xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 151b1982)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_NID,
47 	FAULT_ORPHAN,
48 	FAULT_BLOCK,
49 	FAULT_DIR_DEPTH,
50 	FAULT_EVICT_INODE,
51 	FAULT_TRUNCATE,
52 	FAULT_READ_IO,
53 	FAULT_CHECKPOINT,
54 	FAULT_DISCARD,
55 	FAULT_WRITE_IO,
56 	FAULT_MAX,
57 };
58 
59 #ifdef CONFIG_F2FS_FAULT_INJECTION
60 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern const char *f2fs_fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
76 #define F2FS_MOUNT_DISCARD		0x00000004
77 #define F2FS_MOUNT_NOHEAP		0x00000008
78 #define F2FS_MOUNT_XATTR_USER		0x00000010
79 #define F2FS_MOUNT_POSIX_ACL		0x00000020
80 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
81 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
82 #define F2FS_MOUNT_INLINE_DATA		0x00000100
83 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
84 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
85 #define F2FS_MOUNT_NOBARRIER		0x00000800
86 #define F2FS_MOUNT_FASTBOOT		0x00001000
87 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
88 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
90 #define F2FS_MOUNT_USRQUOTA		0x00080000
91 #define F2FS_MOUNT_GRPQUOTA		0x00100000
92 #define F2FS_MOUNT_PRJQUOTA		0x00200000
93 #define F2FS_MOUNT_QUOTA		0x00400000
94 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
95 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
96 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
97 #define F2FS_MOUNT_NORECOVERY		0x04000000
98 #define F2FS_MOUNT_ATGC			0x08000000
99 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
100 #define	F2FS_MOUNT_GC_MERGE		0x20000000
101 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
102 
103 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107 
108 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109 		typecheck(unsigned long long, b) &&			\
110 		((long long)((a) - (b)) > 0))
111 
112 typedef u32 block_t;	/*
113 			 * should not change u32, since it is the on-disk block
114 			 * address format, __le32.
115 			 */
116 typedef u32 nid_t;
117 
118 #define COMPRESS_EXT_NUM		16
119 
120 struct f2fs_mount_info {
121 	unsigned int opt;
122 	int write_io_size_bits;		/* Write IO size bits */
123 	block_t root_reserved_blocks;	/* root reserved blocks */
124 	kuid_t s_resuid;		/* reserved blocks for uid */
125 	kgid_t s_resgid;		/* reserved blocks for gid */
126 	int active_logs;		/* # of active logs */
127 	int inline_xattr_size;		/* inline xattr size */
128 #ifdef CONFIG_F2FS_FAULT_INJECTION
129 	struct f2fs_fault_info fault_info;	/* For fault injection */
130 #endif
131 #ifdef CONFIG_QUOTA
132 	/* Names of quota files with journalled quota */
133 	char *s_qf_names[MAXQUOTAS];
134 	int s_jquota_fmt;			/* Format of quota to use */
135 #endif
136 	/* For which write hints are passed down to block layer */
137 	int whint_mode;
138 	int alloc_mode;			/* segment allocation policy */
139 	int fsync_mode;			/* fsync policy */
140 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
141 	int bggc_mode;			/* bggc mode: off, on or sync */
142 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
143 	block_t unusable_cap_perc;	/* percentage for cap */
144 	block_t unusable_cap;		/* Amount of space allowed to be
145 					 * unusable when disabling checkpoint
146 					 */
147 
148 	/* For compression */
149 	unsigned char compress_algorithm;	/* algorithm type */
150 	unsigned char compress_log_size;	/* cluster log size */
151 	unsigned char compress_level;		/* compress level */
152 	bool compress_chksum;			/* compressed data chksum */
153 	unsigned char compress_ext_cnt;		/* extension count */
154 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
155 	int compress_mode;			/* compression mode */
156 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
157 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
158 };
159 
160 #define F2FS_FEATURE_ENCRYPT		0x0001
161 #define F2FS_FEATURE_BLKZONED		0x0002
162 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
163 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
164 #define F2FS_FEATURE_PRJQUOTA		0x0010
165 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
166 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
167 #define F2FS_FEATURE_QUOTA_INO		0x0080
168 #define F2FS_FEATURE_INODE_CRTIME	0x0100
169 #define F2FS_FEATURE_LOST_FOUND		0x0200
170 #define F2FS_FEATURE_VERITY		0x0400
171 #define F2FS_FEATURE_SB_CHKSUM		0x0800
172 #define F2FS_FEATURE_CASEFOLD		0x1000
173 #define F2FS_FEATURE_COMPRESSION	0x2000
174 #define F2FS_FEATURE_RO			0x4000
175 
176 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
177 	((raw_super->feature & cpu_to_le32(mask)) != 0)
178 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
179 #define F2FS_SET_FEATURE(sbi, mask)					\
180 	(sbi->raw_super->feature |= cpu_to_le32(mask))
181 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
182 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
183 
184 /*
185  * Default values for user and/or group using reserved blocks
186  */
187 #define	F2FS_DEF_RESUID		0
188 #define	F2FS_DEF_RESGID		0
189 
190 /*
191  * For checkpoint manager
192  */
193 enum {
194 	NAT_BITMAP,
195 	SIT_BITMAP
196 };
197 
198 #define	CP_UMOUNT	0x00000001
199 #define	CP_FASTBOOT	0x00000002
200 #define	CP_SYNC		0x00000004
201 #define	CP_RECOVERY	0x00000008
202 #define	CP_DISCARD	0x00000010
203 #define CP_TRIMMED	0x00000020
204 #define CP_PAUSE	0x00000040
205 #define CP_RESIZE 	0x00000080
206 
207 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
208 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
209 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
210 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
211 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
212 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
213 #define DEF_CP_INTERVAL			60	/* 60 secs */
214 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
215 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
216 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
217 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
218 
219 struct cp_control {
220 	int reason;
221 	__u64 trim_start;
222 	__u64 trim_end;
223 	__u64 trim_minlen;
224 };
225 
226 /*
227  * indicate meta/data type
228  */
229 enum {
230 	META_CP,
231 	META_NAT,
232 	META_SIT,
233 	META_SSA,
234 	META_MAX,
235 	META_POR,
236 	DATA_GENERIC,		/* check range only */
237 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
238 	DATA_GENERIC_ENHANCE_READ,	/*
239 					 * strong check on range and segment
240 					 * bitmap but no warning due to race
241 					 * condition of read on truncated area
242 					 * by extent_cache
243 					 */
244 	META_GENERIC,
245 };
246 
247 /* for the list of ino */
248 enum {
249 	ORPHAN_INO,		/* for orphan ino list */
250 	APPEND_INO,		/* for append ino list */
251 	UPDATE_INO,		/* for update ino list */
252 	TRANS_DIR_INO,		/* for trasactions dir ino list */
253 	FLUSH_INO,		/* for multiple device flushing */
254 	MAX_INO_ENTRY,		/* max. list */
255 };
256 
257 struct ino_entry {
258 	struct list_head list;		/* list head */
259 	nid_t ino;			/* inode number */
260 	unsigned int dirty_device;	/* dirty device bitmap */
261 };
262 
263 /* for the list of inodes to be GCed */
264 struct inode_entry {
265 	struct list_head list;	/* list head */
266 	struct inode *inode;	/* vfs inode pointer */
267 };
268 
269 struct fsync_node_entry {
270 	struct list_head list;	/* list head */
271 	struct page *page;	/* warm node page pointer */
272 	unsigned int seq_id;	/* sequence id */
273 };
274 
275 struct ckpt_req {
276 	struct completion wait;		/* completion for checkpoint done */
277 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
278 	int ret;			/* return code of checkpoint */
279 	ktime_t queue_time;		/* request queued time */
280 };
281 
282 struct ckpt_req_control {
283 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
284 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
285 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
286 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
287 	atomic_t total_ckpt;		/* # of total ckpts */
288 	atomic_t queued_ckpt;		/* # of queued ckpts */
289 	struct llist_head issue_list;	/* list for command issue */
290 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
291 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
292 	unsigned int peak_time;		/* peak wait time in msec until now */
293 };
294 
295 /* for the bitmap indicate blocks to be discarded */
296 struct discard_entry {
297 	struct list_head list;	/* list head */
298 	block_t start_blkaddr;	/* start blockaddr of current segment */
299 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
300 };
301 
302 /* default discard granularity of inner discard thread, unit: block count */
303 #define DEFAULT_DISCARD_GRANULARITY		16
304 
305 /* max discard pend list number */
306 #define MAX_PLIST_NUM		512
307 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
308 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
309 
310 enum {
311 	D_PREP,			/* initial */
312 	D_PARTIAL,		/* partially submitted */
313 	D_SUBMIT,		/* all submitted */
314 	D_DONE,			/* finished */
315 };
316 
317 struct discard_info {
318 	block_t lstart;			/* logical start address */
319 	block_t len;			/* length */
320 	block_t start;			/* actual start address in dev */
321 };
322 
323 struct discard_cmd {
324 	struct rb_node rb_node;		/* rb node located in rb-tree */
325 	union {
326 		struct {
327 			block_t lstart;	/* logical start address */
328 			block_t len;	/* length */
329 			block_t start;	/* actual start address in dev */
330 		};
331 		struct discard_info di;	/* discard info */
332 
333 	};
334 	struct list_head list;		/* command list */
335 	struct completion wait;		/* compleation */
336 	struct block_device *bdev;	/* bdev */
337 	unsigned short ref;		/* reference count */
338 	unsigned char state;		/* state */
339 	unsigned char queued;		/* queued discard */
340 	int error;			/* bio error */
341 	spinlock_t lock;		/* for state/bio_ref updating */
342 	unsigned short bio_ref;		/* bio reference count */
343 };
344 
345 enum {
346 	DPOLICY_BG,
347 	DPOLICY_FORCE,
348 	DPOLICY_FSTRIM,
349 	DPOLICY_UMOUNT,
350 	MAX_DPOLICY,
351 };
352 
353 struct discard_policy {
354 	int type;			/* type of discard */
355 	unsigned int min_interval;	/* used for candidates exist */
356 	unsigned int mid_interval;	/* used for device busy */
357 	unsigned int max_interval;	/* used for candidates not exist */
358 	unsigned int max_requests;	/* # of discards issued per round */
359 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
360 	bool io_aware;			/* issue discard in idle time */
361 	bool sync;			/* submit discard with REQ_SYNC flag */
362 	bool ordered;			/* issue discard by lba order */
363 	bool timeout;			/* discard timeout for put_super */
364 	unsigned int granularity;	/* discard granularity */
365 };
366 
367 struct discard_cmd_control {
368 	struct task_struct *f2fs_issue_discard;	/* discard thread */
369 	struct list_head entry_list;		/* 4KB discard entry list */
370 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
371 	struct list_head wait_list;		/* store on-flushing entries */
372 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
373 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
374 	unsigned int discard_wake;		/* to wake up discard thread */
375 	struct mutex cmd_lock;
376 	unsigned int nr_discards;		/* # of discards in the list */
377 	unsigned int max_discards;		/* max. discards to be issued */
378 	unsigned int discard_granularity;	/* discard granularity */
379 	unsigned int undiscard_blks;		/* # of undiscard blocks */
380 	unsigned int next_pos;			/* next discard position */
381 	atomic_t issued_discard;		/* # of issued discard */
382 	atomic_t queued_discard;		/* # of queued discard */
383 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
384 	struct rb_root_cached root;		/* root of discard rb-tree */
385 	bool rbtree_check;			/* config for consistence check */
386 };
387 
388 /* for the list of fsync inodes, used only during recovery */
389 struct fsync_inode_entry {
390 	struct list_head list;	/* list head */
391 	struct inode *inode;	/* vfs inode pointer */
392 	block_t blkaddr;	/* block address locating the last fsync */
393 	block_t last_dentry;	/* block address locating the last dentry */
394 };
395 
396 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
397 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
398 
399 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
400 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
401 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
402 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
403 
404 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
405 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
406 
407 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
408 {
409 	int before = nats_in_cursum(journal);
410 
411 	journal->n_nats = cpu_to_le16(before + i);
412 	return before;
413 }
414 
415 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
416 {
417 	int before = sits_in_cursum(journal);
418 
419 	journal->n_sits = cpu_to_le16(before + i);
420 	return before;
421 }
422 
423 static inline bool __has_cursum_space(struct f2fs_journal *journal,
424 							int size, int type)
425 {
426 	if (type == NAT_JOURNAL)
427 		return size <= MAX_NAT_JENTRIES(journal);
428 	return size <= MAX_SIT_JENTRIES(journal);
429 }
430 
431 /* for inline stuff */
432 #define DEF_INLINE_RESERVED_SIZE	1
433 static inline int get_extra_isize(struct inode *inode);
434 static inline int get_inline_xattr_addrs(struct inode *inode);
435 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
436 				(CUR_ADDRS_PER_INODE(inode) -		\
437 				get_inline_xattr_addrs(inode) -	\
438 				DEF_INLINE_RESERVED_SIZE))
439 
440 /* for inline dir */
441 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
442 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
443 				BITS_PER_BYTE + 1))
444 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
445 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
446 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
447 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
448 				NR_INLINE_DENTRY(inode) + \
449 				INLINE_DENTRY_BITMAP_SIZE(inode)))
450 
451 /*
452  * For INODE and NODE manager
453  */
454 /* for directory operations */
455 
456 struct f2fs_filename {
457 	/*
458 	 * The filename the user specified.  This is NULL for some
459 	 * filesystem-internal operations, e.g. converting an inline directory
460 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
461 	 */
462 	const struct qstr *usr_fname;
463 
464 	/*
465 	 * The on-disk filename.  For encrypted directories, this is encrypted.
466 	 * This may be NULL for lookups in an encrypted dir without the key.
467 	 */
468 	struct fscrypt_str disk_name;
469 
470 	/* The dirhash of this filename */
471 	f2fs_hash_t hash;
472 
473 #ifdef CONFIG_FS_ENCRYPTION
474 	/*
475 	 * For lookups in encrypted directories: either the buffer backing
476 	 * disk_name, or a buffer that holds the decoded no-key name.
477 	 */
478 	struct fscrypt_str crypto_buf;
479 #endif
480 #ifdef CONFIG_UNICODE
481 	/*
482 	 * For casefolded directories: the casefolded name, but it's left NULL
483 	 * if the original name is not valid Unicode, if the directory is both
484 	 * casefolded and encrypted and its encryption key is unavailable, or if
485 	 * the filesystem is doing an internal operation where usr_fname is also
486 	 * NULL.  In all these cases we fall back to treating the name as an
487 	 * opaque byte sequence.
488 	 */
489 	struct fscrypt_str cf_name;
490 #endif
491 };
492 
493 struct f2fs_dentry_ptr {
494 	struct inode *inode;
495 	void *bitmap;
496 	struct f2fs_dir_entry *dentry;
497 	__u8 (*filename)[F2FS_SLOT_LEN];
498 	int max;
499 	int nr_bitmap;
500 };
501 
502 static inline void make_dentry_ptr_block(struct inode *inode,
503 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
504 {
505 	d->inode = inode;
506 	d->max = NR_DENTRY_IN_BLOCK;
507 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
508 	d->bitmap = t->dentry_bitmap;
509 	d->dentry = t->dentry;
510 	d->filename = t->filename;
511 }
512 
513 static inline void make_dentry_ptr_inline(struct inode *inode,
514 					struct f2fs_dentry_ptr *d, void *t)
515 {
516 	int entry_cnt = NR_INLINE_DENTRY(inode);
517 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
518 	int reserved_size = INLINE_RESERVED_SIZE(inode);
519 
520 	d->inode = inode;
521 	d->max = entry_cnt;
522 	d->nr_bitmap = bitmap_size;
523 	d->bitmap = t;
524 	d->dentry = t + bitmap_size + reserved_size;
525 	d->filename = t + bitmap_size + reserved_size +
526 					SIZE_OF_DIR_ENTRY * entry_cnt;
527 }
528 
529 /*
530  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
531  * as its node offset to distinguish from index node blocks.
532  * But some bits are used to mark the node block.
533  */
534 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
535 				>> OFFSET_BIT_SHIFT)
536 enum {
537 	ALLOC_NODE,			/* allocate a new node page if needed */
538 	LOOKUP_NODE,			/* look up a node without readahead */
539 	LOOKUP_NODE_RA,			/*
540 					 * look up a node with readahead called
541 					 * by get_data_block.
542 					 */
543 };
544 
545 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
546 
547 /* congestion wait timeout value, default: 20ms */
548 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
549 
550 /* maximum retry quota flush count */
551 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
552 
553 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
554 
555 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
556 
557 /* for in-memory extent cache entry */
558 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
559 
560 /* number of extent info in extent cache we try to shrink */
561 #define EXTENT_CACHE_SHRINK_NUMBER	128
562 
563 struct rb_entry {
564 	struct rb_node rb_node;		/* rb node located in rb-tree */
565 	union {
566 		struct {
567 			unsigned int ofs;	/* start offset of the entry */
568 			unsigned int len;	/* length of the entry */
569 		};
570 		unsigned long long key;		/* 64-bits key */
571 	} __packed;
572 };
573 
574 struct extent_info {
575 	unsigned int fofs;		/* start offset in a file */
576 	unsigned int len;		/* length of the extent */
577 	u32 blk;			/* start block address of the extent */
578 };
579 
580 struct extent_node {
581 	struct rb_node rb_node;		/* rb node located in rb-tree */
582 	struct extent_info ei;		/* extent info */
583 	struct list_head list;		/* node in global extent list of sbi */
584 	struct extent_tree *et;		/* extent tree pointer */
585 };
586 
587 struct extent_tree {
588 	nid_t ino;			/* inode number */
589 	struct rb_root_cached root;	/* root of extent info rb-tree */
590 	struct extent_node *cached_en;	/* recently accessed extent node */
591 	struct extent_info largest;	/* largested extent info */
592 	struct list_head list;		/* to be used by sbi->zombie_list */
593 	rwlock_t lock;			/* protect extent info rb-tree */
594 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
595 	bool largest_updated;		/* largest extent updated */
596 };
597 
598 /*
599  * This structure is taken from ext4_map_blocks.
600  *
601  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
602  */
603 #define F2FS_MAP_NEW		(1 << BH_New)
604 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
605 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
606 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
607 				F2FS_MAP_UNWRITTEN)
608 
609 struct f2fs_map_blocks {
610 	block_t m_pblk;
611 	block_t m_lblk;
612 	unsigned int m_len;
613 	unsigned int m_flags;
614 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
615 	pgoff_t *m_next_extent;		/* point to next possible extent */
616 	int m_seg_type;
617 	bool m_may_create;		/* indicate it is from write path */
618 };
619 
620 /* for flag in get_data_block */
621 enum {
622 	F2FS_GET_BLOCK_DEFAULT,
623 	F2FS_GET_BLOCK_FIEMAP,
624 	F2FS_GET_BLOCK_BMAP,
625 	F2FS_GET_BLOCK_DIO,
626 	F2FS_GET_BLOCK_PRE_DIO,
627 	F2FS_GET_BLOCK_PRE_AIO,
628 	F2FS_GET_BLOCK_PRECACHE,
629 };
630 
631 /*
632  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
633  */
634 #define FADVISE_COLD_BIT	0x01
635 #define FADVISE_LOST_PINO_BIT	0x02
636 #define FADVISE_ENCRYPT_BIT	0x04
637 #define FADVISE_ENC_NAME_BIT	0x08
638 #define FADVISE_KEEP_SIZE_BIT	0x10
639 #define FADVISE_HOT_BIT		0x20
640 #define FADVISE_VERITY_BIT	0x40
641 
642 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
643 
644 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
645 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
646 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
647 
648 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
649 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
650 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
651 
652 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
653 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
654 
655 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
656 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
657 
658 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
659 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
660 
661 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
662 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
663 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
664 
665 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
666 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
667 
668 #define DEF_DIR_LEVEL		0
669 
670 enum {
671 	GC_FAILURE_PIN,
672 	GC_FAILURE_ATOMIC,
673 	MAX_GC_FAILURE
674 };
675 
676 /* used for f2fs_inode_info->flags */
677 enum {
678 	FI_NEW_INODE,		/* indicate newly allocated inode */
679 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
680 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
681 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
682 	FI_INC_LINK,		/* need to increment i_nlink */
683 	FI_ACL_MODE,		/* indicate acl mode */
684 	FI_NO_ALLOC,		/* should not allocate any blocks */
685 	FI_FREE_NID,		/* free allocated nide */
686 	FI_NO_EXTENT,		/* not to use the extent cache */
687 	FI_INLINE_XATTR,	/* used for inline xattr */
688 	FI_INLINE_DATA,		/* used for inline data*/
689 	FI_INLINE_DENTRY,	/* used for inline dentry */
690 	FI_APPEND_WRITE,	/* inode has appended data */
691 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
692 	FI_NEED_IPU,		/* used for ipu per file */
693 	FI_ATOMIC_FILE,		/* indicate atomic file */
694 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
695 	FI_VOLATILE_FILE,	/* indicate volatile file */
696 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
697 	FI_DROP_CACHE,		/* drop dirty page cache */
698 	FI_DATA_EXIST,		/* indicate data exists */
699 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
700 	FI_DO_DEFRAG,		/* indicate defragment is running */
701 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
702 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
703 	FI_HOT_DATA,		/* indicate file is hot */
704 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
705 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
706 	FI_PIN_FILE,		/* indicate file should not be gced */
707 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
708 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
709 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
710 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
711 	FI_MMAP_FILE,		/* indicate file was mmapped */
712 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
713 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
714 	FI_ALIGNED_WRITE,	/* enable aligned write */
715 	FI_MAX,			/* max flag, never be used */
716 };
717 
718 struct f2fs_inode_info {
719 	struct inode vfs_inode;		/* serve a vfs inode */
720 	unsigned long i_flags;		/* keep an inode flags for ioctl */
721 	unsigned char i_advise;		/* use to give file attribute hints */
722 	unsigned char i_dir_level;	/* use for dentry level for large dir */
723 	unsigned int i_current_depth;	/* only for directory depth */
724 	/* for gc failure statistic */
725 	unsigned int i_gc_failures[MAX_GC_FAILURE];
726 	unsigned int i_pino;		/* parent inode number */
727 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
728 
729 	/* Use below internally in f2fs*/
730 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
731 	struct rw_semaphore i_sem;	/* protect fi info */
732 	atomic_t dirty_pages;		/* # of dirty pages */
733 	f2fs_hash_t chash;		/* hash value of given file name */
734 	unsigned int clevel;		/* maximum level of given file name */
735 	struct task_struct *task;	/* lookup and create consistency */
736 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
737 	nid_t i_xattr_nid;		/* node id that contains xattrs */
738 	loff_t	last_disk_size;		/* lastly written file size */
739 	spinlock_t i_size_lock;		/* protect last_disk_size */
740 
741 #ifdef CONFIG_QUOTA
742 	struct dquot *i_dquot[MAXQUOTAS];
743 
744 	/* quota space reservation, managed internally by quota code */
745 	qsize_t i_reserved_quota;
746 #endif
747 	struct list_head dirty_list;	/* dirty list for dirs and files */
748 	struct list_head gdirty_list;	/* linked in global dirty list */
749 	struct list_head inmem_ilist;	/* list for inmem inodes */
750 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
751 	struct task_struct *inmem_task;	/* store inmemory task */
752 	struct mutex inmem_lock;	/* lock for inmemory pages */
753 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
754 
755 	/* avoid racing between foreground op and gc */
756 	struct rw_semaphore i_gc_rwsem[2];
757 	struct rw_semaphore i_mmap_sem;
758 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
759 
760 	int i_extra_isize;		/* size of extra space located in i_addr */
761 	kprojid_t i_projid;		/* id for project quota */
762 	int i_inline_xattr_size;	/* inline xattr size */
763 	struct timespec64 i_crtime;	/* inode creation time */
764 	struct timespec64 i_disk_time[4];/* inode disk times */
765 
766 	/* for file compress */
767 	atomic_t i_compr_blocks;		/* # of compressed blocks */
768 	unsigned char i_compress_algorithm;	/* algorithm type */
769 	unsigned char i_log_cluster_size;	/* log of cluster size */
770 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
771 	unsigned short i_compress_flag;		/* compress flag */
772 	unsigned int i_cluster_size;		/* cluster size */
773 };
774 
775 static inline void get_extent_info(struct extent_info *ext,
776 					struct f2fs_extent *i_ext)
777 {
778 	ext->fofs = le32_to_cpu(i_ext->fofs);
779 	ext->blk = le32_to_cpu(i_ext->blk);
780 	ext->len = le32_to_cpu(i_ext->len);
781 }
782 
783 static inline void set_raw_extent(struct extent_info *ext,
784 					struct f2fs_extent *i_ext)
785 {
786 	i_ext->fofs = cpu_to_le32(ext->fofs);
787 	i_ext->blk = cpu_to_le32(ext->blk);
788 	i_ext->len = cpu_to_le32(ext->len);
789 }
790 
791 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
792 						u32 blk, unsigned int len)
793 {
794 	ei->fofs = fofs;
795 	ei->blk = blk;
796 	ei->len = len;
797 }
798 
799 static inline bool __is_discard_mergeable(struct discard_info *back,
800 			struct discard_info *front, unsigned int max_len)
801 {
802 	return (back->lstart + back->len == front->lstart) &&
803 		(back->len + front->len <= max_len);
804 }
805 
806 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
807 			struct discard_info *back, unsigned int max_len)
808 {
809 	return __is_discard_mergeable(back, cur, max_len);
810 }
811 
812 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
813 			struct discard_info *front, unsigned int max_len)
814 {
815 	return __is_discard_mergeable(cur, front, max_len);
816 }
817 
818 static inline bool __is_extent_mergeable(struct extent_info *back,
819 						struct extent_info *front)
820 {
821 	return (back->fofs + back->len == front->fofs &&
822 			back->blk + back->len == front->blk);
823 }
824 
825 static inline bool __is_back_mergeable(struct extent_info *cur,
826 						struct extent_info *back)
827 {
828 	return __is_extent_mergeable(back, cur);
829 }
830 
831 static inline bool __is_front_mergeable(struct extent_info *cur,
832 						struct extent_info *front)
833 {
834 	return __is_extent_mergeable(cur, front);
835 }
836 
837 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
838 static inline void __try_update_largest_extent(struct extent_tree *et,
839 						struct extent_node *en)
840 {
841 	if (en->ei.len > et->largest.len) {
842 		et->largest = en->ei;
843 		et->largest_updated = true;
844 	}
845 }
846 
847 /*
848  * For free nid management
849  */
850 enum nid_state {
851 	FREE_NID,		/* newly added to free nid list */
852 	PREALLOC_NID,		/* it is preallocated */
853 	MAX_NID_STATE,
854 };
855 
856 enum nat_state {
857 	TOTAL_NAT,
858 	DIRTY_NAT,
859 	RECLAIMABLE_NAT,
860 	MAX_NAT_STATE,
861 };
862 
863 struct f2fs_nm_info {
864 	block_t nat_blkaddr;		/* base disk address of NAT */
865 	nid_t max_nid;			/* maximum possible node ids */
866 	nid_t available_nids;		/* # of available node ids */
867 	nid_t next_scan_nid;		/* the next nid to be scanned */
868 	unsigned int ram_thresh;	/* control the memory footprint */
869 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
870 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
871 
872 	/* NAT cache management */
873 	struct radix_tree_root nat_root;/* root of the nat entry cache */
874 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
875 	struct rw_semaphore nat_tree_lock;	/* protect nat entry tree */
876 	struct list_head nat_entries;	/* cached nat entry list (clean) */
877 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
878 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
879 	unsigned int nat_blocks;	/* # of nat blocks */
880 
881 	/* free node ids management */
882 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
883 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
884 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
885 	spinlock_t nid_list_lock;	/* protect nid lists ops */
886 	struct mutex build_lock;	/* lock for build free nids */
887 	unsigned char **free_nid_bitmap;
888 	unsigned char *nat_block_bitmap;
889 	unsigned short *free_nid_count;	/* free nid count of NAT block */
890 
891 	/* for checkpoint */
892 	char *nat_bitmap;		/* NAT bitmap pointer */
893 
894 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
895 	unsigned char *nat_bits;	/* NAT bits blocks */
896 	unsigned char *full_nat_bits;	/* full NAT pages */
897 	unsigned char *empty_nat_bits;	/* empty NAT pages */
898 #ifdef CONFIG_F2FS_CHECK_FS
899 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
900 #endif
901 	int bitmap_size;		/* bitmap size */
902 };
903 
904 /*
905  * this structure is used as one of function parameters.
906  * all the information are dedicated to a given direct node block determined
907  * by the data offset in a file.
908  */
909 struct dnode_of_data {
910 	struct inode *inode;		/* vfs inode pointer */
911 	struct page *inode_page;	/* its inode page, NULL is possible */
912 	struct page *node_page;		/* cached direct node page */
913 	nid_t nid;			/* node id of the direct node block */
914 	unsigned int ofs_in_node;	/* data offset in the node page */
915 	bool inode_page_locked;		/* inode page is locked or not */
916 	bool node_changed;		/* is node block changed */
917 	char cur_level;			/* level of hole node page */
918 	char max_level;			/* level of current page located */
919 	block_t	data_blkaddr;		/* block address of the node block */
920 };
921 
922 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
923 		struct page *ipage, struct page *npage, nid_t nid)
924 {
925 	memset(dn, 0, sizeof(*dn));
926 	dn->inode = inode;
927 	dn->inode_page = ipage;
928 	dn->node_page = npage;
929 	dn->nid = nid;
930 }
931 
932 /*
933  * For SIT manager
934  *
935  * By default, there are 6 active log areas across the whole main area.
936  * When considering hot and cold data separation to reduce cleaning overhead,
937  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
938  * respectively.
939  * In the current design, you should not change the numbers intentionally.
940  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
941  * logs individually according to the underlying devices. (default: 6)
942  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
943  * data and 8 for node logs.
944  */
945 #define	NR_CURSEG_DATA_TYPE	(3)
946 #define NR_CURSEG_NODE_TYPE	(3)
947 #define NR_CURSEG_INMEM_TYPE	(2)
948 #define NR_CURSEG_RO_TYPE	(2)
949 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
950 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
951 
952 enum {
953 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
954 	CURSEG_WARM_DATA,	/* data blocks */
955 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
956 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
957 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
958 	CURSEG_COLD_NODE,	/* indirect node blocks */
959 	NR_PERSISTENT_LOG,	/* number of persistent log */
960 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
961 				/* pinned file that needs consecutive block address */
962 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
963 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
964 };
965 
966 struct flush_cmd {
967 	struct completion wait;
968 	struct llist_node llnode;
969 	nid_t ino;
970 	int ret;
971 };
972 
973 struct flush_cmd_control {
974 	struct task_struct *f2fs_issue_flush;	/* flush thread */
975 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
976 	atomic_t issued_flush;			/* # of issued flushes */
977 	atomic_t queued_flush;			/* # of queued flushes */
978 	struct llist_head issue_list;		/* list for command issue */
979 	struct llist_node *dispatch_list;	/* list for command dispatch */
980 };
981 
982 struct f2fs_sm_info {
983 	struct sit_info *sit_info;		/* whole segment information */
984 	struct free_segmap_info *free_info;	/* free segment information */
985 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
986 	struct curseg_info *curseg_array;	/* active segment information */
987 
988 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
989 
990 	block_t seg0_blkaddr;		/* block address of 0'th segment */
991 	block_t main_blkaddr;		/* start block address of main area */
992 	block_t ssa_blkaddr;		/* start block address of SSA area */
993 
994 	unsigned int segment_count;	/* total # of segments */
995 	unsigned int main_segments;	/* # of segments in main area */
996 	unsigned int reserved_segments;	/* # of reserved segments */
997 	unsigned int ovp_segments;	/* # of overprovision segments */
998 
999 	/* a threshold to reclaim prefree segments */
1000 	unsigned int rec_prefree_segments;
1001 
1002 	/* for batched trimming */
1003 	unsigned int trim_sections;		/* # of sections to trim */
1004 
1005 	struct list_head sit_entry_set;	/* sit entry set list */
1006 
1007 	unsigned int ipu_policy;	/* in-place-update policy */
1008 	unsigned int min_ipu_util;	/* in-place-update threshold */
1009 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1010 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1011 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1012 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1013 
1014 	/* for flush command control */
1015 	struct flush_cmd_control *fcc_info;
1016 
1017 	/* for discard command control */
1018 	struct discard_cmd_control *dcc_info;
1019 };
1020 
1021 /*
1022  * For superblock
1023  */
1024 /*
1025  * COUNT_TYPE for monitoring
1026  *
1027  * f2fs monitors the number of several block types such as on-writeback,
1028  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1029  */
1030 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1031 enum count_type {
1032 	F2FS_DIRTY_DENTS,
1033 	F2FS_DIRTY_DATA,
1034 	F2FS_DIRTY_QDATA,
1035 	F2FS_DIRTY_NODES,
1036 	F2FS_DIRTY_META,
1037 	F2FS_INMEM_PAGES,
1038 	F2FS_DIRTY_IMETA,
1039 	F2FS_WB_CP_DATA,
1040 	F2FS_WB_DATA,
1041 	F2FS_RD_DATA,
1042 	F2FS_RD_NODE,
1043 	F2FS_RD_META,
1044 	F2FS_DIO_WRITE,
1045 	F2FS_DIO_READ,
1046 	NR_COUNT_TYPE,
1047 };
1048 
1049 /*
1050  * The below are the page types of bios used in submit_bio().
1051  * The available types are:
1052  * DATA			User data pages. It operates as async mode.
1053  * NODE			Node pages. It operates as async mode.
1054  * META			FS metadata pages such as SIT, NAT, CP.
1055  * NR_PAGE_TYPE		The number of page types.
1056  * META_FLUSH		Make sure the previous pages are written
1057  *			with waiting the bio's completion
1058  * ...			Only can be used with META.
1059  */
1060 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1061 enum page_type {
1062 	DATA,
1063 	NODE,
1064 	META,
1065 	NR_PAGE_TYPE,
1066 	META_FLUSH,
1067 	INMEM,		/* the below types are used by tracepoints only. */
1068 	INMEM_DROP,
1069 	INMEM_INVALIDATE,
1070 	INMEM_REVOKE,
1071 	IPU,
1072 	OPU,
1073 };
1074 
1075 enum temp_type {
1076 	HOT = 0,	/* must be zero for meta bio */
1077 	WARM,
1078 	COLD,
1079 	NR_TEMP_TYPE,
1080 };
1081 
1082 enum need_lock_type {
1083 	LOCK_REQ = 0,
1084 	LOCK_DONE,
1085 	LOCK_RETRY,
1086 };
1087 
1088 enum cp_reason_type {
1089 	CP_NO_NEEDED,
1090 	CP_NON_REGULAR,
1091 	CP_COMPRESSED,
1092 	CP_HARDLINK,
1093 	CP_SB_NEED_CP,
1094 	CP_WRONG_PINO,
1095 	CP_NO_SPC_ROLL,
1096 	CP_NODE_NEED_CP,
1097 	CP_FASTBOOT_MODE,
1098 	CP_SPEC_LOG_NUM,
1099 	CP_RECOVER_DIR,
1100 };
1101 
1102 enum iostat_type {
1103 	/* WRITE IO */
1104 	APP_DIRECT_IO,			/* app direct write IOs */
1105 	APP_BUFFERED_IO,		/* app buffered write IOs */
1106 	APP_WRITE_IO,			/* app write IOs */
1107 	APP_MAPPED_IO,			/* app mapped IOs */
1108 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1109 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1110 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1111 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1112 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1113 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1114 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1115 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1116 
1117 	/* READ IO */
1118 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1119 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1120 	APP_READ_IO,			/* app read IOs */
1121 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1122 	FS_DATA_READ_IO,		/* data read IOs */
1123 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1124 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1125 	FS_NODE_READ_IO,		/* node read IOs */
1126 	FS_META_READ_IO,		/* meta read IOs */
1127 
1128 	/* other */
1129 	FS_DISCARD,			/* discard */
1130 	NR_IO_TYPE,
1131 };
1132 
1133 struct f2fs_io_info {
1134 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1135 	nid_t ino;		/* inode number */
1136 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1137 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1138 	int op;			/* contains REQ_OP_ */
1139 	int op_flags;		/* req_flag_bits */
1140 	block_t new_blkaddr;	/* new block address to be written */
1141 	block_t old_blkaddr;	/* old block address before Cow */
1142 	struct page *page;	/* page to be written */
1143 	struct page *encrypted_page;	/* encrypted page */
1144 	struct page *compressed_page;	/* compressed page */
1145 	struct list_head list;		/* serialize IOs */
1146 	bool submitted;		/* indicate IO submission */
1147 	int need_lock;		/* indicate we need to lock cp_rwsem */
1148 	bool in_list;		/* indicate fio is in io_list */
1149 	bool is_por;		/* indicate IO is from recovery or not */
1150 	bool retry;		/* need to reallocate block address */
1151 	int compr_blocks;	/* # of compressed block addresses */
1152 	bool encrypted;		/* indicate file is encrypted */
1153 	enum iostat_type io_type;	/* io type */
1154 	struct writeback_control *io_wbc; /* writeback control */
1155 	struct bio **bio;		/* bio for ipu */
1156 	sector_t *last_block;		/* last block number in bio */
1157 	unsigned char version;		/* version of the node */
1158 };
1159 
1160 struct bio_entry {
1161 	struct bio *bio;
1162 	struct list_head list;
1163 };
1164 
1165 #define is_read_io(rw) ((rw) == READ)
1166 struct f2fs_bio_info {
1167 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1168 	struct bio *bio;		/* bios to merge */
1169 	sector_t last_block_in_bio;	/* last block number */
1170 	struct f2fs_io_info fio;	/* store buffered io info. */
1171 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1172 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1173 	struct list_head io_list;	/* track fios */
1174 	struct list_head bio_list;	/* bio entry list head */
1175 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1176 };
1177 
1178 #define FDEV(i)				(sbi->devs[i])
1179 #define RDEV(i)				(raw_super->devs[i])
1180 struct f2fs_dev_info {
1181 	struct block_device *bdev;
1182 	char path[MAX_PATH_LEN];
1183 	unsigned int total_segments;
1184 	block_t start_blk;
1185 	block_t end_blk;
1186 #ifdef CONFIG_BLK_DEV_ZONED
1187 	unsigned int nr_blkz;		/* Total number of zones */
1188 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1189 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1190 #endif
1191 };
1192 
1193 enum inode_type {
1194 	DIR_INODE,			/* for dirty dir inode */
1195 	FILE_INODE,			/* for dirty regular/symlink inode */
1196 	DIRTY_META,			/* for all dirtied inode metadata */
1197 	ATOMIC_FILE,			/* for all atomic files */
1198 	NR_INODE_TYPE,
1199 };
1200 
1201 /* for inner inode cache management */
1202 struct inode_management {
1203 	struct radix_tree_root ino_root;	/* ino entry array */
1204 	spinlock_t ino_lock;			/* for ino entry lock */
1205 	struct list_head ino_list;		/* inode list head */
1206 	unsigned long ino_num;			/* number of entries */
1207 };
1208 
1209 /* for GC_AT */
1210 struct atgc_management {
1211 	bool atgc_enabled;			/* ATGC is enabled or not */
1212 	struct rb_root_cached root;		/* root of victim rb-tree */
1213 	struct list_head victim_list;		/* linked with all victim entries */
1214 	unsigned int victim_count;		/* victim count in rb-tree */
1215 	unsigned int candidate_ratio;		/* candidate ratio */
1216 	unsigned int max_candidate_count;	/* max candidate count */
1217 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1218 	unsigned long long age_threshold;	/* age threshold */
1219 };
1220 
1221 /* For s_flag in struct f2fs_sb_info */
1222 enum {
1223 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1224 	SBI_IS_CLOSE,				/* specify unmounting */
1225 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1226 	SBI_POR_DOING,				/* recovery is doing or not */
1227 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1228 	SBI_NEED_CP,				/* need to checkpoint */
1229 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1230 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1231 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1232 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1233 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1234 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1235 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1236 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1237 };
1238 
1239 enum {
1240 	CP_TIME,
1241 	REQ_TIME,
1242 	DISCARD_TIME,
1243 	GC_TIME,
1244 	DISABLE_TIME,
1245 	UMOUNT_DISCARD_TIMEOUT,
1246 	MAX_TIME,
1247 };
1248 
1249 enum {
1250 	GC_NORMAL,
1251 	GC_IDLE_CB,
1252 	GC_IDLE_GREEDY,
1253 	GC_IDLE_AT,
1254 	GC_URGENT_HIGH,
1255 	GC_URGENT_LOW,
1256 };
1257 
1258 enum {
1259 	BGGC_MODE_ON,		/* background gc is on */
1260 	BGGC_MODE_OFF,		/* background gc is off */
1261 	BGGC_MODE_SYNC,		/*
1262 				 * background gc is on, migrating blocks
1263 				 * like foreground gc
1264 				 */
1265 };
1266 
1267 enum {
1268 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1269 	FS_MODE_LFS,		/* use lfs allocation only */
1270 };
1271 
1272 enum {
1273 	WHINT_MODE_OFF,		/* not pass down write hints */
1274 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1275 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1276 };
1277 
1278 enum {
1279 	ALLOC_MODE_DEFAULT,	/* stay default */
1280 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1281 };
1282 
1283 enum fsync_mode {
1284 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1285 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1286 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1287 };
1288 
1289 enum {
1290 	COMPR_MODE_FS,		/*
1291 				 * automatically compress compression
1292 				 * enabled files
1293 				 */
1294 	COMPR_MODE_USER,	/*
1295 				 * automatical compression is disabled.
1296 				 * user can control the file compression
1297 				 * using ioctls
1298 				 */
1299 };
1300 
1301 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1302 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1303 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1304 
1305 /*
1306  * Layout of f2fs page.private:
1307  *
1308  * Layout A: lowest bit should be 1
1309  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1310  * bit 0	PAGE_PRIVATE_NOT_POINTER
1311  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1312  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1313  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1314  * bit 4	PAGE_PRIVATE_INLINE_INODE
1315  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1316  * bit 6-	f2fs private data
1317  *
1318  * Layout B: lowest bit should be 0
1319  * page.private is a wrapped pointer.
1320  */
1321 enum {
1322 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1323 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1324 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1325 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1326 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1327 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1328 	PAGE_PRIVATE_MAX
1329 };
1330 
1331 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1332 static inline bool page_private_##name(struct page *page) \
1333 { \
1334 	return test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1335 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1336 }
1337 
1338 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1339 static inline void set_page_private_##name(struct page *page) \
1340 { \
1341 	if (!PagePrivate(page)) { \
1342 		get_page(page); \
1343 		SetPagePrivate(page); \
1344 	} \
1345 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1346 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1347 }
1348 
1349 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1350 static inline void clear_page_private_##name(struct page *page) \
1351 { \
1352 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1353 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1354 		set_page_private(page, 0); \
1355 		if (PagePrivate(page)) { \
1356 			ClearPagePrivate(page); \
1357 			put_page(page); \
1358 		}\
1359 	} \
1360 }
1361 
1362 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1363 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1364 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1365 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1366 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1367 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1368 
1369 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1370 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1371 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1372 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1373 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1374 
1375 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1376 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1377 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1378 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1379 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1380 
1381 static inline unsigned long get_page_private_data(struct page *page)
1382 {
1383 	unsigned long data = page_private(page);
1384 
1385 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1386 		return 0;
1387 	return data >> PAGE_PRIVATE_MAX;
1388 }
1389 
1390 static inline void set_page_private_data(struct page *page, unsigned long data)
1391 {
1392 	if (!PagePrivate(page)) {
1393 		get_page(page);
1394 		SetPagePrivate(page);
1395 	}
1396 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1397 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1398 }
1399 
1400 static inline void clear_page_private_data(struct page *page)
1401 {
1402 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1403 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1404 		set_page_private(page, 0);
1405 		if (PagePrivate(page)) {
1406 			ClearPagePrivate(page);
1407 			put_page(page);
1408 		}
1409 	}
1410 }
1411 
1412 /* For compression */
1413 enum compress_algorithm_type {
1414 	COMPRESS_LZO,
1415 	COMPRESS_LZ4,
1416 	COMPRESS_ZSTD,
1417 	COMPRESS_LZORLE,
1418 	COMPRESS_MAX,
1419 };
1420 
1421 enum compress_flag {
1422 	COMPRESS_CHKSUM,
1423 	COMPRESS_MAX_FLAG,
1424 };
1425 
1426 #define	COMPRESS_WATERMARK			20
1427 #define	COMPRESS_PERCENT			20
1428 
1429 #define COMPRESS_DATA_RESERVED_SIZE		4
1430 struct compress_data {
1431 	__le32 clen;			/* compressed data size */
1432 	__le32 chksum;			/* compressed data chksum */
1433 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1434 	u8 cdata[];			/* compressed data */
1435 };
1436 
1437 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1438 
1439 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1440 
1441 #define	COMPRESS_LEVEL_OFFSET	8
1442 
1443 /* compress context */
1444 struct compress_ctx {
1445 	struct inode *inode;		/* inode the context belong to */
1446 	pgoff_t cluster_idx;		/* cluster index number */
1447 	unsigned int cluster_size;	/* page count in cluster */
1448 	unsigned int log_cluster_size;	/* log of cluster size */
1449 	struct page **rpages;		/* pages store raw data in cluster */
1450 	unsigned int nr_rpages;		/* total page number in rpages */
1451 	struct page **cpages;		/* pages store compressed data in cluster */
1452 	unsigned int nr_cpages;		/* total page number in cpages */
1453 	void *rbuf;			/* virtual mapped address on rpages */
1454 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1455 	size_t rlen;			/* valid data length in rbuf */
1456 	size_t clen;			/* valid data length in cbuf */
1457 	void *private;			/* payload buffer for specified compression algorithm */
1458 	void *private2;			/* extra payload buffer */
1459 };
1460 
1461 /* compress context for write IO path */
1462 struct compress_io_ctx {
1463 	u32 magic;			/* magic number to indicate page is compressed */
1464 	struct inode *inode;		/* inode the context belong to */
1465 	struct page **rpages;		/* pages store raw data in cluster */
1466 	unsigned int nr_rpages;		/* total page number in rpages */
1467 	atomic_t pending_pages;		/* in-flight compressed page count */
1468 };
1469 
1470 /* Context for decompressing one cluster on the read IO path */
1471 struct decompress_io_ctx {
1472 	u32 magic;			/* magic number to indicate page is compressed */
1473 	struct inode *inode;		/* inode the context belong to */
1474 	pgoff_t cluster_idx;		/* cluster index number */
1475 	unsigned int cluster_size;	/* page count in cluster */
1476 	unsigned int log_cluster_size;	/* log of cluster size */
1477 	struct page **rpages;		/* pages store raw data in cluster */
1478 	unsigned int nr_rpages;		/* total page number in rpages */
1479 	struct page **cpages;		/* pages store compressed data in cluster */
1480 	unsigned int nr_cpages;		/* total page number in cpages */
1481 	struct page **tpages;		/* temp pages to pad holes in cluster */
1482 	void *rbuf;			/* virtual mapped address on rpages */
1483 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1484 	size_t rlen;			/* valid data length in rbuf */
1485 	size_t clen;			/* valid data length in cbuf */
1486 
1487 	/*
1488 	 * The number of compressed pages remaining to be read in this cluster.
1489 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1490 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1491 	 * is decompressed (or an error is reported).
1492 	 *
1493 	 * If an error occurs before all the pages have been submitted for I/O,
1494 	 * then this will never reach 0.  In this case the I/O submitter is
1495 	 * responsible for calling f2fs_decompress_end_io() instead.
1496 	 */
1497 	atomic_t remaining_pages;
1498 
1499 	/*
1500 	 * Number of references to this decompress_io_ctx.
1501 	 *
1502 	 * One reference is held for I/O completion.  This reference is dropped
1503 	 * after the pagecache pages are updated and unlocked -- either after
1504 	 * decompression (and verity if enabled), or after an error.
1505 	 *
1506 	 * In addition, each compressed page holds a reference while it is in a
1507 	 * bio.  These references are necessary prevent compressed pages from
1508 	 * being freed while they are still in a bio.
1509 	 */
1510 	refcount_t refcnt;
1511 
1512 	bool failed;			/* IO error occurred before decompression? */
1513 	bool need_verity;		/* need fs-verity verification after decompression? */
1514 	void *private;			/* payload buffer for specified decompression algorithm */
1515 	void *private2;			/* extra payload buffer */
1516 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1517 };
1518 
1519 #define NULL_CLUSTER			((unsigned int)(~0))
1520 #define MIN_COMPRESS_LOG_SIZE		2
1521 #define MAX_COMPRESS_LOG_SIZE		8
1522 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1523 
1524 struct f2fs_sb_info {
1525 	struct super_block *sb;			/* pointer to VFS super block */
1526 	struct proc_dir_entry *s_proc;		/* proc entry */
1527 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1528 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1529 	int valid_super_block;			/* valid super block no */
1530 	unsigned long s_flag;				/* flags for sbi */
1531 	struct mutex writepages;		/* mutex for writepages() */
1532 
1533 #ifdef CONFIG_BLK_DEV_ZONED
1534 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1535 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1536 #endif
1537 
1538 	/* for node-related operations */
1539 	struct f2fs_nm_info *nm_info;		/* node manager */
1540 	struct inode *node_inode;		/* cache node blocks */
1541 
1542 	/* for segment-related operations */
1543 	struct f2fs_sm_info *sm_info;		/* segment manager */
1544 
1545 	/* for bio operations */
1546 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1547 	/* keep migration IO order for LFS mode */
1548 	struct rw_semaphore io_order_lock;
1549 	mempool_t *write_io_dummy;		/* Dummy pages */
1550 
1551 	/* for checkpoint */
1552 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1553 	int cur_cp_pack;			/* remain current cp pack */
1554 	spinlock_t cp_lock;			/* for flag in ckpt */
1555 	struct inode *meta_inode;		/* cache meta blocks */
1556 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1557 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1558 	struct rw_semaphore node_write;		/* locking node writes */
1559 	struct rw_semaphore node_change;	/* locking node change */
1560 	wait_queue_head_t cp_wait;
1561 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1562 	long interval_time[MAX_TIME];		/* to store thresholds */
1563 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1564 
1565 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1566 
1567 	spinlock_t fsync_node_lock;		/* for node entry lock */
1568 	struct list_head fsync_node_list;	/* node list head */
1569 	unsigned int fsync_seg_id;		/* sequence id */
1570 	unsigned int fsync_node_num;		/* number of node entries */
1571 
1572 	/* for orphan inode, use 0'th array */
1573 	unsigned int max_orphans;		/* max orphan inodes */
1574 
1575 	/* for inode management */
1576 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1577 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1578 	struct mutex flush_lock;		/* for flush exclusion */
1579 
1580 	/* for extent tree cache */
1581 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1582 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1583 	struct list_head extent_list;		/* lru list for shrinker */
1584 	spinlock_t extent_lock;			/* locking extent lru list */
1585 	atomic_t total_ext_tree;		/* extent tree count */
1586 	struct list_head zombie_list;		/* extent zombie tree list */
1587 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1588 	atomic_t total_ext_node;		/* extent info count */
1589 
1590 	/* basic filesystem units */
1591 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1592 	unsigned int log_blocksize;		/* log2 block size */
1593 	unsigned int blocksize;			/* block size */
1594 	unsigned int root_ino_num;		/* root inode number*/
1595 	unsigned int node_ino_num;		/* node inode number*/
1596 	unsigned int meta_ino_num;		/* meta inode number*/
1597 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1598 	unsigned int blocks_per_seg;		/* blocks per segment */
1599 	unsigned int segs_per_sec;		/* segments per section */
1600 	unsigned int secs_per_zone;		/* sections per zone */
1601 	unsigned int total_sections;		/* total section count */
1602 	unsigned int total_node_count;		/* total node block count */
1603 	unsigned int total_valid_node_count;	/* valid node block count */
1604 	int dir_level;				/* directory level */
1605 	int readdir_ra;				/* readahead inode in readdir */
1606 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1607 
1608 	block_t user_block_count;		/* # of user blocks */
1609 	block_t total_valid_block_count;	/* # of valid blocks */
1610 	block_t discard_blks;			/* discard command candidats */
1611 	block_t last_valid_block_count;		/* for recovery */
1612 	block_t reserved_blocks;		/* configurable reserved blocks */
1613 	block_t current_reserved_blocks;	/* current reserved blocks */
1614 
1615 	/* Additional tracking for no checkpoint mode */
1616 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1617 
1618 	unsigned int nquota_files;		/* # of quota sysfile */
1619 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1620 
1621 	/* # of pages, see count_type */
1622 	atomic_t nr_pages[NR_COUNT_TYPE];
1623 	/* # of allocated blocks */
1624 	struct percpu_counter alloc_valid_block_count;
1625 
1626 	/* writeback control */
1627 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1628 
1629 	/* valid inode count */
1630 	struct percpu_counter total_valid_inode_count;
1631 
1632 	struct f2fs_mount_info mount_opt;	/* mount options */
1633 
1634 	/* for cleaning operations */
1635 	struct rw_semaphore gc_lock;		/*
1636 						 * semaphore for GC, avoid
1637 						 * race between GC and GC or CP
1638 						 */
1639 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1640 	struct atgc_management am;		/* atgc management */
1641 	unsigned int cur_victim_sec;		/* current victim section num */
1642 	unsigned int gc_mode;			/* current GC state */
1643 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1644 
1645 	/* for skip statistic */
1646 	unsigned int atomic_files;		/* # of opened atomic file */
1647 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1648 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1649 
1650 	/* threshold for gc trials on pinned files */
1651 	u64 gc_pin_file_threshold;
1652 	struct rw_semaphore pin_sem;
1653 
1654 	/* maximum # of trials to find a victim segment for SSR and GC */
1655 	unsigned int max_victim_search;
1656 	/* migration granularity of garbage collection, unit: segment */
1657 	unsigned int migration_granularity;
1658 
1659 	/*
1660 	 * for stat information.
1661 	 * one is for the LFS mode, and the other is for the SSR mode.
1662 	 */
1663 #ifdef CONFIG_F2FS_STAT_FS
1664 	struct f2fs_stat_info *stat_info;	/* FS status information */
1665 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1666 	unsigned int segment_count[2];		/* # of allocated segments */
1667 	unsigned int block_count[2];		/* # of allocated blocks */
1668 	atomic_t inplace_count;		/* # of inplace update */
1669 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1670 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1671 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1672 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1673 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1674 	atomic_t inline_inode;			/* # of inline_data inodes */
1675 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1676 	atomic_t compr_inode;			/* # of compressed inodes */
1677 	atomic64_t compr_blocks;		/* # of compressed blocks */
1678 	atomic_t vw_cnt;			/* # of volatile writes */
1679 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1680 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1681 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1682 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1683 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1684 #endif
1685 	spinlock_t stat_lock;			/* lock for stat operations */
1686 
1687 	/* For app/fs IO statistics */
1688 	spinlock_t iostat_lock;
1689 	unsigned long long rw_iostat[NR_IO_TYPE];
1690 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1691 	bool iostat_enable;
1692 	unsigned long iostat_next_period;
1693 	unsigned int iostat_period_ms;
1694 
1695 	/* to attach REQ_META|REQ_FUA flags */
1696 	unsigned int data_io_flag;
1697 	unsigned int node_io_flag;
1698 
1699 	/* For sysfs suppport */
1700 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1701 	struct completion s_kobj_unregister;
1702 
1703 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1704 	struct completion s_stat_kobj_unregister;
1705 
1706 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1707 	struct completion s_feature_list_kobj_unregister;
1708 
1709 	/* For shrinker support */
1710 	struct list_head s_list;
1711 	int s_ndevs;				/* number of devices */
1712 	struct f2fs_dev_info *devs;		/* for device list */
1713 	unsigned int dirty_device;		/* for checkpoint data flush */
1714 	spinlock_t dev_lock;			/* protect dirty_device */
1715 	struct mutex umount_mutex;
1716 	unsigned int shrinker_run_no;
1717 
1718 	/* For write statistics */
1719 	u64 sectors_written_start;
1720 	u64 kbytes_written;
1721 
1722 	/* Reference to checksum algorithm driver via cryptoapi */
1723 	struct crypto_shash *s_chksum_driver;
1724 
1725 	/* Precomputed FS UUID checksum for seeding other checksums */
1726 	__u32 s_chksum_seed;
1727 
1728 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1729 
1730 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1731 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1732 
1733 #ifdef CONFIG_F2FS_FS_COMPRESSION
1734 	struct kmem_cache *page_array_slab;	/* page array entry */
1735 	unsigned int page_array_slab_size;	/* default page array slab size */
1736 
1737 	/* For runtime compression statistics */
1738 	u64 compr_written_block;
1739 	u64 compr_saved_block;
1740 	u32 compr_new_inode;
1741 
1742 	/* For compressed block cache */
1743 	struct inode *compress_inode;		/* cache compressed blocks */
1744 	unsigned int compress_percent;		/* cache page percentage */
1745 	unsigned int compress_watermark;	/* cache page watermark */
1746 	atomic_t compress_page_hit;		/* cache hit count */
1747 #endif
1748 };
1749 
1750 struct f2fs_private_dio {
1751 	struct inode *inode;
1752 	void *orig_private;
1753 	bio_end_io_t *orig_end_io;
1754 	bool write;
1755 };
1756 
1757 #ifdef CONFIG_F2FS_FAULT_INJECTION
1758 #define f2fs_show_injection_info(sbi, type)					\
1759 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1760 		KERN_INFO, sbi->sb->s_id,				\
1761 		f2fs_fault_name[type],					\
1762 		__func__, __builtin_return_address(0))
1763 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1764 {
1765 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1766 
1767 	if (!ffi->inject_rate)
1768 		return false;
1769 
1770 	if (!IS_FAULT_SET(ffi, type))
1771 		return false;
1772 
1773 	atomic_inc(&ffi->inject_ops);
1774 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1775 		atomic_set(&ffi->inject_ops, 0);
1776 		return true;
1777 	}
1778 	return false;
1779 }
1780 #else
1781 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1782 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1783 {
1784 	return false;
1785 }
1786 #endif
1787 
1788 /*
1789  * Test if the mounted volume is a multi-device volume.
1790  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1791  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1792  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1793  */
1794 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1795 {
1796 	return sbi->s_ndevs > 1;
1797 }
1798 
1799 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1800 {
1801 	unsigned long now = jiffies;
1802 
1803 	sbi->last_time[type] = now;
1804 
1805 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1806 	if (type == REQ_TIME) {
1807 		sbi->last_time[DISCARD_TIME] = now;
1808 		sbi->last_time[GC_TIME] = now;
1809 	}
1810 }
1811 
1812 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1813 {
1814 	unsigned long interval = sbi->interval_time[type] * HZ;
1815 
1816 	return time_after(jiffies, sbi->last_time[type] + interval);
1817 }
1818 
1819 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1820 						int type)
1821 {
1822 	unsigned long interval = sbi->interval_time[type] * HZ;
1823 	unsigned int wait_ms = 0;
1824 	long delta;
1825 
1826 	delta = (sbi->last_time[type] + interval) - jiffies;
1827 	if (delta > 0)
1828 		wait_ms = jiffies_to_msecs(delta);
1829 
1830 	return wait_ms;
1831 }
1832 
1833 /*
1834  * Inline functions
1835  */
1836 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1837 			      const void *address, unsigned int length)
1838 {
1839 	struct {
1840 		struct shash_desc shash;
1841 		char ctx[4];
1842 	} desc;
1843 	int err;
1844 
1845 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1846 
1847 	desc.shash.tfm = sbi->s_chksum_driver;
1848 	*(u32 *)desc.ctx = crc;
1849 
1850 	err = crypto_shash_update(&desc.shash, address, length);
1851 	BUG_ON(err);
1852 
1853 	return *(u32 *)desc.ctx;
1854 }
1855 
1856 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1857 			   unsigned int length)
1858 {
1859 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1860 }
1861 
1862 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1863 				  void *buf, size_t buf_size)
1864 {
1865 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1866 }
1867 
1868 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1869 			      const void *address, unsigned int length)
1870 {
1871 	return __f2fs_crc32(sbi, crc, address, length);
1872 }
1873 
1874 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1875 {
1876 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1877 }
1878 
1879 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1880 {
1881 	return sb->s_fs_info;
1882 }
1883 
1884 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1885 {
1886 	return F2FS_SB(inode->i_sb);
1887 }
1888 
1889 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1890 {
1891 	return F2FS_I_SB(mapping->host);
1892 }
1893 
1894 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1895 {
1896 	return F2FS_M_SB(page_file_mapping(page));
1897 }
1898 
1899 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1900 {
1901 	return (struct f2fs_super_block *)(sbi->raw_super);
1902 }
1903 
1904 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1905 {
1906 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1907 }
1908 
1909 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1910 {
1911 	return (struct f2fs_node *)page_address(page);
1912 }
1913 
1914 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1915 {
1916 	return &((struct f2fs_node *)page_address(page))->i;
1917 }
1918 
1919 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1920 {
1921 	return (struct f2fs_nm_info *)(sbi->nm_info);
1922 }
1923 
1924 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1925 {
1926 	return (struct f2fs_sm_info *)(sbi->sm_info);
1927 }
1928 
1929 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1930 {
1931 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1932 }
1933 
1934 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1935 {
1936 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1937 }
1938 
1939 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1940 {
1941 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1942 }
1943 
1944 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1945 {
1946 	return sbi->meta_inode->i_mapping;
1947 }
1948 
1949 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1950 {
1951 	return sbi->node_inode->i_mapping;
1952 }
1953 
1954 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1955 {
1956 	return test_bit(type, &sbi->s_flag);
1957 }
1958 
1959 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1960 {
1961 	set_bit(type, &sbi->s_flag);
1962 }
1963 
1964 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1965 {
1966 	clear_bit(type, &sbi->s_flag);
1967 }
1968 
1969 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1970 {
1971 	return le64_to_cpu(cp->checkpoint_ver);
1972 }
1973 
1974 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1975 {
1976 	if (type < F2FS_MAX_QUOTAS)
1977 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1978 	return 0;
1979 }
1980 
1981 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1982 {
1983 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1984 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1985 }
1986 
1987 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1988 {
1989 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1990 
1991 	return ckpt_flags & f;
1992 }
1993 
1994 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1995 {
1996 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1997 }
1998 
1999 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2000 {
2001 	unsigned int ckpt_flags;
2002 
2003 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2004 	ckpt_flags |= f;
2005 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2006 }
2007 
2008 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2009 {
2010 	unsigned long flags;
2011 
2012 	spin_lock_irqsave(&sbi->cp_lock, flags);
2013 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2014 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2015 }
2016 
2017 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2018 {
2019 	unsigned int ckpt_flags;
2020 
2021 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2022 	ckpt_flags &= (~f);
2023 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2024 }
2025 
2026 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2027 {
2028 	unsigned long flags;
2029 
2030 	spin_lock_irqsave(&sbi->cp_lock, flags);
2031 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2032 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2033 }
2034 
2035 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2036 {
2037 	unsigned long flags;
2038 	unsigned char *nat_bits;
2039 
2040 	/*
2041 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
2042 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2043 	 * so let's rely on regular fsck or unclean shutdown.
2044 	 */
2045 
2046 	if (lock)
2047 		spin_lock_irqsave(&sbi->cp_lock, flags);
2048 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2049 	nat_bits = NM_I(sbi)->nat_bits;
2050 	NM_I(sbi)->nat_bits = NULL;
2051 	if (lock)
2052 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
2053 
2054 	kvfree(nat_bits);
2055 }
2056 
2057 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2058 					struct cp_control *cpc)
2059 {
2060 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2061 
2062 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2063 }
2064 
2065 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2066 {
2067 	down_read(&sbi->cp_rwsem);
2068 }
2069 
2070 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2071 {
2072 	return down_read_trylock(&sbi->cp_rwsem);
2073 }
2074 
2075 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2076 {
2077 	up_read(&sbi->cp_rwsem);
2078 }
2079 
2080 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2081 {
2082 	down_write(&sbi->cp_rwsem);
2083 }
2084 
2085 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2086 {
2087 	up_write(&sbi->cp_rwsem);
2088 }
2089 
2090 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2091 {
2092 	int reason = CP_SYNC;
2093 
2094 	if (test_opt(sbi, FASTBOOT))
2095 		reason = CP_FASTBOOT;
2096 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2097 		reason = CP_UMOUNT;
2098 	return reason;
2099 }
2100 
2101 static inline bool __remain_node_summaries(int reason)
2102 {
2103 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2104 }
2105 
2106 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2107 {
2108 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2109 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2110 }
2111 
2112 /*
2113  * Check whether the inode has blocks or not
2114  */
2115 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2116 {
2117 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2118 
2119 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2120 }
2121 
2122 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2123 {
2124 	return ofs == XATTR_NODE_OFFSET;
2125 }
2126 
2127 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2128 					struct inode *inode, bool cap)
2129 {
2130 	if (!inode)
2131 		return true;
2132 	if (!test_opt(sbi, RESERVE_ROOT))
2133 		return false;
2134 	if (IS_NOQUOTA(inode))
2135 		return true;
2136 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2137 		return true;
2138 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2139 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2140 		return true;
2141 	if (cap && capable(CAP_SYS_RESOURCE))
2142 		return true;
2143 	return false;
2144 }
2145 
2146 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2147 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2148 				 struct inode *inode, blkcnt_t *count)
2149 {
2150 	blkcnt_t diff = 0, release = 0;
2151 	block_t avail_user_block_count;
2152 	int ret;
2153 
2154 	ret = dquot_reserve_block(inode, *count);
2155 	if (ret)
2156 		return ret;
2157 
2158 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2159 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2160 		release = *count;
2161 		goto release_quota;
2162 	}
2163 
2164 	/*
2165 	 * let's increase this in prior to actual block count change in order
2166 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2167 	 */
2168 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2169 
2170 	spin_lock(&sbi->stat_lock);
2171 	sbi->total_valid_block_count += (block_t)(*count);
2172 	avail_user_block_count = sbi->user_block_count -
2173 					sbi->current_reserved_blocks;
2174 
2175 	if (!__allow_reserved_blocks(sbi, inode, true))
2176 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2177 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2178 		if (avail_user_block_count > sbi->unusable_block_count)
2179 			avail_user_block_count -= sbi->unusable_block_count;
2180 		else
2181 			avail_user_block_count = 0;
2182 	}
2183 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2184 		diff = sbi->total_valid_block_count - avail_user_block_count;
2185 		if (diff > *count)
2186 			diff = *count;
2187 		*count -= diff;
2188 		release = diff;
2189 		sbi->total_valid_block_count -= diff;
2190 		if (!*count) {
2191 			spin_unlock(&sbi->stat_lock);
2192 			goto enospc;
2193 		}
2194 	}
2195 	spin_unlock(&sbi->stat_lock);
2196 
2197 	if (unlikely(release)) {
2198 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2199 		dquot_release_reservation_block(inode, release);
2200 	}
2201 	f2fs_i_blocks_write(inode, *count, true, true);
2202 	return 0;
2203 
2204 enospc:
2205 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2206 release_quota:
2207 	dquot_release_reservation_block(inode, release);
2208 	return -ENOSPC;
2209 }
2210 
2211 __printf(2, 3)
2212 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2213 
2214 #define f2fs_err(sbi, fmt, ...)						\
2215 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2216 #define f2fs_warn(sbi, fmt, ...)					\
2217 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2218 #define f2fs_notice(sbi, fmt, ...)					\
2219 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2220 #define f2fs_info(sbi, fmt, ...)					\
2221 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2222 #define f2fs_debug(sbi, fmt, ...)					\
2223 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2224 
2225 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2226 						struct inode *inode,
2227 						block_t count)
2228 {
2229 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2230 
2231 	spin_lock(&sbi->stat_lock);
2232 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2233 	sbi->total_valid_block_count -= (block_t)count;
2234 	if (sbi->reserved_blocks &&
2235 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2236 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2237 					sbi->current_reserved_blocks + count);
2238 	spin_unlock(&sbi->stat_lock);
2239 	if (unlikely(inode->i_blocks < sectors)) {
2240 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2241 			  inode->i_ino,
2242 			  (unsigned long long)inode->i_blocks,
2243 			  (unsigned long long)sectors);
2244 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2245 		return;
2246 	}
2247 	f2fs_i_blocks_write(inode, count, false, true);
2248 }
2249 
2250 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2251 {
2252 	atomic_inc(&sbi->nr_pages[count_type]);
2253 
2254 	if (count_type == F2FS_DIRTY_DENTS ||
2255 			count_type == F2FS_DIRTY_NODES ||
2256 			count_type == F2FS_DIRTY_META ||
2257 			count_type == F2FS_DIRTY_QDATA ||
2258 			count_type == F2FS_DIRTY_IMETA)
2259 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2260 }
2261 
2262 static inline void inode_inc_dirty_pages(struct inode *inode)
2263 {
2264 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2265 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2266 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2267 	if (IS_NOQUOTA(inode))
2268 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2269 }
2270 
2271 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2272 {
2273 	atomic_dec(&sbi->nr_pages[count_type]);
2274 }
2275 
2276 static inline void inode_dec_dirty_pages(struct inode *inode)
2277 {
2278 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2279 			!S_ISLNK(inode->i_mode))
2280 		return;
2281 
2282 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2283 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2284 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2285 	if (IS_NOQUOTA(inode))
2286 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2287 }
2288 
2289 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2290 {
2291 	return atomic_read(&sbi->nr_pages[count_type]);
2292 }
2293 
2294 static inline int get_dirty_pages(struct inode *inode)
2295 {
2296 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2297 }
2298 
2299 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2300 {
2301 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2302 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2303 						sbi->log_blocks_per_seg;
2304 
2305 	return segs / sbi->segs_per_sec;
2306 }
2307 
2308 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2309 {
2310 	return sbi->total_valid_block_count;
2311 }
2312 
2313 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2314 {
2315 	return sbi->discard_blks;
2316 }
2317 
2318 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2319 {
2320 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2321 
2322 	/* return NAT or SIT bitmap */
2323 	if (flag == NAT_BITMAP)
2324 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2325 	else if (flag == SIT_BITMAP)
2326 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2327 
2328 	return 0;
2329 }
2330 
2331 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2332 {
2333 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2334 }
2335 
2336 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2337 {
2338 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2339 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2340 	int offset;
2341 
2342 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2343 		offset = (flag == SIT_BITMAP) ?
2344 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2345 		/*
2346 		 * if large_nat_bitmap feature is enabled, leave checksum
2347 		 * protection for all nat/sit bitmaps.
2348 		 */
2349 		return tmp_ptr + offset + sizeof(__le32);
2350 	}
2351 
2352 	if (__cp_payload(sbi) > 0) {
2353 		if (flag == NAT_BITMAP)
2354 			return &ckpt->sit_nat_version_bitmap;
2355 		else
2356 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2357 	} else {
2358 		offset = (flag == NAT_BITMAP) ?
2359 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2360 		return tmp_ptr + offset;
2361 	}
2362 }
2363 
2364 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2365 {
2366 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2367 
2368 	if (sbi->cur_cp_pack == 2)
2369 		start_addr += sbi->blocks_per_seg;
2370 	return start_addr;
2371 }
2372 
2373 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2374 {
2375 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2376 
2377 	if (sbi->cur_cp_pack == 1)
2378 		start_addr += sbi->blocks_per_seg;
2379 	return start_addr;
2380 }
2381 
2382 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2383 {
2384 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2385 }
2386 
2387 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2388 {
2389 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2390 }
2391 
2392 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2393 					struct inode *inode, bool is_inode)
2394 {
2395 	block_t	valid_block_count;
2396 	unsigned int valid_node_count, user_block_count;
2397 	int err;
2398 
2399 	if (is_inode) {
2400 		if (inode) {
2401 			err = dquot_alloc_inode(inode);
2402 			if (err)
2403 				return err;
2404 		}
2405 	} else {
2406 		err = dquot_reserve_block(inode, 1);
2407 		if (err)
2408 			return err;
2409 	}
2410 
2411 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2412 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2413 		goto enospc;
2414 	}
2415 
2416 	spin_lock(&sbi->stat_lock);
2417 
2418 	valid_block_count = sbi->total_valid_block_count +
2419 					sbi->current_reserved_blocks + 1;
2420 
2421 	if (!__allow_reserved_blocks(sbi, inode, false))
2422 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2423 	user_block_count = sbi->user_block_count;
2424 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2425 		user_block_count -= sbi->unusable_block_count;
2426 
2427 	if (unlikely(valid_block_count > user_block_count)) {
2428 		spin_unlock(&sbi->stat_lock);
2429 		goto enospc;
2430 	}
2431 
2432 	valid_node_count = sbi->total_valid_node_count + 1;
2433 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2434 		spin_unlock(&sbi->stat_lock);
2435 		goto enospc;
2436 	}
2437 
2438 	sbi->total_valid_node_count++;
2439 	sbi->total_valid_block_count++;
2440 	spin_unlock(&sbi->stat_lock);
2441 
2442 	if (inode) {
2443 		if (is_inode)
2444 			f2fs_mark_inode_dirty_sync(inode, true);
2445 		else
2446 			f2fs_i_blocks_write(inode, 1, true, true);
2447 	}
2448 
2449 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2450 	return 0;
2451 
2452 enospc:
2453 	if (is_inode) {
2454 		if (inode)
2455 			dquot_free_inode(inode);
2456 	} else {
2457 		dquot_release_reservation_block(inode, 1);
2458 	}
2459 	return -ENOSPC;
2460 }
2461 
2462 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2463 					struct inode *inode, bool is_inode)
2464 {
2465 	spin_lock(&sbi->stat_lock);
2466 
2467 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2468 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2469 
2470 	sbi->total_valid_node_count--;
2471 	sbi->total_valid_block_count--;
2472 	if (sbi->reserved_blocks &&
2473 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2474 		sbi->current_reserved_blocks++;
2475 
2476 	spin_unlock(&sbi->stat_lock);
2477 
2478 	if (is_inode) {
2479 		dquot_free_inode(inode);
2480 	} else {
2481 		if (unlikely(inode->i_blocks == 0)) {
2482 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2483 				  inode->i_ino,
2484 				  (unsigned long long)inode->i_blocks);
2485 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2486 			return;
2487 		}
2488 		f2fs_i_blocks_write(inode, 1, false, true);
2489 	}
2490 }
2491 
2492 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2493 {
2494 	return sbi->total_valid_node_count;
2495 }
2496 
2497 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2498 {
2499 	percpu_counter_inc(&sbi->total_valid_inode_count);
2500 }
2501 
2502 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2503 {
2504 	percpu_counter_dec(&sbi->total_valid_inode_count);
2505 }
2506 
2507 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2508 {
2509 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2510 }
2511 
2512 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2513 						pgoff_t index, bool for_write)
2514 {
2515 	struct page *page;
2516 
2517 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2518 		if (!for_write)
2519 			page = find_get_page_flags(mapping, index,
2520 							FGP_LOCK | FGP_ACCESSED);
2521 		else
2522 			page = find_lock_page(mapping, index);
2523 		if (page)
2524 			return page;
2525 
2526 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2527 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2528 							FAULT_PAGE_ALLOC);
2529 			return NULL;
2530 		}
2531 	}
2532 
2533 	if (!for_write)
2534 		return grab_cache_page(mapping, index);
2535 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2536 }
2537 
2538 static inline struct page *f2fs_pagecache_get_page(
2539 				struct address_space *mapping, pgoff_t index,
2540 				int fgp_flags, gfp_t gfp_mask)
2541 {
2542 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2543 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2544 		return NULL;
2545 	}
2546 
2547 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2548 }
2549 
2550 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2551 {
2552 	char *src_kaddr = kmap(src);
2553 	char *dst_kaddr = kmap(dst);
2554 
2555 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2556 	kunmap(dst);
2557 	kunmap(src);
2558 }
2559 
2560 static inline void f2fs_put_page(struct page *page, int unlock)
2561 {
2562 	if (!page)
2563 		return;
2564 
2565 	if (unlock) {
2566 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2567 		unlock_page(page);
2568 	}
2569 	put_page(page);
2570 }
2571 
2572 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2573 {
2574 	if (dn->node_page)
2575 		f2fs_put_page(dn->node_page, 1);
2576 	if (dn->inode_page && dn->node_page != dn->inode_page)
2577 		f2fs_put_page(dn->inode_page, 0);
2578 	dn->node_page = NULL;
2579 	dn->inode_page = NULL;
2580 }
2581 
2582 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2583 					size_t size)
2584 {
2585 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2586 }
2587 
2588 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2589 						gfp_t flags)
2590 {
2591 	void *entry;
2592 
2593 	entry = kmem_cache_alloc(cachep, flags);
2594 	if (!entry)
2595 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2596 	return entry;
2597 }
2598 
2599 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2600 {
2601 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2602 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2603 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2604 		get_pages(sbi, F2FS_DIO_READ) ||
2605 		get_pages(sbi, F2FS_DIO_WRITE))
2606 		return true;
2607 
2608 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2609 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2610 		return true;
2611 
2612 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2613 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2614 		return true;
2615 	return false;
2616 }
2617 
2618 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2619 {
2620 	if (sbi->gc_mode == GC_URGENT_HIGH)
2621 		return true;
2622 
2623 	if (is_inflight_io(sbi, type))
2624 		return false;
2625 
2626 	if (sbi->gc_mode == GC_URGENT_LOW &&
2627 			(type == DISCARD_TIME || type == GC_TIME))
2628 		return true;
2629 
2630 	return f2fs_time_over(sbi, type);
2631 }
2632 
2633 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2634 				unsigned long index, void *item)
2635 {
2636 	while (radix_tree_insert(root, index, item))
2637 		cond_resched();
2638 }
2639 
2640 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2641 
2642 static inline bool IS_INODE(struct page *page)
2643 {
2644 	struct f2fs_node *p = F2FS_NODE(page);
2645 
2646 	return RAW_IS_INODE(p);
2647 }
2648 
2649 static inline int offset_in_addr(struct f2fs_inode *i)
2650 {
2651 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2652 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2653 }
2654 
2655 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2656 {
2657 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2658 }
2659 
2660 static inline int f2fs_has_extra_attr(struct inode *inode);
2661 static inline block_t data_blkaddr(struct inode *inode,
2662 			struct page *node_page, unsigned int offset)
2663 {
2664 	struct f2fs_node *raw_node;
2665 	__le32 *addr_array;
2666 	int base = 0;
2667 	bool is_inode = IS_INODE(node_page);
2668 
2669 	raw_node = F2FS_NODE(node_page);
2670 
2671 	if (is_inode) {
2672 		if (!inode)
2673 			/* from GC path only */
2674 			base = offset_in_addr(&raw_node->i);
2675 		else if (f2fs_has_extra_attr(inode))
2676 			base = get_extra_isize(inode);
2677 	}
2678 
2679 	addr_array = blkaddr_in_node(raw_node);
2680 	return le32_to_cpu(addr_array[base + offset]);
2681 }
2682 
2683 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2684 {
2685 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2686 }
2687 
2688 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2689 {
2690 	int mask;
2691 
2692 	addr += (nr >> 3);
2693 	mask = 1 << (7 - (nr & 0x07));
2694 	return mask & *addr;
2695 }
2696 
2697 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2698 {
2699 	int mask;
2700 
2701 	addr += (nr >> 3);
2702 	mask = 1 << (7 - (nr & 0x07));
2703 	*addr |= mask;
2704 }
2705 
2706 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2707 {
2708 	int mask;
2709 
2710 	addr += (nr >> 3);
2711 	mask = 1 << (7 - (nr & 0x07));
2712 	*addr &= ~mask;
2713 }
2714 
2715 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2716 {
2717 	int mask;
2718 	int ret;
2719 
2720 	addr += (nr >> 3);
2721 	mask = 1 << (7 - (nr & 0x07));
2722 	ret = mask & *addr;
2723 	*addr |= mask;
2724 	return ret;
2725 }
2726 
2727 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2728 {
2729 	int mask;
2730 	int ret;
2731 
2732 	addr += (nr >> 3);
2733 	mask = 1 << (7 - (nr & 0x07));
2734 	ret = mask & *addr;
2735 	*addr &= ~mask;
2736 	return ret;
2737 }
2738 
2739 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2740 {
2741 	int mask;
2742 
2743 	addr += (nr >> 3);
2744 	mask = 1 << (7 - (nr & 0x07));
2745 	*addr ^= mask;
2746 }
2747 
2748 /*
2749  * On-disk inode flags (f2fs_inode::i_flags)
2750  */
2751 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2752 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2753 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2754 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2755 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2756 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2757 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2758 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2759 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2760 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2761 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2762 
2763 /* Flags that should be inherited by new inodes from their parent. */
2764 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2765 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2766 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2767 
2768 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2769 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2770 				F2FS_CASEFOLD_FL))
2771 
2772 /* Flags that are appropriate for non-directories/regular files. */
2773 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2774 
2775 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2776 {
2777 	if (S_ISDIR(mode))
2778 		return flags;
2779 	else if (S_ISREG(mode))
2780 		return flags & F2FS_REG_FLMASK;
2781 	else
2782 		return flags & F2FS_OTHER_FLMASK;
2783 }
2784 
2785 static inline void __mark_inode_dirty_flag(struct inode *inode,
2786 						int flag, bool set)
2787 {
2788 	switch (flag) {
2789 	case FI_INLINE_XATTR:
2790 	case FI_INLINE_DATA:
2791 	case FI_INLINE_DENTRY:
2792 	case FI_NEW_INODE:
2793 		if (set)
2794 			return;
2795 		fallthrough;
2796 	case FI_DATA_EXIST:
2797 	case FI_INLINE_DOTS:
2798 	case FI_PIN_FILE:
2799 	case FI_COMPRESS_RELEASED:
2800 		f2fs_mark_inode_dirty_sync(inode, true);
2801 	}
2802 }
2803 
2804 static inline void set_inode_flag(struct inode *inode, int flag)
2805 {
2806 	set_bit(flag, F2FS_I(inode)->flags);
2807 	__mark_inode_dirty_flag(inode, flag, true);
2808 }
2809 
2810 static inline int is_inode_flag_set(struct inode *inode, int flag)
2811 {
2812 	return test_bit(flag, F2FS_I(inode)->flags);
2813 }
2814 
2815 static inline void clear_inode_flag(struct inode *inode, int flag)
2816 {
2817 	clear_bit(flag, F2FS_I(inode)->flags);
2818 	__mark_inode_dirty_flag(inode, flag, false);
2819 }
2820 
2821 static inline bool f2fs_verity_in_progress(struct inode *inode)
2822 {
2823 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2824 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2825 }
2826 
2827 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2828 {
2829 	F2FS_I(inode)->i_acl_mode = mode;
2830 	set_inode_flag(inode, FI_ACL_MODE);
2831 	f2fs_mark_inode_dirty_sync(inode, false);
2832 }
2833 
2834 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2835 {
2836 	if (inc)
2837 		inc_nlink(inode);
2838 	else
2839 		drop_nlink(inode);
2840 	f2fs_mark_inode_dirty_sync(inode, true);
2841 }
2842 
2843 static inline void f2fs_i_blocks_write(struct inode *inode,
2844 					block_t diff, bool add, bool claim)
2845 {
2846 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2847 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2848 
2849 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2850 	if (add) {
2851 		if (claim)
2852 			dquot_claim_block(inode, diff);
2853 		else
2854 			dquot_alloc_block_nofail(inode, diff);
2855 	} else {
2856 		dquot_free_block(inode, diff);
2857 	}
2858 
2859 	f2fs_mark_inode_dirty_sync(inode, true);
2860 	if (clean || recover)
2861 		set_inode_flag(inode, FI_AUTO_RECOVER);
2862 }
2863 
2864 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2865 {
2866 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2867 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2868 
2869 	if (i_size_read(inode) == i_size)
2870 		return;
2871 
2872 	i_size_write(inode, i_size);
2873 	f2fs_mark_inode_dirty_sync(inode, true);
2874 	if (clean || recover)
2875 		set_inode_flag(inode, FI_AUTO_RECOVER);
2876 }
2877 
2878 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2879 {
2880 	F2FS_I(inode)->i_current_depth = depth;
2881 	f2fs_mark_inode_dirty_sync(inode, true);
2882 }
2883 
2884 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2885 					unsigned int count)
2886 {
2887 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2888 	f2fs_mark_inode_dirty_sync(inode, true);
2889 }
2890 
2891 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2892 {
2893 	F2FS_I(inode)->i_xattr_nid = xnid;
2894 	f2fs_mark_inode_dirty_sync(inode, true);
2895 }
2896 
2897 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2898 {
2899 	F2FS_I(inode)->i_pino = pino;
2900 	f2fs_mark_inode_dirty_sync(inode, true);
2901 }
2902 
2903 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2904 {
2905 	struct f2fs_inode_info *fi = F2FS_I(inode);
2906 
2907 	if (ri->i_inline & F2FS_INLINE_XATTR)
2908 		set_bit(FI_INLINE_XATTR, fi->flags);
2909 	if (ri->i_inline & F2FS_INLINE_DATA)
2910 		set_bit(FI_INLINE_DATA, fi->flags);
2911 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2912 		set_bit(FI_INLINE_DENTRY, fi->flags);
2913 	if (ri->i_inline & F2FS_DATA_EXIST)
2914 		set_bit(FI_DATA_EXIST, fi->flags);
2915 	if (ri->i_inline & F2FS_INLINE_DOTS)
2916 		set_bit(FI_INLINE_DOTS, fi->flags);
2917 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2918 		set_bit(FI_EXTRA_ATTR, fi->flags);
2919 	if (ri->i_inline & F2FS_PIN_FILE)
2920 		set_bit(FI_PIN_FILE, fi->flags);
2921 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2922 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
2923 }
2924 
2925 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2926 {
2927 	ri->i_inline = 0;
2928 
2929 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2930 		ri->i_inline |= F2FS_INLINE_XATTR;
2931 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2932 		ri->i_inline |= F2FS_INLINE_DATA;
2933 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2934 		ri->i_inline |= F2FS_INLINE_DENTRY;
2935 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2936 		ri->i_inline |= F2FS_DATA_EXIST;
2937 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2938 		ri->i_inline |= F2FS_INLINE_DOTS;
2939 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2940 		ri->i_inline |= F2FS_EXTRA_ATTR;
2941 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2942 		ri->i_inline |= F2FS_PIN_FILE;
2943 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
2944 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
2945 }
2946 
2947 static inline int f2fs_has_extra_attr(struct inode *inode)
2948 {
2949 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2950 }
2951 
2952 static inline int f2fs_has_inline_xattr(struct inode *inode)
2953 {
2954 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2955 }
2956 
2957 static inline int f2fs_compressed_file(struct inode *inode)
2958 {
2959 	return S_ISREG(inode->i_mode) &&
2960 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2961 }
2962 
2963 static inline bool f2fs_need_compress_data(struct inode *inode)
2964 {
2965 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2966 
2967 	if (!f2fs_compressed_file(inode))
2968 		return false;
2969 
2970 	if (compress_mode == COMPR_MODE_FS)
2971 		return true;
2972 	else if (compress_mode == COMPR_MODE_USER &&
2973 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2974 		return true;
2975 
2976 	return false;
2977 }
2978 
2979 static inline unsigned int addrs_per_inode(struct inode *inode)
2980 {
2981 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2982 				get_inline_xattr_addrs(inode);
2983 
2984 	if (!f2fs_compressed_file(inode))
2985 		return addrs;
2986 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2987 }
2988 
2989 static inline unsigned int addrs_per_block(struct inode *inode)
2990 {
2991 	if (!f2fs_compressed_file(inode))
2992 		return DEF_ADDRS_PER_BLOCK;
2993 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2994 }
2995 
2996 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2997 {
2998 	struct f2fs_inode *ri = F2FS_INODE(page);
2999 
3000 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3001 					get_inline_xattr_addrs(inode)]);
3002 }
3003 
3004 static inline int inline_xattr_size(struct inode *inode)
3005 {
3006 	if (f2fs_has_inline_xattr(inode))
3007 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3008 	return 0;
3009 }
3010 
3011 static inline int f2fs_has_inline_data(struct inode *inode)
3012 {
3013 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3014 }
3015 
3016 static inline int f2fs_exist_data(struct inode *inode)
3017 {
3018 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3019 }
3020 
3021 static inline int f2fs_has_inline_dots(struct inode *inode)
3022 {
3023 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3024 }
3025 
3026 static inline int f2fs_is_mmap_file(struct inode *inode)
3027 {
3028 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3029 }
3030 
3031 static inline bool f2fs_is_pinned_file(struct inode *inode)
3032 {
3033 	return is_inode_flag_set(inode, FI_PIN_FILE);
3034 }
3035 
3036 static inline bool f2fs_is_atomic_file(struct inode *inode)
3037 {
3038 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3039 }
3040 
3041 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3042 {
3043 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3044 }
3045 
3046 static inline bool f2fs_is_volatile_file(struct inode *inode)
3047 {
3048 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3049 }
3050 
3051 static inline bool f2fs_is_first_block_written(struct inode *inode)
3052 {
3053 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3054 }
3055 
3056 static inline bool f2fs_is_drop_cache(struct inode *inode)
3057 {
3058 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3059 }
3060 
3061 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3062 {
3063 	struct f2fs_inode *ri = F2FS_INODE(page);
3064 	int extra_size = get_extra_isize(inode);
3065 
3066 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3067 }
3068 
3069 static inline int f2fs_has_inline_dentry(struct inode *inode)
3070 {
3071 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3072 }
3073 
3074 static inline int is_file(struct inode *inode, int type)
3075 {
3076 	return F2FS_I(inode)->i_advise & type;
3077 }
3078 
3079 static inline void set_file(struct inode *inode, int type)
3080 {
3081 	F2FS_I(inode)->i_advise |= type;
3082 	f2fs_mark_inode_dirty_sync(inode, true);
3083 }
3084 
3085 static inline void clear_file(struct inode *inode, int type)
3086 {
3087 	F2FS_I(inode)->i_advise &= ~type;
3088 	f2fs_mark_inode_dirty_sync(inode, true);
3089 }
3090 
3091 static inline bool f2fs_is_time_consistent(struct inode *inode)
3092 {
3093 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3094 		return false;
3095 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3096 		return false;
3097 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3098 		return false;
3099 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3100 						&F2FS_I(inode)->i_crtime))
3101 		return false;
3102 	return true;
3103 }
3104 
3105 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3106 {
3107 	bool ret;
3108 
3109 	if (dsync) {
3110 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3111 
3112 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3113 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3114 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3115 		return ret;
3116 	}
3117 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3118 			file_keep_isize(inode) ||
3119 			i_size_read(inode) & ~PAGE_MASK)
3120 		return false;
3121 
3122 	if (!f2fs_is_time_consistent(inode))
3123 		return false;
3124 
3125 	spin_lock(&F2FS_I(inode)->i_size_lock);
3126 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3127 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3128 
3129 	return ret;
3130 }
3131 
3132 static inline bool f2fs_readonly(struct super_block *sb)
3133 {
3134 	return sb_rdonly(sb);
3135 }
3136 
3137 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3138 {
3139 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3140 }
3141 
3142 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3143 {
3144 	if (len == 1 && name[0] == '.')
3145 		return true;
3146 
3147 	if (len == 2 && name[0] == '.' && name[1] == '.')
3148 		return true;
3149 
3150 	return false;
3151 }
3152 
3153 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3154 					size_t size, gfp_t flags)
3155 {
3156 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3157 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3158 		return NULL;
3159 	}
3160 
3161 	return kmalloc(size, flags);
3162 }
3163 
3164 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3165 					size_t size, gfp_t flags)
3166 {
3167 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3168 }
3169 
3170 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3171 					size_t size, gfp_t flags)
3172 {
3173 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3174 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3175 		return NULL;
3176 	}
3177 
3178 	return kvmalloc(size, flags);
3179 }
3180 
3181 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3182 					size_t size, gfp_t flags)
3183 {
3184 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3185 }
3186 
3187 static inline int get_extra_isize(struct inode *inode)
3188 {
3189 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3190 }
3191 
3192 static inline int get_inline_xattr_addrs(struct inode *inode)
3193 {
3194 	return F2FS_I(inode)->i_inline_xattr_size;
3195 }
3196 
3197 #define f2fs_get_inode_mode(i) \
3198 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3199 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3200 
3201 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3202 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3203 	offsetof(struct f2fs_inode, i_extra_isize))	\
3204 
3205 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3206 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3207 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3208 		sizeof((f2fs_inode)->field))			\
3209 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3210 
3211 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3212 #define MIN_IOSTAT_PERIOD_MS		100
3213 /* maximum period of iostat tracing is 1 day */
3214 #define MAX_IOSTAT_PERIOD_MS		8640000
3215 
3216 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3217 {
3218 	int i;
3219 
3220 	spin_lock(&sbi->iostat_lock);
3221 	for (i = 0; i < NR_IO_TYPE; i++) {
3222 		sbi->rw_iostat[i] = 0;
3223 		sbi->prev_rw_iostat[i] = 0;
3224 	}
3225 	spin_unlock(&sbi->iostat_lock);
3226 }
3227 
3228 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3229 
3230 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3231 			enum iostat_type type, unsigned long long io_bytes)
3232 {
3233 	if (!sbi->iostat_enable)
3234 		return;
3235 	spin_lock(&sbi->iostat_lock);
3236 	sbi->rw_iostat[type] += io_bytes;
3237 
3238 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3239 		sbi->rw_iostat[APP_BUFFERED_IO] =
3240 			sbi->rw_iostat[APP_WRITE_IO] -
3241 			sbi->rw_iostat[APP_DIRECT_IO];
3242 
3243 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3244 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3245 			sbi->rw_iostat[APP_READ_IO] -
3246 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3247 	spin_unlock(&sbi->iostat_lock);
3248 
3249 	f2fs_record_iostat(sbi);
3250 }
3251 
3252 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3253 
3254 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3255 
3256 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3257 					block_t blkaddr, int type);
3258 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3259 					block_t blkaddr, int type)
3260 {
3261 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3262 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3263 			 blkaddr, type);
3264 		f2fs_bug_on(sbi, 1);
3265 	}
3266 }
3267 
3268 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3269 {
3270 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3271 			blkaddr == COMPRESS_ADDR)
3272 		return false;
3273 	return true;
3274 }
3275 
3276 /*
3277  * file.c
3278  */
3279 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3280 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3281 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3282 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3283 int f2fs_truncate(struct inode *inode);
3284 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3285 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3286 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3287 		 struct iattr *attr);
3288 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3289 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3290 int f2fs_precache_extents(struct inode *inode);
3291 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3292 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3293 		      struct dentry *dentry, struct fileattr *fa);
3294 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3295 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3296 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3297 int f2fs_pin_file_control(struct inode *inode, bool inc);
3298 
3299 /*
3300  * inode.c
3301  */
3302 void f2fs_set_inode_flags(struct inode *inode);
3303 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3304 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3305 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3306 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3307 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3308 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3309 void f2fs_update_inode_page(struct inode *inode);
3310 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3311 void f2fs_evict_inode(struct inode *inode);
3312 void f2fs_handle_failed_inode(struct inode *inode);
3313 
3314 /*
3315  * namei.c
3316  */
3317 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3318 							bool hot, bool set);
3319 struct dentry *f2fs_get_parent(struct dentry *child);
3320 
3321 /*
3322  * dir.c
3323  */
3324 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3325 int f2fs_init_casefolded_name(const struct inode *dir,
3326 			      struct f2fs_filename *fname);
3327 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3328 			int lookup, struct f2fs_filename *fname);
3329 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3330 			struct f2fs_filename *fname);
3331 void f2fs_free_filename(struct f2fs_filename *fname);
3332 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3333 			const struct f2fs_filename *fname, int *max_slots);
3334 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3335 			unsigned int start_pos, struct fscrypt_str *fstr);
3336 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3337 			struct f2fs_dentry_ptr *d);
3338 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3339 			const struct f2fs_filename *fname, struct page *dpage);
3340 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3341 			unsigned int current_depth);
3342 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3343 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3344 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3345 					 const struct f2fs_filename *fname,
3346 					 struct page **res_page);
3347 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3348 			const struct qstr *child, struct page **res_page);
3349 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3350 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3351 			struct page **page);
3352 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3353 			struct page *page, struct inode *inode);
3354 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3355 			  const struct f2fs_filename *fname);
3356 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3357 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3358 			unsigned int bit_pos);
3359 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3360 			struct inode *inode, nid_t ino, umode_t mode);
3361 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3362 			struct inode *inode, nid_t ino, umode_t mode);
3363 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3364 			struct inode *inode, nid_t ino, umode_t mode);
3365 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3366 			struct inode *dir, struct inode *inode);
3367 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3368 bool f2fs_empty_dir(struct inode *dir);
3369 
3370 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3371 {
3372 	if (fscrypt_is_nokey_name(dentry))
3373 		return -ENOKEY;
3374 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3375 				inode, inode->i_ino, inode->i_mode);
3376 }
3377 
3378 /*
3379  * super.c
3380  */
3381 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3382 void f2fs_inode_synced(struct inode *inode);
3383 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3384 int f2fs_quota_sync(struct super_block *sb, int type);
3385 loff_t max_file_blocks(struct inode *inode);
3386 void f2fs_quota_off_umount(struct super_block *sb);
3387 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3388 int f2fs_sync_fs(struct super_block *sb, int sync);
3389 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3390 
3391 /*
3392  * hash.c
3393  */
3394 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3395 
3396 /*
3397  * node.c
3398  */
3399 struct node_info;
3400 
3401 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3402 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3403 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3404 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3405 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3406 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3407 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3408 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3409 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3410 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3411 						struct node_info *ni);
3412 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3413 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3414 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3415 int f2fs_truncate_xattr_node(struct inode *inode);
3416 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3417 					unsigned int seq_id);
3418 int f2fs_remove_inode_page(struct inode *inode);
3419 struct page *f2fs_new_inode_page(struct inode *inode);
3420 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3421 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3422 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3423 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3424 int f2fs_move_node_page(struct page *node_page, int gc_type);
3425 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3426 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3427 			struct writeback_control *wbc, bool atomic,
3428 			unsigned int *seq_id);
3429 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3430 			struct writeback_control *wbc,
3431 			bool do_balance, enum iostat_type io_type);
3432 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3433 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3434 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3435 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3436 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3437 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3438 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3439 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3440 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3441 			unsigned int segno, struct f2fs_summary_block *sum);
3442 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3443 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3444 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3445 int __init f2fs_create_node_manager_caches(void);
3446 void f2fs_destroy_node_manager_caches(void);
3447 
3448 /*
3449  * segment.c
3450  */
3451 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3452 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3453 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3454 void f2fs_drop_inmem_pages(struct inode *inode);
3455 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3456 int f2fs_commit_inmem_pages(struct inode *inode);
3457 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3458 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3459 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3460 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3461 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3462 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3463 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3464 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3465 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3466 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3467 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3468 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3469 					struct cp_control *cpc);
3470 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3471 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3472 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3473 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3474 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3475 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3476 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3477 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3478 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3479 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3480 			unsigned int *newseg, bool new_sec, int dir);
3481 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3482 					unsigned int start, unsigned int end);
3483 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3484 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3485 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3486 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3487 					struct cp_control *cpc);
3488 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3489 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3490 					block_t blk_addr);
3491 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3492 						enum iostat_type io_type);
3493 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3494 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3495 			struct f2fs_io_info *fio);
3496 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3497 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3498 			block_t old_blkaddr, block_t new_blkaddr,
3499 			bool recover_curseg, bool recover_newaddr,
3500 			bool from_gc);
3501 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3502 			block_t old_addr, block_t new_addr,
3503 			unsigned char version, bool recover_curseg,
3504 			bool recover_newaddr);
3505 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3506 			block_t old_blkaddr, block_t *new_blkaddr,
3507 			struct f2fs_summary *sum, int type,
3508 			struct f2fs_io_info *fio);
3509 void f2fs_wait_on_page_writeback(struct page *page,
3510 			enum page_type type, bool ordered, bool locked);
3511 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3512 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3513 								block_t len);
3514 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3515 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3516 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3517 			unsigned int val, int alloc);
3518 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3519 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3520 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3521 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3522 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3523 int __init f2fs_create_segment_manager_caches(void);
3524 void f2fs_destroy_segment_manager_caches(void);
3525 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3526 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3527 			enum page_type type, enum temp_type temp);
3528 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3529 			unsigned int segno);
3530 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3531 			unsigned int segno);
3532 
3533 /*
3534  * checkpoint.c
3535  */
3536 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3537 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3538 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3539 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3540 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3541 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3542 					block_t blkaddr, int type);
3543 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3544 			int type, bool sync);
3545 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3546 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3547 			long nr_to_write, enum iostat_type io_type);
3548 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3549 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3550 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3551 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3552 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3553 					unsigned int devidx, int type);
3554 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3555 					unsigned int devidx, int type);
3556 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3557 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3558 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3559 void f2fs_add_orphan_inode(struct inode *inode);
3560 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3561 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3562 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3563 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3564 void f2fs_remove_dirty_inode(struct inode *inode);
3565 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3566 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3567 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3568 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3569 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3570 int __init f2fs_create_checkpoint_caches(void);
3571 void f2fs_destroy_checkpoint_caches(void);
3572 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3573 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3574 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3575 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3576 
3577 /*
3578  * data.c
3579  */
3580 int __init f2fs_init_bioset(void);
3581 void f2fs_destroy_bioset(void);
3582 int f2fs_init_bio_entry_cache(void);
3583 void f2fs_destroy_bio_entry_cache(void);
3584 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3585 				struct bio *bio, enum page_type type);
3586 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3587 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3588 				struct inode *inode, struct page *page,
3589 				nid_t ino, enum page_type type);
3590 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3591 					struct bio **bio, struct page *page);
3592 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3593 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3594 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3595 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3596 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3597 			block_t blk_addr, struct bio *bio);
3598 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3599 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3600 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3601 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3602 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3603 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3604 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3605 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3606 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3607 			int op_flags, bool for_write);
3608 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3609 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3610 			bool for_write);
3611 struct page *f2fs_get_new_data_page(struct inode *inode,
3612 			struct page *ipage, pgoff_t index, bool new_i_size);
3613 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3614 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3615 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3616 			int create, int flag);
3617 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3618 			u64 start, u64 len);
3619 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3620 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3621 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3622 int f2fs_write_single_data_page(struct page *page, int *submitted,
3623 				struct bio **bio, sector_t *last_block,
3624 				struct writeback_control *wbc,
3625 				enum iostat_type io_type,
3626 				int compr_blocks, bool allow_balance);
3627 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3628 			unsigned int length);
3629 int f2fs_release_page(struct page *page, gfp_t wait);
3630 #ifdef CONFIG_MIGRATION
3631 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3632 			struct page *page, enum migrate_mode mode);
3633 #endif
3634 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3635 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3636 int f2fs_init_post_read_processing(void);
3637 void f2fs_destroy_post_read_processing(void);
3638 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3639 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3640 
3641 /*
3642  * gc.c
3643  */
3644 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3645 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3646 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3647 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3648 			unsigned int segno);
3649 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3650 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3651 int __init f2fs_create_garbage_collection_cache(void);
3652 void f2fs_destroy_garbage_collection_cache(void);
3653 
3654 /*
3655  * recovery.c
3656  */
3657 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3658 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3659 int __init f2fs_create_recovery_cache(void);
3660 void f2fs_destroy_recovery_cache(void);
3661 
3662 /*
3663  * debug.c
3664  */
3665 #ifdef CONFIG_F2FS_STAT_FS
3666 struct f2fs_stat_info {
3667 	struct list_head stat_list;
3668 	struct f2fs_sb_info *sbi;
3669 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3670 	int main_area_segs, main_area_sections, main_area_zones;
3671 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3672 	unsigned long long hit_total, total_ext;
3673 	int ext_tree, zombie_tree, ext_node;
3674 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3675 	int ndirty_data, ndirty_qdata;
3676 	int inmem_pages;
3677 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3678 	int nats, dirty_nats, sits, dirty_sits;
3679 	int free_nids, avail_nids, alloc_nids;
3680 	int total_count, utilization;
3681 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3682 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3683 	int nr_dio_read, nr_dio_write;
3684 	unsigned int io_skip_bggc, other_skip_bggc;
3685 	int nr_flushing, nr_flushed, flush_list_empty;
3686 	int nr_discarding, nr_discarded;
3687 	int nr_discard_cmd;
3688 	unsigned int undiscard_blks;
3689 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3690 	unsigned int cur_ckpt_time, peak_ckpt_time;
3691 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3692 	int compr_inode;
3693 	unsigned long long compr_blocks;
3694 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3695 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3696 	unsigned int bimodal, avg_vblocks;
3697 	int util_free, util_valid, util_invalid;
3698 	int rsvd_segs, overp_segs;
3699 	int dirty_count, node_pages, meta_pages, compress_pages;
3700 	int compress_page_hit;
3701 	int prefree_count, call_count, cp_count, bg_cp_count;
3702 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3703 	int bg_node_segs, bg_data_segs;
3704 	int tot_blks, data_blks, node_blks;
3705 	int bg_data_blks, bg_node_blks;
3706 	unsigned long long skipped_atomic_files[2];
3707 	int curseg[NR_CURSEG_TYPE];
3708 	int cursec[NR_CURSEG_TYPE];
3709 	int curzone[NR_CURSEG_TYPE];
3710 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3711 	unsigned int full_seg[NR_CURSEG_TYPE];
3712 	unsigned int valid_blks[NR_CURSEG_TYPE];
3713 
3714 	unsigned int meta_count[META_MAX];
3715 	unsigned int segment_count[2];
3716 	unsigned int block_count[2];
3717 	unsigned int inplace_count;
3718 	unsigned long long base_mem, cache_mem, page_mem;
3719 };
3720 
3721 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3722 {
3723 	return (struct f2fs_stat_info *)sbi->stat_info;
3724 }
3725 
3726 #define stat_inc_cp_count(si)		((si)->cp_count++)
3727 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3728 #define stat_inc_call_count(si)		((si)->call_count++)
3729 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3730 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3731 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3732 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3733 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3734 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3735 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3736 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3737 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3738 #define stat_inc_inline_xattr(inode)					\
3739 	do {								\
3740 		if (f2fs_has_inline_xattr(inode))			\
3741 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3742 	} while (0)
3743 #define stat_dec_inline_xattr(inode)					\
3744 	do {								\
3745 		if (f2fs_has_inline_xattr(inode))			\
3746 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3747 	} while (0)
3748 #define stat_inc_inline_inode(inode)					\
3749 	do {								\
3750 		if (f2fs_has_inline_data(inode))			\
3751 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3752 	} while (0)
3753 #define stat_dec_inline_inode(inode)					\
3754 	do {								\
3755 		if (f2fs_has_inline_data(inode))			\
3756 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3757 	} while (0)
3758 #define stat_inc_inline_dir(inode)					\
3759 	do {								\
3760 		if (f2fs_has_inline_dentry(inode))			\
3761 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3762 	} while (0)
3763 #define stat_dec_inline_dir(inode)					\
3764 	do {								\
3765 		if (f2fs_has_inline_dentry(inode))			\
3766 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3767 	} while (0)
3768 #define stat_inc_compr_inode(inode)					\
3769 	do {								\
3770 		if (f2fs_compressed_file(inode))			\
3771 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3772 	} while (0)
3773 #define stat_dec_compr_inode(inode)					\
3774 	do {								\
3775 		if (f2fs_compressed_file(inode))			\
3776 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3777 	} while (0)
3778 #define stat_add_compr_blocks(inode, blocks)				\
3779 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3780 #define stat_sub_compr_blocks(inode, blocks)				\
3781 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3782 #define stat_inc_meta_count(sbi, blkaddr)				\
3783 	do {								\
3784 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3785 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3786 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3787 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3788 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3789 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3790 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3791 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3792 	} while (0)
3793 #define stat_inc_seg_type(sbi, curseg)					\
3794 		((sbi)->segment_count[(curseg)->alloc_type]++)
3795 #define stat_inc_block_count(sbi, curseg)				\
3796 		((sbi)->block_count[(curseg)->alloc_type]++)
3797 #define stat_inc_inplace_blocks(sbi)					\
3798 		(atomic_inc(&(sbi)->inplace_count))
3799 #define stat_update_max_atomic_write(inode)				\
3800 	do {								\
3801 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3802 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3803 		if (cur > max)						\
3804 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3805 	} while (0)
3806 #define stat_inc_volatile_write(inode)					\
3807 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3808 #define stat_dec_volatile_write(inode)					\
3809 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3810 #define stat_update_max_volatile_write(inode)				\
3811 	do {								\
3812 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3813 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3814 		if (cur > max)						\
3815 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3816 	} while (0)
3817 #define stat_inc_seg_count(sbi, type, gc_type)				\
3818 	do {								\
3819 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3820 		si->tot_segs++;						\
3821 		if ((type) == SUM_TYPE_DATA) {				\
3822 			si->data_segs++;				\
3823 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3824 		} else {						\
3825 			si->node_segs++;				\
3826 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3827 		}							\
3828 	} while (0)
3829 
3830 #define stat_inc_tot_blk_count(si, blks)				\
3831 	((si)->tot_blks += (blks))
3832 
3833 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3834 	do {								\
3835 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3836 		stat_inc_tot_blk_count(si, blks);			\
3837 		si->data_blks += (blks);				\
3838 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3839 	} while (0)
3840 
3841 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3842 	do {								\
3843 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3844 		stat_inc_tot_blk_count(si, blks);			\
3845 		si->node_blks += (blks);				\
3846 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3847 	} while (0)
3848 
3849 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3850 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3851 void __init f2fs_create_root_stats(void);
3852 void f2fs_destroy_root_stats(void);
3853 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3854 #else
3855 #define stat_inc_cp_count(si)				do { } while (0)
3856 #define stat_inc_bg_cp_count(si)			do { } while (0)
3857 #define stat_inc_call_count(si)				do { } while (0)
3858 #define stat_inc_bggc_count(si)				do { } while (0)
3859 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3860 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3861 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3862 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3863 #define stat_inc_total_hit(sbi)				do { } while (0)
3864 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3865 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3866 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3867 #define stat_inc_inline_xattr(inode)			do { } while (0)
3868 #define stat_dec_inline_xattr(inode)			do { } while (0)
3869 #define stat_inc_inline_inode(inode)			do { } while (0)
3870 #define stat_dec_inline_inode(inode)			do { } while (0)
3871 #define stat_inc_inline_dir(inode)			do { } while (0)
3872 #define stat_dec_inline_dir(inode)			do { } while (0)
3873 #define stat_inc_compr_inode(inode)			do { } while (0)
3874 #define stat_dec_compr_inode(inode)			do { } while (0)
3875 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3876 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3877 #define stat_update_max_atomic_write(inode)		do { } while (0)
3878 #define stat_inc_volatile_write(inode)			do { } while (0)
3879 #define stat_dec_volatile_write(inode)			do { } while (0)
3880 #define stat_update_max_volatile_write(inode)		do { } while (0)
3881 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3882 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3883 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3884 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3885 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3886 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3887 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3888 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3889 
3890 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3891 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3892 static inline void __init f2fs_create_root_stats(void) { }
3893 static inline void f2fs_destroy_root_stats(void) { }
3894 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3895 #endif
3896 
3897 extern const struct file_operations f2fs_dir_operations;
3898 extern const struct file_operations f2fs_file_operations;
3899 extern const struct inode_operations f2fs_file_inode_operations;
3900 extern const struct address_space_operations f2fs_dblock_aops;
3901 extern const struct address_space_operations f2fs_node_aops;
3902 extern const struct address_space_operations f2fs_meta_aops;
3903 extern const struct inode_operations f2fs_dir_inode_operations;
3904 extern const struct inode_operations f2fs_symlink_inode_operations;
3905 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3906 extern const struct inode_operations f2fs_special_inode_operations;
3907 extern struct kmem_cache *f2fs_inode_entry_slab;
3908 
3909 /*
3910  * inline.c
3911  */
3912 bool f2fs_may_inline_data(struct inode *inode);
3913 bool f2fs_may_inline_dentry(struct inode *inode);
3914 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3915 void f2fs_truncate_inline_inode(struct inode *inode,
3916 						struct page *ipage, u64 from);
3917 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3918 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3919 int f2fs_convert_inline_inode(struct inode *inode);
3920 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3921 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3922 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3923 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3924 					const struct f2fs_filename *fname,
3925 					struct page **res_page);
3926 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3927 			struct page *ipage);
3928 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3929 			struct inode *inode, nid_t ino, umode_t mode);
3930 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3931 				struct page *page, struct inode *dir,
3932 				struct inode *inode);
3933 bool f2fs_empty_inline_dir(struct inode *dir);
3934 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3935 			struct fscrypt_str *fstr);
3936 int f2fs_inline_data_fiemap(struct inode *inode,
3937 			struct fiemap_extent_info *fieinfo,
3938 			__u64 start, __u64 len);
3939 
3940 /*
3941  * shrinker.c
3942  */
3943 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3944 			struct shrink_control *sc);
3945 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3946 			struct shrink_control *sc);
3947 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3948 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3949 
3950 /*
3951  * extent_cache.c
3952  */
3953 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3954 				struct rb_entry *cached_re, unsigned int ofs);
3955 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3956 				struct rb_root_cached *root,
3957 				struct rb_node **parent,
3958 				unsigned long long key, bool *left_most);
3959 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3960 				struct rb_root_cached *root,
3961 				struct rb_node **parent,
3962 				unsigned int ofs, bool *leftmost);
3963 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3964 		struct rb_entry *cached_re, unsigned int ofs,
3965 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3966 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3967 		bool force, bool *leftmost);
3968 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3969 				struct rb_root_cached *root, bool check_key);
3970 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3971 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3972 void f2fs_drop_extent_tree(struct inode *inode);
3973 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3974 void f2fs_destroy_extent_tree(struct inode *inode);
3975 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3976 			struct extent_info *ei);
3977 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3978 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3979 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3980 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3981 int __init f2fs_create_extent_cache(void);
3982 void f2fs_destroy_extent_cache(void);
3983 
3984 /*
3985  * sysfs.c
3986  */
3987 int __init f2fs_init_sysfs(void);
3988 void f2fs_exit_sysfs(void);
3989 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3990 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3991 
3992 /* verity.c */
3993 extern const struct fsverity_operations f2fs_verityops;
3994 
3995 /*
3996  * crypto support
3997  */
3998 static inline bool f2fs_encrypted_file(struct inode *inode)
3999 {
4000 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4001 }
4002 
4003 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4004 {
4005 #ifdef CONFIG_FS_ENCRYPTION
4006 	file_set_encrypt(inode);
4007 	f2fs_set_inode_flags(inode);
4008 #endif
4009 }
4010 
4011 /*
4012  * Returns true if the reads of the inode's data need to undergo some
4013  * postprocessing step, like decryption or authenticity verification.
4014  */
4015 static inline bool f2fs_post_read_required(struct inode *inode)
4016 {
4017 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4018 		f2fs_compressed_file(inode);
4019 }
4020 
4021 /*
4022  * compress.c
4023  */
4024 #ifdef CONFIG_F2FS_FS_COMPRESSION
4025 bool f2fs_is_compressed_page(struct page *page);
4026 struct page *f2fs_compress_control_page(struct page *page);
4027 int f2fs_prepare_compress_overwrite(struct inode *inode,
4028 			struct page **pagep, pgoff_t index, void **fsdata);
4029 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4030 					pgoff_t index, unsigned copied);
4031 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4032 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4033 bool f2fs_is_compress_backend_ready(struct inode *inode);
4034 int f2fs_init_compress_mempool(void);
4035 void f2fs_destroy_compress_mempool(void);
4036 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4037 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4038 							block_t blkaddr);
4039 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4040 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4041 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4042 int f2fs_write_multi_pages(struct compress_ctx *cc,
4043 						int *submitted,
4044 						struct writeback_control *wbc,
4045 						enum iostat_type io_type);
4046 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4047 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4048 				unsigned nr_pages, sector_t *last_block_in_bio,
4049 				bool is_readahead, bool for_write);
4050 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4051 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4052 void f2fs_put_page_dic(struct page *page);
4053 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4054 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4055 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4056 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4057 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4058 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4059 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4060 int __init f2fs_init_compress_cache(void);
4061 void f2fs_destroy_compress_cache(void);
4062 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4063 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4064 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4065 						nid_t ino, block_t blkaddr);
4066 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4067 								block_t blkaddr);
4068 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4069 #define inc_compr_inode_stat(inode)					\
4070 	do {								\
4071 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4072 		sbi->compr_new_inode++;					\
4073 	} while (0)
4074 #define add_compr_block_stat(inode, blocks)				\
4075 	do {								\
4076 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4077 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4078 		sbi->compr_written_block += blocks;			\
4079 		sbi->compr_saved_block += diff;				\
4080 	} while (0)
4081 #else
4082 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4083 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4084 {
4085 	if (!f2fs_compressed_file(inode))
4086 		return true;
4087 	/* not support compression */
4088 	return false;
4089 }
4090 static inline struct page *f2fs_compress_control_page(struct page *page)
4091 {
4092 	WARN_ON_ONCE(1);
4093 	return ERR_PTR(-EINVAL);
4094 }
4095 static inline int f2fs_init_compress_mempool(void) { return 0; }
4096 static inline void f2fs_destroy_compress_mempool(void) { }
4097 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4098 static inline void f2fs_end_read_compressed_page(struct page *page,
4099 						bool failed, block_t blkaddr)
4100 {
4101 	WARN_ON_ONCE(1);
4102 }
4103 static inline void f2fs_put_page_dic(struct page *page)
4104 {
4105 	WARN_ON_ONCE(1);
4106 }
4107 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4108 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4109 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4110 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4111 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4112 static inline void f2fs_destroy_compress_cache(void) { }
4113 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4114 				block_t blkaddr) { }
4115 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4116 				struct page *page, nid_t ino, block_t blkaddr) { }
4117 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4118 				struct page *page, block_t blkaddr) { return false; }
4119 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4120 							nid_t ino) { }
4121 #define inc_compr_inode_stat(inode)		do { } while (0)
4122 #endif
4123 
4124 static inline void set_compress_context(struct inode *inode)
4125 {
4126 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4127 
4128 	F2FS_I(inode)->i_compress_algorithm =
4129 			F2FS_OPTION(sbi).compress_algorithm;
4130 	F2FS_I(inode)->i_log_cluster_size =
4131 			F2FS_OPTION(sbi).compress_log_size;
4132 	F2FS_I(inode)->i_compress_flag =
4133 			F2FS_OPTION(sbi).compress_chksum ?
4134 				1 << COMPRESS_CHKSUM : 0;
4135 	F2FS_I(inode)->i_cluster_size =
4136 			1 << F2FS_I(inode)->i_log_cluster_size;
4137 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 &&
4138 			F2FS_OPTION(sbi).compress_level)
4139 		F2FS_I(inode)->i_compress_flag |=
4140 				F2FS_OPTION(sbi).compress_level <<
4141 				COMPRESS_LEVEL_OFFSET;
4142 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4143 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4144 	stat_inc_compr_inode(inode);
4145 	inc_compr_inode_stat(inode);
4146 	f2fs_mark_inode_dirty_sync(inode, true);
4147 }
4148 
4149 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4150 {
4151 	struct f2fs_inode_info *fi = F2FS_I(inode);
4152 
4153 	if (!f2fs_compressed_file(inode))
4154 		return true;
4155 	if (S_ISREG(inode->i_mode) &&
4156 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
4157 		return false;
4158 
4159 	fi->i_flags &= ~F2FS_COMPR_FL;
4160 	stat_dec_compr_inode(inode);
4161 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4162 	f2fs_mark_inode_dirty_sync(inode, true);
4163 	return true;
4164 }
4165 
4166 #define F2FS_FEATURE_FUNCS(name, flagname) \
4167 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4168 { \
4169 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4170 }
4171 
4172 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4173 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4174 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4175 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4176 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4177 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4178 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4179 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4180 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4181 F2FS_FEATURE_FUNCS(verity, VERITY);
4182 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4183 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4184 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4185 F2FS_FEATURE_FUNCS(readonly, RO);
4186 
4187 static inline bool f2fs_may_extent_tree(struct inode *inode)
4188 {
4189 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4190 
4191 	if (!test_opt(sbi, EXTENT_CACHE) ||
4192 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4193 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4194 			 !f2fs_sb_has_readonly(sbi)))
4195 		return false;
4196 
4197 	/*
4198 	 * for recovered files during mount do not create extents
4199 	 * if shrinker is not registered.
4200 	 */
4201 	if (list_empty(&sbi->s_list))
4202 		return false;
4203 
4204 	return S_ISREG(inode->i_mode);
4205 }
4206 
4207 #ifdef CONFIG_BLK_DEV_ZONED
4208 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4209 				    block_t blkaddr)
4210 {
4211 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4212 
4213 	return test_bit(zno, FDEV(devi).blkz_seq);
4214 }
4215 #endif
4216 
4217 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4218 {
4219 	return f2fs_sb_has_blkzoned(sbi);
4220 }
4221 
4222 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4223 {
4224 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4225 	       bdev_is_zoned(bdev);
4226 }
4227 
4228 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4229 {
4230 	int i;
4231 
4232 	if (!f2fs_is_multi_device(sbi))
4233 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4234 
4235 	for (i = 0; i < sbi->s_ndevs; i++)
4236 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4237 			return true;
4238 	return false;
4239 }
4240 
4241 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4242 {
4243 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4244 					f2fs_hw_should_discard(sbi);
4245 }
4246 
4247 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4248 {
4249 	int i;
4250 
4251 	if (!f2fs_is_multi_device(sbi))
4252 		return bdev_read_only(sbi->sb->s_bdev);
4253 
4254 	for (i = 0; i < sbi->s_ndevs; i++)
4255 		if (bdev_read_only(FDEV(i).bdev))
4256 			return true;
4257 	return false;
4258 }
4259 
4260 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4261 {
4262 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4263 }
4264 
4265 static inline bool f2fs_may_compress(struct inode *inode)
4266 {
4267 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4268 				f2fs_is_atomic_file(inode) ||
4269 				f2fs_is_volatile_file(inode))
4270 		return false;
4271 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4272 }
4273 
4274 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4275 						u64 blocks, bool add)
4276 {
4277 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4278 	struct f2fs_inode_info *fi = F2FS_I(inode);
4279 
4280 	/* don't update i_compr_blocks if saved blocks were released */
4281 	if (!add && !atomic_read(&fi->i_compr_blocks))
4282 		return;
4283 
4284 	if (add) {
4285 		atomic_add(diff, &fi->i_compr_blocks);
4286 		stat_add_compr_blocks(inode, diff);
4287 	} else {
4288 		atomic_sub(diff, &fi->i_compr_blocks);
4289 		stat_sub_compr_blocks(inode, diff);
4290 	}
4291 	f2fs_mark_inode_dirty_sync(inode, true);
4292 }
4293 
4294 static inline int block_unaligned_IO(struct inode *inode,
4295 				struct kiocb *iocb, struct iov_iter *iter)
4296 {
4297 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4298 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4299 	loff_t offset = iocb->ki_pos;
4300 	unsigned long align = offset | iov_iter_alignment(iter);
4301 
4302 	return align & blocksize_mask;
4303 }
4304 
4305 static inline int allow_outplace_dio(struct inode *inode,
4306 				struct kiocb *iocb, struct iov_iter *iter)
4307 {
4308 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4309 	int rw = iov_iter_rw(iter);
4310 
4311 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4312 				!block_unaligned_IO(inode, iocb, iter));
4313 }
4314 
4315 static inline bool f2fs_force_buffered_io(struct inode *inode,
4316 				struct kiocb *iocb, struct iov_iter *iter)
4317 {
4318 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4319 	int rw = iov_iter_rw(iter);
4320 
4321 	if (f2fs_post_read_required(inode))
4322 		return true;
4323 	if (f2fs_is_multi_device(sbi))
4324 		return true;
4325 	/*
4326 	 * for blkzoned device, fallback direct IO to buffered IO, so
4327 	 * all IOs can be serialized by log-structured write.
4328 	 */
4329 	if (f2fs_sb_has_blkzoned(sbi))
4330 		return true;
4331 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4332 		if (block_unaligned_IO(inode, iocb, iter))
4333 			return true;
4334 		if (F2FS_IO_ALIGNED(sbi))
4335 			return true;
4336 	}
4337 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4338 		return true;
4339 
4340 	return false;
4341 }
4342 
4343 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4344 {
4345 	return fsverity_active(inode) &&
4346 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4347 }
4348 
4349 #ifdef CONFIG_F2FS_FAULT_INJECTION
4350 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4351 							unsigned int type);
4352 #else
4353 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4354 #endif
4355 
4356 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4357 {
4358 #ifdef CONFIG_QUOTA
4359 	if (f2fs_sb_has_quota_ino(sbi))
4360 		return true;
4361 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4362 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4363 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4364 		return true;
4365 #endif
4366 	return false;
4367 }
4368 
4369 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4370 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4371 
4372 #endif /* _LINUX_F2FS_H */
4373