xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 160b8e75)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28 
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_KVMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_PAGE_GET,
50 	FAULT_ALLOC_BIO,
51 	FAULT_ALLOC_NID,
52 	FAULT_ORPHAN,
53 	FAULT_BLOCK,
54 	FAULT_DIR_DEPTH,
55 	FAULT_EVICT_INODE,
56 	FAULT_TRUNCATE,
57 	FAULT_IO,
58 	FAULT_CHECKPOINT,
59 	FAULT_MAX,
60 };
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern char *fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_BG_GC		0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
92 #define F2FS_MOUNT_ADAPTIVE		0x00020000
93 #define F2FS_MOUNT_LFS			0x00040000
94 #define F2FS_MOUNT_USRQUOTA		0x00080000
95 #define F2FS_MOUNT_GRPQUOTA		0x00100000
96 #define F2FS_MOUNT_PRJQUOTA		0x00200000
97 #define F2FS_MOUNT_QUOTA		0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
100 
101 #define clear_opt(sbi, option)	((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
102 #define set_opt(sbi, option)	((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
103 #define test_opt(sbi, option)	((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
104 
105 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
106 		typecheck(unsigned long long, b) &&			\
107 		((long long)((a) - (b)) > 0))
108 
109 typedef u32 block_t;	/*
110 			 * should not change u32, since it is the on-disk block
111 			 * address format, __le32.
112 			 */
113 typedef u32 nid_t;
114 
115 struct f2fs_mount_info {
116 	unsigned int	opt;
117 };
118 
119 #define F2FS_FEATURE_ENCRYPT		0x0001
120 #define F2FS_FEATURE_BLKZONED		0x0002
121 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
122 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
123 #define F2FS_FEATURE_PRJQUOTA		0x0010
124 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
125 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
126 #define F2FS_FEATURE_QUOTA_INO		0x0080
127 #define F2FS_FEATURE_INODE_CRTIME	0x0100
128 
129 #define F2FS_HAS_FEATURE(sb, mask)					\
130 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
131 #define F2FS_SET_FEATURE(sb, mask)					\
132 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
133 #define F2FS_CLEAR_FEATURE(sb, mask)					\
134 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
135 
136 /*
137  * Default values for user and/or group using reserved blocks
138  */
139 #define	F2FS_DEF_RESUID		0
140 #define	F2FS_DEF_RESGID		0
141 
142 /*
143  * For checkpoint manager
144  */
145 enum {
146 	NAT_BITMAP,
147 	SIT_BITMAP
148 };
149 
150 #define	CP_UMOUNT	0x00000001
151 #define	CP_FASTBOOT	0x00000002
152 #define	CP_SYNC		0x00000004
153 #define	CP_RECOVERY	0x00000008
154 #define	CP_DISCARD	0x00000010
155 #define CP_TRIMMED	0x00000020
156 
157 #define DEF_BATCHED_TRIM_SECTIONS	2048
158 #define BATCHED_TRIM_SEGMENTS(sbi)	\
159 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
160 #define BATCHED_TRIM_BLOCKS(sbi)	\
161 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
162 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
163 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
164 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
165 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
166 #define DEF_CP_INTERVAL			60	/* 60 secs */
167 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
168 
169 struct cp_control {
170 	int reason;
171 	__u64 trim_start;
172 	__u64 trim_end;
173 	__u64 trim_minlen;
174 };
175 
176 /*
177  * For CP/NAT/SIT/SSA readahead
178  */
179 enum {
180 	META_CP,
181 	META_NAT,
182 	META_SIT,
183 	META_SSA,
184 	META_POR,
185 };
186 
187 /* for the list of ino */
188 enum {
189 	ORPHAN_INO,		/* for orphan ino list */
190 	APPEND_INO,		/* for append ino list */
191 	UPDATE_INO,		/* for update ino list */
192 	TRANS_DIR_INO,		/* for trasactions dir ino list */
193 	FLUSH_INO,		/* for multiple device flushing */
194 	MAX_INO_ENTRY,		/* max. list */
195 };
196 
197 struct ino_entry {
198 	struct list_head list;		/* list head */
199 	nid_t ino;			/* inode number */
200 	unsigned int dirty_device;	/* dirty device bitmap */
201 };
202 
203 /* for the list of inodes to be GCed */
204 struct inode_entry {
205 	struct list_head list;	/* list head */
206 	struct inode *inode;	/* vfs inode pointer */
207 };
208 
209 /* for the bitmap indicate blocks to be discarded */
210 struct discard_entry {
211 	struct list_head list;	/* list head */
212 	block_t start_blkaddr;	/* start blockaddr of current segment */
213 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
214 };
215 
216 /* default discard granularity of inner discard thread, unit: block count */
217 #define DEFAULT_DISCARD_GRANULARITY		16
218 
219 /* max discard pend list number */
220 #define MAX_PLIST_NUM		512
221 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
222 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
223 
224 enum {
225 	D_PREP,
226 	D_SUBMIT,
227 	D_DONE,
228 };
229 
230 struct discard_info {
231 	block_t lstart;			/* logical start address */
232 	block_t len;			/* length */
233 	block_t start;			/* actual start address in dev */
234 };
235 
236 struct discard_cmd {
237 	struct rb_node rb_node;		/* rb node located in rb-tree */
238 	union {
239 		struct {
240 			block_t lstart;	/* logical start address */
241 			block_t len;	/* length */
242 			block_t start;	/* actual start address in dev */
243 		};
244 		struct discard_info di;	/* discard info */
245 
246 	};
247 	struct list_head list;		/* command list */
248 	struct completion wait;		/* compleation */
249 	struct block_device *bdev;	/* bdev */
250 	unsigned short ref;		/* reference count */
251 	unsigned char state;		/* state */
252 	int error;			/* bio error */
253 };
254 
255 enum {
256 	DPOLICY_BG,
257 	DPOLICY_FORCE,
258 	DPOLICY_FSTRIM,
259 	DPOLICY_UMOUNT,
260 	MAX_DPOLICY,
261 };
262 
263 struct discard_policy {
264 	int type;			/* type of discard */
265 	unsigned int min_interval;	/* used for candidates exist */
266 	unsigned int max_interval;	/* used for candidates not exist */
267 	unsigned int max_requests;	/* # of discards issued per round */
268 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
269 	bool io_aware;			/* issue discard in idle time */
270 	bool sync;			/* submit discard with REQ_SYNC flag */
271 	unsigned int granularity;	/* discard granularity */
272 };
273 
274 struct discard_cmd_control {
275 	struct task_struct *f2fs_issue_discard;	/* discard thread */
276 	struct list_head entry_list;		/* 4KB discard entry list */
277 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
278 	struct list_head wait_list;		/* store on-flushing entries */
279 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
280 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
281 	unsigned int discard_wake;		/* to wake up discard thread */
282 	struct mutex cmd_lock;
283 	unsigned int nr_discards;		/* # of discards in the list */
284 	unsigned int max_discards;		/* max. discards to be issued */
285 	unsigned int discard_granularity;	/* discard granularity */
286 	unsigned int undiscard_blks;		/* # of undiscard blocks */
287 	atomic_t issued_discard;		/* # of issued discard */
288 	atomic_t issing_discard;		/* # of issing discard */
289 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
290 	struct rb_root root;			/* root of discard rb-tree */
291 };
292 
293 /* for the list of fsync inodes, used only during recovery */
294 struct fsync_inode_entry {
295 	struct list_head list;	/* list head */
296 	struct inode *inode;	/* vfs inode pointer */
297 	block_t blkaddr;	/* block address locating the last fsync */
298 	block_t last_dentry;	/* block address locating the last dentry */
299 };
300 
301 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
302 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
303 
304 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
305 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
306 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
307 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
308 
309 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
310 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
311 
312 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
313 {
314 	int before = nats_in_cursum(journal);
315 
316 	journal->n_nats = cpu_to_le16(before + i);
317 	return before;
318 }
319 
320 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
321 {
322 	int before = sits_in_cursum(journal);
323 
324 	journal->n_sits = cpu_to_le16(before + i);
325 	return before;
326 }
327 
328 static inline bool __has_cursum_space(struct f2fs_journal *journal,
329 							int size, int type)
330 {
331 	if (type == NAT_JOURNAL)
332 		return size <= MAX_NAT_JENTRIES(journal);
333 	return size <= MAX_SIT_JENTRIES(journal);
334 }
335 
336 /*
337  * ioctl commands
338  */
339 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
340 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
341 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
342 
343 #define F2FS_IOCTL_MAGIC		0xf5
344 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
345 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
346 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
347 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
348 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
349 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
350 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
351 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
352 						struct f2fs_defragment)
353 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
354 						struct f2fs_move_range)
355 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
356 						struct f2fs_flush_device)
357 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
358 						struct f2fs_gc_range)
359 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
360 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
361 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
362 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
363 
364 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
365 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
366 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
367 
368 /*
369  * should be same as XFS_IOC_GOINGDOWN.
370  * Flags for going down operation used by FS_IOC_GOINGDOWN
371  */
372 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
373 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
374 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
375 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
376 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
377 
378 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
379 /*
380  * ioctl commands in 32 bit emulation
381  */
382 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
383 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
384 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
385 #endif
386 
387 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
388 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
389 
390 struct f2fs_gc_range {
391 	u32 sync;
392 	u64 start;
393 	u64 len;
394 };
395 
396 struct f2fs_defragment {
397 	u64 start;
398 	u64 len;
399 };
400 
401 struct f2fs_move_range {
402 	u32 dst_fd;		/* destination fd */
403 	u64 pos_in;		/* start position in src_fd */
404 	u64 pos_out;		/* start position in dst_fd */
405 	u64 len;		/* size to move */
406 };
407 
408 struct f2fs_flush_device {
409 	u32 dev_num;		/* device number to flush */
410 	u32 segments;		/* # of segments to flush */
411 };
412 
413 /* for inline stuff */
414 #define DEF_INLINE_RESERVED_SIZE	1
415 #define DEF_MIN_INLINE_SIZE		1
416 static inline int get_extra_isize(struct inode *inode);
417 static inline int get_inline_xattr_addrs(struct inode *inode);
418 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
419 				(CUR_ADDRS_PER_INODE(inode) -		\
420 				get_inline_xattr_addrs(inode) -	\
421 				DEF_INLINE_RESERVED_SIZE))
422 
423 /* for inline dir */
424 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
425 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
426 				BITS_PER_BYTE + 1))
427 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
428 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
429 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
430 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
431 				NR_INLINE_DENTRY(inode) + \
432 				INLINE_DENTRY_BITMAP_SIZE(inode)))
433 
434 /*
435  * For INODE and NODE manager
436  */
437 /* for directory operations */
438 struct f2fs_dentry_ptr {
439 	struct inode *inode;
440 	void *bitmap;
441 	struct f2fs_dir_entry *dentry;
442 	__u8 (*filename)[F2FS_SLOT_LEN];
443 	int max;
444 	int nr_bitmap;
445 };
446 
447 static inline void make_dentry_ptr_block(struct inode *inode,
448 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
449 {
450 	d->inode = inode;
451 	d->max = NR_DENTRY_IN_BLOCK;
452 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
453 	d->bitmap = &t->dentry_bitmap;
454 	d->dentry = t->dentry;
455 	d->filename = t->filename;
456 }
457 
458 static inline void make_dentry_ptr_inline(struct inode *inode,
459 					struct f2fs_dentry_ptr *d, void *t)
460 {
461 	int entry_cnt = NR_INLINE_DENTRY(inode);
462 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
463 	int reserved_size = INLINE_RESERVED_SIZE(inode);
464 
465 	d->inode = inode;
466 	d->max = entry_cnt;
467 	d->nr_bitmap = bitmap_size;
468 	d->bitmap = t;
469 	d->dentry = t + bitmap_size + reserved_size;
470 	d->filename = t + bitmap_size + reserved_size +
471 					SIZE_OF_DIR_ENTRY * entry_cnt;
472 }
473 
474 /*
475  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
476  * as its node offset to distinguish from index node blocks.
477  * But some bits are used to mark the node block.
478  */
479 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
480 				>> OFFSET_BIT_SHIFT)
481 enum {
482 	ALLOC_NODE,			/* allocate a new node page if needed */
483 	LOOKUP_NODE,			/* look up a node without readahead */
484 	LOOKUP_NODE_RA,			/*
485 					 * look up a node with readahead called
486 					 * by get_data_block.
487 					 */
488 };
489 
490 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
491 
492 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
493 
494 /* vector size for gang look-up from extent cache that consists of radix tree */
495 #define EXT_TREE_VEC_SIZE	64
496 
497 /* for in-memory extent cache entry */
498 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
499 
500 /* number of extent info in extent cache we try to shrink */
501 #define EXTENT_CACHE_SHRINK_NUMBER	128
502 
503 struct rb_entry {
504 	struct rb_node rb_node;		/* rb node located in rb-tree */
505 	unsigned int ofs;		/* start offset of the entry */
506 	unsigned int len;		/* length of the entry */
507 };
508 
509 struct extent_info {
510 	unsigned int fofs;		/* start offset in a file */
511 	unsigned int len;		/* length of the extent */
512 	u32 blk;			/* start block address of the extent */
513 };
514 
515 struct extent_node {
516 	struct rb_node rb_node;
517 	union {
518 		struct {
519 			unsigned int fofs;
520 			unsigned int len;
521 			u32 blk;
522 		};
523 		struct extent_info ei;	/* extent info */
524 
525 	};
526 	struct list_head list;		/* node in global extent list of sbi */
527 	struct extent_tree *et;		/* extent tree pointer */
528 };
529 
530 struct extent_tree {
531 	nid_t ino;			/* inode number */
532 	struct rb_root root;		/* root of extent info rb-tree */
533 	struct extent_node *cached_en;	/* recently accessed extent node */
534 	struct extent_info largest;	/* largested extent info */
535 	struct list_head list;		/* to be used by sbi->zombie_list */
536 	rwlock_t lock;			/* protect extent info rb-tree */
537 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
538 };
539 
540 /*
541  * This structure is taken from ext4_map_blocks.
542  *
543  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
544  */
545 #define F2FS_MAP_NEW		(1 << BH_New)
546 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
547 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
548 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
549 				F2FS_MAP_UNWRITTEN)
550 
551 struct f2fs_map_blocks {
552 	block_t m_pblk;
553 	block_t m_lblk;
554 	unsigned int m_len;
555 	unsigned int m_flags;
556 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
557 	pgoff_t *m_next_extent;		/* point to next possible extent */
558 	int m_seg_type;
559 };
560 
561 /* for flag in get_data_block */
562 enum {
563 	F2FS_GET_BLOCK_DEFAULT,
564 	F2FS_GET_BLOCK_FIEMAP,
565 	F2FS_GET_BLOCK_BMAP,
566 	F2FS_GET_BLOCK_PRE_DIO,
567 	F2FS_GET_BLOCK_PRE_AIO,
568 	F2FS_GET_BLOCK_PRECACHE,
569 };
570 
571 /*
572  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
573  */
574 #define FADVISE_COLD_BIT	0x01
575 #define FADVISE_LOST_PINO_BIT	0x02
576 #define FADVISE_ENCRYPT_BIT	0x04
577 #define FADVISE_ENC_NAME_BIT	0x08
578 #define FADVISE_KEEP_SIZE_BIT	0x10
579 
580 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
581 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
582 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
583 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
584 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
585 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
586 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
587 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
588 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
589 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
590 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
591 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
592 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
593 
594 #define DEF_DIR_LEVEL		0
595 
596 struct f2fs_inode_info {
597 	struct inode vfs_inode;		/* serve a vfs inode */
598 	unsigned long i_flags;		/* keep an inode flags for ioctl */
599 	unsigned char i_advise;		/* use to give file attribute hints */
600 	unsigned char i_dir_level;	/* use for dentry level for large dir */
601 	union {
602 		unsigned int i_current_depth;	/* only for directory depth */
603 		unsigned short i_gc_failures;	/* only for regular file */
604 	};
605 	unsigned int i_pino;		/* parent inode number */
606 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
607 
608 	/* Use below internally in f2fs*/
609 	unsigned long flags;		/* use to pass per-file flags */
610 	struct rw_semaphore i_sem;	/* protect fi info */
611 	atomic_t dirty_pages;		/* # of dirty pages */
612 	f2fs_hash_t chash;		/* hash value of given file name */
613 	unsigned int clevel;		/* maximum level of given file name */
614 	struct task_struct *task;	/* lookup and create consistency */
615 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
616 	nid_t i_xattr_nid;		/* node id that contains xattrs */
617 	loff_t	last_disk_size;		/* lastly written file size */
618 
619 #ifdef CONFIG_QUOTA
620 	struct dquot *i_dquot[MAXQUOTAS];
621 
622 	/* quota space reservation, managed internally by quota code */
623 	qsize_t i_reserved_quota;
624 #endif
625 	struct list_head dirty_list;	/* dirty list for dirs and files */
626 	struct list_head gdirty_list;	/* linked in global dirty list */
627 	struct list_head inmem_ilist;	/* list for inmem inodes */
628 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
629 	struct task_struct *inmem_task;	/* store inmemory task */
630 	struct mutex inmem_lock;	/* lock for inmemory pages */
631 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
632 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
633 	struct rw_semaphore i_mmap_sem;
634 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
635 
636 	int i_extra_isize;		/* size of extra space located in i_addr */
637 	kprojid_t i_projid;		/* id for project quota */
638 	int i_inline_xattr_size;	/* inline xattr size */
639 	struct timespec i_crtime;	/* inode creation time */
640 };
641 
642 static inline void get_extent_info(struct extent_info *ext,
643 					struct f2fs_extent *i_ext)
644 {
645 	ext->fofs = le32_to_cpu(i_ext->fofs);
646 	ext->blk = le32_to_cpu(i_ext->blk);
647 	ext->len = le32_to_cpu(i_ext->len);
648 }
649 
650 static inline void set_raw_extent(struct extent_info *ext,
651 					struct f2fs_extent *i_ext)
652 {
653 	i_ext->fofs = cpu_to_le32(ext->fofs);
654 	i_ext->blk = cpu_to_le32(ext->blk);
655 	i_ext->len = cpu_to_le32(ext->len);
656 }
657 
658 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
659 						u32 blk, unsigned int len)
660 {
661 	ei->fofs = fofs;
662 	ei->blk = blk;
663 	ei->len = len;
664 }
665 
666 static inline bool __is_discard_mergeable(struct discard_info *back,
667 						struct discard_info *front)
668 {
669 	return back->lstart + back->len == front->lstart;
670 }
671 
672 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
673 						struct discard_info *back)
674 {
675 	return __is_discard_mergeable(back, cur);
676 }
677 
678 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
679 						struct discard_info *front)
680 {
681 	return __is_discard_mergeable(cur, front);
682 }
683 
684 static inline bool __is_extent_mergeable(struct extent_info *back,
685 						struct extent_info *front)
686 {
687 	return (back->fofs + back->len == front->fofs &&
688 			back->blk + back->len == front->blk);
689 }
690 
691 static inline bool __is_back_mergeable(struct extent_info *cur,
692 						struct extent_info *back)
693 {
694 	return __is_extent_mergeable(back, cur);
695 }
696 
697 static inline bool __is_front_mergeable(struct extent_info *cur,
698 						struct extent_info *front)
699 {
700 	return __is_extent_mergeable(cur, front);
701 }
702 
703 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
704 static inline void __try_update_largest_extent(struct inode *inode,
705 			struct extent_tree *et, struct extent_node *en)
706 {
707 	if (en->ei.len > et->largest.len) {
708 		et->largest = en->ei;
709 		f2fs_mark_inode_dirty_sync(inode, true);
710 	}
711 }
712 
713 /*
714  * For free nid management
715  */
716 enum nid_state {
717 	FREE_NID,		/* newly added to free nid list */
718 	PREALLOC_NID,		/* it is preallocated */
719 	MAX_NID_STATE,
720 };
721 
722 struct f2fs_nm_info {
723 	block_t nat_blkaddr;		/* base disk address of NAT */
724 	nid_t max_nid;			/* maximum possible node ids */
725 	nid_t available_nids;		/* # of available node ids */
726 	nid_t next_scan_nid;		/* the next nid to be scanned */
727 	unsigned int ram_thresh;	/* control the memory footprint */
728 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
729 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
730 
731 	/* NAT cache management */
732 	struct radix_tree_root nat_root;/* root of the nat entry cache */
733 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
734 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
735 	struct list_head nat_entries;	/* cached nat entry list (clean) */
736 	unsigned int nat_cnt;		/* the # of cached nat entries */
737 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
738 	unsigned int nat_blocks;	/* # of nat blocks */
739 
740 	/* free node ids management */
741 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
742 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
743 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
744 	spinlock_t nid_list_lock;	/* protect nid lists ops */
745 	struct mutex build_lock;	/* lock for build free nids */
746 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
747 	unsigned char *nat_block_bitmap;
748 	unsigned short *free_nid_count;	/* free nid count of NAT block */
749 
750 	/* for checkpoint */
751 	char *nat_bitmap;		/* NAT bitmap pointer */
752 
753 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
754 	unsigned char *nat_bits;	/* NAT bits blocks */
755 	unsigned char *full_nat_bits;	/* full NAT pages */
756 	unsigned char *empty_nat_bits;	/* empty NAT pages */
757 #ifdef CONFIG_F2FS_CHECK_FS
758 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
759 #endif
760 	int bitmap_size;		/* bitmap size */
761 };
762 
763 /*
764  * this structure is used as one of function parameters.
765  * all the information are dedicated to a given direct node block determined
766  * by the data offset in a file.
767  */
768 struct dnode_of_data {
769 	struct inode *inode;		/* vfs inode pointer */
770 	struct page *inode_page;	/* its inode page, NULL is possible */
771 	struct page *node_page;		/* cached direct node page */
772 	nid_t nid;			/* node id of the direct node block */
773 	unsigned int ofs_in_node;	/* data offset in the node page */
774 	bool inode_page_locked;		/* inode page is locked or not */
775 	bool node_changed;		/* is node block changed */
776 	char cur_level;			/* level of hole node page */
777 	char max_level;			/* level of current page located */
778 	block_t	data_blkaddr;		/* block address of the node block */
779 };
780 
781 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
782 		struct page *ipage, struct page *npage, nid_t nid)
783 {
784 	memset(dn, 0, sizeof(*dn));
785 	dn->inode = inode;
786 	dn->inode_page = ipage;
787 	dn->node_page = npage;
788 	dn->nid = nid;
789 }
790 
791 /*
792  * For SIT manager
793  *
794  * By default, there are 6 active log areas across the whole main area.
795  * When considering hot and cold data separation to reduce cleaning overhead,
796  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
797  * respectively.
798  * In the current design, you should not change the numbers intentionally.
799  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
800  * logs individually according to the underlying devices. (default: 6)
801  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
802  * data and 8 for node logs.
803  */
804 #define	NR_CURSEG_DATA_TYPE	(3)
805 #define NR_CURSEG_NODE_TYPE	(3)
806 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
807 
808 enum {
809 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
810 	CURSEG_WARM_DATA,	/* data blocks */
811 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
812 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
813 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
814 	CURSEG_COLD_NODE,	/* indirect node blocks */
815 	NO_CHECK_TYPE,
816 };
817 
818 struct flush_cmd {
819 	struct completion wait;
820 	struct llist_node llnode;
821 	nid_t ino;
822 	int ret;
823 };
824 
825 struct flush_cmd_control {
826 	struct task_struct *f2fs_issue_flush;	/* flush thread */
827 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
828 	atomic_t issued_flush;			/* # of issued flushes */
829 	atomic_t issing_flush;			/* # of issing flushes */
830 	struct llist_head issue_list;		/* list for command issue */
831 	struct llist_node *dispatch_list;	/* list for command dispatch */
832 };
833 
834 struct f2fs_sm_info {
835 	struct sit_info *sit_info;		/* whole segment information */
836 	struct free_segmap_info *free_info;	/* free segment information */
837 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
838 	struct curseg_info *curseg_array;	/* active segment information */
839 
840 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
841 
842 	block_t seg0_blkaddr;		/* block address of 0'th segment */
843 	block_t main_blkaddr;		/* start block address of main area */
844 	block_t ssa_blkaddr;		/* start block address of SSA area */
845 
846 	unsigned int segment_count;	/* total # of segments */
847 	unsigned int main_segments;	/* # of segments in main area */
848 	unsigned int reserved_segments;	/* # of reserved segments */
849 	unsigned int ovp_segments;	/* # of overprovision segments */
850 
851 	/* a threshold to reclaim prefree segments */
852 	unsigned int rec_prefree_segments;
853 
854 	/* for batched trimming */
855 	unsigned int trim_sections;		/* # of sections to trim */
856 
857 	struct list_head sit_entry_set;	/* sit entry set list */
858 
859 	unsigned int ipu_policy;	/* in-place-update policy */
860 	unsigned int min_ipu_util;	/* in-place-update threshold */
861 	unsigned int min_fsync_blocks;	/* threshold for fsync */
862 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
863 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
864 
865 	/* for flush command control */
866 	struct flush_cmd_control *fcc_info;
867 
868 	/* for discard command control */
869 	struct discard_cmd_control *dcc_info;
870 };
871 
872 /*
873  * For superblock
874  */
875 /*
876  * COUNT_TYPE for monitoring
877  *
878  * f2fs monitors the number of several block types such as on-writeback,
879  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
880  */
881 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
882 enum count_type {
883 	F2FS_DIRTY_DENTS,
884 	F2FS_DIRTY_DATA,
885 	F2FS_DIRTY_QDATA,
886 	F2FS_DIRTY_NODES,
887 	F2FS_DIRTY_META,
888 	F2FS_INMEM_PAGES,
889 	F2FS_DIRTY_IMETA,
890 	F2FS_WB_CP_DATA,
891 	F2FS_WB_DATA,
892 	NR_COUNT_TYPE,
893 };
894 
895 /*
896  * The below are the page types of bios used in submit_bio().
897  * The available types are:
898  * DATA			User data pages. It operates as async mode.
899  * NODE			Node pages. It operates as async mode.
900  * META			FS metadata pages such as SIT, NAT, CP.
901  * NR_PAGE_TYPE		The number of page types.
902  * META_FLUSH		Make sure the previous pages are written
903  *			with waiting the bio's completion
904  * ...			Only can be used with META.
905  */
906 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
907 enum page_type {
908 	DATA,
909 	NODE,
910 	META,
911 	NR_PAGE_TYPE,
912 	META_FLUSH,
913 	INMEM,		/* the below types are used by tracepoints only. */
914 	INMEM_DROP,
915 	INMEM_INVALIDATE,
916 	INMEM_REVOKE,
917 	IPU,
918 	OPU,
919 };
920 
921 enum temp_type {
922 	HOT = 0,	/* must be zero for meta bio */
923 	WARM,
924 	COLD,
925 	NR_TEMP_TYPE,
926 };
927 
928 enum need_lock_type {
929 	LOCK_REQ = 0,
930 	LOCK_DONE,
931 	LOCK_RETRY,
932 };
933 
934 enum cp_reason_type {
935 	CP_NO_NEEDED,
936 	CP_NON_REGULAR,
937 	CP_HARDLINK,
938 	CP_SB_NEED_CP,
939 	CP_WRONG_PINO,
940 	CP_NO_SPC_ROLL,
941 	CP_NODE_NEED_CP,
942 	CP_FASTBOOT_MODE,
943 	CP_SPEC_LOG_NUM,
944 	CP_RECOVER_DIR,
945 };
946 
947 enum iostat_type {
948 	APP_DIRECT_IO,			/* app direct IOs */
949 	APP_BUFFERED_IO,		/* app buffered IOs */
950 	APP_WRITE_IO,			/* app write IOs */
951 	APP_MAPPED_IO,			/* app mapped IOs */
952 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
953 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
954 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
955 	FS_GC_DATA_IO,			/* data IOs from forground gc */
956 	FS_GC_NODE_IO,			/* node IOs from forground gc */
957 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
958 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
959 	FS_CP_META_IO,			/* meta IOs from checkpoint */
960 	FS_DISCARD,			/* discard */
961 	NR_IO_TYPE,
962 };
963 
964 struct f2fs_io_info {
965 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
966 	nid_t ino;		/* inode number */
967 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
968 	enum temp_type temp;	/* contains HOT/WARM/COLD */
969 	int op;			/* contains REQ_OP_ */
970 	int op_flags;		/* req_flag_bits */
971 	block_t new_blkaddr;	/* new block address to be written */
972 	block_t old_blkaddr;	/* old block address before Cow */
973 	struct page *page;	/* page to be written */
974 	struct page *encrypted_page;	/* encrypted page */
975 	struct list_head list;		/* serialize IOs */
976 	bool submitted;		/* indicate IO submission */
977 	int need_lock;		/* indicate we need to lock cp_rwsem */
978 	bool in_list;		/* indicate fio is in io_list */
979 	enum iostat_type io_type;	/* io type */
980 	struct writeback_control *io_wbc; /* writeback control */
981 };
982 
983 #define is_read_io(rw) ((rw) == READ)
984 struct f2fs_bio_info {
985 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
986 	struct bio *bio;		/* bios to merge */
987 	sector_t last_block_in_bio;	/* last block number */
988 	struct f2fs_io_info fio;	/* store buffered io info. */
989 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
990 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
991 	struct list_head io_list;	/* track fios */
992 };
993 
994 #define FDEV(i)				(sbi->devs[i])
995 #define RDEV(i)				(raw_super->devs[i])
996 struct f2fs_dev_info {
997 	struct block_device *bdev;
998 	char path[MAX_PATH_LEN];
999 	unsigned int total_segments;
1000 	block_t start_blk;
1001 	block_t end_blk;
1002 #ifdef CONFIG_BLK_DEV_ZONED
1003 	unsigned int nr_blkz;			/* Total number of zones */
1004 	u8 *blkz_type;				/* Array of zones type */
1005 #endif
1006 };
1007 
1008 enum inode_type {
1009 	DIR_INODE,			/* for dirty dir inode */
1010 	FILE_INODE,			/* for dirty regular/symlink inode */
1011 	DIRTY_META,			/* for all dirtied inode metadata */
1012 	ATOMIC_FILE,			/* for all atomic files */
1013 	NR_INODE_TYPE,
1014 };
1015 
1016 /* for inner inode cache management */
1017 struct inode_management {
1018 	struct radix_tree_root ino_root;	/* ino entry array */
1019 	spinlock_t ino_lock;			/* for ino entry lock */
1020 	struct list_head ino_list;		/* inode list head */
1021 	unsigned long ino_num;			/* number of entries */
1022 };
1023 
1024 /* For s_flag in struct f2fs_sb_info */
1025 enum {
1026 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1027 	SBI_IS_CLOSE,				/* specify unmounting */
1028 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1029 	SBI_POR_DOING,				/* recovery is doing or not */
1030 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1031 	SBI_NEED_CP,				/* need to checkpoint */
1032 };
1033 
1034 enum {
1035 	CP_TIME,
1036 	REQ_TIME,
1037 	MAX_TIME,
1038 };
1039 
1040 struct f2fs_sb_info {
1041 	struct super_block *sb;			/* pointer to VFS super block */
1042 	struct proc_dir_entry *s_proc;		/* proc entry */
1043 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1044 	int valid_super_block;			/* valid super block no */
1045 	unsigned long s_flag;				/* flags for sbi */
1046 
1047 #ifdef CONFIG_BLK_DEV_ZONED
1048 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1049 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1050 #endif
1051 
1052 	/* for node-related operations */
1053 	struct f2fs_nm_info *nm_info;		/* node manager */
1054 	struct inode *node_inode;		/* cache node blocks */
1055 
1056 	/* for segment-related operations */
1057 	struct f2fs_sm_info *sm_info;		/* segment manager */
1058 
1059 	/* for bio operations */
1060 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1061 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1062 						/* bio ordering for NODE/DATA */
1063 	int write_io_size_bits;			/* Write IO size bits */
1064 	mempool_t *write_io_dummy;		/* Dummy pages */
1065 
1066 	/* for checkpoint */
1067 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1068 	int cur_cp_pack;			/* remain current cp pack */
1069 	spinlock_t cp_lock;			/* for flag in ckpt */
1070 	struct inode *meta_inode;		/* cache meta blocks */
1071 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1072 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1073 	struct rw_semaphore node_write;		/* locking node writes */
1074 	struct rw_semaphore node_change;	/* locking node change */
1075 	wait_queue_head_t cp_wait;
1076 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1077 	long interval_time[MAX_TIME];		/* to store thresholds */
1078 
1079 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1080 
1081 	/* for orphan inode, use 0'th array */
1082 	unsigned int max_orphans;		/* max orphan inodes */
1083 
1084 	/* for inode management */
1085 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1086 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1087 
1088 	/* for extent tree cache */
1089 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1090 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1091 	struct list_head extent_list;		/* lru list for shrinker */
1092 	spinlock_t extent_lock;			/* locking extent lru list */
1093 	atomic_t total_ext_tree;		/* extent tree count */
1094 	struct list_head zombie_list;		/* extent zombie tree list */
1095 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1096 	atomic_t total_ext_node;		/* extent info count */
1097 
1098 	/* basic filesystem units */
1099 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1100 	unsigned int log_blocksize;		/* log2 block size */
1101 	unsigned int blocksize;			/* block size */
1102 	unsigned int root_ino_num;		/* root inode number*/
1103 	unsigned int node_ino_num;		/* node inode number*/
1104 	unsigned int meta_ino_num;		/* meta inode number*/
1105 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1106 	unsigned int blocks_per_seg;		/* blocks per segment */
1107 	unsigned int segs_per_sec;		/* segments per section */
1108 	unsigned int secs_per_zone;		/* sections per zone */
1109 	unsigned int total_sections;		/* total section count */
1110 	unsigned int total_node_count;		/* total node block count */
1111 	unsigned int total_valid_node_count;	/* valid node block count */
1112 	loff_t max_file_blocks;			/* max block index of file */
1113 	int active_logs;			/* # of active logs */
1114 	int dir_level;				/* directory level */
1115 	int inline_xattr_size;			/* inline xattr size */
1116 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1117 	int readdir_ra;				/* readahead inode in readdir */
1118 
1119 	block_t user_block_count;		/* # of user blocks */
1120 	block_t total_valid_block_count;	/* # of valid blocks */
1121 	block_t discard_blks;			/* discard command candidats */
1122 	block_t last_valid_block_count;		/* for recovery */
1123 	block_t reserved_blocks;		/* configurable reserved blocks */
1124 	block_t current_reserved_blocks;	/* current reserved blocks */
1125 	block_t root_reserved_blocks;		/* root reserved blocks */
1126 	kuid_t s_resuid;			/* reserved blocks for uid */
1127 	kgid_t s_resgid;			/* reserved blocks for gid */
1128 
1129 	unsigned int nquota_files;		/* # of quota sysfile */
1130 
1131 	u32 s_next_generation;			/* for NFS support */
1132 
1133 	/* # of pages, see count_type */
1134 	atomic_t nr_pages[NR_COUNT_TYPE];
1135 	/* # of allocated blocks */
1136 	struct percpu_counter alloc_valid_block_count;
1137 
1138 	/* writeback control */
1139 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1140 
1141 	/* valid inode count */
1142 	struct percpu_counter total_valid_inode_count;
1143 
1144 	struct f2fs_mount_info mount_opt;	/* mount options */
1145 
1146 	/* for cleaning operations */
1147 	struct mutex gc_mutex;			/* mutex for GC */
1148 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1149 	unsigned int cur_victim_sec;		/* current victim section num */
1150 
1151 	/* threshold for converting bg victims for fg */
1152 	u64 fggc_threshold;
1153 
1154 	/* threshold for gc trials on pinned files */
1155 	u64 gc_pin_file_threshold;
1156 
1157 	/* maximum # of trials to find a victim segment for SSR and GC */
1158 	unsigned int max_victim_search;
1159 
1160 	/*
1161 	 * for stat information.
1162 	 * one is for the LFS mode, and the other is for the SSR mode.
1163 	 */
1164 #ifdef CONFIG_F2FS_STAT_FS
1165 	struct f2fs_stat_info *stat_info;	/* FS status information */
1166 	unsigned int segment_count[2];		/* # of allocated segments */
1167 	unsigned int block_count[2];		/* # of allocated blocks */
1168 	atomic_t inplace_count;		/* # of inplace update */
1169 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1170 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1171 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1172 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1173 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1174 	atomic_t inline_inode;			/* # of inline_data inodes */
1175 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1176 	atomic_t aw_cnt;			/* # of atomic writes */
1177 	atomic_t vw_cnt;			/* # of volatile writes */
1178 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1179 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1180 	int bg_gc;				/* background gc calls */
1181 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1182 #endif
1183 	spinlock_t stat_lock;			/* lock for stat operations */
1184 
1185 	/* For app/fs IO statistics */
1186 	spinlock_t iostat_lock;
1187 	unsigned long long write_iostat[NR_IO_TYPE];
1188 	bool iostat_enable;
1189 
1190 	/* For sysfs suppport */
1191 	struct kobject s_kobj;
1192 	struct completion s_kobj_unregister;
1193 
1194 	/* For shrinker support */
1195 	struct list_head s_list;
1196 	int s_ndevs;				/* number of devices */
1197 	struct f2fs_dev_info *devs;		/* for device list */
1198 	unsigned int dirty_device;		/* for checkpoint data flush */
1199 	spinlock_t dev_lock;			/* protect dirty_device */
1200 	struct mutex umount_mutex;
1201 	unsigned int shrinker_run_no;
1202 
1203 	/* For write statistics */
1204 	u64 sectors_written_start;
1205 	u64 kbytes_written;
1206 
1207 	/* Reference to checksum algorithm driver via cryptoapi */
1208 	struct crypto_shash *s_chksum_driver;
1209 
1210 	/* Precomputed FS UUID checksum for seeding other checksums */
1211 	__u32 s_chksum_seed;
1212 
1213 	/* For fault injection */
1214 #ifdef CONFIG_F2FS_FAULT_INJECTION
1215 	struct f2fs_fault_info fault_info;
1216 #endif
1217 
1218 #ifdef CONFIG_QUOTA
1219 	/* Names of quota files with journalled quota */
1220 	char *s_qf_names[MAXQUOTAS];
1221 	int s_jquota_fmt;			/* Format of quota to use */
1222 #endif
1223 };
1224 
1225 #ifdef CONFIG_F2FS_FAULT_INJECTION
1226 #define f2fs_show_injection_info(type)				\
1227 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1228 		KERN_INFO, fault_name[type],			\
1229 		__func__, __builtin_return_address(0))
1230 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1231 {
1232 	struct f2fs_fault_info *ffi = &sbi->fault_info;
1233 
1234 	if (!ffi->inject_rate)
1235 		return false;
1236 
1237 	if (!IS_FAULT_SET(ffi, type))
1238 		return false;
1239 
1240 	atomic_inc(&ffi->inject_ops);
1241 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1242 		atomic_set(&ffi->inject_ops, 0);
1243 		return true;
1244 	}
1245 	return false;
1246 }
1247 #endif
1248 
1249 /* For write statistics. Suppose sector size is 512 bytes,
1250  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1251  */
1252 #define BD_PART_WRITTEN(s)						 \
1253 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1254 		(s)->sectors_written_start) >> 1)
1255 
1256 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1257 {
1258 	sbi->last_time[type] = jiffies;
1259 }
1260 
1261 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1262 {
1263 	unsigned long interval = sbi->interval_time[type] * HZ;
1264 
1265 	return time_after(jiffies, sbi->last_time[type] + interval);
1266 }
1267 
1268 static inline bool is_idle(struct f2fs_sb_info *sbi)
1269 {
1270 	struct block_device *bdev = sbi->sb->s_bdev;
1271 	struct request_queue *q = bdev_get_queue(bdev);
1272 	struct request_list *rl = &q->root_rl;
1273 
1274 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1275 		return 0;
1276 
1277 	return f2fs_time_over(sbi, REQ_TIME);
1278 }
1279 
1280 /*
1281  * Inline functions
1282  */
1283 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1284 			      const void *address, unsigned int length)
1285 {
1286 	struct {
1287 		struct shash_desc shash;
1288 		char ctx[4];
1289 	} desc;
1290 	int err;
1291 
1292 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1293 
1294 	desc.shash.tfm = sbi->s_chksum_driver;
1295 	desc.shash.flags = 0;
1296 	*(u32 *)desc.ctx = crc;
1297 
1298 	err = crypto_shash_update(&desc.shash, address, length);
1299 	BUG_ON(err);
1300 
1301 	return *(u32 *)desc.ctx;
1302 }
1303 
1304 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1305 			   unsigned int length)
1306 {
1307 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1308 }
1309 
1310 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1311 				  void *buf, size_t buf_size)
1312 {
1313 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1314 }
1315 
1316 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1317 			      const void *address, unsigned int length)
1318 {
1319 	return __f2fs_crc32(sbi, crc, address, length);
1320 }
1321 
1322 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1323 {
1324 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1325 }
1326 
1327 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1328 {
1329 	return sb->s_fs_info;
1330 }
1331 
1332 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1333 {
1334 	return F2FS_SB(inode->i_sb);
1335 }
1336 
1337 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1338 {
1339 	return F2FS_I_SB(mapping->host);
1340 }
1341 
1342 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1343 {
1344 	return F2FS_M_SB(page->mapping);
1345 }
1346 
1347 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1348 {
1349 	return (struct f2fs_super_block *)(sbi->raw_super);
1350 }
1351 
1352 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1353 {
1354 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1355 }
1356 
1357 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1358 {
1359 	return (struct f2fs_node *)page_address(page);
1360 }
1361 
1362 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1363 {
1364 	return &((struct f2fs_node *)page_address(page))->i;
1365 }
1366 
1367 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1368 {
1369 	return (struct f2fs_nm_info *)(sbi->nm_info);
1370 }
1371 
1372 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1373 {
1374 	return (struct f2fs_sm_info *)(sbi->sm_info);
1375 }
1376 
1377 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1378 {
1379 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1380 }
1381 
1382 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1383 {
1384 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1385 }
1386 
1387 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1388 {
1389 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1390 }
1391 
1392 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1393 {
1394 	return sbi->meta_inode->i_mapping;
1395 }
1396 
1397 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1398 {
1399 	return sbi->node_inode->i_mapping;
1400 }
1401 
1402 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1403 {
1404 	return test_bit(type, &sbi->s_flag);
1405 }
1406 
1407 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1408 {
1409 	set_bit(type, &sbi->s_flag);
1410 }
1411 
1412 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1413 {
1414 	clear_bit(type, &sbi->s_flag);
1415 }
1416 
1417 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1418 {
1419 	return le64_to_cpu(cp->checkpoint_ver);
1420 }
1421 
1422 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1423 {
1424 	if (type < F2FS_MAX_QUOTAS)
1425 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1426 	return 0;
1427 }
1428 
1429 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1430 {
1431 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1432 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1433 }
1434 
1435 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1436 {
1437 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1438 
1439 	return ckpt_flags & f;
1440 }
1441 
1442 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1443 {
1444 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1445 }
1446 
1447 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1448 {
1449 	unsigned int ckpt_flags;
1450 
1451 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1452 	ckpt_flags |= f;
1453 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1454 }
1455 
1456 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1457 {
1458 	unsigned long flags;
1459 
1460 	spin_lock_irqsave(&sbi->cp_lock, flags);
1461 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1462 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1463 }
1464 
1465 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1466 {
1467 	unsigned int ckpt_flags;
1468 
1469 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1470 	ckpt_flags &= (~f);
1471 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1472 }
1473 
1474 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1475 {
1476 	unsigned long flags;
1477 
1478 	spin_lock_irqsave(&sbi->cp_lock, flags);
1479 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1480 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1481 }
1482 
1483 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1484 {
1485 	unsigned long flags;
1486 
1487 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1488 
1489 	if (lock)
1490 		spin_lock_irqsave(&sbi->cp_lock, flags);
1491 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1492 	kfree(NM_I(sbi)->nat_bits);
1493 	NM_I(sbi)->nat_bits = NULL;
1494 	if (lock)
1495 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1496 }
1497 
1498 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1499 					struct cp_control *cpc)
1500 {
1501 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1502 
1503 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1504 }
1505 
1506 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1507 {
1508 	down_read(&sbi->cp_rwsem);
1509 }
1510 
1511 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1512 {
1513 	return down_read_trylock(&sbi->cp_rwsem);
1514 }
1515 
1516 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1517 {
1518 	up_read(&sbi->cp_rwsem);
1519 }
1520 
1521 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1522 {
1523 	down_write(&sbi->cp_rwsem);
1524 }
1525 
1526 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1527 {
1528 	up_write(&sbi->cp_rwsem);
1529 }
1530 
1531 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1532 {
1533 	int reason = CP_SYNC;
1534 
1535 	if (test_opt(sbi, FASTBOOT))
1536 		reason = CP_FASTBOOT;
1537 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1538 		reason = CP_UMOUNT;
1539 	return reason;
1540 }
1541 
1542 static inline bool __remain_node_summaries(int reason)
1543 {
1544 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1545 }
1546 
1547 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1548 {
1549 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1550 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1551 }
1552 
1553 /*
1554  * Check whether the given nid is within node id range.
1555  */
1556 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1557 {
1558 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1559 		return -EINVAL;
1560 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1561 		return -EINVAL;
1562 	return 0;
1563 }
1564 
1565 /*
1566  * Check whether the inode has blocks or not
1567  */
1568 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1569 {
1570 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1571 
1572 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1573 }
1574 
1575 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1576 {
1577 	return ofs == XATTR_NODE_OFFSET;
1578 }
1579 
1580 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1581 					struct inode *inode)
1582 {
1583 	if (!inode)
1584 		return true;
1585 	if (!test_opt(sbi, RESERVE_ROOT))
1586 		return false;
1587 	if (IS_NOQUOTA(inode))
1588 		return true;
1589 	if (capable(CAP_SYS_RESOURCE))
1590 		return true;
1591 	if (uid_eq(sbi->s_resuid, current_fsuid()))
1592 		return true;
1593 	if (!gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) &&
1594 					in_group_p(sbi->s_resgid))
1595 		return true;
1596 	return false;
1597 }
1598 
1599 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1600 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1601 				 struct inode *inode, blkcnt_t *count)
1602 {
1603 	blkcnt_t diff = 0, release = 0;
1604 	block_t avail_user_block_count;
1605 	int ret;
1606 
1607 	ret = dquot_reserve_block(inode, *count);
1608 	if (ret)
1609 		return ret;
1610 
1611 #ifdef CONFIG_F2FS_FAULT_INJECTION
1612 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1613 		f2fs_show_injection_info(FAULT_BLOCK);
1614 		release = *count;
1615 		goto enospc;
1616 	}
1617 #endif
1618 	/*
1619 	 * let's increase this in prior to actual block count change in order
1620 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1621 	 */
1622 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1623 
1624 	spin_lock(&sbi->stat_lock);
1625 	sbi->total_valid_block_count += (block_t)(*count);
1626 	avail_user_block_count = sbi->user_block_count -
1627 					sbi->current_reserved_blocks;
1628 
1629 	if (!__allow_reserved_blocks(sbi, inode))
1630 		avail_user_block_count -= sbi->root_reserved_blocks;
1631 
1632 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1633 		diff = sbi->total_valid_block_count - avail_user_block_count;
1634 		if (diff > *count)
1635 			diff = *count;
1636 		*count -= diff;
1637 		release = diff;
1638 		sbi->total_valid_block_count -= diff;
1639 		if (!*count) {
1640 			spin_unlock(&sbi->stat_lock);
1641 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1642 			goto enospc;
1643 		}
1644 	}
1645 	spin_unlock(&sbi->stat_lock);
1646 
1647 	if (unlikely(release))
1648 		dquot_release_reservation_block(inode, release);
1649 	f2fs_i_blocks_write(inode, *count, true, true);
1650 	return 0;
1651 
1652 enospc:
1653 	dquot_release_reservation_block(inode, release);
1654 	return -ENOSPC;
1655 }
1656 
1657 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1658 						struct inode *inode,
1659 						block_t count)
1660 {
1661 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1662 
1663 	spin_lock(&sbi->stat_lock);
1664 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1665 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1666 	sbi->total_valid_block_count -= (block_t)count;
1667 	if (sbi->reserved_blocks &&
1668 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1669 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1670 					sbi->current_reserved_blocks + count);
1671 	spin_unlock(&sbi->stat_lock);
1672 	f2fs_i_blocks_write(inode, count, false, true);
1673 }
1674 
1675 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1676 {
1677 	atomic_inc(&sbi->nr_pages[count_type]);
1678 
1679 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1680 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1681 		return;
1682 
1683 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1684 }
1685 
1686 static inline void inode_inc_dirty_pages(struct inode *inode)
1687 {
1688 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1689 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1690 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1691 	if (IS_NOQUOTA(inode))
1692 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1693 }
1694 
1695 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1696 {
1697 	atomic_dec(&sbi->nr_pages[count_type]);
1698 }
1699 
1700 static inline void inode_dec_dirty_pages(struct inode *inode)
1701 {
1702 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1703 			!S_ISLNK(inode->i_mode))
1704 		return;
1705 
1706 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1707 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1708 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1709 	if (IS_NOQUOTA(inode))
1710 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1711 }
1712 
1713 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1714 {
1715 	return atomic_read(&sbi->nr_pages[count_type]);
1716 }
1717 
1718 static inline int get_dirty_pages(struct inode *inode)
1719 {
1720 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1721 }
1722 
1723 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1724 {
1725 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1726 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1727 						sbi->log_blocks_per_seg;
1728 
1729 	return segs / sbi->segs_per_sec;
1730 }
1731 
1732 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1733 {
1734 	return sbi->total_valid_block_count;
1735 }
1736 
1737 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1738 {
1739 	return sbi->discard_blks;
1740 }
1741 
1742 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1743 {
1744 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1745 
1746 	/* return NAT or SIT bitmap */
1747 	if (flag == NAT_BITMAP)
1748 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1749 	else if (flag == SIT_BITMAP)
1750 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1751 
1752 	return 0;
1753 }
1754 
1755 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1756 {
1757 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1758 }
1759 
1760 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1761 {
1762 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1763 	int offset;
1764 
1765 	if (__cp_payload(sbi) > 0) {
1766 		if (flag == NAT_BITMAP)
1767 			return &ckpt->sit_nat_version_bitmap;
1768 		else
1769 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1770 	} else {
1771 		offset = (flag == NAT_BITMAP) ?
1772 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1773 		return &ckpt->sit_nat_version_bitmap + offset;
1774 	}
1775 }
1776 
1777 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1778 {
1779 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1780 
1781 	if (sbi->cur_cp_pack == 2)
1782 		start_addr += sbi->blocks_per_seg;
1783 	return start_addr;
1784 }
1785 
1786 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1787 {
1788 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1789 
1790 	if (sbi->cur_cp_pack == 1)
1791 		start_addr += sbi->blocks_per_seg;
1792 	return start_addr;
1793 }
1794 
1795 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1796 {
1797 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1798 }
1799 
1800 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1801 {
1802 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1803 }
1804 
1805 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1806 					struct inode *inode, bool is_inode)
1807 {
1808 	block_t	valid_block_count;
1809 	unsigned int valid_node_count;
1810 	bool quota = inode && !is_inode;
1811 
1812 	if (quota) {
1813 		int ret = dquot_reserve_block(inode, 1);
1814 		if (ret)
1815 			return ret;
1816 	}
1817 
1818 #ifdef CONFIG_F2FS_FAULT_INJECTION
1819 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1820 		f2fs_show_injection_info(FAULT_BLOCK);
1821 		goto enospc;
1822 	}
1823 #endif
1824 
1825 	spin_lock(&sbi->stat_lock);
1826 
1827 	valid_block_count = sbi->total_valid_block_count +
1828 					sbi->current_reserved_blocks + 1;
1829 
1830 	if (!__allow_reserved_blocks(sbi, inode))
1831 		valid_block_count += sbi->root_reserved_blocks;
1832 
1833 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1834 		spin_unlock(&sbi->stat_lock);
1835 		goto enospc;
1836 	}
1837 
1838 	valid_node_count = sbi->total_valid_node_count + 1;
1839 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1840 		spin_unlock(&sbi->stat_lock);
1841 		goto enospc;
1842 	}
1843 
1844 	sbi->total_valid_node_count++;
1845 	sbi->total_valid_block_count++;
1846 	spin_unlock(&sbi->stat_lock);
1847 
1848 	if (inode) {
1849 		if (is_inode)
1850 			f2fs_mark_inode_dirty_sync(inode, true);
1851 		else
1852 			f2fs_i_blocks_write(inode, 1, true, true);
1853 	}
1854 
1855 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1856 	return 0;
1857 
1858 enospc:
1859 	if (quota)
1860 		dquot_release_reservation_block(inode, 1);
1861 	return -ENOSPC;
1862 }
1863 
1864 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1865 					struct inode *inode, bool is_inode)
1866 {
1867 	spin_lock(&sbi->stat_lock);
1868 
1869 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1870 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1871 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1872 
1873 	sbi->total_valid_node_count--;
1874 	sbi->total_valid_block_count--;
1875 	if (sbi->reserved_blocks &&
1876 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1877 		sbi->current_reserved_blocks++;
1878 
1879 	spin_unlock(&sbi->stat_lock);
1880 
1881 	if (!is_inode)
1882 		f2fs_i_blocks_write(inode, 1, false, true);
1883 }
1884 
1885 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1886 {
1887 	return sbi->total_valid_node_count;
1888 }
1889 
1890 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1891 {
1892 	percpu_counter_inc(&sbi->total_valid_inode_count);
1893 }
1894 
1895 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1896 {
1897 	percpu_counter_dec(&sbi->total_valid_inode_count);
1898 }
1899 
1900 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1901 {
1902 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1903 }
1904 
1905 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1906 						pgoff_t index, bool for_write)
1907 {
1908 #ifdef CONFIG_F2FS_FAULT_INJECTION
1909 	struct page *page = find_lock_page(mapping, index);
1910 
1911 	if (page)
1912 		return page;
1913 
1914 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1915 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1916 		return NULL;
1917 	}
1918 #endif
1919 	if (!for_write)
1920 		return grab_cache_page(mapping, index);
1921 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1922 }
1923 
1924 static inline struct page *f2fs_pagecache_get_page(
1925 				struct address_space *mapping, pgoff_t index,
1926 				int fgp_flags, gfp_t gfp_mask)
1927 {
1928 #ifdef CONFIG_F2FS_FAULT_INJECTION
1929 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1930 		f2fs_show_injection_info(FAULT_PAGE_GET);
1931 		return NULL;
1932 	}
1933 #endif
1934 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1935 }
1936 
1937 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1938 {
1939 	char *src_kaddr = kmap(src);
1940 	char *dst_kaddr = kmap(dst);
1941 
1942 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1943 	kunmap(dst);
1944 	kunmap(src);
1945 }
1946 
1947 static inline void f2fs_put_page(struct page *page, int unlock)
1948 {
1949 	if (!page)
1950 		return;
1951 
1952 	if (unlock) {
1953 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1954 		unlock_page(page);
1955 	}
1956 	put_page(page);
1957 }
1958 
1959 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1960 {
1961 	if (dn->node_page)
1962 		f2fs_put_page(dn->node_page, 1);
1963 	if (dn->inode_page && dn->node_page != dn->inode_page)
1964 		f2fs_put_page(dn->inode_page, 0);
1965 	dn->node_page = NULL;
1966 	dn->inode_page = NULL;
1967 }
1968 
1969 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1970 					size_t size)
1971 {
1972 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1973 }
1974 
1975 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1976 						gfp_t flags)
1977 {
1978 	void *entry;
1979 
1980 	entry = kmem_cache_alloc(cachep, flags);
1981 	if (!entry)
1982 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1983 	return entry;
1984 }
1985 
1986 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
1987 						int npages, bool no_fail)
1988 {
1989 	struct bio *bio;
1990 
1991 	if (no_fail) {
1992 		/* No failure on bio allocation */
1993 		bio = bio_alloc(GFP_NOIO, npages);
1994 		if (!bio)
1995 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1996 		return bio;
1997 	}
1998 #ifdef CONFIG_F2FS_FAULT_INJECTION
1999 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2000 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2001 		return NULL;
2002 	}
2003 #endif
2004 	return bio_alloc(GFP_KERNEL, npages);
2005 }
2006 
2007 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2008 				unsigned long index, void *item)
2009 {
2010 	while (radix_tree_insert(root, index, item))
2011 		cond_resched();
2012 }
2013 
2014 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2015 
2016 static inline bool IS_INODE(struct page *page)
2017 {
2018 	struct f2fs_node *p = F2FS_NODE(page);
2019 
2020 	return RAW_IS_INODE(p);
2021 }
2022 
2023 static inline int offset_in_addr(struct f2fs_inode *i)
2024 {
2025 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2026 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2027 }
2028 
2029 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2030 {
2031 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2032 }
2033 
2034 static inline int f2fs_has_extra_attr(struct inode *inode);
2035 static inline block_t datablock_addr(struct inode *inode,
2036 			struct page *node_page, unsigned int offset)
2037 {
2038 	struct f2fs_node *raw_node;
2039 	__le32 *addr_array;
2040 	int base = 0;
2041 	bool is_inode = IS_INODE(node_page);
2042 
2043 	raw_node = F2FS_NODE(node_page);
2044 
2045 	/* from GC path only */
2046 	if (is_inode) {
2047 		if (!inode)
2048 			base = offset_in_addr(&raw_node->i);
2049 		else if (f2fs_has_extra_attr(inode))
2050 			base = get_extra_isize(inode);
2051 	}
2052 
2053 	addr_array = blkaddr_in_node(raw_node);
2054 	return le32_to_cpu(addr_array[base + offset]);
2055 }
2056 
2057 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2058 {
2059 	int mask;
2060 
2061 	addr += (nr >> 3);
2062 	mask = 1 << (7 - (nr & 0x07));
2063 	return mask & *addr;
2064 }
2065 
2066 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2067 {
2068 	int mask;
2069 
2070 	addr += (nr >> 3);
2071 	mask = 1 << (7 - (nr & 0x07));
2072 	*addr |= mask;
2073 }
2074 
2075 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2076 {
2077 	int mask;
2078 
2079 	addr += (nr >> 3);
2080 	mask = 1 << (7 - (nr & 0x07));
2081 	*addr &= ~mask;
2082 }
2083 
2084 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2085 {
2086 	int mask;
2087 	int ret;
2088 
2089 	addr += (nr >> 3);
2090 	mask = 1 << (7 - (nr & 0x07));
2091 	ret = mask & *addr;
2092 	*addr |= mask;
2093 	return ret;
2094 }
2095 
2096 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2097 {
2098 	int mask;
2099 	int ret;
2100 
2101 	addr += (nr >> 3);
2102 	mask = 1 << (7 - (nr & 0x07));
2103 	ret = mask & *addr;
2104 	*addr &= ~mask;
2105 	return ret;
2106 }
2107 
2108 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2109 {
2110 	int mask;
2111 
2112 	addr += (nr >> 3);
2113 	mask = 1 << (7 - (nr & 0x07));
2114 	*addr ^= mask;
2115 }
2116 
2117 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2118 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
2119 #define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
2120 
2121 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2122 {
2123 	if (S_ISDIR(mode))
2124 		return flags;
2125 	else if (S_ISREG(mode))
2126 		return flags & F2FS_REG_FLMASK;
2127 	else
2128 		return flags & F2FS_OTHER_FLMASK;
2129 }
2130 
2131 /* used for f2fs_inode_info->flags */
2132 enum {
2133 	FI_NEW_INODE,		/* indicate newly allocated inode */
2134 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2135 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2136 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2137 	FI_INC_LINK,		/* need to increment i_nlink */
2138 	FI_ACL_MODE,		/* indicate acl mode */
2139 	FI_NO_ALLOC,		/* should not allocate any blocks */
2140 	FI_FREE_NID,		/* free allocated nide */
2141 	FI_NO_EXTENT,		/* not to use the extent cache */
2142 	FI_INLINE_XATTR,	/* used for inline xattr */
2143 	FI_INLINE_DATA,		/* used for inline data*/
2144 	FI_INLINE_DENTRY,	/* used for inline dentry */
2145 	FI_APPEND_WRITE,	/* inode has appended data */
2146 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2147 	FI_NEED_IPU,		/* used for ipu per file */
2148 	FI_ATOMIC_FILE,		/* indicate atomic file */
2149 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2150 	FI_VOLATILE_FILE,	/* indicate volatile file */
2151 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2152 	FI_DROP_CACHE,		/* drop dirty page cache */
2153 	FI_DATA_EXIST,		/* indicate data exists */
2154 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2155 	FI_DO_DEFRAG,		/* indicate defragment is running */
2156 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2157 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2158 	FI_HOT_DATA,		/* indicate file is hot */
2159 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2160 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2161 	FI_PIN_FILE,		/* indicate file should not be gced */
2162 };
2163 
2164 static inline void __mark_inode_dirty_flag(struct inode *inode,
2165 						int flag, bool set)
2166 {
2167 	switch (flag) {
2168 	case FI_INLINE_XATTR:
2169 	case FI_INLINE_DATA:
2170 	case FI_INLINE_DENTRY:
2171 	case FI_NEW_INODE:
2172 		if (set)
2173 			return;
2174 	case FI_DATA_EXIST:
2175 	case FI_INLINE_DOTS:
2176 	case FI_PIN_FILE:
2177 		f2fs_mark_inode_dirty_sync(inode, true);
2178 	}
2179 }
2180 
2181 static inline void set_inode_flag(struct inode *inode, int flag)
2182 {
2183 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2184 		set_bit(flag, &F2FS_I(inode)->flags);
2185 	__mark_inode_dirty_flag(inode, flag, true);
2186 }
2187 
2188 static inline int is_inode_flag_set(struct inode *inode, int flag)
2189 {
2190 	return test_bit(flag, &F2FS_I(inode)->flags);
2191 }
2192 
2193 static inline void clear_inode_flag(struct inode *inode, int flag)
2194 {
2195 	if (test_bit(flag, &F2FS_I(inode)->flags))
2196 		clear_bit(flag, &F2FS_I(inode)->flags);
2197 	__mark_inode_dirty_flag(inode, flag, false);
2198 }
2199 
2200 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2201 {
2202 	F2FS_I(inode)->i_acl_mode = mode;
2203 	set_inode_flag(inode, FI_ACL_MODE);
2204 	f2fs_mark_inode_dirty_sync(inode, false);
2205 }
2206 
2207 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2208 {
2209 	if (inc)
2210 		inc_nlink(inode);
2211 	else
2212 		drop_nlink(inode);
2213 	f2fs_mark_inode_dirty_sync(inode, true);
2214 }
2215 
2216 static inline void f2fs_i_blocks_write(struct inode *inode,
2217 					block_t diff, bool add, bool claim)
2218 {
2219 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2220 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2221 
2222 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2223 	if (add) {
2224 		if (claim)
2225 			dquot_claim_block(inode, diff);
2226 		else
2227 			dquot_alloc_block_nofail(inode, diff);
2228 	} else {
2229 		dquot_free_block(inode, diff);
2230 	}
2231 
2232 	f2fs_mark_inode_dirty_sync(inode, true);
2233 	if (clean || recover)
2234 		set_inode_flag(inode, FI_AUTO_RECOVER);
2235 }
2236 
2237 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2238 {
2239 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2240 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2241 
2242 	if (i_size_read(inode) == i_size)
2243 		return;
2244 
2245 	i_size_write(inode, i_size);
2246 	f2fs_mark_inode_dirty_sync(inode, true);
2247 	if (clean || recover)
2248 		set_inode_flag(inode, FI_AUTO_RECOVER);
2249 }
2250 
2251 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2252 {
2253 	F2FS_I(inode)->i_current_depth = depth;
2254 	f2fs_mark_inode_dirty_sync(inode, true);
2255 }
2256 
2257 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2258 					unsigned int count)
2259 {
2260 	F2FS_I(inode)->i_gc_failures = count;
2261 	f2fs_mark_inode_dirty_sync(inode, true);
2262 }
2263 
2264 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2265 {
2266 	F2FS_I(inode)->i_xattr_nid = xnid;
2267 	f2fs_mark_inode_dirty_sync(inode, true);
2268 }
2269 
2270 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2271 {
2272 	F2FS_I(inode)->i_pino = pino;
2273 	f2fs_mark_inode_dirty_sync(inode, true);
2274 }
2275 
2276 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2277 {
2278 	struct f2fs_inode_info *fi = F2FS_I(inode);
2279 
2280 	if (ri->i_inline & F2FS_INLINE_XATTR)
2281 		set_bit(FI_INLINE_XATTR, &fi->flags);
2282 	if (ri->i_inline & F2FS_INLINE_DATA)
2283 		set_bit(FI_INLINE_DATA, &fi->flags);
2284 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2285 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2286 	if (ri->i_inline & F2FS_DATA_EXIST)
2287 		set_bit(FI_DATA_EXIST, &fi->flags);
2288 	if (ri->i_inline & F2FS_INLINE_DOTS)
2289 		set_bit(FI_INLINE_DOTS, &fi->flags);
2290 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2291 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2292 	if (ri->i_inline & F2FS_PIN_FILE)
2293 		set_bit(FI_PIN_FILE, &fi->flags);
2294 }
2295 
2296 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2297 {
2298 	ri->i_inline = 0;
2299 
2300 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2301 		ri->i_inline |= F2FS_INLINE_XATTR;
2302 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2303 		ri->i_inline |= F2FS_INLINE_DATA;
2304 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2305 		ri->i_inline |= F2FS_INLINE_DENTRY;
2306 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2307 		ri->i_inline |= F2FS_DATA_EXIST;
2308 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2309 		ri->i_inline |= F2FS_INLINE_DOTS;
2310 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2311 		ri->i_inline |= F2FS_EXTRA_ATTR;
2312 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2313 		ri->i_inline |= F2FS_PIN_FILE;
2314 }
2315 
2316 static inline int f2fs_has_extra_attr(struct inode *inode)
2317 {
2318 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2319 }
2320 
2321 static inline int f2fs_has_inline_xattr(struct inode *inode)
2322 {
2323 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2324 }
2325 
2326 static inline unsigned int addrs_per_inode(struct inode *inode)
2327 {
2328 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2329 }
2330 
2331 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2332 {
2333 	struct f2fs_inode *ri = F2FS_INODE(page);
2334 
2335 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2336 					get_inline_xattr_addrs(inode)]);
2337 }
2338 
2339 static inline int inline_xattr_size(struct inode *inode)
2340 {
2341 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2342 }
2343 
2344 static inline int f2fs_has_inline_data(struct inode *inode)
2345 {
2346 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2347 }
2348 
2349 static inline int f2fs_exist_data(struct inode *inode)
2350 {
2351 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2352 }
2353 
2354 static inline int f2fs_has_inline_dots(struct inode *inode)
2355 {
2356 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2357 }
2358 
2359 static inline bool f2fs_is_pinned_file(struct inode *inode)
2360 {
2361 	return is_inode_flag_set(inode, FI_PIN_FILE);
2362 }
2363 
2364 static inline bool f2fs_is_atomic_file(struct inode *inode)
2365 {
2366 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2367 }
2368 
2369 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2370 {
2371 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2372 }
2373 
2374 static inline bool f2fs_is_volatile_file(struct inode *inode)
2375 {
2376 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2377 }
2378 
2379 static inline bool f2fs_is_first_block_written(struct inode *inode)
2380 {
2381 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2382 }
2383 
2384 static inline bool f2fs_is_drop_cache(struct inode *inode)
2385 {
2386 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2387 }
2388 
2389 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2390 {
2391 	struct f2fs_inode *ri = F2FS_INODE(page);
2392 	int extra_size = get_extra_isize(inode);
2393 
2394 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2395 }
2396 
2397 static inline int f2fs_has_inline_dentry(struct inode *inode)
2398 {
2399 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2400 }
2401 
2402 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2403 {
2404 	if (!f2fs_has_inline_dentry(dir))
2405 		kunmap(page);
2406 }
2407 
2408 static inline int is_file(struct inode *inode, int type)
2409 {
2410 	return F2FS_I(inode)->i_advise & type;
2411 }
2412 
2413 static inline void set_file(struct inode *inode, int type)
2414 {
2415 	F2FS_I(inode)->i_advise |= type;
2416 	f2fs_mark_inode_dirty_sync(inode, true);
2417 }
2418 
2419 static inline void clear_file(struct inode *inode, int type)
2420 {
2421 	F2FS_I(inode)->i_advise &= ~type;
2422 	f2fs_mark_inode_dirty_sync(inode, true);
2423 }
2424 
2425 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2426 {
2427 	bool ret;
2428 
2429 	if (dsync) {
2430 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2431 
2432 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2433 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2434 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2435 		return ret;
2436 	}
2437 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2438 			file_keep_isize(inode) ||
2439 			i_size_read(inode) & PAGE_MASK)
2440 		return false;
2441 
2442 	down_read(&F2FS_I(inode)->i_sem);
2443 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2444 	up_read(&F2FS_I(inode)->i_sem);
2445 
2446 	return ret;
2447 }
2448 
2449 static inline int f2fs_readonly(struct super_block *sb)
2450 {
2451 	return sb->s_flags & SB_RDONLY;
2452 }
2453 
2454 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2455 {
2456 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2457 }
2458 
2459 static inline bool is_dot_dotdot(const struct qstr *str)
2460 {
2461 	if (str->len == 1 && str->name[0] == '.')
2462 		return true;
2463 
2464 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2465 		return true;
2466 
2467 	return false;
2468 }
2469 
2470 static inline bool f2fs_may_extent_tree(struct inode *inode)
2471 {
2472 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2473 			is_inode_flag_set(inode, FI_NO_EXTENT))
2474 		return false;
2475 
2476 	return S_ISREG(inode->i_mode);
2477 }
2478 
2479 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2480 					size_t size, gfp_t flags)
2481 {
2482 #ifdef CONFIG_F2FS_FAULT_INJECTION
2483 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2484 		f2fs_show_injection_info(FAULT_KMALLOC);
2485 		return NULL;
2486 	}
2487 #endif
2488 	return kmalloc(size, flags);
2489 }
2490 
2491 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2492 					size_t size, gfp_t flags)
2493 {
2494 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2495 }
2496 
2497 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2498 					size_t size, gfp_t flags)
2499 {
2500 #ifdef CONFIG_F2FS_FAULT_INJECTION
2501 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2502 		f2fs_show_injection_info(FAULT_KVMALLOC);
2503 		return NULL;
2504 	}
2505 #endif
2506 	return kvmalloc(size, flags);
2507 }
2508 
2509 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2510 					size_t size, gfp_t flags)
2511 {
2512 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2513 }
2514 
2515 static inline int get_extra_isize(struct inode *inode)
2516 {
2517 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2518 }
2519 
2520 static inline int get_inline_xattr_addrs(struct inode *inode)
2521 {
2522 	return F2FS_I(inode)->i_inline_xattr_size;
2523 }
2524 
2525 #define get_inode_mode(i) \
2526 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2527 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2528 
2529 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2530 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2531 	offsetof(struct f2fs_inode, i_extra_isize))	\
2532 
2533 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2534 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2535 		((offsetof(typeof(*f2fs_inode), field) +	\
2536 		sizeof((f2fs_inode)->field))			\
2537 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2538 
2539 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2540 {
2541 	int i;
2542 
2543 	spin_lock(&sbi->iostat_lock);
2544 	for (i = 0; i < NR_IO_TYPE; i++)
2545 		sbi->write_iostat[i] = 0;
2546 	spin_unlock(&sbi->iostat_lock);
2547 }
2548 
2549 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2550 			enum iostat_type type, unsigned long long io_bytes)
2551 {
2552 	if (!sbi->iostat_enable)
2553 		return;
2554 	spin_lock(&sbi->iostat_lock);
2555 	sbi->write_iostat[type] += io_bytes;
2556 
2557 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2558 		sbi->write_iostat[APP_BUFFERED_IO] =
2559 			sbi->write_iostat[APP_WRITE_IO] -
2560 			sbi->write_iostat[APP_DIRECT_IO];
2561 	spin_unlock(&sbi->iostat_lock);
2562 }
2563 
2564 /*
2565  * file.c
2566  */
2567 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2568 void truncate_data_blocks(struct dnode_of_data *dn);
2569 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2570 int f2fs_truncate(struct inode *inode);
2571 int f2fs_getattr(const struct path *path, struct kstat *stat,
2572 			u32 request_mask, unsigned int flags);
2573 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2574 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2575 void truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2576 int f2fs_precache_extents(struct inode *inode);
2577 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2578 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2579 int f2fs_pin_file_control(struct inode *inode, bool inc);
2580 
2581 /*
2582  * inode.c
2583  */
2584 void f2fs_set_inode_flags(struct inode *inode);
2585 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2586 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2587 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2588 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2589 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2590 void update_inode(struct inode *inode, struct page *node_page);
2591 void update_inode_page(struct inode *inode);
2592 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2593 void f2fs_evict_inode(struct inode *inode);
2594 void handle_failed_inode(struct inode *inode);
2595 
2596 /*
2597  * namei.c
2598  */
2599 struct dentry *f2fs_get_parent(struct dentry *child);
2600 
2601 /*
2602  * dir.c
2603  */
2604 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2605 unsigned char get_de_type(struct f2fs_dir_entry *de);
2606 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2607 			f2fs_hash_t namehash, int *max_slots,
2608 			struct f2fs_dentry_ptr *d);
2609 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2610 			unsigned int start_pos, struct fscrypt_str *fstr);
2611 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2612 			struct f2fs_dentry_ptr *d);
2613 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2614 			const struct qstr *new_name,
2615 			const struct qstr *orig_name, struct page *dpage);
2616 void update_parent_metadata(struct inode *dir, struct inode *inode,
2617 			unsigned int current_depth);
2618 int room_for_filename(const void *bitmap, int slots, int max_slots);
2619 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2620 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2621 			struct fscrypt_name *fname, struct page **res_page);
2622 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2623 			const struct qstr *child, struct page **res_page);
2624 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2625 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2626 			struct page **page);
2627 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2628 			struct page *page, struct inode *inode);
2629 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2630 			const struct qstr *name, f2fs_hash_t name_hash,
2631 			unsigned int bit_pos);
2632 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2633 			const struct qstr *orig_name,
2634 			struct inode *inode, nid_t ino, umode_t mode);
2635 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2636 			struct inode *inode, nid_t ino, umode_t mode);
2637 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2638 			struct inode *inode, nid_t ino, umode_t mode);
2639 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2640 			struct inode *dir, struct inode *inode);
2641 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2642 bool f2fs_empty_dir(struct inode *dir);
2643 
2644 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2645 {
2646 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2647 				inode, inode->i_ino, inode->i_mode);
2648 }
2649 
2650 /*
2651  * super.c
2652  */
2653 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2654 void f2fs_inode_synced(struct inode *inode);
2655 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2656 void f2fs_quota_off_umount(struct super_block *sb);
2657 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2658 int f2fs_sync_fs(struct super_block *sb, int sync);
2659 extern __printf(3, 4)
2660 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2661 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2662 
2663 /*
2664  * hash.c
2665  */
2666 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2667 				struct fscrypt_name *fname);
2668 
2669 /*
2670  * node.c
2671  */
2672 struct dnode_of_data;
2673 struct node_info;
2674 
2675 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2676 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2677 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2678 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2679 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2680 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2681 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2682 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2683 int truncate_xattr_node(struct inode *inode);
2684 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2685 int remove_inode_page(struct inode *inode);
2686 struct page *new_inode_page(struct inode *inode);
2687 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2688 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2689 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2690 struct page *get_node_page_ra(struct page *parent, int start);
2691 void move_node_page(struct page *node_page, int gc_type);
2692 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2693 			struct writeback_control *wbc, bool atomic);
2694 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2695 			bool do_balance, enum iostat_type io_type);
2696 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2697 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2698 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2699 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2700 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2701 void recover_inline_xattr(struct inode *inode, struct page *page);
2702 int recover_xattr_data(struct inode *inode, struct page *page);
2703 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2704 void restore_node_summary(struct f2fs_sb_info *sbi,
2705 			unsigned int segno, struct f2fs_summary_block *sum);
2706 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2707 int build_node_manager(struct f2fs_sb_info *sbi);
2708 void destroy_node_manager(struct f2fs_sb_info *sbi);
2709 int __init create_node_manager_caches(void);
2710 void destroy_node_manager_caches(void);
2711 
2712 /*
2713  * segment.c
2714  */
2715 bool need_SSR(struct f2fs_sb_info *sbi);
2716 void register_inmem_page(struct inode *inode, struct page *page);
2717 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2718 void drop_inmem_pages(struct inode *inode);
2719 void drop_inmem_page(struct inode *inode, struct page *page);
2720 int commit_inmem_pages(struct inode *inode);
2721 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2722 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2723 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2724 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2725 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2726 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2727 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2728 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2729 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2730 						unsigned int granularity);
2731 void drop_discard_cmd(struct f2fs_sb_info *sbi);
2732 void stop_discard_thread(struct f2fs_sb_info *sbi);
2733 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2734 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2735 void release_discard_addrs(struct f2fs_sb_info *sbi);
2736 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2737 void allocate_new_segments(struct f2fs_sb_info *sbi);
2738 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2739 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2740 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2741 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2742 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2743 						enum iostat_type io_type);
2744 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2745 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2746 int rewrite_data_page(struct f2fs_io_info *fio);
2747 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2748 			block_t old_blkaddr, block_t new_blkaddr,
2749 			bool recover_curseg, bool recover_newaddr);
2750 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2751 			block_t old_addr, block_t new_addr,
2752 			unsigned char version, bool recover_curseg,
2753 			bool recover_newaddr);
2754 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2755 			block_t old_blkaddr, block_t *new_blkaddr,
2756 			struct f2fs_summary *sum, int type,
2757 			struct f2fs_io_info *fio, bool add_list);
2758 void f2fs_wait_on_page_writeback(struct page *page,
2759 			enum page_type type, bool ordered);
2760 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2761 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2762 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2763 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2764 			unsigned int val, int alloc);
2765 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2766 int build_segment_manager(struct f2fs_sb_info *sbi);
2767 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2768 int __init create_segment_manager_caches(void);
2769 void destroy_segment_manager_caches(void);
2770 int rw_hint_to_seg_type(enum rw_hint hint);
2771 
2772 /*
2773  * checkpoint.c
2774  */
2775 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2776 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2777 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2778 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2779 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2780 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2781 			int type, bool sync);
2782 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2783 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2784 			long nr_to_write, enum iostat_type io_type);
2785 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2786 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2787 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2788 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2789 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2790 					unsigned int devidx, int type);
2791 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2792 					unsigned int devidx, int type);
2793 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2794 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2795 void release_orphan_inode(struct f2fs_sb_info *sbi);
2796 void add_orphan_inode(struct inode *inode);
2797 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2798 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2799 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2800 void update_dirty_page(struct inode *inode, struct page *page);
2801 void remove_dirty_inode(struct inode *inode);
2802 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2803 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2804 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2805 int __init create_checkpoint_caches(void);
2806 void destroy_checkpoint_caches(void);
2807 
2808 /*
2809  * data.c
2810  */
2811 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2812 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2813 				struct inode *inode, nid_t ino, pgoff_t idx,
2814 				enum page_type type);
2815 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2816 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2817 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2818 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2819 			block_t blk_addr, struct bio *bio);
2820 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2821 void set_data_blkaddr(struct dnode_of_data *dn);
2822 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2823 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2824 int reserve_new_block(struct dnode_of_data *dn);
2825 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2826 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2827 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2828 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2829 			int op_flags, bool for_write);
2830 struct page *find_data_page(struct inode *inode, pgoff_t index);
2831 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2832 			bool for_write);
2833 struct page *get_new_data_page(struct inode *inode,
2834 			struct page *ipage, pgoff_t index, bool new_i_size);
2835 int do_write_data_page(struct f2fs_io_info *fio);
2836 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2837 			int create, int flag);
2838 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2839 			u64 start, u64 len);
2840 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
2841 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
2842 void f2fs_set_page_dirty_nobuffers(struct page *page);
2843 int __f2fs_write_data_pages(struct address_space *mapping,
2844 						struct writeback_control *wbc,
2845 						enum iostat_type io_type);
2846 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2847 			unsigned int length);
2848 int f2fs_release_page(struct page *page, gfp_t wait);
2849 #ifdef CONFIG_MIGRATION
2850 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2851 			struct page *page, enum migrate_mode mode);
2852 #endif
2853 
2854 /*
2855  * gc.c
2856  */
2857 int start_gc_thread(struct f2fs_sb_info *sbi);
2858 void stop_gc_thread(struct f2fs_sb_info *sbi);
2859 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2860 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2861 			unsigned int segno);
2862 void build_gc_manager(struct f2fs_sb_info *sbi);
2863 
2864 /*
2865  * recovery.c
2866  */
2867 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2868 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2869 
2870 /*
2871  * debug.c
2872  */
2873 #ifdef CONFIG_F2FS_STAT_FS
2874 struct f2fs_stat_info {
2875 	struct list_head stat_list;
2876 	struct f2fs_sb_info *sbi;
2877 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2878 	int main_area_segs, main_area_sections, main_area_zones;
2879 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2880 	unsigned long long hit_total, total_ext;
2881 	int ext_tree, zombie_tree, ext_node;
2882 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2883 	int ndirty_data, ndirty_qdata;
2884 	int inmem_pages;
2885 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2886 	int nats, dirty_nats, sits, dirty_sits;
2887 	int free_nids, avail_nids, alloc_nids;
2888 	int total_count, utilization;
2889 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2890 	int nr_flushing, nr_flushed, flush_list_empty;
2891 	int nr_discarding, nr_discarded;
2892 	int nr_discard_cmd;
2893 	unsigned int undiscard_blks;
2894 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2895 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2896 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2897 	unsigned int bimodal, avg_vblocks;
2898 	int util_free, util_valid, util_invalid;
2899 	int rsvd_segs, overp_segs;
2900 	int dirty_count, node_pages, meta_pages;
2901 	int prefree_count, call_count, cp_count, bg_cp_count;
2902 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2903 	int bg_node_segs, bg_data_segs;
2904 	int tot_blks, data_blks, node_blks;
2905 	int bg_data_blks, bg_node_blks;
2906 	int curseg[NR_CURSEG_TYPE];
2907 	int cursec[NR_CURSEG_TYPE];
2908 	int curzone[NR_CURSEG_TYPE];
2909 
2910 	unsigned int segment_count[2];
2911 	unsigned int block_count[2];
2912 	unsigned int inplace_count;
2913 	unsigned long long base_mem, cache_mem, page_mem;
2914 };
2915 
2916 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2917 {
2918 	return (struct f2fs_stat_info *)sbi->stat_info;
2919 }
2920 
2921 #define stat_inc_cp_count(si)		((si)->cp_count++)
2922 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2923 #define stat_inc_call_count(si)		((si)->call_count++)
2924 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2925 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2926 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2927 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2928 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2929 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2930 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2931 #define stat_inc_inline_xattr(inode)					\
2932 	do {								\
2933 		if (f2fs_has_inline_xattr(inode))			\
2934 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2935 	} while (0)
2936 #define stat_dec_inline_xattr(inode)					\
2937 	do {								\
2938 		if (f2fs_has_inline_xattr(inode))			\
2939 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2940 	} while (0)
2941 #define stat_inc_inline_inode(inode)					\
2942 	do {								\
2943 		if (f2fs_has_inline_data(inode))			\
2944 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2945 	} while (0)
2946 #define stat_dec_inline_inode(inode)					\
2947 	do {								\
2948 		if (f2fs_has_inline_data(inode))			\
2949 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2950 	} while (0)
2951 #define stat_inc_inline_dir(inode)					\
2952 	do {								\
2953 		if (f2fs_has_inline_dentry(inode))			\
2954 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2955 	} while (0)
2956 #define stat_dec_inline_dir(inode)					\
2957 	do {								\
2958 		if (f2fs_has_inline_dentry(inode))			\
2959 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2960 	} while (0)
2961 #define stat_inc_seg_type(sbi, curseg)					\
2962 		((sbi)->segment_count[(curseg)->alloc_type]++)
2963 #define stat_inc_block_count(sbi, curseg)				\
2964 		((sbi)->block_count[(curseg)->alloc_type]++)
2965 #define stat_inc_inplace_blocks(sbi)					\
2966 		(atomic_inc(&(sbi)->inplace_count))
2967 #define stat_inc_atomic_write(inode)					\
2968 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2969 #define stat_dec_atomic_write(inode)					\
2970 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2971 #define stat_update_max_atomic_write(inode)				\
2972 	do {								\
2973 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2974 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2975 		if (cur > max)						\
2976 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2977 	} while (0)
2978 #define stat_inc_volatile_write(inode)					\
2979 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2980 #define stat_dec_volatile_write(inode)					\
2981 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2982 #define stat_update_max_volatile_write(inode)				\
2983 	do {								\
2984 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
2985 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
2986 		if (cur > max)						\
2987 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
2988 	} while (0)
2989 #define stat_inc_seg_count(sbi, type, gc_type)				\
2990 	do {								\
2991 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2992 		si->tot_segs++;						\
2993 		if ((type) == SUM_TYPE_DATA) {				\
2994 			si->data_segs++;				\
2995 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2996 		} else {						\
2997 			si->node_segs++;				\
2998 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2999 		}							\
3000 	} while (0)
3001 
3002 #define stat_inc_tot_blk_count(si, blks)				\
3003 	((si)->tot_blks += (blks))
3004 
3005 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3006 	do {								\
3007 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3008 		stat_inc_tot_blk_count(si, blks);			\
3009 		si->data_blks += (blks);				\
3010 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3011 	} while (0)
3012 
3013 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3014 	do {								\
3015 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3016 		stat_inc_tot_blk_count(si, blks);			\
3017 		si->node_blks += (blks);				\
3018 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3019 	} while (0)
3020 
3021 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3022 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3023 int __init f2fs_create_root_stats(void);
3024 void f2fs_destroy_root_stats(void);
3025 #else
3026 #define stat_inc_cp_count(si)				do { } while (0)
3027 #define stat_inc_bg_cp_count(si)			do { } while (0)
3028 #define stat_inc_call_count(si)				do { } while (0)
3029 #define stat_inc_bggc_count(si)				do { } while (0)
3030 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3031 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3032 #define stat_inc_total_hit(sb)				do { } while (0)
3033 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3034 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3035 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3036 #define stat_inc_inline_xattr(inode)			do { } while (0)
3037 #define stat_dec_inline_xattr(inode)			do { } while (0)
3038 #define stat_inc_inline_inode(inode)			do { } while (0)
3039 #define stat_dec_inline_inode(inode)			do { } while (0)
3040 #define stat_inc_inline_dir(inode)			do { } while (0)
3041 #define stat_dec_inline_dir(inode)			do { } while (0)
3042 #define stat_inc_atomic_write(inode)			do { } while (0)
3043 #define stat_dec_atomic_write(inode)			do { } while (0)
3044 #define stat_update_max_atomic_write(inode)		do { } while (0)
3045 #define stat_inc_volatile_write(inode)			do { } while (0)
3046 #define stat_dec_volatile_write(inode)			do { } while (0)
3047 #define stat_update_max_volatile_write(inode)		do { } while (0)
3048 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3049 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3050 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3051 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3052 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3053 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3054 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3055 
3056 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3057 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3058 static inline int __init f2fs_create_root_stats(void) { return 0; }
3059 static inline void f2fs_destroy_root_stats(void) { }
3060 #endif
3061 
3062 extern const struct file_operations f2fs_dir_operations;
3063 extern const struct file_operations f2fs_file_operations;
3064 extern const struct inode_operations f2fs_file_inode_operations;
3065 extern const struct address_space_operations f2fs_dblock_aops;
3066 extern const struct address_space_operations f2fs_node_aops;
3067 extern const struct address_space_operations f2fs_meta_aops;
3068 extern const struct inode_operations f2fs_dir_inode_operations;
3069 extern const struct inode_operations f2fs_symlink_inode_operations;
3070 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3071 extern const struct inode_operations f2fs_special_inode_operations;
3072 extern struct kmem_cache *inode_entry_slab;
3073 
3074 /*
3075  * inline.c
3076  */
3077 bool f2fs_may_inline_data(struct inode *inode);
3078 bool f2fs_may_inline_dentry(struct inode *inode);
3079 void read_inline_data(struct page *page, struct page *ipage);
3080 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3081 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3082 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3083 int f2fs_convert_inline_inode(struct inode *inode);
3084 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3085 bool recover_inline_data(struct inode *inode, struct page *npage);
3086 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3087 			struct fscrypt_name *fname, struct page **res_page);
3088 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3089 			struct page *ipage);
3090 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3091 			const struct qstr *orig_name,
3092 			struct inode *inode, nid_t ino, umode_t mode);
3093 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3094 			struct inode *dir, struct inode *inode);
3095 bool f2fs_empty_inline_dir(struct inode *dir);
3096 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3097 			struct fscrypt_str *fstr);
3098 int f2fs_inline_data_fiemap(struct inode *inode,
3099 			struct fiemap_extent_info *fieinfo,
3100 			__u64 start, __u64 len);
3101 
3102 /*
3103  * shrinker.c
3104  */
3105 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3106 			struct shrink_control *sc);
3107 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3108 			struct shrink_control *sc);
3109 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3110 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3111 
3112 /*
3113  * extent_cache.c
3114  */
3115 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3116 				struct rb_entry *cached_re, unsigned int ofs);
3117 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3118 				struct rb_root *root, struct rb_node **parent,
3119 				unsigned int ofs);
3120 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3121 		struct rb_entry *cached_re, unsigned int ofs,
3122 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3123 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3124 		bool force);
3125 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3126 						struct rb_root *root);
3127 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3128 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3129 void f2fs_drop_extent_tree(struct inode *inode);
3130 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3131 void f2fs_destroy_extent_tree(struct inode *inode);
3132 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3133 			struct extent_info *ei);
3134 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3135 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3136 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3137 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3138 int __init create_extent_cache(void);
3139 void destroy_extent_cache(void);
3140 
3141 /*
3142  * sysfs.c
3143  */
3144 int __init f2fs_init_sysfs(void);
3145 void f2fs_exit_sysfs(void);
3146 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3147 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3148 
3149 /*
3150  * crypto support
3151  */
3152 static inline bool f2fs_encrypted_inode(struct inode *inode)
3153 {
3154 	return file_is_encrypt(inode);
3155 }
3156 
3157 static inline bool f2fs_encrypted_file(struct inode *inode)
3158 {
3159 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3160 }
3161 
3162 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3163 {
3164 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3165 	file_set_encrypt(inode);
3166 	inode->i_flags |= S_ENCRYPTED;
3167 #endif
3168 }
3169 
3170 static inline bool f2fs_bio_encrypted(struct bio *bio)
3171 {
3172 	return bio->bi_private != NULL;
3173 }
3174 
3175 static inline int f2fs_sb_has_crypto(struct super_block *sb)
3176 {
3177 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
3178 }
3179 
3180 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
3181 {
3182 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
3183 }
3184 
3185 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
3186 {
3187 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
3188 }
3189 
3190 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
3191 {
3192 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
3193 }
3194 
3195 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
3196 {
3197 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
3198 }
3199 
3200 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb)
3201 {
3202 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR);
3203 }
3204 
3205 static inline int f2fs_sb_has_quota_ino(struct super_block *sb)
3206 {
3207 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO);
3208 }
3209 
3210 static inline int f2fs_sb_has_inode_crtime(struct super_block *sb)
3211 {
3212 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CRTIME);
3213 }
3214 
3215 #ifdef CONFIG_BLK_DEV_ZONED
3216 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3217 			struct block_device *bdev, block_t blkaddr)
3218 {
3219 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3220 	int i;
3221 
3222 	for (i = 0; i < sbi->s_ndevs; i++)
3223 		if (FDEV(i).bdev == bdev)
3224 			return FDEV(i).blkz_type[zno];
3225 	return -EINVAL;
3226 }
3227 #endif
3228 
3229 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3230 {
3231 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3232 
3233 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3234 }
3235 
3236 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3237 {
3238 	clear_opt(sbi, ADAPTIVE);
3239 	clear_opt(sbi, LFS);
3240 
3241 	switch (mt) {
3242 	case F2FS_MOUNT_ADAPTIVE:
3243 		set_opt(sbi, ADAPTIVE);
3244 		break;
3245 	case F2FS_MOUNT_LFS:
3246 		set_opt(sbi, LFS);
3247 		break;
3248 	}
3249 }
3250 
3251 static inline bool f2fs_may_encrypt(struct inode *inode)
3252 {
3253 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3254 	umode_t mode = inode->i_mode;
3255 
3256 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3257 #else
3258 	return 0;
3259 #endif
3260 }
3261 
3262 #endif
3263