xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 19e85d93)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	unsigned int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
78 
79 /* maximum retry count for injected failure */
80 #define DEFAULT_FAILURE_RETRY_COUNT		8
81 #else
82 #define DEFAULT_FAILURE_RETRY_COUNT		1
83 #endif
84 
85 /*
86  * For mount options
87  */
88 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
89 #define F2FS_MOUNT_DISCARD		0x00000002
90 #define F2FS_MOUNT_NOHEAP		0x00000004
91 #define F2FS_MOUNT_XATTR_USER		0x00000008
92 #define F2FS_MOUNT_POSIX_ACL		0x00000010
93 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
94 #define F2FS_MOUNT_INLINE_XATTR		0x00000040
95 #define F2FS_MOUNT_INLINE_DATA		0x00000080
96 #define F2FS_MOUNT_INLINE_DENTRY	0x00000100
97 #define F2FS_MOUNT_FLUSH_MERGE		0x00000200
98 #define F2FS_MOUNT_NOBARRIER		0x00000400
99 #define F2FS_MOUNT_FASTBOOT		0x00000800
100 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
101 #define F2FS_MOUNT_DATA_FLUSH		0x00002000
102 #define F2FS_MOUNT_FAULT_INJECTION	0x00004000
103 #define F2FS_MOUNT_USRQUOTA		0x00008000
104 #define F2FS_MOUNT_GRPQUOTA		0x00010000
105 #define F2FS_MOUNT_PRJQUOTA		0x00020000
106 #define F2FS_MOUNT_QUOTA		0x00040000
107 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
108 #define F2FS_MOUNT_RESERVE_ROOT		0x00100000
109 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
110 #define F2FS_MOUNT_NORECOVERY		0x00400000
111 #define F2FS_MOUNT_ATGC			0x00800000
112 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
113 #define	F2FS_MOUNT_GC_MERGE		0x02000000
114 #define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
115 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
116 
117 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
118 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
119 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
120 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
121 
122 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
123 		typecheck(unsigned long long, b) &&			\
124 		((long long)((a) - (b)) > 0))
125 
126 typedef u32 block_t;	/*
127 			 * should not change u32, since it is the on-disk block
128 			 * address format, __le32.
129 			 */
130 typedef u32 nid_t;
131 
132 #define COMPRESS_EXT_NUM		16
133 
134 /*
135  * An implementation of an rwsem that is explicitly unfair to readers. This
136  * prevents priority inversion when a low-priority reader acquires the read lock
137  * while sleeping on the write lock but the write lock is needed by
138  * higher-priority clients.
139  */
140 
141 struct f2fs_rwsem {
142         struct rw_semaphore internal_rwsem;
143 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
144         wait_queue_head_t read_waiters;
145 #endif
146 };
147 
148 struct f2fs_mount_info {
149 	unsigned int opt;
150 	block_t root_reserved_blocks;	/* root reserved blocks */
151 	kuid_t s_resuid;		/* reserved blocks for uid */
152 	kgid_t s_resgid;		/* reserved blocks for gid */
153 	int active_logs;		/* # of active logs */
154 	int inline_xattr_size;		/* inline xattr size */
155 #ifdef CONFIG_F2FS_FAULT_INJECTION
156 	struct f2fs_fault_info fault_info;	/* For fault injection */
157 #endif
158 #ifdef CONFIG_QUOTA
159 	/* Names of quota files with journalled quota */
160 	char *s_qf_names[MAXQUOTAS];
161 	int s_jquota_fmt;			/* Format of quota to use */
162 #endif
163 	/* For which write hints are passed down to block layer */
164 	int alloc_mode;			/* segment allocation policy */
165 	int fsync_mode;			/* fsync policy */
166 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
167 	int bggc_mode;			/* bggc mode: off, on or sync */
168 	int memory_mode;		/* memory mode */
169 	int errors;			/* errors parameter */
170 	int discard_unit;		/*
171 					 * discard command's offset/size should
172 					 * be aligned to this unit: block,
173 					 * segment or section
174 					 */
175 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
176 	block_t unusable_cap_perc;	/* percentage for cap */
177 	block_t unusable_cap;		/* Amount of space allowed to be
178 					 * unusable when disabling checkpoint
179 					 */
180 
181 	/* For compression */
182 	unsigned char compress_algorithm;	/* algorithm type */
183 	unsigned char compress_log_size;	/* cluster log size */
184 	unsigned char compress_level;		/* compress level */
185 	bool compress_chksum;			/* compressed data chksum */
186 	unsigned char compress_ext_cnt;		/* extension count */
187 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
188 	int compress_mode;			/* compression mode */
189 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
190 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
191 };
192 
193 #define F2FS_FEATURE_ENCRYPT			0x00000001
194 #define F2FS_FEATURE_BLKZONED			0x00000002
195 #define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
196 #define F2FS_FEATURE_EXTRA_ATTR			0x00000008
197 #define F2FS_FEATURE_PRJQUOTA			0x00000010
198 #define F2FS_FEATURE_INODE_CHKSUM		0x00000020
199 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
200 #define F2FS_FEATURE_QUOTA_INO			0x00000080
201 #define F2FS_FEATURE_INODE_CRTIME		0x00000100
202 #define F2FS_FEATURE_LOST_FOUND			0x00000200
203 #define F2FS_FEATURE_VERITY			0x00000400
204 #define F2FS_FEATURE_SB_CHKSUM			0x00000800
205 #define F2FS_FEATURE_CASEFOLD			0x00001000
206 #define F2FS_FEATURE_COMPRESSION		0x00002000
207 #define F2FS_FEATURE_RO				0x00004000
208 
209 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
210 	((raw_super->feature & cpu_to_le32(mask)) != 0)
211 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
212 
213 /*
214  * Default values for user and/or group using reserved blocks
215  */
216 #define	F2FS_DEF_RESUID		0
217 #define	F2FS_DEF_RESGID		0
218 
219 /*
220  * For checkpoint manager
221  */
222 enum {
223 	NAT_BITMAP,
224 	SIT_BITMAP
225 };
226 
227 #define	CP_UMOUNT	0x00000001
228 #define	CP_FASTBOOT	0x00000002
229 #define	CP_SYNC		0x00000004
230 #define	CP_RECOVERY	0x00000008
231 #define	CP_DISCARD	0x00000010
232 #define CP_TRIMMED	0x00000020
233 #define CP_PAUSE	0x00000040
234 #define CP_RESIZE 	0x00000080
235 
236 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
237 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
238 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
239 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
240 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
241 #define DEF_CP_INTERVAL			60	/* 60 secs */
242 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
243 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
244 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
245 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
246 
247 struct cp_control {
248 	int reason;
249 	__u64 trim_start;
250 	__u64 trim_end;
251 	__u64 trim_minlen;
252 };
253 
254 /*
255  * indicate meta/data type
256  */
257 enum {
258 	META_CP,
259 	META_NAT,
260 	META_SIT,
261 	META_SSA,
262 	META_MAX,
263 	META_POR,
264 	DATA_GENERIC,		/* check range only */
265 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
266 	DATA_GENERIC_ENHANCE_READ,	/*
267 					 * strong check on range and segment
268 					 * bitmap but no warning due to race
269 					 * condition of read on truncated area
270 					 * by extent_cache
271 					 */
272 	DATA_GENERIC_ENHANCE_UPDATE,	/*
273 					 * strong check on range and segment
274 					 * bitmap for update case
275 					 */
276 	META_GENERIC,
277 };
278 
279 /* for the list of ino */
280 enum {
281 	ORPHAN_INO,		/* for orphan ino list */
282 	APPEND_INO,		/* for append ino list */
283 	UPDATE_INO,		/* for update ino list */
284 	TRANS_DIR_INO,		/* for transactions dir ino list */
285 	FLUSH_INO,		/* for multiple device flushing */
286 	MAX_INO_ENTRY,		/* max. list */
287 };
288 
289 struct ino_entry {
290 	struct list_head list;		/* list head */
291 	nid_t ino;			/* inode number */
292 	unsigned int dirty_device;	/* dirty device bitmap */
293 };
294 
295 /* for the list of inodes to be GCed */
296 struct inode_entry {
297 	struct list_head list;	/* list head */
298 	struct inode *inode;	/* vfs inode pointer */
299 };
300 
301 struct fsync_node_entry {
302 	struct list_head list;	/* list head */
303 	struct page *page;	/* warm node page pointer */
304 	unsigned int seq_id;	/* sequence id */
305 };
306 
307 struct ckpt_req {
308 	struct completion wait;		/* completion for checkpoint done */
309 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
310 	int ret;			/* return code of checkpoint */
311 	ktime_t queue_time;		/* request queued time */
312 };
313 
314 struct ckpt_req_control {
315 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
316 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
317 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
318 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
319 	atomic_t total_ckpt;		/* # of total ckpts */
320 	atomic_t queued_ckpt;		/* # of queued ckpts */
321 	struct llist_head issue_list;	/* list for command issue */
322 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
323 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
324 	unsigned int peak_time;		/* peak wait time in msec until now */
325 };
326 
327 /* for the bitmap indicate blocks to be discarded */
328 struct discard_entry {
329 	struct list_head list;	/* list head */
330 	block_t start_blkaddr;	/* start blockaddr of current segment */
331 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
332 };
333 
334 /* minimum discard granularity, unit: block count */
335 #define MIN_DISCARD_GRANULARITY		1
336 /* default discard granularity of inner discard thread, unit: block count */
337 #define DEFAULT_DISCARD_GRANULARITY		16
338 /* default maximum discard granularity of ordered discard, unit: block count */
339 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
340 
341 /* max discard pend list number */
342 #define MAX_PLIST_NUM		512
343 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
344 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
345 
346 enum {
347 	D_PREP,			/* initial */
348 	D_PARTIAL,		/* partially submitted */
349 	D_SUBMIT,		/* all submitted */
350 	D_DONE,			/* finished */
351 };
352 
353 struct discard_info {
354 	block_t lstart;			/* logical start address */
355 	block_t len;			/* length */
356 	block_t start;			/* actual start address in dev */
357 };
358 
359 struct discard_cmd {
360 	struct rb_node rb_node;		/* rb node located in rb-tree */
361 	struct discard_info di;		/* discard info */
362 	struct list_head list;		/* command list */
363 	struct completion wait;		/* compleation */
364 	struct block_device *bdev;	/* bdev */
365 	unsigned short ref;		/* reference count */
366 	unsigned char state;		/* state */
367 	unsigned char queued;		/* queued discard */
368 	int error;			/* bio error */
369 	spinlock_t lock;		/* for state/bio_ref updating */
370 	unsigned short bio_ref;		/* bio reference count */
371 };
372 
373 enum {
374 	DPOLICY_BG,
375 	DPOLICY_FORCE,
376 	DPOLICY_FSTRIM,
377 	DPOLICY_UMOUNT,
378 	MAX_DPOLICY,
379 };
380 
381 struct discard_policy {
382 	int type;			/* type of discard */
383 	unsigned int min_interval;	/* used for candidates exist */
384 	unsigned int mid_interval;	/* used for device busy */
385 	unsigned int max_interval;	/* used for candidates not exist */
386 	unsigned int max_requests;	/* # of discards issued per round */
387 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
388 	bool io_aware;			/* issue discard in idle time */
389 	bool sync;			/* submit discard with REQ_SYNC flag */
390 	bool ordered;			/* issue discard by lba order */
391 	bool timeout;			/* discard timeout for put_super */
392 	unsigned int granularity;	/* discard granularity */
393 };
394 
395 struct discard_cmd_control {
396 	struct task_struct *f2fs_issue_discard;	/* discard thread */
397 	struct list_head entry_list;		/* 4KB discard entry list */
398 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
399 	struct list_head wait_list;		/* store on-flushing entries */
400 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
401 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
402 	struct mutex cmd_lock;
403 	unsigned int nr_discards;		/* # of discards in the list */
404 	unsigned int max_discards;		/* max. discards to be issued */
405 	unsigned int max_discard_request;	/* max. discard request per round */
406 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
407 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
408 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
409 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
410 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
411 	unsigned int discard_granularity;	/* discard granularity */
412 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
413 	unsigned int undiscard_blks;		/* # of undiscard blocks */
414 	unsigned int next_pos;			/* next discard position */
415 	atomic_t issued_discard;		/* # of issued discard */
416 	atomic_t queued_discard;		/* # of queued discard */
417 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
418 	struct rb_root_cached root;		/* root of discard rb-tree */
419 	bool rbtree_check;			/* config for consistence check */
420 	bool discard_wake;			/* to wake up discard thread */
421 };
422 
423 /* for the list of fsync inodes, used only during recovery */
424 struct fsync_inode_entry {
425 	struct list_head list;	/* list head */
426 	struct inode *inode;	/* vfs inode pointer */
427 	block_t blkaddr;	/* block address locating the last fsync */
428 	block_t last_dentry;	/* block address locating the last dentry */
429 };
430 
431 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
432 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
433 
434 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
435 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
436 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
437 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
438 
439 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
440 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
441 
442 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
443 {
444 	int before = nats_in_cursum(journal);
445 
446 	journal->n_nats = cpu_to_le16(before + i);
447 	return before;
448 }
449 
450 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
451 {
452 	int before = sits_in_cursum(journal);
453 
454 	journal->n_sits = cpu_to_le16(before + i);
455 	return before;
456 }
457 
458 static inline bool __has_cursum_space(struct f2fs_journal *journal,
459 							int size, int type)
460 {
461 	if (type == NAT_JOURNAL)
462 		return size <= MAX_NAT_JENTRIES(journal);
463 	return size <= MAX_SIT_JENTRIES(journal);
464 }
465 
466 /* for inline stuff */
467 #define DEF_INLINE_RESERVED_SIZE	1
468 static inline int get_extra_isize(struct inode *inode);
469 static inline int get_inline_xattr_addrs(struct inode *inode);
470 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
471 				(CUR_ADDRS_PER_INODE(inode) -		\
472 				get_inline_xattr_addrs(inode) -	\
473 				DEF_INLINE_RESERVED_SIZE))
474 
475 /* for inline dir */
476 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
477 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
478 				BITS_PER_BYTE + 1))
479 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
480 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
481 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
482 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
483 				NR_INLINE_DENTRY(inode) + \
484 				INLINE_DENTRY_BITMAP_SIZE(inode)))
485 
486 /*
487  * For INODE and NODE manager
488  */
489 /* for directory operations */
490 
491 struct f2fs_filename {
492 	/*
493 	 * The filename the user specified.  This is NULL for some
494 	 * filesystem-internal operations, e.g. converting an inline directory
495 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
496 	 */
497 	const struct qstr *usr_fname;
498 
499 	/*
500 	 * The on-disk filename.  For encrypted directories, this is encrypted.
501 	 * This may be NULL for lookups in an encrypted dir without the key.
502 	 */
503 	struct fscrypt_str disk_name;
504 
505 	/* The dirhash of this filename */
506 	f2fs_hash_t hash;
507 
508 #ifdef CONFIG_FS_ENCRYPTION
509 	/*
510 	 * For lookups in encrypted directories: either the buffer backing
511 	 * disk_name, or a buffer that holds the decoded no-key name.
512 	 */
513 	struct fscrypt_str crypto_buf;
514 #endif
515 #if IS_ENABLED(CONFIG_UNICODE)
516 	/*
517 	 * For casefolded directories: the casefolded name, but it's left NULL
518 	 * if the original name is not valid Unicode, if the original name is
519 	 * "." or "..", if the directory is both casefolded and encrypted and
520 	 * its encryption key is unavailable, or if the filesystem is doing an
521 	 * internal operation where usr_fname is also NULL.  In all these cases
522 	 * we fall back to treating the name as an opaque byte sequence.
523 	 */
524 	struct fscrypt_str cf_name;
525 #endif
526 };
527 
528 struct f2fs_dentry_ptr {
529 	struct inode *inode;
530 	void *bitmap;
531 	struct f2fs_dir_entry *dentry;
532 	__u8 (*filename)[F2FS_SLOT_LEN];
533 	int max;
534 	int nr_bitmap;
535 };
536 
537 static inline void make_dentry_ptr_block(struct inode *inode,
538 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
539 {
540 	d->inode = inode;
541 	d->max = NR_DENTRY_IN_BLOCK;
542 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
543 	d->bitmap = t->dentry_bitmap;
544 	d->dentry = t->dentry;
545 	d->filename = t->filename;
546 }
547 
548 static inline void make_dentry_ptr_inline(struct inode *inode,
549 					struct f2fs_dentry_ptr *d, void *t)
550 {
551 	int entry_cnt = NR_INLINE_DENTRY(inode);
552 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
553 	int reserved_size = INLINE_RESERVED_SIZE(inode);
554 
555 	d->inode = inode;
556 	d->max = entry_cnt;
557 	d->nr_bitmap = bitmap_size;
558 	d->bitmap = t;
559 	d->dentry = t + bitmap_size + reserved_size;
560 	d->filename = t + bitmap_size + reserved_size +
561 					SIZE_OF_DIR_ENTRY * entry_cnt;
562 }
563 
564 /*
565  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
566  * as its node offset to distinguish from index node blocks.
567  * But some bits are used to mark the node block.
568  */
569 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
570 				>> OFFSET_BIT_SHIFT)
571 enum {
572 	ALLOC_NODE,			/* allocate a new node page if needed */
573 	LOOKUP_NODE,			/* look up a node without readahead */
574 	LOOKUP_NODE_RA,			/*
575 					 * look up a node with readahead called
576 					 * by get_data_block.
577 					 */
578 };
579 
580 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
581 
582 /* congestion wait timeout value, default: 20ms */
583 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
584 
585 /* maximum retry quota flush count */
586 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
587 
588 /* maximum retry of EIO'ed page */
589 #define MAX_RETRY_PAGE_EIO			100
590 
591 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
592 
593 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
594 
595 /* dirty segments threshold for triggering CP */
596 #define DEFAULT_DIRTY_THRESHOLD		4
597 
598 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
599 #define RECOVERY_MIN_RA_BLOCKS		1
600 
601 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
602 
603 /* for in-memory extent cache entry */
604 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
605 
606 /* number of extent info in extent cache we try to shrink */
607 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
608 
609 /* number of age extent info in extent cache we try to shrink */
610 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
611 #define LAST_AGE_WEIGHT			30
612 #define SAME_AGE_REGION			1024
613 
614 /*
615  * Define data block with age less than 1GB as hot data
616  * define data block with age less than 10GB but more than 1GB as warm data
617  */
618 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
619 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
620 
621 /* extent cache type */
622 enum extent_type {
623 	EX_READ,
624 	EX_BLOCK_AGE,
625 	NR_EXTENT_CACHES,
626 };
627 
628 struct extent_info {
629 	unsigned int fofs;		/* start offset in a file */
630 	unsigned int len;		/* length of the extent */
631 	union {
632 		/* read extent_cache */
633 		struct {
634 			/* start block address of the extent */
635 			block_t blk;
636 #ifdef CONFIG_F2FS_FS_COMPRESSION
637 			/* physical extent length of compressed blocks */
638 			unsigned int c_len;
639 #endif
640 		};
641 		/* block age extent_cache */
642 		struct {
643 			/* block age of the extent */
644 			unsigned long long age;
645 			/* last total blocks allocated */
646 			unsigned long long last_blocks;
647 		};
648 	};
649 };
650 
651 struct extent_node {
652 	struct rb_node rb_node;		/* rb node located in rb-tree */
653 	struct extent_info ei;		/* extent info */
654 	struct list_head list;		/* node in global extent list of sbi */
655 	struct extent_tree *et;		/* extent tree pointer */
656 };
657 
658 struct extent_tree {
659 	nid_t ino;			/* inode number */
660 	enum extent_type type;		/* keep the extent tree type */
661 	struct rb_root_cached root;	/* root of extent info rb-tree */
662 	struct extent_node *cached_en;	/* recently accessed extent node */
663 	struct list_head list;		/* to be used by sbi->zombie_list */
664 	rwlock_t lock;			/* protect extent info rb-tree */
665 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
666 	bool largest_updated;		/* largest extent updated */
667 	struct extent_info largest;	/* largest cached extent for EX_READ */
668 };
669 
670 struct extent_tree_info {
671 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
672 	struct mutex extent_tree_lock;	/* locking extent radix tree */
673 	struct list_head extent_list;		/* lru list for shrinker */
674 	spinlock_t extent_lock;			/* locking extent lru list */
675 	atomic_t total_ext_tree;		/* extent tree count */
676 	struct list_head zombie_list;		/* extent zombie tree list */
677 	atomic_t total_zombie_tree;		/* extent zombie tree count */
678 	atomic_t total_ext_node;		/* extent info count */
679 };
680 
681 /*
682  * State of block returned by f2fs_map_blocks.
683  */
684 #define F2FS_MAP_NEW		(1U << 0)
685 #define F2FS_MAP_MAPPED		(1U << 1)
686 #define F2FS_MAP_DELALLOC	(1U << 2)
687 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
688 				F2FS_MAP_DELALLOC)
689 
690 struct f2fs_map_blocks {
691 	struct block_device *m_bdev;	/* for multi-device dio */
692 	block_t m_pblk;
693 	block_t m_lblk;
694 	unsigned int m_len;
695 	unsigned int m_flags;
696 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
697 	pgoff_t *m_next_extent;		/* point to next possible extent */
698 	int m_seg_type;
699 	bool m_may_create;		/* indicate it is from write path */
700 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
701 };
702 
703 /* for flag in get_data_block */
704 enum {
705 	F2FS_GET_BLOCK_DEFAULT,
706 	F2FS_GET_BLOCK_FIEMAP,
707 	F2FS_GET_BLOCK_BMAP,
708 	F2FS_GET_BLOCK_DIO,
709 	F2FS_GET_BLOCK_PRE_DIO,
710 	F2FS_GET_BLOCK_PRE_AIO,
711 	F2FS_GET_BLOCK_PRECACHE,
712 };
713 
714 /*
715  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
716  */
717 #define FADVISE_COLD_BIT	0x01
718 #define FADVISE_LOST_PINO_BIT	0x02
719 #define FADVISE_ENCRYPT_BIT	0x04
720 #define FADVISE_ENC_NAME_BIT	0x08
721 #define FADVISE_KEEP_SIZE_BIT	0x10
722 #define FADVISE_HOT_BIT		0x20
723 #define FADVISE_VERITY_BIT	0x40
724 #define FADVISE_TRUNC_BIT	0x80
725 
726 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
727 
728 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
729 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
730 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
731 
732 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
733 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
734 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
735 
736 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
737 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
738 
739 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
740 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
741 
742 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
743 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
744 
745 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
746 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
747 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
748 
749 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
750 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
751 
752 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
753 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
754 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
755 
756 #define DEF_DIR_LEVEL		0
757 
758 enum {
759 	GC_FAILURE_PIN,
760 	MAX_GC_FAILURE
761 };
762 
763 /* used for f2fs_inode_info->flags */
764 enum {
765 	FI_NEW_INODE,		/* indicate newly allocated inode */
766 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
767 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
768 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
769 	FI_INC_LINK,		/* need to increment i_nlink */
770 	FI_ACL_MODE,		/* indicate acl mode */
771 	FI_NO_ALLOC,		/* should not allocate any blocks */
772 	FI_FREE_NID,		/* free allocated nide */
773 	FI_NO_EXTENT,		/* not to use the extent cache */
774 	FI_INLINE_XATTR,	/* used for inline xattr */
775 	FI_INLINE_DATA,		/* used for inline data*/
776 	FI_INLINE_DENTRY,	/* used for inline dentry */
777 	FI_APPEND_WRITE,	/* inode has appended data */
778 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
779 	FI_NEED_IPU,		/* used for ipu per file */
780 	FI_ATOMIC_FILE,		/* indicate atomic file */
781 	FI_DATA_EXIST,		/* indicate data exists */
782 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
783 	FI_SKIP_WRITES,		/* should skip data page writeback */
784 	FI_OPU_WRITE,		/* used for opu per file */
785 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
786 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
787 	FI_HOT_DATA,		/* indicate file is hot */
788 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
789 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
790 	FI_PIN_FILE,		/* indicate file should not be gced */
791 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
792 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
793 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
794 	FI_MMAP_FILE,		/* indicate file was mmapped */
795 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
796 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
797 	FI_ALIGNED_WRITE,	/* enable aligned write */
798 	FI_COW_FILE,		/* indicate COW file */
799 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
800 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
801 	FI_MAX,			/* max flag, never be used */
802 };
803 
804 struct f2fs_inode_info {
805 	struct inode vfs_inode;		/* serve a vfs inode */
806 	unsigned long i_flags;		/* keep an inode flags for ioctl */
807 	unsigned char i_advise;		/* use to give file attribute hints */
808 	unsigned char i_dir_level;	/* use for dentry level for large dir */
809 	unsigned int i_current_depth;	/* only for directory depth */
810 	/* for gc failure statistic */
811 	unsigned int i_gc_failures[MAX_GC_FAILURE];
812 	unsigned int i_pino;		/* parent inode number */
813 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
814 
815 	/* Use below internally in f2fs*/
816 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
817 	struct f2fs_rwsem i_sem;	/* protect fi info */
818 	atomic_t dirty_pages;		/* # of dirty pages */
819 	f2fs_hash_t chash;		/* hash value of given file name */
820 	unsigned int clevel;		/* maximum level of given file name */
821 	struct task_struct *task;	/* lookup and create consistency */
822 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
823 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
824 	nid_t i_xattr_nid;		/* node id that contains xattrs */
825 	loff_t	last_disk_size;		/* lastly written file size */
826 	spinlock_t i_size_lock;		/* protect last_disk_size */
827 
828 #ifdef CONFIG_QUOTA
829 	struct dquot __rcu *i_dquot[MAXQUOTAS];
830 
831 	/* quota space reservation, managed internally by quota code */
832 	qsize_t i_reserved_quota;
833 #endif
834 	struct list_head dirty_list;	/* dirty list for dirs and files */
835 	struct list_head gdirty_list;	/* linked in global dirty list */
836 	struct task_struct *atomic_write_task;	/* store atomic write task */
837 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
838 					/* cached extent_tree entry */
839 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
840 
841 	/* avoid racing between foreground op and gc */
842 	struct f2fs_rwsem i_gc_rwsem[2];
843 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
844 
845 	int i_extra_isize;		/* size of extra space located in i_addr */
846 	kprojid_t i_projid;		/* id for project quota */
847 	int i_inline_xattr_size;	/* inline xattr size */
848 	struct timespec64 i_crtime;	/* inode creation time */
849 	struct timespec64 i_disk_time[3];/* inode disk times */
850 
851 	/* for file compress */
852 	atomic_t i_compr_blocks;		/* # of compressed blocks */
853 	unsigned char i_compress_algorithm;	/* algorithm type */
854 	unsigned char i_log_cluster_size;	/* log of cluster size */
855 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
856 	unsigned char i_compress_flag;		/* compress flag */
857 	unsigned int i_cluster_size;		/* cluster size */
858 
859 	unsigned int atomic_write_cnt;
860 	loff_t original_i_size;		/* original i_size before atomic write */
861 };
862 
863 static inline void get_read_extent_info(struct extent_info *ext,
864 					struct f2fs_extent *i_ext)
865 {
866 	ext->fofs = le32_to_cpu(i_ext->fofs);
867 	ext->blk = le32_to_cpu(i_ext->blk);
868 	ext->len = le32_to_cpu(i_ext->len);
869 }
870 
871 static inline void set_raw_read_extent(struct extent_info *ext,
872 					struct f2fs_extent *i_ext)
873 {
874 	i_ext->fofs = cpu_to_le32(ext->fofs);
875 	i_ext->blk = cpu_to_le32(ext->blk);
876 	i_ext->len = cpu_to_le32(ext->len);
877 }
878 
879 static inline bool __is_discard_mergeable(struct discard_info *back,
880 			struct discard_info *front, unsigned int max_len)
881 {
882 	return (back->lstart + back->len == front->lstart) &&
883 		(back->len + front->len <= max_len);
884 }
885 
886 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
887 			struct discard_info *back, unsigned int max_len)
888 {
889 	return __is_discard_mergeable(back, cur, max_len);
890 }
891 
892 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
893 			struct discard_info *front, unsigned int max_len)
894 {
895 	return __is_discard_mergeable(cur, front, max_len);
896 }
897 
898 /*
899  * For free nid management
900  */
901 enum nid_state {
902 	FREE_NID,		/* newly added to free nid list */
903 	PREALLOC_NID,		/* it is preallocated */
904 	MAX_NID_STATE,
905 };
906 
907 enum nat_state {
908 	TOTAL_NAT,
909 	DIRTY_NAT,
910 	RECLAIMABLE_NAT,
911 	MAX_NAT_STATE,
912 };
913 
914 struct f2fs_nm_info {
915 	block_t nat_blkaddr;		/* base disk address of NAT */
916 	nid_t max_nid;			/* maximum possible node ids */
917 	nid_t available_nids;		/* # of available node ids */
918 	nid_t next_scan_nid;		/* the next nid to be scanned */
919 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
920 	unsigned int ram_thresh;	/* control the memory footprint */
921 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
922 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
923 
924 	/* NAT cache management */
925 	struct radix_tree_root nat_root;/* root of the nat entry cache */
926 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
927 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
928 	struct list_head nat_entries;	/* cached nat entry list (clean) */
929 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
930 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
931 	unsigned int nat_blocks;	/* # of nat blocks */
932 
933 	/* free node ids management */
934 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
935 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
936 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
937 	spinlock_t nid_list_lock;	/* protect nid lists ops */
938 	struct mutex build_lock;	/* lock for build free nids */
939 	unsigned char **free_nid_bitmap;
940 	unsigned char *nat_block_bitmap;
941 	unsigned short *free_nid_count;	/* free nid count of NAT block */
942 
943 	/* for checkpoint */
944 	char *nat_bitmap;		/* NAT bitmap pointer */
945 
946 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
947 	unsigned char *nat_bits;	/* NAT bits blocks */
948 	unsigned char *full_nat_bits;	/* full NAT pages */
949 	unsigned char *empty_nat_bits;	/* empty NAT pages */
950 #ifdef CONFIG_F2FS_CHECK_FS
951 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
952 #endif
953 	int bitmap_size;		/* bitmap size */
954 };
955 
956 /*
957  * this structure is used as one of function parameters.
958  * all the information are dedicated to a given direct node block determined
959  * by the data offset in a file.
960  */
961 struct dnode_of_data {
962 	struct inode *inode;		/* vfs inode pointer */
963 	struct page *inode_page;	/* its inode page, NULL is possible */
964 	struct page *node_page;		/* cached direct node page */
965 	nid_t nid;			/* node id of the direct node block */
966 	unsigned int ofs_in_node;	/* data offset in the node page */
967 	bool inode_page_locked;		/* inode page is locked or not */
968 	bool node_changed;		/* is node block changed */
969 	char cur_level;			/* level of hole node page */
970 	char max_level;			/* level of current page located */
971 	block_t	data_blkaddr;		/* block address of the node block */
972 };
973 
974 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
975 		struct page *ipage, struct page *npage, nid_t nid)
976 {
977 	memset(dn, 0, sizeof(*dn));
978 	dn->inode = inode;
979 	dn->inode_page = ipage;
980 	dn->node_page = npage;
981 	dn->nid = nid;
982 }
983 
984 /*
985  * For SIT manager
986  *
987  * By default, there are 6 active log areas across the whole main area.
988  * When considering hot and cold data separation to reduce cleaning overhead,
989  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
990  * respectively.
991  * In the current design, you should not change the numbers intentionally.
992  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
993  * logs individually according to the underlying devices. (default: 6)
994  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
995  * data and 8 for node logs.
996  */
997 #define	NR_CURSEG_DATA_TYPE	(3)
998 #define NR_CURSEG_NODE_TYPE	(3)
999 #define NR_CURSEG_INMEM_TYPE	(2)
1000 #define NR_CURSEG_RO_TYPE	(2)
1001 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1002 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1003 
1004 enum {
1005 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1006 	CURSEG_WARM_DATA,	/* data blocks */
1007 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1008 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1009 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1010 	CURSEG_COLD_NODE,	/* indirect node blocks */
1011 	NR_PERSISTENT_LOG,	/* number of persistent log */
1012 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1013 				/* pinned file that needs consecutive block address */
1014 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1015 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1016 };
1017 
1018 struct flush_cmd {
1019 	struct completion wait;
1020 	struct llist_node llnode;
1021 	nid_t ino;
1022 	int ret;
1023 };
1024 
1025 struct flush_cmd_control {
1026 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1027 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1028 	atomic_t issued_flush;			/* # of issued flushes */
1029 	atomic_t queued_flush;			/* # of queued flushes */
1030 	struct llist_head issue_list;		/* list for command issue */
1031 	struct llist_node *dispatch_list;	/* list for command dispatch */
1032 };
1033 
1034 struct f2fs_sm_info {
1035 	struct sit_info *sit_info;		/* whole segment information */
1036 	struct free_segmap_info *free_info;	/* free segment information */
1037 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1038 	struct curseg_info *curseg_array;	/* active segment information */
1039 
1040 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1041 
1042 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1043 	block_t main_blkaddr;		/* start block address of main area */
1044 	block_t ssa_blkaddr;		/* start block address of SSA area */
1045 
1046 	unsigned int segment_count;	/* total # of segments */
1047 	unsigned int main_segments;	/* # of segments in main area */
1048 	unsigned int reserved_segments;	/* # of reserved segments */
1049 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1050 	unsigned int ovp_segments;	/* # of overprovision segments */
1051 
1052 	/* a threshold to reclaim prefree segments */
1053 	unsigned int rec_prefree_segments;
1054 
1055 	struct list_head sit_entry_set;	/* sit entry set list */
1056 
1057 	unsigned int ipu_policy;	/* in-place-update policy */
1058 	unsigned int min_ipu_util;	/* in-place-update threshold */
1059 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1060 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1061 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1062 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1063 
1064 	/* for flush command control */
1065 	struct flush_cmd_control *fcc_info;
1066 
1067 	/* for discard command control */
1068 	struct discard_cmd_control *dcc_info;
1069 };
1070 
1071 /*
1072  * For superblock
1073  */
1074 /*
1075  * COUNT_TYPE for monitoring
1076  *
1077  * f2fs monitors the number of several block types such as on-writeback,
1078  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1079  */
1080 #define WB_DATA_TYPE(p, f)			\
1081 	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1082 enum count_type {
1083 	F2FS_DIRTY_DENTS,
1084 	F2FS_DIRTY_DATA,
1085 	F2FS_DIRTY_QDATA,
1086 	F2FS_DIRTY_NODES,
1087 	F2FS_DIRTY_META,
1088 	F2FS_DIRTY_IMETA,
1089 	F2FS_WB_CP_DATA,
1090 	F2FS_WB_DATA,
1091 	F2FS_RD_DATA,
1092 	F2FS_RD_NODE,
1093 	F2FS_RD_META,
1094 	F2FS_DIO_WRITE,
1095 	F2FS_DIO_READ,
1096 	NR_COUNT_TYPE,
1097 };
1098 
1099 /*
1100  * The below are the page types of bios used in submit_bio().
1101  * The available types are:
1102  * DATA			User data pages. It operates as async mode.
1103  * NODE			Node pages. It operates as async mode.
1104  * META			FS metadata pages such as SIT, NAT, CP.
1105  * NR_PAGE_TYPE		The number of page types.
1106  * META_FLUSH		Make sure the previous pages are written
1107  *			with waiting the bio's completion
1108  * ...			Only can be used with META.
1109  */
1110 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1111 #define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1112 enum page_type {
1113 	DATA = 0,
1114 	NODE = 1,	/* should not change this */
1115 	META,
1116 	NR_PAGE_TYPE,
1117 	META_FLUSH,
1118 	IPU,		/* the below types are used by tracepoints only. */
1119 	OPU,
1120 };
1121 
1122 enum temp_type {
1123 	HOT = 0,	/* must be zero for meta bio */
1124 	WARM,
1125 	COLD,
1126 	NR_TEMP_TYPE,
1127 };
1128 
1129 enum need_lock_type {
1130 	LOCK_REQ = 0,
1131 	LOCK_DONE,
1132 	LOCK_RETRY,
1133 };
1134 
1135 enum cp_reason_type {
1136 	CP_NO_NEEDED,
1137 	CP_NON_REGULAR,
1138 	CP_COMPRESSED,
1139 	CP_HARDLINK,
1140 	CP_SB_NEED_CP,
1141 	CP_WRONG_PINO,
1142 	CP_NO_SPC_ROLL,
1143 	CP_NODE_NEED_CP,
1144 	CP_FASTBOOT_MODE,
1145 	CP_SPEC_LOG_NUM,
1146 	CP_RECOVER_DIR,
1147 };
1148 
1149 enum iostat_type {
1150 	/* WRITE IO */
1151 	APP_DIRECT_IO,			/* app direct write IOs */
1152 	APP_BUFFERED_IO,		/* app buffered write IOs */
1153 	APP_WRITE_IO,			/* app write IOs */
1154 	APP_MAPPED_IO,			/* app mapped IOs */
1155 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1156 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1157 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1158 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1159 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1160 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1161 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1162 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1163 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1164 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1165 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1166 
1167 	/* READ IO */
1168 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1169 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1170 	APP_READ_IO,			/* app read IOs */
1171 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1172 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1173 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1174 	FS_DATA_READ_IO,		/* data read IOs */
1175 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1176 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1177 	FS_NODE_READ_IO,		/* node read IOs */
1178 	FS_META_READ_IO,		/* meta read IOs */
1179 
1180 	/* other */
1181 	FS_DISCARD_IO,			/* discard */
1182 	FS_FLUSH_IO,			/* flush */
1183 	FS_ZONE_RESET_IO,		/* zone reset */
1184 	NR_IO_TYPE,
1185 };
1186 
1187 struct f2fs_io_info {
1188 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1189 	nid_t ino;		/* inode number */
1190 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1191 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1192 	enum req_op op;		/* contains REQ_OP_ */
1193 	blk_opf_t op_flags;	/* req_flag_bits */
1194 	block_t new_blkaddr;	/* new block address to be written */
1195 	block_t old_blkaddr;	/* old block address before Cow */
1196 	struct page *page;	/* page to be written */
1197 	struct page *encrypted_page;	/* encrypted page */
1198 	struct page *compressed_page;	/* compressed page */
1199 	struct list_head list;		/* serialize IOs */
1200 	unsigned int compr_blocks;	/* # of compressed block addresses */
1201 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1202 	unsigned int version:8;		/* version of the node */
1203 	unsigned int submitted:1;	/* indicate IO submission */
1204 	unsigned int in_list:1;		/* indicate fio is in io_list */
1205 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1206 	unsigned int encrypted:1;	/* indicate file is encrypted */
1207 	unsigned int post_read:1;	/* require post read */
1208 	enum iostat_type io_type;	/* io type */
1209 	struct writeback_control *io_wbc; /* writeback control */
1210 	struct bio **bio;		/* bio for ipu */
1211 	sector_t *last_block;		/* last block number in bio */
1212 };
1213 
1214 struct bio_entry {
1215 	struct bio *bio;
1216 	struct list_head list;
1217 };
1218 
1219 #define is_read_io(rw) ((rw) == READ)
1220 struct f2fs_bio_info {
1221 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1222 	struct bio *bio;		/* bios to merge */
1223 	sector_t last_block_in_bio;	/* last block number */
1224 	struct f2fs_io_info fio;	/* store buffered io info. */
1225 #ifdef CONFIG_BLK_DEV_ZONED
1226 	struct completion zone_wait;	/* condition value for the previous open zone to close */
1227 	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1228 	void *bi_private;		/* previous bi_private for pending bio */
1229 #endif
1230 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1231 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1232 	struct list_head io_list;	/* track fios */
1233 	struct list_head bio_list;	/* bio entry list head */
1234 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1235 };
1236 
1237 #define FDEV(i)				(sbi->devs[i])
1238 #define RDEV(i)				(raw_super->devs[i])
1239 struct f2fs_dev_info {
1240 	struct block_device *bdev;
1241 	char path[MAX_PATH_LEN];
1242 	unsigned int total_segments;
1243 	block_t start_blk;
1244 	block_t end_blk;
1245 #ifdef CONFIG_BLK_DEV_ZONED
1246 	unsigned int nr_blkz;		/* Total number of zones */
1247 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1248 #endif
1249 };
1250 
1251 enum inode_type {
1252 	DIR_INODE,			/* for dirty dir inode */
1253 	FILE_INODE,			/* for dirty regular/symlink inode */
1254 	DIRTY_META,			/* for all dirtied inode metadata */
1255 	NR_INODE_TYPE,
1256 };
1257 
1258 /* for inner inode cache management */
1259 struct inode_management {
1260 	struct radix_tree_root ino_root;	/* ino entry array */
1261 	spinlock_t ino_lock;			/* for ino entry lock */
1262 	struct list_head ino_list;		/* inode list head */
1263 	unsigned long ino_num;			/* number of entries */
1264 };
1265 
1266 /* for GC_AT */
1267 struct atgc_management {
1268 	bool atgc_enabled;			/* ATGC is enabled or not */
1269 	struct rb_root_cached root;		/* root of victim rb-tree */
1270 	struct list_head victim_list;		/* linked with all victim entries */
1271 	unsigned int victim_count;		/* victim count in rb-tree */
1272 	unsigned int candidate_ratio;		/* candidate ratio */
1273 	unsigned int max_candidate_count;	/* max candidate count */
1274 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1275 	unsigned long long age_threshold;	/* age threshold */
1276 };
1277 
1278 struct f2fs_gc_control {
1279 	unsigned int victim_segno;	/* target victim segment number */
1280 	int init_gc_type;		/* FG_GC or BG_GC */
1281 	bool no_bg_gc;			/* check the space and stop bg_gc */
1282 	bool should_migrate_blocks;	/* should migrate blocks */
1283 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1284 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1285 };
1286 
1287 /*
1288  * For s_flag in struct f2fs_sb_info
1289  * Modification on enum should be synchronized with s_flag array
1290  */
1291 enum {
1292 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1293 	SBI_IS_CLOSE,				/* specify unmounting */
1294 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1295 	SBI_POR_DOING,				/* recovery is doing or not */
1296 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1297 	SBI_NEED_CP,				/* need to checkpoint */
1298 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1299 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1300 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1301 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1302 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1303 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1304 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1305 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1306 	SBI_IS_FREEZING,			/* freezefs is in process */
1307 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1308 	MAX_SBI_FLAG,
1309 };
1310 
1311 enum {
1312 	CP_TIME,
1313 	REQ_TIME,
1314 	DISCARD_TIME,
1315 	GC_TIME,
1316 	DISABLE_TIME,
1317 	UMOUNT_DISCARD_TIMEOUT,
1318 	MAX_TIME,
1319 };
1320 
1321 /* Note that you need to keep synchronization with this gc_mode_names array */
1322 enum {
1323 	GC_NORMAL,
1324 	GC_IDLE_CB,
1325 	GC_IDLE_GREEDY,
1326 	GC_IDLE_AT,
1327 	GC_URGENT_HIGH,
1328 	GC_URGENT_LOW,
1329 	GC_URGENT_MID,
1330 	MAX_GC_MODE,
1331 };
1332 
1333 enum {
1334 	BGGC_MODE_ON,		/* background gc is on */
1335 	BGGC_MODE_OFF,		/* background gc is off */
1336 	BGGC_MODE_SYNC,		/*
1337 				 * background gc is on, migrating blocks
1338 				 * like foreground gc
1339 				 */
1340 };
1341 
1342 enum {
1343 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1344 	FS_MODE_LFS,			/* use lfs allocation only */
1345 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1346 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1347 };
1348 
1349 enum {
1350 	ALLOC_MODE_DEFAULT,	/* stay default */
1351 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1352 };
1353 
1354 enum fsync_mode {
1355 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1356 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1357 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1358 };
1359 
1360 enum {
1361 	COMPR_MODE_FS,		/*
1362 				 * automatically compress compression
1363 				 * enabled files
1364 				 */
1365 	COMPR_MODE_USER,	/*
1366 				 * automatical compression is disabled.
1367 				 * user can control the file compression
1368 				 * using ioctls
1369 				 */
1370 };
1371 
1372 enum {
1373 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1374 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1375 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1376 };
1377 
1378 enum {
1379 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1380 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1381 };
1382 
1383 enum errors_option {
1384 	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1385 	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1386 	MOUNT_ERRORS_PANIC,	/* panic on errors */
1387 };
1388 
1389 enum {
1390 	BACKGROUND,
1391 	FOREGROUND,
1392 	MAX_CALL_TYPE,
1393 	TOTAL_CALL = FOREGROUND,
1394 };
1395 
1396 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1397 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1398 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1399 
1400 /*
1401  * Layout of f2fs page.private:
1402  *
1403  * Layout A: lowest bit should be 1
1404  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1405  * bit 0	PAGE_PRIVATE_NOT_POINTER
1406  * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1407  * bit 2	PAGE_PRIVATE_INLINE_INODE
1408  * bit 3	PAGE_PRIVATE_REF_RESOURCE
1409  * bit 4-	f2fs private data
1410  *
1411  * Layout B: lowest bit should be 0
1412  * page.private is a wrapped pointer.
1413  */
1414 enum {
1415 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1416 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1417 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1418 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1419 	PAGE_PRIVATE_MAX
1420 };
1421 
1422 /* For compression */
1423 enum compress_algorithm_type {
1424 	COMPRESS_LZO,
1425 	COMPRESS_LZ4,
1426 	COMPRESS_ZSTD,
1427 	COMPRESS_LZORLE,
1428 	COMPRESS_MAX,
1429 };
1430 
1431 enum compress_flag {
1432 	COMPRESS_CHKSUM,
1433 	COMPRESS_MAX_FLAG,
1434 };
1435 
1436 #define	COMPRESS_WATERMARK			20
1437 #define	COMPRESS_PERCENT			20
1438 
1439 #define COMPRESS_DATA_RESERVED_SIZE		4
1440 struct compress_data {
1441 	__le32 clen;			/* compressed data size */
1442 	__le32 chksum;			/* compressed data chksum */
1443 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1444 	u8 cdata[];			/* compressed data */
1445 };
1446 
1447 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1448 
1449 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1450 
1451 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1452 
1453 #define	COMPRESS_LEVEL_OFFSET	8
1454 
1455 /* compress context */
1456 struct compress_ctx {
1457 	struct inode *inode;		/* inode the context belong to */
1458 	pgoff_t cluster_idx;		/* cluster index number */
1459 	unsigned int cluster_size;	/* page count in cluster */
1460 	unsigned int log_cluster_size;	/* log of cluster size */
1461 	struct page **rpages;		/* pages store raw data in cluster */
1462 	unsigned int nr_rpages;		/* total page number in rpages */
1463 	struct page **cpages;		/* pages store compressed data in cluster */
1464 	unsigned int nr_cpages;		/* total page number in cpages */
1465 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1466 	void *rbuf;			/* virtual mapped address on rpages */
1467 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1468 	size_t rlen;			/* valid data length in rbuf */
1469 	size_t clen;			/* valid data length in cbuf */
1470 	void *private;			/* payload buffer for specified compression algorithm */
1471 	void *private2;			/* extra payload buffer */
1472 };
1473 
1474 /* compress context for write IO path */
1475 struct compress_io_ctx {
1476 	u32 magic;			/* magic number to indicate page is compressed */
1477 	struct inode *inode;		/* inode the context belong to */
1478 	struct page **rpages;		/* pages store raw data in cluster */
1479 	unsigned int nr_rpages;		/* total page number in rpages */
1480 	atomic_t pending_pages;		/* in-flight compressed page count */
1481 };
1482 
1483 /* Context for decompressing one cluster on the read IO path */
1484 struct decompress_io_ctx {
1485 	u32 magic;			/* magic number to indicate page is compressed */
1486 	struct inode *inode;		/* inode the context belong to */
1487 	pgoff_t cluster_idx;		/* cluster index number */
1488 	unsigned int cluster_size;	/* page count in cluster */
1489 	unsigned int log_cluster_size;	/* log of cluster size */
1490 	struct page **rpages;		/* pages store raw data in cluster */
1491 	unsigned int nr_rpages;		/* total page number in rpages */
1492 	struct page **cpages;		/* pages store compressed data in cluster */
1493 	unsigned int nr_cpages;		/* total page number in cpages */
1494 	struct page **tpages;		/* temp pages to pad holes in cluster */
1495 	void *rbuf;			/* virtual mapped address on rpages */
1496 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1497 	size_t rlen;			/* valid data length in rbuf */
1498 	size_t clen;			/* valid data length in cbuf */
1499 
1500 	/*
1501 	 * The number of compressed pages remaining to be read in this cluster.
1502 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1503 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1504 	 * is decompressed (or an error is reported).
1505 	 *
1506 	 * If an error occurs before all the pages have been submitted for I/O,
1507 	 * then this will never reach 0.  In this case the I/O submitter is
1508 	 * responsible for calling f2fs_decompress_end_io() instead.
1509 	 */
1510 	atomic_t remaining_pages;
1511 
1512 	/*
1513 	 * Number of references to this decompress_io_ctx.
1514 	 *
1515 	 * One reference is held for I/O completion.  This reference is dropped
1516 	 * after the pagecache pages are updated and unlocked -- either after
1517 	 * decompression (and verity if enabled), or after an error.
1518 	 *
1519 	 * In addition, each compressed page holds a reference while it is in a
1520 	 * bio.  These references are necessary prevent compressed pages from
1521 	 * being freed while they are still in a bio.
1522 	 */
1523 	refcount_t refcnt;
1524 
1525 	bool failed;			/* IO error occurred before decompression? */
1526 	bool need_verity;		/* need fs-verity verification after decompression? */
1527 	void *private;			/* payload buffer for specified decompression algorithm */
1528 	void *private2;			/* extra payload buffer */
1529 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1530 	struct work_struct free_work;	/* work for late free this structure itself */
1531 };
1532 
1533 #define NULL_CLUSTER			((unsigned int)(~0))
1534 #define MIN_COMPRESS_LOG_SIZE		2
1535 #define MAX_COMPRESS_LOG_SIZE		8
1536 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1537 
1538 struct f2fs_sb_info {
1539 	struct super_block *sb;			/* pointer to VFS super block */
1540 	struct proc_dir_entry *s_proc;		/* proc entry */
1541 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1542 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1543 	int valid_super_block;			/* valid super block no */
1544 	unsigned long s_flag;				/* flags for sbi */
1545 	struct mutex writepages;		/* mutex for writepages() */
1546 
1547 #ifdef CONFIG_BLK_DEV_ZONED
1548 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1549 #endif
1550 
1551 	/* for node-related operations */
1552 	struct f2fs_nm_info *nm_info;		/* node manager */
1553 	struct inode *node_inode;		/* cache node blocks */
1554 
1555 	/* for segment-related operations */
1556 	struct f2fs_sm_info *sm_info;		/* segment manager */
1557 
1558 	/* for bio operations */
1559 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1560 	/* keep migration IO order for LFS mode */
1561 	struct f2fs_rwsem io_order_lock;
1562 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1563 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1564 
1565 	/* for checkpoint */
1566 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1567 	int cur_cp_pack;			/* remain current cp pack */
1568 	spinlock_t cp_lock;			/* for flag in ckpt */
1569 	struct inode *meta_inode;		/* cache meta blocks */
1570 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1571 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1572 	struct f2fs_rwsem node_write;		/* locking node writes */
1573 	struct f2fs_rwsem node_change;	/* locking node change */
1574 	wait_queue_head_t cp_wait;
1575 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1576 	long interval_time[MAX_TIME];		/* to store thresholds */
1577 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1578 
1579 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1580 
1581 	spinlock_t fsync_node_lock;		/* for node entry lock */
1582 	struct list_head fsync_node_list;	/* node list head */
1583 	unsigned int fsync_seg_id;		/* sequence id */
1584 	unsigned int fsync_node_num;		/* number of node entries */
1585 
1586 	/* for orphan inode, use 0'th array */
1587 	unsigned int max_orphans;		/* max orphan inodes */
1588 
1589 	/* for inode management */
1590 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1591 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1592 	struct mutex flush_lock;		/* for flush exclusion */
1593 
1594 	/* for extent tree cache */
1595 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1596 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1597 
1598 	/* The threshold used for hot and warm data seperation*/
1599 	unsigned int hot_data_age_threshold;
1600 	unsigned int warm_data_age_threshold;
1601 	unsigned int last_age_weight;
1602 
1603 	/* basic filesystem units */
1604 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1605 	unsigned int log_blocksize;		/* log2 block size */
1606 	unsigned int blocksize;			/* block size */
1607 	unsigned int root_ino_num;		/* root inode number*/
1608 	unsigned int node_ino_num;		/* node inode number*/
1609 	unsigned int meta_ino_num;		/* meta inode number*/
1610 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1611 	unsigned int blocks_per_seg;		/* blocks per segment */
1612 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1613 	unsigned int segs_per_sec;		/* segments per section */
1614 	unsigned int secs_per_zone;		/* sections per zone */
1615 	unsigned int total_sections;		/* total section count */
1616 	unsigned int total_node_count;		/* total node block count */
1617 	unsigned int total_valid_node_count;	/* valid node block count */
1618 	int dir_level;				/* directory level */
1619 	bool readdir_ra;			/* readahead inode in readdir */
1620 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1621 
1622 	block_t user_block_count;		/* # of user blocks */
1623 	block_t total_valid_block_count;	/* # of valid blocks */
1624 	block_t discard_blks;			/* discard command candidats */
1625 	block_t last_valid_block_count;		/* for recovery */
1626 	block_t reserved_blocks;		/* configurable reserved blocks */
1627 	block_t current_reserved_blocks;	/* current reserved blocks */
1628 
1629 	/* Additional tracking for no checkpoint mode */
1630 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1631 
1632 	unsigned int nquota_files;		/* # of quota sysfile */
1633 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1634 
1635 	/* # of pages, see count_type */
1636 	atomic_t nr_pages[NR_COUNT_TYPE];
1637 	/* # of allocated blocks */
1638 	struct percpu_counter alloc_valid_block_count;
1639 	/* # of node block writes as roll forward recovery */
1640 	struct percpu_counter rf_node_block_count;
1641 
1642 	/* writeback control */
1643 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1644 
1645 	/* valid inode count */
1646 	struct percpu_counter total_valid_inode_count;
1647 
1648 	struct f2fs_mount_info mount_opt;	/* mount options */
1649 
1650 	/* for cleaning operations */
1651 	struct f2fs_rwsem gc_lock;		/*
1652 						 * semaphore for GC, avoid
1653 						 * race between GC and GC or CP
1654 						 */
1655 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1656 	struct atgc_management am;		/* atgc management */
1657 	unsigned int cur_victim_sec;		/* current victim section num */
1658 	unsigned int gc_mode;			/* current GC state */
1659 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1660 	spinlock_t gc_remaining_trials_lock;
1661 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1662 	unsigned int gc_remaining_trials;
1663 
1664 	/* for skip statistic */
1665 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1666 
1667 	/* threshold for gc trials on pinned files */
1668 	u64 gc_pin_file_threshold;
1669 	struct f2fs_rwsem pin_sem;
1670 
1671 	/* maximum # of trials to find a victim segment for SSR and GC */
1672 	unsigned int max_victim_search;
1673 	/* migration granularity of garbage collection, unit: segment */
1674 	unsigned int migration_granularity;
1675 
1676 	/*
1677 	 * for stat information.
1678 	 * one is for the LFS mode, and the other is for the SSR mode.
1679 	 */
1680 #ifdef CONFIG_F2FS_STAT_FS
1681 	struct f2fs_stat_info *stat_info;	/* FS status information */
1682 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1683 	unsigned int segment_count[2];		/* # of allocated segments */
1684 	unsigned int block_count[2];		/* # of allocated blocks */
1685 	atomic_t inplace_count;		/* # of inplace update */
1686 	/* # of lookup extent cache */
1687 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1688 	/* # of hit rbtree extent node */
1689 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1690 	/* # of hit cached extent node */
1691 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1692 	/* # of hit largest extent node in read extent cache */
1693 	atomic64_t read_hit_largest;
1694 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1695 	atomic_t inline_inode;			/* # of inline_data inodes */
1696 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1697 	atomic_t compr_inode;			/* # of compressed inodes */
1698 	atomic64_t compr_blocks;		/* # of compressed blocks */
1699 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1700 	atomic_t atomic_files;			/* # of opened atomic file */
1701 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1702 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1703 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1704 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1705 	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1706 #endif
1707 	spinlock_t stat_lock;			/* lock for stat operations */
1708 
1709 	/* to attach REQ_META|REQ_FUA flags */
1710 	unsigned int data_io_flag;
1711 	unsigned int node_io_flag;
1712 
1713 	/* For sysfs support */
1714 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1715 	struct completion s_kobj_unregister;
1716 
1717 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1718 	struct completion s_stat_kobj_unregister;
1719 
1720 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1721 	struct completion s_feature_list_kobj_unregister;
1722 
1723 	/* For shrinker support */
1724 	struct list_head s_list;
1725 	struct mutex umount_mutex;
1726 	unsigned int shrinker_run_no;
1727 
1728 	/* For multi devices */
1729 	int s_ndevs;				/* number of devices */
1730 	struct f2fs_dev_info *devs;		/* for device list */
1731 	unsigned int dirty_device;		/* for checkpoint data flush */
1732 	spinlock_t dev_lock;			/* protect dirty_device */
1733 	bool aligned_blksize;			/* all devices has the same logical blksize */
1734 
1735 	/* For write statistics */
1736 	u64 sectors_written_start;
1737 	u64 kbytes_written;
1738 
1739 	/* Reference to checksum algorithm driver via cryptoapi */
1740 	struct crypto_shash *s_chksum_driver;
1741 
1742 	/* Precomputed FS UUID checksum for seeding other checksums */
1743 	__u32 s_chksum_seed;
1744 
1745 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1746 
1747 	/*
1748 	 * If we are in irq context, let's update error information into
1749 	 * on-disk superblock in the work.
1750 	 */
1751 	struct work_struct s_error_work;
1752 	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1753 	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1754 	spinlock_t error_lock;			/* protect errors/stop_reason array */
1755 	bool error_dirty;			/* errors of sb is dirty */
1756 
1757 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1758 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1759 
1760 	/* For reclaimed segs statistics per each GC mode */
1761 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1762 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1763 
1764 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1765 
1766 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1767 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1768 
1769 	/* For atomic write statistics */
1770 	atomic64_t current_atomic_write;
1771 	s64 peak_atomic_write;
1772 	u64 committed_atomic_block;
1773 	u64 revoked_atomic_block;
1774 
1775 #ifdef CONFIG_F2FS_FS_COMPRESSION
1776 	struct kmem_cache *page_array_slab;	/* page array entry */
1777 	unsigned int page_array_slab_size;	/* default page array slab size */
1778 
1779 	/* For runtime compression statistics */
1780 	u64 compr_written_block;
1781 	u64 compr_saved_block;
1782 	u32 compr_new_inode;
1783 
1784 	/* For compressed block cache */
1785 	struct inode *compress_inode;		/* cache compressed blocks */
1786 	unsigned int compress_percent;		/* cache page percentage */
1787 	unsigned int compress_watermark;	/* cache page watermark */
1788 	atomic_t compress_page_hit;		/* cache hit count */
1789 #endif
1790 
1791 #ifdef CONFIG_F2FS_IOSTAT
1792 	/* For app/fs IO statistics */
1793 	spinlock_t iostat_lock;
1794 	unsigned long long iostat_count[NR_IO_TYPE];
1795 	unsigned long long iostat_bytes[NR_IO_TYPE];
1796 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1797 	bool iostat_enable;
1798 	unsigned long iostat_next_period;
1799 	unsigned int iostat_period_ms;
1800 
1801 	/* For io latency related statistics info in one iostat period */
1802 	spinlock_t iostat_lat_lock;
1803 	struct iostat_lat_info *iostat_io_lat;
1804 #endif
1805 };
1806 
1807 /* Definitions to access f2fs_sb_info */
1808 #define BLKS_PER_SEG(sbi)					\
1809 	((sbi)->blocks_per_seg)
1810 #define BLKS_PER_SEC(sbi)					\
1811 	((sbi)->segs_per_sec << (sbi)->log_blocks_per_seg)
1812 #define SEGS_PER_SEC(sbi)					\
1813 	((sbi)->segs_per_sec)
1814 
1815 __printf(3, 4)
1816 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1817 
1818 #define f2fs_err(sbi, fmt, ...)						\
1819 	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1820 #define f2fs_warn(sbi, fmt, ...)					\
1821 	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1822 #define f2fs_notice(sbi, fmt, ...)					\
1823 	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1824 #define f2fs_info(sbi, fmt, ...)					\
1825 	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1826 #define f2fs_debug(sbi, fmt, ...)					\
1827 	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1828 
1829 #define f2fs_err_ratelimited(sbi, fmt, ...)				\
1830 	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1831 #define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1832 	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1833 #define f2fs_info_ratelimited(sbi, fmt, ...)				\
1834 	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1835 
1836 #ifdef CONFIG_F2FS_FAULT_INJECTION
1837 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1838 									__builtin_return_address(0))
1839 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1840 				const char *func, const char *parent_func)
1841 {
1842 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1843 
1844 	if (!ffi->inject_rate)
1845 		return false;
1846 
1847 	if (!IS_FAULT_SET(ffi, type))
1848 		return false;
1849 
1850 	atomic_inc(&ffi->inject_ops);
1851 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1852 		atomic_set(&ffi->inject_ops, 0);
1853 		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1854 				f2fs_fault_name[type], func, parent_func);
1855 		return true;
1856 	}
1857 	return false;
1858 }
1859 #else
1860 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1861 {
1862 	return false;
1863 }
1864 #endif
1865 
1866 /*
1867  * Test if the mounted volume is a multi-device volume.
1868  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1869  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1870  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1871  */
1872 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1873 {
1874 	return sbi->s_ndevs > 1;
1875 }
1876 
1877 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1878 {
1879 	unsigned long now = jiffies;
1880 
1881 	sbi->last_time[type] = now;
1882 
1883 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1884 	if (type == REQ_TIME) {
1885 		sbi->last_time[DISCARD_TIME] = now;
1886 		sbi->last_time[GC_TIME] = now;
1887 	}
1888 }
1889 
1890 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1891 {
1892 	unsigned long interval = sbi->interval_time[type] * HZ;
1893 
1894 	return time_after(jiffies, sbi->last_time[type] + interval);
1895 }
1896 
1897 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1898 						int type)
1899 {
1900 	unsigned long interval = sbi->interval_time[type] * HZ;
1901 	unsigned int wait_ms = 0;
1902 	long delta;
1903 
1904 	delta = (sbi->last_time[type] + interval) - jiffies;
1905 	if (delta > 0)
1906 		wait_ms = jiffies_to_msecs(delta);
1907 
1908 	return wait_ms;
1909 }
1910 
1911 /*
1912  * Inline functions
1913  */
1914 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1915 			      const void *address, unsigned int length)
1916 {
1917 	struct {
1918 		struct shash_desc shash;
1919 		char ctx[4];
1920 	} desc;
1921 	int err;
1922 
1923 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1924 
1925 	desc.shash.tfm = sbi->s_chksum_driver;
1926 	*(u32 *)desc.ctx = crc;
1927 
1928 	err = crypto_shash_update(&desc.shash, address, length);
1929 	BUG_ON(err);
1930 
1931 	return *(u32 *)desc.ctx;
1932 }
1933 
1934 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1935 			   unsigned int length)
1936 {
1937 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1938 }
1939 
1940 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1941 				  void *buf, size_t buf_size)
1942 {
1943 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1944 }
1945 
1946 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1947 			      const void *address, unsigned int length)
1948 {
1949 	return __f2fs_crc32(sbi, crc, address, length);
1950 }
1951 
1952 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1953 {
1954 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1955 }
1956 
1957 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1958 {
1959 	return sb->s_fs_info;
1960 }
1961 
1962 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1963 {
1964 	return F2FS_SB(inode->i_sb);
1965 }
1966 
1967 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1968 {
1969 	return F2FS_I_SB(mapping->host);
1970 }
1971 
1972 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1973 {
1974 	return F2FS_M_SB(page_file_mapping(page));
1975 }
1976 
1977 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1978 {
1979 	return (struct f2fs_super_block *)(sbi->raw_super);
1980 }
1981 
1982 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1983 {
1984 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1985 }
1986 
1987 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1988 {
1989 	return (struct f2fs_node *)page_address(page);
1990 }
1991 
1992 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1993 {
1994 	return &((struct f2fs_node *)page_address(page))->i;
1995 }
1996 
1997 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1998 {
1999 	return (struct f2fs_nm_info *)(sbi->nm_info);
2000 }
2001 
2002 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2003 {
2004 	return (struct f2fs_sm_info *)(sbi->sm_info);
2005 }
2006 
2007 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2008 {
2009 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2010 }
2011 
2012 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2013 {
2014 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2015 }
2016 
2017 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2018 {
2019 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2020 }
2021 
2022 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2023 {
2024 	return sbi->meta_inode->i_mapping;
2025 }
2026 
2027 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2028 {
2029 	return sbi->node_inode->i_mapping;
2030 }
2031 
2032 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2033 {
2034 	return test_bit(type, &sbi->s_flag);
2035 }
2036 
2037 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2038 {
2039 	set_bit(type, &sbi->s_flag);
2040 }
2041 
2042 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2043 {
2044 	clear_bit(type, &sbi->s_flag);
2045 }
2046 
2047 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2048 {
2049 	return le64_to_cpu(cp->checkpoint_ver);
2050 }
2051 
2052 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2053 {
2054 	if (type < F2FS_MAX_QUOTAS)
2055 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2056 	return 0;
2057 }
2058 
2059 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2060 {
2061 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2062 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2063 }
2064 
2065 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2066 {
2067 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2068 
2069 	return ckpt_flags & f;
2070 }
2071 
2072 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2073 {
2074 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2075 }
2076 
2077 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2078 {
2079 	unsigned int ckpt_flags;
2080 
2081 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2082 	ckpt_flags |= f;
2083 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2084 }
2085 
2086 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2087 {
2088 	unsigned long flags;
2089 
2090 	spin_lock_irqsave(&sbi->cp_lock, flags);
2091 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2092 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2093 }
2094 
2095 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2096 {
2097 	unsigned int ckpt_flags;
2098 
2099 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2100 	ckpt_flags &= (~f);
2101 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2102 }
2103 
2104 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2105 {
2106 	unsigned long flags;
2107 
2108 	spin_lock_irqsave(&sbi->cp_lock, flags);
2109 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2110 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2111 }
2112 
2113 #define init_f2fs_rwsem(sem)					\
2114 do {								\
2115 	static struct lock_class_key __key;			\
2116 								\
2117 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2118 } while (0)
2119 
2120 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2121 		const char *sem_name, struct lock_class_key *key)
2122 {
2123 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2124 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2125 	init_waitqueue_head(&sem->read_waiters);
2126 #endif
2127 }
2128 
2129 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2130 {
2131 	return rwsem_is_locked(&sem->internal_rwsem);
2132 }
2133 
2134 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2135 {
2136 	return rwsem_is_contended(&sem->internal_rwsem);
2137 }
2138 
2139 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2140 {
2141 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2142 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2143 #else
2144 	down_read(&sem->internal_rwsem);
2145 #endif
2146 }
2147 
2148 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2149 {
2150 	return down_read_trylock(&sem->internal_rwsem);
2151 }
2152 
2153 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2154 {
2155 	up_read(&sem->internal_rwsem);
2156 }
2157 
2158 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2159 {
2160 	down_write(&sem->internal_rwsem);
2161 }
2162 
2163 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2164 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2165 {
2166 	down_read_nested(&sem->internal_rwsem, subclass);
2167 }
2168 
2169 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2170 {
2171 	down_write_nested(&sem->internal_rwsem, subclass);
2172 }
2173 #else
2174 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2175 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2176 #endif
2177 
2178 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2179 {
2180 	return down_write_trylock(&sem->internal_rwsem);
2181 }
2182 
2183 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2184 {
2185 	up_write(&sem->internal_rwsem);
2186 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2187 	wake_up_all(&sem->read_waiters);
2188 #endif
2189 }
2190 
2191 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2192 {
2193 	f2fs_down_read(&sbi->cp_rwsem);
2194 }
2195 
2196 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2197 {
2198 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2199 		return 0;
2200 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2201 }
2202 
2203 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2204 {
2205 	f2fs_up_read(&sbi->cp_rwsem);
2206 }
2207 
2208 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2209 {
2210 	f2fs_down_write(&sbi->cp_rwsem);
2211 }
2212 
2213 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2214 {
2215 	f2fs_up_write(&sbi->cp_rwsem);
2216 }
2217 
2218 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2219 {
2220 	int reason = CP_SYNC;
2221 
2222 	if (test_opt(sbi, FASTBOOT))
2223 		reason = CP_FASTBOOT;
2224 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2225 		reason = CP_UMOUNT;
2226 	return reason;
2227 }
2228 
2229 static inline bool __remain_node_summaries(int reason)
2230 {
2231 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2232 }
2233 
2234 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2235 {
2236 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2237 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2238 }
2239 
2240 /*
2241  * Check whether the inode has blocks or not
2242  */
2243 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2244 {
2245 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2246 
2247 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2248 }
2249 
2250 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2251 {
2252 	return ofs == XATTR_NODE_OFFSET;
2253 }
2254 
2255 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2256 					struct inode *inode, bool cap)
2257 {
2258 	if (!inode)
2259 		return true;
2260 	if (!test_opt(sbi, RESERVE_ROOT))
2261 		return false;
2262 	if (IS_NOQUOTA(inode))
2263 		return true;
2264 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2265 		return true;
2266 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2267 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2268 		return true;
2269 	if (cap && capable(CAP_SYS_RESOURCE))
2270 		return true;
2271 	return false;
2272 }
2273 
2274 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2275 						struct inode *inode, bool cap)
2276 {
2277 	block_t avail_user_block_count;
2278 
2279 	avail_user_block_count = sbi->user_block_count -
2280 					sbi->current_reserved_blocks;
2281 
2282 	if (!__allow_reserved_blocks(sbi, inode, cap))
2283 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2284 
2285 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2286 		if (avail_user_block_count > sbi->unusable_block_count)
2287 			avail_user_block_count -= sbi->unusable_block_count;
2288 		else
2289 			avail_user_block_count = 0;
2290 	}
2291 
2292 	return avail_user_block_count;
2293 }
2294 
2295 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2296 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2297 				 struct inode *inode, blkcnt_t *count, bool partial)
2298 {
2299 	long long diff = 0, release = 0;
2300 	block_t avail_user_block_count;
2301 	int ret;
2302 
2303 	ret = dquot_reserve_block(inode, *count);
2304 	if (ret)
2305 		return ret;
2306 
2307 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2308 		release = *count;
2309 		goto release_quota;
2310 	}
2311 
2312 	/*
2313 	 * let's increase this in prior to actual block count change in order
2314 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2315 	 */
2316 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2317 
2318 	spin_lock(&sbi->stat_lock);
2319 
2320 	avail_user_block_count = get_available_block_count(sbi, inode, true);
2321 	diff = (long long)sbi->total_valid_block_count + *count -
2322 						avail_user_block_count;
2323 	if (unlikely(diff > 0)) {
2324 		if (!partial) {
2325 			spin_unlock(&sbi->stat_lock);
2326 			release = *count;
2327 			goto enospc;
2328 		}
2329 		if (diff > *count)
2330 			diff = *count;
2331 		*count -= diff;
2332 		release = diff;
2333 		if (!*count) {
2334 			spin_unlock(&sbi->stat_lock);
2335 			goto enospc;
2336 		}
2337 	}
2338 	sbi->total_valid_block_count += (block_t)(*count);
2339 
2340 	spin_unlock(&sbi->stat_lock);
2341 
2342 	if (unlikely(release)) {
2343 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2344 		dquot_release_reservation_block(inode, release);
2345 	}
2346 	f2fs_i_blocks_write(inode, *count, true, true);
2347 	return 0;
2348 
2349 enospc:
2350 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2351 release_quota:
2352 	dquot_release_reservation_block(inode, release);
2353 	return -ENOSPC;
2354 }
2355 
2356 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2357 static inline bool page_private_##name(struct page *page) \
2358 { \
2359 	return PagePrivate(page) && \
2360 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2361 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2362 }
2363 
2364 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2365 static inline void set_page_private_##name(struct page *page) \
2366 { \
2367 	if (!PagePrivate(page)) \
2368 		attach_page_private(page, (void *)0); \
2369 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2370 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2371 }
2372 
2373 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2374 static inline void clear_page_private_##name(struct page *page) \
2375 { \
2376 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2377 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2378 		detach_page_private(page); \
2379 }
2380 
2381 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2382 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2383 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2384 
2385 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2386 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2387 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2388 
2389 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2390 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2391 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2392 
2393 static inline unsigned long get_page_private_data(struct page *page)
2394 {
2395 	unsigned long data = page_private(page);
2396 
2397 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2398 		return 0;
2399 	return data >> PAGE_PRIVATE_MAX;
2400 }
2401 
2402 static inline void set_page_private_data(struct page *page, unsigned long data)
2403 {
2404 	if (!PagePrivate(page))
2405 		attach_page_private(page, (void *)0);
2406 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2407 	page_private(page) |= data << PAGE_PRIVATE_MAX;
2408 }
2409 
2410 static inline void clear_page_private_data(struct page *page)
2411 {
2412 	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2413 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2414 		detach_page_private(page);
2415 }
2416 
2417 static inline void clear_page_private_all(struct page *page)
2418 {
2419 	clear_page_private_data(page);
2420 	clear_page_private_reference(page);
2421 	clear_page_private_gcing(page);
2422 	clear_page_private_inline(page);
2423 
2424 	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2425 }
2426 
2427 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2428 						struct inode *inode,
2429 						block_t count)
2430 {
2431 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2432 
2433 	spin_lock(&sbi->stat_lock);
2434 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2435 	sbi->total_valid_block_count -= (block_t)count;
2436 	if (sbi->reserved_blocks &&
2437 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2438 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2439 					sbi->current_reserved_blocks + count);
2440 	spin_unlock(&sbi->stat_lock);
2441 	if (unlikely(inode->i_blocks < sectors)) {
2442 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2443 			  inode->i_ino,
2444 			  (unsigned long long)inode->i_blocks,
2445 			  (unsigned long long)sectors);
2446 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2447 		return;
2448 	}
2449 	f2fs_i_blocks_write(inode, count, false, true);
2450 }
2451 
2452 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2453 {
2454 	atomic_inc(&sbi->nr_pages[count_type]);
2455 
2456 	if (count_type == F2FS_DIRTY_DENTS ||
2457 			count_type == F2FS_DIRTY_NODES ||
2458 			count_type == F2FS_DIRTY_META ||
2459 			count_type == F2FS_DIRTY_QDATA ||
2460 			count_type == F2FS_DIRTY_IMETA)
2461 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2462 }
2463 
2464 static inline void inode_inc_dirty_pages(struct inode *inode)
2465 {
2466 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2467 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2468 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2469 	if (IS_NOQUOTA(inode))
2470 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2471 }
2472 
2473 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2474 {
2475 	atomic_dec(&sbi->nr_pages[count_type]);
2476 }
2477 
2478 static inline void inode_dec_dirty_pages(struct inode *inode)
2479 {
2480 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2481 			!S_ISLNK(inode->i_mode))
2482 		return;
2483 
2484 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2485 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2486 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2487 	if (IS_NOQUOTA(inode))
2488 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2489 }
2490 
2491 static inline void inc_atomic_write_cnt(struct inode *inode)
2492 {
2493 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2494 	struct f2fs_inode_info *fi = F2FS_I(inode);
2495 	u64 current_write;
2496 
2497 	fi->atomic_write_cnt++;
2498 	atomic64_inc(&sbi->current_atomic_write);
2499 	current_write = atomic64_read(&sbi->current_atomic_write);
2500 	if (current_write > sbi->peak_atomic_write)
2501 		sbi->peak_atomic_write = current_write;
2502 }
2503 
2504 static inline void release_atomic_write_cnt(struct inode *inode)
2505 {
2506 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2507 	struct f2fs_inode_info *fi = F2FS_I(inode);
2508 
2509 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2510 	fi->atomic_write_cnt = 0;
2511 }
2512 
2513 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2514 {
2515 	return atomic_read(&sbi->nr_pages[count_type]);
2516 }
2517 
2518 static inline int get_dirty_pages(struct inode *inode)
2519 {
2520 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2521 }
2522 
2523 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2524 {
2525 	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2526 							BLKS_PER_SEC(sbi));
2527 }
2528 
2529 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2530 {
2531 	return sbi->total_valid_block_count;
2532 }
2533 
2534 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2535 {
2536 	return sbi->discard_blks;
2537 }
2538 
2539 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2540 {
2541 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2542 
2543 	/* return NAT or SIT bitmap */
2544 	if (flag == NAT_BITMAP)
2545 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2546 	else if (flag == SIT_BITMAP)
2547 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2548 
2549 	return 0;
2550 }
2551 
2552 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2553 {
2554 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2555 }
2556 
2557 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2558 {
2559 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2560 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2561 	int offset;
2562 
2563 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2564 		offset = (flag == SIT_BITMAP) ?
2565 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2566 		/*
2567 		 * if large_nat_bitmap feature is enabled, leave checksum
2568 		 * protection for all nat/sit bitmaps.
2569 		 */
2570 		return tmp_ptr + offset + sizeof(__le32);
2571 	}
2572 
2573 	if (__cp_payload(sbi) > 0) {
2574 		if (flag == NAT_BITMAP)
2575 			return tmp_ptr;
2576 		else
2577 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2578 	} else {
2579 		offset = (flag == NAT_BITMAP) ?
2580 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2581 		return tmp_ptr + offset;
2582 	}
2583 }
2584 
2585 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2586 {
2587 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2588 
2589 	if (sbi->cur_cp_pack == 2)
2590 		start_addr += BLKS_PER_SEG(sbi);
2591 	return start_addr;
2592 }
2593 
2594 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2595 {
2596 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2597 
2598 	if (sbi->cur_cp_pack == 1)
2599 		start_addr += BLKS_PER_SEG(sbi);
2600 	return start_addr;
2601 }
2602 
2603 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2604 {
2605 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2606 }
2607 
2608 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2609 {
2610 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2611 }
2612 
2613 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2614 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2615 					struct inode *inode, bool is_inode)
2616 {
2617 	block_t	valid_block_count;
2618 	unsigned int valid_node_count;
2619 	unsigned int avail_user_block_count;
2620 	int err;
2621 
2622 	if (is_inode) {
2623 		if (inode) {
2624 			err = dquot_alloc_inode(inode);
2625 			if (err)
2626 				return err;
2627 		}
2628 	} else {
2629 		err = dquot_reserve_block(inode, 1);
2630 		if (err)
2631 			return err;
2632 	}
2633 
2634 	if (time_to_inject(sbi, FAULT_BLOCK))
2635 		goto enospc;
2636 
2637 	spin_lock(&sbi->stat_lock);
2638 
2639 	valid_block_count = sbi->total_valid_block_count + 1;
2640 	avail_user_block_count = get_available_block_count(sbi, inode, false);
2641 
2642 	if (unlikely(valid_block_count > avail_user_block_count)) {
2643 		spin_unlock(&sbi->stat_lock);
2644 		goto enospc;
2645 	}
2646 
2647 	valid_node_count = sbi->total_valid_node_count + 1;
2648 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2649 		spin_unlock(&sbi->stat_lock);
2650 		goto enospc;
2651 	}
2652 
2653 	sbi->total_valid_node_count++;
2654 	sbi->total_valid_block_count++;
2655 	spin_unlock(&sbi->stat_lock);
2656 
2657 	if (inode) {
2658 		if (is_inode)
2659 			f2fs_mark_inode_dirty_sync(inode, true);
2660 		else
2661 			f2fs_i_blocks_write(inode, 1, true, true);
2662 	}
2663 
2664 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2665 	return 0;
2666 
2667 enospc:
2668 	if (is_inode) {
2669 		if (inode)
2670 			dquot_free_inode(inode);
2671 	} else {
2672 		dquot_release_reservation_block(inode, 1);
2673 	}
2674 	return -ENOSPC;
2675 }
2676 
2677 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2678 					struct inode *inode, bool is_inode)
2679 {
2680 	spin_lock(&sbi->stat_lock);
2681 
2682 	if (unlikely(!sbi->total_valid_block_count ||
2683 			!sbi->total_valid_node_count)) {
2684 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2685 			  sbi->total_valid_block_count,
2686 			  sbi->total_valid_node_count);
2687 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2688 	} else {
2689 		sbi->total_valid_block_count--;
2690 		sbi->total_valid_node_count--;
2691 	}
2692 
2693 	if (sbi->reserved_blocks &&
2694 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2695 		sbi->current_reserved_blocks++;
2696 
2697 	spin_unlock(&sbi->stat_lock);
2698 
2699 	if (is_inode) {
2700 		dquot_free_inode(inode);
2701 	} else {
2702 		if (unlikely(inode->i_blocks == 0)) {
2703 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2704 				  inode->i_ino,
2705 				  (unsigned long long)inode->i_blocks);
2706 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2707 			return;
2708 		}
2709 		f2fs_i_blocks_write(inode, 1, false, true);
2710 	}
2711 }
2712 
2713 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2714 {
2715 	return sbi->total_valid_node_count;
2716 }
2717 
2718 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2719 {
2720 	percpu_counter_inc(&sbi->total_valid_inode_count);
2721 }
2722 
2723 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2724 {
2725 	percpu_counter_dec(&sbi->total_valid_inode_count);
2726 }
2727 
2728 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2729 {
2730 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2731 }
2732 
2733 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2734 						pgoff_t index, bool for_write)
2735 {
2736 	struct page *page;
2737 	unsigned int flags;
2738 
2739 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2740 		if (!for_write)
2741 			page = find_get_page_flags(mapping, index,
2742 							FGP_LOCK | FGP_ACCESSED);
2743 		else
2744 			page = find_lock_page(mapping, index);
2745 		if (page)
2746 			return page;
2747 
2748 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2749 			return NULL;
2750 	}
2751 
2752 	if (!for_write)
2753 		return grab_cache_page(mapping, index);
2754 
2755 	flags = memalloc_nofs_save();
2756 	page = grab_cache_page_write_begin(mapping, index);
2757 	memalloc_nofs_restore(flags);
2758 
2759 	return page;
2760 }
2761 
2762 static inline struct page *f2fs_pagecache_get_page(
2763 				struct address_space *mapping, pgoff_t index,
2764 				fgf_t fgp_flags, gfp_t gfp_mask)
2765 {
2766 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2767 		return NULL;
2768 
2769 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2770 }
2771 
2772 static inline void f2fs_put_page(struct page *page, int unlock)
2773 {
2774 	if (!page)
2775 		return;
2776 
2777 	if (unlock) {
2778 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2779 		unlock_page(page);
2780 	}
2781 	put_page(page);
2782 }
2783 
2784 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2785 {
2786 	if (dn->node_page)
2787 		f2fs_put_page(dn->node_page, 1);
2788 	if (dn->inode_page && dn->node_page != dn->inode_page)
2789 		f2fs_put_page(dn->inode_page, 0);
2790 	dn->node_page = NULL;
2791 	dn->inode_page = NULL;
2792 }
2793 
2794 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2795 					size_t size)
2796 {
2797 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2798 }
2799 
2800 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2801 						gfp_t flags)
2802 {
2803 	void *entry;
2804 
2805 	entry = kmem_cache_alloc(cachep, flags);
2806 	if (!entry)
2807 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2808 	return entry;
2809 }
2810 
2811 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2812 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2813 {
2814 	if (nofail)
2815 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2816 
2817 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2818 		return NULL;
2819 
2820 	return kmem_cache_alloc(cachep, flags);
2821 }
2822 
2823 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2824 {
2825 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2826 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2827 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2828 		get_pages(sbi, F2FS_DIO_READ) ||
2829 		get_pages(sbi, F2FS_DIO_WRITE))
2830 		return true;
2831 
2832 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2833 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2834 		return true;
2835 
2836 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2837 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2838 		return true;
2839 	return false;
2840 }
2841 
2842 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2843 {
2844 	if (sbi->gc_mode == GC_URGENT_HIGH)
2845 		return true;
2846 
2847 	if (is_inflight_io(sbi, type))
2848 		return false;
2849 
2850 	if (sbi->gc_mode == GC_URGENT_MID)
2851 		return true;
2852 
2853 	if (sbi->gc_mode == GC_URGENT_LOW &&
2854 			(type == DISCARD_TIME || type == GC_TIME))
2855 		return true;
2856 
2857 	return f2fs_time_over(sbi, type);
2858 }
2859 
2860 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2861 				unsigned long index, void *item)
2862 {
2863 	while (radix_tree_insert(root, index, item))
2864 		cond_resched();
2865 }
2866 
2867 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2868 
2869 static inline bool IS_INODE(struct page *page)
2870 {
2871 	struct f2fs_node *p = F2FS_NODE(page);
2872 
2873 	return RAW_IS_INODE(p);
2874 }
2875 
2876 static inline int offset_in_addr(struct f2fs_inode *i)
2877 {
2878 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2879 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2880 }
2881 
2882 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2883 {
2884 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2885 }
2886 
2887 static inline int f2fs_has_extra_attr(struct inode *inode);
2888 static inline block_t data_blkaddr(struct inode *inode,
2889 			struct page *node_page, unsigned int offset)
2890 {
2891 	struct f2fs_node *raw_node;
2892 	__le32 *addr_array;
2893 	int base = 0;
2894 	bool is_inode = IS_INODE(node_page);
2895 
2896 	raw_node = F2FS_NODE(node_page);
2897 
2898 	if (is_inode) {
2899 		if (!inode)
2900 			/* from GC path only */
2901 			base = offset_in_addr(&raw_node->i);
2902 		else if (f2fs_has_extra_attr(inode))
2903 			base = get_extra_isize(inode);
2904 	}
2905 
2906 	addr_array = blkaddr_in_node(raw_node);
2907 	return le32_to_cpu(addr_array[base + offset]);
2908 }
2909 
2910 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2911 {
2912 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2913 }
2914 
2915 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2916 {
2917 	int mask;
2918 
2919 	addr += (nr >> 3);
2920 	mask = BIT(7 - (nr & 0x07));
2921 	return mask & *addr;
2922 }
2923 
2924 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2925 {
2926 	int mask;
2927 
2928 	addr += (nr >> 3);
2929 	mask = BIT(7 - (nr & 0x07));
2930 	*addr |= mask;
2931 }
2932 
2933 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2934 {
2935 	int mask;
2936 
2937 	addr += (nr >> 3);
2938 	mask = BIT(7 - (nr & 0x07));
2939 	*addr &= ~mask;
2940 }
2941 
2942 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2943 {
2944 	int mask;
2945 	int ret;
2946 
2947 	addr += (nr >> 3);
2948 	mask = BIT(7 - (nr & 0x07));
2949 	ret = mask & *addr;
2950 	*addr |= mask;
2951 	return ret;
2952 }
2953 
2954 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2955 {
2956 	int mask;
2957 	int ret;
2958 
2959 	addr += (nr >> 3);
2960 	mask = BIT(7 - (nr & 0x07));
2961 	ret = mask & *addr;
2962 	*addr &= ~mask;
2963 	return ret;
2964 }
2965 
2966 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2967 {
2968 	int mask;
2969 
2970 	addr += (nr >> 3);
2971 	mask = BIT(7 - (nr & 0x07));
2972 	*addr ^= mask;
2973 }
2974 
2975 /*
2976  * On-disk inode flags (f2fs_inode::i_flags)
2977  */
2978 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2979 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2980 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2981 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2982 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2983 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2984 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2985 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2986 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2987 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2988 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2989 
2990 #define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
2991 
2992 /* Flags that should be inherited by new inodes from their parent. */
2993 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2994 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2995 			   F2FS_CASEFOLD_FL)
2996 
2997 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2998 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2999 				F2FS_CASEFOLD_FL))
3000 
3001 /* Flags that are appropriate for non-directories/regular files. */
3002 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3003 
3004 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3005 {
3006 	if (S_ISDIR(mode))
3007 		return flags;
3008 	else if (S_ISREG(mode))
3009 		return flags & F2FS_REG_FLMASK;
3010 	else
3011 		return flags & F2FS_OTHER_FLMASK;
3012 }
3013 
3014 static inline void __mark_inode_dirty_flag(struct inode *inode,
3015 						int flag, bool set)
3016 {
3017 	switch (flag) {
3018 	case FI_INLINE_XATTR:
3019 	case FI_INLINE_DATA:
3020 	case FI_INLINE_DENTRY:
3021 	case FI_NEW_INODE:
3022 		if (set)
3023 			return;
3024 		fallthrough;
3025 	case FI_DATA_EXIST:
3026 	case FI_INLINE_DOTS:
3027 	case FI_PIN_FILE:
3028 	case FI_COMPRESS_RELEASED:
3029 	case FI_ATOMIC_COMMITTED:
3030 		f2fs_mark_inode_dirty_sync(inode, true);
3031 	}
3032 }
3033 
3034 static inline void set_inode_flag(struct inode *inode, int flag)
3035 {
3036 	set_bit(flag, F2FS_I(inode)->flags);
3037 	__mark_inode_dirty_flag(inode, flag, true);
3038 }
3039 
3040 static inline int is_inode_flag_set(struct inode *inode, int flag)
3041 {
3042 	return test_bit(flag, F2FS_I(inode)->flags);
3043 }
3044 
3045 static inline void clear_inode_flag(struct inode *inode, int flag)
3046 {
3047 	clear_bit(flag, F2FS_I(inode)->flags);
3048 	__mark_inode_dirty_flag(inode, flag, false);
3049 }
3050 
3051 static inline bool f2fs_verity_in_progress(struct inode *inode)
3052 {
3053 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3054 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3055 }
3056 
3057 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3058 {
3059 	F2FS_I(inode)->i_acl_mode = mode;
3060 	set_inode_flag(inode, FI_ACL_MODE);
3061 	f2fs_mark_inode_dirty_sync(inode, false);
3062 }
3063 
3064 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3065 {
3066 	if (inc)
3067 		inc_nlink(inode);
3068 	else
3069 		drop_nlink(inode);
3070 	f2fs_mark_inode_dirty_sync(inode, true);
3071 }
3072 
3073 static inline void f2fs_i_blocks_write(struct inode *inode,
3074 					block_t diff, bool add, bool claim)
3075 {
3076 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3077 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3078 
3079 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3080 	if (add) {
3081 		if (claim)
3082 			dquot_claim_block(inode, diff);
3083 		else
3084 			dquot_alloc_block_nofail(inode, diff);
3085 	} else {
3086 		dquot_free_block(inode, diff);
3087 	}
3088 
3089 	f2fs_mark_inode_dirty_sync(inode, true);
3090 	if (clean || recover)
3091 		set_inode_flag(inode, FI_AUTO_RECOVER);
3092 }
3093 
3094 static inline bool f2fs_is_atomic_file(struct inode *inode);
3095 
3096 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3097 {
3098 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3099 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3100 
3101 	if (i_size_read(inode) == i_size)
3102 		return;
3103 
3104 	i_size_write(inode, i_size);
3105 
3106 	if (f2fs_is_atomic_file(inode))
3107 		return;
3108 
3109 	f2fs_mark_inode_dirty_sync(inode, true);
3110 	if (clean || recover)
3111 		set_inode_flag(inode, FI_AUTO_RECOVER);
3112 }
3113 
3114 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3115 {
3116 	F2FS_I(inode)->i_current_depth = depth;
3117 	f2fs_mark_inode_dirty_sync(inode, true);
3118 }
3119 
3120 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3121 					unsigned int count)
3122 {
3123 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3124 	f2fs_mark_inode_dirty_sync(inode, true);
3125 }
3126 
3127 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3128 {
3129 	F2FS_I(inode)->i_xattr_nid = xnid;
3130 	f2fs_mark_inode_dirty_sync(inode, true);
3131 }
3132 
3133 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3134 {
3135 	F2FS_I(inode)->i_pino = pino;
3136 	f2fs_mark_inode_dirty_sync(inode, true);
3137 }
3138 
3139 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3140 {
3141 	struct f2fs_inode_info *fi = F2FS_I(inode);
3142 
3143 	if (ri->i_inline & F2FS_INLINE_XATTR)
3144 		set_bit(FI_INLINE_XATTR, fi->flags);
3145 	if (ri->i_inline & F2FS_INLINE_DATA)
3146 		set_bit(FI_INLINE_DATA, fi->flags);
3147 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3148 		set_bit(FI_INLINE_DENTRY, fi->flags);
3149 	if (ri->i_inline & F2FS_DATA_EXIST)
3150 		set_bit(FI_DATA_EXIST, fi->flags);
3151 	if (ri->i_inline & F2FS_INLINE_DOTS)
3152 		set_bit(FI_INLINE_DOTS, fi->flags);
3153 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3154 		set_bit(FI_EXTRA_ATTR, fi->flags);
3155 	if (ri->i_inline & F2FS_PIN_FILE)
3156 		set_bit(FI_PIN_FILE, fi->flags);
3157 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3158 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3159 }
3160 
3161 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3162 {
3163 	ri->i_inline = 0;
3164 
3165 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3166 		ri->i_inline |= F2FS_INLINE_XATTR;
3167 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3168 		ri->i_inline |= F2FS_INLINE_DATA;
3169 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3170 		ri->i_inline |= F2FS_INLINE_DENTRY;
3171 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3172 		ri->i_inline |= F2FS_DATA_EXIST;
3173 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3174 		ri->i_inline |= F2FS_INLINE_DOTS;
3175 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3176 		ri->i_inline |= F2FS_EXTRA_ATTR;
3177 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3178 		ri->i_inline |= F2FS_PIN_FILE;
3179 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3180 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3181 }
3182 
3183 static inline int f2fs_has_extra_attr(struct inode *inode)
3184 {
3185 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3186 }
3187 
3188 static inline int f2fs_has_inline_xattr(struct inode *inode)
3189 {
3190 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3191 }
3192 
3193 static inline int f2fs_compressed_file(struct inode *inode)
3194 {
3195 	return S_ISREG(inode->i_mode) &&
3196 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3197 }
3198 
3199 static inline bool f2fs_need_compress_data(struct inode *inode)
3200 {
3201 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3202 
3203 	if (!f2fs_compressed_file(inode))
3204 		return false;
3205 
3206 	if (compress_mode == COMPR_MODE_FS)
3207 		return true;
3208 	else if (compress_mode == COMPR_MODE_USER &&
3209 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3210 		return true;
3211 
3212 	return false;
3213 }
3214 
3215 static inline unsigned int addrs_per_inode(struct inode *inode)
3216 {
3217 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3218 				get_inline_xattr_addrs(inode);
3219 
3220 	if (!f2fs_compressed_file(inode))
3221 		return addrs;
3222 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3223 }
3224 
3225 static inline unsigned int addrs_per_block(struct inode *inode)
3226 {
3227 	if (!f2fs_compressed_file(inode))
3228 		return DEF_ADDRS_PER_BLOCK;
3229 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3230 }
3231 
3232 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3233 {
3234 	struct f2fs_inode *ri = F2FS_INODE(page);
3235 
3236 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3237 					get_inline_xattr_addrs(inode)]);
3238 }
3239 
3240 static inline int inline_xattr_size(struct inode *inode)
3241 {
3242 	if (f2fs_has_inline_xattr(inode))
3243 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3244 	return 0;
3245 }
3246 
3247 /*
3248  * Notice: check inline_data flag without inode page lock is unsafe.
3249  * It could change at any time by f2fs_convert_inline_page().
3250  */
3251 static inline int f2fs_has_inline_data(struct inode *inode)
3252 {
3253 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3254 }
3255 
3256 static inline int f2fs_exist_data(struct inode *inode)
3257 {
3258 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3259 }
3260 
3261 static inline int f2fs_has_inline_dots(struct inode *inode)
3262 {
3263 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3264 }
3265 
3266 static inline int f2fs_is_mmap_file(struct inode *inode)
3267 {
3268 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3269 }
3270 
3271 static inline bool f2fs_is_pinned_file(struct inode *inode)
3272 {
3273 	return is_inode_flag_set(inode, FI_PIN_FILE);
3274 }
3275 
3276 static inline bool f2fs_is_atomic_file(struct inode *inode)
3277 {
3278 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3279 }
3280 
3281 static inline bool f2fs_is_cow_file(struct inode *inode)
3282 {
3283 	return is_inode_flag_set(inode, FI_COW_FILE);
3284 }
3285 
3286 static inline __le32 *get_dnode_addr(struct inode *inode,
3287 					struct page *node_page);
3288 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3289 {
3290 	__le32 *addr = get_dnode_addr(inode, page);
3291 
3292 	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3293 }
3294 
3295 static inline int f2fs_has_inline_dentry(struct inode *inode)
3296 {
3297 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3298 }
3299 
3300 static inline int is_file(struct inode *inode, int type)
3301 {
3302 	return F2FS_I(inode)->i_advise & type;
3303 }
3304 
3305 static inline void set_file(struct inode *inode, int type)
3306 {
3307 	if (is_file(inode, type))
3308 		return;
3309 	F2FS_I(inode)->i_advise |= type;
3310 	f2fs_mark_inode_dirty_sync(inode, true);
3311 }
3312 
3313 static inline void clear_file(struct inode *inode, int type)
3314 {
3315 	if (!is_file(inode, type))
3316 		return;
3317 	F2FS_I(inode)->i_advise &= ~type;
3318 	f2fs_mark_inode_dirty_sync(inode, true);
3319 }
3320 
3321 static inline bool f2fs_is_time_consistent(struct inode *inode)
3322 {
3323 	struct timespec64 ctime = inode_get_ctime(inode);
3324 
3325 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3326 		return false;
3327 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ctime))
3328 		return false;
3329 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3330 		return false;
3331 	return true;
3332 }
3333 
3334 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3335 {
3336 	bool ret;
3337 
3338 	if (dsync) {
3339 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3340 
3341 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3342 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3343 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3344 		return ret;
3345 	}
3346 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3347 			file_keep_isize(inode) ||
3348 			i_size_read(inode) & ~PAGE_MASK)
3349 		return false;
3350 
3351 	if (!f2fs_is_time_consistent(inode))
3352 		return false;
3353 
3354 	spin_lock(&F2FS_I(inode)->i_size_lock);
3355 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3356 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3357 
3358 	return ret;
3359 }
3360 
3361 static inline bool f2fs_readonly(struct super_block *sb)
3362 {
3363 	return sb_rdonly(sb);
3364 }
3365 
3366 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3367 {
3368 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3369 }
3370 
3371 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3372 {
3373 	if (len == 1 && name[0] == '.')
3374 		return true;
3375 
3376 	if (len == 2 && name[0] == '.' && name[1] == '.')
3377 		return true;
3378 
3379 	return false;
3380 }
3381 
3382 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3383 					size_t size, gfp_t flags)
3384 {
3385 	if (time_to_inject(sbi, FAULT_KMALLOC))
3386 		return NULL;
3387 
3388 	return kmalloc(size, flags);
3389 }
3390 
3391 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3392 {
3393 	if (time_to_inject(sbi, FAULT_KMALLOC))
3394 		return NULL;
3395 
3396 	return __getname();
3397 }
3398 
3399 static inline void f2fs_putname(char *buf)
3400 {
3401 	__putname(buf);
3402 }
3403 
3404 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3405 					size_t size, gfp_t flags)
3406 {
3407 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3408 }
3409 
3410 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3411 					size_t size, gfp_t flags)
3412 {
3413 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3414 		return NULL;
3415 
3416 	return kvmalloc(size, flags);
3417 }
3418 
3419 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3420 					size_t size, gfp_t flags)
3421 {
3422 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3423 }
3424 
3425 static inline int get_extra_isize(struct inode *inode)
3426 {
3427 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3428 }
3429 
3430 static inline int get_inline_xattr_addrs(struct inode *inode)
3431 {
3432 	return F2FS_I(inode)->i_inline_xattr_size;
3433 }
3434 
3435 static inline __le32 *get_dnode_addr(struct inode *inode,
3436 					struct page *node_page)
3437 {
3438 	int base = 0;
3439 
3440 	if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3441 		base = get_extra_isize(inode);
3442 
3443 	return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3444 }
3445 
3446 #define f2fs_get_inode_mode(i) \
3447 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3448 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3449 
3450 #define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3451 
3452 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3453 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3454 	offsetof(struct f2fs_inode, i_extra_isize))	\
3455 
3456 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3457 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3458 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3459 		sizeof((f2fs_inode)->field))			\
3460 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3461 
3462 #define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3463 
3464 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3465 
3466 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3467 					block_t blkaddr, int type);
3468 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3469 					block_t blkaddr, int type)
3470 {
3471 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3472 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3473 			 blkaddr, type);
3474 }
3475 
3476 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3477 {
3478 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3479 			blkaddr == COMPRESS_ADDR)
3480 		return false;
3481 	return true;
3482 }
3483 
3484 /*
3485  * file.c
3486  */
3487 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3488 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3489 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3490 int f2fs_truncate(struct inode *inode);
3491 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3492 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3493 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3494 		 struct iattr *attr);
3495 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3496 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3497 int f2fs_precache_extents(struct inode *inode);
3498 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3499 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3500 		      struct dentry *dentry, struct fileattr *fa);
3501 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3502 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3503 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3504 int f2fs_pin_file_control(struct inode *inode, bool inc);
3505 
3506 /*
3507  * inode.c
3508  */
3509 void f2fs_set_inode_flags(struct inode *inode);
3510 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3511 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3512 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3513 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3514 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3515 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3516 void f2fs_update_inode_page(struct inode *inode);
3517 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3518 void f2fs_evict_inode(struct inode *inode);
3519 void f2fs_handle_failed_inode(struct inode *inode);
3520 
3521 /*
3522  * namei.c
3523  */
3524 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3525 							bool hot, bool set);
3526 struct dentry *f2fs_get_parent(struct dentry *child);
3527 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3528 		     struct inode **new_inode);
3529 
3530 /*
3531  * dir.c
3532  */
3533 int f2fs_init_casefolded_name(const struct inode *dir,
3534 			      struct f2fs_filename *fname);
3535 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3536 			int lookup, struct f2fs_filename *fname);
3537 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3538 			struct f2fs_filename *fname);
3539 void f2fs_free_filename(struct f2fs_filename *fname);
3540 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3541 			const struct f2fs_filename *fname, int *max_slots);
3542 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3543 			unsigned int start_pos, struct fscrypt_str *fstr);
3544 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3545 			struct f2fs_dentry_ptr *d);
3546 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3547 			const struct f2fs_filename *fname, struct page *dpage);
3548 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3549 			unsigned int current_depth);
3550 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3551 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3552 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3553 					 const struct f2fs_filename *fname,
3554 					 struct page **res_page);
3555 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3556 			const struct qstr *child, struct page **res_page);
3557 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3558 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3559 			struct page **page);
3560 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3561 			struct page *page, struct inode *inode);
3562 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3563 			  const struct f2fs_filename *fname);
3564 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3565 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3566 			unsigned int bit_pos);
3567 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3568 			struct inode *inode, nid_t ino, umode_t mode);
3569 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3570 			struct inode *inode, nid_t ino, umode_t mode);
3571 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3572 			struct inode *inode, nid_t ino, umode_t mode);
3573 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3574 			struct inode *dir, struct inode *inode);
3575 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3576 					struct f2fs_filename *fname);
3577 bool f2fs_empty_dir(struct inode *dir);
3578 
3579 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3580 {
3581 	if (fscrypt_is_nokey_name(dentry))
3582 		return -ENOKEY;
3583 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3584 				inode, inode->i_ino, inode->i_mode);
3585 }
3586 
3587 /*
3588  * super.c
3589  */
3590 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3591 void f2fs_inode_synced(struct inode *inode);
3592 int f2fs_dquot_initialize(struct inode *inode);
3593 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3594 int f2fs_quota_sync(struct super_block *sb, int type);
3595 loff_t max_file_blocks(struct inode *inode);
3596 void f2fs_quota_off_umount(struct super_block *sb);
3597 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3598 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3599 							bool irq_context);
3600 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3601 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3602 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3603 int f2fs_sync_fs(struct super_block *sb, int sync);
3604 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3605 
3606 /*
3607  * hash.c
3608  */
3609 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3610 
3611 /*
3612  * node.c
3613  */
3614 struct node_info;
3615 
3616 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3617 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3618 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3619 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3620 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3621 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3622 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3623 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3624 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3625 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3626 				struct node_info *ni, bool checkpoint_context);
3627 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3628 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3629 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3630 int f2fs_truncate_xattr_node(struct inode *inode);
3631 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3632 					unsigned int seq_id);
3633 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3634 int f2fs_remove_inode_page(struct inode *inode);
3635 struct page *f2fs_new_inode_page(struct inode *inode);
3636 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3637 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3638 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3639 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3640 int f2fs_move_node_page(struct page *node_page, int gc_type);
3641 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3642 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3643 			struct writeback_control *wbc, bool atomic,
3644 			unsigned int *seq_id);
3645 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3646 			struct writeback_control *wbc,
3647 			bool do_balance, enum iostat_type io_type);
3648 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3649 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3650 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3651 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3652 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3653 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3654 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3655 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3656 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3657 			unsigned int segno, struct f2fs_summary_block *sum);
3658 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3659 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3660 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3661 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3662 int __init f2fs_create_node_manager_caches(void);
3663 void f2fs_destroy_node_manager_caches(void);
3664 
3665 /*
3666  * segment.c
3667  */
3668 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3669 int f2fs_commit_atomic_write(struct inode *inode);
3670 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3671 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3672 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3673 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3674 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3675 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3676 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3677 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3678 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3679 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3680 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3681 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3682 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3683 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3684 					struct cp_control *cpc);
3685 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3686 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3687 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3688 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3689 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3690 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3691 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3692 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3693 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3694 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3695 			unsigned int *newseg, bool new_sec, int dir);
3696 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3697 					unsigned int start, unsigned int end);
3698 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3699 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3700 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3701 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3702 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3703 					struct cp_control *cpc);
3704 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3705 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3706 					block_t blk_addr);
3707 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3708 						enum iostat_type io_type);
3709 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3710 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3711 			struct f2fs_io_info *fio);
3712 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3713 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3714 			block_t old_blkaddr, block_t new_blkaddr,
3715 			bool recover_curseg, bool recover_newaddr,
3716 			bool from_gc);
3717 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3718 			block_t old_addr, block_t new_addr,
3719 			unsigned char version, bool recover_curseg,
3720 			bool recover_newaddr);
3721 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3722 			block_t old_blkaddr, block_t *new_blkaddr,
3723 			struct f2fs_summary *sum, int type,
3724 			struct f2fs_io_info *fio);
3725 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3726 					block_t blkaddr, unsigned int blkcnt);
3727 void f2fs_wait_on_page_writeback(struct page *page,
3728 			enum page_type type, bool ordered, bool locked);
3729 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3730 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3731 								block_t len);
3732 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3733 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3734 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3735 			unsigned int val, int alloc);
3736 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3737 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3738 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3739 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3740 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3741 int __init f2fs_create_segment_manager_caches(void);
3742 void f2fs_destroy_segment_manager_caches(void);
3743 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3744 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3745 			unsigned int segno);
3746 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3747 			unsigned int segno);
3748 
3749 #define DEF_FRAGMENT_SIZE	4
3750 #define MIN_FRAGMENT_SIZE	1
3751 #define MAX_FRAGMENT_SIZE	512
3752 
3753 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3754 {
3755 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3756 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3757 }
3758 
3759 /*
3760  * checkpoint.c
3761  */
3762 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3763 							unsigned char reason);
3764 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3765 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3766 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3767 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3768 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3769 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3770 					block_t blkaddr, int type);
3771 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3772 			int type, bool sync);
3773 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3774 							unsigned int ra_blocks);
3775 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3776 			long nr_to_write, enum iostat_type io_type);
3777 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3778 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3779 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3780 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3781 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3782 					unsigned int devidx, int type);
3783 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3784 					unsigned int devidx, int type);
3785 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3786 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3787 void f2fs_add_orphan_inode(struct inode *inode);
3788 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3789 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3790 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3791 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3792 void f2fs_remove_dirty_inode(struct inode *inode);
3793 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3794 								bool from_cp);
3795 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3796 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3797 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3798 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3799 int __init f2fs_create_checkpoint_caches(void);
3800 void f2fs_destroy_checkpoint_caches(void);
3801 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3802 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3803 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3804 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3805 
3806 /*
3807  * data.c
3808  */
3809 int __init f2fs_init_bioset(void);
3810 void f2fs_destroy_bioset(void);
3811 bool f2fs_is_cp_guaranteed(struct page *page);
3812 int f2fs_init_bio_entry_cache(void);
3813 void f2fs_destroy_bio_entry_cache(void);
3814 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3815 			  enum page_type type);
3816 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3817 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3818 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3819 				struct inode *inode, struct page *page,
3820 				nid_t ino, enum page_type type);
3821 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3822 					struct bio **bio, struct page *page);
3823 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3824 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3825 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3826 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3827 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3828 		block_t blk_addr, sector_t *sector);
3829 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3830 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3831 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3832 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3833 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3834 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3835 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3836 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3837 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3838 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3839 							pgoff_t *next_pgofs);
3840 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3841 			bool for_write);
3842 struct page *f2fs_get_new_data_page(struct inode *inode,
3843 			struct page *ipage, pgoff_t index, bool new_i_size);
3844 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3845 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3846 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3847 			u64 start, u64 len);
3848 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3849 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3850 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3851 int f2fs_write_single_data_page(struct page *page, int *submitted,
3852 				struct bio **bio, sector_t *last_block,
3853 				struct writeback_control *wbc,
3854 				enum iostat_type io_type,
3855 				int compr_blocks, bool allow_balance);
3856 void f2fs_write_failed(struct inode *inode, loff_t to);
3857 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3858 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3859 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3860 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3861 int f2fs_init_post_read_processing(void);
3862 void f2fs_destroy_post_read_processing(void);
3863 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3864 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3865 extern const struct iomap_ops f2fs_iomap_ops;
3866 
3867 /*
3868  * gc.c
3869  */
3870 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3871 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3872 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3873 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3874 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3875 int f2fs_gc_range(struct f2fs_sb_info *sbi,
3876 		unsigned int start_seg, unsigned int end_seg,
3877 		bool dry_run, unsigned int dry_run_sections);
3878 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3879 int __init f2fs_create_garbage_collection_cache(void);
3880 void f2fs_destroy_garbage_collection_cache(void);
3881 /* victim selection function for cleaning and SSR */
3882 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3883 			int gc_type, int type, char alloc_mode,
3884 			unsigned long long age);
3885 
3886 /*
3887  * recovery.c
3888  */
3889 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3890 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3891 int __init f2fs_create_recovery_cache(void);
3892 void f2fs_destroy_recovery_cache(void);
3893 
3894 /*
3895  * debug.c
3896  */
3897 #ifdef CONFIG_F2FS_STAT_FS
3898 struct f2fs_stat_info {
3899 	struct list_head stat_list;
3900 	struct f2fs_sb_info *sbi;
3901 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3902 	int main_area_segs, main_area_sections, main_area_zones;
3903 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3904 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3905 	unsigned long long total_ext[NR_EXTENT_CACHES];
3906 	unsigned long long hit_total[NR_EXTENT_CACHES];
3907 	int ext_tree[NR_EXTENT_CACHES];
3908 	int zombie_tree[NR_EXTENT_CACHES];
3909 	int ext_node[NR_EXTENT_CACHES];
3910 	/* to count memory footprint */
3911 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3912 	/* for read extent cache */
3913 	unsigned long long hit_largest;
3914 	/* for block age extent cache */
3915 	unsigned long long allocated_data_blocks;
3916 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3917 	int ndirty_data, ndirty_qdata;
3918 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3919 	int nats, dirty_nats, sits, dirty_sits;
3920 	int free_nids, avail_nids, alloc_nids;
3921 	int total_count, utilization;
3922 	int nr_wb_cp_data, nr_wb_data;
3923 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3924 	int nr_dio_read, nr_dio_write;
3925 	unsigned int io_skip_bggc, other_skip_bggc;
3926 	int nr_flushing, nr_flushed, flush_list_empty;
3927 	int nr_discarding, nr_discarded;
3928 	int nr_discard_cmd;
3929 	unsigned int undiscard_blks;
3930 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3931 	unsigned int cur_ckpt_time, peak_ckpt_time;
3932 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3933 	int compr_inode, swapfile_inode;
3934 	unsigned long long compr_blocks;
3935 	int aw_cnt, max_aw_cnt;
3936 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3937 	unsigned int bimodal, avg_vblocks;
3938 	int util_free, util_valid, util_invalid;
3939 	int rsvd_segs, overp_segs;
3940 	int dirty_count, node_pages, meta_pages, compress_pages;
3941 	int compress_page_hit;
3942 	int prefree_count, free_segs, free_secs;
3943 	int cp_call_count[MAX_CALL_TYPE], cp_count;
3944 	int gc_call_count[MAX_CALL_TYPE];
3945 	int gc_segs[2][2];
3946 	int gc_secs[2][2];
3947 	int tot_blks, data_blks, node_blks;
3948 	int bg_data_blks, bg_node_blks;
3949 	int curseg[NR_CURSEG_TYPE];
3950 	int cursec[NR_CURSEG_TYPE];
3951 	int curzone[NR_CURSEG_TYPE];
3952 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3953 	unsigned int full_seg[NR_CURSEG_TYPE];
3954 	unsigned int valid_blks[NR_CURSEG_TYPE];
3955 
3956 	unsigned int meta_count[META_MAX];
3957 	unsigned int segment_count[2];
3958 	unsigned int block_count[2];
3959 	unsigned int inplace_count;
3960 	unsigned long long base_mem, cache_mem, page_mem;
3961 };
3962 
3963 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3964 {
3965 	return (struct f2fs_stat_info *)sbi->stat_info;
3966 }
3967 
3968 #define stat_inc_cp_call_count(sbi, foreground)				\
3969 		atomic_inc(&sbi->cp_call_count[(foreground)])
3970 #define stat_inc_cp_count(si)		(F2FS_STAT(sbi)->cp_count++)
3971 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3972 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3973 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3974 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3975 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3976 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3977 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3978 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3979 #define stat_inc_inline_xattr(inode)					\
3980 	do {								\
3981 		if (f2fs_has_inline_xattr(inode))			\
3982 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3983 	} while (0)
3984 #define stat_dec_inline_xattr(inode)					\
3985 	do {								\
3986 		if (f2fs_has_inline_xattr(inode))			\
3987 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3988 	} while (0)
3989 #define stat_inc_inline_inode(inode)					\
3990 	do {								\
3991 		if (f2fs_has_inline_data(inode))			\
3992 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3993 	} while (0)
3994 #define stat_dec_inline_inode(inode)					\
3995 	do {								\
3996 		if (f2fs_has_inline_data(inode))			\
3997 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3998 	} while (0)
3999 #define stat_inc_inline_dir(inode)					\
4000 	do {								\
4001 		if (f2fs_has_inline_dentry(inode))			\
4002 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
4003 	} while (0)
4004 #define stat_dec_inline_dir(inode)					\
4005 	do {								\
4006 		if (f2fs_has_inline_dentry(inode))			\
4007 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4008 	} while (0)
4009 #define stat_inc_compr_inode(inode)					\
4010 	do {								\
4011 		if (f2fs_compressed_file(inode))			\
4012 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4013 	} while (0)
4014 #define stat_dec_compr_inode(inode)					\
4015 	do {								\
4016 		if (f2fs_compressed_file(inode))			\
4017 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4018 	} while (0)
4019 #define stat_add_compr_blocks(inode, blocks)				\
4020 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4021 #define stat_sub_compr_blocks(inode, blocks)				\
4022 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4023 #define stat_inc_swapfile_inode(inode)					\
4024 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4025 #define stat_dec_swapfile_inode(inode)					\
4026 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4027 #define stat_inc_atomic_inode(inode)					\
4028 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4029 #define stat_dec_atomic_inode(inode)					\
4030 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4031 #define stat_inc_meta_count(sbi, blkaddr)				\
4032 	do {								\
4033 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4034 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4035 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4036 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4037 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4038 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4039 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4040 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4041 	} while (0)
4042 #define stat_inc_seg_type(sbi, curseg)					\
4043 		((sbi)->segment_count[(curseg)->alloc_type]++)
4044 #define stat_inc_block_count(sbi, curseg)				\
4045 		((sbi)->block_count[(curseg)->alloc_type]++)
4046 #define stat_inc_inplace_blocks(sbi)					\
4047 		(atomic_inc(&(sbi)->inplace_count))
4048 #define stat_update_max_atomic_write(inode)				\
4049 	do {								\
4050 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4051 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4052 		if (cur > max)						\
4053 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4054 	} while (0)
4055 #define stat_inc_gc_call_count(sbi, foreground)				\
4056 		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4057 #define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4058 		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4059 #define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4060 		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4061 
4062 #define stat_inc_tot_blk_count(si, blks)				\
4063 	((si)->tot_blks += (blks))
4064 
4065 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4066 	do {								\
4067 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4068 		stat_inc_tot_blk_count(si, blks);			\
4069 		si->data_blks += (blks);				\
4070 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4071 	} while (0)
4072 
4073 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4074 	do {								\
4075 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4076 		stat_inc_tot_blk_count(si, blks);			\
4077 		si->node_blks += (blks);				\
4078 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4079 	} while (0)
4080 
4081 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4082 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4083 void __init f2fs_create_root_stats(void);
4084 void f2fs_destroy_root_stats(void);
4085 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4086 #else
4087 #define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4088 #define stat_inc_cp_count(sbi)				do { } while (0)
4089 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4090 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4091 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4092 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4093 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4094 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4095 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4096 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4097 #define stat_inc_inline_xattr(inode)			do { } while (0)
4098 #define stat_dec_inline_xattr(inode)			do { } while (0)
4099 #define stat_inc_inline_inode(inode)			do { } while (0)
4100 #define stat_dec_inline_inode(inode)			do { } while (0)
4101 #define stat_inc_inline_dir(inode)			do { } while (0)
4102 #define stat_dec_inline_dir(inode)			do { } while (0)
4103 #define stat_inc_compr_inode(inode)			do { } while (0)
4104 #define stat_dec_compr_inode(inode)			do { } while (0)
4105 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4106 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4107 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4108 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4109 #define stat_inc_atomic_inode(inode)			do { } while (0)
4110 #define stat_dec_atomic_inode(inode)			do { } while (0)
4111 #define stat_update_max_atomic_write(inode)		do { } while (0)
4112 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4113 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4114 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4115 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4116 #define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4117 #define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4118 #define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4119 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4120 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4121 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4122 
4123 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4124 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4125 static inline void __init f2fs_create_root_stats(void) { }
4126 static inline void f2fs_destroy_root_stats(void) { }
4127 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4128 #endif
4129 
4130 extern const struct file_operations f2fs_dir_operations;
4131 extern const struct file_operations f2fs_file_operations;
4132 extern const struct inode_operations f2fs_file_inode_operations;
4133 extern const struct address_space_operations f2fs_dblock_aops;
4134 extern const struct address_space_operations f2fs_node_aops;
4135 extern const struct address_space_operations f2fs_meta_aops;
4136 extern const struct inode_operations f2fs_dir_inode_operations;
4137 extern const struct inode_operations f2fs_symlink_inode_operations;
4138 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4139 extern const struct inode_operations f2fs_special_inode_operations;
4140 extern struct kmem_cache *f2fs_inode_entry_slab;
4141 
4142 /*
4143  * inline.c
4144  */
4145 bool f2fs_may_inline_data(struct inode *inode);
4146 bool f2fs_sanity_check_inline_data(struct inode *inode);
4147 bool f2fs_may_inline_dentry(struct inode *inode);
4148 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4149 void f2fs_truncate_inline_inode(struct inode *inode,
4150 						struct page *ipage, u64 from);
4151 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4152 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4153 int f2fs_convert_inline_inode(struct inode *inode);
4154 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4155 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4156 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4157 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4158 					const struct f2fs_filename *fname,
4159 					struct page **res_page);
4160 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4161 			struct page *ipage);
4162 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4163 			struct inode *inode, nid_t ino, umode_t mode);
4164 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4165 				struct page *page, struct inode *dir,
4166 				struct inode *inode);
4167 bool f2fs_empty_inline_dir(struct inode *dir);
4168 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4169 			struct fscrypt_str *fstr);
4170 int f2fs_inline_data_fiemap(struct inode *inode,
4171 			struct fiemap_extent_info *fieinfo,
4172 			__u64 start, __u64 len);
4173 
4174 /*
4175  * shrinker.c
4176  */
4177 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4178 			struct shrink_control *sc);
4179 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4180 			struct shrink_control *sc);
4181 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4182 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4183 
4184 /*
4185  * extent_cache.c
4186  */
4187 bool sanity_check_extent_cache(struct inode *inode);
4188 void f2fs_init_extent_tree(struct inode *inode);
4189 void f2fs_drop_extent_tree(struct inode *inode);
4190 void f2fs_destroy_extent_node(struct inode *inode);
4191 void f2fs_destroy_extent_tree(struct inode *inode);
4192 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4193 int __init f2fs_create_extent_cache(void);
4194 void f2fs_destroy_extent_cache(void);
4195 
4196 /* read extent cache ops */
4197 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4198 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4199 			struct extent_info *ei);
4200 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4201 			block_t *blkaddr);
4202 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4203 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4204 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4205 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4206 			int nr_shrink);
4207 
4208 /* block age extent cache ops */
4209 void f2fs_init_age_extent_tree(struct inode *inode);
4210 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4211 			struct extent_info *ei);
4212 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4213 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4214 			pgoff_t fofs, unsigned int len);
4215 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4216 			int nr_shrink);
4217 
4218 /*
4219  * sysfs.c
4220  */
4221 #define MIN_RA_MUL	2
4222 #define MAX_RA_MUL	256
4223 
4224 int __init f2fs_init_sysfs(void);
4225 void f2fs_exit_sysfs(void);
4226 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4227 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4228 
4229 /* verity.c */
4230 extern const struct fsverity_operations f2fs_verityops;
4231 
4232 /*
4233  * crypto support
4234  */
4235 static inline bool f2fs_encrypted_file(struct inode *inode)
4236 {
4237 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4238 }
4239 
4240 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4241 {
4242 #ifdef CONFIG_FS_ENCRYPTION
4243 	file_set_encrypt(inode);
4244 	f2fs_set_inode_flags(inode);
4245 #endif
4246 }
4247 
4248 /*
4249  * Returns true if the reads of the inode's data need to undergo some
4250  * postprocessing step, like decryption or authenticity verification.
4251  */
4252 static inline bool f2fs_post_read_required(struct inode *inode)
4253 {
4254 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4255 		f2fs_compressed_file(inode);
4256 }
4257 
4258 /*
4259  * compress.c
4260  */
4261 #ifdef CONFIG_F2FS_FS_COMPRESSION
4262 bool f2fs_is_compressed_page(struct page *page);
4263 struct page *f2fs_compress_control_page(struct page *page);
4264 int f2fs_prepare_compress_overwrite(struct inode *inode,
4265 			struct page **pagep, pgoff_t index, void **fsdata);
4266 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4267 					pgoff_t index, unsigned copied);
4268 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4269 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4270 bool f2fs_is_compress_backend_ready(struct inode *inode);
4271 bool f2fs_is_compress_level_valid(int alg, int lvl);
4272 int __init f2fs_init_compress_mempool(void);
4273 void f2fs_destroy_compress_mempool(void);
4274 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4275 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4276 				block_t blkaddr, bool in_task);
4277 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4278 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4279 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4280 				int index, int nr_pages, bool uptodate);
4281 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4282 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4283 int f2fs_write_multi_pages(struct compress_ctx *cc,
4284 						int *submitted,
4285 						struct writeback_control *wbc,
4286 						enum iostat_type io_type);
4287 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4288 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4289 				pgoff_t fofs, block_t blkaddr,
4290 				unsigned int llen, unsigned int c_len);
4291 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4292 				unsigned nr_pages, sector_t *last_block_in_bio,
4293 				bool is_readahead, bool for_write);
4294 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4295 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4296 				bool in_task);
4297 void f2fs_put_page_dic(struct page *page, bool in_task);
4298 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4299 						unsigned int ofs_in_node);
4300 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4301 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4302 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4303 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4304 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4305 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4306 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4307 int __init f2fs_init_compress_cache(void);
4308 void f2fs_destroy_compress_cache(void);
4309 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4310 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4311 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4312 						nid_t ino, block_t blkaddr);
4313 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4314 								block_t blkaddr);
4315 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4316 #define inc_compr_inode_stat(inode)					\
4317 	do {								\
4318 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4319 		sbi->compr_new_inode++;					\
4320 	} while (0)
4321 #define add_compr_block_stat(inode, blocks)				\
4322 	do {								\
4323 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4324 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4325 		sbi->compr_written_block += blocks;			\
4326 		sbi->compr_saved_block += diff;				\
4327 	} while (0)
4328 #else
4329 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4330 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4331 {
4332 	if (!f2fs_compressed_file(inode))
4333 		return true;
4334 	/* not support compression */
4335 	return false;
4336 }
4337 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
4338 static inline struct page *f2fs_compress_control_page(struct page *page)
4339 {
4340 	WARN_ON_ONCE(1);
4341 	return ERR_PTR(-EINVAL);
4342 }
4343 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4344 static inline void f2fs_destroy_compress_mempool(void) { }
4345 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4346 				bool in_task) { }
4347 static inline void f2fs_end_read_compressed_page(struct page *page,
4348 				bool failed, block_t blkaddr, bool in_task)
4349 {
4350 	WARN_ON_ONCE(1);
4351 }
4352 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4353 {
4354 	WARN_ON_ONCE(1);
4355 }
4356 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4357 			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
4358 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4359 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4360 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4361 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4362 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4363 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4364 static inline void f2fs_destroy_compress_cache(void) { }
4365 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4366 				block_t blkaddr) { }
4367 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4368 				struct page *page, nid_t ino, block_t blkaddr) { }
4369 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4370 				struct page *page, block_t blkaddr) { return false; }
4371 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4372 							nid_t ino) { }
4373 #define inc_compr_inode_stat(inode)		do { } while (0)
4374 static inline void f2fs_update_read_extent_tree_range_compressed(
4375 				struct inode *inode,
4376 				pgoff_t fofs, block_t blkaddr,
4377 				unsigned int llen, unsigned int c_len) { }
4378 #endif
4379 
4380 static inline int set_compress_context(struct inode *inode)
4381 {
4382 #ifdef CONFIG_F2FS_FS_COMPRESSION
4383 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4384 
4385 	F2FS_I(inode)->i_compress_algorithm =
4386 			F2FS_OPTION(sbi).compress_algorithm;
4387 	F2FS_I(inode)->i_log_cluster_size =
4388 			F2FS_OPTION(sbi).compress_log_size;
4389 	F2FS_I(inode)->i_compress_flag =
4390 			F2FS_OPTION(sbi).compress_chksum ?
4391 				BIT(COMPRESS_CHKSUM) : 0;
4392 	F2FS_I(inode)->i_cluster_size =
4393 			BIT(F2FS_I(inode)->i_log_cluster_size);
4394 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4395 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4396 			F2FS_OPTION(sbi).compress_level)
4397 		F2FS_I(inode)->i_compress_level =
4398 				F2FS_OPTION(sbi).compress_level;
4399 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4400 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4401 	stat_inc_compr_inode(inode);
4402 	inc_compr_inode_stat(inode);
4403 	f2fs_mark_inode_dirty_sync(inode, true);
4404 	return 0;
4405 #else
4406 	return -EOPNOTSUPP;
4407 #endif
4408 }
4409 
4410 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4411 {
4412 	struct f2fs_inode_info *fi = F2FS_I(inode);
4413 
4414 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4415 
4416 	if (!f2fs_compressed_file(inode)) {
4417 		f2fs_up_write(&F2FS_I(inode)->i_sem);
4418 		return true;
4419 	}
4420 	if (f2fs_is_mmap_file(inode) ||
4421 		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4422 		f2fs_up_write(&F2FS_I(inode)->i_sem);
4423 		return false;
4424 	}
4425 
4426 	fi->i_flags &= ~F2FS_COMPR_FL;
4427 	stat_dec_compr_inode(inode);
4428 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4429 	f2fs_mark_inode_dirty_sync(inode, true);
4430 
4431 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4432 	return true;
4433 }
4434 
4435 #define F2FS_FEATURE_FUNCS(name, flagname) \
4436 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4437 { \
4438 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4439 }
4440 
4441 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4442 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4443 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4444 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4445 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4446 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4447 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4448 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4449 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4450 F2FS_FEATURE_FUNCS(verity, VERITY);
4451 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4452 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4453 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4454 F2FS_FEATURE_FUNCS(readonly, RO);
4455 
4456 #ifdef CONFIG_BLK_DEV_ZONED
4457 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4458 				    block_t blkaddr)
4459 {
4460 	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4461 
4462 	return test_bit(zno, FDEV(devi).blkz_seq);
4463 }
4464 #endif
4465 
4466 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4467 				  struct block_device *bdev)
4468 {
4469 	int i;
4470 
4471 	if (!f2fs_is_multi_device(sbi))
4472 		return 0;
4473 
4474 	for (i = 0; i < sbi->s_ndevs; i++)
4475 		if (FDEV(i).bdev == bdev)
4476 			return i;
4477 
4478 	WARN_ON(1);
4479 	return -1;
4480 }
4481 
4482 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4483 {
4484 	return f2fs_sb_has_blkzoned(sbi);
4485 }
4486 
4487 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4488 {
4489 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4490 }
4491 
4492 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4493 {
4494 	int i;
4495 
4496 	if (!f2fs_is_multi_device(sbi))
4497 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4498 
4499 	for (i = 0; i < sbi->s_ndevs; i++)
4500 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4501 			return true;
4502 	return false;
4503 }
4504 
4505 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4506 {
4507 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4508 					f2fs_hw_should_discard(sbi);
4509 }
4510 
4511 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4512 {
4513 	int i;
4514 
4515 	if (!f2fs_is_multi_device(sbi))
4516 		return bdev_read_only(sbi->sb->s_bdev);
4517 
4518 	for (i = 0; i < sbi->s_ndevs; i++)
4519 		if (bdev_read_only(FDEV(i).bdev))
4520 			return true;
4521 	return false;
4522 }
4523 
4524 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4525 {
4526 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4527 }
4528 
4529 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4530 {
4531 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4532 }
4533 
4534 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4535 					  block_t blkaddr)
4536 {
4537 	if (f2fs_sb_has_blkzoned(sbi)) {
4538 		int devi = f2fs_target_device_index(sbi, blkaddr);
4539 
4540 		return !bdev_is_zoned(FDEV(devi).bdev);
4541 	}
4542 	return true;
4543 }
4544 
4545 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4546 {
4547 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4548 }
4549 
4550 static inline bool f2fs_may_compress(struct inode *inode)
4551 {
4552 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4553 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4554 		f2fs_is_mmap_file(inode))
4555 		return false;
4556 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4557 }
4558 
4559 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4560 						u64 blocks, bool add)
4561 {
4562 	struct f2fs_inode_info *fi = F2FS_I(inode);
4563 	int diff = fi->i_cluster_size - blocks;
4564 
4565 	/* don't update i_compr_blocks if saved blocks were released */
4566 	if (!add && !atomic_read(&fi->i_compr_blocks))
4567 		return;
4568 
4569 	if (add) {
4570 		atomic_add(diff, &fi->i_compr_blocks);
4571 		stat_add_compr_blocks(inode, diff);
4572 	} else {
4573 		atomic_sub(diff, &fi->i_compr_blocks);
4574 		stat_sub_compr_blocks(inode, diff);
4575 	}
4576 	f2fs_mark_inode_dirty_sync(inode, true);
4577 }
4578 
4579 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4580 								int flag)
4581 {
4582 	if (!f2fs_is_multi_device(sbi))
4583 		return false;
4584 	if (flag != F2FS_GET_BLOCK_DIO)
4585 		return false;
4586 	return sbi->aligned_blksize;
4587 }
4588 
4589 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4590 {
4591 	return fsverity_active(inode) &&
4592 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4593 }
4594 
4595 #ifdef CONFIG_F2FS_FAULT_INJECTION
4596 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4597 							unsigned int type);
4598 #else
4599 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4600 #endif
4601 
4602 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4603 {
4604 #ifdef CONFIG_QUOTA
4605 	if (f2fs_sb_has_quota_ino(sbi))
4606 		return true;
4607 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4608 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4609 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4610 		return true;
4611 #endif
4612 	return false;
4613 }
4614 
4615 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4616 {
4617 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4618 }
4619 
4620 static inline void f2fs_io_schedule_timeout(long timeout)
4621 {
4622 	set_current_state(TASK_UNINTERRUPTIBLE);
4623 	io_schedule_timeout(timeout);
4624 }
4625 
4626 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4627 					enum page_type type)
4628 {
4629 	if (unlikely(f2fs_cp_error(sbi)))
4630 		return;
4631 
4632 	if (ofs == sbi->page_eio_ofs[type]) {
4633 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4634 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4635 	} else {
4636 		sbi->page_eio_ofs[type] = ofs;
4637 		sbi->page_eio_cnt[type] = 0;
4638 	}
4639 }
4640 
4641 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4642 {
4643 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4644 }
4645 
4646 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4647 					block_t blkaddr, unsigned int cnt)
4648 {
4649 	bool need_submit = false;
4650 	int i = 0;
4651 
4652 	do {
4653 		struct page *page;
4654 
4655 		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4656 		if (page) {
4657 			if (PageWriteback(page))
4658 				need_submit = true;
4659 			f2fs_put_page(page, 0);
4660 		}
4661 	} while (++i < cnt && !need_submit);
4662 
4663 	if (need_submit)
4664 		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4665 							NULL, 0, DATA);
4666 
4667 	truncate_inode_pages_range(META_MAPPING(sbi),
4668 			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4669 			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4670 }
4671 
4672 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4673 								block_t blkaddr)
4674 {
4675 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4676 	f2fs_invalidate_compress_page(sbi, blkaddr);
4677 }
4678 
4679 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4680 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4681 
4682 #endif /* _LINUX_F2FS_H */
4683