xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (unlikely(condition)) {				\
37 			WARN_ON(1);					\
38 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39 		}							\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_MAX,
60 };
61 
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
64 
65 struct f2fs_fault_info {
66 	atomic_t inject_ops;
67 	unsigned int inject_rate;
68 	unsigned int inject_type;
69 };
70 
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74 
75 /*
76  * For mount options
77  */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
93 #define F2FS_MOUNT_USRQUOTA		0x00080000
94 #define F2FS_MOUNT_GRPQUOTA		0x00100000
95 #define F2FS_MOUNT_PRJQUOTA		0x00200000
96 #define F2FS_MOUNT_QUOTA		0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
100 #define F2FS_MOUNT_NORECOVERY		0x04000000
101 
102 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
103 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
104 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
105 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
106 
107 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
108 		typecheck(unsigned long long, b) &&			\
109 		((long long)((a) - (b)) > 0))
110 
111 typedef u32 block_t;	/*
112 			 * should not change u32, since it is the on-disk block
113 			 * address format, __le32.
114 			 */
115 typedef u32 nid_t;
116 
117 #define COMPRESS_EXT_NUM		16
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
140 	int bggc_mode;			/* bggc mode: off, on or sync */
141 	bool test_dummy_encryption;	/* test dummy encryption */
142 	block_t unusable_cap;		/* Amount of space allowed to be
143 					 * unusable when disabling checkpoint
144 					 */
145 
146 	/* For compression */
147 	unsigned char compress_algorithm;	/* algorithm type */
148 	unsigned compress_log_size;		/* cluster log size */
149 	unsigned char compress_ext_cnt;		/* extension count */
150 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
151 };
152 
153 #define F2FS_FEATURE_ENCRYPT		0x0001
154 #define F2FS_FEATURE_BLKZONED		0x0002
155 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
156 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
157 #define F2FS_FEATURE_PRJQUOTA		0x0010
158 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
159 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
160 #define F2FS_FEATURE_QUOTA_INO		0x0080
161 #define F2FS_FEATURE_INODE_CRTIME	0x0100
162 #define F2FS_FEATURE_LOST_FOUND		0x0200
163 #define F2FS_FEATURE_VERITY		0x0400
164 #define F2FS_FEATURE_SB_CHKSUM		0x0800
165 #define F2FS_FEATURE_CASEFOLD		0x1000
166 #define F2FS_FEATURE_COMPRESSION	0x2000
167 
168 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
169 	((raw_super->feature & cpu_to_le32(mask)) != 0)
170 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
171 #define F2FS_SET_FEATURE(sbi, mask)					\
172 	(sbi->raw_super->feature |= cpu_to_le32(mask))
173 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
174 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
175 
176 /*
177  * Default values for user and/or group using reserved blocks
178  */
179 #define	F2FS_DEF_RESUID		0
180 #define	F2FS_DEF_RESGID		0
181 
182 /*
183  * For checkpoint manager
184  */
185 enum {
186 	NAT_BITMAP,
187 	SIT_BITMAP
188 };
189 
190 #define	CP_UMOUNT	0x00000001
191 #define	CP_FASTBOOT	0x00000002
192 #define	CP_SYNC		0x00000004
193 #define	CP_RECOVERY	0x00000008
194 #define	CP_DISCARD	0x00000010
195 #define CP_TRIMMED	0x00000020
196 #define CP_PAUSE	0x00000040
197 
198 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
199 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
200 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
201 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
202 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
203 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
204 #define DEF_CP_INTERVAL			60	/* 60 secs */
205 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
206 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
207 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
208 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
209 
210 struct cp_control {
211 	int reason;
212 	__u64 trim_start;
213 	__u64 trim_end;
214 	__u64 trim_minlen;
215 };
216 
217 /*
218  * indicate meta/data type
219  */
220 enum {
221 	META_CP,
222 	META_NAT,
223 	META_SIT,
224 	META_SSA,
225 	META_MAX,
226 	META_POR,
227 	DATA_GENERIC,		/* check range only */
228 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
229 	DATA_GENERIC_ENHANCE_READ,	/*
230 					 * strong check on range and segment
231 					 * bitmap but no warning due to race
232 					 * condition of read on truncated area
233 					 * by extent_cache
234 					 */
235 	META_GENERIC,
236 };
237 
238 /* for the list of ino */
239 enum {
240 	ORPHAN_INO,		/* for orphan ino list */
241 	APPEND_INO,		/* for append ino list */
242 	UPDATE_INO,		/* for update ino list */
243 	TRANS_DIR_INO,		/* for trasactions dir ino list */
244 	FLUSH_INO,		/* for multiple device flushing */
245 	MAX_INO_ENTRY,		/* max. list */
246 };
247 
248 struct ino_entry {
249 	struct list_head list;		/* list head */
250 	nid_t ino;			/* inode number */
251 	unsigned int dirty_device;	/* dirty device bitmap */
252 };
253 
254 /* for the list of inodes to be GCed */
255 struct inode_entry {
256 	struct list_head list;	/* list head */
257 	struct inode *inode;	/* vfs inode pointer */
258 };
259 
260 struct fsync_node_entry {
261 	struct list_head list;	/* list head */
262 	struct page *page;	/* warm node page pointer */
263 	unsigned int seq_id;	/* sequence id */
264 };
265 
266 /* for the bitmap indicate blocks to be discarded */
267 struct discard_entry {
268 	struct list_head list;	/* list head */
269 	block_t start_blkaddr;	/* start blockaddr of current segment */
270 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
271 };
272 
273 /* default discard granularity of inner discard thread, unit: block count */
274 #define DEFAULT_DISCARD_GRANULARITY		16
275 
276 /* max discard pend list number */
277 #define MAX_PLIST_NUM		512
278 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
279 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
280 
281 enum {
282 	D_PREP,			/* initial */
283 	D_PARTIAL,		/* partially submitted */
284 	D_SUBMIT,		/* all submitted */
285 	D_DONE,			/* finished */
286 };
287 
288 struct discard_info {
289 	block_t lstart;			/* logical start address */
290 	block_t len;			/* length */
291 	block_t start;			/* actual start address in dev */
292 };
293 
294 struct discard_cmd {
295 	struct rb_node rb_node;		/* rb node located in rb-tree */
296 	union {
297 		struct {
298 			block_t lstart;	/* logical start address */
299 			block_t len;	/* length */
300 			block_t start;	/* actual start address in dev */
301 		};
302 		struct discard_info di;	/* discard info */
303 
304 	};
305 	struct list_head list;		/* command list */
306 	struct completion wait;		/* compleation */
307 	struct block_device *bdev;	/* bdev */
308 	unsigned short ref;		/* reference count */
309 	unsigned char state;		/* state */
310 	unsigned char queued;		/* queued discard */
311 	int error;			/* bio error */
312 	spinlock_t lock;		/* for state/bio_ref updating */
313 	unsigned short bio_ref;		/* bio reference count */
314 };
315 
316 enum {
317 	DPOLICY_BG,
318 	DPOLICY_FORCE,
319 	DPOLICY_FSTRIM,
320 	DPOLICY_UMOUNT,
321 	MAX_DPOLICY,
322 };
323 
324 struct discard_policy {
325 	int type;			/* type of discard */
326 	unsigned int min_interval;	/* used for candidates exist */
327 	unsigned int mid_interval;	/* used for device busy */
328 	unsigned int max_interval;	/* used for candidates not exist */
329 	unsigned int max_requests;	/* # of discards issued per round */
330 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
331 	bool io_aware;			/* issue discard in idle time */
332 	bool sync;			/* submit discard with REQ_SYNC flag */
333 	bool ordered;			/* issue discard by lba order */
334 	bool timeout;			/* discard timeout for put_super */
335 	unsigned int granularity;	/* discard granularity */
336 };
337 
338 struct discard_cmd_control {
339 	struct task_struct *f2fs_issue_discard;	/* discard thread */
340 	struct list_head entry_list;		/* 4KB discard entry list */
341 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
342 	struct list_head wait_list;		/* store on-flushing entries */
343 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
344 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
345 	unsigned int discard_wake;		/* to wake up discard thread */
346 	struct mutex cmd_lock;
347 	unsigned int nr_discards;		/* # of discards in the list */
348 	unsigned int max_discards;		/* max. discards to be issued */
349 	unsigned int discard_granularity;	/* discard granularity */
350 	unsigned int undiscard_blks;		/* # of undiscard blocks */
351 	unsigned int next_pos;			/* next discard position */
352 	atomic_t issued_discard;		/* # of issued discard */
353 	atomic_t queued_discard;		/* # of queued discard */
354 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
355 	struct rb_root_cached root;		/* root of discard rb-tree */
356 	bool rbtree_check;			/* config for consistence check */
357 };
358 
359 /* for the list of fsync inodes, used only during recovery */
360 struct fsync_inode_entry {
361 	struct list_head list;	/* list head */
362 	struct inode *inode;	/* vfs inode pointer */
363 	block_t blkaddr;	/* block address locating the last fsync */
364 	block_t last_dentry;	/* block address locating the last dentry */
365 };
366 
367 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
368 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
369 
370 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
371 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
372 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
373 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
374 
375 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
376 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
377 
378 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
379 {
380 	int before = nats_in_cursum(journal);
381 
382 	journal->n_nats = cpu_to_le16(before + i);
383 	return before;
384 }
385 
386 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
387 {
388 	int before = sits_in_cursum(journal);
389 
390 	journal->n_sits = cpu_to_le16(before + i);
391 	return before;
392 }
393 
394 static inline bool __has_cursum_space(struct f2fs_journal *journal,
395 							int size, int type)
396 {
397 	if (type == NAT_JOURNAL)
398 		return size <= MAX_NAT_JENTRIES(journal);
399 	return size <= MAX_SIT_JENTRIES(journal);
400 }
401 
402 /*
403  * ioctl commands
404  */
405 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
406 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
407 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
408 
409 #define F2FS_IOCTL_MAGIC		0xf5
410 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
411 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
412 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
413 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
414 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
415 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
416 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
417 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
418 						struct f2fs_defragment)
419 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
420 						struct f2fs_move_range)
421 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
422 						struct f2fs_flush_device)
423 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
424 						struct f2fs_gc_range)
425 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
426 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
427 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
428 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
429 #define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
430 #define F2FS_IOC_GET_COMPRESS_BLOCKS	_IOR(F2FS_IOCTL_MAGIC, 17, __u64)
431 
432 #define F2FS_IOC_GET_VOLUME_NAME	FS_IOC_GETFSLABEL
433 #define F2FS_IOC_SET_VOLUME_NAME	FS_IOC_SETFSLABEL
434 
435 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
436 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
437 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
438 
439 /*
440  * should be same as XFS_IOC_GOINGDOWN.
441  * Flags for going down operation used by FS_IOC_GOINGDOWN
442  */
443 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
444 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
445 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
446 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
447 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
448 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
449 
450 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
451 /*
452  * ioctl commands in 32 bit emulation
453  */
454 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
455 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
456 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
457 #endif
458 
459 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
460 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
461 
462 struct f2fs_gc_range {
463 	u32 sync;
464 	u64 start;
465 	u64 len;
466 };
467 
468 struct f2fs_defragment {
469 	u64 start;
470 	u64 len;
471 };
472 
473 struct f2fs_move_range {
474 	u32 dst_fd;		/* destination fd */
475 	u64 pos_in;		/* start position in src_fd */
476 	u64 pos_out;		/* start position in dst_fd */
477 	u64 len;		/* size to move */
478 };
479 
480 struct f2fs_flush_device {
481 	u32 dev_num;		/* device number to flush */
482 	u32 segments;		/* # of segments to flush */
483 };
484 
485 /* for inline stuff */
486 #define DEF_INLINE_RESERVED_SIZE	1
487 static inline int get_extra_isize(struct inode *inode);
488 static inline int get_inline_xattr_addrs(struct inode *inode);
489 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
490 				(CUR_ADDRS_PER_INODE(inode) -		\
491 				get_inline_xattr_addrs(inode) -	\
492 				DEF_INLINE_RESERVED_SIZE))
493 
494 /* for inline dir */
495 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
496 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
497 				BITS_PER_BYTE + 1))
498 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
499 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
500 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
501 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
502 				NR_INLINE_DENTRY(inode) + \
503 				INLINE_DENTRY_BITMAP_SIZE(inode)))
504 
505 /*
506  * For INODE and NODE manager
507  */
508 /* for directory operations */
509 struct f2fs_dentry_ptr {
510 	struct inode *inode;
511 	void *bitmap;
512 	struct f2fs_dir_entry *dentry;
513 	__u8 (*filename)[F2FS_SLOT_LEN];
514 	int max;
515 	int nr_bitmap;
516 };
517 
518 static inline void make_dentry_ptr_block(struct inode *inode,
519 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
520 {
521 	d->inode = inode;
522 	d->max = NR_DENTRY_IN_BLOCK;
523 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
524 	d->bitmap = t->dentry_bitmap;
525 	d->dentry = t->dentry;
526 	d->filename = t->filename;
527 }
528 
529 static inline void make_dentry_ptr_inline(struct inode *inode,
530 					struct f2fs_dentry_ptr *d, void *t)
531 {
532 	int entry_cnt = NR_INLINE_DENTRY(inode);
533 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
534 	int reserved_size = INLINE_RESERVED_SIZE(inode);
535 
536 	d->inode = inode;
537 	d->max = entry_cnt;
538 	d->nr_bitmap = bitmap_size;
539 	d->bitmap = t;
540 	d->dentry = t + bitmap_size + reserved_size;
541 	d->filename = t + bitmap_size + reserved_size +
542 					SIZE_OF_DIR_ENTRY * entry_cnt;
543 }
544 
545 /*
546  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
547  * as its node offset to distinguish from index node blocks.
548  * But some bits are used to mark the node block.
549  */
550 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
551 				>> OFFSET_BIT_SHIFT)
552 enum {
553 	ALLOC_NODE,			/* allocate a new node page if needed */
554 	LOOKUP_NODE,			/* look up a node without readahead */
555 	LOOKUP_NODE_RA,			/*
556 					 * look up a node with readahead called
557 					 * by get_data_block.
558 					 */
559 };
560 
561 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
562 
563 /* congestion wait timeout value, default: 20ms */
564 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
565 
566 /* maximum retry quota flush count */
567 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
568 
569 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
570 
571 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
572 
573 /* for in-memory extent cache entry */
574 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
575 
576 /* number of extent info in extent cache we try to shrink */
577 #define EXTENT_CACHE_SHRINK_NUMBER	128
578 
579 struct rb_entry {
580 	struct rb_node rb_node;		/* rb node located in rb-tree */
581 	unsigned int ofs;		/* start offset of the entry */
582 	unsigned int len;		/* length of the entry */
583 };
584 
585 struct extent_info {
586 	unsigned int fofs;		/* start offset in a file */
587 	unsigned int len;		/* length of the extent */
588 	u32 blk;			/* start block address of the extent */
589 };
590 
591 struct extent_node {
592 	struct rb_node rb_node;		/* rb node located in rb-tree */
593 	struct extent_info ei;		/* extent info */
594 	struct list_head list;		/* node in global extent list of sbi */
595 	struct extent_tree *et;		/* extent tree pointer */
596 };
597 
598 struct extent_tree {
599 	nid_t ino;			/* inode number */
600 	struct rb_root_cached root;	/* root of extent info rb-tree */
601 	struct extent_node *cached_en;	/* recently accessed extent node */
602 	struct extent_info largest;	/* largested extent info */
603 	struct list_head list;		/* to be used by sbi->zombie_list */
604 	rwlock_t lock;			/* protect extent info rb-tree */
605 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
606 	bool largest_updated;		/* largest extent updated */
607 };
608 
609 /*
610  * This structure is taken from ext4_map_blocks.
611  *
612  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
613  */
614 #define F2FS_MAP_NEW		(1 << BH_New)
615 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
616 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
617 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
618 				F2FS_MAP_UNWRITTEN)
619 
620 struct f2fs_map_blocks {
621 	block_t m_pblk;
622 	block_t m_lblk;
623 	unsigned int m_len;
624 	unsigned int m_flags;
625 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
626 	pgoff_t *m_next_extent;		/* point to next possible extent */
627 	int m_seg_type;
628 	bool m_may_create;		/* indicate it is from write path */
629 };
630 
631 /* for flag in get_data_block */
632 enum {
633 	F2FS_GET_BLOCK_DEFAULT,
634 	F2FS_GET_BLOCK_FIEMAP,
635 	F2FS_GET_BLOCK_BMAP,
636 	F2FS_GET_BLOCK_DIO,
637 	F2FS_GET_BLOCK_PRE_DIO,
638 	F2FS_GET_BLOCK_PRE_AIO,
639 	F2FS_GET_BLOCK_PRECACHE,
640 };
641 
642 /*
643  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
644  */
645 #define FADVISE_COLD_BIT	0x01
646 #define FADVISE_LOST_PINO_BIT	0x02
647 #define FADVISE_ENCRYPT_BIT	0x04
648 #define FADVISE_ENC_NAME_BIT	0x08
649 #define FADVISE_KEEP_SIZE_BIT	0x10
650 #define FADVISE_HOT_BIT		0x20
651 #define FADVISE_VERITY_BIT	0x40
652 
653 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
654 
655 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
656 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
657 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
658 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
659 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
660 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
661 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
662 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
663 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
664 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
665 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
666 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
667 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
668 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
669 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
670 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
671 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
672 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
673 
674 #define DEF_DIR_LEVEL		0
675 
676 enum {
677 	GC_FAILURE_PIN,
678 	GC_FAILURE_ATOMIC,
679 	MAX_GC_FAILURE
680 };
681 
682 /* used for f2fs_inode_info->flags */
683 enum {
684 	FI_NEW_INODE,		/* indicate newly allocated inode */
685 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
686 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
687 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
688 	FI_INC_LINK,		/* need to increment i_nlink */
689 	FI_ACL_MODE,		/* indicate acl mode */
690 	FI_NO_ALLOC,		/* should not allocate any blocks */
691 	FI_FREE_NID,		/* free allocated nide */
692 	FI_NO_EXTENT,		/* not to use the extent cache */
693 	FI_INLINE_XATTR,	/* used for inline xattr */
694 	FI_INLINE_DATA,		/* used for inline data*/
695 	FI_INLINE_DENTRY,	/* used for inline dentry */
696 	FI_APPEND_WRITE,	/* inode has appended data */
697 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
698 	FI_NEED_IPU,		/* used for ipu per file */
699 	FI_ATOMIC_FILE,		/* indicate atomic file */
700 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
701 	FI_VOLATILE_FILE,	/* indicate volatile file */
702 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
703 	FI_DROP_CACHE,		/* drop dirty page cache */
704 	FI_DATA_EXIST,		/* indicate data exists */
705 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
706 	FI_DO_DEFRAG,		/* indicate defragment is running */
707 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
708 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
709 	FI_HOT_DATA,		/* indicate file is hot */
710 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
711 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
712 	FI_PIN_FILE,		/* indicate file should not be gced */
713 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
714 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
715 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
716 	FI_MMAP_FILE,		/* indicate file was mmapped */
717 	FI_MAX,			/* max flag, never be used */
718 };
719 
720 struct f2fs_inode_info {
721 	struct inode vfs_inode;		/* serve a vfs inode */
722 	unsigned long i_flags;		/* keep an inode flags for ioctl */
723 	unsigned char i_advise;		/* use to give file attribute hints */
724 	unsigned char i_dir_level;	/* use for dentry level for large dir */
725 	unsigned int i_current_depth;	/* only for directory depth */
726 	/* for gc failure statistic */
727 	unsigned int i_gc_failures[MAX_GC_FAILURE];
728 	unsigned int i_pino;		/* parent inode number */
729 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
730 
731 	/* Use below internally in f2fs*/
732 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
733 	struct rw_semaphore i_sem;	/* protect fi info */
734 	atomic_t dirty_pages;		/* # of dirty pages */
735 	f2fs_hash_t chash;		/* hash value of given file name */
736 	unsigned int clevel;		/* maximum level of given file name */
737 	struct task_struct *task;	/* lookup and create consistency */
738 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
739 	nid_t i_xattr_nid;		/* node id that contains xattrs */
740 	loff_t	last_disk_size;		/* lastly written file size */
741 	spinlock_t i_size_lock;		/* protect last_disk_size */
742 
743 #ifdef CONFIG_QUOTA
744 	struct dquot *i_dquot[MAXQUOTAS];
745 
746 	/* quota space reservation, managed internally by quota code */
747 	qsize_t i_reserved_quota;
748 #endif
749 	struct list_head dirty_list;	/* dirty list for dirs and files */
750 	struct list_head gdirty_list;	/* linked in global dirty list */
751 	struct list_head inmem_ilist;	/* list for inmem inodes */
752 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
753 	struct task_struct *inmem_task;	/* store inmemory task */
754 	struct mutex inmem_lock;	/* lock for inmemory pages */
755 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
756 
757 	/* avoid racing between foreground op and gc */
758 	struct rw_semaphore i_gc_rwsem[2];
759 	struct rw_semaphore i_mmap_sem;
760 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
761 
762 	int i_extra_isize;		/* size of extra space located in i_addr */
763 	kprojid_t i_projid;		/* id for project quota */
764 	int i_inline_xattr_size;	/* inline xattr size */
765 	struct timespec64 i_crtime;	/* inode creation time */
766 	struct timespec64 i_disk_time[4];/* inode disk times */
767 
768 	/* for file compress */
769 	u64 i_compr_blocks;			/* # of compressed blocks */
770 	unsigned char i_compress_algorithm;	/* algorithm type */
771 	unsigned char i_log_cluster_size;	/* log of cluster size */
772 	unsigned int i_cluster_size;		/* cluster size */
773 };
774 
775 static inline void get_extent_info(struct extent_info *ext,
776 					struct f2fs_extent *i_ext)
777 {
778 	ext->fofs = le32_to_cpu(i_ext->fofs);
779 	ext->blk = le32_to_cpu(i_ext->blk);
780 	ext->len = le32_to_cpu(i_ext->len);
781 }
782 
783 static inline void set_raw_extent(struct extent_info *ext,
784 					struct f2fs_extent *i_ext)
785 {
786 	i_ext->fofs = cpu_to_le32(ext->fofs);
787 	i_ext->blk = cpu_to_le32(ext->blk);
788 	i_ext->len = cpu_to_le32(ext->len);
789 }
790 
791 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
792 						u32 blk, unsigned int len)
793 {
794 	ei->fofs = fofs;
795 	ei->blk = blk;
796 	ei->len = len;
797 }
798 
799 static inline bool __is_discard_mergeable(struct discard_info *back,
800 			struct discard_info *front, unsigned int max_len)
801 {
802 	return (back->lstart + back->len == front->lstart) &&
803 		(back->len + front->len <= max_len);
804 }
805 
806 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
807 			struct discard_info *back, unsigned int max_len)
808 {
809 	return __is_discard_mergeable(back, cur, max_len);
810 }
811 
812 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
813 			struct discard_info *front, unsigned int max_len)
814 {
815 	return __is_discard_mergeable(cur, front, max_len);
816 }
817 
818 static inline bool __is_extent_mergeable(struct extent_info *back,
819 						struct extent_info *front)
820 {
821 	return (back->fofs + back->len == front->fofs &&
822 			back->blk + back->len == front->blk);
823 }
824 
825 static inline bool __is_back_mergeable(struct extent_info *cur,
826 						struct extent_info *back)
827 {
828 	return __is_extent_mergeable(back, cur);
829 }
830 
831 static inline bool __is_front_mergeable(struct extent_info *cur,
832 						struct extent_info *front)
833 {
834 	return __is_extent_mergeable(cur, front);
835 }
836 
837 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
838 static inline void __try_update_largest_extent(struct extent_tree *et,
839 						struct extent_node *en)
840 {
841 	if (en->ei.len > et->largest.len) {
842 		et->largest = en->ei;
843 		et->largest_updated = true;
844 	}
845 }
846 
847 /*
848  * For free nid management
849  */
850 enum nid_state {
851 	FREE_NID,		/* newly added to free nid list */
852 	PREALLOC_NID,		/* it is preallocated */
853 	MAX_NID_STATE,
854 };
855 
856 struct f2fs_nm_info {
857 	block_t nat_blkaddr;		/* base disk address of NAT */
858 	nid_t max_nid;			/* maximum possible node ids */
859 	nid_t available_nids;		/* # of available node ids */
860 	nid_t next_scan_nid;		/* the next nid to be scanned */
861 	unsigned int ram_thresh;	/* control the memory footprint */
862 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
863 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
864 
865 	/* NAT cache management */
866 	struct radix_tree_root nat_root;/* root of the nat entry cache */
867 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
868 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
869 	struct list_head nat_entries;	/* cached nat entry list (clean) */
870 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
871 	unsigned int nat_cnt;		/* the # of cached nat entries */
872 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
873 	unsigned int nat_blocks;	/* # of nat blocks */
874 
875 	/* free node ids management */
876 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
877 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
878 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
879 	spinlock_t nid_list_lock;	/* protect nid lists ops */
880 	struct mutex build_lock;	/* lock for build free nids */
881 	unsigned char **free_nid_bitmap;
882 	unsigned char *nat_block_bitmap;
883 	unsigned short *free_nid_count;	/* free nid count of NAT block */
884 
885 	/* for checkpoint */
886 	char *nat_bitmap;		/* NAT bitmap pointer */
887 
888 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
889 	unsigned char *nat_bits;	/* NAT bits blocks */
890 	unsigned char *full_nat_bits;	/* full NAT pages */
891 	unsigned char *empty_nat_bits;	/* empty NAT pages */
892 #ifdef CONFIG_F2FS_CHECK_FS
893 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
894 #endif
895 	int bitmap_size;		/* bitmap size */
896 };
897 
898 /*
899  * this structure is used as one of function parameters.
900  * all the information are dedicated to a given direct node block determined
901  * by the data offset in a file.
902  */
903 struct dnode_of_data {
904 	struct inode *inode;		/* vfs inode pointer */
905 	struct page *inode_page;	/* its inode page, NULL is possible */
906 	struct page *node_page;		/* cached direct node page */
907 	nid_t nid;			/* node id of the direct node block */
908 	unsigned int ofs_in_node;	/* data offset in the node page */
909 	bool inode_page_locked;		/* inode page is locked or not */
910 	bool node_changed;		/* is node block changed */
911 	char cur_level;			/* level of hole node page */
912 	char max_level;			/* level of current page located */
913 	block_t	data_blkaddr;		/* block address of the node block */
914 };
915 
916 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
917 		struct page *ipage, struct page *npage, nid_t nid)
918 {
919 	memset(dn, 0, sizeof(*dn));
920 	dn->inode = inode;
921 	dn->inode_page = ipage;
922 	dn->node_page = npage;
923 	dn->nid = nid;
924 }
925 
926 /*
927  * For SIT manager
928  *
929  * By default, there are 6 active log areas across the whole main area.
930  * When considering hot and cold data separation to reduce cleaning overhead,
931  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
932  * respectively.
933  * In the current design, you should not change the numbers intentionally.
934  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
935  * logs individually according to the underlying devices. (default: 6)
936  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
937  * data and 8 for node logs.
938  */
939 #define	NR_CURSEG_DATA_TYPE	(3)
940 #define NR_CURSEG_NODE_TYPE	(3)
941 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
942 
943 enum {
944 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
945 	CURSEG_WARM_DATA,	/* data blocks */
946 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
947 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
948 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
949 	CURSEG_COLD_NODE,	/* indirect node blocks */
950 	NO_CHECK_TYPE,
951 	CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */
952 };
953 
954 struct flush_cmd {
955 	struct completion wait;
956 	struct llist_node llnode;
957 	nid_t ino;
958 	int ret;
959 };
960 
961 struct flush_cmd_control {
962 	struct task_struct *f2fs_issue_flush;	/* flush thread */
963 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
964 	atomic_t issued_flush;			/* # of issued flushes */
965 	atomic_t queued_flush;			/* # of queued flushes */
966 	struct llist_head issue_list;		/* list for command issue */
967 	struct llist_node *dispatch_list;	/* list for command dispatch */
968 };
969 
970 struct f2fs_sm_info {
971 	struct sit_info *sit_info;		/* whole segment information */
972 	struct free_segmap_info *free_info;	/* free segment information */
973 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
974 	struct curseg_info *curseg_array;	/* active segment information */
975 
976 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
977 
978 	block_t seg0_blkaddr;		/* block address of 0'th segment */
979 	block_t main_blkaddr;		/* start block address of main area */
980 	block_t ssa_blkaddr;		/* start block address of SSA area */
981 
982 	unsigned int segment_count;	/* total # of segments */
983 	unsigned int main_segments;	/* # of segments in main area */
984 	unsigned int reserved_segments;	/* # of reserved segments */
985 	unsigned int ovp_segments;	/* # of overprovision segments */
986 
987 	/* a threshold to reclaim prefree segments */
988 	unsigned int rec_prefree_segments;
989 
990 	/* for batched trimming */
991 	unsigned int trim_sections;		/* # of sections to trim */
992 
993 	struct list_head sit_entry_set;	/* sit entry set list */
994 
995 	unsigned int ipu_policy;	/* in-place-update policy */
996 	unsigned int min_ipu_util;	/* in-place-update threshold */
997 	unsigned int min_fsync_blocks;	/* threshold for fsync */
998 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
999 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1000 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1001 
1002 	/* for flush command control */
1003 	struct flush_cmd_control *fcc_info;
1004 
1005 	/* for discard command control */
1006 	struct discard_cmd_control *dcc_info;
1007 };
1008 
1009 /*
1010  * For superblock
1011  */
1012 /*
1013  * COUNT_TYPE for monitoring
1014  *
1015  * f2fs monitors the number of several block types such as on-writeback,
1016  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1017  */
1018 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1019 enum count_type {
1020 	F2FS_DIRTY_DENTS,
1021 	F2FS_DIRTY_DATA,
1022 	F2FS_DIRTY_QDATA,
1023 	F2FS_DIRTY_NODES,
1024 	F2FS_DIRTY_META,
1025 	F2FS_INMEM_PAGES,
1026 	F2FS_DIRTY_IMETA,
1027 	F2FS_WB_CP_DATA,
1028 	F2FS_WB_DATA,
1029 	F2FS_RD_DATA,
1030 	F2FS_RD_NODE,
1031 	F2FS_RD_META,
1032 	F2FS_DIO_WRITE,
1033 	F2FS_DIO_READ,
1034 	NR_COUNT_TYPE,
1035 };
1036 
1037 /*
1038  * The below are the page types of bios used in submit_bio().
1039  * The available types are:
1040  * DATA			User data pages. It operates as async mode.
1041  * NODE			Node pages. It operates as async mode.
1042  * META			FS metadata pages such as SIT, NAT, CP.
1043  * NR_PAGE_TYPE		The number of page types.
1044  * META_FLUSH		Make sure the previous pages are written
1045  *			with waiting the bio's completion
1046  * ...			Only can be used with META.
1047  */
1048 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1049 enum page_type {
1050 	DATA,
1051 	NODE,
1052 	META,
1053 	NR_PAGE_TYPE,
1054 	META_FLUSH,
1055 	INMEM,		/* the below types are used by tracepoints only. */
1056 	INMEM_DROP,
1057 	INMEM_INVALIDATE,
1058 	INMEM_REVOKE,
1059 	IPU,
1060 	OPU,
1061 };
1062 
1063 enum temp_type {
1064 	HOT = 0,	/* must be zero for meta bio */
1065 	WARM,
1066 	COLD,
1067 	NR_TEMP_TYPE,
1068 };
1069 
1070 enum need_lock_type {
1071 	LOCK_REQ = 0,
1072 	LOCK_DONE,
1073 	LOCK_RETRY,
1074 };
1075 
1076 enum cp_reason_type {
1077 	CP_NO_NEEDED,
1078 	CP_NON_REGULAR,
1079 	CP_COMPRESSED,
1080 	CP_HARDLINK,
1081 	CP_SB_NEED_CP,
1082 	CP_WRONG_PINO,
1083 	CP_NO_SPC_ROLL,
1084 	CP_NODE_NEED_CP,
1085 	CP_FASTBOOT_MODE,
1086 	CP_SPEC_LOG_NUM,
1087 	CP_RECOVER_DIR,
1088 };
1089 
1090 enum iostat_type {
1091 	APP_DIRECT_IO,			/* app direct IOs */
1092 	APP_BUFFERED_IO,		/* app buffered IOs */
1093 	APP_WRITE_IO,			/* app write IOs */
1094 	APP_MAPPED_IO,			/* app mapped IOs */
1095 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1096 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1097 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1098 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1099 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1100 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1101 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1102 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1103 	FS_DISCARD,			/* discard */
1104 	NR_IO_TYPE,
1105 };
1106 
1107 struct f2fs_io_info {
1108 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1109 	nid_t ino;		/* inode number */
1110 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1111 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1112 	int op;			/* contains REQ_OP_ */
1113 	int op_flags;		/* req_flag_bits */
1114 	block_t new_blkaddr;	/* new block address to be written */
1115 	block_t old_blkaddr;	/* old block address before Cow */
1116 	struct page *page;	/* page to be written */
1117 	struct page *encrypted_page;	/* encrypted page */
1118 	struct page *compressed_page;	/* compressed page */
1119 	struct list_head list;		/* serialize IOs */
1120 	bool submitted;		/* indicate IO submission */
1121 	int need_lock;		/* indicate we need to lock cp_rwsem */
1122 	bool in_list;		/* indicate fio is in io_list */
1123 	bool is_por;		/* indicate IO is from recovery or not */
1124 	bool retry;		/* need to reallocate block address */
1125 	int compr_blocks;	/* # of compressed block addresses */
1126 	bool encrypted;		/* indicate file is encrypted */
1127 	enum iostat_type io_type;	/* io type */
1128 	struct writeback_control *io_wbc; /* writeback control */
1129 	struct bio **bio;		/* bio for ipu */
1130 	sector_t *last_block;		/* last block number in bio */
1131 	unsigned char version;		/* version of the node */
1132 };
1133 
1134 struct bio_entry {
1135 	struct bio *bio;
1136 	struct list_head list;
1137 };
1138 
1139 #define is_read_io(rw) ((rw) == READ)
1140 struct f2fs_bio_info {
1141 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1142 	struct bio *bio;		/* bios to merge */
1143 	sector_t last_block_in_bio;	/* last block number */
1144 	struct f2fs_io_info fio;	/* store buffered io info. */
1145 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1146 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1147 	struct list_head io_list;	/* track fios */
1148 	struct list_head bio_list;	/* bio entry list head */
1149 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1150 };
1151 
1152 #define FDEV(i)				(sbi->devs[i])
1153 #define RDEV(i)				(raw_super->devs[i])
1154 struct f2fs_dev_info {
1155 	struct block_device *bdev;
1156 	char path[MAX_PATH_LEN];
1157 	unsigned int total_segments;
1158 	block_t start_blk;
1159 	block_t end_blk;
1160 #ifdef CONFIG_BLK_DEV_ZONED
1161 	unsigned int nr_blkz;		/* Total number of zones */
1162 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1163 #endif
1164 };
1165 
1166 enum inode_type {
1167 	DIR_INODE,			/* for dirty dir inode */
1168 	FILE_INODE,			/* for dirty regular/symlink inode */
1169 	DIRTY_META,			/* for all dirtied inode metadata */
1170 	ATOMIC_FILE,			/* for all atomic files */
1171 	NR_INODE_TYPE,
1172 };
1173 
1174 /* for inner inode cache management */
1175 struct inode_management {
1176 	struct radix_tree_root ino_root;	/* ino entry array */
1177 	spinlock_t ino_lock;			/* for ino entry lock */
1178 	struct list_head ino_list;		/* inode list head */
1179 	unsigned long ino_num;			/* number of entries */
1180 };
1181 
1182 /* For s_flag in struct f2fs_sb_info */
1183 enum {
1184 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1185 	SBI_IS_CLOSE,				/* specify unmounting */
1186 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1187 	SBI_POR_DOING,				/* recovery is doing or not */
1188 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1189 	SBI_NEED_CP,				/* need to checkpoint */
1190 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1191 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1192 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1193 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1194 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1195 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1196 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1197 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1198 };
1199 
1200 enum {
1201 	CP_TIME,
1202 	REQ_TIME,
1203 	DISCARD_TIME,
1204 	GC_TIME,
1205 	DISABLE_TIME,
1206 	UMOUNT_DISCARD_TIMEOUT,
1207 	MAX_TIME,
1208 };
1209 
1210 enum {
1211 	GC_NORMAL,
1212 	GC_IDLE_CB,
1213 	GC_IDLE_GREEDY,
1214 	GC_URGENT,
1215 };
1216 
1217 enum {
1218 	BGGC_MODE_ON,		/* background gc is on */
1219 	BGGC_MODE_OFF,		/* background gc is off */
1220 	BGGC_MODE_SYNC,		/*
1221 				 * background gc is on, migrating blocks
1222 				 * like foreground gc
1223 				 */
1224 };
1225 
1226 enum {
1227 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1228 	FS_MODE_LFS,		/* use lfs allocation only */
1229 };
1230 
1231 enum {
1232 	WHINT_MODE_OFF,		/* not pass down write hints */
1233 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1234 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1235 };
1236 
1237 enum {
1238 	ALLOC_MODE_DEFAULT,	/* stay default */
1239 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1240 };
1241 
1242 enum fsync_mode {
1243 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1244 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1245 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1246 };
1247 
1248 /*
1249  * this value is set in page as a private data which indicate that
1250  * the page is atomically written, and it is in inmem_pages list.
1251  */
1252 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1253 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1254 
1255 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1256 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
1257 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1258 		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
1259 
1260 #ifdef CONFIG_FS_ENCRYPTION
1261 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1262 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1263 #else
1264 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1265 #endif
1266 
1267 /* For compression */
1268 enum compress_algorithm_type {
1269 	COMPRESS_LZO,
1270 	COMPRESS_LZ4,
1271 	COMPRESS_ZSTD,
1272 	COMPRESS_MAX,
1273 };
1274 
1275 #define COMPRESS_DATA_RESERVED_SIZE		5
1276 struct compress_data {
1277 	__le32 clen;			/* compressed data size */
1278 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1279 	u8 cdata[];			/* compressed data */
1280 };
1281 
1282 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1283 
1284 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1285 
1286 /* compress context */
1287 struct compress_ctx {
1288 	struct inode *inode;		/* inode the context belong to */
1289 	pgoff_t cluster_idx;		/* cluster index number */
1290 	unsigned int cluster_size;	/* page count in cluster */
1291 	unsigned int log_cluster_size;	/* log of cluster size */
1292 	struct page **rpages;		/* pages store raw data in cluster */
1293 	unsigned int nr_rpages;		/* total page number in rpages */
1294 	struct page **cpages;		/* pages store compressed data in cluster */
1295 	unsigned int nr_cpages;		/* total page number in cpages */
1296 	void *rbuf;			/* virtual mapped address on rpages */
1297 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1298 	size_t rlen;			/* valid data length in rbuf */
1299 	size_t clen;			/* valid data length in cbuf */
1300 	void *private;			/* payload buffer for specified compression algorithm */
1301 	void *private2;			/* extra payload buffer */
1302 };
1303 
1304 /* compress context for write IO path */
1305 struct compress_io_ctx {
1306 	u32 magic;			/* magic number to indicate page is compressed */
1307 	struct inode *inode;		/* inode the context belong to */
1308 	struct page **rpages;		/* pages store raw data in cluster */
1309 	unsigned int nr_rpages;		/* total page number in rpages */
1310 	refcount_t ref;			/* referrence count of raw page */
1311 };
1312 
1313 /* decompress io context for read IO path */
1314 struct decompress_io_ctx {
1315 	u32 magic;			/* magic number to indicate page is compressed */
1316 	struct inode *inode;		/* inode the context belong to */
1317 	pgoff_t cluster_idx;		/* cluster index number */
1318 	unsigned int cluster_size;	/* page count in cluster */
1319 	unsigned int log_cluster_size;	/* log of cluster size */
1320 	struct page **rpages;		/* pages store raw data in cluster */
1321 	unsigned int nr_rpages;		/* total page number in rpages */
1322 	struct page **cpages;		/* pages store compressed data in cluster */
1323 	unsigned int nr_cpages;		/* total page number in cpages */
1324 	struct page **tpages;		/* temp pages to pad holes in cluster */
1325 	void *rbuf;			/* virtual mapped address on rpages */
1326 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1327 	size_t rlen;			/* valid data length in rbuf */
1328 	size_t clen;			/* valid data length in cbuf */
1329 	refcount_t ref;			/* referrence count of compressed page */
1330 	bool failed;			/* indicate IO error during decompression */
1331 	void *private;			/* payload buffer for specified decompression algorithm */
1332 	void *private2;			/* extra payload buffer */
1333 };
1334 
1335 #define NULL_CLUSTER			((unsigned int)(~0))
1336 #define MIN_COMPRESS_LOG_SIZE		2
1337 #define MAX_COMPRESS_LOG_SIZE		8
1338 #define MAX_COMPRESS_WINDOW_SIZE	((PAGE_SIZE) << MAX_COMPRESS_LOG_SIZE)
1339 
1340 struct f2fs_sb_info {
1341 	struct super_block *sb;			/* pointer to VFS super block */
1342 	struct proc_dir_entry *s_proc;		/* proc entry */
1343 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1344 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1345 	int valid_super_block;			/* valid super block no */
1346 	unsigned long s_flag;				/* flags for sbi */
1347 	struct mutex writepages;		/* mutex for writepages() */
1348 #ifdef CONFIG_UNICODE
1349 	struct unicode_map *s_encoding;
1350 	__u16 s_encoding_flags;
1351 #endif
1352 
1353 #ifdef CONFIG_BLK_DEV_ZONED
1354 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1355 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1356 #endif
1357 
1358 	/* for node-related operations */
1359 	struct f2fs_nm_info *nm_info;		/* node manager */
1360 	struct inode *node_inode;		/* cache node blocks */
1361 
1362 	/* for segment-related operations */
1363 	struct f2fs_sm_info *sm_info;		/* segment manager */
1364 
1365 	/* for bio operations */
1366 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1367 	/* keep migration IO order for LFS mode */
1368 	struct rw_semaphore io_order_lock;
1369 	mempool_t *write_io_dummy;		/* Dummy pages */
1370 
1371 	/* for checkpoint */
1372 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1373 	int cur_cp_pack;			/* remain current cp pack */
1374 	spinlock_t cp_lock;			/* for flag in ckpt */
1375 	struct inode *meta_inode;		/* cache meta blocks */
1376 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1377 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1378 	struct rw_semaphore node_write;		/* locking node writes */
1379 	struct rw_semaphore node_change;	/* locking node change */
1380 	wait_queue_head_t cp_wait;
1381 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1382 	long interval_time[MAX_TIME];		/* to store thresholds */
1383 
1384 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1385 
1386 	spinlock_t fsync_node_lock;		/* for node entry lock */
1387 	struct list_head fsync_node_list;	/* node list head */
1388 	unsigned int fsync_seg_id;		/* sequence id */
1389 	unsigned int fsync_node_num;		/* number of node entries */
1390 
1391 	/* for orphan inode, use 0'th array */
1392 	unsigned int max_orphans;		/* max orphan inodes */
1393 
1394 	/* for inode management */
1395 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1396 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1397 	struct mutex flush_lock;		/* for flush exclusion */
1398 
1399 	/* for extent tree cache */
1400 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1401 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1402 	struct list_head extent_list;		/* lru list for shrinker */
1403 	spinlock_t extent_lock;			/* locking extent lru list */
1404 	atomic_t total_ext_tree;		/* extent tree count */
1405 	struct list_head zombie_list;		/* extent zombie tree list */
1406 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1407 	atomic_t total_ext_node;		/* extent info count */
1408 
1409 	/* basic filesystem units */
1410 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1411 	unsigned int log_blocksize;		/* log2 block size */
1412 	unsigned int blocksize;			/* block size */
1413 	unsigned int root_ino_num;		/* root inode number*/
1414 	unsigned int node_ino_num;		/* node inode number*/
1415 	unsigned int meta_ino_num;		/* meta inode number*/
1416 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1417 	unsigned int blocks_per_seg;		/* blocks per segment */
1418 	unsigned int segs_per_sec;		/* segments per section */
1419 	unsigned int secs_per_zone;		/* sections per zone */
1420 	unsigned int total_sections;		/* total section count */
1421 	struct mutex resize_mutex;		/* for resize exclusion */
1422 	unsigned int total_node_count;		/* total node block count */
1423 	unsigned int total_valid_node_count;	/* valid node block count */
1424 	loff_t max_file_blocks;			/* max block index of file */
1425 	int dir_level;				/* directory level */
1426 	int readdir_ra;				/* readahead inode in readdir */
1427 
1428 	block_t user_block_count;		/* # of user blocks */
1429 	block_t total_valid_block_count;	/* # of valid blocks */
1430 	block_t discard_blks;			/* discard command candidats */
1431 	block_t last_valid_block_count;		/* for recovery */
1432 	block_t reserved_blocks;		/* configurable reserved blocks */
1433 	block_t current_reserved_blocks;	/* current reserved blocks */
1434 
1435 	/* Additional tracking for no checkpoint mode */
1436 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1437 
1438 	unsigned int nquota_files;		/* # of quota sysfile */
1439 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1440 
1441 	/* # of pages, see count_type */
1442 	atomic_t nr_pages[NR_COUNT_TYPE];
1443 	/* # of allocated blocks */
1444 	struct percpu_counter alloc_valid_block_count;
1445 
1446 	/* writeback control */
1447 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1448 
1449 	/* valid inode count */
1450 	struct percpu_counter total_valid_inode_count;
1451 
1452 	struct f2fs_mount_info mount_opt;	/* mount options */
1453 
1454 	/* for cleaning operations */
1455 	struct rw_semaphore gc_lock;		/*
1456 						 * semaphore for GC, avoid
1457 						 * race between GC and GC or CP
1458 						 */
1459 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1460 	unsigned int cur_victim_sec;		/* current victim section num */
1461 	unsigned int gc_mode;			/* current GC state */
1462 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1463 	/* for skip statistic */
1464 	unsigned int atomic_files;              /* # of opened atomic file */
1465 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1466 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1467 
1468 	/* threshold for gc trials on pinned files */
1469 	u64 gc_pin_file_threshold;
1470 	struct rw_semaphore pin_sem;
1471 
1472 	/* maximum # of trials to find a victim segment for SSR and GC */
1473 	unsigned int max_victim_search;
1474 	/* migration granularity of garbage collection, unit: segment */
1475 	unsigned int migration_granularity;
1476 
1477 	/*
1478 	 * for stat information.
1479 	 * one is for the LFS mode, and the other is for the SSR mode.
1480 	 */
1481 #ifdef CONFIG_F2FS_STAT_FS
1482 	struct f2fs_stat_info *stat_info;	/* FS status information */
1483 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1484 	unsigned int segment_count[2];		/* # of allocated segments */
1485 	unsigned int block_count[2];		/* # of allocated blocks */
1486 	atomic_t inplace_count;		/* # of inplace update */
1487 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1488 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1489 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1490 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1491 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1492 	atomic_t inline_inode;			/* # of inline_data inodes */
1493 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1494 	atomic_t compr_inode;			/* # of compressed inodes */
1495 	atomic_t compr_blocks;			/* # of compressed blocks */
1496 	atomic_t vw_cnt;			/* # of volatile writes */
1497 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1498 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1499 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1500 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1501 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1502 #endif
1503 	spinlock_t stat_lock;			/* lock for stat operations */
1504 
1505 	/* For app/fs IO statistics */
1506 	spinlock_t iostat_lock;
1507 	unsigned long long write_iostat[NR_IO_TYPE];
1508 	bool iostat_enable;
1509 
1510 	/* For sysfs suppport */
1511 	struct kobject s_kobj;
1512 	struct completion s_kobj_unregister;
1513 
1514 	/* For shrinker support */
1515 	struct list_head s_list;
1516 	int s_ndevs;				/* number of devices */
1517 	struct f2fs_dev_info *devs;		/* for device list */
1518 	unsigned int dirty_device;		/* for checkpoint data flush */
1519 	spinlock_t dev_lock;			/* protect dirty_device */
1520 	struct mutex umount_mutex;
1521 	unsigned int shrinker_run_no;
1522 
1523 	/* For write statistics */
1524 	u64 sectors_written_start;
1525 	u64 kbytes_written;
1526 
1527 	/* Reference to checksum algorithm driver via cryptoapi */
1528 	struct crypto_shash *s_chksum_driver;
1529 
1530 	/* Precomputed FS UUID checksum for seeding other checksums */
1531 	__u32 s_chksum_seed;
1532 
1533 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1534 
1535 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1536 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1537 };
1538 
1539 struct f2fs_private_dio {
1540 	struct inode *inode;
1541 	void *orig_private;
1542 	bio_end_io_t *orig_end_io;
1543 	bool write;
1544 };
1545 
1546 #ifdef CONFIG_F2FS_FAULT_INJECTION
1547 #define f2fs_show_injection_info(sbi, type)					\
1548 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1549 		KERN_INFO, sbi->sb->s_id,				\
1550 		f2fs_fault_name[type],					\
1551 		__func__, __builtin_return_address(0))
1552 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1553 {
1554 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1555 
1556 	if (!ffi->inject_rate)
1557 		return false;
1558 
1559 	if (!IS_FAULT_SET(ffi, type))
1560 		return false;
1561 
1562 	atomic_inc(&ffi->inject_ops);
1563 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1564 		atomic_set(&ffi->inject_ops, 0);
1565 		return true;
1566 	}
1567 	return false;
1568 }
1569 #else
1570 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1571 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1572 {
1573 	return false;
1574 }
1575 #endif
1576 
1577 /*
1578  * Test if the mounted volume is a multi-device volume.
1579  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1580  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1581  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1582  */
1583 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1584 {
1585 	return sbi->s_ndevs > 1;
1586 }
1587 
1588 /* For write statistics. Suppose sector size is 512 bytes,
1589  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1590  */
1591 #define BD_PART_WRITTEN(s)						 \
1592 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1593 		(s)->sectors_written_start) >> 1)
1594 
1595 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1596 {
1597 	unsigned long now = jiffies;
1598 
1599 	sbi->last_time[type] = now;
1600 
1601 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1602 	if (type == REQ_TIME) {
1603 		sbi->last_time[DISCARD_TIME] = now;
1604 		sbi->last_time[GC_TIME] = now;
1605 	}
1606 }
1607 
1608 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1609 {
1610 	unsigned long interval = sbi->interval_time[type] * HZ;
1611 
1612 	return time_after(jiffies, sbi->last_time[type] + interval);
1613 }
1614 
1615 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1616 						int type)
1617 {
1618 	unsigned long interval = sbi->interval_time[type] * HZ;
1619 	unsigned int wait_ms = 0;
1620 	long delta;
1621 
1622 	delta = (sbi->last_time[type] + interval) - jiffies;
1623 	if (delta > 0)
1624 		wait_ms = jiffies_to_msecs(delta);
1625 
1626 	return wait_ms;
1627 }
1628 
1629 /*
1630  * Inline functions
1631  */
1632 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1633 			      const void *address, unsigned int length)
1634 {
1635 	struct {
1636 		struct shash_desc shash;
1637 		char ctx[4];
1638 	} desc;
1639 	int err;
1640 
1641 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1642 
1643 	desc.shash.tfm = sbi->s_chksum_driver;
1644 	*(u32 *)desc.ctx = crc;
1645 
1646 	err = crypto_shash_update(&desc.shash, address, length);
1647 	BUG_ON(err);
1648 
1649 	return *(u32 *)desc.ctx;
1650 }
1651 
1652 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1653 			   unsigned int length)
1654 {
1655 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1656 }
1657 
1658 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1659 				  void *buf, size_t buf_size)
1660 {
1661 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1662 }
1663 
1664 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1665 			      const void *address, unsigned int length)
1666 {
1667 	return __f2fs_crc32(sbi, crc, address, length);
1668 }
1669 
1670 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1671 {
1672 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1673 }
1674 
1675 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1676 {
1677 	return sb->s_fs_info;
1678 }
1679 
1680 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1681 {
1682 	return F2FS_SB(inode->i_sb);
1683 }
1684 
1685 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1686 {
1687 	return F2FS_I_SB(mapping->host);
1688 }
1689 
1690 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1691 {
1692 	return F2FS_M_SB(page_file_mapping(page));
1693 }
1694 
1695 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1696 {
1697 	return (struct f2fs_super_block *)(sbi->raw_super);
1698 }
1699 
1700 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1701 {
1702 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1703 }
1704 
1705 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1706 {
1707 	return (struct f2fs_node *)page_address(page);
1708 }
1709 
1710 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1711 {
1712 	return &((struct f2fs_node *)page_address(page))->i;
1713 }
1714 
1715 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1716 {
1717 	return (struct f2fs_nm_info *)(sbi->nm_info);
1718 }
1719 
1720 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1721 {
1722 	return (struct f2fs_sm_info *)(sbi->sm_info);
1723 }
1724 
1725 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1726 {
1727 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1728 }
1729 
1730 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1731 {
1732 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1733 }
1734 
1735 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1736 {
1737 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1738 }
1739 
1740 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1741 {
1742 	return sbi->meta_inode->i_mapping;
1743 }
1744 
1745 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1746 {
1747 	return sbi->node_inode->i_mapping;
1748 }
1749 
1750 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1751 {
1752 	return test_bit(type, &sbi->s_flag);
1753 }
1754 
1755 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1756 {
1757 	set_bit(type, &sbi->s_flag);
1758 }
1759 
1760 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1761 {
1762 	clear_bit(type, &sbi->s_flag);
1763 }
1764 
1765 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1766 {
1767 	return le64_to_cpu(cp->checkpoint_ver);
1768 }
1769 
1770 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1771 {
1772 	if (type < F2FS_MAX_QUOTAS)
1773 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1774 	return 0;
1775 }
1776 
1777 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1778 {
1779 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1780 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1781 }
1782 
1783 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1784 {
1785 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1786 
1787 	return ckpt_flags & f;
1788 }
1789 
1790 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1791 {
1792 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1793 }
1794 
1795 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1796 {
1797 	unsigned int ckpt_flags;
1798 
1799 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1800 	ckpt_flags |= f;
1801 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1802 }
1803 
1804 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1805 {
1806 	unsigned long flags;
1807 
1808 	spin_lock_irqsave(&sbi->cp_lock, flags);
1809 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1810 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1811 }
1812 
1813 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1814 {
1815 	unsigned int ckpt_flags;
1816 
1817 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1818 	ckpt_flags &= (~f);
1819 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1820 }
1821 
1822 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1823 {
1824 	unsigned long flags;
1825 
1826 	spin_lock_irqsave(&sbi->cp_lock, flags);
1827 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1828 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1829 }
1830 
1831 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1832 {
1833 	unsigned long flags;
1834 	unsigned char *nat_bits;
1835 
1836 	/*
1837 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1838 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1839 	 * so let's rely on regular fsck or unclean shutdown.
1840 	 */
1841 
1842 	if (lock)
1843 		spin_lock_irqsave(&sbi->cp_lock, flags);
1844 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1845 	nat_bits = NM_I(sbi)->nat_bits;
1846 	NM_I(sbi)->nat_bits = NULL;
1847 	if (lock)
1848 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1849 
1850 	kvfree(nat_bits);
1851 }
1852 
1853 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1854 					struct cp_control *cpc)
1855 {
1856 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1857 
1858 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1859 }
1860 
1861 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1862 {
1863 	down_read(&sbi->cp_rwsem);
1864 }
1865 
1866 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1867 {
1868 	return down_read_trylock(&sbi->cp_rwsem);
1869 }
1870 
1871 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1872 {
1873 	up_read(&sbi->cp_rwsem);
1874 }
1875 
1876 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1877 {
1878 	down_write(&sbi->cp_rwsem);
1879 }
1880 
1881 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1882 {
1883 	up_write(&sbi->cp_rwsem);
1884 }
1885 
1886 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1887 {
1888 	int reason = CP_SYNC;
1889 
1890 	if (test_opt(sbi, FASTBOOT))
1891 		reason = CP_FASTBOOT;
1892 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1893 		reason = CP_UMOUNT;
1894 	return reason;
1895 }
1896 
1897 static inline bool __remain_node_summaries(int reason)
1898 {
1899 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1900 }
1901 
1902 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1903 {
1904 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1905 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1906 }
1907 
1908 /*
1909  * Check whether the inode has blocks or not
1910  */
1911 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1912 {
1913 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1914 
1915 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1916 }
1917 
1918 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1919 {
1920 	return ofs == XATTR_NODE_OFFSET;
1921 }
1922 
1923 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1924 					struct inode *inode, bool cap)
1925 {
1926 	if (!inode)
1927 		return true;
1928 	if (!test_opt(sbi, RESERVE_ROOT))
1929 		return false;
1930 	if (IS_NOQUOTA(inode))
1931 		return true;
1932 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1933 		return true;
1934 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1935 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1936 		return true;
1937 	if (cap && capable(CAP_SYS_RESOURCE))
1938 		return true;
1939 	return false;
1940 }
1941 
1942 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1943 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1944 				 struct inode *inode, blkcnt_t *count)
1945 {
1946 	blkcnt_t diff = 0, release = 0;
1947 	block_t avail_user_block_count;
1948 	int ret;
1949 
1950 	ret = dquot_reserve_block(inode, *count);
1951 	if (ret)
1952 		return ret;
1953 
1954 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1955 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
1956 		release = *count;
1957 		goto release_quota;
1958 	}
1959 
1960 	/*
1961 	 * let's increase this in prior to actual block count change in order
1962 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1963 	 */
1964 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1965 
1966 	spin_lock(&sbi->stat_lock);
1967 	sbi->total_valid_block_count += (block_t)(*count);
1968 	avail_user_block_count = sbi->user_block_count -
1969 					sbi->current_reserved_blocks;
1970 
1971 	if (!__allow_reserved_blocks(sbi, inode, true))
1972 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1973 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1974 		if (avail_user_block_count > sbi->unusable_block_count)
1975 			avail_user_block_count -= sbi->unusable_block_count;
1976 		else
1977 			avail_user_block_count = 0;
1978 	}
1979 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1980 		diff = sbi->total_valid_block_count - avail_user_block_count;
1981 		if (diff > *count)
1982 			diff = *count;
1983 		*count -= diff;
1984 		release = diff;
1985 		sbi->total_valid_block_count -= diff;
1986 		if (!*count) {
1987 			spin_unlock(&sbi->stat_lock);
1988 			goto enospc;
1989 		}
1990 	}
1991 	spin_unlock(&sbi->stat_lock);
1992 
1993 	if (unlikely(release)) {
1994 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1995 		dquot_release_reservation_block(inode, release);
1996 	}
1997 	f2fs_i_blocks_write(inode, *count, true, true);
1998 	return 0;
1999 
2000 enospc:
2001 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2002 release_quota:
2003 	dquot_release_reservation_block(inode, release);
2004 	return -ENOSPC;
2005 }
2006 
2007 __printf(2, 3)
2008 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2009 
2010 #define f2fs_err(sbi, fmt, ...)						\
2011 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2012 #define f2fs_warn(sbi, fmt, ...)					\
2013 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2014 #define f2fs_notice(sbi, fmt, ...)					\
2015 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2016 #define f2fs_info(sbi, fmt, ...)					\
2017 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2018 #define f2fs_debug(sbi, fmt, ...)					\
2019 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2020 
2021 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2022 						struct inode *inode,
2023 						block_t count)
2024 {
2025 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2026 
2027 	spin_lock(&sbi->stat_lock);
2028 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2029 	sbi->total_valid_block_count -= (block_t)count;
2030 	if (sbi->reserved_blocks &&
2031 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2032 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2033 					sbi->current_reserved_blocks + count);
2034 	spin_unlock(&sbi->stat_lock);
2035 	if (unlikely(inode->i_blocks < sectors)) {
2036 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2037 			  inode->i_ino,
2038 			  (unsigned long long)inode->i_blocks,
2039 			  (unsigned long long)sectors);
2040 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2041 		return;
2042 	}
2043 	f2fs_i_blocks_write(inode, count, false, true);
2044 }
2045 
2046 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2047 {
2048 	atomic_inc(&sbi->nr_pages[count_type]);
2049 
2050 	if (count_type == F2FS_DIRTY_DENTS ||
2051 			count_type == F2FS_DIRTY_NODES ||
2052 			count_type == F2FS_DIRTY_META ||
2053 			count_type == F2FS_DIRTY_QDATA ||
2054 			count_type == F2FS_DIRTY_IMETA)
2055 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2056 }
2057 
2058 static inline void inode_inc_dirty_pages(struct inode *inode)
2059 {
2060 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2061 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2062 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2063 	if (IS_NOQUOTA(inode))
2064 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2065 }
2066 
2067 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2068 {
2069 	atomic_dec(&sbi->nr_pages[count_type]);
2070 }
2071 
2072 static inline void inode_dec_dirty_pages(struct inode *inode)
2073 {
2074 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2075 			!S_ISLNK(inode->i_mode))
2076 		return;
2077 
2078 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2079 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2080 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2081 	if (IS_NOQUOTA(inode))
2082 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2083 }
2084 
2085 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2086 {
2087 	return atomic_read(&sbi->nr_pages[count_type]);
2088 }
2089 
2090 static inline int get_dirty_pages(struct inode *inode)
2091 {
2092 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2093 }
2094 
2095 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2096 {
2097 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2098 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2099 						sbi->log_blocks_per_seg;
2100 
2101 	return segs / sbi->segs_per_sec;
2102 }
2103 
2104 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2105 {
2106 	return sbi->total_valid_block_count;
2107 }
2108 
2109 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2110 {
2111 	return sbi->discard_blks;
2112 }
2113 
2114 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2115 {
2116 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2117 
2118 	/* return NAT or SIT bitmap */
2119 	if (flag == NAT_BITMAP)
2120 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2121 	else if (flag == SIT_BITMAP)
2122 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2123 
2124 	return 0;
2125 }
2126 
2127 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2128 {
2129 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2130 }
2131 
2132 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2133 {
2134 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2135 	int offset;
2136 
2137 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2138 		offset = (flag == SIT_BITMAP) ?
2139 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2140 		/*
2141 		 * if large_nat_bitmap feature is enabled, leave checksum
2142 		 * protection for all nat/sit bitmaps.
2143 		 */
2144 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2145 	}
2146 
2147 	if (__cp_payload(sbi) > 0) {
2148 		if (flag == NAT_BITMAP)
2149 			return &ckpt->sit_nat_version_bitmap;
2150 		else
2151 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2152 	} else {
2153 		offset = (flag == NAT_BITMAP) ?
2154 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2155 		return &ckpt->sit_nat_version_bitmap + offset;
2156 	}
2157 }
2158 
2159 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2160 {
2161 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2162 
2163 	if (sbi->cur_cp_pack == 2)
2164 		start_addr += sbi->blocks_per_seg;
2165 	return start_addr;
2166 }
2167 
2168 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2169 {
2170 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2171 
2172 	if (sbi->cur_cp_pack == 1)
2173 		start_addr += sbi->blocks_per_seg;
2174 	return start_addr;
2175 }
2176 
2177 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2178 {
2179 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2180 }
2181 
2182 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2183 {
2184 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2185 }
2186 
2187 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2188 					struct inode *inode, bool is_inode)
2189 {
2190 	block_t	valid_block_count;
2191 	unsigned int valid_node_count, user_block_count;
2192 	int err;
2193 
2194 	if (is_inode) {
2195 		if (inode) {
2196 			err = dquot_alloc_inode(inode);
2197 			if (err)
2198 				return err;
2199 		}
2200 	} else {
2201 		err = dquot_reserve_block(inode, 1);
2202 		if (err)
2203 			return err;
2204 	}
2205 
2206 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2207 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2208 		goto enospc;
2209 	}
2210 
2211 	spin_lock(&sbi->stat_lock);
2212 
2213 	valid_block_count = sbi->total_valid_block_count +
2214 					sbi->current_reserved_blocks + 1;
2215 
2216 	if (!__allow_reserved_blocks(sbi, inode, false))
2217 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2218 	user_block_count = sbi->user_block_count;
2219 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2220 		user_block_count -= sbi->unusable_block_count;
2221 
2222 	if (unlikely(valid_block_count > user_block_count)) {
2223 		spin_unlock(&sbi->stat_lock);
2224 		goto enospc;
2225 	}
2226 
2227 	valid_node_count = sbi->total_valid_node_count + 1;
2228 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2229 		spin_unlock(&sbi->stat_lock);
2230 		goto enospc;
2231 	}
2232 
2233 	sbi->total_valid_node_count++;
2234 	sbi->total_valid_block_count++;
2235 	spin_unlock(&sbi->stat_lock);
2236 
2237 	if (inode) {
2238 		if (is_inode)
2239 			f2fs_mark_inode_dirty_sync(inode, true);
2240 		else
2241 			f2fs_i_blocks_write(inode, 1, true, true);
2242 	}
2243 
2244 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2245 	return 0;
2246 
2247 enospc:
2248 	if (is_inode) {
2249 		if (inode)
2250 			dquot_free_inode(inode);
2251 	} else {
2252 		dquot_release_reservation_block(inode, 1);
2253 	}
2254 	return -ENOSPC;
2255 }
2256 
2257 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2258 					struct inode *inode, bool is_inode)
2259 {
2260 	spin_lock(&sbi->stat_lock);
2261 
2262 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2263 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2264 
2265 	sbi->total_valid_node_count--;
2266 	sbi->total_valid_block_count--;
2267 	if (sbi->reserved_blocks &&
2268 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2269 		sbi->current_reserved_blocks++;
2270 
2271 	spin_unlock(&sbi->stat_lock);
2272 
2273 	if (is_inode) {
2274 		dquot_free_inode(inode);
2275 	} else {
2276 		if (unlikely(inode->i_blocks == 0)) {
2277 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2278 				  inode->i_ino,
2279 				  (unsigned long long)inode->i_blocks);
2280 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2281 			return;
2282 		}
2283 		f2fs_i_blocks_write(inode, 1, false, true);
2284 	}
2285 }
2286 
2287 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2288 {
2289 	return sbi->total_valid_node_count;
2290 }
2291 
2292 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2293 {
2294 	percpu_counter_inc(&sbi->total_valid_inode_count);
2295 }
2296 
2297 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2298 {
2299 	percpu_counter_dec(&sbi->total_valid_inode_count);
2300 }
2301 
2302 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2303 {
2304 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2305 }
2306 
2307 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2308 						pgoff_t index, bool for_write)
2309 {
2310 	struct page *page;
2311 
2312 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2313 		if (!for_write)
2314 			page = find_get_page_flags(mapping, index,
2315 							FGP_LOCK | FGP_ACCESSED);
2316 		else
2317 			page = find_lock_page(mapping, index);
2318 		if (page)
2319 			return page;
2320 
2321 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2322 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2323 							FAULT_PAGE_ALLOC);
2324 			return NULL;
2325 		}
2326 	}
2327 
2328 	if (!for_write)
2329 		return grab_cache_page(mapping, index);
2330 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2331 }
2332 
2333 static inline struct page *f2fs_pagecache_get_page(
2334 				struct address_space *mapping, pgoff_t index,
2335 				int fgp_flags, gfp_t gfp_mask)
2336 {
2337 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2338 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2339 		return NULL;
2340 	}
2341 
2342 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2343 }
2344 
2345 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2346 {
2347 	char *src_kaddr = kmap(src);
2348 	char *dst_kaddr = kmap(dst);
2349 
2350 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2351 	kunmap(dst);
2352 	kunmap(src);
2353 }
2354 
2355 static inline void f2fs_put_page(struct page *page, int unlock)
2356 {
2357 	if (!page)
2358 		return;
2359 
2360 	if (unlock) {
2361 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2362 		unlock_page(page);
2363 	}
2364 	put_page(page);
2365 }
2366 
2367 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2368 {
2369 	if (dn->node_page)
2370 		f2fs_put_page(dn->node_page, 1);
2371 	if (dn->inode_page && dn->node_page != dn->inode_page)
2372 		f2fs_put_page(dn->inode_page, 0);
2373 	dn->node_page = NULL;
2374 	dn->inode_page = NULL;
2375 }
2376 
2377 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2378 					size_t size)
2379 {
2380 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2381 }
2382 
2383 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2384 						gfp_t flags)
2385 {
2386 	void *entry;
2387 
2388 	entry = kmem_cache_alloc(cachep, flags);
2389 	if (!entry)
2390 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2391 	return entry;
2392 }
2393 
2394 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2395 {
2396 	if (sbi->gc_mode == GC_URGENT)
2397 		return true;
2398 
2399 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2400 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2401 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2402 		get_pages(sbi, F2FS_DIO_READ) ||
2403 		get_pages(sbi, F2FS_DIO_WRITE))
2404 		return false;
2405 
2406 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2407 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2408 		return false;
2409 
2410 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2411 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2412 		return false;
2413 
2414 	return f2fs_time_over(sbi, type);
2415 }
2416 
2417 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2418 				unsigned long index, void *item)
2419 {
2420 	while (radix_tree_insert(root, index, item))
2421 		cond_resched();
2422 }
2423 
2424 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2425 
2426 static inline bool IS_INODE(struct page *page)
2427 {
2428 	struct f2fs_node *p = F2FS_NODE(page);
2429 
2430 	return RAW_IS_INODE(p);
2431 }
2432 
2433 static inline int offset_in_addr(struct f2fs_inode *i)
2434 {
2435 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2436 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2437 }
2438 
2439 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2440 {
2441 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2442 }
2443 
2444 static inline int f2fs_has_extra_attr(struct inode *inode);
2445 static inline block_t data_blkaddr(struct inode *inode,
2446 			struct page *node_page, unsigned int offset)
2447 {
2448 	struct f2fs_node *raw_node;
2449 	__le32 *addr_array;
2450 	int base = 0;
2451 	bool is_inode = IS_INODE(node_page);
2452 
2453 	raw_node = F2FS_NODE(node_page);
2454 
2455 	if (is_inode) {
2456 		if (!inode)
2457 			/* from GC path only */
2458 			base = offset_in_addr(&raw_node->i);
2459 		else if (f2fs_has_extra_attr(inode))
2460 			base = get_extra_isize(inode);
2461 	}
2462 
2463 	addr_array = blkaddr_in_node(raw_node);
2464 	return le32_to_cpu(addr_array[base + offset]);
2465 }
2466 
2467 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2468 {
2469 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2470 }
2471 
2472 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2473 {
2474 	int mask;
2475 
2476 	addr += (nr >> 3);
2477 	mask = 1 << (7 - (nr & 0x07));
2478 	return mask & *addr;
2479 }
2480 
2481 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2482 {
2483 	int mask;
2484 
2485 	addr += (nr >> 3);
2486 	mask = 1 << (7 - (nr & 0x07));
2487 	*addr |= mask;
2488 }
2489 
2490 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2491 {
2492 	int mask;
2493 
2494 	addr += (nr >> 3);
2495 	mask = 1 << (7 - (nr & 0x07));
2496 	*addr &= ~mask;
2497 }
2498 
2499 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2500 {
2501 	int mask;
2502 	int ret;
2503 
2504 	addr += (nr >> 3);
2505 	mask = 1 << (7 - (nr & 0x07));
2506 	ret = mask & *addr;
2507 	*addr |= mask;
2508 	return ret;
2509 }
2510 
2511 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2512 {
2513 	int mask;
2514 	int ret;
2515 
2516 	addr += (nr >> 3);
2517 	mask = 1 << (7 - (nr & 0x07));
2518 	ret = mask & *addr;
2519 	*addr &= ~mask;
2520 	return ret;
2521 }
2522 
2523 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2524 {
2525 	int mask;
2526 
2527 	addr += (nr >> 3);
2528 	mask = 1 << (7 - (nr & 0x07));
2529 	*addr ^= mask;
2530 }
2531 
2532 /*
2533  * On-disk inode flags (f2fs_inode::i_flags)
2534  */
2535 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2536 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2537 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2538 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2539 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2540 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2541 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2542 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2543 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2544 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2545 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2546 
2547 /* Flags that should be inherited by new inodes from their parent. */
2548 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2549 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2550 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2551 
2552 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2553 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2554 				F2FS_CASEFOLD_FL))
2555 
2556 /* Flags that are appropriate for non-directories/regular files. */
2557 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2558 
2559 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2560 {
2561 	if (S_ISDIR(mode))
2562 		return flags;
2563 	else if (S_ISREG(mode))
2564 		return flags & F2FS_REG_FLMASK;
2565 	else
2566 		return flags & F2FS_OTHER_FLMASK;
2567 }
2568 
2569 static inline void __mark_inode_dirty_flag(struct inode *inode,
2570 						int flag, bool set)
2571 {
2572 	switch (flag) {
2573 	case FI_INLINE_XATTR:
2574 	case FI_INLINE_DATA:
2575 	case FI_INLINE_DENTRY:
2576 	case FI_NEW_INODE:
2577 		if (set)
2578 			return;
2579 		/* fall through */
2580 	case FI_DATA_EXIST:
2581 	case FI_INLINE_DOTS:
2582 	case FI_PIN_FILE:
2583 		f2fs_mark_inode_dirty_sync(inode, true);
2584 	}
2585 }
2586 
2587 static inline void set_inode_flag(struct inode *inode, int flag)
2588 {
2589 	test_and_set_bit(flag, F2FS_I(inode)->flags);
2590 	__mark_inode_dirty_flag(inode, flag, true);
2591 }
2592 
2593 static inline int is_inode_flag_set(struct inode *inode, int flag)
2594 {
2595 	return test_bit(flag, F2FS_I(inode)->flags);
2596 }
2597 
2598 static inline void clear_inode_flag(struct inode *inode, int flag)
2599 {
2600 	test_and_clear_bit(flag, F2FS_I(inode)->flags);
2601 	__mark_inode_dirty_flag(inode, flag, false);
2602 }
2603 
2604 static inline bool f2fs_verity_in_progress(struct inode *inode)
2605 {
2606 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2607 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2608 }
2609 
2610 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2611 {
2612 	F2FS_I(inode)->i_acl_mode = mode;
2613 	set_inode_flag(inode, FI_ACL_MODE);
2614 	f2fs_mark_inode_dirty_sync(inode, false);
2615 }
2616 
2617 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2618 {
2619 	if (inc)
2620 		inc_nlink(inode);
2621 	else
2622 		drop_nlink(inode);
2623 	f2fs_mark_inode_dirty_sync(inode, true);
2624 }
2625 
2626 static inline void f2fs_i_blocks_write(struct inode *inode,
2627 					block_t diff, bool add, bool claim)
2628 {
2629 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2630 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2631 
2632 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2633 	if (add) {
2634 		if (claim)
2635 			dquot_claim_block(inode, diff);
2636 		else
2637 			dquot_alloc_block_nofail(inode, diff);
2638 	} else {
2639 		dquot_free_block(inode, diff);
2640 	}
2641 
2642 	f2fs_mark_inode_dirty_sync(inode, true);
2643 	if (clean || recover)
2644 		set_inode_flag(inode, FI_AUTO_RECOVER);
2645 }
2646 
2647 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2648 {
2649 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2650 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2651 
2652 	if (i_size_read(inode) == i_size)
2653 		return;
2654 
2655 	i_size_write(inode, i_size);
2656 	f2fs_mark_inode_dirty_sync(inode, true);
2657 	if (clean || recover)
2658 		set_inode_flag(inode, FI_AUTO_RECOVER);
2659 }
2660 
2661 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2662 {
2663 	F2FS_I(inode)->i_current_depth = depth;
2664 	f2fs_mark_inode_dirty_sync(inode, true);
2665 }
2666 
2667 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2668 					unsigned int count)
2669 {
2670 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2671 	f2fs_mark_inode_dirty_sync(inode, true);
2672 }
2673 
2674 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2675 {
2676 	F2FS_I(inode)->i_xattr_nid = xnid;
2677 	f2fs_mark_inode_dirty_sync(inode, true);
2678 }
2679 
2680 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2681 {
2682 	F2FS_I(inode)->i_pino = pino;
2683 	f2fs_mark_inode_dirty_sync(inode, true);
2684 }
2685 
2686 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2687 {
2688 	struct f2fs_inode_info *fi = F2FS_I(inode);
2689 
2690 	if (ri->i_inline & F2FS_INLINE_XATTR)
2691 		set_bit(FI_INLINE_XATTR, fi->flags);
2692 	if (ri->i_inline & F2FS_INLINE_DATA)
2693 		set_bit(FI_INLINE_DATA, fi->flags);
2694 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2695 		set_bit(FI_INLINE_DENTRY, fi->flags);
2696 	if (ri->i_inline & F2FS_DATA_EXIST)
2697 		set_bit(FI_DATA_EXIST, fi->flags);
2698 	if (ri->i_inline & F2FS_INLINE_DOTS)
2699 		set_bit(FI_INLINE_DOTS, fi->flags);
2700 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2701 		set_bit(FI_EXTRA_ATTR, fi->flags);
2702 	if (ri->i_inline & F2FS_PIN_FILE)
2703 		set_bit(FI_PIN_FILE, fi->flags);
2704 }
2705 
2706 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2707 {
2708 	ri->i_inline = 0;
2709 
2710 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2711 		ri->i_inline |= F2FS_INLINE_XATTR;
2712 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2713 		ri->i_inline |= F2FS_INLINE_DATA;
2714 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2715 		ri->i_inline |= F2FS_INLINE_DENTRY;
2716 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2717 		ri->i_inline |= F2FS_DATA_EXIST;
2718 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2719 		ri->i_inline |= F2FS_INLINE_DOTS;
2720 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2721 		ri->i_inline |= F2FS_EXTRA_ATTR;
2722 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2723 		ri->i_inline |= F2FS_PIN_FILE;
2724 }
2725 
2726 static inline int f2fs_has_extra_attr(struct inode *inode)
2727 {
2728 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2729 }
2730 
2731 static inline int f2fs_has_inline_xattr(struct inode *inode)
2732 {
2733 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2734 }
2735 
2736 static inline int f2fs_compressed_file(struct inode *inode)
2737 {
2738 	return S_ISREG(inode->i_mode) &&
2739 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2740 }
2741 
2742 static inline unsigned int addrs_per_inode(struct inode *inode)
2743 {
2744 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2745 				get_inline_xattr_addrs(inode);
2746 
2747 	if (!f2fs_compressed_file(inode))
2748 		return addrs;
2749 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2750 }
2751 
2752 static inline unsigned int addrs_per_block(struct inode *inode)
2753 {
2754 	if (!f2fs_compressed_file(inode))
2755 		return DEF_ADDRS_PER_BLOCK;
2756 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2757 }
2758 
2759 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2760 {
2761 	struct f2fs_inode *ri = F2FS_INODE(page);
2762 
2763 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2764 					get_inline_xattr_addrs(inode)]);
2765 }
2766 
2767 static inline int inline_xattr_size(struct inode *inode)
2768 {
2769 	if (f2fs_has_inline_xattr(inode))
2770 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2771 	return 0;
2772 }
2773 
2774 static inline int f2fs_has_inline_data(struct inode *inode)
2775 {
2776 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2777 }
2778 
2779 static inline int f2fs_exist_data(struct inode *inode)
2780 {
2781 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2782 }
2783 
2784 static inline int f2fs_has_inline_dots(struct inode *inode)
2785 {
2786 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2787 }
2788 
2789 static inline int f2fs_is_mmap_file(struct inode *inode)
2790 {
2791 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2792 }
2793 
2794 static inline bool f2fs_is_pinned_file(struct inode *inode)
2795 {
2796 	return is_inode_flag_set(inode, FI_PIN_FILE);
2797 }
2798 
2799 static inline bool f2fs_is_atomic_file(struct inode *inode)
2800 {
2801 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2802 }
2803 
2804 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2805 {
2806 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2807 }
2808 
2809 static inline bool f2fs_is_volatile_file(struct inode *inode)
2810 {
2811 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2812 }
2813 
2814 static inline bool f2fs_is_first_block_written(struct inode *inode)
2815 {
2816 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2817 }
2818 
2819 static inline bool f2fs_is_drop_cache(struct inode *inode)
2820 {
2821 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2822 }
2823 
2824 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2825 {
2826 	struct f2fs_inode *ri = F2FS_INODE(page);
2827 	int extra_size = get_extra_isize(inode);
2828 
2829 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2830 }
2831 
2832 static inline int f2fs_has_inline_dentry(struct inode *inode)
2833 {
2834 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2835 }
2836 
2837 static inline int is_file(struct inode *inode, int type)
2838 {
2839 	return F2FS_I(inode)->i_advise & type;
2840 }
2841 
2842 static inline void set_file(struct inode *inode, int type)
2843 {
2844 	F2FS_I(inode)->i_advise |= type;
2845 	f2fs_mark_inode_dirty_sync(inode, true);
2846 }
2847 
2848 static inline void clear_file(struct inode *inode, int type)
2849 {
2850 	F2FS_I(inode)->i_advise &= ~type;
2851 	f2fs_mark_inode_dirty_sync(inode, true);
2852 }
2853 
2854 static inline bool f2fs_is_time_consistent(struct inode *inode)
2855 {
2856 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2857 		return false;
2858 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2859 		return false;
2860 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2861 		return false;
2862 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2863 						&F2FS_I(inode)->i_crtime))
2864 		return false;
2865 	return true;
2866 }
2867 
2868 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2869 {
2870 	bool ret;
2871 
2872 	if (dsync) {
2873 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2874 
2875 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2876 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2877 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2878 		return ret;
2879 	}
2880 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2881 			file_keep_isize(inode) ||
2882 			i_size_read(inode) & ~PAGE_MASK)
2883 		return false;
2884 
2885 	if (!f2fs_is_time_consistent(inode))
2886 		return false;
2887 
2888 	spin_lock(&F2FS_I(inode)->i_size_lock);
2889 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2890 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2891 
2892 	return ret;
2893 }
2894 
2895 static inline bool f2fs_readonly(struct super_block *sb)
2896 {
2897 	return sb_rdonly(sb);
2898 }
2899 
2900 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2901 {
2902 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2903 }
2904 
2905 static inline bool is_dot_dotdot(const struct qstr *str)
2906 {
2907 	if (str->len == 1 && str->name[0] == '.')
2908 		return true;
2909 
2910 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2911 		return true;
2912 
2913 	return false;
2914 }
2915 
2916 static inline bool f2fs_may_extent_tree(struct inode *inode)
2917 {
2918 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2919 
2920 	if (!test_opt(sbi, EXTENT_CACHE) ||
2921 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
2922 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2923 		return false;
2924 
2925 	/*
2926 	 * for recovered files during mount do not create extents
2927 	 * if shrinker is not registered.
2928 	 */
2929 	if (list_empty(&sbi->s_list))
2930 		return false;
2931 
2932 	return S_ISREG(inode->i_mode);
2933 }
2934 
2935 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2936 					size_t size, gfp_t flags)
2937 {
2938 	void *ret;
2939 
2940 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2941 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2942 		return NULL;
2943 	}
2944 
2945 	ret = kmalloc(size, flags);
2946 	if (ret)
2947 		return ret;
2948 
2949 	return kvmalloc(size, flags);
2950 }
2951 
2952 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2953 					size_t size, gfp_t flags)
2954 {
2955 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2956 }
2957 
2958 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2959 					size_t size, gfp_t flags)
2960 {
2961 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2962 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
2963 		return NULL;
2964 	}
2965 
2966 	return kvmalloc(size, flags);
2967 }
2968 
2969 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2970 					size_t size, gfp_t flags)
2971 {
2972 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2973 }
2974 
2975 static inline int get_extra_isize(struct inode *inode)
2976 {
2977 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2978 }
2979 
2980 static inline int get_inline_xattr_addrs(struct inode *inode)
2981 {
2982 	return F2FS_I(inode)->i_inline_xattr_size;
2983 }
2984 
2985 #define f2fs_get_inode_mode(i) \
2986 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2987 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2988 
2989 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2990 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2991 	offsetof(struct f2fs_inode, i_extra_isize))	\
2992 
2993 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2994 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2995 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2996 		sizeof((f2fs_inode)->field))			\
2997 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2998 
2999 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3000 {
3001 	int i;
3002 
3003 	spin_lock(&sbi->iostat_lock);
3004 	for (i = 0; i < NR_IO_TYPE; i++)
3005 		sbi->write_iostat[i] = 0;
3006 	spin_unlock(&sbi->iostat_lock);
3007 }
3008 
3009 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3010 			enum iostat_type type, unsigned long long io_bytes)
3011 {
3012 	if (!sbi->iostat_enable)
3013 		return;
3014 	spin_lock(&sbi->iostat_lock);
3015 	sbi->write_iostat[type] += io_bytes;
3016 
3017 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3018 		sbi->write_iostat[APP_BUFFERED_IO] =
3019 			sbi->write_iostat[APP_WRITE_IO] -
3020 			sbi->write_iostat[APP_DIRECT_IO];
3021 	spin_unlock(&sbi->iostat_lock);
3022 }
3023 
3024 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3025 
3026 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3027 
3028 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3029 					block_t blkaddr, int type);
3030 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3031 					block_t blkaddr, int type)
3032 {
3033 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3034 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3035 			 blkaddr, type);
3036 		f2fs_bug_on(sbi, 1);
3037 	}
3038 }
3039 
3040 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3041 {
3042 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3043 			blkaddr == COMPRESS_ADDR)
3044 		return false;
3045 	return true;
3046 }
3047 
3048 static inline void f2fs_set_page_private(struct page *page,
3049 						unsigned long data)
3050 {
3051 	if (PagePrivate(page))
3052 		return;
3053 
3054 	get_page(page);
3055 	SetPagePrivate(page);
3056 	set_page_private(page, data);
3057 }
3058 
3059 static inline void f2fs_clear_page_private(struct page *page)
3060 {
3061 	if (!PagePrivate(page))
3062 		return;
3063 
3064 	set_page_private(page, 0);
3065 	ClearPagePrivate(page);
3066 	f2fs_put_page(page, 0);
3067 }
3068 
3069 /*
3070  * file.c
3071  */
3072 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3073 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3074 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3075 int f2fs_truncate(struct inode *inode);
3076 int f2fs_getattr(const struct path *path, struct kstat *stat,
3077 			u32 request_mask, unsigned int flags);
3078 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3079 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3080 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3081 int f2fs_precache_extents(struct inode *inode);
3082 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3083 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3084 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3085 int f2fs_pin_file_control(struct inode *inode, bool inc);
3086 
3087 /*
3088  * inode.c
3089  */
3090 void f2fs_set_inode_flags(struct inode *inode);
3091 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3092 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3093 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3094 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3095 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3096 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3097 void f2fs_update_inode_page(struct inode *inode);
3098 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3099 void f2fs_evict_inode(struct inode *inode);
3100 void f2fs_handle_failed_inode(struct inode *inode);
3101 
3102 /*
3103  * namei.c
3104  */
3105 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3106 							bool hot, bool set);
3107 struct dentry *f2fs_get_parent(struct dentry *child);
3108 
3109 extern int f2fs_ci_compare(const struct inode *parent,
3110 			   const struct qstr *name,
3111 			   const struct qstr *entry,
3112 			   bool quick);
3113 
3114 /*
3115  * dir.c
3116  */
3117 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3118 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
3119 			f2fs_hash_t namehash, int *max_slots,
3120 			struct f2fs_dentry_ptr *d);
3121 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3122 			unsigned int start_pos, struct fscrypt_str *fstr);
3123 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3124 			struct f2fs_dentry_ptr *d);
3125 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3126 			const struct qstr *new_name,
3127 			const struct qstr *orig_name, struct page *dpage);
3128 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3129 			unsigned int current_depth);
3130 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3131 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3132 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3133 			struct fscrypt_name *fname, struct page **res_page);
3134 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3135 			const struct qstr *child, struct page **res_page);
3136 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3137 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3138 			struct page **page);
3139 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3140 			struct page *page, struct inode *inode);
3141 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3142 			struct fscrypt_name *fname);
3143 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3144 			const struct qstr *name, f2fs_hash_t name_hash,
3145 			unsigned int bit_pos);
3146 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
3147 			const struct qstr *orig_name,
3148 			struct inode *inode, nid_t ino, umode_t mode);
3149 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
3150 			struct inode *inode, nid_t ino, umode_t mode);
3151 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3152 			struct inode *inode, nid_t ino, umode_t mode);
3153 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3154 			struct inode *dir, struct inode *inode);
3155 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3156 bool f2fs_empty_dir(struct inode *dir);
3157 
3158 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3159 {
3160 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3161 				inode, inode->i_ino, inode->i_mode);
3162 }
3163 
3164 /*
3165  * super.c
3166  */
3167 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3168 void f2fs_inode_synced(struct inode *inode);
3169 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3170 int f2fs_quota_sync(struct super_block *sb, int type);
3171 void f2fs_quota_off_umount(struct super_block *sb);
3172 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3173 int f2fs_sync_fs(struct super_block *sb, int sync);
3174 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3175 
3176 /*
3177  * hash.c
3178  */
3179 f2fs_hash_t f2fs_dentry_hash(const struct inode *dir,
3180 		const struct qstr *name_info, struct fscrypt_name *fname);
3181 
3182 /*
3183  * node.c
3184  */
3185 struct dnode_of_data;
3186 struct node_info;
3187 
3188 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3189 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3190 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3191 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3192 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3193 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3194 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3195 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3196 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3197 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3198 						struct node_info *ni);
3199 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3200 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3201 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3202 int f2fs_truncate_xattr_node(struct inode *inode);
3203 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3204 					unsigned int seq_id);
3205 int f2fs_remove_inode_page(struct inode *inode);
3206 struct page *f2fs_new_inode_page(struct inode *inode);
3207 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3208 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3209 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3210 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3211 int f2fs_move_node_page(struct page *node_page, int gc_type);
3212 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3213 			struct writeback_control *wbc, bool atomic,
3214 			unsigned int *seq_id);
3215 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3216 			struct writeback_control *wbc,
3217 			bool do_balance, enum iostat_type io_type);
3218 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3219 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3220 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3221 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3222 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3223 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3224 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3225 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3226 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3227 			unsigned int segno, struct f2fs_summary_block *sum);
3228 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3229 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3230 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3231 int __init f2fs_create_node_manager_caches(void);
3232 void f2fs_destroy_node_manager_caches(void);
3233 
3234 /*
3235  * segment.c
3236  */
3237 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3238 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3239 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3240 void f2fs_drop_inmem_pages(struct inode *inode);
3241 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3242 int f2fs_commit_inmem_pages(struct inode *inode);
3243 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3244 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3245 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3246 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3247 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3248 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3249 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3250 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3251 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3252 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3253 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3254 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3255 					struct cp_control *cpc);
3256 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3257 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3258 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3259 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3260 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3261 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3262 					unsigned int start, unsigned int end);
3263 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type);
3264 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3265 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3266 					struct cp_control *cpc);
3267 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3268 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3269 					block_t blk_addr);
3270 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3271 						enum iostat_type io_type);
3272 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3273 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3274 			struct f2fs_io_info *fio);
3275 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3276 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3277 			block_t old_blkaddr, block_t new_blkaddr,
3278 			bool recover_curseg, bool recover_newaddr);
3279 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3280 			block_t old_addr, block_t new_addr,
3281 			unsigned char version, bool recover_curseg,
3282 			bool recover_newaddr);
3283 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3284 			block_t old_blkaddr, block_t *new_blkaddr,
3285 			struct f2fs_summary *sum, int type,
3286 			struct f2fs_io_info *fio, bool add_list);
3287 void f2fs_wait_on_page_writeback(struct page *page,
3288 			enum page_type type, bool ordered, bool locked);
3289 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3290 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3291 								block_t len);
3292 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3293 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3294 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3295 			unsigned int val, int alloc);
3296 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3297 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3298 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3299 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3300 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3301 int __init f2fs_create_segment_manager_caches(void);
3302 void f2fs_destroy_segment_manager_caches(void);
3303 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3304 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3305 			enum page_type type, enum temp_type temp);
3306 
3307 /*
3308  * checkpoint.c
3309  */
3310 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3311 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3312 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3313 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3314 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3315 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3316 					block_t blkaddr, int type);
3317 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3318 			int type, bool sync);
3319 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3320 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3321 			long nr_to_write, enum iostat_type io_type);
3322 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3323 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3324 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3325 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3326 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3327 					unsigned int devidx, int type);
3328 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3329 					unsigned int devidx, int type);
3330 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3331 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3332 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3333 void f2fs_add_orphan_inode(struct inode *inode);
3334 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3335 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3336 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3337 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3338 void f2fs_remove_dirty_inode(struct inode *inode);
3339 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3340 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3341 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3342 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3343 int __init f2fs_create_checkpoint_caches(void);
3344 void f2fs_destroy_checkpoint_caches(void);
3345 
3346 /*
3347  * data.c
3348  */
3349 int __init f2fs_init_bioset(void);
3350 void f2fs_destroy_bioset(void);
3351 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3352 int f2fs_init_bio_entry_cache(void);
3353 void f2fs_destroy_bio_entry_cache(void);
3354 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3355 				struct bio *bio, enum page_type type);
3356 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3357 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3358 				struct inode *inode, struct page *page,
3359 				nid_t ino, enum page_type type);
3360 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3361 					struct bio **bio, struct page *page);
3362 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3363 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3364 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3365 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3366 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3367 			block_t blk_addr, struct bio *bio);
3368 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3369 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3370 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3371 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3372 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3373 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3374 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3375 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3376 int f2fs_mpage_readpages(struct address_space *mapping,
3377 			struct list_head *pages, struct page *page,
3378 			unsigned nr_pages, bool is_readahead);
3379 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3380 			int op_flags, bool for_write);
3381 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3382 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3383 			bool for_write);
3384 struct page *f2fs_get_new_data_page(struct inode *inode,
3385 			struct page *ipage, pgoff_t index, bool new_i_size);
3386 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3387 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3388 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3389 			int create, int flag);
3390 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3391 			u64 start, u64 len);
3392 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3393 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3394 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3395 int f2fs_write_single_data_page(struct page *page, int *submitted,
3396 				struct bio **bio, sector_t *last_block,
3397 				struct writeback_control *wbc,
3398 				enum iostat_type io_type,
3399 				int compr_blocks);
3400 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3401 			unsigned int length);
3402 int f2fs_release_page(struct page *page, gfp_t wait);
3403 #ifdef CONFIG_MIGRATION
3404 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3405 			struct page *page, enum migrate_mode mode);
3406 #endif
3407 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3408 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3409 int f2fs_init_post_read_processing(void);
3410 void f2fs_destroy_post_read_processing(void);
3411 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3412 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3413 
3414 /*
3415  * gc.c
3416  */
3417 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3418 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3419 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3420 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3421 			unsigned int segno);
3422 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3423 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3424 
3425 /*
3426  * recovery.c
3427  */
3428 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3429 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3430 
3431 /*
3432  * debug.c
3433  */
3434 #ifdef CONFIG_F2FS_STAT_FS
3435 struct f2fs_stat_info {
3436 	struct list_head stat_list;
3437 	struct f2fs_sb_info *sbi;
3438 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3439 	int main_area_segs, main_area_sections, main_area_zones;
3440 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3441 	unsigned long long hit_total, total_ext;
3442 	int ext_tree, zombie_tree, ext_node;
3443 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3444 	int ndirty_data, ndirty_qdata;
3445 	int inmem_pages;
3446 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3447 	int nats, dirty_nats, sits, dirty_sits;
3448 	int free_nids, avail_nids, alloc_nids;
3449 	int total_count, utilization;
3450 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3451 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3452 	int nr_dio_read, nr_dio_write;
3453 	unsigned int io_skip_bggc, other_skip_bggc;
3454 	int nr_flushing, nr_flushed, flush_list_empty;
3455 	int nr_discarding, nr_discarded;
3456 	int nr_discard_cmd;
3457 	unsigned int undiscard_blks;
3458 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3459 	int compr_inode, compr_blocks;
3460 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3461 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3462 	unsigned int bimodal, avg_vblocks;
3463 	int util_free, util_valid, util_invalid;
3464 	int rsvd_segs, overp_segs;
3465 	int dirty_count, node_pages, meta_pages;
3466 	int prefree_count, call_count, cp_count, bg_cp_count;
3467 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3468 	int bg_node_segs, bg_data_segs;
3469 	int tot_blks, data_blks, node_blks;
3470 	int bg_data_blks, bg_node_blks;
3471 	unsigned long long skipped_atomic_files[2];
3472 	int curseg[NR_CURSEG_TYPE];
3473 	int cursec[NR_CURSEG_TYPE];
3474 	int curzone[NR_CURSEG_TYPE];
3475 
3476 	unsigned int meta_count[META_MAX];
3477 	unsigned int segment_count[2];
3478 	unsigned int block_count[2];
3479 	unsigned int inplace_count;
3480 	unsigned long long base_mem, cache_mem, page_mem;
3481 };
3482 
3483 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3484 {
3485 	return (struct f2fs_stat_info *)sbi->stat_info;
3486 }
3487 
3488 #define stat_inc_cp_count(si)		((si)->cp_count++)
3489 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3490 #define stat_inc_call_count(si)		((si)->call_count++)
3491 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3492 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3493 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3494 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3495 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3496 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3497 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3498 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3499 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3500 #define stat_inc_inline_xattr(inode)					\
3501 	do {								\
3502 		if (f2fs_has_inline_xattr(inode))			\
3503 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3504 	} while (0)
3505 #define stat_dec_inline_xattr(inode)					\
3506 	do {								\
3507 		if (f2fs_has_inline_xattr(inode))			\
3508 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3509 	} while (0)
3510 #define stat_inc_inline_inode(inode)					\
3511 	do {								\
3512 		if (f2fs_has_inline_data(inode))			\
3513 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3514 	} while (0)
3515 #define stat_dec_inline_inode(inode)					\
3516 	do {								\
3517 		if (f2fs_has_inline_data(inode))			\
3518 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3519 	} while (0)
3520 #define stat_inc_inline_dir(inode)					\
3521 	do {								\
3522 		if (f2fs_has_inline_dentry(inode))			\
3523 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3524 	} while (0)
3525 #define stat_dec_inline_dir(inode)					\
3526 	do {								\
3527 		if (f2fs_has_inline_dentry(inode))			\
3528 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3529 	} while (0)
3530 #define stat_inc_compr_inode(inode)					\
3531 	do {								\
3532 		if (f2fs_compressed_file(inode))			\
3533 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3534 	} while (0)
3535 #define stat_dec_compr_inode(inode)					\
3536 	do {								\
3537 		if (f2fs_compressed_file(inode))			\
3538 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3539 	} while (0)
3540 #define stat_add_compr_blocks(inode, blocks)				\
3541 		(atomic_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3542 #define stat_sub_compr_blocks(inode, blocks)				\
3543 		(atomic_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3544 #define stat_inc_meta_count(sbi, blkaddr)				\
3545 	do {								\
3546 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3547 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3548 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3549 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3550 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3551 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3552 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3553 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3554 	} while (0)
3555 #define stat_inc_seg_type(sbi, curseg)					\
3556 		((sbi)->segment_count[(curseg)->alloc_type]++)
3557 #define stat_inc_block_count(sbi, curseg)				\
3558 		((sbi)->block_count[(curseg)->alloc_type]++)
3559 #define stat_inc_inplace_blocks(sbi)					\
3560 		(atomic_inc(&(sbi)->inplace_count))
3561 #define stat_update_max_atomic_write(inode)				\
3562 	do {								\
3563 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3564 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3565 		if (cur > max)						\
3566 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3567 	} while (0)
3568 #define stat_inc_volatile_write(inode)					\
3569 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3570 #define stat_dec_volatile_write(inode)					\
3571 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3572 #define stat_update_max_volatile_write(inode)				\
3573 	do {								\
3574 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3575 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3576 		if (cur > max)						\
3577 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3578 	} while (0)
3579 #define stat_inc_seg_count(sbi, type, gc_type)				\
3580 	do {								\
3581 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3582 		si->tot_segs++;						\
3583 		if ((type) == SUM_TYPE_DATA) {				\
3584 			si->data_segs++;				\
3585 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3586 		} else {						\
3587 			si->node_segs++;				\
3588 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3589 		}							\
3590 	} while (0)
3591 
3592 #define stat_inc_tot_blk_count(si, blks)				\
3593 	((si)->tot_blks += (blks))
3594 
3595 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3596 	do {								\
3597 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3598 		stat_inc_tot_blk_count(si, blks);			\
3599 		si->data_blks += (blks);				\
3600 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3601 	} while (0)
3602 
3603 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3604 	do {								\
3605 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3606 		stat_inc_tot_blk_count(si, blks);			\
3607 		si->node_blks += (blks);				\
3608 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3609 	} while (0)
3610 
3611 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3612 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3613 void __init f2fs_create_root_stats(void);
3614 void f2fs_destroy_root_stats(void);
3615 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3616 #else
3617 #define stat_inc_cp_count(si)				do { } while (0)
3618 #define stat_inc_bg_cp_count(si)			do { } while (0)
3619 #define stat_inc_call_count(si)				do { } while (0)
3620 #define stat_inc_bggc_count(si)				do { } while (0)
3621 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3622 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3623 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3624 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3625 #define stat_inc_total_hit(sbi)				do { } while (0)
3626 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3627 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3628 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3629 #define stat_inc_inline_xattr(inode)			do { } while (0)
3630 #define stat_dec_inline_xattr(inode)			do { } while (0)
3631 #define stat_inc_inline_inode(inode)			do { } while (0)
3632 #define stat_dec_inline_inode(inode)			do { } while (0)
3633 #define stat_inc_inline_dir(inode)			do { } while (0)
3634 #define stat_dec_inline_dir(inode)			do { } while (0)
3635 #define stat_inc_compr_inode(inode)			do { } while (0)
3636 #define stat_dec_compr_inode(inode)			do { } while (0)
3637 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3638 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3639 #define stat_inc_atomic_write(inode)			do { } while (0)
3640 #define stat_dec_atomic_write(inode)			do { } while (0)
3641 #define stat_update_max_atomic_write(inode)		do { } while (0)
3642 #define stat_inc_volatile_write(inode)			do { } while (0)
3643 #define stat_dec_volatile_write(inode)			do { } while (0)
3644 #define stat_update_max_volatile_write(inode)		do { } while (0)
3645 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3646 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3647 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3648 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3649 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3650 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3651 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3652 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3653 
3654 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3655 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3656 static inline void __init f2fs_create_root_stats(void) { }
3657 static inline void f2fs_destroy_root_stats(void) { }
3658 static inline void update_sit_info(struct f2fs_sb_info *sbi) {}
3659 #endif
3660 
3661 extern const struct file_operations f2fs_dir_operations;
3662 #ifdef CONFIG_UNICODE
3663 extern const struct dentry_operations f2fs_dentry_ops;
3664 #endif
3665 extern const struct file_operations f2fs_file_operations;
3666 extern const struct inode_operations f2fs_file_inode_operations;
3667 extern const struct address_space_operations f2fs_dblock_aops;
3668 extern const struct address_space_operations f2fs_node_aops;
3669 extern const struct address_space_operations f2fs_meta_aops;
3670 extern const struct inode_operations f2fs_dir_inode_operations;
3671 extern const struct inode_operations f2fs_symlink_inode_operations;
3672 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3673 extern const struct inode_operations f2fs_special_inode_operations;
3674 extern struct kmem_cache *f2fs_inode_entry_slab;
3675 
3676 /*
3677  * inline.c
3678  */
3679 bool f2fs_may_inline_data(struct inode *inode);
3680 bool f2fs_may_inline_dentry(struct inode *inode);
3681 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3682 void f2fs_truncate_inline_inode(struct inode *inode,
3683 						struct page *ipage, u64 from);
3684 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3685 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3686 int f2fs_convert_inline_inode(struct inode *inode);
3687 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3688 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3689 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3690 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3691 			struct fscrypt_name *fname, struct page **res_page);
3692 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3693 			struct page *ipage);
3694 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3695 			const struct qstr *orig_name,
3696 			struct inode *inode, nid_t ino, umode_t mode);
3697 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3698 				struct page *page, struct inode *dir,
3699 				struct inode *inode);
3700 bool f2fs_empty_inline_dir(struct inode *dir);
3701 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3702 			struct fscrypt_str *fstr);
3703 int f2fs_inline_data_fiemap(struct inode *inode,
3704 			struct fiemap_extent_info *fieinfo,
3705 			__u64 start, __u64 len);
3706 
3707 /*
3708  * shrinker.c
3709  */
3710 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3711 			struct shrink_control *sc);
3712 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3713 			struct shrink_control *sc);
3714 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3715 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3716 
3717 /*
3718  * extent_cache.c
3719  */
3720 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3721 				struct rb_entry *cached_re, unsigned int ofs);
3722 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3723 				struct rb_root_cached *root,
3724 				struct rb_node **parent,
3725 				unsigned int ofs, bool *leftmost);
3726 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3727 		struct rb_entry *cached_re, unsigned int ofs,
3728 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3729 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3730 		bool force, bool *leftmost);
3731 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3732 						struct rb_root_cached *root);
3733 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3734 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3735 void f2fs_drop_extent_tree(struct inode *inode);
3736 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3737 void f2fs_destroy_extent_tree(struct inode *inode);
3738 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3739 			struct extent_info *ei);
3740 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3741 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3742 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3743 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3744 int __init f2fs_create_extent_cache(void);
3745 void f2fs_destroy_extent_cache(void);
3746 
3747 /*
3748  * sysfs.c
3749  */
3750 int __init f2fs_init_sysfs(void);
3751 void f2fs_exit_sysfs(void);
3752 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3753 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3754 
3755 /* verity.c */
3756 extern const struct fsverity_operations f2fs_verityops;
3757 
3758 /*
3759  * crypto support
3760  */
3761 static inline bool f2fs_encrypted_file(struct inode *inode)
3762 {
3763 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3764 }
3765 
3766 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3767 {
3768 #ifdef CONFIG_FS_ENCRYPTION
3769 	file_set_encrypt(inode);
3770 	f2fs_set_inode_flags(inode);
3771 #endif
3772 }
3773 
3774 /*
3775  * Returns true if the reads of the inode's data need to undergo some
3776  * postprocessing step, like decryption or authenticity verification.
3777  */
3778 static inline bool f2fs_post_read_required(struct inode *inode)
3779 {
3780 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3781 		f2fs_compressed_file(inode);
3782 }
3783 
3784 /*
3785  * compress.c
3786  */
3787 #ifdef CONFIG_F2FS_FS_COMPRESSION
3788 bool f2fs_is_compressed_page(struct page *page);
3789 struct page *f2fs_compress_control_page(struct page *page);
3790 int f2fs_prepare_compress_overwrite(struct inode *inode,
3791 			struct page **pagep, pgoff_t index, void **fsdata);
3792 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3793 					pgoff_t index, unsigned copied);
3794 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3795 bool f2fs_is_compress_backend_ready(struct inode *inode);
3796 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3797 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3798 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3799 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3800 int f2fs_write_multi_pages(struct compress_ctx *cc,
3801 						int *submitted,
3802 						struct writeback_control *wbc,
3803 						enum iostat_type io_type);
3804 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3805 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3806 				unsigned nr_pages, sector_t *last_block_in_bio,
3807 				bool is_readahead, bool for_write);
3808 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3809 void f2fs_free_dic(struct decompress_io_ctx *dic);
3810 void f2fs_decompress_end_io(struct page **rpages,
3811 			unsigned int cluster_size, bool err, bool verity);
3812 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3813 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3814 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3815 #else
3816 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3817 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3818 {
3819 	if (!f2fs_compressed_file(inode))
3820 		return true;
3821 	/* not support compression */
3822 	return false;
3823 }
3824 static inline struct page *f2fs_compress_control_page(struct page *page)
3825 {
3826 	WARN_ON_ONCE(1);
3827 	return ERR_PTR(-EINVAL);
3828 }
3829 #endif
3830 
3831 static inline void set_compress_context(struct inode *inode)
3832 {
3833 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3834 
3835 	F2FS_I(inode)->i_compress_algorithm =
3836 			F2FS_OPTION(sbi).compress_algorithm;
3837 	F2FS_I(inode)->i_log_cluster_size =
3838 			F2FS_OPTION(sbi).compress_log_size;
3839 	F2FS_I(inode)->i_cluster_size =
3840 			1 << F2FS_I(inode)->i_log_cluster_size;
3841 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3842 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3843 	stat_inc_compr_inode(inode);
3844 	f2fs_mark_inode_dirty_sync(inode, true);
3845 }
3846 
3847 static inline u64 f2fs_disable_compressed_file(struct inode *inode)
3848 {
3849 	struct f2fs_inode_info *fi = F2FS_I(inode);
3850 
3851 	if (!f2fs_compressed_file(inode))
3852 		return 0;
3853 	if (S_ISREG(inode->i_mode)) {
3854 		if (get_dirty_pages(inode))
3855 			return 1;
3856 		if (fi->i_compr_blocks)
3857 			return fi->i_compr_blocks;
3858 	}
3859 
3860 	fi->i_flags &= ~F2FS_COMPR_FL;
3861 	stat_dec_compr_inode(inode);
3862 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3863 	f2fs_mark_inode_dirty_sync(inode, true);
3864 	return 0;
3865 }
3866 
3867 #define F2FS_FEATURE_FUNCS(name, flagname) \
3868 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3869 { \
3870 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3871 }
3872 
3873 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3874 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3875 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3876 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3877 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3878 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3879 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3880 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3881 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3882 F2FS_FEATURE_FUNCS(verity, VERITY);
3883 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3884 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3885 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3886 
3887 #ifdef CONFIG_BLK_DEV_ZONED
3888 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3889 				    block_t blkaddr)
3890 {
3891 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3892 
3893 	return test_bit(zno, FDEV(devi).blkz_seq);
3894 }
3895 #endif
3896 
3897 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3898 {
3899 	return f2fs_sb_has_blkzoned(sbi);
3900 }
3901 
3902 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3903 {
3904 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3905 	       bdev_is_zoned(bdev);
3906 }
3907 
3908 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3909 {
3910 	int i;
3911 
3912 	if (!f2fs_is_multi_device(sbi))
3913 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3914 
3915 	for (i = 0; i < sbi->s_ndevs; i++)
3916 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3917 			return true;
3918 	return false;
3919 }
3920 
3921 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3922 {
3923 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3924 					f2fs_hw_should_discard(sbi);
3925 }
3926 
3927 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3928 {
3929 	int i;
3930 
3931 	if (!f2fs_is_multi_device(sbi))
3932 		return bdev_read_only(sbi->sb->s_bdev);
3933 
3934 	for (i = 0; i < sbi->s_ndevs; i++)
3935 		if (bdev_read_only(FDEV(i).bdev))
3936 			return true;
3937 	return false;
3938 }
3939 
3940 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
3941 {
3942 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
3943 }
3944 
3945 static inline bool f2fs_may_encrypt(struct inode *dir, struct inode *inode)
3946 {
3947 #ifdef CONFIG_FS_ENCRYPTION
3948 	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
3949 	umode_t mode = inode->i_mode;
3950 
3951 	/*
3952 	 * If the directory encrypted or dummy encryption enabled,
3953 	 * then we should encrypt the inode.
3954 	 */
3955 	if (IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi))
3956 		return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3957 #endif
3958 	return false;
3959 }
3960 
3961 static inline bool f2fs_may_compress(struct inode *inode)
3962 {
3963 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
3964 				f2fs_is_atomic_file(inode) ||
3965 				f2fs_is_volatile_file(inode))
3966 		return false;
3967 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
3968 }
3969 
3970 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
3971 						u64 blocks, bool add)
3972 {
3973 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
3974 
3975 	if (add) {
3976 		F2FS_I(inode)->i_compr_blocks += diff;
3977 		stat_add_compr_blocks(inode, diff);
3978 	} else {
3979 		F2FS_I(inode)->i_compr_blocks -= diff;
3980 		stat_sub_compr_blocks(inode, diff);
3981 	}
3982 	f2fs_mark_inode_dirty_sync(inode, true);
3983 }
3984 
3985 static inline int block_unaligned_IO(struct inode *inode,
3986 				struct kiocb *iocb, struct iov_iter *iter)
3987 {
3988 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3989 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3990 	loff_t offset = iocb->ki_pos;
3991 	unsigned long align = offset | iov_iter_alignment(iter);
3992 
3993 	return align & blocksize_mask;
3994 }
3995 
3996 static inline int allow_outplace_dio(struct inode *inode,
3997 				struct kiocb *iocb, struct iov_iter *iter)
3998 {
3999 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4000 	int rw = iov_iter_rw(iter);
4001 
4002 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4003 				!block_unaligned_IO(inode, iocb, iter));
4004 }
4005 
4006 static inline bool f2fs_force_buffered_io(struct inode *inode,
4007 				struct kiocb *iocb, struct iov_iter *iter)
4008 {
4009 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4010 	int rw = iov_iter_rw(iter);
4011 
4012 	if (f2fs_post_read_required(inode))
4013 		return true;
4014 	if (f2fs_is_multi_device(sbi))
4015 		return true;
4016 	if (f2fs_compressed_file(inode))
4017 		return true;
4018 	/*
4019 	 * for blkzoned device, fallback direct IO to buffered IO, so
4020 	 * all IOs can be serialized by log-structured write.
4021 	 */
4022 	if (f2fs_sb_has_blkzoned(sbi))
4023 		return true;
4024 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4025 		if (block_unaligned_IO(inode, iocb, iter))
4026 			return true;
4027 		if (F2FS_IO_ALIGNED(sbi))
4028 			return true;
4029 	}
4030 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4031 					!IS_SWAPFILE(inode))
4032 		return true;
4033 
4034 	return false;
4035 }
4036 
4037 #ifdef CONFIG_F2FS_FAULT_INJECTION
4038 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4039 							unsigned int type);
4040 #else
4041 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4042 #endif
4043 
4044 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4045 {
4046 #ifdef CONFIG_QUOTA
4047 	if (f2fs_sb_has_quota_ino(sbi))
4048 		return true;
4049 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4050 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4051 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4052 		return true;
4053 #endif
4054 	return false;
4055 }
4056 
4057 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4058 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4059 
4060 #endif /* _LINUX_F2FS_H */
4061