xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 18792e64)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	unsigned int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
78 #endif
79 
80 /*
81  * For mount options
82  */
83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
84 #define F2FS_MOUNT_DISCARD		0x00000004
85 #define F2FS_MOUNT_NOHEAP		0x00000008
86 #define F2FS_MOUNT_XATTR_USER		0x00000010
87 #define F2FS_MOUNT_POSIX_ACL		0x00000020
88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
89 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
90 #define F2FS_MOUNT_INLINE_DATA		0x00000100
91 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
92 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
93 #define F2FS_MOUNT_NOBARRIER		0x00000800
94 #define F2FS_MOUNT_FASTBOOT		0x00001000
95 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
96 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
97 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
98 #define F2FS_MOUNT_USRQUOTA		0x00080000
99 #define F2FS_MOUNT_GRPQUOTA		0x00100000
100 #define F2FS_MOUNT_PRJQUOTA		0x00200000
101 #define F2FS_MOUNT_QUOTA		0x00400000
102 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
103 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
104 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
105 #define F2FS_MOUNT_NORECOVERY		0x04000000
106 #define F2FS_MOUNT_ATGC			0x08000000
107 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
108 #define	F2FS_MOUNT_GC_MERGE		0x20000000
109 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
110 
111 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
112 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
113 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
114 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
115 
116 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
117 		typecheck(unsigned long long, b) &&			\
118 		((long long)((a) - (b)) > 0))
119 
120 typedef u32 block_t;	/*
121 			 * should not change u32, since it is the on-disk block
122 			 * address format, __le32.
123 			 */
124 typedef u32 nid_t;
125 
126 #define COMPRESS_EXT_NUM		16
127 
128 /*
129  * An implementation of an rwsem that is explicitly unfair to readers. This
130  * prevents priority inversion when a low-priority reader acquires the read lock
131  * while sleeping on the write lock but the write lock is needed by
132  * higher-priority clients.
133  */
134 
135 struct f2fs_rwsem {
136         struct rw_semaphore internal_rwsem;
137 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
138         wait_queue_head_t read_waiters;
139 #endif
140 };
141 
142 struct f2fs_mount_info {
143 	unsigned int opt;
144 	int write_io_size_bits;		/* Write IO size bits */
145 	block_t root_reserved_blocks;	/* root reserved blocks */
146 	kuid_t s_resuid;		/* reserved blocks for uid */
147 	kgid_t s_resgid;		/* reserved blocks for gid */
148 	int active_logs;		/* # of active logs */
149 	int inline_xattr_size;		/* inline xattr size */
150 #ifdef CONFIG_F2FS_FAULT_INJECTION
151 	struct f2fs_fault_info fault_info;	/* For fault injection */
152 #endif
153 #ifdef CONFIG_QUOTA
154 	/* Names of quota files with journalled quota */
155 	char *s_qf_names[MAXQUOTAS];
156 	int s_jquota_fmt;			/* Format of quota to use */
157 #endif
158 	/* For which write hints are passed down to block layer */
159 	int alloc_mode;			/* segment allocation policy */
160 	int fsync_mode;			/* fsync policy */
161 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
162 	int bggc_mode;			/* bggc mode: off, on or sync */
163 	int memory_mode;		/* memory mode */
164 	int discard_unit;		/*
165 					 * discard command's offset/size should
166 					 * be aligned to this unit: block,
167 					 * segment or section
168 					 */
169 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
170 	block_t unusable_cap_perc;	/* percentage for cap */
171 	block_t unusable_cap;		/* Amount of space allowed to be
172 					 * unusable when disabling checkpoint
173 					 */
174 
175 	/* For compression */
176 	unsigned char compress_algorithm;	/* algorithm type */
177 	unsigned char compress_log_size;	/* cluster log size */
178 	unsigned char compress_level;		/* compress level */
179 	bool compress_chksum;			/* compressed data chksum */
180 	unsigned char compress_ext_cnt;		/* extension count */
181 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
182 	int compress_mode;			/* compression mode */
183 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
184 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
185 };
186 
187 #define F2FS_FEATURE_ENCRYPT		0x0001
188 #define F2FS_FEATURE_BLKZONED		0x0002
189 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
190 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
191 #define F2FS_FEATURE_PRJQUOTA		0x0010
192 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
193 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
194 #define F2FS_FEATURE_QUOTA_INO		0x0080
195 #define F2FS_FEATURE_INODE_CRTIME	0x0100
196 #define F2FS_FEATURE_LOST_FOUND		0x0200
197 #define F2FS_FEATURE_VERITY		0x0400
198 #define F2FS_FEATURE_SB_CHKSUM		0x0800
199 #define F2FS_FEATURE_CASEFOLD		0x1000
200 #define F2FS_FEATURE_COMPRESSION	0x2000
201 #define F2FS_FEATURE_RO			0x4000
202 
203 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
204 	((raw_super->feature & cpu_to_le32(mask)) != 0)
205 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
206 #define F2FS_SET_FEATURE(sbi, mask)					\
207 	(sbi->raw_super->feature |= cpu_to_le32(mask))
208 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
209 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
210 
211 /*
212  * Default values for user and/or group using reserved blocks
213  */
214 #define	F2FS_DEF_RESUID		0
215 #define	F2FS_DEF_RESGID		0
216 
217 /*
218  * For checkpoint manager
219  */
220 enum {
221 	NAT_BITMAP,
222 	SIT_BITMAP
223 };
224 
225 #define	CP_UMOUNT	0x00000001
226 #define	CP_FASTBOOT	0x00000002
227 #define	CP_SYNC		0x00000004
228 #define	CP_RECOVERY	0x00000008
229 #define	CP_DISCARD	0x00000010
230 #define CP_TRIMMED	0x00000020
231 #define CP_PAUSE	0x00000040
232 #define CP_RESIZE 	0x00000080
233 
234 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
235 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
236 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
237 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
238 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
239 #define DEF_CP_INTERVAL			60	/* 60 secs */
240 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
241 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
242 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
243 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
244 
245 struct cp_control {
246 	int reason;
247 	__u64 trim_start;
248 	__u64 trim_end;
249 	__u64 trim_minlen;
250 };
251 
252 /*
253  * indicate meta/data type
254  */
255 enum {
256 	META_CP,
257 	META_NAT,
258 	META_SIT,
259 	META_SSA,
260 	META_MAX,
261 	META_POR,
262 	DATA_GENERIC,		/* check range only */
263 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
264 	DATA_GENERIC_ENHANCE_READ,	/*
265 					 * strong check on range and segment
266 					 * bitmap but no warning due to race
267 					 * condition of read on truncated area
268 					 * by extent_cache
269 					 */
270 	DATA_GENERIC_ENHANCE_UPDATE,	/*
271 					 * strong check on range and segment
272 					 * bitmap for update case
273 					 */
274 	META_GENERIC,
275 };
276 
277 /* for the list of ino */
278 enum {
279 	ORPHAN_INO,		/* for orphan ino list */
280 	APPEND_INO,		/* for append ino list */
281 	UPDATE_INO,		/* for update ino list */
282 	TRANS_DIR_INO,		/* for transactions dir ino list */
283 	FLUSH_INO,		/* for multiple device flushing */
284 	MAX_INO_ENTRY,		/* max. list */
285 };
286 
287 struct ino_entry {
288 	struct list_head list;		/* list head */
289 	nid_t ino;			/* inode number */
290 	unsigned int dirty_device;	/* dirty device bitmap */
291 };
292 
293 /* for the list of inodes to be GCed */
294 struct inode_entry {
295 	struct list_head list;	/* list head */
296 	struct inode *inode;	/* vfs inode pointer */
297 };
298 
299 struct fsync_node_entry {
300 	struct list_head list;	/* list head */
301 	struct page *page;	/* warm node page pointer */
302 	unsigned int seq_id;	/* sequence id */
303 };
304 
305 struct ckpt_req {
306 	struct completion wait;		/* completion for checkpoint done */
307 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
308 	int ret;			/* return code of checkpoint */
309 	ktime_t queue_time;		/* request queued time */
310 };
311 
312 struct ckpt_req_control {
313 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
314 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
315 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
316 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
317 	atomic_t total_ckpt;		/* # of total ckpts */
318 	atomic_t queued_ckpt;		/* # of queued ckpts */
319 	struct llist_head issue_list;	/* list for command issue */
320 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
321 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
322 	unsigned int peak_time;		/* peak wait time in msec until now */
323 };
324 
325 /* for the bitmap indicate blocks to be discarded */
326 struct discard_entry {
327 	struct list_head list;	/* list head */
328 	block_t start_blkaddr;	/* start blockaddr of current segment */
329 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
330 };
331 
332 /* default discard granularity of inner discard thread, unit: block count */
333 #define DEFAULT_DISCARD_GRANULARITY		16
334 
335 /* max discard pend list number */
336 #define MAX_PLIST_NUM		512
337 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
338 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
339 
340 enum {
341 	D_PREP,			/* initial */
342 	D_PARTIAL,		/* partially submitted */
343 	D_SUBMIT,		/* all submitted */
344 	D_DONE,			/* finished */
345 };
346 
347 struct discard_info {
348 	block_t lstart;			/* logical start address */
349 	block_t len;			/* length */
350 	block_t start;			/* actual start address in dev */
351 };
352 
353 struct discard_cmd {
354 	struct rb_node rb_node;		/* rb node located in rb-tree */
355 	union {
356 		struct {
357 			block_t lstart;	/* logical start address */
358 			block_t len;	/* length */
359 			block_t start;	/* actual start address in dev */
360 		};
361 		struct discard_info di;	/* discard info */
362 
363 	};
364 	struct list_head list;		/* command list */
365 	struct completion wait;		/* compleation */
366 	struct block_device *bdev;	/* bdev */
367 	unsigned short ref;		/* reference count */
368 	unsigned char state;		/* state */
369 	unsigned char queued;		/* queued discard */
370 	int error;			/* bio error */
371 	spinlock_t lock;		/* for state/bio_ref updating */
372 	unsigned short bio_ref;		/* bio reference count */
373 };
374 
375 enum {
376 	DPOLICY_BG,
377 	DPOLICY_FORCE,
378 	DPOLICY_FSTRIM,
379 	DPOLICY_UMOUNT,
380 	MAX_DPOLICY,
381 };
382 
383 struct discard_policy {
384 	int type;			/* type of discard */
385 	unsigned int min_interval;	/* used for candidates exist */
386 	unsigned int mid_interval;	/* used for device busy */
387 	unsigned int max_interval;	/* used for candidates not exist */
388 	unsigned int max_requests;	/* # of discards issued per round */
389 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
390 	bool io_aware;			/* issue discard in idle time */
391 	bool sync;			/* submit discard with REQ_SYNC flag */
392 	bool ordered;			/* issue discard by lba order */
393 	bool timeout;			/* discard timeout for put_super */
394 	unsigned int granularity;	/* discard granularity */
395 };
396 
397 struct discard_cmd_control {
398 	struct task_struct *f2fs_issue_discard;	/* discard thread */
399 	struct list_head entry_list;		/* 4KB discard entry list */
400 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
401 	struct list_head wait_list;		/* store on-flushing entries */
402 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
403 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
404 	unsigned int discard_wake;		/* to wake up discard thread */
405 	struct mutex cmd_lock;
406 	unsigned int nr_discards;		/* # of discards in the list */
407 	unsigned int max_discards;		/* max. discards to be issued */
408 	unsigned int max_discard_request;	/* max. discard request per round */
409 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
410 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
411 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
412 	unsigned int discard_granularity;	/* discard granularity */
413 	unsigned int undiscard_blks;		/* # of undiscard blocks */
414 	unsigned int next_pos;			/* next discard position */
415 	atomic_t issued_discard;		/* # of issued discard */
416 	atomic_t queued_discard;		/* # of queued discard */
417 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
418 	struct rb_root_cached root;		/* root of discard rb-tree */
419 	bool rbtree_check;			/* config for consistence check */
420 };
421 
422 /* for the list of fsync inodes, used only during recovery */
423 struct fsync_inode_entry {
424 	struct list_head list;	/* list head */
425 	struct inode *inode;	/* vfs inode pointer */
426 	block_t blkaddr;	/* block address locating the last fsync */
427 	block_t last_dentry;	/* block address locating the last dentry */
428 };
429 
430 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
431 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
432 
433 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
434 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
435 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
436 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
437 
438 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
439 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
440 
441 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
442 {
443 	int before = nats_in_cursum(journal);
444 
445 	journal->n_nats = cpu_to_le16(before + i);
446 	return before;
447 }
448 
449 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
450 {
451 	int before = sits_in_cursum(journal);
452 
453 	journal->n_sits = cpu_to_le16(before + i);
454 	return before;
455 }
456 
457 static inline bool __has_cursum_space(struct f2fs_journal *journal,
458 							int size, int type)
459 {
460 	if (type == NAT_JOURNAL)
461 		return size <= MAX_NAT_JENTRIES(journal);
462 	return size <= MAX_SIT_JENTRIES(journal);
463 }
464 
465 /* for inline stuff */
466 #define DEF_INLINE_RESERVED_SIZE	1
467 static inline int get_extra_isize(struct inode *inode);
468 static inline int get_inline_xattr_addrs(struct inode *inode);
469 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
470 				(CUR_ADDRS_PER_INODE(inode) -		\
471 				get_inline_xattr_addrs(inode) -	\
472 				DEF_INLINE_RESERVED_SIZE))
473 
474 /* for inline dir */
475 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
476 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
477 				BITS_PER_BYTE + 1))
478 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
479 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
480 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
481 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
482 				NR_INLINE_DENTRY(inode) + \
483 				INLINE_DENTRY_BITMAP_SIZE(inode)))
484 
485 /*
486  * For INODE and NODE manager
487  */
488 /* for directory operations */
489 
490 struct f2fs_filename {
491 	/*
492 	 * The filename the user specified.  This is NULL for some
493 	 * filesystem-internal operations, e.g. converting an inline directory
494 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
495 	 */
496 	const struct qstr *usr_fname;
497 
498 	/*
499 	 * The on-disk filename.  For encrypted directories, this is encrypted.
500 	 * This may be NULL for lookups in an encrypted dir without the key.
501 	 */
502 	struct fscrypt_str disk_name;
503 
504 	/* The dirhash of this filename */
505 	f2fs_hash_t hash;
506 
507 #ifdef CONFIG_FS_ENCRYPTION
508 	/*
509 	 * For lookups in encrypted directories: either the buffer backing
510 	 * disk_name, or a buffer that holds the decoded no-key name.
511 	 */
512 	struct fscrypt_str crypto_buf;
513 #endif
514 #if IS_ENABLED(CONFIG_UNICODE)
515 	/*
516 	 * For casefolded directories: the casefolded name, but it's left NULL
517 	 * if the original name is not valid Unicode, if the original name is
518 	 * "." or "..", if the directory is both casefolded and encrypted and
519 	 * its encryption key is unavailable, or if the filesystem is doing an
520 	 * internal operation where usr_fname is also NULL.  In all these cases
521 	 * we fall back to treating the name as an opaque byte sequence.
522 	 */
523 	struct fscrypt_str cf_name;
524 #endif
525 };
526 
527 struct f2fs_dentry_ptr {
528 	struct inode *inode;
529 	void *bitmap;
530 	struct f2fs_dir_entry *dentry;
531 	__u8 (*filename)[F2FS_SLOT_LEN];
532 	int max;
533 	int nr_bitmap;
534 };
535 
536 static inline void make_dentry_ptr_block(struct inode *inode,
537 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
538 {
539 	d->inode = inode;
540 	d->max = NR_DENTRY_IN_BLOCK;
541 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
542 	d->bitmap = t->dentry_bitmap;
543 	d->dentry = t->dentry;
544 	d->filename = t->filename;
545 }
546 
547 static inline void make_dentry_ptr_inline(struct inode *inode,
548 					struct f2fs_dentry_ptr *d, void *t)
549 {
550 	int entry_cnt = NR_INLINE_DENTRY(inode);
551 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
552 	int reserved_size = INLINE_RESERVED_SIZE(inode);
553 
554 	d->inode = inode;
555 	d->max = entry_cnt;
556 	d->nr_bitmap = bitmap_size;
557 	d->bitmap = t;
558 	d->dentry = t + bitmap_size + reserved_size;
559 	d->filename = t + bitmap_size + reserved_size +
560 					SIZE_OF_DIR_ENTRY * entry_cnt;
561 }
562 
563 /*
564  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
565  * as its node offset to distinguish from index node blocks.
566  * But some bits are used to mark the node block.
567  */
568 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
569 				>> OFFSET_BIT_SHIFT)
570 enum {
571 	ALLOC_NODE,			/* allocate a new node page if needed */
572 	LOOKUP_NODE,			/* look up a node without readahead */
573 	LOOKUP_NODE_RA,			/*
574 					 * look up a node with readahead called
575 					 * by get_data_block.
576 					 */
577 };
578 
579 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
580 
581 /* congestion wait timeout value, default: 20ms */
582 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
583 
584 /* maximum retry quota flush count */
585 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
586 
587 /* maximum retry of EIO'ed page */
588 #define MAX_RETRY_PAGE_EIO			100
589 
590 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
591 
592 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
593 
594 /* dirty segments threshold for triggering CP */
595 #define DEFAULT_DIRTY_THRESHOLD		4
596 
597 /* for in-memory extent cache entry */
598 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
599 
600 /* number of extent info in extent cache we try to shrink */
601 #define EXTENT_CACHE_SHRINK_NUMBER	128
602 
603 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
604 #define RECOVERY_MIN_RA_BLOCKS		1
605 
606 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
607 
608 struct rb_entry {
609 	struct rb_node rb_node;		/* rb node located in rb-tree */
610 	union {
611 		struct {
612 			unsigned int ofs;	/* start offset of the entry */
613 			unsigned int len;	/* length of the entry */
614 		};
615 		unsigned long long key;		/* 64-bits key */
616 	} __packed;
617 };
618 
619 struct extent_info {
620 	unsigned int fofs;		/* start offset in a file */
621 	unsigned int len;		/* length of the extent */
622 	u32 blk;			/* start block address of the extent */
623 #ifdef CONFIG_F2FS_FS_COMPRESSION
624 	unsigned int c_len;		/* physical extent length of compressed blocks */
625 #endif
626 };
627 
628 struct extent_node {
629 	struct rb_node rb_node;		/* rb node located in rb-tree */
630 	struct extent_info ei;		/* extent info */
631 	struct list_head list;		/* node in global extent list of sbi */
632 	struct extent_tree *et;		/* extent tree pointer */
633 };
634 
635 struct extent_tree {
636 	nid_t ino;			/* inode number */
637 	struct rb_root_cached root;	/* root of extent info rb-tree */
638 	struct extent_node *cached_en;	/* recently accessed extent node */
639 	struct extent_info largest;	/* largested extent info */
640 	struct list_head list;		/* to be used by sbi->zombie_list */
641 	rwlock_t lock;			/* protect extent info rb-tree */
642 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
643 	bool largest_updated;		/* largest extent updated */
644 };
645 
646 /*
647  * This structure is taken from ext4_map_blocks.
648  *
649  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
650  */
651 #define F2FS_MAP_NEW		(1 << BH_New)
652 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
653 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
654 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
655 				F2FS_MAP_UNWRITTEN)
656 
657 struct f2fs_map_blocks {
658 	struct block_device *m_bdev;	/* for multi-device dio */
659 	block_t m_pblk;
660 	block_t m_lblk;
661 	unsigned int m_len;
662 	unsigned int m_flags;
663 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
664 	pgoff_t *m_next_extent;		/* point to next possible extent */
665 	int m_seg_type;
666 	bool m_may_create;		/* indicate it is from write path */
667 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
668 };
669 
670 /* for flag in get_data_block */
671 enum {
672 	F2FS_GET_BLOCK_DEFAULT,
673 	F2FS_GET_BLOCK_FIEMAP,
674 	F2FS_GET_BLOCK_BMAP,
675 	F2FS_GET_BLOCK_DIO,
676 	F2FS_GET_BLOCK_PRE_DIO,
677 	F2FS_GET_BLOCK_PRE_AIO,
678 	F2FS_GET_BLOCK_PRECACHE,
679 };
680 
681 /*
682  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
683  */
684 #define FADVISE_COLD_BIT	0x01
685 #define FADVISE_LOST_PINO_BIT	0x02
686 #define FADVISE_ENCRYPT_BIT	0x04
687 #define FADVISE_ENC_NAME_BIT	0x08
688 #define FADVISE_KEEP_SIZE_BIT	0x10
689 #define FADVISE_HOT_BIT		0x20
690 #define FADVISE_VERITY_BIT	0x40
691 #define FADVISE_TRUNC_BIT	0x80
692 
693 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
694 
695 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
696 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
697 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
698 
699 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
700 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
701 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
702 
703 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
704 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
705 
706 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
707 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
708 
709 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
710 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
711 
712 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
713 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
714 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
715 
716 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
717 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
718 
719 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
720 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
721 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
722 
723 #define DEF_DIR_LEVEL		0
724 
725 enum {
726 	GC_FAILURE_PIN,
727 	MAX_GC_FAILURE
728 };
729 
730 /* used for f2fs_inode_info->flags */
731 enum {
732 	FI_NEW_INODE,		/* indicate newly allocated inode */
733 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
734 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
735 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
736 	FI_INC_LINK,		/* need to increment i_nlink */
737 	FI_ACL_MODE,		/* indicate acl mode */
738 	FI_NO_ALLOC,		/* should not allocate any blocks */
739 	FI_FREE_NID,		/* free allocated nide */
740 	FI_NO_EXTENT,		/* not to use the extent cache */
741 	FI_INLINE_XATTR,	/* used for inline xattr */
742 	FI_INLINE_DATA,		/* used for inline data*/
743 	FI_INLINE_DENTRY,	/* used for inline dentry */
744 	FI_APPEND_WRITE,	/* inode has appended data */
745 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
746 	FI_NEED_IPU,		/* used for ipu per file */
747 	FI_ATOMIC_FILE,		/* indicate atomic file */
748 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
749 	FI_DROP_CACHE,		/* drop dirty page cache */
750 	FI_DATA_EXIST,		/* indicate data exists */
751 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
752 	FI_SKIP_WRITES,		/* should skip data page writeback */
753 	FI_OPU_WRITE,		/* used for opu per file */
754 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
755 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
756 	FI_HOT_DATA,		/* indicate file is hot */
757 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
758 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
759 	FI_PIN_FILE,		/* indicate file should not be gced */
760 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
761 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
762 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
763 	FI_MMAP_FILE,		/* indicate file was mmapped */
764 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
765 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
766 	FI_ALIGNED_WRITE,	/* enable aligned write */
767 	FI_COW_FILE,		/* indicate COW file */
768 	FI_MAX,			/* max flag, never be used */
769 };
770 
771 struct f2fs_inode_info {
772 	struct inode vfs_inode;		/* serve a vfs inode */
773 	unsigned long i_flags;		/* keep an inode flags for ioctl */
774 	unsigned char i_advise;		/* use to give file attribute hints */
775 	unsigned char i_dir_level;	/* use for dentry level for large dir */
776 	unsigned int i_current_depth;	/* only for directory depth */
777 	/* for gc failure statistic */
778 	unsigned int i_gc_failures[MAX_GC_FAILURE];
779 	unsigned int i_pino;		/* parent inode number */
780 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
781 
782 	/* Use below internally in f2fs*/
783 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
784 	struct f2fs_rwsem i_sem;	/* protect fi info */
785 	atomic_t dirty_pages;		/* # of dirty pages */
786 	f2fs_hash_t chash;		/* hash value of given file name */
787 	unsigned int clevel;		/* maximum level of given file name */
788 	struct task_struct *task;	/* lookup and create consistency */
789 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
790 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
791 	nid_t i_xattr_nid;		/* node id that contains xattrs */
792 	loff_t	last_disk_size;		/* lastly written file size */
793 	spinlock_t i_size_lock;		/* protect last_disk_size */
794 
795 #ifdef CONFIG_QUOTA
796 	struct dquot *i_dquot[MAXQUOTAS];
797 
798 	/* quota space reservation, managed internally by quota code */
799 	qsize_t i_reserved_quota;
800 #endif
801 	struct list_head dirty_list;	/* dirty list for dirs and files */
802 	struct list_head gdirty_list;	/* linked in global dirty list */
803 	struct task_struct *atomic_write_task;	/* store atomic write task */
804 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
805 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
806 
807 	/* avoid racing between foreground op and gc */
808 	struct f2fs_rwsem i_gc_rwsem[2];
809 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
810 
811 	int i_extra_isize;		/* size of extra space located in i_addr */
812 	kprojid_t i_projid;		/* id for project quota */
813 	int i_inline_xattr_size;	/* inline xattr size */
814 	struct timespec64 i_crtime;	/* inode creation time */
815 	struct timespec64 i_disk_time[4];/* inode disk times */
816 
817 	/* for file compress */
818 	atomic_t i_compr_blocks;		/* # of compressed blocks */
819 	unsigned char i_compress_algorithm;	/* algorithm type */
820 	unsigned char i_log_cluster_size;	/* log of cluster size */
821 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
822 	unsigned short i_compress_flag;		/* compress flag */
823 	unsigned int i_cluster_size;		/* cluster size */
824 
825 	unsigned int atomic_write_cnt;
826 };
827 
828 static inline void get_extent_info(struct extent_info *ext,
829 					struct f2fs_extent *i_ext)
830 {
831 	ext->fofs = le32_to_cpu(i_ext->fofs);
832 	ext->blk = le32_to_cpu(i_ext->blk);
833 	ext->len = le32_to_cpu(i_ext->len);
834 }
835 
836 static inline void set_raw_extent(struct extent_info *ext,
837 					struct f2fs_extent *i_ext)
838 {
839 	i_ext->fofs = cpu_to_le32(ext->fofs);
840 	i_ext->blk = cpu_to_le32(ext->blk);
841 	i_ext->len = cpu_to_le32(ext->len);
842 }
843 
844 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
845 						u32 blk, unsigned int len)
846 {
847 	ei->fofs = fofs;
848 	ei->blk = blk;
849 	ei->len = len;
850 #ifdef CONFIG_F2FS_FS_COMPRESSION
851 	ei->c_len = 0;
852 #endif
853 }
854 
855 static inline bool __is_discard_mergeable(struct discard_info *back,
856 			struct discard_info *front, unsigned int max_len)
857 {
858 	return (back->lstart + back->len == front->lstart) &&
859 		(back->len + front->len <= max_len);
860 }
861 
862 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
863 			struct discard_info *back, unsigned int max_len)
864 {
865 	return __is_discard_mergeable(back, cur, max_len);
866 }
867 
868 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
869 			struct discard_info *front, unsigned int max_len)
870 {
871 	return __is_discard_mergeable(cur, front, max_len);
872 }
873 
874 static inline bool __is_extent_mergeable(struct extent_info *back,
875 						struct extent_info *front)
876 {
877 #ifdef CONFIG_F2FS_FS_COMPRESSION
878 	if (back->c_len && back->len != back->c_len)
879 		return false;
880 	if (front->c_len && front->len != front->c_len)
881 		return false;
882 #endif
883 	return (back->fofs + back->len == front->fofs &&
884 			back->blk + back->len == front->blk);
885 }
886 
887 static inline bool __is_back_mergeable(struct extent_info *cur,
888 						struct extent_info *back)
889 {
890 	return __is_extent_mergeable(back, cur);
891 }
892 
893 static inline bool __is_front_mergeable(struct extent_info *cur,
894 						struct extent_info *front)
895 {
896 	return __is_extent_mergeable(cur, front);
897 }
898 
899 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
900 static inline void __try_update_largest_extent(struct extent_tree *et,
901 						struct extent_node *en)
902 {
903 	if (en->ei.len > et->largest.len) {
904 		et->largest = en->ei;
905 		et->largest_updated = true;
906 	}
907 }
908 
909 /*
910  * For free nid management
911  */
912 enum nid_state {
913 	FREE_NID,		/* newly added to free nid list */
914 	PREALLOC_NID,		/* it is preallocated */
915 	MAX_NID_STATE,
916 };
917 
918 enum nat_state {
919 	TOTAL_NAT,
920 	DIRTY_NAT,
921 	RECLAIMABLE_NAT,
922 	MAX_NAT_STATE,
923 };
924 
925 struct f2fs_nm_info {
926 	block_t nat_blkaddr;		/* base disk address of NAT */
927 	nid_t max_nid;			/* maximum possible node ids */
928 	nid_t available_nids;		/* # of available node ids */
929 	nid_t next_scan_nid;		/* the next nid to be scanned */
930 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
931 	unsigned int ram_thresh;	/* control the memory footprint */
932 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
933 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
934 
935 	/* NAT cache management */
936 	struct radix_tree_root nat_root;/* root of the nat entry cache */
937 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
938 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
939 	struct list_head nat_entries;	/* cached nat entry list (clean) */
940 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
941 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
942 	unsigned int nat_blocks;	/* # of nat blocks */
943 
944 	/* free node ids management */
945 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
946 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
947 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
948 	spinlock_t nid_list_lock;	/* protect nid lists ops */
949 	struct mutex build_lock;	/* lock for build free nids */
950 	unsigned char **free_nid_bitmap;
951 	unsigned char *nat_block_bitmap;
952 	unsigned short *free_nid_count;	/* free nid count of NAT block */
953 
954 	/* for checkpoint */
955 	char *nat_bitmap;		/* NAT bitmap pointer */
956 
957 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
958 	unsigned char *nat_bits;	/* NAT bits blocks */
959 	unsigned char *full_nat_bits;	/* full NAT pages */
960 	unsigned char *empty_nat_bits;	/* empty NAT pages */
961 #ifdef CONFIG_F2FS_CHECK_FS
962 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
963 #endif
964 	int bitmap_size;		/* bitmap size */
965 };
966 
967 /*
968  * this structure is used as one of function parameters.
969  * all the information are dedicated to a given direct node block determined
970  * by the data offset in a file.
971  */
972 struct dnode_of_data {
973 	struct inode *inode;		/* vfs inode pointer */
974 	struct page *inode_page;	/* its inode page, NULL is possible */
975 	struct page *node_page;		/* cached direct node page */
976 	nid_t nid;			/* node id of the direct node block */
977 	unsigned int ofs_in_node;	/* data offset in the node page */
978 	bool inode_page_locked;		/* inode page is locked or not */
979 	bool node_changed;		/* is node block changed */
980 	char cur_level;			/* level of hole node page */
981 	char max_level;			/* level of current page located */
982 	block_t	data_blkaddr;		/* block address of the node block */
983 };
984 
985 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
986 		struct page *ipage, struct page *npage, nid_t nid)
987 {
988 	memset(dn, 0, sizeof(*dn));
989 	dn->inode = inode;
990 	dn->inode_page = ipage;
991 	dn->node_page = npage;
992 	dn->nid = nid;
993 }
994 
995 /*
996  * For SIT manager
997  *
998  * By default, there are 6 active log areas across the whole main area.
999  * When considering hot and cold data separation to reduce cleaning overhead,
1000  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1001  * respectively.
1002  * In the current design, you should not change the numbers intentionally.
1003  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1004  * logs individually according to the underlying devices. (default: 6)
1005  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1006  * data and 8 for node logs.
1007  */
1008 #define	NR_CURSEG_DATA_TYPE	(3)
1009 #define NR_CURSEG_NODE_TYPE	(3)
1010 #define NR_CURSEG_INMEM_TYPE	(2)
1011 #define NR_CURSEG_RO_TYPE	(2)
1012 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1013 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1014 
1015 enum {
1016 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1017 	CURSEG_WARM_DATA,	/* data blocks */
1018 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1019 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1020 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1021 	CURSEG_COLD_NODE,	/* indirect node blocks */
1022 	NR_PERSISTENT_LOG,	/* number of persistent log */
1023 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1024 				/* pinned file that needs consecutive block address */
1025 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1026 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1027 };
1028 
1029 struct flush_cmd {
1030 	struct completion wait;
1031 	struct llist_node llnode;
1032 	nid_t ino;
1033 	int ret;
1034 };
1035 
1036 struct flush_cmd_control {
1037 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1038 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1039 	atomic_t issued_flush;			/* # of issued flushes */
1040 	atomic_t queued_flush;			/* # of queued flushes */
1041 	struct llist_head issue_list;		/* list for command issue */
1042 	struct llist_node *dispatch_list;	/* list for command dispatch */
1043 };
1044 
1045 struct f2fs_sm_info {
1046 	struct sit_info *sit_info;		/* whole segment information */
1047 	struct free_segmap_info *free_info;	/* free segment information */
1048 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1049 	struct curseg_info *curseg_array;	/* active segment information */
1050 
1051 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1052 
1053 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1054 	block_t main_blkaddr;		/* start block address of main area */
1055 	block_t ssa_blkaddr;		/* start block address of SSA area */
1056 
1057 	unsigned int segment_count;	/* total # of segments */
1058 	unsigned int main_segments;	/* # of segments in main area */
1059 	unsigned int reserved_segments;	/* # of reserved segments */
1060 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1061 	unsigned int ovp_segments;	/* # of overprovision segments */
1062 
1063 	/* a threshold to reclaim prefree segments */
1064 	unsigned int rec_prefree_segments;
1065 
1066 	/* for batched trimming */
1067 	unsigned int trim_sections;		/* # of sections to trim */
1068 
1069 	struct list_head sit_entry_set;	/* sit entry set list */
1070 
1071 	unsigned int ipu_policy;	/* in-place-update policy */
1072 	unsigned int min_ipu_util;	/* in-place-update threshold */
1073 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1074 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1075 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1076 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1077 
1078 	/* for flush command control */
1079 	struct flush_cmd_control *fcc_info;
1080 
1081 	/* for discard command control */
1082 	struct discard_cmd_control *dcc_info;
1083 };
1084 
1085 /*
1086  * For superblock
1087  */
1088 /*
1089  * COUNT_TYPE for monitoring
1090  *
1091  * f2fs monitors the number of several block types such as on-writeback,
1092  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1093  */
1094 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1095 enum count_type {
1096 	F2FS_DIRTY_DENTS,
1097 	F2FS_DIRTY_DATA,
1098 	F2FS_DIRTY_QDATA,
1099 	F2FS_DIRTY_NODES,
1100 	F2FS_DIRTY_META,
1101 	F2FS_DIRTY_IMETA,
1102 	F2FS_WB_CP_DATA,
1103 	F2FS_WB_DATA,
1104 	F2FS_RD_DATA,
1105 	F2FS_RD_NODE,
1106 	F2FS_RD_META,
1107 	F2FS_DIO_WRITE,
1108 	F2FS_DIO_READ,
1109 	NR_COUNT_TYPE,
1110 };
1111 
1112 /*
1113  * The below are the page types of bios used in submit_bio().
1114  * The available types are:
1115  * DATA			User data pages. It operates as async mode.
1116  * NODE			Node pages. It operates as async mode.
1117  * META			FS metadata pages such as SIT, NAT, CP.
1118  * NR_PAGE_TYPE		The number of page types.
1119  * META_FLUSH		Make sure the previous pages are written
1120  *			with waiting the bio's completion
1121  * ...			Only can be used with META.
1122  */
1123 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1124 enum page_type {
1125 	DATA = 0,
1126 	NODE = 1,	/* should not change this */
1127 	META,
1128 	NR_PAGE_TYPE,
1129 	META_FLUSH,
1130 	IPU,		/* the below types are used by tracepoints only. */
1131 	OPU,
1132 };
1133 
1134 enum temp_type {
1135 	HOT = 0,	/* must be zero for meta bio */
1136 	WARM,
1137 	COLD,
1138 	NR_TEMP_TYPE,
1139 };
1140 
1141 enum need_lock_type {
1142 	LOCK_REQ = 0,
1143 	LOCK_DONE,
1144 	LOCK_RETRY,
1145 };
1146 
1147 enum cp_reason_type {
1148 	CP_NO_NEEDED,
1149 	CP_NON_REGULAR,
1150 	CP_COMPRESSED,
1151 	CP_HARDLINK,
1152 	CP_SB_NEED_CP,
1153 	CP_WRONG_PINO,
1154 	CP_NO_SPC_ROLL,
1155 	CP_NODE_NEED_CP,
1156 	CP_FASTBOOT_MODE,
1157 	CP_SPEC_LOG_NUM,
1158 	CP_RECOVER_DIR,
1159 };
1160 
1161 enum iostat_type {
1162 	/* WRITE IO */
1163 	APP_DIRECT_IO,			/* app direct write IOs */
1164 	APP_BUFFERED_IO,		/* app buffered write IOs */
1165 	APP_WRITE_IO,			/* app write IOs */
1166 	APP_MAPPED_IO,			/* app mapped IOs */
1167 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1168 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1169 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1170 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1171 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1172 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1173 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1174 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1175 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1176 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1177 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1178 
1179 	/* READ IO */
1180 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1181 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1182 	APP_READ_IO,			/* app read IOs */
1183 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1184 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1185 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1186 	FS_DATA_READ_IO,		/* data read IOs */
1187 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1188 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1189 	FS_NODE_READ_IO,		/* node read IOs */
1190 	FS_META_READ_IO,		/* meta read IOs */
1191 
1192 	/* other */
1193 	FS_DISCARD,			/* discard */
1194 	NR_IO_TYPE,
1195 };
1196 
1197 struct f2fs_io_info {
1198 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1199 	nid_t ino;		/* inode number */
1200 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1201 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1202 	enum req_op op;		/* contains REQ_OP_ */
1203 	blk_opf_t op_flags;	/* req_flag_bits */
1204 	block_t new_blkaddr;	/* new block address to be written */
1205 	block_t old_blkaddr;	/* old block address before Cow */
1206 	struct page *page;	/* page to be written */
1207 	struct page *encrypted_page;	/* encrypted page */
1208 	struct page *compressed_page;	/* compressed page */
1209 	struct list_head list;		/* serialize IOs */
1210 	bool submitted;		/* indicate IO submission */
1211 	int need_lock;		/* indicate we need to lock cp_rwsem */
1212 	bool in_list;		/* indicate fio is in io_list */
1213 	bool is_por;		/* indicate IO is from recovery or not */
1214 	bool retry;		/* need to reallocate block address */
1215 	int compr_blocks;	/* # of compressed block addresses */
1216 	bool encrypted;		/* indicate file is encrypted */
1217 	bool post_read;		/* require post read */
1218 	enum iostat_type io_type;	/* io type */
1219 	struct writeback_control *io_wbc; /* writeback control */
1220 	struct bio **bio;		/* bio for ipu */
1221 	sector_t *last_block;		/* last block number in bio */
1222 	unsigned char version;		/* version of the node */
1223 };
1224 
1225 struct bio_entry {
1226 	struct bio *bio;
1227 	struct list_head list;
1228 };
1229 
1230 #define is_read_io(rw) ((rw) == READ)
1231 struct f2fs_bio_info {
1232 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1233 	struct bio *bio;		/* bios to merge */
1234 	sector_t last_block_in_bio;	/* last block number */
1235 	struct f2fs_io_info fio;	/* store buffered io info. */
1236 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1237 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1238 	struct list_head io_list;	/* track fios */
1239 	struct list_head bio_list;	/* bio entry list head */
1240 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1241 };
1242 
1243 #define FDEV(i)				(sbi->devs[i])
1244 #define RDEV(i)				(raw_super->devs[i])
1245 struct f2fs_dev_info {
1246 	struct block_device *bdev;
1247 	char path[MAX_PATH_LEN];
1248 	unsigned int total_segments;
1249 	block_t start_blk;
1250 	block_t end_blk;
1251 #ifdef CONFIG_BLK_DEV_ZONED
1252 	unsigned int nr_blkz;		/* Total number of zones */
1253 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1254 #endif
1255 };
1256 
1257 enum inode_type {
1258 	DIR_INODE,			/* for dirty dir inode */
1259 	FILE_INODE,			/* for dirty regular/symlink inode */
1260 	DIRTY_META,			/* for all dirtied inode metadata */
1261 	NR_INODE_TYPE,
1262 };
1263 
1264 /* for inner inode cache management */
1265 struct inode_management {
1266 	struct radix_tree_root ino_root;	/* ino entry array */
1267 	spinlock_t ino_lock;			/* for ino entry lock */
1268 	struct list_head ino_list;		/* inode list head */
1269 	unsigned long ino_num;			/* number of entries */
1270 };
1271 
1272 /* for GC_AT */
1273 struct atgc_management {
1274 	bool atgc_enabled;			/* ATGC is enabled or not */
1275 	struct rb_root_cached root;		/* root of victim rb-tree */
1276 	struct list_head victim_list;		/* linked with all victim entries */
1277 	unsigned int victim_count;		/* victim count in rb-tree */
1278 	unsigned int candidate_ratio;		/* candidate ratio */
1279 	unsigned int max_candidate_count;	/* max candidate count */
1280 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1281 	unsigned long long age_threshold;	/* age threshold */
1282 };
1283 
1284 struct f2fs_gc_control {
1285 	unsigned int victim_segno;	/* target victim segment number */
1286 	int init_gc_type;		/* FG_GC or BG_GC */
1287 	bool no_bg_gc;			/* check the space and stop bg_gc */
1288 	bool should_migrate_blocks;	/* should migrate blocks */
1289 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1290 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1291 };
1292 
1293 /* For s_flag in struct f2fs_sb_info */
1294 enum {
1295 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1296 	SBI_IS_CLOSE,				/* specify unmounting */
1297 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1298 	SBI_POR_DOING,				/* recovery is doing or not */
1299 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1300 	SBI_NEED_CP,				/* need to checkpoint */
1301 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1302 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1303 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1304 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1305 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1306 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1307 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1308 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1309 	SBI_IS_FREEZING,			/* freezefs is in process */
1310 };
1311 
1312 enum {
1313 	CP_TIME,
1314 	REQ_TIME,
1315 	DISCARD_TIME,
1316 	GC_TIME,
1317 	DISABLE_TIME,
1318 	UMOUNT_DISCARD_TIMEOUT,
1319 	MAX_TIME,
1320 };
1321 
1322 enum {
1323 	GC_NORMAL,
1324 	GC_IDLE_CB,
1325 	GC_IDLE_GREEDY,
1326 	GC_IDLE_AT,
1327 	GC_URGENT_HIGH,
1328 	GC_URGENT_LOW,
1329 	GC_URGENT_MID,
1330 	MAX_GC_MODE,
1331 };
1332 
1333 enum {
1334 	BGGC_MODE_ON,		/* background gc is on */
1335 	BGGC_MODE_OFF,		/* background gc is off */
1336 	BGGC_MODE_SYNC,		/*
1337 				 * background gc is on, migrating blocks
1338 				 * like foreground gc
1339 				 */
1340 };
1341 
1342 enum {
1343 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1344 	FS_MODE_LFS,			/* use lfs allocation only */
1345 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1346 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1347 };
1348 
1349 enum {
1350 	ALLOC_MODE_DEFAULT,	/* stay default */
1351 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1352 };
1353 
1354 enum fsync_mode {
1355 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1356 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1357 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1358 };
1359 
1360 enum {
1361 	COMPR_MODE_FS,		/*
1362 				 * automatically compress compression
1363 				 * enabled files
1364 				 */
1365 	COMPR_MODE_USER,	/*
1366 				 * automatical compression is disabled.
1367 				 * user can control the file compression
1368 				 * using ioctls
1369 				 */
1370 };
1371 
1372 enum {
1373 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1374 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1375 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1376 };
1377 
1378 enum {
1379 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1380 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1381 };
1382 
1383 
1384 
1385 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1386 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1387 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1388 
1389 /*
1390  * Layout of f2fs page.private:
1391  *
1392  * Layout A: lowest bit should be 1
1393  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1394  * bit 0	PAGE_PRIVATE_NOT_POINTER
1395  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1396  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1397  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1398  * bit 4	PAGE_PRIVATE_INLINE_INODE
1399  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1400  * bit 6-	f2fs private data
1401  *
1402  * Layout B: lowest bit should be 0
1403  * page.private is a wrapped pointer.
1404  */
1405 enum {
1406 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1407 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1408 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1409 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1410 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1411 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1412 	PAGE_PRIVATE_MAX
1413 };
1414 
1415 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1416 static inline bool page_private_##name(struct page *page) \
1417 { \
1418 	return PagePrivate(page) && \
1419 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1420 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1421 }
1422 
1423 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1424 static inline void set_page_private_##name(struct page *page) \
1425 { \
1426 	if (!PagePrivate(page)) { \
1427 		get_page(page); \
1428 		SetPagePrivate(page); \
1429 		set_page_private(page, 0); \
1430 	} \
1431 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1432 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1433 }
1434 
1435 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1436 static inline void clear_page_private_##name(struct page *page) \
1437 { \
1438 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1439 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1440 		set_page_private(page, 0); \
1441 		if (PagePrivate(page)) { \
1442 			ClearPagePrivate(page); \
1443 			put_page(page); \
1444 		}\
1445 	} \
1446 }
1447 
1448 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1449 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1450 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1451 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1452 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1453 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1454 
1455 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1456 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1457 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1458 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1459 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1460 
1461 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1462 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1463 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1464 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1465 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1466 
1467 static inline unsigned long get_page_private_data(struct page *page)
1468 {
1469 	unsigned long data = page_private(page);
1470 
1471 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1472 		return 0;
1473 	return data >> PAGE_PRIVATE_MAX;
1474 }
1475 
1476 static inline void set_page_private_data(struct page *page, unsigned long data)
1477 {
1478 	if (!PagePrivate(page)) {
1479 		get_page(page);
1480 		SetPagePrivate(page);
1481 		set_page_private(page, 0);
1482 	}
1483 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1484 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1485 }
1486 
1487 static inline void clear_page_private_data(struct page *page)
1488 {
1489 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1490 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1491 		set_page_private(page, 0);
1492 		if (PagePrivate(page)) {
1493 			ClearPagePrivate(page);
1494 			put_page(page);
1495 		}
1496 	}
1497 }
1498 
1499 /* For compression */
1500 enum compress_algorithm_type {
1501 	COMPRESS_LZO,
1502 	COMPRESS_LZ4,
1503 	COMPRESS_ZSTD,
1504 	COMPRESS_LZORLE,
1505 	COMPRESS_MAX,
1506 };
1507 
1508 enum compress_flag {
1509 	COMPRESS_CHKSUM,
1510 	COMPRESS_MAX_FLAG,
1511 };
1512 
1513 #define	COMPRESS_WATERMARK			20
1514 #define	COMPRESS_PERCENT			20
1515 
1516 #define COMPRESS_DATA_RESERVED_SIZE		4
1517 struct compress_data {
1518 	__le32 clen;			/* compressed data size */
1519 	__le32 chksum;			/* compressed data chksum */
1520 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1521 	u8 cdata[];			/* compressed data */
1522 };
1523 
1524 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1525 
1526 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1527 
1528 #define	COMPRESS_LEVEL_OFFSET	8
1529 
1530 /* compress context */
1531 struct compress_ctx {
1532 	struct inode *inode;		/* inode the context belong to */
1533 	pgoff_t cluster_idx;		/* cluster index number */
1534 	unsigned int cluster_size;	/* page count in cluster */
1535 	unsigned int log_cluster_size;	/* log of cluster size */
1536 	struct page **rpages;		/* pages store raw data in cluster */
1537 	unsigned int nr_rpages;		/* total page number in rpages */
1538 	struct page **cpages;		/* pages store compressed data in cluster */
1539 	unsigned int nr_cpages;		/* total page number in cpages */
1540 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1541 	void *rbuf;			/* virtual mapped address on rpages */
1542 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1543 	size_t rlen;			/* valid data length in rbuf */
1544 	size_t clen;			/* valid data length in cbuf */
1545 	void *private;			/* payload buffer for specified compression algorithm */
1546 	void *private2;			/* extra payload buffer */
1547 };
1548 
1549 /* compress context for write IO path */
1550 struct compress_io_ctx {
1551 	u32 magic;			/* magic number to indicate page is compressed */
1552 	struct inode *inode;		/* inode the context belong to */
1553 	struct page **rpages;		/* pages store raw data in cluster */
1554 	unsigned int nr_rpages;		/* total page number in rpages */
1555 	atomic_t pending_pages;		/* in-flight compressed page count */
1556 };
1557 
1558 /* Context for decompressing one cluster on the read IO path */
1559 struct decompress_io_ctx {
1560 	u32 magic;			/* magic number to indicate page is compressed */
1561 	struct inode *inode;		/* inode the context belong to */
1562 	pgoff_t cluster_idx;		/* cluster index number */
1563 	unsigned int cluster_size;	/* page count in cluster */
1564 	unsigned int log_cluster_size;	/* log of cluster size */
1565 	struct page **rpages;		/* pages store raw data in cluster */
1566 	unsigned int nr_rpages;		/* total page number in rpages */
1567 	struct page **cpages;		/* pages store compressed data in cluster */
1568 	unsigned int nr_cpages;		/* total page number in cpages */
1569 	struct page **tpages;		/* temp pages to pad holes in cluster */
1570 	void *rbuf;			/* virtual mapped address on rpages */
1571 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1572 	size_t rlen;			/* valid data length in rbuf */
1573 	size_t clen;			/* valid data length in cbuf */
1574 
1575 	/*
1576 	 * The number of compressed pages remaining to be read in this cluster.
1577 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1578 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1579 	 * is decompressed (or an error is reported).
1580 	 *
1581 	 * If an error occurs before all the pages have been submitted for I/O,
1582 	 * then this will never reach 0.  In this case the I/O submitter is
1583 	 * responsible for calling f2fs_decompress_end_io() instead.
1584 	 */
1585 	atomic_t remaining_pages;
1586 
1587 	/*
1588 	 * Number of references to this decompress_io_ctx.
1589 	 *
1590 	 * One reference is held for I/O completion.  This reference is dropped
1591 	 * after the pagecache pages are updated and unlocked -- either after
1592 	 * decompression (and verity if enabled), or after an error.
1593 	 *
1594 	 * In addition, each compressed page holds a reference while it is in a
1595 	 * bio.  These references are necessary prevent compressed pages from
1596 	 * being freed while they are still in a bio.
1597 	 */
1598 	refcount_t refcnt;
1599 
1600 	bool failed;			/* IO error occurred before decompression? */
1601 	bool need_verity;		/* need fs-verity verification after decompression? */
1602 	void *private;			/* payload buffer for specified decompression algorithm */
1603 	void *private2;			/* extra payload buffer */
1604 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1605 	struct work_struct free_work;	/* work for late free this structure itself */
1606 };
1607 
1608 #define NULL_CLUSTER			((unsigned int)(~0))
1609 #define MIN_COMPRESS_LOG_SIZE		2
1610 #define MAX_COMPRESS_LOG_SIZE		8
1611 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1612 
1613 struct f2fs_sb_info {
1614 	struct super_block *sb;			/* pointer to VFS super block */
1615 	struct proc_dir_entry *s_proc;		/* proc entry */
1616 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1617 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1618 	int valid_super_block;			/* valid super block no */
1619 	unsigned long s_flag;				/* flags for sbi */
1620 	struct mutex writepages;		/* mutex for writepages() */
1621 
1622 #ifdef CONFIG_BLK_DEV_ZONED
1623 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1624 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1625 #endif
1626 
1627 	/* for node-related operations */
1628 	struct f2fs_nm_info *nm_info;		/* node manager */
1629 	struct inode *node_inode;		/* cache node blocks */
1630 
1631 	/* for segment-related operations */
1632 	struct f2fs_sm_info *sm_info;		/* segment manager */
1633 
1634 	/* for bio operations */
1635 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1636 	/* keep migration IO order for LFS mode */
1637 	struct f2fs_rwsem io_order_lock;
1638 	mempool_t *write_io_dummy;		/* Dummy pages */
1639 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1640 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1641 
1642 	/* for checkpoint */
1643 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1644 	int cur_cp_pack;			/* remain current cp pack */
1645 	spinlock_t cp_lock;			/* for flag in ckpt */
1646 	struct inode *meta_inode;		/* cache meta blocks */
1647 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1648 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1649 	struct f2fs_rwsem node_write;		/* locking node writes */
1650 	struct f2fs_rwsem node_change;	/* locking node change */
1651 	wait_queue_head_t cp_wait;
1652 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1653 	long interval_time[MAX_TIME];		/* to store thresholds */
1654 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1655 
1656 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1657 
1658 	spinlock_t fsync_node_lock;		/* for node entry lock */
1659 	struct list_head fsync_node_list;	/* node list head */
1660 	unsigned int fsync_seg_id;		/* sequence id */
1661 	unsigned int fsync_node_num;		/* number of node entries */
1662 
1663 	/* for orphan inode, use 0'th array */
1664 	unsigned int max_orphans;		/* max orphan inodes */
1665 
1666 	/* for inode management */
1667 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1668 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1669 	struct mutex flush_lock;		/* for flush exclusion */
1670 
1671 	/* for extent tree cache */
1672 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1673 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1674 	struct list_head extent_list;		/* lru list for shrinker */
1675 	spinlock_t extent_lock;			/* locking extent lru list */
1676 	atomic_t total_ext_tree;		/* extent tree count */
1677 	struct list_head zombie_list;		/* extent zombie tree list */
1678 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1679 	atomic_t total_ext_node;		/* extent info count */
1680 
1681 	/* basic filesystem units */
1682 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1683 	unsigned int log_blocksize;		/* log2 block size */
1684 	unsigned int blocksize;			/* block size */
1685 	unsigned int root_ino_num;		/* root inode number*/
1686 	unsigned int node_ino_num;		/* node inode number*/
1687 	unsigned int meta_ino_num;		/* meta inode number*/
1688 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1689 	unsigned int blocks_per_seg;		/* blocks per segment */
1690 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1691 	unsigned int segs_per_sec;		/* segments per section */
1692 	unsigned int secs_per_zone;		/* sections per zone */
1693 	unsigned int total_sections;		/* total section count */
1694 	unsigned int total_node_count;		/* total node block count */
1695 	unsigned int total_valid_node_count;	/* valid node block count */
1696 	int dir_level;				/* directory level */
1697 	int readdir_ra;				/* readahead inode in readdir */
1698 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1699 
1700 	block_t user_block_count;		/* # of user blocks */
1701 	block_t total_valid_block_count;	/* # of valid blocks */
1702 	block_t discard_blks;			/* discard command candidats */
1703 	block_t last_valid_block_count;		/* for recovery */
1704 	block_t reserved_blocks;		/* configurable reserved blocks */
1705 	block_t current_reserved_blocks;	/* current reserved blocks */
1706 
1707 	/* Additional tracking for no checkpoint mode */
1708 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1709 
1710 	unsigned int nquota_files;		/* # of quota sysfile */
1711 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1712 
1713 	/* # of pages, see count_type */
1714 	atomic_t nr_pages[NR_COUNT_TYPE];
1715 	/* # of allocated blocks */
1716 	struct percpu_counter alloc_valid_block_count;
1717 	/* # of node block writes as roll forward recovery */
1718 	struct percpu_counter rf_node_block_count;
1719 
1720 	/* writeback control */
1721 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1722 
1723 	/* valid inode count */
1724 	struct percpu_counter total_valid_inode_count;
1725 
1726 	struct f2fs_mount_info mount_opt;	/* mount options */
1727 
1728 	/* for cleaning operations */
1729 	struct f2fs_rwsem gc_lock;		/*
1730 						 * semaphore for GC, avoid
1731 						 * race between GC and GC or CP
1732 						 */
1733 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1734 	struct atgc_management am;		/* atgc management */
1735 	unsigned int cur_victim_sec;		/* current victim section num */
1736 	unsigned int gc_mode;			/* current GC state */
1737 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1738 	spinlock_t gc_urgent_high_lock;
1739 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1740 
1741 	/* for skip statistic */
1742 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1743 
1744 	/* threshold for gc trials on pinned files */
1745 	u64 gc_pin_file_threshold;
1746 	struct f2fs_rwsem pin_sem;
1747 
1748 	/* maximum # of trials to find a victim segment for SSR and GC */
1749 	unsigned int max_victim_search;
1750 	/* migration granularity of garbage collection, unit: segment */
1751 	unsigned int migration_granularity;
1752 
1753 	/*
1754 	 * for stat information.
1755 	 * one is for the LFS mode, and the other is for the SSR mode.
1756 	 */
1757 #ifdef CONFIG_F2FS_STAT_FS
1758 	struct f2fs_stat_info *stat_info;	/* FS status information */
1759 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1760 	unsigned int segment_count[2];		/* # of allocated segments */
1761 	unsigned int block_count[2];		/* # of allocated blocks */
1762 	atomic_t inplace_count;		/* # of inplace update */
1763 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1764 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1765 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1766 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1767 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1768 	atomic_t inline_inode;			/* # of inline_data inodes */
1769 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1770 	atomic_t compr_inode;			/* # of compressed inodes */
1771 	atomic64_t compr_blocks;		/* # of compressed blocks */
1772 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1773 	atomic_t atomic_files;			/* # of opened atomic file */
1774 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1775 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1776 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1777 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1778 #endif
1779 	spinlock_t stat_lock;			/* lock for stat operations */
1780 
1781 	/* to attach REQ_META|REQ_FUA flags */
1782 	unsigned int data_io_flag;
1783 	unsigned int node_io_flag;
1784 
1785 	/* For sysfs support */
1786 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1787 	struct completion s_kobj_unregister;
1788 
1789 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1790 	struct completion s_stat_kobj_unregister;
1791 
1792 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1793 	struct completion s_feature_list_kobj_unregister;
1794 
1795 	/* For shrinker support */
1796 	struct list_head s_list;
1797 	struct mutex umount_mutex;
1798 	unsigned int shrinker_run_no;
1799 
1800 	/* For multi devices */
1801 	int s_ndevs;				/* number of devices */
1802 	struct f2fs_dev_info *devs;		/* for device list */
1803 	unsigned int dirty_device;		/* for checkpoint data flush */
1804 	spinlock_t dev_lock;			/* protect dirty_device */
1805 	bool aligned_blksize;			/* all devices has the same logical blksize */
1806 
1807 	/* For write statistics */
1808 	u64 sectors_written_start;
1809 	u64 kbytes_written;
1810 
1811 	/* Reference to checksum algorithm driver via cryptoapi */
1812 	struct crypto_shash *s_chksum_driver;
1813 
1814 	/* Precomputed FS UUID checksum for seeding other checksums */
1815 	__u32 s_chksum_seed;
1816 
1817 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1818 
1819 	unsigned char errors[MAX_F2FS_ERRORS];	/* error flags */
1820 	spinlock_t error_lock;			/* protect errors array */
1821 	bool error_dirty;			/* errors of sb is dirty */
1822 
1823 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1824 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1825 
1826 	/* For reclaimed segs statistics per each GC mode */
1827 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1828 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1829 
1830 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1831 
1832 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1833 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1834 
1835 	/* For atomic write statistics */
1836 	atomic64_t current_atomic_write;
1837 	s64 peak_atomic_write;
1838 	u64 committed_atomic_block;
1839 	u64 revoked_atomic_block;
1840 
1841 #ifdef CONFIG_F2FS_FS_COMPRESSION
1842 	struct kmem_cache *page_array_slab;	/* page array entry */
1843 	unsigned int page_array_slab_size;	/* default page array slab size */
1844 
1845 	/* For runtime compression statistics */
1846 	u64 compr_written_block;
1847 	u64 compr_saved_block;
1848 	u32 compr_new_inode;
1849 
1850 	/* For compressed block cache */
1851 	struct inode *compress_inode;		/* cache compressed blocks */
1852 	unsigned int compress_percent;		/* cache page percentage */
1853 	unsigned int compress_watermark;	/* cache page watermark */
1854 	atomic_t compress_page_hit;		/* cache hit count */
1855 #endif
1856 
1857 #ifdef CONFIG_F2FS_IOSTAT
1858 	/* For app/fs IO statistics */
1859 	spinlock_t iostat_lock;
1860 	unsigned long long rw_iostat[NR_IO_TYPE];
1861 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1862 	bool iostat_enable;
1863 	unsigned long iostat_next_period;
1864 	unsigned int iostat_period_ms;
1865 
1866 	/* For io latency related statistics info in one iostat period */
1867 	spinlock_t iostat_lat_lock;
1868 	struct iostat_lat_info *iostat_io_lat;
1869 #endif
1870 };
1871 
1872 #ifdef CONFIG_F2FS_FAULT_INJECTION
1873 #define f2fs_show_injection_info(sbi, type)					\
1874 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1875 		KERN_INFO, sbi->sb->s_id,				\
1876 		f2fs_fault_name[type],					\
1877 		__func__, __builtin_return_address(0))
1878 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1879 {
1880 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1881 
1882 	if (!ffi->inject_rate)
1883 		return false;
1884 
1885 	if (!IS_FAULT_SET(ffi, type))
1886 		return false;
1887 
1888 	atomic_inc(&ffi->inject_ops);
1889 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1890 		atomic_set(&ffi->inject_ops, 0);
1891 		return true;
1892 	}
1893 	return false;
1894 }
1895 #else
1896 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1897 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1898 {
1899 	return false;
1900 }
1901 #endif
1902 
1903 /*
1904  * Test if the mounted volume is a multi-device volume.
1905  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1906  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1907  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1908  */
1909 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1910 {
1911 	return sbi->s_ndevs > 1;
1912 }
1913 
1914 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1915 {
1916 	unsigned long now = jiffies;
1917 
1918 	sbi->last_time[type] = now;
1919 
1920 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1921 	if (type == REQ_TIME) {
1922 		sbi->last_time[DISCARD_TIME] = now;
1923 		sbi->last_time[GC_TIME] = now;
1924 	}
1925 }
1926 
1927 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1928 {
1929 	unsigned long interval = sbi->interval_time[type] * HZ;
1930 
1931 	return time_after(jiffies, sbi->last_time[type] + interval);
1932 }
1933 
1934 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1935 						int type)
1936 {
1937 	unsigned long interval = sbi->interval_time[type] * HZ;
1938 	unsigned int wait_ms = 0;
1939 	long delta;
1940 
1941 	delta = (sbi->last_time[type] + interval) - jiffies;
1942 	if (delta > 0)
1943 		wait_ms = jiffies_to_msecs(delta);
1944 
1945 	return wait_ms;
1946 }
1947 
1948 /*
1949  * Inline functions
1950  */
1951 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1952 			      const void *address, unsigned int length)
1953 {
1954 	struct {
1955 		struct shash_desc shash;
1956 		char ctx[4];
1957 	} desc;
1958 	int err;
1959 
1960 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1961 
1962 	desc.shash.tfm = sbi->s_chksum_driver;
1963 	*(u32 *)desc.ctx = crc;
1964 
1965 	err = crypto_shash_update(&desc.shash, address, length);
1966 	BUG_ON(err);
1967 
1968 	return *(u32 *)desc.ctx;
1969 }
1970 
1971 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1972 			   unsigned int length)
1973 {
1974 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1975 }
1976 
1977 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1978 				  void *buf, size_t buf_size)
1979 {
1980 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1981 }
1982 
1983 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1984 			      const void *address, unsigned int length)
1985 {
1986 	return __f2fs_crc32(sbi, crc, address, length);
1987 }
1988 
1989 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1990 {
1991 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1992 }
1993 
1994 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1995 {
1996 	return sb->s_fs_info;
1997 }
1998 
1999 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2000 {
2001 	return F2FS_SB(inode->i_sb);
2002 }
2003 
2004 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2005 {
2006 	return F2FS_I_SB(mapping->host);
2007 }
2008 
2009 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2010 {
2011 	return F2FS_M_SB(page_file_mapping(page));
2012 }
2013 
2014 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2015 {
2016 	return (struct f2fs_super_block *)(sbi->raw_super);
2017 }
2018 
2019 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2020 {
2021 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2022 }
2023 
2024 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2025 {
2026 	return (struct f2fs_node *)page_address(page);
2027 }
2028 
2029 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2030 {
2031 	return &((struct f2fs_node *)page_address(page))->i;
2032 }
2033 
2034 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2035 {
2036 	return (struct f2fs_nm_info *)(sbi->nm_info);
2037 }
2038 
2039 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2040 {
2041 	return (struct f2fs_sm_info *)(sbi->sm_info);
2042 }
2043 
2044 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2045 {
2046 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2047 }
2048 
2049 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2050 {
2051 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2052 }
2053 
2054 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2055 {
2056 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2057 }
2058 
2059 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2060 {
2061 	return sbi->meta_inode->i_mapping;
2062 }
2063 
2064 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2065 {
2066 	return sbi->node_inode->i_mapping;
2067 }
2068 
2069 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2070 {
2071 	return test_bit(type, &sbi->s_flag);
2072 }
2073 
2074 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2075 {
2076 	set_bit(type, &sbi->s_flag);
2077 }
2078 
2079 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2080 {
2081 	clear_bit(type, &sbi->s_flag);
2082 }
2083 
2084 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2085 {
2086 	return le64_to_cpu(cp->checkpoint_ver);
2087 }
2088 
2089 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2090 {
2091 	if (type < F2FS_MAX_QUOTAS)
2092 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2093 	return 0;
2094 }
2095 
2096 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2097 {
2098 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2099 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2100 }
2101 
2102 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2103 {
2104 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2105 
2106 	return ckpt_flags & f;
2107 }
2108 
2109 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2110 {
2111 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2112 }
2113 
2114 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2115 {
2116 	unsigned int ckpt_flags;
2117 
2118 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2119 	ckpt_flags |= f;
2120 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2121 }
2122 
2123 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2124 {
2125 	unsigned long flags;
2126 
2127 	spin_lock_irqsave(&sbi->cp_lock, flags);
2128 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2129 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2130 }
2131 
2132 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2133 {
2134 	unsigned int ckpt_flags;
2135 
2136 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2137 	ckpt_flags &= (~f);
2138 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2139 }
2140 
2141 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2142 {
2143 	unsigned long flags;
2144 
2145 	spin_lock_irqsave(&sbi->cp_lock, flags);
2146 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2147 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2148 }
2149 
2150 #define init_f2fs_rwsem(sem)					\
2151 do {								\
2152 	static struct lock_class_key __key;			\
2153 								\
2154 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2155 } while (0)
2156 
2157 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2158 		const char *sem_name, struct lock_class_key *key)
2159 {
2160 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2161 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2162 	init_waitqueue_head(&sem->read_waiters);
2163 #endif
2164 }
2165 
2166 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2167 {
2168 	return rwsem_is_locked(&sem->internal_rwsem);
2169 }
2170 
2171 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2172 {
2173 	return rwsem_is_contended(&sem->internal_rwsem);
2174 }
2175 
2176 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2177 {
2178 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2179 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2180 #else
2181 	down_read(&sem->internal_rwsem);
2182 #endif
2183 }
2184 
2185 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2186 {
2187 	return down_read_trylock(&sem->internal_rwsem);
2188 }
2189 
2190 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2191 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2192 {
2193 	down_read_nested(&sem->internal_rwsem, subclass);
2194 }
2195 #else
2196 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2197 #endif
2198 
2199 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2200 {
2201 	up_read(&sem->internal_rwsem);
2202 }
2203 
2204 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2205 {
2206 	down_write(&sem->internal_rwsem);
2207 }
2208 
2209 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2210 {
2211 	return down_write_trylock(&sem->internal_rwsem);
2212 }
2213 
2214 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2215 {
2216 	up_write(&sem->internal_rwsem);
2217 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2218 	wake_up_all(&sem->read_waiters);
2219 #endif
2220 }
2221 
2222 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2223 {
2224 	f2fs_down_read(&sbi->cp_rwsem);
2225 }
2226 
2227 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2228 {
2229 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2230 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2231 		return 0;
2232 	}
2233 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2234 }
2235 
2236 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2237 {
2238 	f2fs_up_read(&sbi->cp_rwsem);
2239 }
2240 
2241 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2242 {
2243 	f2fs_down_write(&sbi->cp_rwsem);
2244 }
2245 
2246 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2247 {
2248 	f2fs_up_write(&sbi->cp_rwsem);
2249 }
2250 
2251 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2252 {
2253 	int reason = CP_SYNC;
2254 
2255 	if (test_opt(sbi, FASTBOOT))
2256 		reason = CP_FASTBOOT;
2257 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2258 		reason = CP_UMOUNT;
2259 	return reason;
2260 }
2261 
2262 static inline bool __remain_node_summaries(int reason)
2263 {
2264 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2265 }
2266 
2267 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2268 {
2269 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2270 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2271 }
2272 
2273 /*
2274  * Check whether the inode has blocks or not
2275  */
2276 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2277 {
2278 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2279 
2280 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2281 }
2282 
2283 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2284 {
2285 	return ofs == XATTR_NODE_OFFSET;
2286 }
2287 
2288 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2289 					struct inode *inode, bool cap)
2290 {
2291 	if (!inode)
2292 		return true;
2293 	if (!test_opt(sbi, RESERVE_ROOT))
2294 		return false;
2295 	if (IS_NOQUOTA(inode))
2296 		return true;
2297 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2298 		return true;
2299 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2300 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2301 		return true;
2302 	if (cap && capable(CAP_SYS_RESOURCE))
2303 		return true;
2304 	return false;
2305 }
2306 
2307 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2308 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2309 				 struct inode *inode, blkcnt_t *count)
2310 {
2311 	blkcnt_t diff = 0, release = 0;
2312 	block_t avail_user_block_count;
2313 	int ret;
2314 
2315 	ret = dquot_reserve_block(inode, *count);
2316 	if (ret)
2317 		return ret;
2318 
2319 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2320 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2321 		release = *count;
2322 		goto release_quota;
2323 	}
2324 
2325 	/*
2326 	 * let's increase this in prior to actual block count change in order
2327 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2328 	 */
2329 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2330 
2331 	spin_lock(&sbi->stat_lock);
2332 	sbi->total_valid_block_count += (block_t)(*count);
2333 	avail_user_block_count = sbi->user_block_count -
2334 					sbi->current_reserved_blocks;
2335 
2336 	if (!__allow_reserved_blocks(sbi, inode, true))
2337 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2338 
2339 	if (F2FS_IO_ALIGNED(sbi))
2340 		avail_user_block_count -= sbi->blocks_per_seg *
2341 				SM_I(sbi)->additional_reserved_segments;
2342 
2343 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2344 		if (avail_user_block_count > sbi->unusable_block_count)
2345 			avail_user_block_count -= sbi->unusable_block_count;
2346 		else
2347 			avail_user_block_count = 0;
2348 	}
2349 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2350 		diff = sbi->total_valid_block_count - avail_user_block_count;
2351 		if (diff > *count)
2352 			diff = *count;
2353 		*count -= diff;
2354 		release = diff;
2355 		sbi->total_valid_block_count -= diff;
2356 		if (!*count) {
2357 			spin_unlock(&sbi->stat_lock);
2358 			goto enospc;
2359 		}
2360 	}
2361 	spin_unlock(&sbi->stat_lock);
2362 
2363 	if (unlikely(release)) {
2364 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2365 		dquot_release_reservation_block(inode, release);
2366 	}
2367 	f2fs_i_blocks_write(inode, *count, true, true);
2368 	return 0;
2369 
2370 enospc:
2371 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2372 release_quota:
2373 	dquot_release_reservation_block(inode, release);
2374 	return -ENOSPC;
2375 }
2376 
2377 __printf(2, 3)
2378 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2379 
2380 #define f2fs_err(sbi, fmt, ...)						\
2381 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2382 #define f2fs_warn(sbi, fmt, ...)					\
2383 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2384 #define f2fs_notice(sbi, fmt, ...)					\
2385 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2386 #define f2fs_info(sbi, fmt, ...)					\
2387 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2388 #define f2fs_debug(sbi, fmt, ...)					\
2389 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2390 
2391 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2392 						struct inode *inode,
2393 						block_t count)
2394 {
2395 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2396 
2397 	spin_lock(&sbi->stat_lock);
2398 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2399 	sbi->total_valid_block_count -= (block_t)count;
2400 	if (sbi->reserved_blocks &&
2401 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2402 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2403 					sbi->current_reserved_blocks + count);
2404 	spin_unlock(&sbi->stat_lock);
2405 	if (unlikely(inode->i_blocks < sectors)) {
2406 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2407 			  inode->i_ino,
2408 			  (unsigned long long)inode->i_blocks,
2409 			  (unsigned long long)sectors);
2410 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2411 		return;
2412 	}
2413 	f2fs_i_blocks_write(inode, count, false, true);
2414 }
2415 
2416 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2417 {
2418 	atomic_inc(&sbi->nr_pages[count_type]);
2419 
2420 	if (count_type == F2FS_DIRTY_DENTS ||
2421 			count_type == F2FS_DIRTY_NODES ||
2422 			count_type == F2FS_DIRTY_META ||
2423 			count_type == F2FS_DIRTY_QDATA ||
2424 			count_type == F2FS_DIRTY_IMETA)
2425 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2426 }
2427 
2428 static inline void inode_inc_dirty_pages(struct inode *inode)
2429 {
2430 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2431 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2432 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2433 	if (IS_NOQUOTA(inode))
2434 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2435 }
2436 
2437 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2438 {
2439 	atomic_dec(&sbi->nr_pages[count_type]);
2440 }
2441 
2442 static inline void inode_dec_dirty_pages(struct inode *inode)
2443 {
2444 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2445 			!S_ISLNK(inode->i_mode))
2446 		return;
2447 
2448 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2449 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2450 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2451 	if (IS_NOQUOTA(inode))
2452 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2453 }
2454 
2455 static inline void inc_atomic_write_cnt(struct inode *inode)
2456 {
2457 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2458 	struct f2fs_inode_info *fi = F2FS_I(inode);
2459 	u64 current_write;
2460 
2461 	fi->atomic_write_cnt++;
2462 	atomic64_inc(&sbi->current_atomic_write);
2463 	current_write = atomic64_read(&sbi->current_atomic_write);
2464 	if (current_write > sbi->peak_atomic_write)
2465 		sbi->peak_atomic_write = current_write;
2466 }
2467 
2468 static inline void release_atomic_write_cnt(struct inode *inode)
2469 {
2470 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2471 	struct f2fs_inode_info *fi = F2FS_I(inode);
2472 
2473 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2474 	fi->atomic_write_cnt = 0;
2475 }
2476 
2477 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2478 {
2479 	return atomic_read(&sbi->nr_pages[count_type]);
2480 }
2481 
2482 static inline int get_dirty_pages(struct inode *inode)
2483 {
2484 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2485 }
2486 
2487 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2488 {
2489 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2490 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2491 						sbi->log_blocks_per_seg;
2492 
2493 	return segs / sbi->segs_per_sec;
2494 }
2495 
2496 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2497 {
2498 	return sbi->total_valid_block_count;
2499 }
2500 
2501 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2502 {
2503 	return sbi->discard_blks;
2504 }
2505 
2506 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2507 {
2508 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2509 
2510 	/* return NAT or SIT bitmap */
2511 	if (flag == NAT_BITMAP)
2512 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2513 	else if (flag == SIT_BITMAP)
2514 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2515 
2516 	return 0;
2517 }
2518 
2519 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2520 {
2521 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2522 }
2523 
2524 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2525 {
2526 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2527 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2528 	int offset;
2529 
2530 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2531 		offset = (flag == SIT_BITMAP) ?
2532 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2533 		/*
2534 		 * if large_nat_bitmap feature is enabled, leave checksum
2535 		 * protection for all nat/sit bitmaps.
2536 		 */
2537 		return tmp_ptr + offset + sizeof(__le32);
2538 	}
2539 
2540 	if (__cp_payload(sbi) > 0) {
2541 		if (flag == NAT_BITMAP)
2542 			return tmp_ptr;
2543 		else
2544 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2545 	} else {
2546 		offset = (flag == NAT_BITMAP) ?
2547 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2548 		return tmp_ptr + offset;
2549 	}
2550 }
2551 
2552 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2553 {
2554 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2555 
2556 	if (sbi->cur_cp_pack == 2)
2557 		start_addr += sbi->blocks_per_seg;
2558 	return start_addr;
2559 }
2560 
2561 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2562 {
2563 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2564 
2565 	if (sbi->cur_cp_pack == 1)
2566 		start_addr += sbi->blocks_per_seg;
2567 	return start_addr;
2568 }
2569 
2570 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2571 {
2572 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2573 }
2574 
2575 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2576 {
2577 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2578 }
2579 
2580 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2581 					struct inode *inode, bool is_inode)
2582 {
2583 	block_t	valid_block_count;
2584 	unsigned int valid_node_count, user_block_count;
2585 	int err;
2586 
2587 	if (is_inode) {
2588 		if (inode) {
2589 			err = dquot_alloc_inode(inode);
2590 			if (err)
2591 				return err;
2592 		}
2593 	} else {
2594 		err = dquot_reserve_block(inode, 1);
2595 		if (err)
2596 			return err;
2597 	}
2598 
2599 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2600 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2601 		goto enospc;
2602 	}
2603 
2604 	spin_lock(&sbi->stat_lock);
2605 
2606 	valid_block_count = sbi->total_valid_block_count +
2607 					sbi->current_reserved_blocks + 1;
2608 
2609 	if (!__allow_reserved_blocks(sbi, inode, false))
2610 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2611 
2612 	if (F2FS_IO_ALIGNED(sbi))
2613 		valid_block_count += sbi->blocks_per_seg *
2614 				SM_I(sbi)->additional_reserved_segments;
2615 
2616 	user_block_count = sbi->user_block_count;
2617 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2618 		user_block_count -= sbi->unusable_block_count;
2619 
2620 	if (unlikely(valid_block_count > user_block_count)) {
2621 		spin_unlock(&sbi->stat_lock);
2622 		goto enospc;
2623 	}
2624 
2625 	valid_node_count = sbi->total_valid_node_count + 1;
2626 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2627 		spin_unlock(&sbi->stat_lock);
2628 		goto enospc;
2629 	}
2630 
2631 	sbi->total_valid_node_count++;
2632 	sbi->total_valid_block_count++;
2633 	spin_unlock(&sbi->stat_lock);
2634 
2635 	if (inode) {
2636 		if (is_inode)
2637 			f2fs_mark_inode_dirty_sync(inode, true);
2638 		else
2639 			f2fs_i_blocks_write(inode, 1, true, true);
2640 	}
2641 
2642 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2643 	return 0;
2644 
2645 enospc:
2646 	if (is_inode) {
2647 		if (inode)
2648 			dquot_free_inode(inode);
2649 	} else {
2650 		dquot_release_reservation_block(inode, 1);
2651 	}
2652 	return -ENOSPC;
2653 }
2654 
2655 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2656 					struct inode *inode, bool is_inode)
2657 {
2658 	spin_lock(&sbi->stat_lock);
2659 
2660 	if (unlikely(!sbi->total_valid_block_count ||
2661 			!sbi->total_valid_node_count)) {
2662 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2663 			  sbi->total_valid_block_count,
2664 			  sbi->total_valid_node_count);
2665 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2666 	} else {
2667 		sbi->total_valid_block_count--;
2668 		sbi->total_valid_node_count--;
2669 	}
2670 
2671 	if (sbi->reserved_blocks &&
2672 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2673 		sbi->current_reserved_blocks++;
2674 
2675 	spin_unlock(&sbi->stat_lock);
2676 
2677 	if (is_inode) {
2678 		dquot_free_inode(inode);
2679 	} else {
2680 		if (unlikely(inode->i_blocks == 0)) {
2681 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2682 				  inode->i_ino,
2683 				  (unsigned long long)inode->i_blocks);
2684 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2685 			return;
2686 		}
2687 		f2fs_i_blocks_write(inode, 1, false, true);
2688 	}
2689 }
2690 
2691 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2692 {
2693 	return sbi->total_valid_node_count;
2694 }
2695 
2696 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2697 {
2698 	percpu_counter_inc(&sbi->total_valid_inode_count);
2699 }
2700 
2701 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2702 {
2703 	percpu_counter_dec(&sbi->total_valid_inode_count);
2704 }
2705 
2706 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2707 {
2708 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2709 }
2710 
2711 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2712 						pgoff_t index, bool for_write)
2713 {
2714 	struct page *page;
2715 	unsigned int flags;
2716 
2717 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2718 		if (!for_write)
2719 			page = find_get_page_flags(mapping, index,
2720 							FGP_LOCK | FGP_ACCESSED);
2721 		else
2722 			page = find_lock_page(mapping, index);
2723 		if (page)
2724 			return page;
2725 
2726 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2727 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2728 							FAULT_PAGE_ALLOC);
2729 			return NULL;
2730 		}
2731 	}
2732 
2733 	if (!for_write)
2734 		return grab_cache_page(mapping, index);
2735 
2736 	flags = memalloc_nofs_save();
2737 	page = grab_cache_page_write_begin(mapping, index);
2738 	memalloc_nofs_restore(flags);
2739 
2740 	return page;
2741 }
2742 
2743 static inline struct page *f2fs_pagecache_get_page(
2744 				struct address_space *mapping, pgoff_t index,
2745 				int fgp_flags, gfp_t gfp_mask)
2746 {
2747 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2748 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2749 		return NULL;
2750 	}
2751 
2752 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2753 }
2754 
2755 static inline void f2fs_put_page(struct page *page, int unlock)
2756 {
2757 	if (!page)
2758 		return;
2759 
2760 	if (unlock) {
2761 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2762 		unlock_page(page);
2763 	}
2764 	put_page(page);
2765 }
2766 
2767 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2768 {
2769 	if (dn->node_page)
2770 		f2fs_put_page(dn->node_page, 1);
2771 	if (dn->inode_page && dn->node_page != dn->inode_page)
2772 		f2fs_put_page(dn->inode_page, 0);
2773 	dn->node_page = NULL;
2774 	dn->inode_page = NULL;
2775 }
2776 
2777 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2778 					size_t size)
2779 {
2780 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2781 }
2782 
2783 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2784 						gfp_t flags)
2785 {
2786 	void *entry;
2787 
2788 	entry = kmem_cache_alloc(cachep, flags);
2789 	if (!entry)
2790 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2791 	return entry;
2792 }
2793 
2794 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2795 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2796 {
2797 	if (nofail)
2798 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2799 
2800 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2801 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2802 		return NULL;
2803 	}
2804 
2805 	return kmem_cache_alloc(cachep, flags);
2806 }
2807 
2808 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2809 {
2810 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2811 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2812 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2813 		get_pages(sbi, F2FS_DIO_READ) ||
2814 		get_pages(sbi, F2FS_DIO_WRITE))
2815 		return true;
2816 
2817 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2818 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2819 		return true;
2820 
2821 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2822 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2823 		return true;
2824 	return false;
2825 }
2826 
2827 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2828 {
2829 	if (sbi->gc_mode == GC_URGENT_HIGH)
2830 		return true;
2831 
2832 	if (is_inflight_io(sbi, type))
2833 		return false;
2834 
2835 	if (sbi->gc_mode == GC_URGENT_MID)
2836 		return true;
2837 
2838 	if (sbi->gc_mode == GC_URGENT_LOW &&
2839 			(type == DISCARD_TIME || type == GC_TIME))
2840 		return true;
2841 
2842 	return f2fs_time_over(sbi, type);
2843 }
2844 
2845 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2846 				unsigned long index, void *item)
2847 {
2848 	while (radix_tree_insert(root, index, item))
2849 		cond_resched();
2850 }
2851 
2852 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2853 
2854 static inline bool IS_INODE(struct page *page)
2855 {
2856 	struct f2fs_node *p = F2FS_NODE(page);
2857 
2858 	return RAW_IS_INODE(p);
2859 }
2860 
2861 static inline int offset_in_addr(struct f2fs_inode *i)
2862 {
2863 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2864 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2865 }
2866 
2867 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2868 {
2869 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2870 }
2871 
2872 static inline int f2fs_has_extra_attr(struct inode *inode);
2873 static inline block_t data_blkaddr(struct inode *inode,
2874 			struct page *node_page, unsigned int offset)
2875 {
2876 	struct f2fs_node *raw_node;
2877 	__le32 *addr_array;
2878 	int base = 0;
2879 	bool is_inode = IS_INODE(node_page);
2880 
2881 	raw_node = F2FS_NODE(node_page);
2882 
2883 	if (is_inode) {
2884 		if (!inode)
2885 			/* from GC path only */
2886 			base = offset_in_addr(&raw_node->i);
2887 		else if (f2fs_has_extra_attr(inode))
2888 			base = get_extra_isize(inode);
2889 	}
2890 
2891 	addr_array = blkaddr_in_node(raw_node);
2892 	return le32_to_cpu(addr_array[base + offset]);
2893 }
2894 
2895 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2896 {
2897 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2898 }
2899 
2900 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2901 {
2902 	int mask;
2903 
2904 	addr += (nr >> 3);
2905 	mask = 1 << (7 - (nr & 0x07));
2906 	return mask & *addr;
2907 }
2908 
2909 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2910 {
2911 	int mask;
2912 
2913 	addr += (nr >> 3);
2914 	mask = 1 << (7 - (nr & 0x07));
2915 	*addr |= mask;
2916 }
2917 
2918 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2919 {
2920 	int mask;
2921 
2922 	addr += (nr >> 3);
2923 	mask = 1 << (7 - (nr & 0x07));
2924 	*addr &= ~mask;
2925 }
2926 
2927 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2928 {
2929 	int mask;
2930 	int ret;
2931 
2932 	addr += (nr >> 3);
2933 	mask = 1 << (7 - (nr & 0x07));
2934 	ret = mask & *addr;
2935 	*addr |= mask;
2936 	return ret;
2937 }
2938 
2939 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2940 {
2941 	int mask;
2942 	int ret;
2943 
2944 	addr += (nr >> 3);
2945 	mask = 1 << (7 - (nr & 0x07));
2946 	ret = mask & *addr;
2947 	*addr &= ~mask;
2948 	return ret;
2949 }
2950 
2951 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2952 {
2953 	int mask;
2954 
2955 	addr += (nr >> 3);
2956 	mask = 1 << (7 - (nr & 0x07));
2957 	*addr ^= mask;
2958 }
2959 
2960 /*
2961  * On-disk inode flags (f2fs_inode::i_flags)
2962  */
2963 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2964 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2965 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2966 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2967 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2968 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2969 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2970 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2971 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2972 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2973 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2974 
2975 /* Flags that should be inherited by new inodes from their parent. */
2976 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2977 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2978 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2979 
2980 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2981 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2982 				F2FS_CASEFOLD_FL))
2983 
2984 /* Flags that are appropriate for non-directories/regular files. */
2985 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2986 
2987 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2988 {
2989 	if (S_ISDIR(mode))
2990 		return flags;
2991 	else if (S_ISREG(mode))
2992 		return flags & F2FS_REG_FLMASK;
2993 	else
2994 		return flags & F2FS_OTHER_FLMASK;
2995 }
2996 
2997 static inline void __mark_inode_dirty_flag(struct inode *inode,
2998 						int flag, bool set)
2999 {
3000 	switch (flag) {
3001 	case FI_INLINE_XATTR:
3002 	case FI_INLINE_DATA:
3003 	case FI_INLINE_DENTRY:
3004 	case FI_NEW_INODE:
3005 		if (set)
3006 			return;
3007 		fallthrough;
3008 	case FI_DATA_EXIST:
3009 	case FI_INLINE_DOTS:
3010 	case FI_PIN_FILE:
3011 	case FI_COMPRESS_RELEASED:
3012 		f2fs_mark_inode_dirty_sync(inode, true);
3013 	}
3014 }
3015 
3016 static inline void set_inode_flag(struct inode *inode, int flag)
3017 {
3018 	set_bit(flag, F2FS_I(inode)->flags);
3019 	__mark_inode_dirty_flag(inode, flag, true);
3020 }
3021 
3022 static inline int is_inode_flag_set(struct inode *inode, int flag)
3023 {
3024 	return test_bit(flag, F2FS_I(inode)->flags);
3025 }
3026 
3027 static inline void clear_inode_flag(struct inode *inode, int flag)
3028 {
3029 	clear_bit(flag, F2FS_I(inode)->flags);
3030 	__mark_inode_dirty_flag(inode, flag, false);
3031 }
3032 
3033 static inline bool f2fs_verity_in_progress(struct inode *inode)
3034 {
3035 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3036 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3037 }
3038 
3039 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3040 {
3041 	F2FS_I(inode)->i_acl_mode = mode;
3042 	set_inode_flag(inode, FI_ACL_MODE);
3043 	f2fs_mark_inode_dirty_sync(inode, false);
3044 }
3045 
3046 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3047 {
3048 	if (inc)
3049 		inc_nlink(inode);
3050 	else
3051 		drop_nlink(inode);
3052 	f2fs_mark_inode_dirty_sync(inode, true);
3053 }
3054 
3055 static inline void f2fs_i_blocks_write(struct inode *inode,
3056 					block_t diff, bool add, bool claim)
3057 {
3058 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3059 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3060 
3061 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3062 	if (add) {
3063 		if (claim)
3064 			dquot_claim_block(inode, diff);
3065 		else
3066 			dquot_alloc_block_nofail(inode, diff);
3067 	} else {
3068 		dquot_free_block(inode, diff);
3069 	}
3070 
3071 	f2fs_mark_inode_dirty_sync(inode, true);
3072 	if (clean || recover)
3073 		set_inode_flag(inode, FI_AUTO_RECOVER);
3074 }
3075 
3076 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3077 {
3078 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3079 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3080 
3081 	if (i_size_read(inode) == i_size)
3082 		return;
3083 
3084 	i_size_write(inode, i_size);
3085 	f2fs_mark_inode_dirty_sync(inode, true);
3086 	if (clean || recover)
3087 		set_inode_flag(inode, FI_AUTO_RECOVER);
3088 }
3089 
3090 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3091 {
3092 	F2FS_I(inode)->i_current_depth = depth;
3093 	f2fs_mark_inode_dirty_sync(inode, true);
3094 }
3095 
3096 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3097 					unsigned int count)
3098 {
3099 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3100 	f2fs_mark_inode_dirty_sync(inode, true);
3101 }
3102 
3103 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3104 {
3105 	F2FS_I(inode)->i_xattr_nid = xnid;
3106 	f2fs_mark_inode_dirty_sync(inode, true);
3107 }
3108 
3109 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3110 {
3111 	F2FS_I(inode)->i_pino = pino;
3112 	f2fs_mark_inode_dirty_sync(inode, true);
3113 }
3114 
3115 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3116 {
3117 	struct f2fs_inode_info *fi = F2FS_I(inode);
3118 
3119 	if (ri->i_inline & F2FS_INLINE_XATTR)
3120 		set_bit(FI_INLINE_XATTR, fi->flags);
3121 	if (ri->i_inline & F2FS_INLINE_DATA)
3122 		set_bit(FI_INLINE_DATA, fi->flags);
3123 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3124 		set_bit(FI_INLINE_DENTRY, fi->flags);
3125 	if (ri->i_inline & F2FS_DATA_EXIST)
3126 		set_bit(FI_DATA_EXIST, fi->flags);
3127 	if (ri->i_inline & F2FS_INLINE_DOTS)
3128 		set_bit(FI_INLINE_DOTS, fi->flags);
3129 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3130 		set_bit(FI_EXTRA_ATTR, fi->flags);
3131 	if (ri->i_inline & F2FS_PIN_FILE)
3132 		set_bit(FI_PIN_FILE, fi->flags);
3133 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3134 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3135 }
3136 
3137 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3138 {
3139 	ri->i_inline = 0;
3140 
3141 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3142 		ri->i_inline |= F2FS_INLINE_XATTR;
3143 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3144 		ri->i_inline |= F2FS_INLINE_DATA;
3145 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3146 		ri->i_inline |= F2FS_INLINE_DENTRY;
3147 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3148 		ri->i_inline |= F2FS_DATA_EXIST;
3149 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3150 		ri->i_inline |= F2FS_INLINE_DOTS;
3151 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3152 		ri->i_inline |= F2FS_EXTRA_ATTR;
3153 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3154 		ri->i_inline |= F2FS_PIN_FILE;
3155 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3156 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3157 }
3158 
3159 static inline int f2fs_has_extra_attr(struct inode *inode)
3160 {
3161 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3162 }
3163 
3164 static inline int f2fs_has_inline_xattr(struct inode *inode)
3165 {
3166 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3167 }
3168 
3169 static inline int f2fs_compressed_file(struct inode *inode)
3170 {
3171 	return S_ISREG(inode->i_mode) &&
3172 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3173 }
3174 
3175 static inline bool f2fs_need_compress_data(struct inode *inode)
3176 {
3177 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3178 
3179 	if (!f2fs_compressed_file(inode))
3180 		return false;
3181 
3182 	if (compress_mode == COMPR_MODE_FS)
3183 		return true;
3184 	else if (compress_mode == COMPR_MODE_USER &&
3185 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3186 		return true;
3187 
3188 	return false;
3189 }
3190 
3191 static inline unsigned int addrs_per_inode(struct inode *inode)
3192 {
3193 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3194 				get_inline_xattr_addrs(inode);
3195 
3196 	if (!f2fs_compressed_file(inode))
3197 		return addrs;
3198 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3199 }
3200 
3201 static inline unsigned int addrs_per_block(struct inode *inode)
3202 {
3203 	if (!f2fs_compressed_file(inode))
3204 		return DEF_ADDRS_PER_BLOCK;
3205 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3206 }
3207 
3208 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3209 {
3210 	struct f2fs_inode *ri = F2FS_INODE(page);
3211 
3212 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3213 					get_inline_xattr_addrs(inode)]);
3214 }
3215 
3216 static inline int inline_xattr_size(struct inode *inode)
3217 {
3218 	if (f2fs_has_inline_xattr(inode))
3219 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3220 	return 0;
3221 }
3222 
3223 /*
3224  * Notice: check inline_data flag without inode page lock is unsafe.
3225  * It could change at any time by f2fs_convert_inline_page().
3226  */
3227 static inline int f2fs_has_inline_data(struct inode *inode)
3228 {
3229 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3230 }
3231 
3232 static inline int f2fs_exist_data(struct inode *inode)
3233 {
3234 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3235 }
3236 
3237 static inline int f2fs_has_inline_dots(struct inode *inode)
3238 {
3239 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3240 }
3241 
3242 static inline int f2fs_is_mmap_file(struct inode *inode)
3243 {
3244 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3245 }
3246 
3247 static inline bool f2fs_is_pinned_file(struct inode *inode)
3248 {
3249 	return is_inode_flag_set(inode, FI_PIN_FILE);
3250 }
3251 
3252 static inline bool f2fs_is_atomic_file(struct inode *inode)
3253 {
3254 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3255 }
3256 
3257 static inline bool f2fs_is_cow_file(struct inode *inode)
3258 {
3259 	return is_inode_flag_set(inode, FI_COW_FILE);
3260 }
3261 
3262 static inline bool f2fs_is_first_block_written(struct inode *inode)
3263 {
3264 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3265 }
3266 
3267 static inline bool f2fs_is_drop_cache(struct inode *inode)
3268 {
3269 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3270 }
3271 
3272 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3273 {
3274 	struct f2fs_inode *ri = F2FS_INODE(page);
3275 	int extra_size = get_extra_isize(inode);
3276 
3277 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3278 }
3279 
3280 static inline int f2fs_has_inline_dentry(struct inode *inode)
3281 {
3282 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3283 }
3284 
3285 static inline int is_file(struct inode *inode, int type)
3286 {
3287 	return F2FS_I(inode)->i_advise & type;
3288 }
3289 
3290 static inline void set_file(struct inode *inode, int type)
3291 {
3292 	if (is_file(inode, type))
3293 		return;
3294 	F2FS_I(inode)->i_advise |= type;
3295 	f2fs_mark_inode_dirty_sync(inode, true);
3296 }
3297 
3298 static inline void clear_file(struct inode *inode, int type)
3299 {
3300 	if (!is_file(inode, type))
3301 		return;
3302 	F2FS_I(inode)->i_advise &= ~type;
3303 	f2fs_mark_inode_dirty_sync(inode, true);
3304 }
3305 
3306 static inline bool f2fs_is_time_consistent(struct inode *inode)
3307 {
3308 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3309 		return false;
3310 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3311 		return false;
3312 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3313 		return false;
3314 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3315 						&F2FS_I(inode)->i_crtime))
3316 		return false;
3317 	return true;
3318 }
3319 
3320 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3321 {
3322 	bool ret;
3323 
3324 	if (dsync) {
3325 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3326 
3327 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3328 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3329 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3330 		return ret;
3331 	}
3332 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3333 			file_keep_isize(inode) ||
3334 			i_size_read(inode) & ~PAGE_MASK)
3335 		return false;
3336 
3337 	if (!f2fs_is_time_consistent(inode))
3338 		return false;
3339 
3340 	spin_lock(&F2FS_I(inode)->i_size_lock);
3341 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3342 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3343 
3344 	return ret;
3345 }
3346 
3347 static inline bool f2fs_readonly(struct super_block *sb)
3348 {
3349 	return sb_rdonly(sb);
3350 }
3351 
3352 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3353 {
3354 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3355 }
3356 
3357 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3358 {
3359 	if (len == 1 && name[0] == '.')
3360 		return true;
3361 
3362 	if (len == 2 && name[0] == '.' && name[1] == '.')
3363 		return true;
3364 
3365 	return false;
3366 }
3367 
3368 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3369 					size_t size, gfp_t flags)
3370 {
3371 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3372 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3373 		return NULL;
3374 	}
3375 
3376 	return kmalloc(size, flags);
3377 }
3378 
3379 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3380 					size_t size, gfp_t flags)
3381 {
3382 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3383 }
3384 
3385 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3386 					size_t size, gfp_t flags)
3387 {
3388 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3389 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3390 		return NULL;
3391 	}
3392 
3393 	return kvmalloc(size, flags);
3394 }
3395 
3396 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3397 					size_t size, gfp_t flags)
3398 {
3399 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3400 }
3401 
3402 static inline int get_extra_isize(struct inode *inode)
3403 {
3404 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3405 }
3406 
3407 static inline int get_inline_xattr_addrs(struct inode *inode)
3408 {
3409 	return F2FS_I(inode)->i_inline_xattr_size;
3410 }
3411 
3412 #define f2fs_get_inode_mode(i) \
3413 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3414 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3415 
3416 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3417 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3418 	offsetof(struct f2fs_inode, i_extra_isize))	\
3419 
3420 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3421 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3422 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3423 		sizeof((f2fs_inode)->field))			\
3424 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3425 
3426 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3427 
3428 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3429 
3430 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3431 					block_t blkaddr, int type);
3432 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3433 					block_t blkaddr, int type)
3434 {
3435 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3436 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3437 			 blkaddr, type);
3438 		f2fs_bug_on(sbi, 1);
3439 	}
3440 }
3441 
3442 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3443 {
3444 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3445 			blkaddr == COMPRESS_ADDR)
3446 		return false;
3447 	return true;
3448 }
3449 
3450 /*
3451  * file.c
3452  */
3453 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3454 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3455 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3456 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3457 int f2fs_truncate(struct inode *inode);
3458 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3459 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3460 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3461 		 struct iattr *attr);
3462 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3463 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3464 int f2fs_precache_extents(struct inode *inode);
3465 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3466 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3467 		      struct dentry *dentry, struct fileattr *fa);
3468 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3469 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3470 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3471 int f2fs_pin_file_control(struct inode *inode, bool inc);
3472 
3473 /*
3474  * inode.c
3475  */
3476 void f2fs_set_inode_flags(struct inode *inode);
3477 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3478 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3479 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3480 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3481 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3482 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3483 void f2fs_update_inode_page(struct inode *inode);
3484 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3485 void f2fs_evict_inode(struct inode *inode);
3486 void f2fs_handle_failed_inode(struct inode *inode);
3487 
3488 /*
3489  * namei.c
3490  */
3491 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3492 							bool hot, bool set);
3493 struct dentry *f2fs_get_parent(struct dentry *child);
3494 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3495 		     struct inode **new_inode);
3496 
3497 /*
3498  * dir.c
3499  */
3500 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3501 int f2fs_init_casefolded_name(const struct inode *dir,
3502 			      struct f2fs_filename *fname);
3503 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3504 			int lookup, struct f2fs_filename *fname);
3505 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3506 			struct f2fs_filename *fname);
3507 void f2fs_free_filename(struct f2fs_filename *fname);
3508 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3509 			const struct f2fs_filename *fname, int *max_slots);
3510 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3511 			unsigned int start_pos, struct fscrypt_str *fstr);
3512 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3513 			struct f2fs_dentry_ptr *d);
3514 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3515 			const struct f2fs_filename *fname, struct page *dpage);
3516 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3517 			unsigned int current_depth);
3518 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3519 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3520 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3521 					 const struct f2fs_filename *fname,
3522 					 struct page **res_page);
3523 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3524 			const struct qstr *child, struct page **res_page);
3525 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3526 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3527 			struct page **page);
3528 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3529 			struct page *page, struct inode *inode);
3530 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3531 			  const struct f2fs_filename *fname);
3532 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3533 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3534 			unsigned int bit_pos);
3535 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3536 			struct inode *inode, nid_t ino, umode_t mode);
3537 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3538 			struct inode *inode, nid_t ino, umode_t mode);
3539 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3540 			struct inode *inode, nid_t ino, umode_t mode);
3541 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3542 			struct inode *dir, struct inode *inode);
3543 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3544 bool f2fs_empty_dir(struct inode *dir);
3545 
3546 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3547 {
3548 	if (fscrypt_is_nokey_name(dentry))
3549 		return -ENOKEY;
3550 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3551 				inode, inode->i_ino, inode->i_mode);
3552 }
3553 
3554 /*
3555  * super.c
3556  */
3557 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3558 void f2fs_inode_synced(struct inode *inode);
3559 int f2fs_dquot_initialize(struct inode *inode);
3560 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3561 int f2fs_quota_sync(struct super_block *sb, int type);
3562 loff_t max_file_blocks(struct inode *inode);
3563 void f2fs_quota_off_umount(struct super_block *sb);
3564 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3565 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3566 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3567 int f2fs_sync_fs(struct super_block *sb, int sync);
3568 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3569 
3570 /*
3571  * hash.c
3572  */
3573 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3574 
3575 /*
3576  * node.c
3577  */
3578 struct node_info;
3579 
3580 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3581 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3582 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3583 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3584 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3585 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3586 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3587 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3588 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3589 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3590 				struct node_info *ni, bool checkpoint_context);
3591 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3592 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3593 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3594 int f2fs_truncate_xattr_node(struct inode *inode);
3595 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3596 					unsigned int seq_id);
3597 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3598 int f2fs_remove_inode_page(struct inode *inode);
3599 struct page *f2fs_new_inode_page(struct inode *inode);
3600 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3601 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3602 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3603 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3604 int f2fs_move_node_page(struct page *node_page, int gc_type);
3605 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3606 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3607 			struct writeback_control *wbc, bool atomic,
3608 			unsigned int *seq_id);
3609 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3610 			struct writeback_control *wbc,
3611 			bool do_balance, enum iostat_type io_type);
3612 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3613 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3614 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3615 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3616 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3617 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3618 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3619 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3620 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3621 			unsigned int segno, struct f2fs_summary_block *sum);
3622 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3623 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3624 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3625 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3626 int __init f2fs_create_node_manager_caches(void);
3627 void f2fs_destroy_node_manager_caches(void);
3628 
3629 /*
3630  * segment.c
3631  */
3632 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3633 int f2fs_commit_atomic_write(struct inode *inode);
3634 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3635 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3636 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3637 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3638 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3639 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3640 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3641 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3642 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3643 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3644 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3645 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3646 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3647 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3648 					struct cp_control *cpc);
3649 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3650 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3651 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3652 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3653 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3654 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3655 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3656 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3657 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3658 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3659 			unsigned int *newseg, bool new_sec, int dir);
3660 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3661 					unsigned int start, unsigned int end);
3662 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3663 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3664 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3665 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3666 					struct cp_control *cpc);
3667 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3668 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3669 					block_t blk_addr);
3670 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3671 						enum iostat_type io_type);
3672 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3673 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3674 			struct f2fs_io_info *fio);
3675 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3676 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3677 			block_t old_blkaddr, block_t new_blkaddr,
3678 			bool recover_curseg, bool recover_newaddr,
3679 			bool from_gc);
3680 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3681 			block_t old_addr, block_t new_addr,
3682 			unsigned char version, bool recover_curseg,
3683 			bool recover_newaddr);
3684 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3685 			block_t old_blkaddr, block_t *new_blkaddr,
3686 			struct f2fs_summary *sum, int type,
3687 			struct f2fs_io_info *fio);
3688 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3689 					block_t blkaddr, unsigned int blkcnt);
3690 void f2fs_wait_on_page_writeback(struct page *page,
3691 			enum page_type type, bool ordered, bool locked);
3692 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3693 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3694 								block_t len);
3695 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3696 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3697 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3698 			unsigned int val, int alloc);
3699 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3700 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3701 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3702 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3703 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3704 int __init f2fs_create_segment_manager_caches(void);
3705 void f2fs_destroy_segment_manager_caches(void);
3706 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3707 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3708 			unsigned int segno);
3709 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3710 			unsigned int segno);
3711 
3712 #define DEF_FRAGMENT_SIZE	4
3713 #define MIN_FRAGMENT_SIZE	1
3714 #define MAX_FRAGMENT_SIZE	512
3715 
3716 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3717 {
3718 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3719 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3720 }
3721 
3722 /*
3723  * checkpoint.c
3724  */
3725 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3726 							unsigned char reason);
3727 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3728 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3729 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3730 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3731 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3732 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3733 					block_t blkaddr, int type);
3734 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3735 			int type, bool sync);
3736 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3737 							unsigned int ra_blocks);
3738 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3739 			long nr_to_write, enum iostat_type io_type);
3740 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3741 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3742 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3743 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3744 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3745 					unsigned int devidx, int type);
3746 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3747 					unsigned int devidx, int type);
3748 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3749 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3750 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3751 void f2fs_add_orphan_inode(struct inode *inode);
3752 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3753 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3754 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3755 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3756 void f2fs_remove_dirty_inode(struct inode *inode);
3757 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3758 								bool from_cp);
3759 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3760 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3761 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3762 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3763 int __init f2fs_create_checkpoint_caches(void);
3764 void f2fs_destroy_checkpoint_caches(void);
3765 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3766 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3767 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3768 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3769 
3770 /*
3771  * data.c
3772  */
3773 int __init f2fs_init_bioset(void);
3774 void f2fs_destroy_bioset(void);
3775 int f2fs_init_bio_entry_cache(void);
3776 void f2fs_destroy_bio_entry_cache(void);
3777 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3778 				struct bio *bio, enum page_type type);
3779 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3780 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3781 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3782 				struct inode *inode, struct page *page,
3783 				nid_t ino, enum page_type type);
3784 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3785 					struct bio **bio, struct page *page);
3786 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3787 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3788 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3789 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3790 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3791 		block_t blk_addr, sector_t *sector);
3792 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3793 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3794 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3795 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3796 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3797 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3798 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3799 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3800 			blk_opf_t op_flags, bool for_write);
3801 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3802 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3803 			bool for_write);
3804 struct page *f2fs_get_new_data_page(struct inode *inode,
3805 			struct page *ipage, pgoff_t index, bool new_i_size);
3806 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3807 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3808 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3809 			int create, int flag);
3810 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3811 			u64 start, u64 len);
3812 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3813 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3814 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3815 int f2fs_write_single_data_page(struct page *page, int *submitted,
3816 				struct bio **bio, sector_t *last_block,
3817 				struct writeback_control *wbc,
3818 				enum iostat_type io_type,
3819 				int compr_blocks, bool allow_balance);
3820 void f2fs_write_failed(struct inode *inode, loff_t to);
3821 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3822 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3823 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3824 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3825 int f2fs_init_post_read_processing(void);
3826 void f2fs_destroy_post_read_processing(void);
3827 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3828 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3829 extern const struct iomap_ops f2fs_iomap_ops;
3830 
3831 /*
3832  * gc.c
3833  */
3834 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3835 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3836 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3837 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3838 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3839 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3840 int __init f2fs_create_garbage_collection_cache(void);
3841 void f2fs_destroy_garbage_collection_cache(void);
3842 
3843 /*
3844  * recovery.c
3845  */
3846 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3847 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3848 int __init f2fs_create_recovery_cache(void);
3849 void f2fs_destroy_recovery_cache(void);
3850 
3851 /*
3852  * debug.c
3853  */
3854 #ifdef CONFIG_F2FS_STAT_FS
3855 struct f2fs_stat_info {
3856 	struct list_head stat_list;
3857 	struct f2fs_sb_info *sbi;
3858 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3859 	int main_area_segs, main_area_sections, main_area_zones;
3860 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3861 	unsigned long long hit_total, total_ext;
3862 	int ext_tree, zombie_tree, ext_node;
3863 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3864 	int ndirty_data, ndirty_qdata;
3865 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3866 	int nats, dirty_nats, sits, dirty_sits;
3867 	int free_nids, avail_nids, alloc_nids;
3868 	int total_count, utilization;
3869 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3870 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3871 	int nr_dio_read, nr_dio_write;
3872 	unsigned int io_skip_bggc, other_skip_bggc;
3873 	int nr_flushing, nr_flushed, flush_list_empty;
3874 	int nr_discarding, nr_discarded;
3875 	int nr_discard_cmd;
3876 	unsigned int undiscard_blks;
3877 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3878 	unsigned int cur_ckpt_time, peak_ckpt_time;
3879 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3880 	int compr_inode, swapfile_inode;
3881 	unsigned long long compr_blocks;
3882 	int aw_cnt, max_aw_cnt;
3883 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3884 	unsigned int bimodal, avg_vblocks;
3885 	int util_free, util_valid, util_invalid;
3886 	int rsvd_segs, overp_segs;
3887 	int dirty_count, node_pages, meta_pages, compress_pages;
3888 	int compress_page_hit;
3889 	int prefree_count, call_count, cp_count, bg_cp_count;
3890 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3891 	int bg_node_segs, bg_data_segs;
3892 	int tot_blks, data_blks, node_blks;
3893 	int bg_data_blks, bg_node_blks;
3894 	int curseg[NR_CURSEG_TYPE];
3895 	int cursec[NR_CURSEG_TYPE];
3896 	int curzone[NR_CURSEG_TYPE];
3897 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3898 	unsigned int full_seg[NR_CURSEG_TYPE];
3899 	unsigned int valid_blks[NR_CURSEG_TYPE];
3900 
3901 	unsigned int meta_count[META_MAX];
3902 	unsigned int segment_count[2];
3903 	unsigned int block_count[2];
3904 	unsigned int inplace_count;
3905 	unsigned long long base_mem, cache_mem, page_mem;
3906 };
3907 
3908 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3909 {
3910 	return (struct f2fs_stat_info *)sbi->stat_info;
3911 }
3912 
3913 #define stat_inc_cp_count(si)		((si)->cp_count++)
3914 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3915 #define stat_inc_call_count(si)		((si)->call_count++)
3916 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3917 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3918 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3919 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3920 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3921 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3922 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3923 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3924 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3925 #define stat_inc_inline_xattr(inode)					\
3926 	do {								\
3927 		if (f2fs_has_inline_xattr(inode))			\
3928 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3929 	} while (0)
3930 #define stat_dec_inline_xattr(inode)					\
3931 	do {								\
3932 		if (f2fs_has_inline_xattr(inode))			\
3933 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3934 	} while (0)
3935 #define stat_inc_inline_inode(inode)					\
3936 	do {								\
3937 		if (f2fs_has_inline_data(inode))			\
3938 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3939 	} while (0)
3940 #define stat_dec_inline_inode(inode)					\
3941 	do {								\
3942 		if (f2fs_has_inline_data(inode))			\
3943 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3944 	} while (0)
3945 #define stat_inc_inline_dir(inode)					\
3946 	do {								\
3947 		if (f2fs_has_inline_dentry(inode))			\
3948 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3949 	} while (0)
3950 #define stat_dec_inline_dir(inode)					\
3951 	do {								\
3952 		if (f2fs_has_inline_dentry(inode))			\
3953 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3954 	} while (0)
3955 #define stat_inc_compr_inode(inode)					\
3956 	do {								\
3957 		if (f2fs_compressed_file(inode))			\
3958 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3959 	} while (0)
3960 #define stat_dec_compr_inode(inode)					\
3961 	do {								\
3962 		if (f2fs_compressed_file(inode))			\
3963 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3964 	} while (0)
3965 #define stat_add_compr_blocks(inode, blocks)				\
3966 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3967 #define stat_sub_compr_blocks(inode, blocks)				\
3968 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3969 #define stat_inc_swapfile_inode(inode)					\
3970 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3971 #define stat_dec_swapfile_inode(inode)					\
3972 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3973 #define stat_inc_atomic_inode(inode)					\
3974 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3975 #define stat_dec_atomic_inode(inode)					\
3976 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3977 #define stat_inc_meta_count(sbi, blkaddr)				\
3978 	do {								\
3979 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3980 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3981 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3982 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3983 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3984 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3985 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3986 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3987 	} while (0)
3988 #define stat_inc_seg_type(sbi, curseg)					\
3989 		((sbi)->segment_count[(curseg)->alloc_type]++)
3990 #define stat_inc_block_count(sbi, curseg)				\
3991 		((sbi)->block_count[(curseg)->alloc_type]++)
3992 #define stat_inc_inplace_blocks(sbi)					\
3993 		(atomic_inc(&(sbi)->inplace_count))
3994 #define stat_update_max_atomic_write(inode)				\
3995 	do {								\
3996 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
3997 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3998 		if (cur > max)						\
3999 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4000 	} while (0)
4001 #define stat_inc_seg_count(sbi, type, gc_type)				\
4002 	do {								\
4003 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4004 		si->tot_segs++;						\
4005 		if ((type) == SUM_TYPE_DATA) {				\
4006 			si->data_segs++;				\
4007 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
4008 		} else {						\
4009 			si->node_segs++;				\
4010 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
4011 		}							\
4012 	} while (0)
4013 
4014 #define stat_inc_tot_blk_count(si, blks)				\
4015 	((si)->tot_blks += (blks))
4016 
4017 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4018 	do {								\
4019 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4020 		stat_inc_tot_blk_count(si, blks);			\
4021 		si->data_blks += (blks);				\
4022 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4023 	} while (0)
4024 
4025 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4026 	do {								\
4027 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4028 		stat_inc_tot_blk_count(si, blks);			\
4029 		si->node_blks += (blks);				\
4030 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4031 	} while (0)
4032 
4033 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4034 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4035 void __init f2fs_create_root_stats(void);
4036 void f2fs_destroy_root_stats(void);
4037 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4038 #else
4039 #define stat_inc_cp_count(si)				do { } while (0)
4040 #define stat_inc_bg_cp_count(si)			do { } while (0)
4041 #define stat_inc_call_count(si)				do { } while (0)
4042 #define stat_inc_bggc_count(si)				do { } while (0)
4043 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4044 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4045 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4046 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4047 #define stat_inc_total_hit(sbi)				do { } while (0)
4048 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
4049 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4050 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
4051 #define stat_inc_inline_xattr(inode)			do { } while (0)
4052 #define stat_dec_inline_xattr(inode)			do { } while (0)
4053 #define stat_inc_inline_inode(inode)			do { } while (0)
4054 #define stat_dec_inline_inode(inode)			do { } while (0)
4055 #define stat_inc_inline_dir(inode)			do { } while (0)
4056 #define stat_dec_inline_dir(inode)			do { } while (0)
4057 #define stat_inc_compr_inode(inode)			do { } while (0)
4058 #define stat_dec_compr_inode(inode)			do { } while (0)
4059 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4060 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4061 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4062 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4063 #define stat_inc_atomic_inode(inode)			do { } while (0)
4064 #define stat_dec_atomic_inode(inode)			do { } while (0)
4065 #define stat_update_max_atomic_write(inode)		do { } while (0)
4066 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4067 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4068 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4069 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4070 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4071 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4072 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4073 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4074 
4075 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4076 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4077 static inline void __init f2fs_create_root_stats(void) { }
4078 static inline void f2fs_destroy_root_stats(void) { }
4079 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4080 #endif
4081 
4082 extern const struct file_operations f2fs_dir_operations;
4083 extern const struct file_operations f2fs_file_operations;
4084 extern const struct inode_operations f2fs_file_inode_operations;
4085 extern const struct address_space_operations f2fs_dblock_aops;
4086 extern const struct address_space_operations f2fs_node_aops;
4087 extern const struct address_space_operations f2fs_meta_aops;
4088 extern const struct inode_operations f2fs_dir_inode_operations;
4089 extern const struct inode_operations f2fs_symlink_inode_operations;
4090 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4091 extern const struct inode_operations f2fs_special_inode_operations;
4092 extern struct kmem_cache *f2fs_inode_entry_slab;
4093 
4094 /*
4095  * inline.c
4096  */
4097 bool f2fs_may_inline_data(struct inode *inode);
4098 bool f2fs_sanity_check_inline_data(struct inode *inode);
4099 bool f2fs_may_inline_dentry(struct inode *inode);
4100 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4101 void f2fs_truncate_inline_inode(struct inode *inode,
4102 						struct page *ipage, u64 from);
4103 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4104 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4105 int f2fs_convert_inline_inode(struct inode *inode);
4106 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4107 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4108 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4109 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4110 					const struct f2fs_filename *fname,
4111 					struct page **res_page);
4112 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4113 			struct page *ipage);
4114 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4115 			struct inode *inode, nid_t ino, umode_t mode);
4116 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4117 				struct page *page, struct inode *dir,
4118 				struct inode *inode);
4119 bool f2fs_empty_inline_dir(struct inode *dir);
4120 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4121 			struct fscrypt_str *fstr);
4122 int f2fs_inline_data_fiemap(struct inode *inode,
4123 			struct fiemap_extent_info *fieinfo,
4124 			__u64 start, __u64 len);
4125 
4126 /*
4127  * shrinker.c
4128  */
4129 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4130 			struct shrink_control *sc);
4131 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4132 			struct shrink_control *sc);
4133 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4134 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4135 
4136 /*
4137  * extent_cache.c
4138  */
4139 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4140 				struct rb_entry *cached_re, unsigned int ofs);
4141 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4142 				struct rb_root_cached *root,
4143 				struct rb_node **parent,
4144 				unsigned long long key, bool *left_most);
4145 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4146 				struct rb_root_cached *root,
4147 				struct rb_node **parent,
4148 				unsigned int ofs, bool *leftmost);
4149 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4150 		struct rb_entry *cached_re, unsigned int ofs,
4151 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4152 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4153 		bool force, bool *leftmost);
4154 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4155 				struct rb_root_cached *root, bool check_key);
4156 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4157 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4158 void f2fs_drop_extent_tree(struct inode *inode);
4159 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4160 void f2fs_destroy_extent_tree(struct inode *inode);
4161 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4162 			struct extent_info *ei);
4163 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4164 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4165 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4166 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4167 int __init f2fs_create_extent_cache(void);
4168 void f2fs_destroy_extent_cache(void);
4169 
4170 /*
4171  * sysfs.c
4172  */
4173 #define MIN_RA_MUL	2
4174 #define MAX_RA_MUL	256
4175 
4176 int __init f2fs_init_sysfs(void);
4177 void f2fs_exit_sysfs(void);
4178 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4179 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4180 
4181 /* verity.c */
4182 extern const struct fsverity_operations f2fs_verityops;
4183 
4184 /*
4185  * crypto support
4186  */
4187 static inline bool f2fs_encrypted_file(struct inode *inode)
4188 {
4189 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4190 }
4191 
4192 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4193 {
4194 #ifdef CONFIG_FS_ENCRYPTION
4195 	file_set_encrypt(inode);
4196 	f2fs_set_inode_flags(inode);
4197 #endif
4198 }
4199 
4200 /*
4201  * Returns true if the reads of the inode's data need to undergo some
4202  * postprocessing step, like decryption or authenticity verification.
4203  */
4204 static inline bool f2fs_post_read_required(struct inode *inode)
4205 {
4206 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4207 		f2fs_compressed_file(inode);
4208 }
4209 
4210 /*
4211  * compress.c
4212  */
4213 #ifdef CONFIG_F2FS_FS_COMPRESSION
4214 bool f2fs_is_compressed_page(struct page *page);
4215 struct page *f2fs_compress_control_page(struct page *page);
4216 int f2fs_prepare_compress_overwrite(struct inode *inode,
4217 			struct page **pagep, pgoff_t index, void **fsdata);
4218 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4219 					pgoff_t index, unsigned copied);
4220 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4221 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4222 bool f2fs_is_compress_backend_ready(struct inode *inode);
4223 int f2fs_init_compress_mempool(void);
4224 void f2fs_destroy_compress_mempool(void);
4225 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4226 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4227 				block_t blkaddr, bool in_task);
4228 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4229 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4230 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4231 				int index, int nr_pages, bool uptodate);
4232 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4233 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4234 int f2fs_write_multi_pages(struct compress_ctx *cc,
4235 						int *submitted,
4236 						struct writeback_control *wbc,
4237 						enum iostat_type io_type);
4238 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4239 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4240 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4241 				unsigned int c_len);
4242 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4243 				unsigned nr_pages, sector_t *last_block_in_bio,
4244 				bool is_readahead, bool for_write);
4245 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4246 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4247 				bool in_task);
4248 void f2fs_put_page_dic(struct page *page, bool in_task);
4249 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4250 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4251 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4252 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4253 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4254 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4255 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4256 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4257 int __init f2fs_init_compress_cache(void);
4258 void f2fs_destroy_compress_cache(void);
4259 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4260 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4261 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4262 						nid_t ino, block_t blkaddr);
4263 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4264 								block_t blkaddr);
4265 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4266 #define inc_compr_inode_stat(inode)					\
4267 	do {								\
4268 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4269 		sbi->compr_new_inode++;					\
4270 	} while (0)
4271 #define add_compr_block_stat(inode, blocks)				\
4272 	do {								\
4273 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4274 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4275 		sbi->compr_written_block += blocks;			\
4276 		sbi->compr_saved_block += diff;				\
4277 	} while (0)
4278 #else
4279 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4280 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4281 {
4282 	if (!f2fs_compressed_file(inode))
4283 		return true;
4284 	/* not support compression */
4285 	return false;
4286 }
4287 static inline struct page *f2fs_compress_control_page(struct page *page)
4288 {
4289 	WARN_ON_ONCE(1);
4290 	return ERR_PTR(-EINVAL);
4291 }
4292 static inline int f2fs_init_compress_mempool(void) { return 0; }
4293 static inline void f2fs_destroy_compress_mempool(void) { }
4294 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4295 				bool in_task) { }
4296 static inline void f2fs_end_read_compressed_page(struct page *page,
4297 				bool failed, block_t blkaddr, bool in_task)
4298 {
4299 	WARN_ON_ONCE(1);
4300 }
4301 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4302 {
4303 	WARN_ON_ONCE(1);
4304 }
4305 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4306 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4307 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4308 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4309 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4310 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4311 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4312 static inline void f2fs_destroy_compress_cache(void) { }
4313 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4314 				block_t blkaddr) { }
4315 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4316 				struct page *page, nid_t ino, block_t blkaddr) { }
4317 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4318 				struct page *page, block_t blkaddr) { return false; }
4319 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4320 							nid_t ino) { }
4321 #define inc_compr_inode_stat(inode)		do { } while (0)
4322 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4323 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4324 				unsigned int c_len) { }
4325 #endif
4326 
4327 static inline int set_compress_context(struct inode *inode)
4328 {
4329 #ifdef CONFIG_F2FS_FS_COMPRESSION
4330 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4331 
4332 	F2FS_I(inode)->i_compress_algorithm =
4333 			F2FS_OPTION(sbi).compress_algorithm;
4334 	F2FS_I(inode)->i_log_cluster_size =
4335 			F2FS_OPTION(sbi).compress_log_size;
4336 	F2FS_I(inode)->i_compress_flag =
4337 			F2FS_OPTION(sbi).compress_chksum ?
4338 				1 << COMPRESS_CHKSUM : 0;
4339 	F2FS_I(inode)->i_cluster_size =
4340 			1 << F2FS_I(inode)->i_log_cluster_size;
4341 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4342 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4343 			F2FS_OPTION(sbi).compress_level)
4344 		F2FS_I(inode)->i_compress_flag |=
4345 				F2FS_OPTION(sbi).compress_level <<
4346 				COMPRESS_LEVEL_OFFSET;
4347 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4348 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4349 	stat_inc_compr_inode(inode);
4350 	inc_compr_inode_stat(inode);
4351 	f2fs_mark_inode_dirty_sync(inode, true);
4352 	return 0;
4353 #else
4354 	return -EOPNOTSUPP;
4355 #endif
4356 }
4357 
4358 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4359 {
4360 	struct f2fs_inode_info *fi = F2FS_I(inode);
4361 
4362 	if (!f2fs_compressed_file(inode))
4363 		return true;
4364 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4365 		return false;
4366 
4367 	fi->i_flags &= ~F2FS_COMPR_FL;
4368 	stat_dec_compr_inode(inode);
4369 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4370 	f2fs_mark_inode_dirty_sync(inode, true);
4371 	return true;
4372 }
4373 
4374 #define F2FS_FEATURE_FUNCS(name, flagname) \
4375 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4376 { \
4377 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4378 }
4379 
4380 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4381 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4382 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4383 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4384 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4385 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4386 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4387 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4388 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4389 F2FS_FEATURE_FUNCS(verity, VERITY);
4390 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4391 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4392 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4393 F2FS_FEATURE_FUNCS(readonly, RO);
4394 
4395 static inline bool f2fs_may_extent_tree(struct inode *inode)
4396 {
4397 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4398 
4399 	if (!test_opt(sbi, EXTENT_CACHE) ||
4400 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4401 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4402 			 !f2fs_sb_has_readonly(sbi)))
4403 		return false;
4404 
4405 	/*
4406 	 * for recovered files during mount do not create extents
4407 	 * if shrinker is not registered.
4408 	 */
4409 	if (list_empty(&sbi->s_list))
4410 		return false;
4411 
4412 	return S_ISREG(inode->i_mode);
4413 }
4414 
4415 #ifdef CONFIG_BLK_DEV_ZONED
4416 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4417 				    block_t blkaddr)
4418 {
4419 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4420 
4421 	return test_bit(zno, FDEV(devi).blkz_seq);
4422 }
4423 #endif
4424 
4425 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4426 {
4427 	return f2fs_sb_has_blkzoned(sbi);
4428 }
4429 
4430 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4431 {
4432 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4433 }
4434 
4435 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4436 {
4437 	int i;
4438 
4439 	if (!f2fs_is_multi_device(sbi))
4440 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4441 
4442 	for (i = 0; i < sbi->s_ndevs; i++)
4443 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4444 			return true;
4445 	return false;
4446 }
4447 
4448 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4449 {
4450 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4451 					f2fs_hw_should_discard(sbi);
4452 }
4453 
4454 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4455 {
4456 	int i;
4457 
4458 	if (!f2fs_is_multi_device(sbi))
4459 		return bdev_read_only(sbi->sb->s_bdev);
4460 
4461 	for (i = 0; i < sbi->s_ndevs; i++)
4462 		if (bdev_read_only(FDEV(i).bdev))
4463 			return true;
4464 	return false;
4465 }
4466 
4467 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4468 {
4469 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4470 }
4471 
4472 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4473 {
4474 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4475 }
4476 
4477 static inline bool f2fs_may_compress(struct inode *inode)
4478 {
4479 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4480 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4481 		return false;
4482 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4483 }
4484 
4485 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4486 						u64 blocks, bool add)
4487 {
4488 	struct f2fs_inode_info *fi = F2FS_I(inode);
4489 	int diff = fi->i_cluster_size - blocks;
4490 
4491 	/* don't update i_compr_blocks if saved blocks were released */
4492 	if (!add && !atomic_read(&fi->i_compr_blocks))
4493 		return;
4494 
4495 	if (add) {
4496 		atomic_add(diff, &fi->i_compr_blocks);
4497 		stat_add_compr_blocks(inode, diff);
4498 	} else {
4499 		atomic_sub(diff, &fi->i_compr_blocks);
4500 		stat_sub_compr_blocks(inode, diff);
4501 	}
4502 	f2fs_mark_inode_dirty_sync(inode, true);
4503 }
4504 
4505 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4506 								int flag)
4507 {
4508 	if (!f2fs_is_multi_device(sbi))
4509 		return false;
4510 	if (flag != F2FS_GET_BLOCK_DIO)
4511 		return false;
4512 	return sbi->aligned_blksize;
4513 }
4514 
4515 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4516 {
4517 	return fsverity_active(inode) &&
4518 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4519 }
4520 
4521 #ifdef CONFIG_F2FS_FAULT_INJECTION
4522 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4523 							unsigned int type);
4524 #else
4525 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4526 #endif
4527 
4528 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4529 {
4530 #ifdef CONFIG_QUOTA
4531 	if (f2fs_sb_has_quota_ino(sbi))
4532 		return true;
4533 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4534 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4535 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4536 		return true;
4537 #endif
4538 	return false;
4539 }
4540 
4541 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4542 {
4543 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4544 }
4545 
4546 static inline void f2fs_io_schedule_timeout(long timeout)
4547 {
4548 	set_current_state(TASK_UNINTERRUPTIBLE);
4549 	io_schedule_timeout(timeout);
4550 }
4551 
4552 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4553 					enum page_type type)
4554 {
4555 	if (unlikely(f2fs_cp_error(sbi)))
4556 		return;
4557 
4558 	if (ofs == sbi->page_eio_ofs[type]) {
4559 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4560 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4561 	} else {
4562 		sbi->page_eio_ofs[type] = ofs;
4563 		sbi->page_eio_cnt[type] = 0;
4564 	}
4565 }
4566 
4567 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4568 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4569 
4570 #endif /* _LINUX_F2FS_H */
4571