/* for checkpoint */
451 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
452 	struct inode *meta_inode;		/* cache meta blocks */
453 	struct mutex cp_mutex;			/* checkpoint procedure lock */
454 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
455 	struct rw_semaphore node_write;		/* locking node writes */
456 	struct mutex writepages;		/* mutex for writepages() */
457 	bool por_doing;				/* recovery is doing or not */
458 	wait_queue_head_t cp_wait;
459 
460 	/* for inode management */
461 	struct radix_tree_root ino_root[MAX_INO_ENTRY];	/* ino entry array */
462 	spinlock_t ino_lock[MAX_INO_ENTRY];		/* for ino entry lock */
463 	struct list_head ino_list[MAX_INO_ENTRY];	/* inode list head */
464 
465 	/* for orphan inode, use 0'th array */
466 	unsigned int n_orphans;			/* # of orphan inodes */
467 	unsigned int max_orphans;		/* max orphan inodes */
468 
469 	/* for directory inode management */
470 	struct list_head dir_inode_list;	/* dir inode list */
471 	spinlock_t dir_inode_lock;		/* for dir inode list lock */
472 
473 	/* basic file system units */
474 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
475 	unsigned int log_blocksize;		/* log2 block size */
476 	unsigned int blocksize;			/* block size */
477 	unsigned int root_ino_num;		/* root inode number*/
478 	unsigned int node_ino_num;		/* node inode number*/
479 	unsigned int meta_ino_num;		/* meta inode number*/
480 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
481 	unsigned int blocks_per_seg;		/* blocks per segment */
482 	unsigned int segs_per_sec;		/* segments per section */
483 	unsigned int secs_per_zone;		/* sections per zone */
484 	unsigned int total_sections;		/* total section count */
485 	unsigned int total_node_count;		/* total node block count */
486 	unsigned int total_valid_node_count;	/* valid node block count */
487 	unsigned int total_valid_inode_count;	/* valid inode count */
488 	int active_logs;			/* # of active logs */
489 	int dir_level;				/* directory level */
490 
491 	block_t user_block_count;		/* # of user blocks */
492 	block_t total_valid_block_count;	/* # of valid blocks */
493 	block_t alloc_valid_block_count;	/* # of allocated blocks */
494 	block_t last_valid_block_count;		/* for recovery */
495 	u32 s_next_generation;			/* for NFS support */
496 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
497 
498 	struct f2fs_mount_info mount_opt;	/* mount options */
499 
500 	/* for cleaning operations */
501 	struct mutex gc_mutex;			/* mutex for GC */
502 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
503 	unsigned int cur_victim_sec;		/* current victim section num */
504 
505 	/* maximum # of trials to find a victim segment for SSR and GC */
506 	unsigned int max_victim_search;
507 
508 	/*
509 	 * for stat information.
510 	 * one is for the LFS mode, and the other is for the SSR mode.
511 	 */
512 #ifdef CONFIG_F2FS_STAT_FS
513 	struct f2fs_stat_info *stat_info;	/* FS status information */
514 	unsigned int segment_count[2];		/* # of allocated segments */
515 	unsigned int block_count[2];		/* # of allocated blocks */
516 	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
517 	int inline_inode;			/* # of inline_data inodes */
518 	int bg_gc;				/* background gc calls */
519 	unsigned int n_dirty_dirs;		/* # of dir inodes */
520 #endif
521 	unsigned int last_victim[2];		/* last victim segment # */
522 	spinlock_t stat_lock;			/* lock for stat operations */
523 
524 	/* For sysfs suppport */
525 	struct kobject s_kobj;
526 	struct completion s_kobj_unregister;
527 };
528 
529 /*
530  * Inline functions
531  */
532 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
533 {
534 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
535 }
536 
537 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
538 {
539 	return sb->s_fs_info;
540 }
541 
542 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
543 {
544 	return (struct f2fs_super_block *)(sbi->raw_super);
545 }
546 
547 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
548 {
549 	return (struct f2fs_checkpoint *)(sbi->ckpt);
550 }
551 
552 static inline struct f2fs_node *F2FS_NODE(struct page *page)
553 {
554 	return (struct f2fs_node *)page_address(page);
555 }
556 
557 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
558 {
559 	return &((struct f2fs_node *)page_address(page))->i;
560 }
561 
562 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
563 {
564 	return (struct f2fs_nm_info *)(sbi->nm_info);
565 }
566 
567 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
568 {
569 	return (struct f2fs_sm_info *)(sbi->sm_info);
570 }
571 
572 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
573 {
574 	return (struct sit_info *)(SM_I(sbi)->sit_info);
575 }
576 
577 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
578 {
579 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
580 }
581 
582 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
583 {
584 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
585 }
586 
587 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
588 {
589 	return sbi->meta_inode->i_mapping;
590 }
591 
592 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
593 {
594 	return sbi->node_inode->i_mapping;
595 }
596 
597 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
598 {
599 	sbi->s_dirty = 1;
600 }
601 
602 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
603 {
604 	sbi->s_dirty = 0;
605 }
606 
607 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
608 {
609 	return le64_to_cpu(cp->checkpoint_ver);
610 }
611 
612 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
613 {
614 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
615 	return ckpt_flags & f;
616 }
617 
618 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
619 {
620 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
621 	ckpt_flags |= f;
622 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
623 }
624 
625 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
626 {
627 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
628 	ckpt_flags &= (~f);
629 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
630 }
631 
632 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
633 {
634 	down_read(&sbi->cp_rwsem);
635 }
636 
637 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
638 {
639 	up_read(&sbi->cp_rwsem);
640 }
641 
642 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
643 {
644 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
645 }
646 
647 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
648 {
649 	up_write(&sbi->cp_rwsem);
650 }
651 
652 /*
653  * Check whether the given nid is within node id range.
654  */
655 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
656 {
657 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
658 		return -EINVAL;
659 	if (unlikely(nid >= NM_I(sbi)->max_nid))
660 		return -EINVAL;
661 	return 0;
662 }
663 
664 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
665 
666 /*
667  * Check whether the inode has blocks or not
668  */
669 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
670 {
671 	if (F2FS_I(inode)->i_xattr_nid)
672 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
673 	else
674 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
675 }
676 
677 static inline bool f2fs_has_xattr_block(unsigned int ofs)
678 {
679 	return ofs == XATTR_NODE_OFFSET;
680 }
681 
682 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
683 				 struct inode *inode, blkcnt_t count)
684 {
685 	block_t	valid_block_count;
686 
687 	spin_lock(&sbi->stat_lock);
688 	valid_block_count =
689 		sbi->total_valid_block_count + (block_t)count;
690 	if (unlikely(valid_block_count > sbi->user_block_count)) {
691 		spin_unlock(&sbi->stat_lock);
692 		return false;
693 	}
694 	inode->i_blocks += count;
695 	sbi->total_valid_block_count = valid_block_count;
696 	sbi->alloc_valid_block_count += (block_t)count;
697 	spin_unlock(&sbi->stat_lock);
698 	return true;
699 }
700 
701 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
702 						struct inode *inode,
703 						blkcnt_t count)
704 {
705 	spin_lock(&sbi->stat_lock);
706 	f2fs_bug_on(sbi->total_valid_block_count < (block_t) count);
707 	f2fs_bug_on(inode->i_blocks < count);
708 	inode->i_blocks -= count;
709 	sbi->total_valid_block_count -= (block_t)count;
710 	spin_unlock(&sbi->stat_lock);
711 }
712 
713 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
714 {
715 	atomic_inc(&sbi->nr_pages[count_type]);
716 	F2FS_SET_SB_DIRT(sbi);
717 }
718 
719 static inline void inode_inc_dirty_dents(struct inode *inode)
720 {
721 	inc_page_count(F2FS_SB(inode->i_sb), F2FS_DIRTY_DENTS);
722 	atomic_inc(&F2FS_I(inode)->dirty_dents);
723 }
724 
725 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
726 {
727 	atomic_dec(&sbi->nr_pages[count_type]);
728 }
729 
730 static inline void inode_dec_dirty_dents(struct inode *inode)
731 {
732 	if (!S_ISDIR(inode->i_mode))
733 		return;
734 
735 	dec_page_count(F2FS_SB(inode->i_sb), F2FS_DIRTY_DENTS);
736 	atomic_dec(&F2FS_I(inode)->dirty_dents);
737 }
738 
739 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
740 {
741 	return atomic_read(&sbi->nr_pages[count_type]);
742 }
743 
744 static inline int get_dirty_dents(struct inode *inode)
745 {
746 	return atomic_read(&F2FS_I(inode)->dirty_dents);
747 }
748 
749 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
750 {
751 	unsigned int pages_per_sec = sbi->segs_per_sec *
752 					(1 << sbi->log_blocks_per_seg);
753 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
754 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
755 }
756 
757 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
758 {
759 	return sbi->total_valid_block_count;
760 }
761 
762 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
763 {
764 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
765 
766 	/* return NAT or SIT bitmap */
767 	if (flag == NAT_BITMAP)
768 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
769 	else if (flag == SIT_BITMAP)
770 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
771 
772 	return 0;
773 }
774 
775 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
776 {
777 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
778 	int offset;
779 
780 	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
781 		if (flag == NAT_BITMAP)
782 			return &ckpt->sit_nat_version_bitmap;
783 		else
784 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
785 	} else {
786 		offset = (flag == NAT_BITMAP) ?
787 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
788 		return &ckpt->sit_nat_version_bitmap + offset;
789 	}
790 }
791 
792 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
793 {
794 	block_t start_addr;
795 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
796 	unsigned long long ckpt_version = cur_cp_version(ckpt);
797 
798 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
799 
800 	/*
801 	 * odd numbered checkpoint should at cp segment 0
802 	 * and even segent must be at cp segment 1
803 	 */
804 	if (!(ckpt_version & 1))
805 		start_addr += sbi->blocks_per_seg;
806 
807 	return start_addr;
808 }
809 
810 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
811 {
812 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
813 }
814 
815 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
816 						struct inode *inode)
817 {
818 	block_t	valid_block_count;
819 	unsigned int valid_node_count;
820 
821 	spin_lock(&sbi->stat_lock);
822 
823 	valid_block_count = sbi->total_valid_block_count + 1;
824 	if (unlikely(valid_block_count > sbi->user_block_count)) {
825 		spin_unlock(&sbi->stat_lock);
826 		return false;
827 	}
828 
829 	valid_node_count = sbi->total_valid_node_count + 1;
830 	if (unlikely(valid_node_count > sbi->total_node_count)) {
831 		spin_unlock(&sbi->stat_lock);
832 		return false;
833 	}
834 
835 	if (inode)
836 		inode->i_blocks++;
837 
838 	sbi->alloc_valid_block_count++;
839 	sbi->total_valid_node_count++;
840 	sbi->total_valid_block_count++;
841 	spin_unlock(&sbi->stat_lock);
842 
843 	return true;
844 }
845 
846 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
847 						struct inode *inode)
848 {
849 	spin_lock(&sbi->stat_lock);
850 
851 	f2fs_bug_on(!sbi->total_valid_block_count);
852 	f2fs_bug_on(!sbi->total_valid_node_count);
853 	f2fs_bug_on(!inode->i_blocks);
854 
855 	inode->i_blocks--;
856 	sbi->total_valid_node_count--;
857 	sbi->total_valid_block_count--;
858 
859 	spin_unlock(&sbi->stat_lock);
860 }
861 
862 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
863 {
864 	return sbi->total_valid_node_count;
865 }
866 
867 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
868 {
869 	spin_lock(&sbi->stat_lock);
870 	f2fs_bug_on(sbi->total_valid_inode_count == sbi->total_node_count);
871 	sbi->total_valid_inode_count++;
872 	spin_unlock(&sbi->stat_lock);
873 }
874 
875 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
876 {
877 	spin_lock(&sbi->stat_lock);
878 	f2fs_bug_on(!sbi->total_valid_inode_count);
879 	sbi->total_valid_inode_count--;
880 	spin_unlock(&sbi->stat_lock);
881 }
882 
883 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
884 {
885 	return sbi->total_valid_inode_count;
886 }
887 
888 static inline void f2fs_put_page(struct page *page, int unlock)
889 {
890 	if (!page)
891 		return;
892 
893 	if (unlock) {
894 		f2fs_bug_on(!PageLocked(page));
895 		unlock_page(page);
896 	}
897 	page_cache_release(page);
898 }
899 
900 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
901 {
902 	if (dn->node_page)
903 		f2fs_put_page(dn->node_page, 1);
904 	if (dn->inode_page && dn->node_page != dn->inode_page)
905 		f2fs_put_page(dn->inode_page, 0);
906 	dn->node_page = NULL;
907 	dn->inode_page = NULL;
908 }
909 
910 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
911 					size_t size)
912 {
913 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
914 }
915 
916 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
917 						gfp_t flags)
918 {
919 	void *entry;
920 retry:
921 	entry = kmem_cache_alloc(cachep, flags);
922 	if (!entry) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return entry;
928 }
929 
930 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
931 
932 static inline bool IS_INODE(struct page *page)
933 {
934 	struct f2fs_node *p = F2FS_NODE(page);
935 	return RAW_IS_INODE(p);
936 }
937 
938 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
939 {
940 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
941 }
942 
943 static inline block_t datablock_addr(struct page *node_page,
944 		unsigned int offset)
945 {
946 	struct f2fs_node *raw_node;
947 	__le32 *addr_array;
948 	raw_node = F2FS_NODE(node_page);
949 	addr_array = blkaddr_in_node(raw_node);
950 	return le32_to_cpu(addr_array[offset]);
951 }
952 
953 static inline int f2fs_test_bit(unsigned int nr, char *addr)
954 {
955 	int mask;
956 
957 	addr += (nr >> 3);
958 	mask = 1 << (7 - (nr & 0x07));
959 	return mask & *addr;
960 }
961 
962 static inline int f2fs_set_bit(unsigned int nr, char *addr)
963 {
964 	int mask;
965 	int ret;
966 
967 	addr += (nr >> 3);
968 	mask = 1 << (7 - (nr & 0x07));
969 	ret = mask & *addr;
970 	*addr |= mask;
971 	return ret;
972 }
973 
974 static inline int f2fs_clear_bit(unsigned int nr, char *addr)
975 {
976 	int mask;
977 	int ret;
978 
979 	addr += (nr >> 3);
980 	mask = 1 << (7 - (nr & 0x07));
981 	ret = mask & *addr;
982 	*addr &= ~mask;
983 	return ret;
984 }
985 
986 /* used for f2fs_inode_info->flags */
987 enum {
988 	FI_NEW_INODE,		/* indicate newly allocated inode */
989 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
990 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
991 	FI_INC_LINK,		/* need to increment i_nlink */
992 	FI_ACL_MODE,		/* indicate acl mode */
993 	FI_NO_ALLOC,		/* should not allocate any blocks */
994 	FI_UPDATE_DIR,		/* should update inode block for consistency */
995 	FI_DELAY_IPUT,		/* used for the recovery */
996 	FI_NO_EXTENT,		/* not to use the extent cache */
997 	FI_INLINE_XATTR,	/* used for inline xattr */
998 	FI_INLINE_DATA,		/* used for inline data*/
999 	FI_APPEND_WRITE,	/* inode has appended data */
1000 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1001 	FI_NEED_IPU,		/* used fo ipu for fdatasync */
1002 };
1003 
1004 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1005 {
1006 	if (!test_bit(flag, &fi->flags))
1007 		set_bit(flag, &fi->flags);
1008 }
1009 
1010 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1011 {
1012 	return test_bit(flag, &fi->flags);
1013 }
1014 
1015 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1016 {
1017 	if (test_bit(flag, &fi->flags))
1018 		clear_bit(flag, &fi->flags);
1019 }
1020 
1021 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1022 {
1023 	fi->i_acl_mode = mode;
1024 	set_inode_flag(fi, FI_ACL_MODE);
1025 }
1026 
1027 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1028 {
1029 	if (is_inode_flag_set(fi, FI_ACL_MODE)) {
1030 		clear_inode_flag(fi, FI_ACL_MODE);
1031 		return 1;
1032 	}
1033 	return 0;
1034 }
1035 
1036 static inline void get_inline_info(struct f2fs_inode_info *fi,
1037 					struct f2fs_inode *ri)
1038 {
1039 	if (ri->i_inline & F2FS_INLINE_XATTR)
1040 		set_inode_flag(fi, FI_INLINE_XATTR);
1041 	if (ri->i_inline & F2FS_INLINE_DATA)
1042 		set_inode_flag(fi, FI_INLINE_DATA);
1043 }
1044 
1045 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1046 					struct f2fs_inode *ri)
1047 {
1048 	ri->i_inline = 0;
1049 
1050 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1051 		ri->i_inline |= F2FS_INLINE_XATTR;
1052 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1053 		ri->i_inline |= F2FS_INLINE_DATA;
1054 }
1055 
1056 static inline int f2fs_has_inline_xattr(struct inode *inode)
1057 {
1058 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1059 }
1060 
1061 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1062 {
1063 	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1064 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1065 	return DEF_ADDRS_PER_INODE;
1066 }
1067 
1068 static inline void *inline_xattr_addr(struct page *page)
1069 {
1070 	struct f2fs_inode *ri = F2FS_INODE(page);
1071 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1072 					F2FS_INLINE_XATTR_ADDRS]);
1073 }
1074 
1075 static inline int inline_xattr_size(struct inode *inode)
1076 {
1077 	if (f2fs_has_inline_xattr(inode))
1078 		return F2FS_INLINE_XATTR_ADDRS << 2;
1079 	else
1080 		return 0;
1081 }
1082 
1083 static inline int f2fs_has_inline_data(struct inode *inode)
1084 {
1085 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1086 }
1087 
1088 static inline void *inline_data_addr(struct page *page)
1089 {
1090 	struct f2fs_inode *ri = F2FS_INODE(page);
1091 	return (void *)&(ri->i_addr[1]);
1092 }
1093 
1094 static inline int f2fs_readonly(struct super_block *sb)
1095 {
1096 	return sb->s_flags & MS_RDONLY;
1097 }
1098 
1099 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1100 {
1101 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1102 	sbi->sb->s_flags |= MS_RDONLY;
1103 }
1104 
1105 #define get_inode_mode(i) \
1106 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1107 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1108 
1109 /* get offset of first page in next direct node */
1110 #define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
1111 	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
1112 	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
1113 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1114 
1115 /*
1116  * file.c
1117  */
1118 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1119 void truncate_data_blocks(struct dnode_of_data *);
1120 int truncate_blocks(struct inode *, u64);
1121 void f2fs_truncate(struct inode *);
1122 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1123 int f2fs_setattr(struct dentry *, struct iattr *);
1124 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1125 int truncate_data_blocks_range(struct dnode_of_data *, int);
1126 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1127 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1128 
1129 /*
1130  * inode.c
1131  */
1132 void f2fs_set_inode_flags(struct inode *);
1133 struct inode *f2fs_iget(struct super_block *, unsigned long);
1134 int try_to_free_nats(struct f2fs_sb_info *, int);
1135 void update_inode(struct inode *, struct page *);
1136 void update_inode_page(struct inode *);
1137 int f2fs_write_inode(struct inode *, struct writeback_control *);
1138 void f2fs_evict_inode(struct inode *);
1139 
1140 /*
1141  * namei.c
1142  */
1143 struct dentry *f2fs_get_parent(struct dentry *child);
1144 
1145 /*
1146  * dir.c
1147  */
1148 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1149 							struct page **);
1150 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1151 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1152 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1153 				struct page *, struct inode *);
1154 int update_dent_inode(struct inode *, const struct qstr *);
1155 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1156 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
1157 int f2fs_do_tmpfile(struct inode *, struct inode *);
1158 int f2fs_make_empty(struct inode *, struct inode *);
1159 bool f2fs_empty_dir(struct inode *);
1160 
1161 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1162 {
1163 	return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1164 				inode);
1165 }
1166 
1167 /*
1168  * super.c
1169  */
1170 int f2fs_sync_fs(struct super_block *, int);
1171 extern __printf(3, 4)
1172 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1173 
1174 /*
1175  * hash.c
1176  */
1177 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1178 
1179 /*
1180  * node.c
1181  */
1182 struct dnode_of_data;
1183 struct node_info;
1184 
1185 bool available_free_memory(struct f2fs_sb_info *, int);
1186 int is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1187 bool fsync_mark_done(struct f2fs_sb_info *, nid_t);
1188 void fsync_mark_clear(struct f2fs_sb_info *, nid_t);
1189 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1190 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1191 int truncate_inode_blocks(struct inode *, pgoff_t);
1192 int truncate_xattr_node(struct inode *, struct page *);
1193 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1194 void remove_inode_page(struct inode *);
1195 struct page *new_inode_page(struct inode *);
1196 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1197 void ra_node_page(struct f2fs_sb_info *, nid_t);
1198 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1199 struct page *get_node_page_ra(struct page *, int);
1200 void sync_inode_page(struct dnode_of_data *);
1201 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1202 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1203 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1204 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1205 void recover_node_page(struct f2fs_sb_info *, struct page *,
1206 		struct f2fs_summary *, struct node_info *, block_t);
1207 void recover_inline_xattr(struct inode *, struct page *);
1208 bool recover_xattr_data(struct inode *, struct page *, block_t);
1209 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1210 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1211 				struct f2fs_summary_block *);
1212 void flush_nat_entries(struct f2fs_sb_info *);
1213 int build_node_manager(struct f2fs_sb_info *);
1214 void destroy_node_manager(struct f2fs_sb_info *);
1215 int __init create_node_manager_caches(void);
1216 void destroy_node_manager_caches(void);
1217 
1218 /*
1219  * segment.c
1220  */
1221 void f2fs_balance_fs(struct f2fs_sb_info *);
1222 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1223 int f2fs_issue_flush(struct f2fs_sb_info *);
1224 int create_flush_cmd_control(struct f2fs_sb_info *);
1225 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1226 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1227 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1228 void clear_prefree_segments(struct f2fs_sb_info *);
1229 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1230 int npages_for_summary_flush(struct f2fs_sb_info *);
1231 void allocate_new_segments(struct f2fs_sb_info *);
1232 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1233 void write_meta_page(struct f2fs_sb_info *, struct page *);
1234 void write_node_page(struct f2fs_sb_info *, struct page *,
1235 		struct f2fs_io_info *, unsigned int, block_t, block_t *);
1236 void write_data_page(struct page *, struct dnode_of_data *, block_t *,
1237 					struct f2fs_io_info *);
1238 void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *);
1239 void recover_data_page(struct f2fs_sb_info *, struct page *,
1240 				struct f2fs_summary *, block_t, block_t);
1241 void rewrite_node_page(struct f2fs_sb_info *, struct page *,
1242 				struct f2fs_summary *, block_t, block_t);
1243 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1244 		block_t, block_t *, struct f2fs_summary *, int);
1245 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1246 void write_data_summaries(struct f2fs_sb_info *, block_t);
1247 void write_node_summaries(struct f2fs_sb_info *, block_t);
1248 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1249 					int, unsigned int, int);
1250 void flush_sit_entries(struct f2fs_sb_info *);
1251 int build_segment_manager(struct f2fs_sb_info *);
1252 void destroy_segment_manager(struct f2fs_sb_info *);
1253 int __init create_segment_manager_caches(void);
1254 void destroy_segment_manager_caches(void);
1255 
1256 /*
1257  * checkpoint.c
1258  */
1259 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1260 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1261 int ra_meta_pages(struct f2fs_sb_info *, int, int, int);
1262 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1263 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1264 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1265 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1266 int acquire_orphan_inode(struct f2fs_sb_info *);
1267 void release_orphan_inode(struct f2fs_sb_info *);
1268 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1269 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1270 void recover_orphan_inodes(struct f2fs_sb_info *);
1271 int get_valid_checkpoint(struct f2fs_sb_info *);
1272 void set_dirty_dir_page(struct inode *, struct page *);
1273 void add_dirty_dir_inode(struct inode *);
1274 void remove_dirty_dir_inode(struct inode *);
1275 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1276 void write_checkpoint(struct f2fs_sb_info *, bool);
1277 void init_ino_entry_info(struct f2fs_sb_info *);
1278 int __init create_checkpoint_caches(void);
1279 void destroy_checkpoint_caches(void);
1280 
1281 /*
1282  * data.c
1283  */
1284 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1285 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int);
1286 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t,
1287 						struct f2fs_io_info *);
1288 int reserve_new_block(struct dnode_of_data *);
1289 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1290 void update_extent_cache(block_t, struct dnode_of_data *);
1291 struct page *find_data_page(struct inode *, pgoff_t, bool);
1292 struct page *get_lock_data_page(struct inode *, pgoff_t);
1293 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1294 int do_write_data_page(struct page *, struct f2fs_io_info *);
1295 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1296 
1297 /*
1298  * gc.c
1299  */
1300 int start_gc_thread(struct f2fs_sb_info *);
1301 void stop_gc_thread(struct f2fs_sb_info *);
1302 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1303 int f2fs_gc(struct f2fs_sb_info *);
1304 void build_gc_manager(struct f2fs_sb_info *);
1305 int __init create_gc_caches(void);
1306 void destroy_gc_caches(void);
1307 
1308 /*
1309  * recovery.c
1310  */
1311 int recover_fsync_data(struct f2fs_sb_info *);
1312 bool space_for_roll_forward(struct f2fs_sb_info *);
1313 
1314 /*
1315  * debug.c
1316  */
1317 #ifdef CONFIG_F2FS_STAT_FS
1318 struct f2fs_stat_info {
1319 	struct list_head stat_list;
1320 	struct f2fs_sb_info *sbi;
1321 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1322 	int main_area_segs, main_area_sections, main_area_zones;
1323 	int hit_ext, total_ext;
1324 	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1325 	int nats, sits, fnids;
1326 	int total_count, utilization;
1327 	int bg_gc, inline_inode;
1328 	unsigned int valid_count, valid_node_count, valid_inode_count;
1329 	unsigned int bimodal, avg_vblocks;
1330 	int util_free, util_valid, util_invalid;
1331 	int rsvd_segs, overp_segs;
1332 	int dirty_count, node_pages, meta_pages;
1333 	int prefree_count, call_count, cp_count;
1334 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1335 	int tot_blks, data_blks, node_blks;
1336 	int curseg[NR_CURSEG_TYPE];
1337 	int cursec[NR_CURSEG_TYPE];
1338 	int curzone[NR_CURSEG_TYPE];
1339 
1340 	unsigned int segment_count[2];
1341 	unsigned int block_count[2];
1342 	unsigned base_mem, cache_mem;
1343 };
1344 
1345 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1346 {
1347 	return (struct f2fs_stat_info *)sbi->stat_info;
1348 }
1349 
1350 #define stat_inc_cp_count(si)		((si)->cp_count++)
1351 #define stat_inc_call_count(si)		((si)->call_count++)
1352 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1353 #define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
1354 #define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
1355 #define stat_inc_total_hit(sb)		((F2FS_SB(sb))->total_hit_ext++)
1356 #define stat_inc_read_hit(sb)		((F2FS_SB(sb))->read_hit_ext++)
1357 #define stat_inc_inline_inode(inode)					\
1358 	do {								\
1359 		if (f2fs_has_inline_data(inode))			\
1360 			((F2FS_SB(inode->i_sb))->inline_inode++);	\
1361 	} while (0)
1362 #define stat_dec_inline_inode(inode)					\
1363 	do {								\
1364 		if (f2fs_has_inline_data(inode))			\
1365 			((F2FS_SB(inode->i_sb))->inline_inode--);	\
1366 	} while (0)
1367 
1368 #define stat_inc_seg_type(sbi, curseg)					\
1369 		((sbi)->segment_count[(curseg)->alloc_type]++)
1370 #define stat_inc_block_count(sbi, curseg)				\
1371 		((sbi)->block_count[(curseg)->alloc_type]++)
1372 
1373 #define stat_inc_seg_count(sbi, type)					\
1374 	do {								\
1375 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1376 		(si)->tot_segs++;					\
1377 		if (type == SUM_TYPE_DATA)				\
1378 			si->data_segs++;				\
1379 		else							\
1380 			si->node_segs++;				\
1381 	} while (0)
1382 
1383 #define stat_inc_tot_blk_count(si, blks)				\
1384 	(si->tot_blks += (blks))
1385 
1386 #define stat_inc_data_blk_count(sbi, blks)				\
1387 	do {								\
1388 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1389 		stat_inc_tot_blk_count(si, blks);			\
1390 		si->data_blks += (blks);				\
1391 	} while (0)
1392 
1393 #define stat_inc_node_blk_count(sbi, blks)				\
1394 	do {								\
1395 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1396 		stat_inc_tot_blk_count(si, blks);			\
1397 		si->node_blks += (blks);				\
1398 	} while (0)
1399 
1400 int f2fs_build_stats(struct f2fs_sb_info *);
1401 void f2fs_destroy_stats(struct f2fs_sb_info *);
1402 void __init f2fs_create_root_stats(void);
1403 void f2fs_destroy_root_stats(void);
1404 #else
1405 #define stat_inc_cp_count(si)
1406 #define stat_inc_call_count(si)
1407 #define stat_inc_bggc_count(si)
1408 #define stat_inc_dirty_dir(sbi)
1409 #define stat_dec_dirty_dir(sbi)
1410 #define stat_inc_total_hit(sb)
1411 #define stat_inc_read_hit(sb)
1412 #define stat_inc_inline_inode(inode)
1413 #define stat_dec_inline_inode(inode)
1414 #define stat_inc_seg_type(sbi, curseg)
1415 #define stat_inc_block_count(sbi, curseg)
1416 #define stat_inc_seg_count(si, type)
1417 #define stat_inc_tot_blk_count(si, blks)
1418 #define stat_inc_data_blk_count(si, blks)
1419 #define stat_inc_node_blk_count(sbi, blks)
1420 
1421 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1422 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1423 static inline void __init f2fs_create_root_stats(void) { }
1424 static inline void f2fs_destroy_root_stats(void) { }
1425 #endif
1426 
1427 extern const struct file_operations f2fs_dir_operations;
1428 extern const struct file_operations f2fs_file_operations;
1429 extern const struct inode_operations f2fs_file_inode_operations;
1430 extern const struct address_space_operations f2fs_dblock_aops;
1431 extern const struct address_space_operations f2fs_node_aops;
1432 extern const struct address_space_operations f2fs_meta_aops;
1433 extern const struct inode_operations f2fs_dir_inode_operations;
1434 extern const struct inode_operations f2fs_symlink_inode_operations;
1435 extern const struct inode_operations f2fs_special_inode_operations;
1436 
1437 /*
1438  * inline.c
1439  */
1440 bool f2fs_may_inline(struct inode *);
1441 int f2fs_read_inline_data(struct inode *, struct page *);
1442 int f2fs_convert_inline_data(struct inode *, pgoff_t);
1443 int f2fs_write_inline_data(struct inode *, struct page *, unsigned int);
1444 void truncate_inline_data(struct inode *, u64);
1445 int recover_inline_data(struct inode *, struct page *);
1446 #endif
1447