xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 26dd3e4f)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27 
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition)					\
32 	do {								\
33 		if (unlikely(condition)) {				\
34 			WARN_ON(1);					\
35 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
36 		}							\
37 	} while (0)
38 #endif
39 
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_PAGE_ALLOC,
44 	FAULT_ALLOC_NID,
45 	FAULT_ORPHAN,
46 	FAULT_BLOCK,
47 	FAULT_DIR_DEPTH,
48 	FAULT_EVICT_INODE,
49 	FAULT_IO,
50 	FAULT_CHECKPOINT,
51 	FAULT_MAX,
52 };
53 
54 struct f2fs_fault_info {
55 	atomic_t inject_ops;
56 	unsigned int inject_rate;
57 	unsigned int inject_type;
58 };
59 
60 extern char *fault_name[FAULT_MAX];
61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
62 #endif
63 
64 /*
65  * For mount options
66  */
67 #define F2FS_MOUNT_BG_GC		0x00000001
68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
69 #define F2FS_MOUNT_DISCARD		0x00000004
70 #define F2FS_MOUNT_NOHEAP		0x00000008
71 #define F2FS_MOUNT_XATTR_USER		0x00000010
72 #define F2FS_MOUNT_POSIX_ACL		0x00000020
73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
74 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
75 #define F2FS_MOUNT_INLINE_DATA		0x00000100
76 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
77 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
78 #define F2FS_MOUNT_NOBARRIER		0x00000800
79 #define F2FS_MOUNT_FASTBOOT		0x00001000
80 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
81 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
82 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
83 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
84 #define F2FS_MOUNT_ADAPTIVE		0x00020000
85 #define F2FS_MOUNT_LFS			0x00040000
86 
87 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
88 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
89 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
90 
91 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
92 		typecheck(unsigned long long, b) &&			\
93 		((long long)((a) - (b)) > 0))
94 
95 typedef u32 block_t;	/*
96 			 * should not change u32, since it is the on-disk block
97 			 * address format, __le32.
98 			 */
99 typedef u32 nid_t;
100 
101 struct f2fs_mount_info {
102 	unsigned int	opt;
103 };
104 
105 #define F2FS_FEATURE_ENCRYPT	0x0001
106 #define F2FS_FEATURE_BLKZONED	0x0002
107 
108 #define F2FS_HAS_FEATURE(sb, mask)					\
109 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
110 #define F2FS_SET_FEATURE(sb, mask)					\
111 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
112 #define F2FS_CLEAR_FEATURE(sb, mask)					\
113 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
114 
115 /*
116  * For checkpoint manager
117  */
118 enum {
119 	NAT_BITMAP,
120 	SIT_BITMAP
121 };
122 
123 enum {
124 	CP_UMOUNT,
125 	CP_FASTBOOT,
126 	CP_SYNC,
127 	CP_RECOVERY,
128 	CP_DISCARD,
129 };
130 
131 #define DEF_BATCHED_TRIM_SECTIONS	2
132 #define BATCHED_TRIM_SEGMENTS(sbi)	\
133 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
134 #define BATCHED_TRIM_BLOCKS(sbi)	\
135 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
136 #define DEF_CP_INTERVAL			60	/* 60 secs */
137 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
138 
139 struct cp_control {
140 	int reason;
141 	__u64 trim_start;
142 	__u64 trim_end;
143 	__u64 trim_minlen;
144 	__u64 trimmed;
145 };
146 
147 /*
148  * For CP/NAT/SIT/SSA readahead
149  */
150 enum {
151 	META_CP,
152 	META_NAT,
153 	META_SIT,
154 	META_SSA,
155 	META_POR,
156 };
157 
158 /* for the list of ino */
159 enum {
160 	ORPHAN_INO,		/* for orphan ino list */
161 	APPEND_INO,		/* for append ino list */
162 	UPDATE_INO,		/* for update ino list */
163 	MAX_INO_ENTRY,		/* max. list */
164 };
165 
166 struct ino_entry {
167 	struct list_head list;	/* list head */
168 	nid_t ino;		/* inode number */
169 };
170 
171 /* for the list of inodes to be GCed */
172 struct inode_entry {
173 	struct list_head list;	/* list head */
174 	struct inode *inode;	/* vfs inode pointer */
175 };
176 
177 /* for the list of blockaddresses to be discarded */
178 struct discard_entry {
179 	struct list_head list;	/* list head */
180 	block_t blkaddr;	/* block address to be discarded */
181 	int len;		/* # of consecutive blocks of the discard */
182 };
183 
184 struct bio_entry {
185 	struct list_head list;
186 	struct bio *bio;
187 	struct completion event;
188 	int error;
189 };
190 
191 /* for the list of fsync inodes, used only during recovery */
192 struct fsync_inode_entry {
193 	struct list_head list;	/* list head */
194 	struct inode *inode;	/* vfs inode pointer */
195 	block_t blkaddr;	/* block address locating the last fsync */
196 	block_t last_dentry;	/* block address locating the last dentry */
197 };
198 
199 #define nats_in_cursum(jnl)		(le16_to_cpu(jnl->n_nats))
200 #define sits_in_cursum(jnl)		(le16_to_cpu(jnl->n_sits))
201 
202 #define nat_in_journal(jnl, i)		(jnl->nat_j.entries[i].ne)
203 #define nid_in_journal(jnl, i)		(jnl->nat_j.entries[i].nid)
204 #define sit_in_journal(jnl, i)		(jnl->sit_j.entries[i].se)
205 #define segno_in_journal(jnl, i)	(jnl->sit_j.entries[i].segno)
206 
207 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
208 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
209 
210 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
211 {
212 	int before = nats_in_cursum(journal);
213 	journal->n_nats = cpu_to_le16(before + i);
214 	return before;
215 }
216 
217 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
218 {
219 	int before = sits_in_cursum(journal);
220 	journal->n_sits = cpu_to_le16(before + i);
221 	return before;
222 }
223 
224 static inline bool __has_cursum_space(struct f2fs_journal *journal,
225 							int size, int type)
226 {
227 	if (type == NAT_JOURNAL)
228 		return size <= MAX_NAT_JENTRIES(journal);
229 	return size <= MAX_SIT_JENTRIES(journal);
230 }
231 
232 /*
233  * ioctl commands
234  */
235 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
236 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
237 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
238 
239 #define F2FS_IOCTL_MAGIC		0xf5
240 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
241 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
242 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
243 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
244 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
245 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
246 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
247 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
248 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
249 						struct f2fs_move_range)
250 
251 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
252 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
253 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
254 
255 /*
256  * should be same as XFS_IOC_GOINGDOWN.
257  * Flags for going down operation used by FS_IOC_GOINGDOWN
258  */
259 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
260 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
261 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
262 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
263 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
264 
265 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
266 /*
267  * ioctl commands in 32 bit emulation
268  */
269 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
270 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
271 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
272 #endif
273 
274 struct f2fs_defragment {
275 	u64 start;
276 	u64 len;
277 };
278 
279 struct f2fs_move_range {
280 	u32 dst_fd;		/* destination fd */
281 	u64 pos_in;		/* start position in src_fd */
282 	u64 pos_out;		/* start position in dst_fd */
283 	u64 len;		/* size to move */
284 };
285 
286 /*
287  * For INODE and NODE manager
288  */
289 /* for directory operations */
290 struct f2fs_dentry_ptr {
291 	struct inode *inode;
292 	const void *bitmap;
293 	struct f2fs_dir_entry *dentry;
294 	__u8 (*filename)[F2FS_SLOT_LEN];
295 	int max;
296 };
297 
298 static inline void make_dentry_ptr(struct inode *inode,
299 		struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 	d->inode = inode;
302 
303 	if (type == 1) {
304 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 		d->max = NR_DENTRY_IN_BLOCK;
306 		d->bitmap = &t->dentry_bitmap;
307 		d->dentry = t->dentry;
308 		d->filename = t->filename;
309 	} else {
310 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 		d->max = NR_INLINE_DENTRY;
312 		d->bitmap = &t->dentry_bitmap;
313 		d->dentry = t->dentry;
314 		d->filename = t->filename;
315 	}
316 }
317 
318 /*
319  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320  * as its node offset to distinguish from index node blocks.
321  * But some bits are used to mark the node block.
322  */
323 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 				>> OFFSET_BIT_SHIFT)
325 enum {
326 	ALLOC_NODE,			/* allocate a new node page if needed */
327 	LOOKUP_NODE,			/* look up a node without readahead */
328 	LOOKUP_NODE_RA,			/*
329 					 * look up a node with readahead called
330 					 * by get_data_block.
331 					 */
332 };
333 
334 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
335 
336 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
337 
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE	64
340 
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
343 
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER	128
346 
347 struct extent_info {
348 	unsigned int fofs;		/* start offset in a file */
349 	u32 blk;			/* start block address of the extent */
350 	unsigned int len;		/* length of the extent */
351 };
352 
353 struct extent_node {
354 	struct rb_node rb_node;		/* rb node located in rb-tree */
355 	struct list_head list;		/* node in global extent list of sbi */
356 	struct extent_info ei;		/* extent info */
357 	struct extent_tree *et;		/* extent tree pointer */
358 };
359 
360 struct extent_tree {
361 	nid_t ino;			/* inode number */
362 	struct rb_root root;		/* root of extent info rb-tree */
363 	struct extent_node *cached_en;	/* recently accessed extent node */
364 	struct extent_info largest;	/* largested extent info */
365 	struct list_head list;		/* to be used by sbi->zombie_list */
366 	rwlock_t lock;			/* protect extent info rb-tree */
367 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
368 };
369 
370 /*
371  * This structure is taken from ext4_map_blocks.
372  *
373  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374  */
375 #define F2FS_MAP_NEW		(1 << BH_New)
376 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 				F2FS_MAP_UNWRITTEN)
380 
381 struct f2fs_map_blocks {
382 	block_t m_pblk;
383 	block_t m_lblk;
384 	unsigned int m_len;
385 	unsigned int m_flags;
386 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
387 };
388 
389 /* for flag in get_data_block */
390 #define F2FS_GET_BLOCK_READ		0
391 #define F2FS_GET_BLOCK_DIO		1
392 #define F2FS_GET_BLOCK_FIEMAP		2
393 #define F2FS_GET_BLOCK_BMAP		3
394 #define F2FS_GET_BLOCK_PRE_DIO		4
395 #define F2FS_GET_BLOCK_PRE_AIO		5
396 
397 /*
398  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
399  */
400 #define FADVISE_COLD_BIT	0x01
401 #define FADVISE_LOST_PINO_BIT	0x02
402 #define FADVISE_ENCRYPT_BIT	0x04
403 #define FADVISE_ENC_NAME_BIT	0x08
404 #define FADVISE_KEEP_SIZE_BIT	0x10
405 
406 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
407 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
408 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
409 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
410 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
411 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
412 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
413 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
414 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
415 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
416 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
417 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
418 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
419 
420 #define DEF_DIR_LEVEL		0
421 
422 struct f2fs_inode_info {
423 	struct inode vfs_inode;		/* serve a vfs inode */
424 	unsigned long i_flags;		/* keep an inode flags for ioctl */
425 	unsigned char i_advise;		/* use to give file attribute hints */
426 	unsigned char i_dir_level;	/* use for dentry level for large dir */
427 	unsigned int i_current_depth;	/* use only in directory structure */
428 	unsigned int i_pino;		/* parent inode number */
429 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
430 
431 	/* Use below internally in f2fs*/
432 	unsigned long flags;		/* use to pass per-file flags */
433 	struct rw_semaphore i_sem;	/* protect fi info */
434 	atomic_t dirty_pages;		/* # of dirty pages */
435 	f2fs_hash_t chash;		/* hash value of given file name */
436 	unsigned int clevel;		/* maximum level of given file name */
437 	nid_t i_xattr_nid;		/* node id that contains xattrs */
438 	unsigned long long xattr_ver;	/* cp version of xattr modification */
439 	loff_t	last_disk_size;		/* lastly written file size */
440 
441 	struct list_head dirty_list;	/* dirty list for dirs and files */
442 	struct list_head gdirty_list;	/* linked in global dirty list */
443 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
444 	struct mutex inmem_lock;	/* lock for inmemory pages */
445 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
446 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
447 };
448 
449 static inline void get_extent_info(struct extent_info *ext,
450 					struct f2fs_extent *i_ext)
451 {
452 	ext->fofs = le32_to_cpu(i_ext->fofs);
453 	ext->blk = le32_to_cpu(i_ext->blk);
454 	ext->len = le32_to_cpu(i_ext->len);
455 }
456 
457 static inline void set_raw_extent(struct extent_info *ext,
458 					struct f2fs_extent *i_ext)
459 {
460 	i_ext->fofs = cpu_to_le32(ext->fofs);
461 	i_ext->blk = cpu_to_le32(ext->blk);
462 	i_ext->len = cpu_to_le32(ext->len);
463 }
464 
465 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
466 						u32 blk, unsigned int len)
467 {
468 	ei->fofs = fofs;
469 	ei->blk = blk;
470 	ei->len = len;
471 }
472 
473 static inline bool __is_extent_same(struct extent_info *ei1,
474 						struct extent_info *ei2)
475 {
476 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
477 						ei1->len == ei2->len);
478 }
479 
480 static inline bool __is_extent_mergeable(struct extent_info *back,
481 						struct extent_info *front)
482 {
483 	return (back->fofs + back->len == front->fofs &&
484 			back->blk + back->len == front->blk);
485 }
486 
487 static inline bool __is_back_mergeable(struct extent_info *cur,
488 						struct extent_info *back)
489 {
490 	return __is_extent_mergeable(back, cur);
491 }
492 
493 static inline bool __is_front_mergeable(struct extent_info *cur,
494 						struct extent_info *front)
495 {
496 	return __is_extent_mergeable(cur, front);
497 }
498 
499 extern void f2fs_mark_inode_dirty_sync(struct inode *, bool);
500 static inline void __try_update_largest_extent(struct inode *inode,
501 			struct extent_tree *et, struct extent_node *en)
502 {
503 	if (en->ei.len > et->largest.len) {
504 		et->largest = en->ei;
505 		f2fs_mark_inode_dirty_sync(inode, true);
506 	}
507 }
508 
509 enum nid_list {
510 	FREE_NID_LIST,
511 	ALLOC_NID_LIST,
512 	MAX_NID_LIST,
513 };
514 
515 struct f2fs_nm_info {
516 	block_t nat_blkaddr;		/* base disk address of NAT */
517 	nid_t max_nid;			/* maximum possible node ids */
518 	nid_t available_nids;		/* # of available node ids */
519 	nid_t next_scan_nid;		/* the next nid to be scanned */
520 	unsigned int ram_thresh;	/* control the memory footprint */
521 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
522 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
523 
524 	/* NAT cache management */
525 	struct radix_tree_root nat_root;/* root of the nat entry cache */
526 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
527 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
528 	struct list_head nat_entries;	/* cached nat entry list (clean) */
529 	unsigned int nat_cnt;		/* the # of cached nat entries */
530 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
531 
532 	/* free node ids management */
533 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
534 	struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
535 	unsigned int nid_cnt[MAX_NID_LIST];	/* the number of free node id */
536 	spinlock_t nid_list_lock;	/* protect nid lists ops */
537 	struct mutex build_lock;	/* lock for build free nids */
538 
539 	/* for checkpoint */
540 	char *nat_bitmap;		/* NAT bitmap pointer */
541 	int bitmap_size;		/* bitmap size */
542 };
543 
544 /*
545  * this structure is used as one of function parameters.
546  * all the information are dedicated to a given direct node block determined
547  * by the data offset in a file.
548  */
549 struct dnode_of_data {
550 	struct inode *inode;		/* vfs inode pointer */
551 	struct page *inode_page;	/* its inode page, NULL is possible */
552 	struct page *node_page;		/* cached direct node page */
553 	nid_t nid;			/* node id of the direct node block */
554 	unsigned int ofs_in_node;	/* data offset in the node page */
555 	bool inode_page_locked;		/* inode page is locked or not */
556 	bool node_changed;		/* is node block changed */
557 	char cur_level;			/* level of hole node page */
558 	char max_level;			/* level of current page located */
559 	block_t	data_blkaddr;		/* block address of the node block */
560 };
561 
562 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
563 		struct page *ipage, struct page *npage, nid_t nid)
564 {
565 	memset(dn, 0, sizeof(*dn));
566 	dn->inode = inode;
567 	dn->inode_page = ipage;
568 	dn->node_page = npage;
569 	dn->nid = nid;
570 }
571 
572 /*
573  * For SIT manager
574  *
575  * By default, there are 6 active log areas across the whole main area.
576  * When considering hot and cold data separation to reduce cleaning overhead,
577  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
578  * respectively.
579  * In the current design, you should not change the numbers intentionally.
580  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
581  * logs individually according to the underlying devices. (default: 6)
582  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
583  * data and 8 for node logs.
584  */
585 #define	NR_CURSEG_DATA_TYPE	(3)
586 #define NR_CURSEG_NODE_TYPE	(3)
587 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
588 
589 enum {
590 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
591 	CURSEG_WARM_DATA,	/* data blocks */
592 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
593 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
594 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
595 	CURSEG_COLD_NODE,	/* indirect node blocks */
596 	NO_CHECK_TYPE,
597 };
598 
599 struct flush_cmd {
600 	struct completion wait;
601 	struct llist_node llnode;
602 	int ret;
603 };
604 
605 struct flush_cmd_control {
606 	struct task_struct *f2fs_issue_flush;	/* flush thread */
607 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
608 	atomic_t submit_flush;			/* # of issued flushes */
609 	struct llist_head issue_list;		/* list for command issue */
610 	struct llist_node *dispatch_list;	/* list for command dispatch */
611 };
612 
613 struct f2fs_sm_info {
614 	struct sit_info *sit_info;		/* whole segment information */
615 	struct free_segmap_info *free_info;	/* free segment information */
616 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
617 	struct curseg_info *curseg_array;	/* active segment information */
618 
619 	block_t seg0_blkaddr;		/* block address of 0'th segment */
620 	block_t main_blkaddr;		/* start block address of main area */
621 	block_t ssa_blkaddr;		/* start block address of SSA area */
622 
623 	unsigned int segment_count;	/* total # of segments */
624 	unsigned int main_segments;	/* # of segments in main area */
625 	unsigned int reserved_segments;	/* # of reserved segments */
626 	unsigned int ovp_segments;	/* # of overprovision segments */
627 
628 	/* a threshold to reclaim prefree segments */
629 	unsigned int rec_prefree_segments;
630 
631 	/* for small discard management */
632 	struct list_head discard_list;		/* 4KB discard list */
633 	struct list_head wait_list;		/* linked with issued discard bio */
634 	int nr_discards;			/* # of discards in the list */
635 	int max_discards;			/* max. discards to be issued */
636 
637 	/* for batched trimming */
638 	unsigned int trim_sections;		/* # of sections to trim */
639 
640 	struct list_head sit_entry_set;	/* sit entry set list */
641 
642 	unsigned int ipu_policy;	/* in-place-update policy */
643 	unsigned int min_ipu_util;	/* in-place-update threshold */
644 	unsigned int min_fsync_blocks;	/* threshold for fsync */
645 
646 	/* for flush command control */
647 	struct flush_cmd_control *cmd_control_info;
648 
649 };
650 
651 /*
652  * For superblock
653  */
654 /*
655  * COUNT_TYPE for monitoring
656  *
657  * f2fs monitors the number of several block types such as on-writeback,
658  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
659  */
660 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
661 enum count_type {
662 	F2FS_DIRTY_DENTS,
663 	F2FS_DIRTY_DATA,
664 	F2FS_DIRTY_NODES,
665 	F2FS_DIRTY_META,
666 	F2FS_INMEM_PAGES,
667 	F2FS_DIRTY_IMETA,
668 	F2FS_WB_CP_DATA,
669 	F2FS_WB_DATA,
670 	NR_COUNT_TYPE,
671 };
672 
673 /*
674  * The below are the page types of bios used in submit_bio().
675  * The available types are:
676  * DATA			User data pages. It operates as async mode.
677  * NODE			Node pages. It operates as async mode.
678  * META			FS metadata pages such as SIT, NAT, CP.
679  * NR_PAGE_TYPE		The number of page types.
680  * META_FLUSH		Make sure the previous pages are written
681  *			with waiting the bio's completion
682  * ...			Only can be used with META.
683  */
684 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
685 enum page_type {
686 	DATA,
687 	NODE,
688 	META,
689 	NR_PAGE_TYPE,
690 	META_FLUSH,
691 	INMEM,		/* the below types are used by tracepoints only. */
692 	INMEM_DROP,
693 	INMEM_REVOKE,
694 	IPU,
695 	OPU,
696 };
697 
698 struct f2fs_io_info {
699 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
700 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
701 	int op;			/* contains REQ_OP_ */
702 	int op_flags;		/* req_flag_bits */
703 	block_t new_blkaddr;	/* new block address to be written */
704 	block_t old_blkaddr;	/* old block address before Cow */
705 	struct page *page;	/* page to be written */
706 	struct page *encrypted_page;	/* encrypted page */
707 };
708 
709 #define is_read_io(rw) (rw == READ)
710 struct f2fs_bio_info {
711 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
712 	struct bio *bio;		/* bios to merge */
713 	sector_t last_block_in_bio;	/* last block number */
714 	struct f2fs_io_info fio;	/* store buffered io info. */
715 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
716 };
717 
718 #define FDEV(i)				(sbi->devs[i])
719 #define RDEV(i)				(raw_super->devs[i])
720 struct f2fs_dev_info {
721 	struct block_device *bdev;
722 	char path[MAX_PATH_LEN];
723 	unsigned int total_segments;
724 	block_t start_blk;
725 	block_t end_blk;
726 #ifdef CONFIG_BLK_DEV_ZONED
727 	unsigned int nr_blkz;			/* Total number of zones */
728 	u8 *blkz_type;				/* Array of zones type */
729 #endif
730 };
731 
732 enum inode_type {
733 	DIR_INODE,			/* for dirty dir inode */
734 	FILE_INODE,			/* for dirty regular/symlink inode */
735 	DIRTY_META,			/* for all dirtied inode metadata */
736 	NR_INODE_TYPE,
737 };
738 
739 /* for inner inode cache management */
740 struct inode_management {
741 	struct radix_tree_root ino_root;	/* ino entry array */
742 	spinlock_t ino_lock;			/* for ino entry lock */
743 	struct list_head ino_list;		/* inode list head */
744 	unsigned long ino_num;			/* number of entries */
745 };
746 
747 /* For s_flag in struct f2fs_sb_info */
748 enum {
749 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
750 	SBI_IS_CLOSE,				/* specify unmounting */
751 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
752 	SBI_POR_DOING,				/* recovery is doing or not */
753 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
754 	SBI_NEED_CP,				/* need to checkpoint */
755 };
756 
757 enum {
758 	CP_TIME,
759 	REQ_TIME,
760 	MAX_TIME,
761 };
762 
763 #ifdef CONFIG_F2FS_FS_ENCRYPTION
764 #define F2FS_KEY_DESC_PREFIX "f2fs:"
765 #define F2FS_KEY_DESC_PREFIX_SIZE 5
766 #endif
767 struct f2fs_sb_info {
768 	struct super_block *sb;			/* pointer to VFS super block */
769 	struct proc_dir_entry *s_proc;		/* proc entry */
770 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
771 	int valid_super_block;			/* valid super block no */
772 	unsigned long s_flag;				/* flags for sbi */
773 
774 #ifdef CONFIG_F2FS_FS_ENCRYPTION
775 	u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
776 	u8 key_prefix_size;
777 #endif
778 
779 #ifdef CONFIG_BLK_DEV_ZONED
780 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
781 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
782 #endif
783 
784 	/* for node-related operations */
785 	struct f2fs_nm_info *nm_info;		/* node manager */
786 	struct inode *node_inode;		/* cache node blocks */
787 
788 	/* for segment-related operations */
789 	struct f2fs_sm_info *sm_info;		/* segment manager */
790 
791 	/* for bio operations */
792 	struct f2fs_bio_info read_io;			/* for read bios */
793 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
794 	struct mutex wio_mutex[NODE + 1];	/* bio ordering for NODE/DATA */
795 
796 	/* for checkpoint */
797 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
798 	int cur_cp_pack;			/* remain current cp pack */
799 	spinlock_t cp_lock;			/* for flag in ckpt */
800 	struct inode *meta_inode;		/* cache meta blocks */
801 	struct mutex cp_mutex;			/* checkpoint procedure lock */
802 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
803 	struct rw_semaphore node_write;		/* locking node writes */
804 	wait_queue_head_t cp_wait;
805 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
806 	long interval_time[MAX_TIME];		/* to store thresholds */
807 
808 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
809 
810 	/* for orphan inode, use 0'th array */
811 	unsigned int max_orphans;		/* max orphan inodes */
812 
813 	/* for inode management */
814 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
815 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
816 
817 	/* for extent tree cache */
818 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
819 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
820 	struct list_head extent_list;		/* lru list for shrinker */
821 	spinlock_t extent_lock;			/* locking extent lru list */
822 	atomic_t total_ext_tree;		/* extent tree count */
823 	struct list_head zombie_list;		/* extent zombie tree list */
824 	atomic_t total_zombie_tree;		/* extent zombie tree count */
825 	atomic_t total_ext_node;		/* extent info count */
826 
827 	/* basic filesystem units */
828 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
829 	unsigned int log_blocksize;		/* log2 block size */
830 	unsigned int blocksize;			/* block size */
831 	unsigned int root_ino_num;		/* root inode number*/
832 	unsigned int node_ino_num;		/* node inode number*/
833 	unsigned int meta_ino_num;		/* meta inode number*/
834 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
835 	unsigned int blocks_per_seg;		/* blocks per segment */
836 	unsigned int segs_per_sec;		/* segments per section */
837 	unsigned int secs_per_zone;		/* sections per zone */
838 	unsigned int total_sections;		/* total section count */
839 	unsigned int total_node_count;		/* total node block count */
840 	unsigned int total_valid_node_count;	/* valid node block count */
841 	loff_t max_file_blocks;			/* max block index of file */
842 	int active_logs;			/* # of active logs */
843 	int dir_level;				/* directory level */
844 
845 	block_t user_block_count;		/* # of user blocks */
846 	block_t total_valid_block_count;	/* # of valid blocks */
847 	block_t discard_blks;			/* discard command candidats */
848 	block_t last_valid_block_count;		/* for recovery */
849 	u32 s_next_generation;			/* for NFS support */
850 
851 	/* # of pages, see count_type */
852 	atomic_t nr_pages[NR_COUNT_TYPE];
853 	/* # of allocated blocks */
854 	struct percpu_counter alloc_valid_block_count;
855 
856 	/* valid inode count */
857 	struct percpu_counter total_valid_inode_count;
858 
859 	struct f2fs_mount_info mount_opt;	/* mount options */
860 
861 	/* for cleaning operations */
862 	struct mutex gc_mutex;			/* mutex for GC */
863 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
864 	unsigned int cur_victim_sec;		/* current victim section num */
865 
866 	/* maximum # of trials to find a victim segment for SSR and GC */
867 	unsigned int max_victim_search;
868 
869 	/*
870 	 * for stat information.
871 	 * one is for the LFS mode, and the other is for the SSR mode.
872 	 */
873 #ifdef CONFIG_F2FS_STAT_FS
874 	struct f2fs_stat_info *stat_info;	/* FS status information */
875 	unsigned int segment_count[2];		/* # of allocated segments */
876 	unsigned int block_count[2];		/* # of allocated blocks */
877 	atomic_t inplace_count;		/* # of inplace update */
878 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
879 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
880 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
881 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
882 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
883 	atomic_t inline_inode;			/* # of inline_data inodes */
884 	atomic_t inline_dir;			/* # of inline_dentry inodes */
885 	int bg_gc;				/* background gc calls */
886 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
887 #endif
888 	unsigned int last_victim[2];		/* last victim segment # */
889 	spinlock_t stat_lock;			/* lock for stat operations */
890 
891 	/* For sysfs suppport */
892 	struct kobject s_kobj;
893 	struct completion s_kobj_unregister;
894 
895 	/* For shrinker support */
896 	struct list_head s_list;
897 	int s_ndevs;				/* number of devices */
898 	struct f2fs_dev_info *devs;		/* for device list */
899 	struct mutex umount_mutex;
900 	unsigned int shrinker_run_no;
901 
902 	/* For write statistics */
903 	u64 sectors_written_start;
904 	u64 kbytes_written;
905 
906 	/* Reference to checksum algorithm driver via cryptoapi */
907 	struct crypto_shash *s_chksum_driver;
908 
909 	/* For fault injection */
910 #ifdef CONFIG_F2FS_FAULT_INJECTION
911 	struct f2fs_fault_info fault_info;
912 #endif
913 };
914 
915 #ifdef CONFIG_F2FS_FAULT_INJECTION
916 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
917 {
918 	struct f2fs_fault_info *ffi = &sbi->fault_info;
919 
920 	if (!ffi->inject_rate)
921 		return false;
922 
923 	if (!IS_FAULT_SET(ffi, type))
924 		return false;
925 
926 	atomic_inc(&ffi->inject_ops);
927 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
928 		atomic_set(&ffi->inject_ops, 0);
929 		printk("%sF2FS-fs : inject %s in %pF\n",
930 				KERN_INFO,
931 				fault_name[type],
932 				__builtin_return_address(0));
933 		return true;
934 	}
935 	return false;
936 }
937 #endif
938 
939 /* For write statistics. Suppose sector size is 512 bytes,
940  * and the return value is in kbytes. s is of struct f2fs_sb_info.
941  */
942 #define BD_PART_WRITTEN(s)						 \
943 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) -		 \
944 		s->sectors_written_start) >> 1)
945 
946 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
947 {
948 	sbi->last_time[type] = jiffies;
949 }
950 
951 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
952 {
953 	struct timespec ts = {sbi->interval_time[type], 0};
954 	unsigned long interval = timespec_to_jiffies(&ts);
955 
956 	return time_after(jiffies, sbi->last_time[type] + interval);
957 }
958 
959 static inline bool is_idle(struct f2fs_sb_info *sbi)
960 {
961 	struct block_device *bdev = sbi->sb->s_bdev;
962 	struct request_queue *q = bdev_get_queue(bdev);
963 	struct request_list *rl = &q->root_rl;
964 
965 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
966 		return 0;
967 
968 	return f2fs_time_over(sbi, REQ_TIME);
969 }
970 
971 /*
972  * Inline functions
973  */
974 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
975 			   unsigned int length)
976 {
977 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
978 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
979 	int err;
980 
981 	shash->tfm = sbi->s_chksum_driver;
982 	shash->flags = 0;
983 	*ctx = F2FS_SUPER_MAGIC;
984 
985 	err = crypto_shash_update(shash, address, length);
986 	BUG_ON(err);
987 
988 	return *ctx;
989 }
990 
991 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
992 				  void *buf, size_t buf_size)
993 {
994 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
995 }
996 
997 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
998 {
999 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1000 }
1001 
1002 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1003 {
1004 	return sb->s_fs_info;
1005 }
1006 
1007 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1008 {
1009 	return F2FS_SB(inode->i_sb);
1010 }
1011 
1012 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1013 {
1014 	return F2FS_I_SB(mapping->host);
1015 }
1016 
1017 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1018 {
1019 	return F2FS_M_SB(page->mapping);
1020 }
1021 
1022 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1023 {
1024 	return (struct f2fs_super_block *)(sbi->raw_super);
1025 }
1026 
1027 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1028 {
1029 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1030 }
1031 
1032 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1033 {
1034 	return (struct f2fs_node *)page_address(page);
1035 }
1036 
1037 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1038 {
1039 	return &((struct f2fs_node *)page_address(page))->i;
1040 }
1041 
1042 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1043 {
1044 	return (struct f2fs_nm_info *)(sbi->nm_info);
1045 }
1046 
1047 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1048 {
1049 	return (struct f2fs_sm_info *)(sbi->sm_info);
1050 }
1051 
1052 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1053 {
1054 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1055 }
1056 
1057 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1058 {
1059 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1060 }
1061 
1062 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1063 {
1064 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1065 }
1066 
1067 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1068 {
1069 	return sbi->meta_inode->i_mapping;
1070 }
1071 
1072 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1073 {
1074 	return sbi->node_inode->i_mapping;
1075 }
1076 
1077 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1078 {
1079 	return test_bit(type, &sbi->s_flag);
1080 }
1081 
1082 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1083 {
1084 	set_bit(type, &sbi->s_flag);
1085 }
1086 
1087 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1088 {
1089 	clear_bit(type, &sbi->s_flag);
1090 }
1091 
1092 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1093 {
1094 	return le64_to_cpu(cp->checkpoint_ver);
1095 }
1096 
1097 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1098 {
1099 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1100 
1101 	return ckpt_flags & f;
1102 }
1103 
1104 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1105 {
1106 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1107 }
1108 
1109 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1110 {
1111 	unsigned int ckpt_flags;
1112 
1113 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1114 	ckpt_flags |= f;
1115 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1116 }
1117 
1118 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1119 {
1120 	spin_lock(&sbi->cp_lock);
1121 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1122 	spin_unlock(&sbi->cp_lock);
1123 }
1124 
1125 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1126 {
1127 	unsigned int ckpt_flags;
1128 
1129 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1130 	ckpt_flags &= (~f);
1131 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1132 }
1133 
1134 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1135 {
1136 	spin_lock(&sbi->cp_lock);
1137 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1138 	spin_unlock(&sbi->cp_lock);
1139 }
1140 
1141 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1142 {
1143 	down_read(&sbi->cp_rwsem);
1144 }
1145 
1146 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1147 {
1148 	up_read(&sbi->cp_rwsem);
1149 }
1150 
1151 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1152 {
1153 	down_write(&sbi->cp_rwsem);
1154 }
1155 
1156 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1157 {
1158 	up_write(&sbi->cp_rwsem);
1159 }
1160 
1161 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1162 {
1163 	int reason = CP_SYNC;
1164 
1165 	if (test_opt(sbi, FASTBOOT))
1166 		reason = CP_FASTBOOT;
1167 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1168 		reason = CP_UMOUNT;
1169 	return reason;
1170 }
1171 
1172 static inline bool __remain_node_summaries(int reason)
1173 {
1174 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1175 }
1176 
1177 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1178 {
1179 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1180 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1181 }
1182 
1183 /*
1184  * Check whether the given nid is within node id range.
1185  */
1186 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1187 {
1188 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1189 		return -EINVAL;
1190 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1191 		return -EINVAL;
1192 	return 0;
1193 }
1194 
1195 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1196 
1197 /*
1198  * Check whether the inode has blocks or not
1199  */
1200 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1201 {
1202 	if (F2FS_I(inode)->i_xattr_nid)
1203 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1204 	else
1205 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1206 }
1207 
1208 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1209 {
1210 	return ofs == XATTR_NODE_OFFSET;
1211 }
1212 
1213 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1214 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1215 				 struct inode *inode, blkcnt_t *count)
1216 {
1217 	blkcnt_t diff;
1218 
1219 #ifdef CONFIG_F2FS_FAULT_INJECTION
1220 	if (time_to_inject(sbi, FAULT_BLOCK))
1221 		return false;
1222 #endif
1223 	/*
1224 	 * let's increase this in prior to actual block count change in order
1225 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1226 	 */
1227 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1228 
1229 	spin_lock(&sbi->stat_lock);
1230 	sbi->total_valid_block_count += (block_t)(*count);
1231 	if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1232 		diff = sbi->total_valid_block_count - sbi->user_block_count;
1233 		*count -= diff;
1234 		sbi->total_valid_block_count = sbi->user_block_count;
1235 		if (!*count) {
1236 			spin_unlock(&sbi->stat_lock);
1237 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1238 			return false;
1239 		}
1240 	}
1241 	spin_unlock(&sbi->stat_lock);
1242 
1243 	f2fs_i_blocks_write(inode, *count, true);
1244 	return true;
1245 }
1246 
1247 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1248 						struct inode *inode,
1249 						blkcnt_t count)
1250 {
1251 	spin_lock(&sbi->stat_lock);
1252 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1253 	f2fs_bug_on(sbi, inode->i_blocks < count);
1254 	sbi->total_valid_block_count -= (block_t)count;
1255 	spin_unlock(&sbi->stat_lock);
1256 	f2fs_i_blocks_write(inode, count, false);
1257 }
1258 
1259 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1260 {
1261 	atomic_inc(&sbi->nr_pages[count_type]);
1262 
1263 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1264 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1265 		return;
1266 
1267 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1268 }
1269 
1270 static inline void inode_inc_dirty_pages(struct inode *inode)
1271 {
1272 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1273 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1274 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1275 }
1276 
1277 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1278 {
1279 	atomic_dec(&sbi->nr_pages[count_type]);
1280 }
1281 
1282 static inline void inode_dec_dirty_pages(struct inode *inode)
1283 {
1284 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1285 			!S_ISLNK(inode->i_mode))
1286 		return;
1287 
1288 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1289 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1290 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1291 }
1292 
1293 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1294 {
1295 	return atomic_read(&sbi->nr_pages[count_type]);
1296 }
1297 
1298 static inline int get_dirty_pages(struct inode *inode)
1299 {
1300 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1301 }
1302 
1303 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1304 {
1305 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1306 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1307 						sbi->log_blocks_per_seg;
1308 
1309 	return segs / sbi->segs_per_sec;
1310 }
1311 
1312 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1313 {
1314 	return sbi->total_valid_block_count;
1315 }
1316 
1317 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1318 {
1319 	return sbi->discard_blks;
1320 }
1321 
1322 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1323 {
1324 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1325 
1326 	/* return NAT or SIT bitmap */
1327 	if (flag == NAT_BITMAP)
1328 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1329 	else if (flag == SIT_BITMAP)
1330 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1331 
1332 	return 0;
1333 }
1334 
1335 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1336 {
1337 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1338 }
1339 
1340 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1341 {
1342 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1343 	int offset;
1344 
1345 	if (__cp_payload(sbi) > 0) {
1346 		if (flag == NAT_BITMAP)
1347 			return &ckpt->sit_nat_version_bitmap;
1348 		else
1349 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1350 	} else {
1351 		offset = (flag == NAT_BITMAP) ?
1352 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1353 		return &ckpt->sit_nat_version_bitmap + offset;
1354 	}
1355 }
1356 
1357 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1358 {
1359 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1360 
1361 	if (sbi->cur_cp_pack == 2)
1362 		start_addr += sbi->blocks_per_seg;
1363 	return start_addr;
1364 }
1365 
1366 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1367 {
1368 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1369 
1370 	if (sbi->cur_cp_pack == 1)
1371 		start_addr += sbi->blocks_per_seg;
1372 	return start_addr;
1373 }
1374 
1375 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1376 {
1377 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1378 }
1379 
1380 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1381 {
1382 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1383 }
1384 
1385 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1386 						struct inode *inode)
1387 {
1388 	block_t	valid_block_count;
1389 	unsigned int valid_node_count;
1390 
1391 	spin_lock(&sbi->stat_lock);
1392 
1393 	valid_block_count = sbi->total_valid_block_count + 1;
1394 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1395 		spin_unlock(&sbi->stat_lock);
1396 		return false;
1397 	}
1398 
1399 	valid_node_count = sbi->total_valid_node_count + 1;
1400 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1401 		spin_unlock(&sbi->stat_lock);
1402 		return false;
1403 	}
1404 
1405 	if (inode)
1406 		f2fs_i_blocks_write(inode, 1, true);
1407 
1408 	sbi->total_valid_node_count++;
1409 	sbi->total_valid_block_count++;
1410 	spin_unlock(&sbi->stat_lock);
1411 
1412 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1413 	return true;
1414 }
1415 
1416 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1417 						struct inode *inode)
1418 {
1419 	spin_lock(&sbi->stat_lock);
1420 
1421 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1422 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1423 	f2fs_bug_on(sbi, !inode->i_blocks);
1424 
1425 	f2fs_i_blocks_write(inode, 1, false);
1426 	sbi->total_valid_node_count--;
1427 	sbi->total_valid_block_count--;
1428 
1429 	spin_unlock(&sbi->stat_lock);
1430 }
1431 
1432 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1433 {
1434 	return sbi->total_valid_node_count;
1435 }
1436 
1437 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1438 {
1439 	percpu_counter_inc(&sbi->total_valid_inode_count);
1440 }
1441 
1442 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1443 {
1444 	percpu_counter_dec(&sbi->total_valid_inode_count);
1445 }
1446 
1447 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1448 {
1449 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1450 }
1451 
1452 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1453 						pgoff_t index, bool for_write)
1454 {
1455 #ifdef CONFIG_F2FS_FAULT_INJECTION
1456 	struct page *page = find_lock_page(mapping, index);
1457 	if (page)
1458 		return page;
1459 
1460 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
1461 		return NULL;
1462 #endif
1463 	if (!for_write)
1464 		return grab_cache_page(mapping, index);
1465 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1466 }
1467 
1468 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1469 {
1470 	char *src_kaddr = kmap(src);
1471 	char *dst_kaddr = kmap(dst);
1472 
1473 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1474 	kunmap(dst);
1475 	kunmap(src);
1476 }
1477 
1478 static inline void f2fs_put_page(struct page *page, int unlock)
1479 {
1480 	if (!page)
1481 		return;
1482 
1483 	if (unlock) {
1484 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1485 		unlock_page(page);
1486 	}
1487 	put_page(page);
1488 }
1489 
1490 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1491 {
1492 	if (dn->node_page)
1493 		f2fs_put_page(dn->node_page, 1);
1494 	if (dn->inode_page && dn->node_page != dn->inode_page)
1495 		f2fs_put_page(dn->inode_page, 0);
1496 	dn->node_page = NULL;
1497 	dn->inode_page = NULL;
1498 }
1499 
1500 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1501 					size_t size)
1502 {
1503 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1504 }
1505 
1506 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1507 						gfp_t flags)
1508 {
1509 	void *entry;
1510 
1511 	entry = kmem_cache_alloc(cachep, flags);
1512 	if (!entry)
1513 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1514 	return entry;
1515 }
1516 
1517 static inline struct bio *f2fs_bio_alloc(int npages)
1518 {
1519 	struct bio *bio;
1520 
1521 	/* No failure on bio allocation */
1522 	bio = bio_alloc(GFP_NOIO, npages);
1523 	if (!bio)
1524 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1525 	return bio;
1526 }
1527 
1528 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1529 				unsigned long index, void *item)
1530 {
1531 	while (radix_tree_insert(root, index, item))
1532 		cond_resched();
1533 }
1534 
1535 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1536 
1537 static inline bool IS_INODE(struct page *page)
1538 {
1539 	struct f2fs_node *p = F2FS_NODE(page);
1540 	return RAW_IS_INODE(p);
1541 }
1542 
1543 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1544 {
1545 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1546 }
1547 
1548 static inline block_t datablock_addr(struct page *node_page,
1549 		unsigned int offset)
1550 {
1551 	struct f2fs_node *raw_node;
1552 	__le32 *addr_array;
1553 	raw_node = F2FS_NODE(node_page);
1554 	addr_array = blkaddr_in_node(raw_node);
1555 	return le32_to_cpu(addr_array[offset]);
1556 }
1557 
1558 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1559 {
1560 	int mask;
1561 
1562 	addr += (nr >> 3);
1563 	mask = 1 << (7 - (nr & 0x07));
1564 	return mask & *addr;
1565 }
1566 
1567 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1568 {
1569 	int mask;
1570 
1571 	addr += (nr >> 3);
1572 	mask = 1 << (7 - (nr & 0x07));
1573 	*addr |= mask;
1574 }
1575 
1576 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1577 {
1578 	int mask;
1579 
1580 	addr += (nr >> 3);
1581 	mask = 1 << (7 - (nr & 0x07));
1582 	*addr &= ~mask;
1583 }
1584 
1585 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1586 {
1587 	int mask;
1588 	int ret;
1589 
1590 	addr += (nr >> 3);
1591 	mask = 1 << (7 - (nr & 0x07));
1592 	ret = mask & *addr;
1593 	*addr |= mask;
1594 	return ret;
1595 }
1596 
1597 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1598 {
1599 	int mask;
1600 	int ret;
1601 
1602 	addr += (nr >> 3);
1603 	mask = 1 << (7 - (nr & 0x07));
1604 	ret = mask & *addr;
1605 	*addr &= ~mask;
1606 	return ret;
1607 }
1608 
1609 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1610 {
1611 	int mask;
1612 
1613 	addr += (nr >> 3);
1614 	mask = 1 << (7 - (nr & 0x07));
1615 	*addr ^= mask;
1616 }
1617 
1618 /* used for f2fs_inode_info->flags */
1619 enum {
1620 	FI_NEW_INODE,		/* indicate newly allocated inode */
1621 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1622 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1623 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1624 	FI_INC_LINK,		/* need to increment i_nlink */
1625 	FI_ACL_MODE,		/* indicate acl mode */
1626 	FI_NO_ALLOC,		/* should not allocate any blocks */
1627 	FI_FREE_NID,		/* free allocated nide */
1628 	FI_NO_EXTENT,		/* not to use the extent cache */
1629 	FI_INLINE_XATTR,	/* used for inline xattr */
1630 	FI_INLINE_DATA,		/* used for inline data*/
1631 	FI_INLINE_DENTRY,	/* used for inline dentry */
1632 	FI_APPEND_WRITE,	/* inode has appended data */
1633 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1634 	FI_NEED_IPU,		/* used for ipu per file */
1635 	FI_ATOMIC_FILE,		/* indicate atomic file */
1636 	FI_VOLATILE_FILE,	/* indicate volatile file */
1637 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1638 	FI_DROP_CACHE,		/* drop dirty page cache */
1639 	FI_DATA_EXIST,		/* indicate data exists */
1640 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1641 	FI_DO_DEFRAG,		/* indicate defragment is running */
1642 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1643 };
1644 
1645 static inline void __mark_inode_dirty_flag(struct inode *inode,
1646 						int flag, bool set)
1647 {
1648 	switch (flag) {
1649 	case FI_INLINE_XATTR:
1650 	case FI_INLINE_DATA:
1651 	case FI_INLINE_DENTRY:
1652 		if (set)
1653 			return;
1654 	case FI_DATA_EXIST:
1655 	case FI_INLINE_DOTS:
1656 		f2fs_mark_inode_dirty_sync(inode, true);
1657 	}
1658 }
1659 
1660 static inline void set_inode_flag(struct inode *inode, int flag)
1661 {
1662 	if (!test_bit(flag, &F2FS_I(inode)->flags))
1663 		set_bit(flag, &F2FS_I(inode)->flags);
1664 	__mark_inode_dirty_flag(inode, flag, true);
1665 }
1666 
1667 static inline int is_inode_flag_set(struct inode *inode, int flag)
1668 {
1669 	return test_bit(flag, &F2FS_I(inode)->flags);
1670 }
1671 
1672 static inline void clear_inode_flag(struct inode *inode, int flag)
1673 {
1674 	if (test_bit(flag, &F2FS_I(inode)->flags))
1675 		clear_bit(flag, &F2FS_I(inode)->flags);
1676 	__mark_inode_dirty_flag(inode, flag, false);
1677 }
1678 
1679 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1680 {
1681 	F2FS_I(inode)->i_acl_mode = mode;
1682 	set_inode_flag(inode, FI_ACL_MODE);
1683 	f2fs_mark_inode_dirty_sync(inode, false);
1684 }
1685 
1686 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1687 {
1688 	if (inc)
1689 		inc_nlink(inode);
1690 	else
1691 		drop_nlink(inode);
1692 	f2fs_mark_inode_dirty_sync(inode, true);
1693 }
1694 
1695 static inline void f2fs_i_blocks_write(struct inode *inode,
1696 					blkcnt_t diff, bool add)
1697 {
1698 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1699 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1700 
1701 	inode->i_blocks = add ? inode->i_blocks + diff :
1702 				inode->i_blocks - diff;
1703 	f2fs_mark_inode_dirty_sync(inode, true);
1704 	if (clean || recover)
1705 		set_inode_flag(inode, FI_AUTO_RECOVER);
1706 }
1707 
1708 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1709 {
1710 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1711 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1712 
1713 	if (i_size_read(inode) == i_size)
1714 		return;
1715 
1716 	i_size_write(inode, i_size);
1717 	f2fs_mark_inode_dirty_sync(inode, true);
1718 	if (clean || recover)
1719 		set_inode_flag(inode, FI_AUTO_RECOVER);
1720 }
1721 
1722 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1723 {
1724 	F2FS_I(inode)->i_current_depth = depth;
1725 	f2fs_mark_inode_dirty_sync(inode, true);
1726 }
1727 
1728 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1729 {
1730 	F2FS_I(inode)->i_xattr_nid = xnid;
1731 	f2fs_mark_inode_dirty_sync(inode, true);
1732 }
1733 
1734 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1735 {
1736 	F2FS_I(inode)->i_pino = pino;
1737 	f2fs_mark_inode_dirty_sync(inode, true);
1738 }
1739 
1740 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1741 {
1742 	struct f2fs_inode_info *fi = F2FS_I(inode);
1743 
1744 	if (ri->i_inline & F2FS_INLINE_XATTR)
1745 		set_bit(FI_INLINE_XATTR, &fi->flags);
1746 	if (ri->i_inline & F2FS_INLINE_DATA)
1747 		set_bit(FI_INLINE_DATA, &fi->flags);
1748 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1749 		set_bit(FI_INLINE_DENTRY, &fi->flags);
1750 	if (ri->i_inline & F2FS_DATA_EXIST)
1751 		set_bit(FI_DATA_EXIST, &fi->flags);
1752 	if (ri->i_inline & F2FS_INLINE_DOTS)
1753 		set_bit(FI_INLINE_DOTS, &fi->flags);
1754 }
1755 
1756 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1757 {
1758 	ri->i_inline = 0;
1759 
1760 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1761 		ri->i_inline |= F2FS_INLINE_XATTR;
1762 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
1763 		ri->i_inline |= F2FS_INLINE_DATA;
1764 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1765 		ri->i_inline |= F2FS_INLINE_DENTRY;
1766 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
1767 		ri->i_inline |= F2FS_DATA_EXIST;
1768 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1769 		ri->i_inline |= F2FS_INLINE_DOTS;
1770 }
1771 
1772 static inline int f2fs_has_inline_xattr(struct inode *inode)
1773 {
1774 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
1775 }
1776 
1777 static inline unsigned int addrs_per_inode(struct inode *inode)
1778 {
1779 	if (f2fs_has_inline_xattr(inode))
1780 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1781 	return DEF_ADDRS_PER_INODE;
1782 }
1783 
1784 static inline void *inline_xattr_addr(struct page *page)
1785 {
1786 	struct f2fs_inode *ri = F2FS_INODE(page);
1787 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1788 					F2FS_INLINE_XATTR_ADDRS]);
1789 }
1790 
1791 static inline int inline_xattr_size(struct inode *inode)
1792 {
1793 	if (f2fs_has_inline_xattr(inode))
1794 		return F2FS_INLINE_XATTR_ADDRS << 2;
1795 	else
1796 		return 0;
1797 }
1798 
1799 static inline int f2fs_has_inline_data(struct inode *inode)
1800 {
1801 	return is_inode_flag_set(inode, FI_INLINE_DATA);
1802 }
1803 
1804 static inline void f2fs_clear_inline_inode(struct inode *inode)
1805 {
1806 	clear_inode_flag(inode, FI_INLINE_DATA);
1807 	clear_inode_flag(inode, FI_DATA_EXIST);
1808 }
1809 
1810 static inline int f2fs_exist_data(struct inode *inode)
1811 {
1812 	return is_inode_flag_set(inode, FI_DATA_EXIST);
1813 }
1814 
1815 static inline int f2fs_has_inline_dots(struct inode *inode)
1816 {
1817 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
1818 }
1819 
1820 static inline bool f2fs_is_atomic_file(struct inode *inode)
1821 {
1822 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1823 }
1824 
1825 static inline bool f2fs_is_volatile_file(struct inode *inode)
1826 {
1827 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1828 }
1829 
1830 static inline bool f2fs_is_first_block_written(struct inode *inode)
1831 {
1832 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1833 }
1834 
1835 static inline bool f2fs_is_drop_cache(struct inode *inode)
1836 {
1837 	return is_inode_flag_set(inode, FI_DROP_CACHE);
1838 }
1839 
1840 static inline void *inline_data_addr(struct page *page)
1841 {
1842 	struct f2fs_inode *ri = F2FS_INODE(page);
1843 	return (void *)&(ri->i_addr[1]);
1844 }
1845 
1846 static inline int f2fs_has_inline_dentry(struct inode *inode)
1847 {
1848 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1849 }
1850 
1851 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1852 {
1853 	if (!f2fs_has_inline_dentry(dir))
1854 		kunmap(page);
1855 }
1856 
1857 static inline int is_file(struct inode *inode, int type)
1858 {
1859 	return F2FS_I(inode)->i_advise & type;
1860 }
1861 
1862 static inline void set_file(struct inode *inode, int type)
1863 {
1864 	F2FS_I(inode)->i_advise |= type;
1865 	f2fs_mark_inode_dirty_sync(inode, true);
1866 }
1867 
1868 static inline void clear_file(struct inode *inode, int type)
1869 {
1870 	F2FS_I(inode)->i_advise &= ~type;
1871 	f2fs_mark_inode_dirty_sync(inode, true);
1872 }
1873 
1874 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
1875 {
1876 	if (dsync) {
1877 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1878 		bool ret;
1879 
1880 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1881 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
1882 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1883 		return ret;
1884 	}
1885 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
1886 			file_keep_isize(inode) ||
1887 			i_size_read(inode) & PAGE_MASK)
1888 		return false;
1889 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1890 }
1891 
1892 static inline int f2fs_readonly(struct super_block *sb)
1893 {
1894 	return sb->s_flags & MS_RDONLY;
1895 }
1896 
1897 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1898 {
1899 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1900 }
1901 
1902 static inline bool is_dot_dotdot(const struct qstr *str)
1903 {
1904 	if (str->len == 1 && str->name[0] == '.')
1905 		return true;
1906 
1907 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1908 		return true;
1909 
1910 	return false;
1911 }
1912 
1913 static inline bool f2fs_may_extent_tree(struct inode *inode)
1914 {
1915 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1916 			is_inode_flag_set(inode, FI_NO_EXTENT))
1917 		return false;
1918 
1919 	return S_ISREG(inode->i_mode);
1920 }
1921 
1922 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1923 					size_t size, gfp_t flags)
1924 {
1925 #ifdef CONFIG_F2FS_FAULT_INJECTION
1926 	if (time_to_inject(sbi, FAULT_KMALLOC))
1927 		return NULL;
1928 #endif
1929 	return kmalloc(size, flags);
1930 }
1931 
1932 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1933 {
1934 	void *ret;
1935 
1936 	ret = kmalloc(size, flags | __GFP_NOWARN);
1937 	if (!ret)
1938 		ret = __vmalloc(size, flags, PAGE_KERNEL);
1939 	return ret;
1940 }
1941 
1942 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1943 {
1944 	void *ret;
1945 
1946 	ret = kzalloc(size, flags | __GFP_NOWARN);
1947 	if (!ret)
1948 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1949 	return ret;
1950 }
1951 
1952 #define get_inode_mode(i) \
1953 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1954 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1955 
1956 /* get offset of first page in next direct node */
1957 #define PGOFS_OF_NEXT_DNODE(pgofs, inode)				\
1958 	((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) :	\
1959 	(pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) /	\
1960 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1961 
1962 /*
1963  * file.c
1964  */
1965 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1966 void truncate_data_blocks(struct dnode_of_data *);
1967 int truncate_blocks(struct inode *, u64, bool);
1968 int f2fs_truncate(struct inode *);
1969 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1970 int f2fs_setattr(struct dentry *, struct iattr *);
1971 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1972 int truncate_data_blocks_range(struct dnode_of_data *, int);
1973 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1974 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1975 
1976 /*
1977  * inode.c
1978  */
1979 void f2fs_set_inode_flags(struct inode *);
1980 struct inode *f2fs_iget(struct super_block *, unsigned long);
1981 struct inode *f2fs_iget_retry(struct super_block *, unsigned long);
1982 int try_to_free_nats(struct f2fs_sb_info *, int);
1983 int update_inode(struct inode *, struct page *);
1984 int update_inode_page(struct inode *);
1985 int f2fs_write_inode(struct inode *, struct writeback_control *);
1986 void f2fs_evict_inode(struct inode *);
1987 void handle_failed_inode(struct inode *);
1988 
1989 /*
1990  * namei.c
1991  */
1992 struct dentry *f2fs_get_parent(struct dentry *child);
1993 
1994 /*
1995  * dir.c
1996  */
1997 void set_de_type(struct f2fs_dir_entry *, umode_t);
1998 unsigned char get_de_type(struct f2fs_dir_entry *);
1999 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
2000 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
2001 int f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
2002 			unsigned int, struct fscrypt_str *);
2003 void do_make_empty_dir(struct inode *, struct inode *,
2004 			struct f2fs_dentry_ptr *);
2005 struct page *init_inode_metadata(struct inode *, struct inode *,
2006 		const struct qstr *, const struct qstr *, struct page *);
2007 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
2008 int room_for_filename(const void *, int, int);
2009 void f2fs_drop_nlink(struct inode *, struct inode *);
2010 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *,
2011 							struct page **);
2012 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
2013 							struct page **);
2014 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
2015 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
2016 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
2017 				struct page *, struct inode *);
2018 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
2019 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
2020 			const struct qstr *, f2fs_hash_t , unsigned int);
2021 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
2022 			const struct qstr *, struct inode *, nid_t, umode_t);
2023 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *,
2024 			nid_t, umode_t);
2025 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
2026 			umode_t);
2027 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
2028 							struct inode *);
2029 int f2fs_do_tmpfile(struct inode *, struct inode *);
2030 bool f2fs_empty_dir(struct inode *);
2031 
2032 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2033 {
2034 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2035 				inode, inode->i_ino, inode->i_mode);
2036 }
2037 
2038 /*
2039  * super.c
2040  */
2041 int f2fs_inode_dirtied(struct inode *, bool);
2042 void f2fs_inode_synced(struct inode *);
2043 int f2fs_commit_super(struct f2fs_sb_info *, bool);
2044 int f2fs_sync_fs(struct super_block *, int);
2045 extern __printf(3, 4)
2046 void f2fs_msg(struct super_block *, const char *, const char *, ...);
2047 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2048 
2049 /*
2050  * hash.c
2051  */
2052 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
2053 
2054 /*
2055  * node.c
2056  */
2057 struct dnode_of_data;
2058 struct node_info;
2059 
2060 bool available_free_memory(struct f2fs_sb_info *, int);
2061 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
2062 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
2063 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
2064 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
2065 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
2066 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
2067 int truncate_inode_blocks(struct inode *, pgoff_t);
2068 int truncate_xattr_node(struct inode *, struct page *);
2069 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
2070 int remove_inode_page(struct inode *);
2071 struct page *new_inode_page(struct inode *);
2072 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
2073 void ra_node_page(struct f2fs_sb_info *, nid_t);
2074 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
2075 struct page *get_node_page_ra(struct page *, int);
2076 void move_node_page(struct page *, int);
2077 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
2078 			struct writeback_control *, bool);
2079 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
2080 void build_free_nids(struct f2fs_sb_info *, bool);
2081 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
2082 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
2083 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
2084 int try_to_free_nids(struct f2fs_sb_info *, int);
2085 void recover_inline_xattr(struct inode *, struct page *);
2086 void recover_xattr_data(struct inode *, struct page *, block_t);
2087 int recover_inode_page(struct f2fs_sb_info *, struct page *);
2088 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
2089 				struct f2fs_summary_block *);
2090 void flush_nat_entries(struct f2fs_sb_info *);
2091 int build_node_manager(struct f2fs_sb_info *);
2092 void destroy_node_manager(struct f2fs_sb_info *);
2093 int __init create_node_manager_caches(void);
2094 void destroy_node_manager_caches(void);
2095 
2096 /*
2097  * segment.c
2098  */
2099 void register_inmem_page(struct inode *, struct page *);
2100 void drop_inmem_pages(struct inode *);
2101 int commit_inmem_pages(struct inode *);
2102 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2103 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2104 int f2fs_issue_flush(struct f2fs_sb_info *);
2105 int create_flush_cmd_control(struct f2fs_sb_info *);
2106 void destroy_flush_cmd_control(struct f2fs_sb_info *, bool);
2107 void invalidate_blocks(struct f2fs_sb_info *, block_t);
2108 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2109 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2110 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *);
2111 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2112 void release_discard_addrs(struct f2fs_sb_info *);
2113 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2114 void allocate_new_segments(struct f2fs_sb_info *);
2115 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2116 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2117 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2118 void write_meta_page(struct f2fs_sb_info *, struct page *);
2119 void write_node_page(unsigned int, struct f2fs_io_info *);
2120 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2121 void rewrite_data_page(struct f2fs_io_info *);
2122 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2123 					block_t, block_t, bool, bool);
2124 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2125 				block_t, block_t, unsigned char, bool, bool);
2126 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2127 		block_t, block_t *, struct f2fs_summary *, int);
2128 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2129 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2130 void write_data_summaries(struct f2fs_sb_info *, block_t);
2131 void write_node_summaries(struct f2fs_sb_info *, block_t);
2132 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2133 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2134 int build_segment_manager(struct f2fs_sb_info *);
2135 void destroy_segment_manager(struct f2fs_sb_info *);
2136 int __init create_segment_manager_caches(void);
2137 void destroy_segment_manager_caches(void);
2138 
2139 /*
2140  * checkpoint.c
2141  */
2142 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2143 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2144 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2145 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2146 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2147 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2148 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2149 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2150 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2151 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2152 void release_ino_entry(struct f2fs_sb_info *, bool);
2153 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2154 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2155 int acquire_orphan_inode(struct f2fs_sb_info *);
2156 void release_orphan_inode(struct f2fs_sb_info *);
2157 void add_orphan_inode(struct inode *);
2158 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2159 int recover_orphan_inodes(struct f2fs_sb_info *);
2160 int get_valid_checkpoint(struct f2fs_sb_info *);
2161 void update_dirty_page(struct inode *, struct page *);
2162 void remove_dirty_inode(struct inode *);
2163 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2164 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2165 void init_ino_entry_info(struct f2fs_sb_info *);
2166 int __init create_checkpoint_caches(void);
2167 void destroy_checkpoint_caches(void);
2168 
2169 /*
2170  * data.c
2171  */
2172 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2173 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2174 				struct page *, nid_t, enum page_type, int);
2175 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2176 int f2fs_submit_page_bio(struct f2fs_io_info *);
2177 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2178 struct block_device *f2fs_target_device(struct f2fs_sb_info *,
2179 				block_t, struct bio *);
2180 int f2fs_target_device_index(struct f2fs_sb_info *, block_t);
2181 void set_data_blkaddr(struct dnode_of_data *);
2182 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2183 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2184 int reserve_new_block(struct dnode_of_data *);
2185 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2186 int f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2187 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2188 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2189 struct page *find_data_page(struct inode *, pgoff_t);
2190 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2191 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2192 int do_write_data_page(struct f2fs_io_info *);
2193 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2194 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2195 void f2fs_set_page_dirty_nobuffers(struct page *);
2196 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2197 int f2fs_release_page(struct page *, gfp_t);
2198 #ifdef CONFIG_MIGRATION
2199 int f2fs_migrate_page(struct address_space *, struct page *, struct page *,
2200 				enum migrate_mode);
2201 #endif
2202 
2203 /*
2204  * gc.c
2205  */
2206 int start_gc_thread(struct f2fs_sb_info *);
2207 void stop_gc_thread(struct f2fs_sb_info *);
2208 block_t start_bidx_of_node(unsigned int, struct inode *);
2209 int f2fs_gc(struct f2fs_sb_info *, bool, bool);
2210 void build_gc_manager(struct f2fs_sb_info *);
2211 
2212 /*
2213  * recovery.c
2214  */
2215 int recover_fsync_data(struct f2fs_sb_info *, bool);
2216 bool space_for_roll_forward(struct f2fs_sb_info *);
2217 
2218 /*
2219  * debug.c
2220  */
2221 #ifdef CONFIG_F2FS_STAT_FS
2222 struct f2fs_stat_info {
2223 	struct list_head stat_list;
2224 	struct f2fs_sb_info *sbi;
2225 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2226 	int main_area_segs, main_area_sections, main_area_zones;
2227 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2228 	unsigned long long hit_total, total_ext;
2229 	int ext_tree, zombie_tree, ext_node;
2230 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2231 	int inmem_pages;
2232 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2233 	int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2234 	int total_count, utilization;
2235 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2236 	int inline_xattr, inline_inode, inline_dir, orphans;
2237 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2238 	unsigned int bimodal, avg_vblocks;
2239 	int util_free, util_valid, util_invalid;
2240 	int rsvd_segs, overp_segs;
2241 	int dirty_count, node_pages, meta_pages;
2242 	int prefree_count, call_count, cp_count, bg_cp_count;
2243 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2244 	int bg_node_segs, bg_data_segs;
2245 	int tot_blks, data_blks, node_blks;
2246 	int bg_data_blks, bg_node_blks;
2247 	int curseg[NR_CURSEG_TYPE];
2248 	int cursec[NR_CURSEG_TYPE];
2249 	int curzone[NR_CURSEG_TYPE];
2250 
2251 	unsigned int segment_count[2];
2252 	unsigned int block_count[2];
2253 	unsigned int inplace_count;
2254 	unsigned long long base_mem, cache_mem, page_mem;
2255 };
2256 
2257 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2258 {
2259 	return (struct f2fs_stat_info *)sbi->stat_info;
2260 }
2261 
2262 #define stat_inc_cp_count(si)		((si)->cp_count++)
2263 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2264 #define stat_inc_call_count(si)		((si)->call_count++)
2265 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2266 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2267 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2268 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2269 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2270 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2271 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2272 #define stat_inc_inline_xattr(inode)					\
2273 	do {								\
2274 		if (f2fs_has_inline_xattr(inode))			\
2275 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2276 	} while (0)
2277 #define stat_dec_inline_xattr(inode)					\
2278 	do {								\
2279 		if (f2fs_has_inline_xattr(inode))			\
2280 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2281 	} while (0)
2282 #define stat_inc_inline_inode(inode)					\
2283 	do {								\
2284 		if (f2fs_has_inline_data(inode))			\
2285 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2286 	} while (0)
2287 #define stat_dec_inline_inode(inode)					\
2288 	do {								\
2289 		if (f2fs_has_inline_data(inode))			\
2290 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2291 	} while (0)
2292 #define stat_inc_inline_dir(inode)					\
2293 	do {								\
2294 		if (f2fs_has_inline_dentry(inode))			\
2295 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2296 	} while (0)
2297 #define stat_dec_inline_dir(inode)					\
2298 	do {								\
2299 		if (f2fs_has_inline_dentry(inode))			\
2300 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2301 	} while (0)
2302 #define stat_inc_seg_type(sbi, curseg)					\
2303 		((sbi)->segment_count[(curseg)->alloc_type]++)
2304 #define stat_inc_block_count(sbi, curseg)				\
2305 		((sbi)->block_count[(curseg)->alloc_type]++)
2306 #define stat_inc_inplace_blocks(sbi)					\
2307 		(atomic_inc(&(sbi)->inplace_count))
2308 #define stat_inc_seg_count(sbi, type, gc_type)				\
2309 	do {								\
2310 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2311 		(si)->tot_segs++;					\
2312 		if (type == SUM_TYPE_DATA) {				\
2313 			si->data_segs++;				\
2314 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2315 		} else {						\
2316 			si->node_segs++;				\
2317 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2318 		}							\
2319 	} while (0)
2320 
2321 #define stat_inc_tot_blk_count(si, blks)				\
2322 	(si->tot_blks += (blks))
2323 
2324 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2325 	do {								\
2326 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2327 		stat_inc_tot_blk_count(si, blks);			\
2328 		si->data_blks += (blks);				\
2329 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2330 	} while (0)
2331 
2332 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2333 	do {								\
2334 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2335 		stat_inc_tot_blk_count(si, blks);			\
2336 		si->node_blks += (blks);				\
2337 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2338 	} while (0)
2339 
2340 int f2fs_build_stats(struct f2fs_sb_info *);
2341 void f2fs_destroy_stats(struct f2fs_sb_info *);
2342 int __init f2fs_create_root_stats(void);
2343 void f2fs_destroy_root_stats(void);
2344 #else
2345 #define stat_inc_cp_count(si)
2346 #define stat_inc_bg_cp_count(si)
2347 #define stat_inc_call_count(si)
2348 #define stat_inc_bggc_count(si)
2349 #define stat_inc_dirty_inode(sbi, type)
2350 #define stat_dec_dirty_inode(sbi, type)
2351 #define stat_inc_total_hit(sb)
2352 #define stat_inc_rbtree_node_hit(sb)
2353 #define stat_inc_largest_node_hit(sbi)
2354 #define stat_inc_cached_node_hit(sbi)
2355 #define stat_inc_inline_xattr(inode)
2356 #define stat_dec_inline_xattr(inode)
2357 #define stat_inc_inline_inode(inode)
2358 #define stat_dec_inline_inode(inode)
2359 #define stat_inc_inline_dir(inode)
2360 #define stat_dec_inline_dir(inode)
2361 #define stat_inc_seg_type(sbi, curseg)
2362 #define stat_inc_block_count(sbi, curseg)
2363 #define stat_inc_inplace_blocks(sbi)
2364 #define stat_inc_seg_count(sbi, type, gc_type)
2365 #define stat_inc_tot_blk_count(si, blks)
2366 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2367 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2368 
2369 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2370 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2371 static inline int __init f2fs_create_root_stats(void) { return 0; }
2372 static inline void f2fs_destroy_root_stats(void) { }
2373 #endif
2374 
2375 extern const struct file_operations f2fs_dir_operations;
2376 extern const struct file_operations f2fs_file_operations;
2377 extern const struct inode_operations f2fs_file_inode_operations;
2378 extern const struct address_space_operations f2fs_dblock_aops;
2379 extern const struct address_space_operations f2fs_node_aops;
2380 extern const struct address_space_operations f2fs_meta_aops;
2381 extern const struct inode_operations f2fs_dir_inode_operations;
2382 extern const struct inode_operations f2fs_symlink_inode_operations;
2383 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2384 extern const struct inode_operations f2fs_special_inode_operations;
2385 extern struct kmem_cache *inode_entry_slab;
2386 
2387 /*
2388  * inline.c
2389  */
2390 bool f2fs_may_inline_data(struct inode *);
2391 bool f2fs_may_inline_dentry(struct inode *);
2392 void read_inline_data(struct page *, struct page *);
2393 bool truncate_inline_inode(struct page *, u64);
2394 int f2fs_read_inline_data(struct inode *, struct page *);
2395 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2396 int f2fs_convert_inline_inode(struct inode *);
2397 int f2fs_write_inline_data(struct inode *, struct page *);
2398 bool recover_inline_data(struct inode *, struct page *);
2399 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2400 				struct fscrypt_name *, struct page **);
2401 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2402 int f2fs_add_inline_entry(struct inode *, const struct qstr *,
2403 		const struct qstr *, struct inode *, nid_t, umode_t);
2404 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2405 						struct inode *, struct inode *);
2406 bool f2fs_empty_inline_dir(struct inode *);
2407 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2408 						struct fscrypt_str *);
2409 int f2fs_inline_data_fiemap(struct inode *,
2410 		struct fiemap_extent_info *, __u64, __u64);
2411 
2412 /*
2413  * shrinker.c
2414  */
2415 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2416 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2417 void f2fs_join_shrinker(struct f2fs_sb_info *);
2418 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2419 
2420 /*
2421  * extent_cache.c
2422  */
2423 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2424 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2425 void f2fs_drop_extent_tree(struct inode *);
2426 unsigned int f2fs_destroy_extent_node(struct inode *);
2427 void f2fs_destroy_extent_tree(struct inode *);
2428 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2429 void f2fs_update_extent_cache(struct dnode_of_data *);
2430 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2431 						pgoff_t, block_t, unsigned int);
2432 void init_extent_cache_info(struct f2fs_sb_info *);
2433 int __init create_extent_cache(void);
2434 void destroy_extent_cache(void);
2435 
2436 /*
2437  * crypto support
2438  */
2439 static inline bool f2fs_encrypted_inode(struct inode *inode)
2440 {
2441 	return file_is_encrypt(inode);
2442 }
2443 
2444 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2445 {
2446 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2447 	file_set_encrypt(inode);
2448 #endif
2449 }
2450 
2451 static inline bool f2fs_bio_encrypted(struct bio *bio)
2452 {
2453 	return bio->bi_private != NULL;
2454 }
2455 
2456 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2457 {
2458 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2459 }
2460 
2461 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2462 {
2463 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2464 }
2465 
2466 #ifdef CONFIG_BLK_DEV_ZONED
2467 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2468 			struct block_device *bdev, block_t blkaddr)
2469 {
2470 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2471 	int i;
2472 
2473 	for (i = 0; i < sbi->s_ndevs; i++)
2474 		if (FDEV(i).bdev == bdev)
2475 			return FDEV(i).blkz_type[zno];
2476 	return -EINVAL;
2477 }
2478 #endif
2479 
2480 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2481 {
2482 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2483 
2484 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2485 }
2486 
2487 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2488 {
2489 	clear_opt(sbi, ADAPTIVE);
2490 	clear_opt(sbi, LFS);
2491 
2492 	switch (mt) {
2493 	case F2FS_MOUNT_ADAPTIVE:
2494 		set_opt(sbi, ADAPTIVE);
2495 		break;
2496 	case F2FS_MOUNT_LFS:
2497 		set_opt(sbi, LFS);
2498 		break;
2499 	}
2500 }
2501 
2502 static inline bool f2fs_may_encrypt(struct inode *inode)
2503 {
2504 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2505 	umode_t mode = inode->i_mode;
2506 
2507 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2508 #else
2509 	return 0;
2510 #endif
2511 }
2512 
2513 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2514 #define fscrypt_set_d_op(i)
2515 #define fscrypt_get_ctx			fscrypt_notsupp_get_ctx
2516 #define fscrypt_release_ctx		fscrypt_notsupp_release_ctx
2517 #define fscrypt_encrypt_page		fscrypt_notsupp_encrypt_page
2518 #define fscrypt_decrypt_page		fscrypt_notsupp_decrypt_page
2519 #define fscrypt_decrypt_bio_pages	fscrypt_notsupp_decrypt_bio_pages
2520 #define fscrypt_pullback_bio_page	fscrypt_notsupp_pullback_bio_page
2521 #define fscrypt_restore_control_page	fscrypt_notsupp_restore_control_page
2522 #define fscrypt_zeroout_range		fscrypt_notsupp_zeroout_range
2523 #define fscrypt_ioctl_set_policy	fscrypt_notsupp_ioctl_set_policy
2524 #define fscrypt_ioctl_get_policy	fscrypt_notsupp_ioctl_get_policy
2525 #define fscrypt_has_permitted_context	fscrypt_notsupp_has_permitted_context
2526 #define fscrypt_inherit_context		fscrypt_notsupp_inherit_context
2527 #define fscrypt_get_encryption_info	fscrypt_notsupp_get_encryption_info
2528 #define fscrypt_put_encryption_info	fscrypt_notsupp_put_encryption_info
2529 #define fscrypt_setup_filename		fscrypt_notsupp_setup_filename
2530 #define fscrypt_free_filename		fscrypt_notsupp_free_filename
2531 #define fscrypt_fname_encrypted_size	fscrypt_notsupp_fname_encrypted_size
2532 #define fscrypt_fname_alloc_buffer	fscrypt_notsupp_fname_alloc_buffer
2533 #define fscrypt_fname_free_buffer	fscrypt_notsupp_fname_free_buffer
2534 #define fscrypt_fname_disk_to_usr	fscrypt_notsupp_fname_disk_to_usr
2535 #define fscrypt_fname_usr_to_disk	fscrypt_notsupp_fname_usr_to_disk
2536 #endif
2537 #endif
2538