xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 1491eaf9)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27 
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition)					\
32 	do {								\
33 		if (unlikely(condition)) {				\
34 			WARN_ON(1);					\
35 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
36 		}							\
37 	} while (0)
38 #endif
39 
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_PAGE_ALLOC,
44 	FAULT_ALLOC_NID,
45 	FAULT_ORPHAN,
46 	FAULT_BLOCK,
47 	FAULT_DIR_DEPTH,
48 	FAULT_EVICT_INODE,
49 	FAULT_MAX,
50 };
51 
52 struct f2fs_fault_info {
53 	atomic_t inject_ops;
54 	unsigned int inject_rate;
55 	unsigned int inject_type;
56 };
57 
58 extern struct f2fs_fault_info f2fs_fault;
59 extern char *fault_name[FAULT_MAX];
60 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
61 
62 static inline bool time_to_inject(int type)
63 {
64 	if (!f2fs_fault.inject_rate)
65 		return false;
66 	if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
67 		return false;
68 	else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
69 		return false;
70 	else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
71 		return false;
72 	else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
73 		return false;
74 	else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
75 		return false;
76 	else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
77 		return false;
78 	else if (type == FAULT_EVICT_INODE && !IS_FAULT_SET(type))
79 		return false;
80 
81 	atomic_inc(&f2fs_fault.inject_ops);
82 	if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
83 		atomic_set(&f2fs_fault.inject_ops, 0);
84 		printk("%sF2FS-fs : inject %s in %pF\n",
85 				KERN_INFO,
86 				fault_name[type],
87 				__builtin_return_address(0));
88 		return true;
89 	}
90 	return false;
91 }
92 #endif
93 
94 /*
95  * For mount options
96  */
97 #define F2FS_MOUNT_BG_GC		0x00000001
98 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
99 #define F2FS_MOUNT_DISCARD		0x00000004
100 #define F2FS_MOUNT_NOHEAP		0x00000008
101 #define F2FS_MOUNT_XATTR_USER		0x00000010
102 #define F2FS_MOUNT_POSIX_ACL		0x00000020
103 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
104 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
105 #define F2FS_MOUNT_INLINE_DATA		0x00000100
106 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
107 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
108 #define F2FS_MOUNT_NOBARRIER		0x00000800
109 #define F2FS_MOUNT_FASTBOOT		0x00001000
110 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
111 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
112 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
113 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
114 #define F2FS_MOUNT_ADAPTIVE		0x00020000
115 #define F2FS_MOUNT_LFS			0x00040000
116 
117 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
118 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
119 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
120 
121 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
122 		typecheck(unsigned long long, b) &&			\
123 		((long long)((a) - (b)) > 0))
124 
125 typedef u32 block_t;	/*
126 			 * should not change u32, since it is the on-disk block
127 			 * address format, __le32.
128 			 */
129 typedef u32 nid_t;
130 
131 struct f2fs_mount_info {
132 	unsigned int	opt;
133 };
134 
135 #define F2FS_FEATURE_ENCRYPT	0x0001
136 #define F2FS_FEATURE_HMSMR	0x0002
137 
138 #define F2FS_HAS_FEATURE(sb, mask)					\
139 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
140 #define F2FS_SET_FEATURE(sb, mask)					\
141 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
142 #define F2FS_CLEAR_FEATURE(sb, mask)					\
143 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
144 
145 /*
146  * For checkpoint manager
147  */
148 enum {
149 	NAT_BITMAP,
150 	SIT_BITMAP
151 };
152 
153 enum {
154 	CP_UMOUNT,
155 	CP_FASTBOOT,
156 	CP_SYNC,
157 	CP_RECOVERY,
158 	CP_DISCARD,
159 };
160 
161 #define DEF_BATCHED_TRIM_SECTIONS	32
162 #define BATCHED_TRIM_SEGMENTS(sbi)	\
163 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
164 #define BATCHED_TRIM_BLOCKS(sbi)	\
165 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
166 #define DEF_CP_INTERVAL			60	/* 60 secs */
167 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
168 
169 struct cp_control {
170 	int reason;
171 	__u64 trim_start;
172 	__u64 trim_end;
173 	__u64 trim_minlen;
174 	__u64 trimmed;
175 };
176 
177 /*
178  * For CP/NAT/SIT/SSA readahead
179  */
180 enum {
181 	META_CP,
182 	META_NAT,
183 	META_SIT,
184 	META_SSA,
185 	META_POR,
186 };
187 
188 /* for the list of ino */
189 enum {
190 	ORPHAN_INO,		/* for orphan ino list */
191 	APPEND_INO,		/* for append ino list */
192 	UPDATE_INO,		/* for update ino list */
193 	MAX_INO_ENTRY,		/* max. list */
194 };
195 
196 struct ino_entry {
197 	struct list_head list;	/* list head */
198 	nid_t ino;		/* inode number */
199 };
200 
201 /* for the list of inodes to be GCed */
202 struct inode_entry {
203 	struct list_head list;	/* list head */
204 	struct inode *inode;	/* vfs inode pointer */
205 };
206 
207 /* for the list of blockaddresses to be discarded */
208 struct discard_entry {
209 	struct list_head list;	/* list head */
210 	block_t blkaddr;	/* block address to be discarded */
211 	int len;		/* # of consecutive blocks of the discard */
212 };
213 
214 /* for the list of fsync inodes, used only during recovery */
215 struct fsync_inode_entry {
216 	struct list_head list;	/* list head */
217 	struct inode *inode;	/* vfs inode pointer */
218 	block_t blkaddr;	/* block address locating the last fsync */
219 	block_t last_dentry;	/* block address locating the last dentry */
220 };
221 
222 #define nats_in_cursum(jnl)		(le16_to_cpu(jnl->n_nats))
223 #define sits_in_cursum(jnl)		(le16_to_cpu(jnl->n_sits))
224 
225 #define nat_in_journal(jnl, i)		(jnl->nat_j.entries[i].ne)
226 #define nid_in_journal(jnl, i)		(jnl->nat_j.entries[i].nid)
227 #define sit_in_journal(jnl, i)		(jnl->sit_j.entries[i].se)
228 #define segno_in_journal(jnl, i)	(jnl->sit_j.entries[i].segno)
229 
230 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
231 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
232 
233 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
234 {
235 	int before = nats_in_cursum(journal);
236 	journal->n_nats = cpu_to_le16(before + i);
237 	return before;
238 }
239 
240 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
241 {
242 	int before = sits_in_cursum(journal);
243 	journal->n_sits = cpu_to_le16(before + i);
244 	return before;
245 }
246 
247 static inline bool __has_cursum_space(struct f2fs_journal *journal,
248 							int size, int type)
249 {
250 	if (type == NAT_JOURNAL)
251 		return size <= MAX_NAT_JENTRIES(journal);
252 	return size <= MAX_SIT_JENTRIES(journal);
253 }
254 
255 /*
256  * ioctl commands
257  */
258 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
259 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
260 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
261 
262 #define F2FS_IOCTL_MAGIC		0xf5
263 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
264 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
265 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
266 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
267 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
268 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
269 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
270 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
271 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
272 						struct f2fs_move_range)
273 
274 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
275 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
276 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
277 
278 /*
279  * should be same as XFS_IOC_GOINGDOWN.
280  * Flags for going down operation used by FS_IOC_GOINGDOWN
281  */
282 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
283 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
284 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
285 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
286 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
287 
288 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
289 /*
290  * ioctl commands in 32 bit emulation
291  */
292 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
293 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
294 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
295 #endif
296 
297 struct f2fs_defragment {
298 	u64 start;
299 	u64 len;
300 };
301 
302 struct f2fs_move_range {
303 	u32 dst_fd;		/* destination fd */
304 	u64 pos_in;		/* start position in src_fd */
305 	u64 pos_out;		/* start position in dst_fd */
306 	u64 len;		/* size to move */
307 };
308 
309 /*
310  * For INODE and NODE manager
311  */
312 /* for directory operations */
313 struct f2fs_dentry_ptr {
314 	struct inode *inode;
315 	const void *bitmap;
316 	struct f2fs_dir_entry *dentry;
317 	__u8 (*filename)[F2FS_SLOT_LEN];
318 	int max;
319 };
320 
321 static inline void make_dentry_ptr(struct inode *inode,
322 		struct f2fs_dentry_ptr *d, void *src, int type)
323 {
324 	d->inode = inode;
325 
326 	if (type == 1) {
327 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
328 		d->max = NR_DENTRY_IN_BLOCK;
329 		d->bitmap = &t->dentry_bitmap;
330 		d->dentry = t->dentry;
331 		d->filename = t->filename;
332 	} else {
333 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
334 		d->max = NR_INLINE_DENTRY;
335 		d->bitmap = &t->dentry_bitmap;
336 		d->dentry = t->dentry;
337 		d->filename = t->filename;
338 	}
339 }
340 
341 /*
342  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
343  * as its node offset to distinguish from index node blocks.
344  * But some bits are used to mark the node block.
345  */
346 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
347 				>> OFFSET_BIT_SHIFT)
348 enum {
349 	ALLOC_NODE,			/* allocate a new node page if needed */
350 	LOOKUP_NODE,			/* look up a node without readahead */
351 	LOOKUP_NODE_RA,			/*
352 					 * look up a node with readahead called
353 					 * by get_data_block.
354 					 */
355 };
356 
357 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
358 
359 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
360 
361 /* vector size for gang look-up from extent cache that consists of radix tree */
362 #define EXT_TREE_VEC_SIZE	64
363 
364 /* for in-memory extent cache entry */
365 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
366 
367 /* number of extent info in extent cache we try to shrink */
368 #define EXTENT_CACHE_SHRINK_NUMBER	128
369 
370 struct extent_info {
371 	unsigned int fofs;		/* start offset in a file */
372 	u32 blk;			/* start block address of the extent */
373 	unsigned int len;		/* length of the extent */
374 };
375 
376 struct extent_node {
377 	struct rb_node rb_node;		/* rb node located in rb-tree */
378 	struct list_head list;		/* node in global extent list of sbi */
379 	struct extent_info ei;		/* extent info */
380 	struct extent_tree *et;		/* extent tree pointer */
381 };
382 
383 struct extent_tree {
384 	nid_t ino;			/* inode number */
385 	struct rb_root root;		/* root of extent info rb-tree */
386 	struct extent_node *cached_en;	/* recently accessed extent node */
387 	struct extent_info largest;	/* largested extent info */
388 	struct list_head list;		/* to be used by sbi->zombie_list */
389 	rwlock_t lock;			/* protect extent info rb-tree */
390 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
391 };
392 
393 /*
394  * This structure is taken from ext4_map_blocks.
395  *
396  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
397  */
398 #define F2FS_MAP_NEW		(1 << BH_New)
399 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
400 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
401 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
402 				F2FS_MAP_UNWRITTEN)
403 
404 struct f2fs_map_blocks {
405 	block_t m_pblk;
406 	block_t m_lblk;
407 	unsigned int m_len;
408 	unsigned int m_flags;
409 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
410 };
411 
412 /* for flag in get_data_block */
413 #define F2FS_GET_BLOCK_READ		0
414 #define F2FS_GET_BLOCK_DIO		1
415 #define F2FS_GET_BLOCK_FIEMAP		2
416 #define F2FS_GET_BLOCK_BMAP		3
417 #define F2FS_GET_BLOCK_PRE_DIO		4
418 #define F2FS_GET_BLOCK_PRE_AIO		5
419 
420 /*
421  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
422  */
423 #define FADVISE_COLD_BIT	0x01
424 #define FADVISE_LOST_PINO_BIT	0x02
425 #define FADVISE_ENCRYPT_BIT	0x04
426 #define FADVISE_ENC_NAME_BIT	0x08
427 
428 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
429 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
430 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
431 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
432 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
433 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
434 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
435 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
436 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
437 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
438 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
439 
440 #define DEF_DIR_LEVEL		0
441 
442 struct f2fs_inode_info {
443 	struct inode vfs_inode;		/* serve a vfs inode */
444 	unsigned long i_flags;		/* keep an inode flags for ioctl */
445 	unsigned char i_advise;		/* use to give file attribute hints */
446 	unsigned char i_dir_level;	/* use for dentry level for large dir */
447 	unsigned int i_current_depth;	/* use only in directory structure */
448 	unsigned int i_pino;		/* parent inode number */
449 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
450 
451 	/* Use below internally in f2fs*/
452 	unsigned long flags;		/* use to pass per-file flags */
453 	struct rw_semaphore i_sem;	/* protect fi info */
454 	struct percpu_counter dirty_pages;	/* # of dirty pages */
455 	f2fs_hash_t chash;		/* hash value of given file name */
456 	unsigned int clevel;		/* maximum level of given file name */
457 	nid_t i_xattr_nid;		/* node id that contains xattrs */
458 	unsigned long long xattr_ver;	/* cp version of xattr modification */
459 	loff_t	last_disk_size;		/* lastly written file size */
460 
461 	struct list_head dirty_list;	/* dirty list for dirs and files */
462 	struct list_head gdirty_list;	/* linked in global dirty list */
463 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
464 	struct mutex inmem_lock;	/* lock for inmemory pages */
465 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
466 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
467 };
468 
469 static inline void get_extent_info(struct extent_info *ext,
470 					struct f2fs_extent *i_ext)
471 {
472 	ext->fofs = le32_to_cpu(i_ext->fofs);
473 	ext->blk = le32_to_cpu(i_ext->blk);
474 	ext->len = le32_to_cpu(i_ext->len);
475 }
476 
477 static inline void set_raw_extent(struct extent_info *ext,
478 					struct f2fs_extent *i_ext)
479 {
480 	i_ext->fofs = cpu_to_le32(ext->fofs);
481 	i_ext->blk = cpu_to_le32(ext->blk);
482 	i_ext->len = cpu_to_le32(ext->len);
483 }
484 
485 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
486 						u32 blk, unsigned int len)
487 {
488 	ei->fofs = fofs;
489 	ei->blk = blk;
490 	ei->len = len;
491 }
492 
493 static inline bool __is_extent_same(struct extent_info *ei1,
494 						struct extent_info *ei2)
495 {
496 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
497 						ei1->len == ei2->len);
498 }
499 
500 static inline bool __is_extent_mergeable(struct extent_info *back,
501 						struct extent_info *front)
502 {
503 	return (back->fofs + back->len == front->fofs &&
504 			back->blk + back->len == front->blk);
505 }
506 
507 static inline bool __is_back_mergeable(struct extent_info *cur,
508 						struct extent_info *back)
509 {
510 	return __is_extent_mergeable(back, cur);
511 }
512 
513 static inline bool __is_front_mergeable(struct extent_info *cur,
514 						struct extent_info *front)
515 {
516 	return __is_extent_mergeable(cur, front);
517 }
518 
519 extern void f2fs_mark_inode_dirty_sync(struct inode *);
520 static inline void __try_update_largest_extent(struct inode *inode,
521 			struct extent_tree *et, struct extent_node *en)
522 {
523 	if (en->ei.len > et->largest.len) {
524 		et->largest = en->ei;
525 		f2fs_mark_inode_dirty_sync(inode);
526 	}
527 }
528 
529 struct f2fs_nm_info {
530 	block_t nat_blkaddr;		/* base disk address of NAT */
531 	nid_t max_nid;			/* maximum possible node ids */
532 	nid_t available_nids;		/* maximum available node ids */
533 	nid_t next_scan_nid;		/* the next nid to be scanned */
534 	unsigned int ram_thresh;	/* control the memory footprint */
535 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
536 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
537 
538 	/* NAT cache management */
539 	struct radix_tree_root nat_root;/* root of the nat entry cache */
540 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
541 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
542 	struct list_head nat_entries;	/* cached nat entry list (clean) */
543 	unsigned int nat_cnt;		/* the # of cached nat entries */
544 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
545 
546 	/* free node ids management */
547 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
548 	struct list_head free_nid_list;	/* a list for free nids */
549 	spinlock_t free_nid_list_lock;	/* protect free nid list */
550 	unsigned int fcnt;		/* the number of free node id */
551 	struct mutex build_lock;	/* lock for build free nids */
552 
553 	/* for checkpoint */
554 	char *nat_bitmap;		/* NAT bitmap pointer */
555 	int bitmap_size;		/* bitmap size */
556 };
557 
558 /*
559  * this structure is used as one of function parameters.
560  * all the information are dedicated to a given direct node block determined
561  * by the data offset in a file.
562  */
563 struct dnode_of_data {
564 	struct inode *inode;		/* vfs inode pointer */
565 	struct page *inode_page;	/* its inode page, NULL is possible */
566 	struct page *node_page;		/* cached direct node page */
567 	nid_t nid;			/* node id of the direct node block */
568 	unsigned int ofs_in_node;	/* data offset in the node page */
569 	bool inode_page_locked;		/* inode page is locked or not */
570 	bool node_changed;		/* is node block changed */
571 	char cur_level;			/* level of hole node page */
572 	char max_level;			/* level of current page located */
573 	block_t	data_blkaddr;		/* block address of the node block */
574 };
575 
576 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
577 		struct page *ipage, struct page *npage, nid_t nid)
578 {
579 	memset(dn, 0, sizeof(*dn));
580 	dn->inode = inode;
581 	dn->inode_page = ipage;
582 	dn->node_page = npage;
583 	dn->nid = nid;
584 }
585 
586 /*
587  * For SIT manager
588  *
589  * By default, there are 6 active log areas across the whole main area.
590  * When considering hot and cold data separation to reduce cleaning overhead,
591  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
592  * respectively.
593  * In the current design, you should not change the numbers intentionally.
594  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
595  * logs individually according to the underlying devices. (default: 6)
596  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
597  * data and 8 for node logs.
598  */
599 #define	NR_CURSEG_DATA_TYPE	(3)
600 #define NR_CURSEG_NODE_TYPE	(3)
601 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
602 
603 enum {
604 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
605 	CURSEG_WARM_DATA,	/* data blocks */
606 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
607 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
608 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
609 	CURSEG_COLD_NODE,	/* indirect node blocks */
610 	NO_CHECK_TYPE,
611 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
612 };
613 
614 struct flush_cmd {
615 	struct completion wait;
616 	struct llist_node llnode;
617 	int ret;
618 };
619 
620 struct flush_cmd_control {
621 	struct task_struct *f2fs_issue_flush;	/* flush thread */
622 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
623 	atomic_t submit_flush;			/* # of issued flushes */
624 	struct llist_head issue_list;		/* list for command issue */
625 	struct llist_node *dispatch_list;	/* list for command dispatch */
626 };
627 
628 struct f2fs_sm_info {
629 	struct sit_info *sit_info;		/* whole segment information */
630 	struct free_segmap_info *free_info;	/* free segment information */
631 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
632 	struct curseg_info *curseg_array;	/* active segment information */
633 
634 	block_t seg0_blkaddr;		/* block address of 0'th segment */
635 	block_t main_blkaddr;		/* start block address of main area */
636 	block_t ssa_blkaddr;		/* start block address of SSA area */
637 
638 	unsigned int segment_count;	/* total # of segments */
639 	unsigned int main_segments;	/* # of segments in main area */
640 	unsigned int reserved_segments;	/* # of reserved segments */
641 	unsigned int ovp_segments;	/* # of overprovision segments */
642 
643 	/* a threshold to reclaim prefree segments */
644 	unsigned int rec_prefree_segments;
645 
646 	/* for small discard management */
647 	struct list_head discard_list;		/* 4KB discard list */
648 	int nr_discards;			/* # of discards in the list */
649 	int max_discards;			/* max. discards to be issued */
650 
651 	/* for batched trimming */
652 	unsigned int trim_sections;		/* # of sections to trim */
653 
654 	struct list_head sit_entry_set;	/* sit entry set list */
655 
656 	unsigned int ipu_policy;	/* in-place-update policy */
657 	unsigned int min_ipu_util;	/* in-place-update threshold */
658 	unsigned int min_fsync_blocks;	/* threshold for fsync */
659 
660 	/* for flush command control */
661 	struct flush_cmd_control *cmd_control_info;
662 
663 };
664 
665 /*
666  * For superblock
667  */
668 /*
669  * COUNT_TYPE for monitoring
670  *
671  * f2fs monitors the number of several block types such as on-writeback,
672  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
673  */
674 enum count_type {
675 	F2FS_DIRTY_DENTS,
676 	F2FS_DIRTY_DATA,
677 	F2FS_DIRTY_NODES,
678 	F2FS_DIRTY_META,
679 	F2FS_INMEM_PAGES,
680 	F2FS_DIRTY_IMETA,
681 	NR_COUNT_TYPE,
682 };
683 
684 /*
685  * The below are the page types of bios used in submit_bio().
686  * The available types are:
687  * DATA			User data pages. It operates as async mode.
688  * NODE			Node pages. It operates as async mode.
689  * META			FS metadata pages such as SIT, NAT, CP.
690  * NR_PAGE_TYPE		The number of page types.
691  * META_FLUSH		Make sure the previous pages are written
692  *			with waiting the bio's completion
693  * ...			Only can be used with META.
694  */
695 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
696 enum page_type {
697 	DATA,
698 	NODE,
699 	META,
700 	NR_PAGE_TYPE,
701 	META_FLUSH,
702 	INMEM,		/* the below types are used by tracepoints only. */
703 	INMEM_DROP,
704 	INMEM_REVOKE,
705 	IPU,
706 	OPU,
707 };
708 
709 struct f2fs_io_info {
710 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
711 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
712 	int op;			/* contains REQ_OP_ */
713 	int op_flags;		/* rq_flag_bits */
714 	block_t new_blkaddr;	/* new block address to be written */
715 	block_t old_blkaddr;	/* old block address before Cow */
716 	struct page *page;	/* page to be written */
717 	struct page *encrypted_page;	/* encrypted page */
718 };
719 
720 #define is_read_io(rw) (rw == READ)
721 struct f2fs_bio_info {
722 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
723 	struct bio *bio;		/* bios to merge */
724 	sector_t last_block_in_bio;	/* last block number */
725 	struct f2fs_io_info fio;	/* store buffered io info. */
726 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
727 };
728 
729 enum inode_type {
730 	DIR_INODE,			/* for dirty dir inode */
731 	FILE_INODE,			/* for dirty regular/symlink inode */
732 	DIRTY_META,			/* for all dirtied inode metadata */
733 	NR_INODE_TYPE,
734 };
735 
736 /* for inner inode cache management */
737 struct inode_management {
738 	struct radix_tree_root ino_root;	/* ino entry array */
739 	spinlock_t ino_lock;			/* for ino entry lock */
740 	struct list_head ino_list;		/* inode list head */
741 	unsigned long ino_num;			/* number of entries */
742 };
743 
744 /* For s_flag in struct f2fs_sb_info */
745 enum {
746 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
747 	SBI_IS_CLOSE,				/* specify unmounting */
748 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
749 	SBI_POR_DOING,				/* recovery is doing or not */
750 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
751 };
752 
753 enum {
754 	CP_TIME,
755 	REQ_TIME,
756 	MAX_TIME,
757 };
758 
759 #ifdef CONFIG_F2FS_FS_ENCRYPTION
760 #define F2FS_KEY_DESC_PREFIX "f2fs:"
761 #define F2FS_KEY_DESC_PREFIX_SIZE 5
762 #endif
763 struct f2fs_sb_info {
764 	struct super_block *sb;			/* pointer to VFS super block */
765 	struct proc_dir_entry *s_proc;		/* proc entry */
766 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
767 	int valid_super_block;			/* valid super block no */
768 	int s_flag;				/* flags for sbi */
769 
770 #ifdef CONFIG_F2FS_FS_ENCRYPTION
771 	u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
772 	u8 key_prefix_size;
773 #endif
774 	/* for node-related operations */
775 	struct f2fs_nm_info *nm_info;		/* node manager */
776 	struct inode *node_inode;		/* cache node blocks */
777 
778 	/* for segment-related operations */
779 	struct f2fs_sm_info *sm_info;		/* segment manager */
780 
781 	/* for bio operations */
782 	struct f2fs_bio_info read_io;			/* for read bios */
783 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
784 	struct mutex wio_mutex[NODE + 1];	/* bio ordering for NODE/DATA */
785 
786 	/* for checkpoint */
787 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
788 	struct inode *meta_inode;		/* cache meta blocks */
789 	struct mutex cp_mutex;			/* checkpoint procedure lock */
790 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
791 	struct rw_semaphore node_write;		/* locking node writes */
792 	wait_queue_head_t cp_wait;
793 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
794 	long interval_time[MAX_TIME];		/* to store thresholds */
795 
796 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
797 
798 	/* for orphan inode, use 0'th array */
799 	unsigned int max_orphans;		/* max orphan inodes */
800 
801 	/* for inode management */
802 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
803 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
804 
805 	/* for extent tree cache */
806 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
807 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
808 	struct list_head extent_list;		/* lru list for shrinker */
809 	spinlock_t extent_lock;			/* locking extent lru list */
810 	atomic_t total_ext_tree;		/* extent tree count */
811 	struct list_head zombie_list;		/* extent zombie tree list */
812 	atomic_t total_zombie_tree;		/* extent zombie tree count */
813 	atomic_t total_ext_node;		/* extent info count */
814 
815 	/* basic filesystem units */
816 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
817 	unsigned int log_blocksize;		/* log2 block size */
818 	unsigned int blocksize;			/* block size */
819 	unsigned int root_ino_num;		/* root inode number*/
820 	unsigned int node_ino_num;		/* node inode number*/
821 	unsigned int meta_ino_num;		/* meta inode number*/
822 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
823 	unsigned int blocks_per_seg;		/* blocks per segment */
824 	unsigned int segs_per_sec;		/* segments per section */
825 	unsigned int secs_per_zone;		/* sections per zone */
826 	unsigned int total_sections;		/* total section count */
827 	unsigned int total_node_count;		/* total node block count */
828 	unsigned int total_valid_node_count;	/* valid node block count */
829 	loff_t max_file_blocks;			/* max block index of file */
830 	int active_logs;			/* # of active logs */
831 	int dir_level;				/* directory level */
832 
833 	block_t user_block_count;		/* # of user blocks */
834 	block_t total_valid_block_count;	/* # of valid blocks */
835 	block_t discard_blks;			/* discard command candidats */
836 	block_t last_valid_block_count;		/* for recovery */
837 	u32 s_next_generation;			/* for NFS support */
838 	atomic_t nr_wb_bios;			/* # of writeback bios */
839 
840 	/* # of pages, see count_type */
841 	struct percpu_counter nr_pages[NR_COUNT_TYPE];
842 	/* # of allocated blocks */
843 	struct percpu_counter alloc_valid_block_count;
844 
845 	/* valid inode count */
846 	struct percpu_counter total_valid_inode_count;
847 
848 	struct f2fs_mount_info mount_opt;	/* mount options */
849 
850 	/* for cleaning operations */
851 	struct mutex gc_mutex;			/* mutex for GC */
852 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
853 	unsigned int cur_victim_sec;		/* current victim section num */
854 
855 	/* maximum # of trials to find a victim segment for SSR and GC */
856 	unsigned int max_victim_search;
857 
858 	/*
859 	 * for stat information.
860 	 * one is for the LFS mode, and the other is for the SSR mode.
861 	 */
862 #ifdef CONFIG_F2FS_STAT_FS
863 	struct f2fs_stat_info *stat_info;	/* FS status information */
864 	unsigned int segment_count[2];		/* # of allocated segments */
865 	unsigned int block_count[2];		/* # of allocated blocks */
866 	atomic_t inplace_count;		/* # of inplace update */
867 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
868 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
869 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
870 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
871 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
872 	atomic_t inline_inode;			/* # of inline_data inodes */
873 	atomic_t inline_dir;			/* # of inline_dentry inodes */
874 	int bg_gc;				/* background gc calls */
875 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
876 #endif
877 	unsigned int last_victim[2];		/* last victim segment # */
878 	spinlock_t stat_lock;			/* lock for stat operations */
879 
880 	/* For sysfs suppport */
881 	struct kobject s_kobj;
882 	struct completion s_kobj_unregister;
883 
884 	/* For shrinker support */
885 	struct list_head s_list;
886 	struct mutex umount_mutex;
887 	unsigned int shrinker_run_no;
888 
889 	/* For write statistics */
890 	u64 sectors_written_start;
891 	u64 kbytes_written;
892 
893 	/* Reference to checksum algorithm driver via cryptoapi */
894 	struct crypto_shash *s_chksum_driver;
895 };
896 
897 /* For write statistics. Suppose sector size is 512 bytes,
898  * and the return value is in kbytes. s is of struct f2fs_sb_info.
899  */
900 #define BD_PART_WRITTEN(s)						 \
901 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) -		 \
902 		s->sectors_written_start) >> 1)
903 
904 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
905 {
906 	sbi->last_time[type] = jiffies;
907 }
908 
909 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
910 {
911 	struct timespec ts = {sbi->interval_time[type], 0};
912 	unsigned long interval = timespec_to_jiffies(&ts);
913 
914 	return time_after(jiffies, sbi->last_time[type] + interval);
915 }
916 
917 static inline bool is_idle(struct f2fs_sb_info *sbi)
918 {
919 	struct block_device *bdev = sbi->sb->s_bdev;
920 	struct request_queue *q = bdev_get_queue(bdev);
921 	struct request_list *rl = &q->root_rl;
922 
923 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
924 		return 0;
925 
926 	return f2fs_time_over(sbi, REQ_TIME);
927 }
928 
929 /*
930  * Inline functions
931  */
932 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
933 			   unsigned int length)
934 {
935 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
936 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
937 	int err;
938 
939 	shash->tfm = sbi->s_chksum_driver;
940 	shash->flags = 0;
941 	*ctx = F2FS_SUPER_MAGIC;
942 
943 	err = crypto_shash_update(shash, address, length);
944 	BUG_ON(err);
945 
946 	return *ctx;
947 }
948 
949 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
950 				  void *buf, size_t buf_size)
951 {
952 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
953 }
954 
955 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
956 {
957 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
958 }
959 
960 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
961 {
962 	return sb->s_fs_info;
963 }
964 
965 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
966 {
967 	return F2FS_SB(inode->i_sb);
968 }
969 
970 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
971 {
972 	return F2FS_I_SB(mapping->host);
973 }
974 
975 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
976 {
977 	return F2FS_M_SB(page->mapping);
978 }
979 
980 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
981 {
982 	return (struct f2fs_super_block *)(sbi->raw_super);
983 }
984 
985 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
986 {
987 	return (struct f2fs_checkpoint *)(sbi->ckpt);
988 }
989 
990 static inline struct f2fs_node *F2FS_NODE(struct page *page)
991 {
992 	return (struct f2fs_node *)page_address(page);
993 }
994 
995 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
996 {
997 	return &((struct f2fs_node *)page_address(page))->i;
998 }
999 
1000 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1001 {
1002 	return (struct f2fs_nm_info *)(sbi->nm_info);
1003 }
1004 
1005 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1006 {
1007 	return (struct f2fs_sm_info *)(sbi->sm_info);
1008 }
1009 
1010 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1011 {
1012 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1013 }
1014 
1015 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1016 {
1017 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1018 }
1019 
1020 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1021 {
1022 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1023 }
1024 
1025 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1026 {
1027 	return sbi->meta_inode->i_mapping;
1028 }
1029 
1030 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1031 {
1032 	return sbi->node_inode->i_mapping;
1033 }
1034 
1035 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1036 {
1037 	return sbi->s_flag & (0x01 << type);
1038 }
1039 
1040 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1041 {
1042 	sbi->s_flag |= (0x01 << type);
1043 }
1044 
1045 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1046 {
1047 	sbi->s_flag &= ~(0x01 << type);
1048 }
1049 
1050 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1051 {
1052 	return le64_to_cpu(cp->checkpoint_ver);
1053 }
1054 
1055 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1056 {
1057 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1058 	return ckpt_flags & f;
1059 }
1060 
1061 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1062 {
1063 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1064 	ckpt_flags |= f;
1065 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1066 }
1067 
1068 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1069 {
1070 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1071 	ckpt_flags &= (~f);
1072 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1073 }
1074 
1075 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1076 {
1077 	down_read(&sbi->cp_rwsem);
1078 }
1079 
1080 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1081 {
1082 	up_read(&sbi->cp_rwsem);
1083 }
1084 
1085 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1086 {
1087 	down_write(&sbi->cp_rwsem);
1088 }
1089 
1090 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1091 {
1092 	up_write(&sbi->cp_rwsem);
1093 }
1094 
1095 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1096 {
1097 	int reason = CP_SYNC;
1098 
1099 	if (test_opt(sbi, FASTBOOT))
1100 		reason = CP_FASTBOOT;
1101 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1102 		reason = CP_UMOUNT;
1103 	return reason;
1104 }
1105 
1106 static inline bool __remain_node_summaries(int reason)
1107 {
1108 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1109 }
1110 
1111 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1112 {
1113 	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1114 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1115 }
1116 
1117 /*
1118  * Check whether the given nid is within node id range.
1119  */
1120 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1121 {
1122 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1123 		return -EINVAL;
1124 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1125 		return -EINVAL;
1126 	return 0;
1127 }
1128 
1129 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1130 
1131 /*
1132  * Check whether the inode has blocks or not
1133  */
1134 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1135 {
1136 	if (F2FS_I(inode)->i_xattr_nid)
1137 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1138 	else
1139 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1140 }
1141 
1142 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1143 {
1144 	return ofs == XATTR_NODE_OFFSET;
1145 }
1146 
1147 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1148 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1149 				 struct inode *inode, blkcnt_t *count)
1150 {
1151 	blkcnt_t diff;
1152 
1153 #ifdef CONFIG_F2FS_FAULT_INJECTION
1154 	if (time_to_inject(FAULT_BLOCK))
1155 		return false;
1156 #endif
1157 	/*
1158 	 * let's increase this in prior to actual block count change in order
1159 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1160 	 */
1161 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1162 
1163 	spin_lock(&sbi->stat_lock);
1164 	sbi->total_valid_block_count += (block_t)(*count);
1165 	if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1166 		diff = sbi->total_valid_block_count - sbi->user_block_count;
1167 		*count -= diff;
1168 		sbi->total_valid_block_count = sbi->user_block_count;
1169 		if (!*count) {
1170 			spin_unlock(&sbi->stat_lock);
1171 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1172 			return false;
1173 		}
1174 	}
1175 	spin_unlock(&sbi->stat_lock);
1176 
1177 	f2fs_i_blocks_write(inode, *count, true);
1178 	return true;
1179 }
1180 
1181 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1182 						struct inode *inode,
1183 						blkcnt_t count)
1184 {
1185 	spin_lock(&sbi->stat_lock);
1186 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1187 	f2fs_bug_on(sbi, inode->i_blocks < count);
1188 	sbi->total_valid_block_count -= (block_t)count;
1189 	spin_unlock(&sbi->stat_lock);
1190 	f2fs_i_blocks_write(inode, count, false);
1191 }
1192 
1193 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1194 {
1195 	percpu_counter_inc(&sbi->nr_pages[count_type]);
1196 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1197 }
1198 
1199 static inline void inode_inc_dirty_pages(struct inode *inode)
1200 {
1201 	percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1202 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1203 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1204 }
1205 
1206 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1207 {
1208 	percpu_counter_dec(&sbi->nr_pages[count_type]);
1209 }
1210 
1211 static inline void inode_dec_dirty_pages(struct inode *inode)
1212 {
1213 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1214 			!S_ISLNK(inode->i_mode))
1215 		return;
1216 
1217 	percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1218 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1219 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1220 }
1221 
1222 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1223 {
1224 	return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1225 }
1226 
1227 static inline s64 get_dirty_pages(struct inode *inode)
1228 {
1229 	return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1230 }
1231 
1232 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1233 {
1234 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1235 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1236 						sbi->log_blocks_per_seg;
1237 
1238 	return segs / sbi->segs_per_sec;
1239 }
1240 
1241 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1242 {
1243 	return sbi->total_valid_block_count;
1244 }
1245 
1246 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1247 {
1248 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1249 
1250 	/* return NAT or SIT bitmap */
1251 	if (flag == NAT_BITMAP)
1252 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1253 	else if (flag == SIT_BITMAP)
1254 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1255 
1256 	return 0;
1257 }
1258 
1259 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1260 {
1261 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1262 }
1263 
1264 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1265 {
1266 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1267 	int offset;
1268 
1269 	if (__cp_payload(sbi) > 0) {
1270 		if (flag == NAT_BITMAP)
1271 			return &ckpt->sit_nat_version_bitmap;
1272 		else
1273 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1274 	} else {
1275 		offset = (flag == NAT_BITMAP) ?
1276 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1277 		return &ckpt->sit_nat_version_bitmap + offset;
1278 	}
1279 }
1280 
1281 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1282 {
1283 	block_t start_addr;
1284 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1285 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1286 
1287 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1288 
1289 	/*
1290 	 * odd numbered checkpoint should at cp segment 0
1291 	 * and even segment must be at cp segment 1
1292 	 */
1293 	if (!(ckpt_version & 1))
1294 		start_addr += sbi->blocks_per_seg;
1295 
1296 	return start_addr;
1297 }
1298 
1299 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1300 {
1301 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1302 }
1303 
1304 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1305 						struct inode *inode)
1306 {
1307 	block_t	valid_block_count;
1308 	unsigned int valid_node_count;
1309 
1310 	spin_lock(&sbi->stat_lock);
1311 
1312 	valid_block_count = sbi->total_valid_block_count + 1;
1313 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1314 		spin_unlock(&sbi->stat_lock);
1315 		return false;
1316 	}
1317 
1318 	valid_node_count = sbi->total_valid_node_count + 1;
1319 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1320 		spin_unlock(&sbi->stat_lock);
1321 		return false;
1322 	}
1323 
1324 	if (inode)
1325 		f2fs_i_blocks_write(inode, 1, true);
1326 
1327 	sbi->total_valid_node_count++;
1328 	sbi->total_valid_block_count++;
1329 	spin_unlock(&sbi->stat_lock);
1330 
1331 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1332 	return true;
1333 }
1334 
1335 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1336 						struct inode *inode)
1337 {
1338 	spin_lock(&sbi->stat_lock);
1339 
1340 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1341 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1342 	f2fs_bug_on(sbi, !inode->i_blocks);
1343 
1344 	f2fs_i_blocks_write(inode, 1, false);
1345 	sbi->total_valid_node_count--;
1346 	sbi->total_valid_block_count--;
1347 
1348 	spin_unlock(&sbi->stat_lock);
1349 }
1350 
1351 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1352 {
1353 	return sbi->total_valid_node_count;
1354 }
1355 
1356 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1357 {
1358 	percpu_counter_inc(&sbi->total_valid_inode_count);
1359 }
1360 
1361 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1362 {
1363 	percpu_counter_dec(&sbi->total_valid_inode_count);
1364 }
1365 
1366 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1367 {
1368 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1369 }
1370 
1371 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1372 						pgoff_t index, bool for_write)
1373 {
1374 #ifdef CONFIG_F2FS_FAULT_INJECTION
1375 	struct page *page = find_lock_page(mapping, index);
1376 	if (page)
1377 		return page;
1378 
1379 	if (time_to_inject(FAULT_PAGE_ALLOC))
1380 		return NULL;
1381 #endif
1382 	if (!for_write)
1383 		return grab_cache_page(mapping, index);
1384 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1385 }
1386 
1387 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1388 {
1389 	char *src_kaddr = kmap(src);
1390 	char *dst_kaddr = kmap(dst);
1391 
1392 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1393 	kunmap(dst);
1394 	kunmap(src);
1395 }
1396 
1397 static inline void f2fs_put_page(struct page *page, int unlock)
1398 {
1399 	if (!page)
1400 		return;
1401 
1402 	if (unlock) {
1403 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1404 		unlock_page(page);
1405 	}
1406 	put_page(page);
1407 }
1408 
1409 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1410 {
1411 	if (dn->node_page)
1412 		f2fs_put_page(dn->node_page, 1);
1413 	if (dn->inode_page && dn->node_page != dn->inode_page)
1414 		f2fs_put_page(dn->inode_page, 0);
1415 	dn->node_page = NULL;
1416 	dn->inode_page = NULL;
1417 }
1418 
1419 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1420 					size_t size)
1421 {
1422 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1423 }
1424 
1425 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1426 						gfp_t flags)
1427 {
1428 	void *entry;
1429 
1430 	entry = kmem_cache_alloc(cachep, flags);
1431 	if (!entry)
1432 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1433 	return entry;
1434 }
1435 
1436 static inline struct bio *f2fs_bio_alloc(int npages)
1437 {
1438 	struct bio *bio;
1439 
1440 	/* No failure on bio allocation */
1441 	bio = bio_alloc(GFP_NOIO, npages);
1442 	if (!bio)
1443 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1444 	return bio;
1445 }
1446 
1447 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1448 				unsigned long index, void *item)
1449 {
1450 	while (radix_tree_insert(root, index, item))
1451 		cond_resched();
1452 }
1453 
1454 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1455 
1456 static inline bool IS_INODE(struct page *page)
1457 {
1458 	struct f2fs_node *p = F2FS_NODE(page);
1459 	return RAW_IS_INODE(p);
1460 }
1461 
1462 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1463 {
1464 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1465 }
1466 
1467 static inline block_t datablock_addr(struct page *node_page,
1468 		unsigned int offset)
1469 {
1470 	struct f2fs_node *raw_node;
1471 	__le32 *addr_array;
1472 	raw_node = F2FS_NODE(node_page);
1473 	addr_array = blkaddr_in_node(raw_node);
1474 	return le32_to_cpu(addr_array[offset]);
1475 }
1476 
1477 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1478 {
1479 	int mask;
1480 
1481 	addr += (nr >> 3);
1482 	mask = 1 << (7 - (nr & 0x07));
1483 	return mask & *addr;
1484 }
1485 
1486 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1487 {
1488 	int mask;
1489 
1490 	addr += (nr >> 3);
1491 	mask = 1 << (7 - (nr & 0x07));
1492 	*addr |= mask;
1493 }
1494 
1495 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1496 {
1497 	int mask;
1498 
1499 	addr += (nr >> 3);
1500 	mask = 1 << (7 - (nr & 0x07));
1501 	*addr &= ~mask;
1502 }
1503 
1504 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1505 {
1506 	int mask;
1507 	int ret;
1508 
1509 	addr += (nr >> 3);
1510 	mask = 1 << (7 - (nr & 0x07));
1511 	ret = mask & *addr;
1512 	*addr |= mask;
1513 	return ret;
1514 }
1515 
1516 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1517 {
1518 	int mask;
1519 	int ret;
1520 
1521 	addr += (nr >> 3);
1522 	mask = 1 << (7 - (nr & 0x07));
1523 	ret = mask & *addr;
1524 	*addr &= ~mask;
1525 	return ret;
1526 }
1527 
1528 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1529 {
1530 	int mask;
1531 
1532 	addr += (nr >> 3);
1533 	mask = 1 << (7 - (nr & 0x07));
1534 	*addr ^= mask;
1535 }
1536 
1537 /* used for f2fs_inode_info->flags */
1538 enum {
1539 	FI_NEW_INODE,		/* indicate newly allocated inode */
1540 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1541 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1542 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1543 	FI_INC_LINK,		/* need to increment i_nlink */
1544 	FI_ACL_MODE,		/* indicate acl mode */
1545 	FI_NO_ALLOC,		/* should not allocate any blocks */
1546 	FI_FREE_NID,		/* free allocated nide */
1547 	FI_NO_EXTENT,		/* not to use the extent cache */
1548 	FI_INLINE_XATTR,	/* used for inline xattr */
1549 	FI_INLINE_DATA,		/* used for inline data*/
1550 	FI_INLINE_DENTRY,	/* used for inline dentry */
1551 	FI_APPEND_WRITE,	/* inode has appended data */
1552 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1553 	FI_NEED_IPU,		/* used for ipu per file */
1554 	FI_ATOMIC_FILE,		/* indicate atomic file */
1555 	FI_VOLATILE_FILE,	/* indicate volatile file */
1556 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1557 	FI_DROP_CACHE,		/* drop dirty page cache */
1558 	FI_DATA_EXIST,		/* indicate data exists */
1559 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1560 	FI_DO_DEFRAG,		/* indicate defragment is running */
1561 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1562 };
1563 
1564 static inline void __mark_inode_dirty_flag(struct inode *inode,
1565 						int flag, bool set)
1566 {
1567 	switch (flag) {
1568 	case FI_INLINE_XATTR:
1569 	case FI_INLINE_DATA:
1570 	case FI_INLINE_DENTRY:
1571 		if (set)
1572 			return;
1573 	case FI_DATA_EXIST:
1574 	case FI_INLINE_DOTS:
1575 		f2fs_mark_inode_dirty_sync(inode);
1576 	}
1577 }
1578 
1579 static inline void set_inode_flag(struct inode *inode, int flag)
1580 {
1581 	if (!test_bit(flag, &F2FS_I(inode)->flags))
1582 		set_bit(flag, &F2FS_I(inode)->flags);
1583 	__mark_inode_dirty_flag(inode, flag, true);
1584 }
1585 
1586 static inline int is_inode_flag_set(struct inode *inode, int flag)
1587 {
1588 	return test_bit(flag, &F2FS_I(inode)->flags);
1589 }
1590 
1591 static inline void clear_inode_flag(struct inode *inode, int flag)
1592 {
1593 	if (test_bit(flag, &F2FS_I(inode)->flags))
1594 		clear_bit(flag, &F2FS_I(inode)->flags);
1595 	__mark_inode_dirty_flag(inode, flag, false);
1596 }
1597 
1598 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1599 {
1600 	F2FS_I(inode)->i_acl_mode = mode;
1601 	set_inode_flag(inode, FI_ACL_MODE);
1602 	f2fs_mark_inode_dirty_sync(inode);
1603 }
1604 
1605 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1606 {
1607 	if (inc)
1608 		inc_nlink(inode);
1609 	else
1610 		drop_nlink(inode);
1611 	f2fs_mark_inode_dirty_sync(inode);
1612 }
1613 
1614 static inline void f2fs_i_blocks_write(struct inode *inode,
1615 					blkcnt_t diff, bool add)
1616 {
1617 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1618 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1619 
1620 	inode->i_blocks = add ? inode->i_blocks + diff :
1621 				inode->i_blocks - diff;
1622 	f2fs_mark_inode_dirty_sync(inode);
1623 	if (clean || recover)
1624 		set_inode_flag(inode, FI_AUTO_RECOVER);
1625 }
1626 
1627 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1628 {
1629 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1630 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1631 
1632 	if (i_size_read(inode) == i_size)
1633 		return;
1634 
1635 	i_size_write(inode, i_size);
1636 	f2fs_mark_inode_dirty_sync(inode);
1637 	if (clean || recover)
1638 		set_inode_flag(inode, FI_AUTO_RECOVER);
1639 }
1640 
1641 static inline bool f2fs_skip_inode_update(struct inode *inode)
1642 {
1643 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER))
1644 		return false;
1645 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1646 }
1647 
1648 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1649 {
1650 	F2FS_I(inode)->i_current_depth = depth;
1651 	f2fs_mark_inode_dirty_sync(inode);
1652 }
1653 
1654 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1655 {
1656 	F2FS_I(inode)->i_xattr_nid = xnid;
1657 	f2fs_mark_inode_dirty_sync(inode);
1658 }
1659 
1660 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1661 {
1662 	F2FS_I(inode)->i_pino = pino;
1663 	f2fs_mark_inode_dirty_sync(inode);
1664 }
1665 
1666 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1667 {
1668 	struct f2fs_inode_info *fi = F2FS_I(inode);
1669 
1670 	if (ri->i_inline & F2FS_INLINE_XATTR)
1671 		set_bit(FI_INLINE_XATTR, &fi->flags);
1672 	if (ri->i_inline & F2FS_INLINE_DATA)
1673 		set_bit(FI_INLINE_DATA, &fi->flags);
1674 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1675 		set_bit(FI_INLINE_DENTRY, &fi->flags);
1676 	if (ri->i_inline & F2FS_DATA_EXIST)
1677 		set_bit(FI_DATA_EXIST, &fi->flags);
1678 	if (ri->i_inline & F2FS_INLINE_DOTS)
1679 		set_bit(FI_INLINE_DOTS, &fi->flags);
1680 }
1681 
1682 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1683 {
1684 	ri->i_inline = 0;
1685 
1686 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1687 		ri->i_inline |= F2FS_INLINE_XATTR;
1688 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
1689 		ri->i_inline |= F2FS_INLINE_DATA;
1690 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1691 		ri->i_inline |= F2FS_INLINE_DENTRY;
1692 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
1693 		ri->i_inline |= F2FS_DATA_EXIST;
1694 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1695 		ri->i_inline |= F2FS_INLINE_DOTS;
1696 }
1697 
1698 static inline int f2fs_has_inline_xattr(struct inode *inode)
1699 {
1700 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
1701 }
1702 
1703 static inline unsigned int addrs_per_inode(struct inode *inode)
1704 {
1705 	if (f2fs_has_inline_xattr(inode))
1706 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1707 	return DEF_ADDRS_PER_INODE;
1708 }
1709 
1710 static inline void *inline_xattr_addr(struct page *page)
1711 {
1712 	struct f2fs_inode *ri = F2FS_INODE(page);
1713 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1714 					F2FS_INLINE_XATTR_ADDRS]);
1715 }
1716 
1717 static inline int inline_xattr_size(struct inode *inode)
1718 {
1719 	if (f2fs_has_inline_xattr(inode))
1720 		return F2FS_INLINE_XATTR_ADDRS << 2;
1721 	else
1722 		return 0;
1723 }
1724 
1725 static inline int f2fs_has_inline_data(struct inode *inode)
1726 {
1727 	return is_inode_flag_set(inode, FI_INLINE_DATA);
1728 }
1729 
1730 static inline void f2fs_clear_inline_inode(struct inode *inode)
1731 {
1732 	clear_inode_flag(inode, FI_INLINE_DATA);
1733 	clear_inode_flag(inode, FI_DATA_EXIST);
1734 }
1735 
1736 static inline int f2fs_exist_data(struct inode *inode)
1737 {
1738 	return is_inode_flag_set(inode, FI_DATA_EXIST);
1739 }
1740 
1741 static inline int f2fs_has_inline_dots(struct inode *inode)
1742 {
1743 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
1744 }
1745 
1746 static inline bool f2fs_is_atomic_file(struct inode *inode)
1747 {
1748 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1749 }
1750 
1751 static inline bool f2fs_is_volatile_file(struct inode *inode)
1752 {
1753 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1754 }
1755 
1756 static inline bool f2fs_is_first_block_written(struct inode *inode)
1757 {
1758 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1759 }
1760 
1761 static inline bool f2fs_is_drop_cache(struct inode *inode)
1762 {
1763 	return is_inode_flag_set(inode, FI_DROP_CACHE);
1764 }
1765 
1766 static inline void *inline_data_addr(struct page *page)
1767 {
1768 	struct f2fs_inode *ri = F2FS_INODE(page);
1769 	return (void *)&(ri->i_addr[1]);
1770 }
1771 
1772 static inline int f2fs_has_inline_dentry(struct inode *inode)
1773 {
1774 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1775 }
1776 
1777 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1778 {
1779 	if (!f2fs_has_inline_dentry(dir))
1780 		kunmap(page);
1781 }
1782 
1783 static inline int is_file(struct inode *inode, int type)
1784 {
1785 	return F2FS_I(inode)->i_advise & type;
1786 }
1787 
1788 static inline void set_file(struct inode *inode, int type)
1789 {
1790 	F2FS_I(inode)->i_advise |= type;
1791 	f2fs_mark_inode_dirty_sync(inode);
1792 }
1793 
1794 static inline void clear_file(struct inode *inode, int type)
1795 {
1796 	F2FS_I(inode)->i_advise &= ~type;
1797 	f2fs_mark_inode_dirty_sync(inode);
1798 }
1799 
1800 static inline int f2fs_readonly(struct super_block *sb)
1801 {
1802 	return sb->s_flags & MS_RDONLY;
1803 }
1804 
1805 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1806 {
1807 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1808 }
1809 
1810 static inline bool is_dot_dotdot(const struct qstr *str)
1811 {
1812 	if (str->len == 1 && str->name[0] == '.')
1813 		return true;
1814 
1815 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1816 		return true;
1817 
1818 	return false;
1819 }
1820 
1821 static inline bool f2fs_may_extent_tree(struct inode *inode)
1822 {
1823 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1824 			is_inode_flag_set(inode, FI_NO_EXTENT))
1825 		return false;
1826 
1827 	return S_ISREG(inode->i_mode);
1828 }
1829 
1830 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1831 {
1832 #ifdef CONFIG_F2FS_FAULT_INJECTION
1833 	if (time_to_inject(FAULT_KMALLOC))
1834 		return NULL;
1835 #endif
1836 	return kmalloc(size, flags);
1837 }
1838 
1839 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1840 {
1841 	void *ret;
1842 
1843 	ret = kmalloc(size, flags | __GFP_NOWARN);
1844 	if (!ret)
1845 		ret = __vmalloc(size, flags, PAGE_KERNEL);
1846 	return ret;
1847 }
1848 
1849 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1850 {
1851 	void *ret;
1852 
1853 	ret = kzalloc(size, flags | __GFP_NOWARN);
1854 	if (!ret)
1855 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1856 	return ret;
1857 }
1858 
1859 #define get_inode_mode(i) \
1860 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1861 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1862 
1863 /* get offset of first page in next direct node */
1864 #define PGOFS_OF_NEXT_DNODE(pgofs, inode)				\
1865 	((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) :	\
1866 	(pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) /	\
1867 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1868 
1869 /*
1870  * file.c
1871  */
1872 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1873 void truncate_data_blocks(struct dnode_of_data *);
1874 int truncate_blocks(struct inode *, u64, bool);
1875 int f2fs_truncate(struct inode *);
1876 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1877 int f2fs_setattr(struct dentry *, struct iattr *);
1878 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1879 int truncate_data_blocks_range(struct dnode_of_data *, int);
1880 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1881 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1882 
1883 /*
1884  * inode.c
1885  */
1886 void f2fs_set_inode_flags(struct inode *);
1887 struct inode *f2fs_iget(struct super_block *, unsigned long);
1888 int try_to_free_nats(struct f2fs_sb_info *, int);
1889 int update_inode(struct inode *, struct page *);
1890 int update_inode_page(struct inode *);
1891 int f2fs_write_inode(struct inode *, struct writeback_control *);
1892 void f2fs_evict_inode(struct inode *);
1893 void handle_failed_inode(struct inode *);
1894 
1895 /*
1896  * namei.c
1897  */
1898 struct dentry *f2fs_get_parent(struct dentry *child);
1899 
1900 /*
1901  * dir.c
1902  */
1903 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1904 void set_de_type(struct f2fs_dir_entry *, umode_t);
1905 unsigned char get_de_type(struct f2fs_dir_entry *);
1906 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1907 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1908 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1909 			unsigned int, struct fscrypt_str *);
1910 void do_make_empty_dir(struct inode *, struct inode *,
1911 			struct f2fs_dentry_ptr *);
1912 struct page *init_inode_metadata(struct inode *, struct inode *,
1913 			const struct qstr *, struct page *);
1914 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1915 int room_for_filename(const void *, int, int);
1916 void f2fs_drop_nlink(struct inode *, struct inode *);
1917 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
1918 							struct page **);
1919 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1920 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
1921 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1922 				struct page *, struct inode *);
1923 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1924 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1925 			const struct qstr *, f2fs_hash_t , unsigned int);
1926 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1927 						struct inode *, nid_t, umode_t);
1928 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1929 			umode_t);
1930 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1931 							struct inode *);
1932 int f2fs_do_tmpfile(struct inode *, struct inode *);
1933 bool f2fs_empty_dir(struct inode *);
1934 
1935 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1936 {
1937 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1938 				inode, inode->i_ino, inode->i_mode);
1939 }
1940 
1941 /*
1942  * super.c
1943  */
1944 int f2fs_inode_dirtied(struct inode *);
1945 void f2fs_inode_synced(struct inode *);
1946 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1947 int f2fs_sync_fs(struct super_block *, int);
1948 extern __printf(3, 4)
1949 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1950 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1951 
1952 /*
1953  * hash.c
1954  */
1955 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1956 
1957 /*
1958  * node.c
1959  */
1960 struct dnode_of_data;
1961 struct node_info;
1962 
1963 bool available_free_memory(struct f2fs_sb_info *, int);
1964 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1965 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1966 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1967 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1968 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1969 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1970 int truncate_inode_blocks(struct inode *, pgoff_t);
1971 int truncate_xattr_node(struct inode *, struct page *);
1972 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1973 int remove_inode_page(struct inode *);
1974 struct page *new_inode_page(struct inode *);
1975 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1976 void ra_node_page(struct f2fs_sb_info *, nid_t);
1977 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1978 struct page *get_node_page_ra(struct page *, int);
1979 void move_node_page(struct page *, int);
1980 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
1981 			struct writeback_control *, bool);
1982 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1983 void build_free_nids(struct f2fs_sb_info *);
1984 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1985 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1986 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1987 int try_to_free_nids(struct f2fs_sb_info *, int);
1988 void recover_inline_xattr(struct inode *, struct page *);
1989 void recover_xattr_data(struct inode *, struct page *, block_t);
1990 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1991 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1992 				struct f2fs_summary_block *);
1993 void flush_nat_entries(struct f2fs_sb_info *);
1994 int build_node_manager(struct f2fs_sb_info *);
1995 void destroy_node_manager(struct f2fs_sb_info *);
1996 int __init create_node_manager_caches(void);
1997 void destroy_node_manager_caches(void);
1998 
1999 /*
2000  * segment.c
2001  */
2002 void register_inmem_page(struct inode *, struct page *);
2003 void drop_inmem_pages(struct inode *);
2004 int commit_inmem_pages(struct inode *);
2005 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2006 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2007 int f2fs_issue_flush(struct f2fs_sb_info *);
2008 int create_flush_cmd_control(struct f2fs_sb_info *);
2009 void destroy_flush_cmd_control(struct f2fs_sb_info *);
2010 void invalidate_blocks(struct f2fs_sb_info *, block_t);
2011 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2012 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2013 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2014 void release_discard_addrs(struct f2fs_sb_info *);
2015 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
2016 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2017 void allocate_new_segments(struct f2fs_sb_info *);
2018 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2019 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2020 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2021 void write_meta_page(struct f2fs_sb_info *, struct page *);
2022 void write_node_page(unsigned int, struct f2fs_io_info *);
2023 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2024 void rewrite_data_page(struct f2fs_io_info *);
2025 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2026 					block_t, block_t, bool, bool);
2027 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2028 				block_t, block_t, unsigned char, bool, bool);
2029 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2030 		block_t, block_t *, struct f2fs_summary *, int);
2031 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2032 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2033 void write_data_summaries(struct f2fs_sb_info *, block_t);
2034 void write_node_summaries(struct f2fs_sb_info *, block_t);
2035 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2036 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2037 int build_segment_manager(struct f2fs_sb_info *);
2038 void destroy_segment_manager(struct f2fs_sb_info *);
2039 int __init create_segment_manager_caches(void);
2040 void destroy_segment_manager_caches(void);
2041 
2042 /*
2043  * checkpoint.c
2044  */
2045 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2046 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2047 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2048 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2049 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2050 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2051 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2052 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2053 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2054 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2055 void release_ino_entry(struct f2fs_sb_info *, bool);
2056 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2057 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2058 int acquire_orphan_inode(struct f2fs_sb_info *);
2059 void release_orphan_inode(struct f2fs_sb_info *);
2060 void add_orphan_inode(struct inode *);
2061 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2062 int recover_orphan_inodes(struct f2fs_sb_info *);
2063 int get_valid_checkpoint(struct f2fs_sb_info *);
2064 void update_dirty_page(struct inode *, struct page *);
2065 void remove_dirty_inode(struct inode *);
2066 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2067 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2068 void init_ino_entry_info(struct f2fs_sb_info *);
2069 int __init create_checkpoint_caches(void);
2070 void destroy_checkpoint_caches(void);
2071 
2072 /*
2073  * data.c
2074  */
2075 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2076 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2077 				struct page *, nid_t, enum page_type, int);
2078 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2079 int f2fs_submit_page_bio(struct f2fs_io_info *);
2080 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2081 void set_data_blkaddr(struct dnode_of_data *);
2082 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2083 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2084 int reserve_new_block(struct dnode_of_data *);
2085 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2086 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2087 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2088 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2089 struct page *find_data_page(struct inode *, pgoff_t);
2090 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2091 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2092 int do_write_data_page(struct f2fs_io_info *);
2093 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2094 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2095 void f2fs_set_page_dirty_nobuffers(struct page *);
2096 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2097 int f2fs_release_page(struct page *, gfp_t);
2098 
2099 /*
2100  * gc.c
2101  */
2102 int start_gc_thread(struct f2fs_sb_info *);
2103 void stop_gc_thread(struct f2fs_sb_info *);
2104 block_t start_bidx_of_node(unsigned int, struct inode *);
2105 int f2fs_gc(struct f2fs_sb_info *, bool);
2106 void build_gc_manager(struct f2fs_sb_info *);
2107 
2108 /*
2109  * recovery.c
2110  */
2111 int recover_fsync_data(struct f2fs_sb_info *, bool);
2112 bool space_for_roll_forward(struct f2fs_sb_info *);
2113 
2114 /*
2115  * debug.c
2116  */
2117 #ifdef CONFIG_F2FS_STAT_FS
2118 struct f2fs_stat_info {
2119 	struct list_head stat_list;
2120 	struct f2fs_sb_info *sbi;
2121 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2122 	int main_area_segs, main_area_sections, main_area_zones;
2123 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2124 	unsigned long long hit_total, total_ext;
2125 	int ext_tree, zombie_tree, ext_node;
2126 	s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2127 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2128 	int nats, dirty_nats, sits, dirty_sits, fnids;
2129 	int total_count, utilization;
2130 	int bg_gc, wb_bios;
2131 	int inline_xattr, inline_inode, inline_dir, orphans;
2132 	unsigned int valid_count, valid_node_count, valid_inode_count;
2133 	unsigned int bimodal, avg_vblocks;
2134 	int util_free, util_valid, util_invalid;
2135 	int rsvd_segs, overp_segs;
2136 	int dirty_count, node_pages, meta_pages;
2137 	int prefree_count, call_count, cp_count, bg_cp_count;
2138 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2139 	int bg_node_segs, bg_data_segs;
2140 	int tot_blks, data_blks, node_blks;
2141 	int bg_data_blks, bg_node_blks;
2142 	int curseg[NR_CURSEG_TYPE];
2143 	int cursec[NR_CURSEG_TYPE];
2144 	int curzone[NR_CURSEG_TYPE];
2145 
2146 	unsigned int segment_count[2];
2147 	unsigned int block_count[2];
2148 	unsigned int inplace_count;
2149 	unsigned long long base_mem, cache_mem, page_mem;
2150 };
2151 
2152 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2153 {
2154 	return (struct f2fs_stat_info *)sbi->stat_info;
2155 }
2156 
2157 #define stat_inc_cp_count(si)		((si)->cp_count++)
2158 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2159 #define stat_inc_call_count(si)		((si)->call_count++)
2160 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2161 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2162 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2163 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2164 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2165 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2166 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2167 #define stat_inc_inline_xattr(inode)					\
2168 	do {								\
2169 		if (f2fs_has_inline_xattr(inode))			\
2170 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2171 	} while (0)
2172 #define stat_dec_inline_xattr(inode)					\
2173 	do {								\
2174 		if (f2fs_has_inline_xattr(inode))			\
2175 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2176 	} while (0)
2177 #define stat_inc_inline_inode(inode)					\
2178 	do {								\
2179 		if (f2fs_has_inline_data(inode))			\
2180 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2181 	} while (0)
2182 #define stat_dec_inline_inode(inode)					\
2183 	do {								\
2184 		if (f2fs_has_inline_data(inode))			\
2185 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2186 	} while (0)
2187 #define stat_inc_inline_dir(inode)					\
2188 	do {								\
2189 		if (f2fs_has_inline_dentry(inode))			\
2190 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2191 	} while (0)
2192 #define stat_dec_inline_dir(inode)					\
2193 	do {								\
2194 		if (f2fs_has_inline_dentry(inode))			\
2195 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2196 	} while (0)
2197 #define stat_inc_seg_type(sbi, curseg)					\
2198 		((sbi)->segment_count[(curseg)->alloc_type]++)
2199 #define stat_inc_block_count(sbi, curseg)				\
2200 		((sbi)->block_count[(curseg)->alloc_type]++)
2201 #define stat_inc_inplace_blocks(sbi)					\
2202 		(atomic_inc(&(sbi)->inplace_count))
2203 #define stat_inc_seg_count(sbi, type, gc_type)				\
2204 	do {								\
2205 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2206 		(si)->tot_segs++;					\
2207 		if (type == SUM_TYPE_DATA) {				\
2208 			si->data_segs++;				\
2209 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2210 		} else {						\
2211 			si->node_segs++;				\
2212 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2213 		}							\
2214 	} while (0)
2215 
2216 #define stat_inc_tot_blk_count(si, blks)				\
2217 	(si->tot_blks += (blks))
2218 
2219 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2220 	do {								\
2221 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2222 		stat_inc_tot_blk_count(si, blks);			\
2223 		si->data_blks += (blks);				\
2224 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2225 	} while (0)
2226 
2227 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2228 	do {								\
2229 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2230 		stat_inc_tot_blk_count(si, blks);			\
2231 		si->node_blks += (blks);				\
2232 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2233 	} while (0)
2234 
2235 int f2fs_build_stats(struct f2fs_sb_info *);
2236 void f2fs_destroy_stats(struct f2fs_sb_info *);
2237 int __init f2fs_create_root_stats(void);
2238 void f2fs_destroy_root_stats(void);
2239 #else
2240 #define stat_inc_cp_count(si)
2241 #define stat_inc_bg_cp_count(si)
2242 #define stat_inc_call_count(si)
2243 #define stat_inc_bggc_count(si)
2244 #define stat_inc_dirty_inode(sbi, type)
2245 #define stat_dec_dirty_inode(sbi, type)
2246 #define stat_inc_total_hit(sb)
2247 #define stat_inc_rbtree_node_hit(sb)
2248 #define stat_inc_largest_node_hit(sbi)
2249 #define stat_inc_cached_node_hit(sbi)
2250 #define stat_inc_inline_xattr(inode)
2251 #define stat_dec_inline_xattr(inode)
2252 #define stat_inc_inline_inode(inode)
2253 #define stat_dec_inline_inode(inode)
2254 #define stat_inc_inline_dir(inode)
2255 #define stat_dec_inline_dir(inode)
2256 #define stat_inc_seg_type(sbi, curseg)
2257 #define stat_inc_block_count(sbi, curseg)
2258 #define stat_inc_inplace_blocks(sbi)
2259 #define stat_inc_seg_count(sbi, type, gc_type)
2260 #define stat_inc_tot_blk_count(si, blks)
2261 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2262 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2263 
2264 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2265 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2266 static inline int __init f2fs_create_root_stats(void) { return 0; }
2267 static inline void f2fs_destroy_root_stats(void) { }
2268 #endif
2269 
2270 extern const struct file_operations f2fs_dir_operations;
2271 extern const struct file_operations f2fs_file_operations;
2272 extern const struct inode_operations f2fs_file_inode_operations;
2273 extern const struct address_space_operations f2fs_dblock_aops;
2274 extern const struct address_space_operations f2fs_node_aops;
2275 extern const struct address_space_operations f2fs_meta_aops;
2276 extern const struct inode_operations f2fs_dir_inode_operations;
2277 extern const struct inode_operations f2fs_symlink_inode_operations;
2278 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2279 extern const struct inode_operations f2fs_special_inode_operations;
2280 extern struct kmem_cache *inode_entry_slab;
2281 
2282 /*
2283  * inline.c
2284  */
2285 bool f2fs_may_inline_data(struct inode *);
2286 bool f2fs_may_inline_dentry(struct inode *);
2287 void read_inline_data(struct page *, struct page *);
2288 bool truncate_inline_inode(struct page *, u64);
2289 int f2fs_read_inline_data(struct inode *, struct page *);
2290 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2291 int f2fs_convert_inline_inode(struct inode *);
2292 int f2fs_write_inline_data(struct inode *, struct page *);
2293 bool recover_inline_data(struct inode *, struct page *);
2294 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2295 				struct fscrypt_name *, struct page **);
2296 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2297 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2298 						nid_t, umode_t);
2299 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2300 						struct inode *, struct inode *);
2301 bool f2fs_empty_inline_dir(struct inode *);
2302 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2303 						struct fscrypt_str *);
2304 int f2fs_inline_data_fiemap(struct inode *,
2305 		struct fiemap_extent_info *, __u64, __u64);
2306 
2307 /*
2308  * shrinker.c
2309  */
2310 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2311 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2312 void f2fs_join_shrinker(struct f2fs_sb_info *);
2313 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2314 
2315 /*
2316  * extent_cache.c
2317  */
2318 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2319 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2320 void f2fs_drop_extent_tree(struct inode *);
2321 unsigned int f2fs_destroy_extent_node(struct inode *);
2322 void f2fs_destroy_extent_tree(struct inode *);
2323 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2324 void f2fs_update_extent_cache(struct dnode_of_data *);
2325 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2326 						pgoff_t, block_t, unsigned int);
2327 void init_extent_cache_info(struct f2fs_sb_info *);
2328 int __init create_extent_cache(void);
2329 void destroy_extent_cache(void);
2330 
2331 /*
2332  * crypto support
2333  */
2334 static inline bool f2fs_encrypted_inode(struct inode *inode)
2335 {
2336 	return file_is_encrypt(inode);
2337 }
2338 
2339 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2340 {
2341 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2342 	file_set_encrypt(inode);
2343 #endif
2344 }
2345 
2346 static inline bool f2fs_bio_encrypted(struct bio *bio)
2347 {
2348 	return bio->bi_private != NULL;
2349 }
2350 
2351 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2352 {
2353 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2354 }
2355 
2356 static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb)
2357 {
2358 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR);
2359 }
2360 
2361 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2362 {
2363 	clear_opt(sbi, ADAPTIVE);
2364 	clear_opt(sbi, LFS);
2365 
2366 	switch (mt) {
2367 	case F2FS_MOUNT_ADAPTIVE:
2368 		set_opt(sbi, ADAPTIVE);
2369 		break;
2370 	case F2FS_MOUNT_LFS:
2371 		set_opt(sbi, LFS);
2372 		break;
2373 	}
2374 }
2375 
2376 static inline bool f2fs_may_encrypt(struct inode *inode)
2377 {
2378 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2379 	umode_t mode = inode->i_mode;
2380 
2381 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2382 #else
2383 	return 0;
2384 #endif
2385 }
2386 
2387 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2388 #define fscrypt_set_d_op(i)
2389 #define fscrypt_get_ctx			fscrypt_notsupp_get_ctx
2390 #define fscrypt_release_ctx		fscrypt_notsupp_release_ctx
2391 #define fscrypt_encrypt_page		fscrypt_notsupp_encrypt_page
2392 #define fscrypt_decrypt_page		fscrypt_notsupp_decrypt_page
2393 #define fscrypt_decrypt_bio_pages	fscrypt_notsupp_decrypt_bio_pages
2394 #define fscrypt_pullback_bio_page	fscrypt_notsupp_pullback_bio_page
2395 #define fscrypt_restore_control_page	fscrypt_notsupp_restore_control_page
2396 #define fscrypt_zeroout_range		fscrypt_notsupp_zeroout_range
2397 #define fscrypt_process_policy		fscrypt_notsupp_process_policy
2398 #define fscrypt_get_policy		fscrypt_notsupp_get_policy
2399 #define fscrypt_has_permitted_context	fscrypt_notsupp_has_permitted_context
2400 #define fscrypt_inherit_context		fscrypt_notsupp_inherit_context
2401 #define fscrypt_get_encryption_info	fscrypt_notsupp_get_encryption_info
2402 #define fscrypt_put_encryption_info	fscrypt_notsupp_put_encryption_info
2403 #define fscrypt_setup_filename		fscrypt_notsupp_setup_filename
2404 #define fscrypt_free_filename		fscrypt_notsupp_free_filename
2405 #define fscrypt_fname_encrypted_size	fscrypt_notsupp_fname_encrypted_size
2406 #define fscrypt_fname_alloc_buffer	fscrypt_notsupp_fname_alloc_buffer
2407 #define fscrypt_fname_free_buffer	fscrypt_notsupp_fname_free_buffer
2408 #define fscrypt_fname_disk_to_usr	fscrypt_notsupp_fname_disk_to_usr
2409 #define fscrypt_fname_usr_to_disk	fscrypt_notsupp_fname_usr_to_disk
2410 #endif
2411 #endif
2412