xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 12699fb7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_MAX,
58 };
59 
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
62 
63 struct f2fs_fault_info {
64 	atomic_t inject_ops;
65 	unsigned int inject_rate;
66 	unsigned int inject_type;
67 };
68 
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72 
73 /*
74  * For mount options
75  */
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
90 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
91 #define F2FS_MOUNT_USRQUOTA		0x00080000
92 #define F2FS_MOUNT_GRPQUOTA		0x00100000
93 #define F2FS_MOUNT_PRJQUOTA		0x00200000
94 #define F2FS_MOUNT_QUOTA		0x00400000
95 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
96 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
97 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
98 #define F2FS_MOUNT_NORECOVERY		0x04000000
99 #define F2FS_MOUNT_ATGC			0x08000000
100 
101 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
102 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105 
106 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
107 		typecheck(unsigned long long, b) &&			\
108 		((long long)((a) - (b)) > 0))
109 
110 typedef u32 block_t;	/*
111 			 * should not change u32, since it is the on-disk block
112 			 * address format, __le32.
113 			 */
114 typedef u32 nid_t;
115 
116 #define COMPRESS_EXT_NUM		16
117 
118 struct f2fs_mount_info {
119 	unsigned int opt;
120 	int write_io_size_bits;		/* Write IO size bits */
121 	block_t root_reserved_blocks;	/* root reserved blocks */
122 	kuid_t s_resuid;		/* reserved blocks for uid */
123 	kgid_t s_resgid;		/* reserved blocks for gid */
124 	int active_logs;		/* # of active logs */
125 	int inline_xattr_size;		/* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 	struct f2fs_fault_info fault_info;	/* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 	/* Names of quota files with journalled quota */
131 	char *s_qf_names[MAXQUOTAS];
132 	int s_jquota_fmt;			/* Format of quota to use */
133 #endif
134 	/* For which write hints are passed down to block layer */
135 	int whint_mode;
136 	int alloc_mode;			/* segment allocation policy */
137 	int fsync_mode;			/* fsync policy */
138 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
139 	int bggc_mode;			/* bggc mode: off, on or sync */
140 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
141 	block_t unusable_cap_perc;	/* percentage for cap */
142 	block_t unusable_cap;		/* Amount of space allowed to be
143 					 * unusable when disabling checkpoint
144 					 */
145 
146 	/* For compression */
147 	unsigned char compress_algorithm;	/* algorithm type */
148 	unsigned char compress_log_size;	/* cluster log size */
149 	unsigned char compress_level;		/* compress level */
150 	bool compress_chksum;			/* compressed data chksum */
151 	unsigned char compress_ext_cnt;		/* extension count */
152 	int compress_mode;			/* compression mode */
153 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
154 };
155 
156 #define F2FS_FEATURE_ENCRYPT		0x0001
157 #define F2FS_FEATURE_BLKZONED		0x0002
158 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
159 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
160 #define F2FS_FEATURE_PRJQUOTA		0x0010
161 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
162 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
163 #define F2FS_FEATURE_QUOTA_INO		0x0080
164 #define F2FS_FEATURE_INODE_CRTIME	0x0100
165 #define F2FS_FEATURE_LOST_FOUND		0x0200
166 #define F2FS_FEATURE_VERITY		0x0400
167 #define F2FS_FEATURE_SB_CHKSUM		0x0800
168 #define F2FS_FEATURE_CASEFOLD		0x1000
169 #define F2FS_FEATURE_COMPRESSION	0x2000
170 
171 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
172 	((raw_super->feature & cpu_to_le32(mask)) != 0)
173 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
174 #define F2FS_SET_FEATURE(sbi, mask)					\
175 	(sbi->raw_super->feature |= cpu_to_le32(mask))
176 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
177 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
178 
179 /*
180  * Default values for user and/or group using reserved blocks
181  */
182 #define	F2FS_DEF_RESUID		0
183 #define	F2FS_DEF_RESGID		0
184 
185 /*
186  * For checkpoint manager
187  */
188 enum {
189 	NAT_BITMAP,
190 	SIT_BITMAP
191 };
192 
193 #define	CP_UMOUNT	0x00000001
194 #define	CP_FASTBOOT	0x00000002
195 #define	CP_SYNC		0x00000004
196 #define	CP_RECOVERY	0x00000008
197 #define	CP_DISCARD	0x00000010
198 #define CP_TRIMMED	0x00000020
199 #define CP_PAUSE	0x00000040
200 #define CP_RESIZE 	0x00000080
201 
202 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
203 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
204 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
205 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
206 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
207 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
208 #define DEF_CP_INTERVAL			60	/* 60 secs */
209 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
210 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
211 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
212 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
213 
214 struct cp_control {
215 	int reason;
216 	__u64 trim_start;
217 	__u64 trim_end;
218 	__u64 trim_minlen;
219 };
220 
221 /*
222  * indicate meta/data type
223  */
224 enum {
225 	META_CP,
226 	META_NAT,
227 	META_SIT,
228 	META_SSA,
229 	META_MAX,
230 	META_POR,
231 	DATA_GENERIC,		/* check range only */
232 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
233 	DATA_GENERIC_ENHANCE_READ,	/*
234 					 * strong check on range and segment
235 					 * bitmap but no warning due to race
236 					 * condition of read on truncated area
237 					 * by extent_cache
238 					 */
239 	META_GENERIC,
240 };
241 
242 /* for the list of ino */
243 enum {
244 	ORPHAN_INO,		/* for orphan ino list */
245 	APPEND_INO,		/* for append ino list */
246 	UPDATE_INO,		/* for update ino list */
247 	TRANS_DIR_INO,		/* for trasactions dir ino list */
248 	FLUSH_INO,		/* for multiple device flushing */
249 	MAX_INO_ENTRY,		/* max. list */
250 };
251 
252 struct ino_entry {
253 	struct list_head list;		/* list head */
254 	nid_t ino;			/* inode number */
255 	unsigned int dirty_device;	/* dirty device bitmap */
256 };
257 
258 /* for the list of inodes to be GCed */
259 struct inode_entry {
260 	struct list_head list;	/* list head */
261 	struct inode *inode;	/* vfs inode pointer */
262 };
263 
264 struct fsync_node_entry {
265 	struct list_head list;	/* list head */
266 	struct page *page;	/* warm node page pointer */
267 	unsigned int seq_id;	/* sequence id */
268 };
269 
270 /* for the bitmap indicate blocks to be discarded */
271 struct discard_entry {
272 	struct list_head list;	/* list head */
273 	block_t start_blkaddr;	/* start blockaddr of current segment */
274 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
275 };
276 
277 /* default discard granularity of inner discard thread, unit: block count */
278 #define DEFAULT_DISCARD_GRANULARITY		16
279 
280 /* max discard pend list number */
281 #define MAX_PLIST_NUM		512
282 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
283 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
284 
285 enum {
286 	D_PREP,			/* initial */
287 	D_PARTIAL,		/* partially submitted */
288 	D_SUBMIT,		/* all submitted */
289 	D_DONE,			/* finished */
290 };
291 
292 struct discard_info {
293 	block_t lstart;			/* logical start address */
294 	block_t len;			/* length */
295 	block_t start;			/* actual start address in dev */
296 };
297 
298 struct discard_cmd {
299 	struct rb_node rb_node;		/* rb node located in rb-tree */
300 	union {
301 		struct {
302 			block_t lstart;	/* logical start address */
303 			block_t len;	/* length */
304 			block_t start;	/* actual start address in dev */
305 		};
306 		struct discard_info di;	/* discard info */
307 
308 	};
309 	struct list_head list;		/* command list */
310 	struct completion wait;		/* compleation */
311 	struct block_device *bdev;	/* bdev */
312 	unsigned short ref;		/* reference count */
313 	unsigned char state;		/* state */
314 	unsigned char queued;		/* queued discard */
315 	int error;			/* bio error */
316 	spinlock_t lock;		/* for state/bio_ref updating */
317 	unsigned short bio_ref;		/* bio reference count */
318 };
319 
320 enum {
321 	DPOLICY_BG,
322 	DPOLICY_FORCE,
323 	DPOLICY_FSTRIM,
324 	DPOLICY_UMOUNT,
325 	MAX_DPOLICY,
326 };
327 
328 struct discard_policy {
329 	int type;			/* type of discard */
330 	unsigned int min_interval;	/* used for candidates exist */
331 	unsigned int mid_interval;	/* used for device busy */
332 	unsigned int max_interval;	/* used for candidates not exist */
333 	unsigned int max_requests;	/* # of discards issued per round */
334 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
335 	bool io_aware;			/* issue discard in idle time */
336 	bool sync;			/* submit discard with REQ_SYNC flag */
337 	bool ordered;			/* issue discard by lba order */
338 	bool timeout;			/* discard timeout for put_super */
339 	unsigned int granularity;	/* discard granularity */
340 };
341 
342 struct discard_cmd_control {
343 	struct task_struct *f2fs_issue_discard;	/* discard thread */
344 	struct list_head entry_list;		/* 4KB discard entry list */
345 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
346 	struct list_head wait_list;		/* store on-flushing entries */
347 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
348 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
349 	unsigned int discard_wake;		/* to wake up discard thread */
350 	struct mutex cmd_lock;
351 	unsigned int nr_discards;		/* # of discards in the list */
352 	unsigned int max_discards;		/* max. discards to be issued */
353 	unsigned int discard_granularity;	/* discard granularity */
354 	unsigned int undiscard_blks;		/* # of undiscard blocks */
355 	unsigned int next_pos;			/* next discard position */
356 	atomic_t issued_discard;		/* # of issued discard */
357 	atomic_t queued_discard;		/* # of queued discard */
358 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
359 	struct rb_root_cached root;		/* root of discard rb-tree */
360 	bool rbtree_check;			/* config for consistence check */
361 };
362 
363 /* for the list of fsync inodes, used only during recovery */
364 struct fsync_inode_entry {
365 	struct list_head list;	/* list head */
366 	struct inode *inode;	/* vfs inode pointer */
367 	block_t blkaddr;	/* block address locating the last fsync */
368 	block_t last_dentry;	/* block address locating the last dentry */
369 };
370 
371 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
372 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
373 
374 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
375 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
376 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
377 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
378 
379 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
380 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
381 
382 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
383 {
384 	int before = nats_in_cursum(journal);
385 
386 	journal->n_nats = cpu_to_le16(before + i);
387 	return before;
388 }
389 
390 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
391 {
392 	int before = sits_in_cursum(journal);
393 
394 	journal->n_sits = cpu_to_le16(before + i);
395 	return before;
396 }
397 
398 static inline bool __has_cursum_space(struct f2fs_journal *journal,
399 							int size, int type)
400 {
401 	if (type == NAT_JOURNAL)
402 		return size <= MAX_NAT_JENTRIES(journal);
403 	return size <= MAX_SIT_JENTRIES(journal);
404 }
405 
406 /* for inline stuff */
407 #define DEF_INLINE_RESERVED_SIZE	1
408 static inline int get_extra_isize(struct inode *inode);
409 static inline int get_inline_xattr_addrs(struct inode *inode);
410 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
411 				(CUR_ADDRS_PER_INODE(inode) -		\
412 				get_inline_xattr_addrs(inode) -	\
413 				DEF_INLINE_RESERVED_SIZE))
414 
415 /* for inline dir */
416 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
417 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
418 				BITS_PER_BYTE + 1))
419 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
420 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
421 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
422 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
423 				NR_INLINE_DENTRY(inode) + \
424 				INLINE_DENTRY_BITMAP_SIZE(inode)))
425 
426 /*
427  * For INODE and NODE manager
428  */
429 /* for directory operations */
430 
431 struct f2fs_filename {
432 	/*
433 	 * The filename the user specified.  This is NULL for some
434 	 * filesystem-internal operations, e.g. converting an inline directory
435 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
436 	 */
437 	const struct qstr *usr_fname;
438 
439 	/*
440 	 * The on-disk filename.  For encrypted directories, this is encrypted.
441 	 * This may be NULL for lookups in an encrypted dir without the key.
442 	 */
443 	struct fscrypt_str disk_name;
444 
445 	/* The dirhash of this filename */
446 	f2fs_hash_t hash;
447 
448 #ifdef CONFIG_FS_ENCRYPTION
449 	/*
450 	 * For lookups in encrypted directories: either the buffer backing
451 	 * disk_name, or a buffer that holds the decoded no-key name.
452 	 */
453 	struct fscrypt_str crypto_buf;
454 #endif
455 #ifdef CONFIG_UNICODE
456 	/*
457 	 * For casefolded directories: the casefolded name, but it's left NULL
458 	 * if the original name is not valid Unicode, if the directory is both
459 	 * casefolded and encrypted and its encryption key is unavailable, or if
460 	 * the filesystem is doing an internal operation where usr_fname is also
461 	 * NULL.  In all these cases we fall back to treating the name as an
462 	 * opaque byte sequence.
463 	 */
464 	struct fscrypt_str cf_name;
465 #endif
466 };
467 
468 struct f2fs_dentry_ptr {
469 	struct inode *inode;
470 	void *bitmap;
471 	struct f2fs_dir_entry *dentry;
472 	__u8 (*filename)[F2FS_SLOT_LEN];
473 	int max;
474 	int nr_bitmap;
475 };
476 
477 static inline void make_dentry_ptr_block(struct inode *inode,
478 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
479 {
480 	d->inode = inode;
481 	d->max = NR_DENTRY_IN_BLOCK;
482 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
483 	d->bitmap = t->dentry_bitmap;
484 	d->dentry = t->dentry;
485 	d->filename = t->filename;
486 }
487 
488 static inline void make_dentry_ptr_inline(struct inode *inode,
489 					struct f2fs_dentry_ptr *d, void *t)
490 {
491 	int entry_cnt = NR_INLINE_DENTRY(inode);
492 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
493 	int reserved_size = INLINE_RESERVED_SIZE(inode);
494 
495 	d->inode = inode;
496 	d->max = entry_cnt;
497 	d->nr_bitmap = bitmap_size;
498 	d->bitmap = t;
499 	d->dentry = t + bitmap_size + reserved_size;
500 	d->filename = t + bitmap_size + reserved_size +
501 					SIZE_OF_DIR_ENTRY * entry_cnt;
502 }
503 
504 /*
505  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
506  * as its node offset to distinguish from index node blocks.
507  * But some bits are used to mark the node block.
508  */
509 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
510 				>> OFFSET_BIT_SHIFT)
511 enum {
512 	ALLOC_NODE,			/* allocate a new node page if needed */
513 	LOOKUP_NODE,			/* look up a node without readahead */
514 	LOOKUP_NODE_RA,			/*
515 					 * look up a node with readahead called
516 					 * by get_data_block.
517 					 */
518 };
519 
520 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
521 
522 /* congestion wait timeout value, default: 20ms */
523 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
524 
525 /* maximum retry quota flush count */
526 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
527 
528 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
529 
530 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
531 
532 /* for in-memory extent cache entry */
533 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
534 
535 /* number of extent info in extent cache we try to shrink */
536 #define EXTENT_CACHE_SHRINK_NUMBER	128
537 
538 struct rb_entry {
539 	struct rb_node rb_node;		/* rb node located in rb-tree */
540 	union {
541 		struct {
542 			unsigned int ofs;	/* start offset of the entry */
543 			unsigned int len;	/* length of the entry */
544 		};
545 		unsigned long long key;		/* 64-bits key */
546 	} __packed;
547 };
548 
549 struct extent_info {
550 	unsigned int fofs;		/* start offset in a file */
551 	unsigned int len;		/* length of the extent */
552 	u32 blk;			/* start block address of the extent */
553 };
554 
555 struct extent_node {
556 	struct rb_node rb_node;		/* rb node located in rb-tree */
557 	struct extent_info ei;		/* extent info */
558 	struct list_head list;		/* node in global extent list of sbi */
559 	struct extent_tree *et;		/* extent tree pointer */
560 };
561 
562 struct extent_tree {
563 	nid_t ino;			/* inode number */
564 	struct rb_root_cached root;	/* root of extent info rb-tree */
565 	struct extent_node *cached_en;	/* recently accessed extent node */
566 	struct extent_info largest;	/* largested extent info */
567 	struct list_head list;		/* to be used by sbi->zombie_list */
568 	rwlock_t lock;			/* protect extent info rb-tree */
569 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
570 	bool largest_updated;		/* largest extent updated */
571 };
572 
573 /*
574  * This structure is taken from ext4_map_blocks.
575  *
576  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
577  */
578 #define F2FS_MAP_NEW		(1 << BH_New)
579 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
580 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
581 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
582 				F2FS_MAP_UNWRITTEN)
583 
584 struct f2fs_map_blocks {
585 	block_t m_pblk;
586 	block_t m_lblk;
587 	unsigned int m_len;
588 	unsigned int m_flags;
589 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
590 	pgoff_t *m_next_extent;		/* point to next possible extent */
591 	int m_seg_type;
592 	bool m_may_create;		/* indicate it is from write path */
593 };
594 
595 /* for flag in get_data_block */
596 enum {
597 	F2FS_GET_BLOCK_DEFAULT,
598 	F2FS_GET_BLOCK_FIEMAP,
599 	F2FS_GET_BLOCK_BMAP,
600 	F2FS_GET_BLOCK_DIO,
601 	F2FS_GET_BLOCK_PRE_DIO,
602 	F2FS_GET_BLOCK_PRE_AIO,
603 	F2FS_GET_BLOCK_PRECACHE,
604 };
605 
606 /*
607  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
608  */
609 #define FADVISE_COLD_BIT	0x01
610 #define FADVISE_LOST_PINO_BIT	0x02
611 #define FADVISE_ENCRYPT_BIT	0x04
612 #define FADVISE_ENC_NAME_BIT	0x08
613 #define FADVISE_KEEP_SIZE_BIT	0x10
614 #define FADVISE_HOT_BIT		0x20
615 #define FADVISE_VERITY_BIT	0x40
616 
617 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
618 
619 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
620 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
621 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
622 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
623 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
624 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
625 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
626 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
627 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
628 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
629 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
630 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
631 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
632 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
633 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
634 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
635 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
636 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
637 
638 #define DEF_DIR_LEVEL		0
639 
640 enum {
641 	GC_FAILURE_PIN,
642 	GC_FAILURE_ATOMIC,
643 	MAX_GC_FAILURE
644 };
645 
646 /* used for f2fs_inode_info->flags */
647 enum {
648 	FI_NEW_INODE,		/* indicate newly allocated inode */
649 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
650 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
651 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
652 	FI_INC_LINK,		/* need to increment i_nlink */
653 	FI_ACL_MODE,		/* indicate acl mode */
654 	FI_NO_ALLOC,		/* should not allocate any blocks */
655 	FI_FREE_NID,		/* free allocated nide */
656 	FI_NO_EXTENT,		/* not to use the extent cache */
657 	FI_INLINE_XATTR,	/* used for inline xattr */
658 	FI_INLINE_DATA,		/* used for inline data*/
659 	FI_INLINE_DENTRY,	/* used for inline dentry */
660 	FI_APPEND_WRITE,	/* inode has appended data */
661 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
662 	FI_NEED_IPU,		/* used for ipu per file */
663 	FI_ATOMIC_FILE,		/* indicate atomic file */
664 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
665 	FI_VOLATILE_FILE,	/* indicate volatile file */
666 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
667 	FI_DROP_CACHE,		/* drop dirty page cache */
668 	FI_DATA_EXIST,		/* indicate data exists */
669 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
670 	FI_DO_DEFRAG,		/* indicate defragment is running */
671 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
672 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
673 	FI_HOT_DATA,		/* indicate file is hot */
674 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
675 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
676 	FI_PIN_FILE,		/* indicate file should not be gced */
677 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
678 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
679 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
680 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
681 	FI_MMAP_FILE,		/* indicate file was mmapped */
682 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
683 	FI_MAX,			/* max flag, never be used */
684 };
685 
686 struct f2fs_inode_info {
687 	struct inode vfs_inode;		/* serve a vfs inode */
688 	unsigned long i_flags;		/* keep an inode flags for ioctl */
689 	unsigned char i_advise;		/* use to give file attribute hints */
690 	unsigned char i_dir_level;	/* use for dentry level for large dir */
691 	unsigned int i_current_depth;	/* only for directory depth */
692 	/* for gc failure statistic */
693 	unsigned int i_gc_failures[MAX_GC_FAILURE];
694 	unsigned int i_pino;		/* parent inode number */
695 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
696 
697 	/* Use below internally in f2fs*/
698 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
699 	struct rw_semaphore i_sem;	/* protect fi info */
700 	atomic_t dirty_pages;		/* # of dirty pages */
701 	f2fs_hash_t chash;		/* hash value of given file name */
702 	unsigned int clevel;		/* maximum level of given file name */
703 	struct task_struct *task;	/* lookup and create consistency */
704 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
705 	nid_t i_xattr_nid;		/* node id that contains xattrs */
706 	loff_t	last_disk_size;		/* lastly written file size */
707 	spinlock_t i_size_lock;		/* protect last_disk_size */
708 
709 #ifdef CONFIG_QUOTA
710 	struct dquot *i_dquot[MAXQUOTAS];
711 
712 	/* quota space reservation, managed internally by quota code */
713 	qsize_t i_reserved_quota;
714 #endif
715 	struct list_head dirty_list;	/* dirty list for dirs and files */
716 	struct list_head gdirty_list;	/* linked in global dirty list */
717 	struct list_head inmem_ilist;	/* list for inmem inodes */
718 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
719 	struct task_struct *inmem_task;	/* store inmemory task */
720 	struct mutex inmem_lock;	/* lock for inmemory pages */
721 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
722 
723 	/* avoid racing between foreground op and gc */
724 	struct rw_semaphore i_gc_rwsem[2];
725 	struct rw_semaphore i_mmap_sem;
726 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
727 
728 	int i_extra_isize;		/* size of extra space located in i_addr */
729 	kprojid_t i_projid;		/* id for project quota */
730 	int i_inline_xattr_size;	/* inline xattr size */
731 	struct timespec64 i_crtime;	/* inode creation time */
732 	struct timespec64 i_disk_time[4];/* inode disk times */
733 
734 	/* for file compress */
735 	atomic_t i_compr_blocks;		/* # of compressed blocks */
736 	unsigned char i_compress_algorithm;	/* algorithm type */
737 	unsigned char i_log_cluster_size;	/* log of cluster size */
738 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
739 	unsigned short i_compress_flag;		/* compress flag */
740 	unsigned int i_cluster_size;		/* cluster size */
741 };
742 
743 static inline void get_extent_info(struct extent_info *ext,
744 					struct f2fs_extent *i_ext)
745 {
746 	ext->fofs = le32_to_cpu(i_ext->fofs);
747 	ext->blk = le32_to_cpu(i_ext->blk);
748 	ext->len = le32_to_cpu(i_ext->len);
749 }
750 
751 static inline void set_raw_extent(struct extent_info *ext,
752 					struct f2fs_extent *i_ext)
753 {
754 	i_ext->fofs = cpu_to_le32(ext->fofs);
755 	i_ext->blk = cpu_to_le32(ext->blk);
756 	i_ext->len = cpu_to_le32(ext->len);
757 }
758 
759 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
760 						u32 blk, unsigned int len)
761 {
762 	ei->fofs = fofs;
763 	ei->blk = blk;
764 	ei->len = len;
765 }
766 
767 static inline bool __is_discard_mergeable(struct discard_info *back,
768 			struct discard_info *front, unsigned int max_len)
769 {
770 	return (back->lstart + back->len == front->lstart) &&
771 		(back->len + front->len <= max_len);
772 }
773 
774 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
775 			struct discard_info *back, unsigned int max_len)
776 {
777 	return __is_discard_mergeable(back, cur, max_len);
778 }
779 
780 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
781 			struct discard_info *front, unsigned int max_len)
782 {
783 	return __is_discard_mergeable(cur, front, max_len);
784 }
785 
786 static inline bool __is_extent_mergeable(struct extent_info *back,
787 						struct extent_info *front)
788 {
789 	return (back->fofs + back->len == front->fofs &&
790 			back->blk + back->len == front->blk);
791 }
792 
793 static inline bool __is_back_mergeable(struct extent_info *cur,
794 						struct extent_info *back)
795 {
796 	return __is_extent_mergeable(back, cur);
797 }
798 
799 static inline bool __is_front_mergeable(struct extent_info *cur,
800 						struct extent_info *front)
801 {
802 	return __is_extent_mergeable(cur, front);
803 }
804 
805 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
806 static inline void __try_update_largest_extent(struct extent_tree *et,
807 						struct extent_node *en)
808 {
809 	if (en->ei.len > et->largest.len) {
810 		et->largest = en->ei;
811 		et->largest_updated = true;
812 	}
813 }
814 
815 /*
816  * For free nid management
817  */
818 enum nid_state {
819 	FREE_NID,		/* newly added to free nid list */
820 	PREALLOC_NID,		/* it is preallocated */
821 	MAX_NID_STATE,
822 };
823 
824 enum nat_state {
825 	TOTAL_NAT,
826 	DIRTY_NAT,
827 	RECLAIMABLE_NAT,
828 	MAX_NAT_STATE,
829 };
830 
831 struct f2fs_nm_info {
832 	block_t nat_blkaddr;		/* base disk address of NAT */
833 	nid_t max_nid;			/* maximum possible node ids */
834 	nid_t available_nids;		/* # of available node ids */
835 	nid_t next_scan_nid;		/* the next nid to be scanned */
836 	unsigned int ram_thresh;	/* control the memory footprint */
837 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
838 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
839 
840 	/* NAT cache management */
841 	struct radix_tree_root nat_root;/* root of the nat entry cache */
842 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
843 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
844 	struct list_head nat_entries;	/* cached nat entry list (clean) */
845 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
846 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
847 	unsigned int nat_blocks;	/* # of nat blocks */
848 
849 	/* free node ids management */
850 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
851 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
852 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
853 	spinlock_t nid_list_lock;	/* protect nid lists ops */
854 	struct mutex build_lock;	/* lock for build free nids */
855 	unsigned char **free_nid_bitmap;
856 	unsigned char *nat_block_bitmap;
857 	unsigned short *free_nid_count;	/* free nid count of NAT block */
858 
859 	/* for checkpoint */
860 	char *nat_bitmap;		/* NAT bitmap pointer */
861 
862 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
863 	unsigned char *nat_bits;	/* NAT bits blocks */
864 	unsigned char *full_nat_bits;	/* full NAT pages */
865 	unsigned char *empty_nat_bits;	/* empty NAT pages */
866 #ifdef CONFIG_F2FS_CHECK_FS
867 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
868 #endif
869 	int bitmap_size;		/* bitmap size */
870 };
871 
872 /*
873  * this structure is used as one of function parameters.
874  * all the information are dedicated to a given direct node block determined
875  * by the data offset in a file.
876  */
877 struct dnode_of_data {
878 	struct inode *inode;		/* vfs inode pointer */
879 	struct page *inode_page;	/* its inode page, NULL is possible */
880 	struct page *node_page;		/* cached direct node page */
881 	nid_t nid;			/* node id of the direct node block */
882 	unsigned int ofs_in_node;	/* data offset in the node page */
883 	bool inode_page_locked;		/* inode page is locked or not */
884 	bool node_changed;		/* is node block changed */
885 	char cur_level;			/* level of hole node page */
886 	char max_level;			/* level of current page located */
887 	block_t	data_blkaddr;		/* block address of the node block */
888 };
889 
890 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
891 		struct page *ipage, struct page *npage, nid_t nid)
892 {
893 	memset(dn, 0, sizeof(*dn));
894 	dn->inode = inode;
895 	dn->inode_page = ipage;
896 	dn->node_page = npage;
897 	dn->nid = nid;
898 }
899 
900 /*
901  * For SIT manager
902  *
903  * By default, there are 6 active log areas across the whole main area.
904  * When considering hot and cold data separation to reduce cleaning overhead,
905  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
906  * respectively.
907  * In the current design, you should not change the numbers intentionally.
908  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
909  * logs individually according to the underlying devices. (default: 6)
910  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
911  * data and 8 for node logs.
912  */
913 #define	NR_CURSEG_DATA_TYPE	(3)
914 #define NR_CURSEG_NODE_TYPE	(3)
915 #define NR_CURSEG_INMEM_TYPE	(2)
916 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
917 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
918 
919 enum {
920 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
921 	CURSEG_WARM_DATA,	/* data blocks */
922 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
923 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
924 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
925 	CURSEG_COLD_NODE,	/* indirect node blocks */
926 	NR_PERSISTENT_LOG,	/* number of persistent log */
927 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
928 				/* pinned file that needs consecutive block address */
929 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
930 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
931 };
932 
933 struct flush_cmd {
934 	struct completion wait;
935 	struct llist_node llnode;
936 	nid_t ino;
937 	int ret;
938 };
939 
940 struct flush_cmd_control {
941 	struct task_struct *f2fs_issue_flush;	/* flush thread */
942 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
943 	atomic_t issued_flush;			/* # of issued flushes */
944 	atomic_t queued_flush;			/* # of queued flushes */
945 	struct llist_head issue_list;		/* list for command issue */
946 	struct llist_node *dispatch_list;	/* list for command dispatch */
947 };
948 
949 struct f2fs_sm_info {
950 	struct sit_info *sit_info;		/* whole segment information */
951 	struct free_segmap_info *free_info;	/* free segment information */
952 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
953 	struct curseg_info *curseg_array;	/* active segment information */
954 
955 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
956 
957 	block_t seg0_blkaddr;		/* block address of 0'th segment */
958 	block_t main_blkaddr;		/* start block address of main area */
959 	block_t ssa_blkaddr;		/* start block address of SSA area */
960 
961 	unsigned int segment_count;	/* total # of segments */
962 	unsigned int main_segments;	/* # of segments in main area */
963 	unsigned int reserved_segments;	/* # of reserved segments */
964 	unsigned int ovp_segments;	/* # of overprovision segments */
965 
966 	/* a threshold to reclaim prefree segments */
967 	unsigned int rec_prefree_segments;
968 
969 	/* for batched trimming */
970 	unsigned int trim_sections;		/* # of sections to trim */
971 
972 	struct list_head sit_entry_set;	/* sit entry set list */
973 
974 	unsigned int ipu_policy;	/* in-place-update policy */
975 	unsigned int min_ipu_util;	/* in-place-update threshold */
976 	unsigned int min_fsync_blocks;	/* threshold for fsync */
977 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
978 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
979 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
980 
981 	/* for flush command control */
982 	struct flush_cmd_control *fcc_info;
983 
984 	/* for discard command control */
985 	struct discard_cmd_control *dcc_info;
986 };
987 
988 /*
989  * For superblock
990  */
991 /*
992  * COUNT_TYPE for monitoring
993  *
994  * f2fs monitors the number of several block types such as on-writeback,
995  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
996  */
997 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
998 enum count_type {
999 	F2FS_DIRTY_DENTS,
1000 	F2FS_DIRTY_DATA,
1001 	F2FS_DIRTY_QDATA,
1002 	F2FS_DIRTY_NODES,
1003 	F2FS_DIRTY_META,
1004 	F2FS_INMEM_PAGES,
1005 	F2FS_DIRTY_IMETA,
1006 	F2FS_WB_CP_DATA,
1007 	F2FS_WB_DATA,
1008 	F2FS_RD_DATA,
1009 	F2FS_RD_NODE,
1010 	F2FS_RD_META,
1011 	F2FS_DIO_WRITE,
1012 	F2FS_DIO_READ,
1013 	NR_COUNT_TYPE,
1014 };
1015 
1016 /*
1017  * The below are the page types of bios used in submit_bio().
1018  * The available types are:
1019  * DATA			User data pages. It operates as async mode.
1020  * NODE			Node pages. It operates as async mode.
1021  * META			FS metadata pages such as SIT, NAT, CP.
1022  * NR_PAGE_TYPE		The number of page types.
1023  * META_FLUSH		Make sure the previous pages are written
1024  *			with waiting the bio's completion
1025  * ...			Only can be used with META.
1026  */
1027 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1028 enum page_type {
1029 	DATA,
1030 	NODE,
1031 	META,
1032 	NR_PAGE_TYPE,
1033 	META_FLUSH,
1034 	INMEM,		/* the below types are used by tracepoints only. */
1035 	INMEM_DROP,
1036 	INMEM_INVALIDATE,
1037 	INMEM_REVOKE,
1038 	IPU,
1039 	OPU,
1040 };
1041 
1042 enum temp_type {
1043 	HOT = 0,	/* must be zero for meta bio */
1044 	WARM,
1045 	COLD,
1046 	NR_TEMP_TYPE,
1047 };
1048 
1049 enum need_lock_type {
1050 	LOCK_REQ = 0,
1051 	LOCK_DONE,
1052 	LOCK_RETRY,
1053 };
1054 
1055 enum cp_reason_type {
1056 	CP_NO_NEEDED,
1057 	CP_NON_REGULAR,
1058 	CP_COMPRESSED,
1059 	CP_HARDLINK,
1060 	CP_SB_NEED_CP,
1061 	CP_WRONG_PINO,
1062 	CP_NO_SPC_ROLL,
1063 	CP_NODE_NEED_CP,
1064 	CP_FASTBOOT_MODE,
1065 	CP_SPEC_LOG_NUM,
1066 	CP_RECOVER_DIR,
1067 };
1068 
1069 enum iostat_type {
1070 	/* WRITE IO */
1071 	APP_DIRECT_IO,			/* app direct write IOs */
1072 	APP_BUFFERED_IO,		/* app buffered write IOs */
1073 	APP_WRITE_IO,			/* app write IOs */
1074 	APP_MAPPED_IO,			/* app mapped IOs */
1075 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1076 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1077 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1078 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1079 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1080 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1081 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1082 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1083 
1084 	/* READ IO */
1085 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1086 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1087 	APP_READ_IO,			/* app read IOs */
1088 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1089 	FS_DATA_READ_IO,		/* data read IOs */
1090 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1091 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1092 	FS_NODE_READ_IO,		/* node read IOs */
1093 	FS_META_READ_IO,		/* meta read IOs */
1094 
1095 	/* other */
1096 	FS_DISCARD,			/* discard */
1097 	NR_IO_TYPE,
1098 };
1099 
1100 struct f2fs_io_info {
1101 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1102 	nid_t ino;		/* inode number */
1103 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1104 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1105 	int op;			/* contains REQ_OP_ */
1106 	int op_flags;		/* req_flag_bits */
1107 	block_t new_blkaddr;	/* new block address to be written */
1108 	block_t old_blkaddr;	/* old block address before Cow */
1109 	struct page *page;	/* page to be written */
1110 	struct page *encrypted_page;	/* encrypted page */
1111 	struct page *compressed_page;	/* compressed page */
1112 	struct list_head list;		/* serialize IOs */
1113 	bool submitted;		/* indicate IO submission */
1114 	int need_lock;		/* indicate we need to lock cp_rwsem */
1115 	bool in_list;		/* indicate fio is in io_list */
1116 	bool is_por;		/* indicate IO is from recovery or not */
1117 	bool retry;		/* need to reallocate block address */
1118 	int compr_blocks;	/* # of compressed block addresses */
1119 	bool encrypted;		/* indicate file is encrypted */
1120 	enum iostat_type io_type;	/* io type */
1121 	struct writeback_control *io_wbc; /* writeback control */
1122 	struct bio **bio;		/* bio for ipu */
1123 	sector_t *last_block;		/* last block number in bio */
1124 	unsigned char version;		/* version of the node */
1125 };
1126 
1127 struct bio_entry {
1128 	struct bio *bio;
1129 	struct list_head list;
1130 };
1131 
1132 #define is_read_io(rw) ((rw) == READ)
1133 struct f2fs_bio_info {
1134 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1135 	struct bio *bio;		/* bios to merge */
1136 	sector_t last_block_in_bio;	/* last block number */
1137 	struct f2fs_io_info fio;	/* store buffered io info. */
1138 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1139 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1140 	struct list_head io_list;	/* track fios */
1141 	struct list_head bio_list;	/* bio entry list head */
1142 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1143 };
1144 
1145 #define FDEV(i)				(sbi->devs[i])
1146 #define RDEV(i)				(raw_super->devs[i])
1147 struct f2fs_dev_info {
1148 	struct block_device *bdev;
1149 	char path[MAX_PATH_LEN];
1150 	unsigned int total_segments;
1151 	block_t start_blk;
1152 	block_t end_blk;
1153 #ifdef CONFIG_BLK_DEV_ZONED
1154 	unsigned int nr_blkz;		/* Total number of zones */
1155 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1156 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1157 #endif
1158 };
1159 
1160 enum inode_type {
1161 	DIR_INODE,			/* for dirty dir inode */
1162 	FILE_INODE,			/* for dirty regular/symlink inode */
1163 	DIRTY_META,			/* for all dirtied inode metadata */
1164 	ATOMIC_FILE,			/* for all atomic files */
1165 	NR_INODE_TYPE,
1166 };
1167 
1168 /* for inner inode cache management */
1169 struct inode_management {
1170 	struct radix_tree_root ino_root;	/* ino entry array */
1171 	spinlock_t ino_lock;			/* for ino entry lock */
1172 	struct list_head ino_list;		/* inode list head */
1173 	unsigned long ino_num;			/* number of entries */
1174 };
1175 
1176 /* for GC_AT */
1177 struct atgc_management {
1178 	bool atgc_enabled;			/* ATGC is enabled or not */
1179 	struct rb_root_cached root;		/* root of victim rb-tree */
1180 	struct list_head victim_list;		/* linked with all victim entries */
1181 	unsigned int victim_count;		/* victim count in rb-tree */
1182 	unsigned int candidate_ratio;		/* candidate ratio */
1183 	unsigned int max_candidate_count;	/* max candidate count */
1184 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1185 	unsigned long long age_threshold;	/* age threshold */
1186 };
1187 
1188 /* For s_flag in struct f2fs_sb_info */
1189 enum {
1190 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1191 	SBI_IS_CLOSE,				/* specify unmounting */
1192 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1193 	SBI_POR_DOING,				/* recovery is doing or not */
1194 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1195 	SBI_NEED_CP,				/* need to checkpoint */
1196 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1197 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1198 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1199 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1200 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1201 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1202 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1203 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1204 };
1205 
1206 enum {
1207 	CP_TIME,
1208 	REQ_TIME,
1209 	DISCARD_TIME,
1210 	GC_TIME,
1211 	DISABLE_TIME,
1212 	UMOUNT_DISCARD_TIMEOUT,
1213 	MAX_TIME,
1214 };
1215 
1216 enum {
1217 	GC_NORMAL,
1218 	GC_IDLE_CB,
1219 	GC_IDLE_GREEDY,
1220 	GC_IDLE_AT,
1221 	GC_URGENT_HIGH,
1222 	GC_URGENT_LOW,
1223 };
1224 
1225 enum {
1226 	BGGC_MODE_ON,		/* background gc is on */
1227 	BGGC_MODE_OFF,		/* background gc is off */
1228 	BGGC_MODE_SYNC,		/*
1229 				 * background gc is on, migrating blocks
1230 				 * like foreground gc
1231 				 */
1232 };
1233 
1234 enum {
1235 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1236 	FS_MODE_LFS,		/* use lfs allocation only */
1237 };
1238 
1239 enum {
1240 	WHINT_MODE_OFF,		/* not pass down write hints */
1241 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1242 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1243 };
1244 
1245 enum {
1246 	ALLOC_MODE_DEFAULT,	/* stay default */
1247 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1248 };
1249 
1250 enum fsync_mode {
1251 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1252 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1253 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1254 };
1255 
1256 enum {
1257 	COMPR_MODE_FS,		/*
1258 				 * automatically compress compression
1259 				 * enabled files
1260 				 */
1261 	COMPR_MODE_USER,	/*
1262 				 * automatical compression is disabled.
1263 				 * user can control the file compression
1264 				 * using ioctls
1265 				 */
1266 };
1267 
1268 /*
1269  * this value is set in page as a private data which indicate that
1270  * the page is atomically written, and it is in inmem_pages list.
1271  */
1272 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1273 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1274 
1275 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1276 		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1277 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1278 		(page_private(page) == DUMMY_WRITTEN_PAGE)
1279 
1280 #ifdef CONFIG_F2FS_IO_TRACE
1281 #define IS_IO_TRACED_PAGE(page)			\
1282 		(page_private(page) > 0 &&		\
1283 		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1284 #else
1285 #define IS_IO_TRACED_PAGE(page) (0)
1286 #endif
1287 
1288 /* For compression */
1289 enum compress_algorithm_type {
1290 	COMPRESS_LZO,
1291 	COMPRESS_LZ4,
1292 	COMPRESS_ZSTD,
1293 	COMPRESS_LZORLE,
1294 	COMPRESS_MAX,
1295 };
1296 
1297 enum compress_flag {
1298 	COMPRESS_CHKSUM,
1299 	COMPRESS_MAX_FLAG,
1300 };
1301 
1302 #define COMPRESS_DATA_RESERVED_SIZE		4
1303 struct compress_data {
1304 	__le32 clen;			/* compressed data size */
1305 	__le32 chksum;			/* compressed data chksum */
1306 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1307 	u8 cdata[];			/* compressed data */
1308 };
1309 
1310 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1311 
1312 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1313 
1314 #define	COMPRESS_LEVEL_OFFSET	8
1315 
1316 /* compress context */
1317 struct compress_ctx {
1318 	struct inode *inode;		/* inode the context belong to */
1319 	pgoff_t cluster_idx;		/* cluster index number */
1320 	unsigned int cluster_size;	/* page count in cluster */
1321 	unsigned int log_cluster_size;	/* log of cluster size */
1322 	struct page **rpages;		/* pages store raw data in cluster */
1323 	unsigned int nr_rpages;		/* total page number in rpages */
1324 	struct page **cpages;		/* pages store compressed data in cluster */
1325 	unsigned int nr_cpages;		/* total page number in cpages */
1326 	void *rbuf;			/* virtual mapped address on rpages */
1327 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1328 	size_t rlen;			/* valid data length in rbuf */
1329 	size_t clen;			/* valid data length in cbuf */
1330 	void *private;			/* payload buffer for specified compression algorithm */
1331 	void *private2;			/* extra payload buffer */
1332 };
1333 
1334 /* compress context for write IO path */
1335 struct compress_io_ctx {
1336 	u32 magic;			/* magic number to indicate page is compressed */
1337 	struct inode *inode;		/* inode the context belong to */
1338 	struct page **rpages;		/* pages store raw data in cluster */
1339 	unsigned int nr_rpages;		/* total page number in rpages */
1340 	atomic_t pending_pages;		/* in-flight compressed page count */
1341 };
1342 
1343 /* Context for decompressing one cluster on the read IO path */
1344 struct decompress_io_ctx {
1345 	u32 magic;			/* magic number to indicate page is compressed */
1346 	struct inode *inode;		/* inode the context belong to */
1347 	pgoff_t cluster_idx;		/* cluster index number */
1348 	unsigned int cluster_size;	/* page count in cluster */
1349 	unsigned int log_cluster_size;	/* log of cluster size */
1350 	struct page **rpages;		/* pages store raw data in cluster */
1351 	unsigned int nr_rpages;		/* total page number in rpages */
1352 	struct page **cpages;		/* pages store compressed data in cluster */
1353 	unsigned int nr_cpages;		/* total page number in cpages */
1354 	struct page **tpages;		/* temp pages to pad holes in cluster */
1355 	void *rbuf;			/* virtual mapped address on rpages */
1356 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1357 	size_t rlen;			/* valid data length in rbuf */
1358 	size_t clen;			/* valid data length in cbuf */
1359 
1360 	/*
1361 	 * The number of compressed pages remaining to be read in this cluster.
1362 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1363 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1364 	 * is decompressed (or an error is reported).
1365 	 *
1366 	 * If an error occurs before all the pages have been submitted for I/O,
1367 	 * then this will never reach 0.  In this case the I/O submitter is
1368 	 * responsible for calling f2fs_decompress_end_io() instead.
1369 	 */
1370 	atomic_t remaining_pages;
1371 
1372 	/*
1373 	 * Number of references to this decompress_io_ctx.
1374 	 *
1375 	 * One reference is held for I/O completion.  This reference is dropped
1376 	 * after the pagecache pages are updated and unlocked -- either after
1377 	 * decompression (and verity if enabled), or after an error.
1378 	 *
1379 	 * In addition, each compressed page holds a reference while it is in a
1380 	 * bio.  These references are necessary prevent compressed pages from
1381 	 * being freed while they are still in a bio.
1382 	 */
1383 	refcount_t refcnt;
1384 
1385 	bool failed;			/* IO error occurred before decompression? */
1386 	bool need_verity;		/* need fs-verity verification after decompression? */
1387 	void *private;			/* payload buffer for specified decompression algorithm */
1388 	void *private2;			/* extra payload buffer */
1389 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1390 };
1391 
1392 #define NULL_CLUSTER			((unsigned int)(~0))
1393 #define MIN_COMPRESS_LOG_SIZE		2
1394 #define MAX_COMPRESS_LOG_SIZE		8
1395 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1396 
1397 struct f2fs_sb_info {
1398 	struct super_block *sb;			/* pointer to VFS super block */
1399 	struct proc_dir_entry *s_proc;		/* proc entry */
1400 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1401 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1402 	int valid_super_block;			/* valid super block no */
1403 	unsigned long s_flag;				/* flags for sbi */
1404 	struct mutex writepages;		/* mutex for writepages() */
1405 
1406 #ifdef CONFIG_BLK_DEV_ZONED
1407 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1408 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1409 #endif
1410 
1411 	/* for node-related operations */
1412 	struct f2fs_nm_info *nm_info;		/* node manager */
1413 	struct inode *node_inode;		/* cache node blocks */
1414 
1415 	/* for segment-related operations */
1416 	struct f2fs_sm_info *sm_info;		/* segment manager */
1417 
1418 	/* for bio operations */
1419 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1420 	/* keep migration IO order for LFS mode */
1421 	struct rw_semaphore io_order_lock;
1422 	mempool_t *write_io_dummy;		/* Dummy pages */
1423 
1424 	/* for checkpoint */
1425 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1426 	int cur_cp_pack;			/* remain current cp pack */
1427 	spinlock_t cp_lock;			/* for flag in ckpt */
1428 	struct inode *meta_inode;		/* cache meta blocks */
1429 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1430 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1431 	struct rw_semaphore node_write;		/* locking node writes */
1432 	struct rw_semaphore node_change;	/* locking node change */
1433 	wait_queue_head_t cp_wait;
1434 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1435 	long interval_time[MAX_TIME];		/* to store thresholds */
1436 
1437 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1438 
1439 	spinlock_t fsync_node_lock;		/* for node entry lock */
1440 	struct list_head fsync_node_list;	/* node list head */
1441 	unsigned int fsync_seg_id;		/* sequence id */
1442 	unsigned int fsync_node_num;		/* number of node entries */
1443 
1444 	/* for orphan inode, use 0'th array */
1445 	unsigned int max_orphans;		/* max orphan inodes */
1446 
1447 	/* for inode management */
1448 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1449 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1450 	struct mutex flush_lock;		/* for flush exclusion */
1451 
1452 	/* for extent tree cache */
1453 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1454 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1455 	struct list_head extent_list;		/* lru list for shrinker */
1456 	spinlock_t extent_lock;			/* locking extent lru list */
1457 	atomic_t total_ext_tree;		/* extent tree count */
1458 	struct list_head zombie_list;		/* extent zombie tree list */
1459 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1460 	atomic_t total_ext_node;		/* extent info count */
1461 
1462 	/* basic filesystem units */
1463 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1464 	unsigned int log_blocksize;		/* log2 block size */
1465 	unsigned int blocksize;			/* block size */
1466 	unsigned int root_ino_num;		/* root inode number*/
1467 	unsigned int node_ino_num;		/* node inode number*/
1468 	unsigned int meta_ino_num;		/* meta inode number*/
1469 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1470 	unsigned int blocks_per_seg;		/* blocks per segment */
1471 	unsigned int segs_per_sec;		/* segments per section */
1472 	unsigned int secs_per_zone;		/* sections per zone */
1473 	unsigned int total_sections;		/* total section count */
1474 	unsigned int total_node_count;		/* total node block count */
1475 	unsigned int total_valid_node_count;	/* valid node block count */
1476 	int dir_level;				/* directory level */
1477 	int readdir_ra;				/* readahead inode in readdir */
1478 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1479 
1480 	block_t user_block_count;		/* # of user blocks */
1481 	block_t total_valid_block_count;	/* # of valid blocks */
1482 	block_t discard_blks;			/* discard command candidats */
1483 	block_t last_valid_block_count;		/* for recovery */
1484 	block_t reserved_blocks;		/* configurable reserved blocks */
1485 	block_t current_reserved_blocks;	/* current reserved blocks */
1486 
1487 	/* Additional tracking for no checkpoint mode */
1488 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1489 
1490 	unsigned int nquota_files;		/* # of quota sysfile */
1491 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1492 
1493 	/* # of pages, see count_type */
1494 	atomic_t nr_pages[NR_COUNT_TYPE];
1495 	/* # of allocated blocks */
1496 	struct percpu_counter alloc_valid_block_count;
1497 
1498 	/* writeback control */
1499 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1500 
1501 	/* valid inode count */
1502 	struct percpu_counter total_valid_inode_count;
1503 
1504 	struct f2fs_mount_info mount_opt;	/* mount options */
1505 
1506 	/* for cleaning operations */
1507 	struct rw_semaphore gc_lock;		/*
1508 						 * semaphore for GC, avoid
1509 						 * race between GC and GC or CP
1510 						 */
1511 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1512 	struct atgc_management am;		/* atgc management */
1513 	unsigned int cur_victim_sec;		/* current victim section num */
1514 	unsigned int gc_mode;			/* current GC state */
1515 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1516 
1517 	/* for skip statistic */
1518 	unsigned int atomic_files;		/* # of opened atomic file */
1519 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1520 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1521 
1522 	/* threshold for gc trials on pinned files */
1523 	u64 gc_pin_file_threshold;
1524 	struct rw_semaphore pin_sem;
1525 
1526 	/* maximum # of trials to find a victim segment for SSR and GC */
1527 	unsigned int max_victim_search;
1528 	/* migration granularity of garbage collection, unit: segment */
1529 	unsigned int migration_granularity;
1530 
1531 	/*
1532 	 * for stat information.
1533 	 * one is for the LFS mode, and the other is for the SSR mode.
1534 	 */
1535 #ifdef CONFIG_F2FS_STAT_FS
1536 	struct f2fs_stat_info *stat_info;	/* FS status information */
1537 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1538 	unsigned int segment_count[2];		/* # of allocated segments */
1539 	unsigned int block_count[2];		/* # of allocated blocks */
1540 	atomic_t inplace_count;		/* # of inplace update */
1541 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1542 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1543 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1544 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1545 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1546 	atomic_t inline_inode;			/* # of inline_data inodes */
1547 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1548 	atomic_t compr_inode;			/* # of compressed inodes */
1549 	atomic64_t compr_blocks;		/* # of compressed blocks */
1550 	atomic_t vw_cnt;			/* # of volatile writes */
1551 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1552 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1553 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1554 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1555 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1556 #endif
1557 	spinlock_t stat_lock;			/* lock for stat operations */
1558 
1559 	/* For app/fs IO statistics */
1560 	spinlock_t iostat_lock;
1561 	unsigned long long rw_iostat[NR_IO_TYPE];
1562 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1563 	bool iostat_enable;
1564 	unsigned long iostat_next_period;
1565 	unsigned int iostat_period_ms;
1566 
1567 	/* to attach REQ_META|REQ_FUA flags */
1568 	unsigned int data_io_flag;
1569 	unsigned int node_io_flag;
1570 
1571 	/* For sysfs suppport */
1572 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1573 	struct completion s_kobj_unregister;
1574 
1575 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1576 	struct completion s_stat_kobj_unregister;
1577 
1578 	/* For shrinker support */
1579 	struct list_head s_list;
1580 	int s_ndevs;				/* number of devices */
1581 	struct f2fs_dev_info *devs;		/* for device list */
1582 	unsigned int dirty_device;		/* for checkpoint data flush */
1583 	spinlock_t dev_lock;			/* protect dirty_device */
1584 	struct mutex umount_mutex;
1585 	unsigned int shrinker_run_no;
1586 
1587 	/* For write statistics */
1588 	u64 sectors_written_start;
1589 	u64 kbytes_written;
1590 
1591 	/* Reference to checksum algorithm driver via cryptoapi */
1592 	struct crypto_shash *s_chksum_driver;
1593 
1594 	/* Precomputed FS UUID checksum for seeding other checksums */
1595 	__u32 s_chksum_seed;
1596 
1597 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1598 
1599 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1600 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1601 
1602 #ifdef CONFIG_F2FS_FS_COMPRESSION
1603 	struct kmem_cache *page_array_slab;	/* page array entry */
1604 	unsigned int page_array_slab_size;	/* default page array slab size */
1605 #endif
1606 };
1607 
1608 struct f2fs_private_dio {
1609 	struct inode *inode;
1610 	void *orig_private;
1611 	bio_end_io_t *orig_end_io;
1612 	bool write;
1613 };
1614 
1615 #ifdef CONFIG_F2FS_FAULT_INJECTION
1616 #define f2fs_show_injection_info(sbi, type)					\
1617 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1618 		KERN_INFO, sbi->sb->s_id,				\
1619 		f2fs_fault_name[type],					\
1620 		__func__, __builtin_return_address(0))
1621 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1622 {
1623 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1624 
1625 	if (!ffi->inject_rate)
1626 		return false;
1627 
1628 	if (!IS_FAULT_SET(ffi, type))
1629 		return false;
1630 
1631 	atomic_inc(&ffi->inject_ops);
1632 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1633 		atomic_set(&ffi->inject_ops, 0);
1634 		return true;
1635 	}
1636 	return false;
1637 }
1638 #else
1639 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1640 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1641 {
1642 	return false;
1643 }
1644 #endif
1645 
1646 /*
1647  * Test if the mounted volume is a multi-device volume.
1648  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1649  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1650  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1651  */
1652 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1653 {
1654 	return sbi->s_ndevs > 1;
1655 }
1656 
1657 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1658 {
1659 	unsigned long now = jiffies;
1660 
1661 	sbi->last_time[type] = now;
1662 
1663 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1664 	if (type == REQ_TIME) {
1665 		sbi->last_time[DISCARD_TIME] = now;
1666 		sbi->last_time[GC_TIME] = now;
1667 	}
1668 }
1669 
1670 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1671 {
1672 	unsigned long interval = sbi->interval_time[type] * HZ;
1673 
1674 	return time_after(jiffies, sbi->last_time[type] + interval);
1675 }
1676 
1677 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1678 						int type)
1679 {
1680 	unsigned long interval = sbi->interval_time[type] * HZ;
1681 	unsigned int wait_ms = 0;
1682 	long delta;
1683 
1684 	delta = (sbi->last_time[type] + interval) - jiffies;
1685 	if (delta > 0)
1686 		wait_ms = jiffies_to_msecs(delta);
1687 
1688 	return wait_ms;
1689 }
1690 
1691 /*
1692  * Inline functions
1693  */
1694 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1695 			      const void *address, unsigned int length)
1696 {
1697 	struct {
1698 		struct shash_desc shash;
1699 		char ctx[4];
1700 	} desc;
1701 	int err;
1702 
1703 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1704 
1705 	desc.shash.tfm = sbi->s_chksum_driver;
1706 	*(u32 *)desc.ctx = crc;
1707 
1708 	err = crypto_shash_update(&desc.shash, address, length);
1709 	BUG_ON(err);
1710 
1711 	return *(u32 *)desc.ctx;
1712 }
1713 
1714 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1715 			   unsigned int length)
1716 {
1717 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1718 }
1719 
1720 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1721 				  void *buf, size_t buf_size)
1722 {
1723 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1724 }
1725 
1726 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1727 			      const void *address, unsigned int length)
1728 {
1729 	return __f2fs_crc32(sbi, crc, address, length);
1730 }
1731 
1732 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1733 {
1734 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1735 }
1736 
1737 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1738 {
1739 	return sb->s_fs_info;
1740 }
1741 
1742 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1743 {
1744 	return F2FS_SB(inode->i_sb);
1745 }
1746 
1747 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1748 {
1749 	return F2FS_I_SB(mapping->host);
1750 }
1751 
1752 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1753 {
1754 	return F2FS_M_SB(page_file_mapping(page));
1755 }
1756 
1757 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1758 {
1759 	return (struct f2fs_super_block *)(sbi->raw_super);
1760 }
1761 
1762 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1763 {
1764 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1765 }
1766 
1767 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1768 {
1769 	return (struct f2fs_node *)page_address(page);
1770 }
1771 
1772 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1773 {
1774 	return &((struct f2fs_node *)page_address(page))->i;
1775 }
1776 
1777 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1778 {
1779 	return (struct f2fs_nm_info *)(sbi->nm_info);
1780 }
1781 
1782 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1783 {
1784 	return (struct f2fs_sm_info *)(sbi->sm_info);
1785 }
1786 
1787 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1788 {
1789 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1790 }
1791 
1792 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1793 {
1794 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1795 }
1796 
1797 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1798 {
1799 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1800 }
1801 
1802 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1803 {
1804 	return sbi->meta_inode->i_mapping;
1805 }
1806 
1807 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1808 {
1809 	return sbi->node_inode->i_mapping;
1810 }
1811 
1812 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1813 {
1814 	return test_bit(type, &sbi->s_flag);
1815 }
1816 
1817 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1818 {
1819 	set_bit(type, &sbi->s_flag);
1820 }
1821 
1822 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1823 {
1824 	clear_bit(type, &sbi->s_flag);
1825 }
1826 
1827 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1828 {
1829 	return le64_to_cpu(cp->checkpoint_ver);
1830 }
1831 
1832 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1833 {
1834 	if (type < F2FS_MAX_QUOTAS)
1835 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1836 	return 0;
1837 }
1838 
1839 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1840 {
1841 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1842 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1843 }
1844 
1845 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1846 {
1847 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1848 
1849 	return ckpt_flags & f;
1850 }
1851 
1852 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1853 {
1854 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1855 }
1856 
1857 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1858 {
1859 	unsigned int ckpt_flags;
1860 
1861 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1862 	ckpt_flags |= f;
1863 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1864 }
1865 
1866 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1867 {
1868 	unsigned long flags;
1869 
1870 	spin_lock_irqsave(&sbi->cp_lock, flags);
1871 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1872 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1873 }
1874 
1875 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1876 {
1877 	unsigned int ckpt_flags;
1878 
1879 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1880 	ckpt_flags &= (~f);
1881 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1882 }
1883 
1884 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1885 {
1886 	unsigned long flags;
1887 
1888 	spin_lock_irqsave(&sbi->cp_lock, flags);
1889 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1890 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1891 }
1892 
1893 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1894 {
1895 	unsigned long flags;
1896 	unsigned char *nat_bits;
1897 
1898 	/*
1899 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1900 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1901 	 * so let's rely on regular fsck or unclean shutdown.
1902 	 */
1903 
1904 	if (lock)
1905 		spin_lock_irqsave(&sbi->cp_lock, flags);
1906 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1907 	nat_bits = NM_I(sbi)->nat_bits;
1908 	NM_I(sbi)->nat_bits = NULL;
1909 	if (lock)
1910 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1911 
1912 	kvfree(nat_bits);
1913 }
1914 
1915 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1916 					struct cp_control *cpc)
1917 {
1918 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1919 
1920 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1921 }
1922 
1923 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1924 {
1925 	down_read(&sbi->cp_rwsem);
1926 }
1927 
1928 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1929 {
1930 	return down_read_trylock(&sbi->cp_rwsem);
1931 }
1932 
1933 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1934 {
1935 	up_read(&sbi->cp_rwsem);
1936 }
1937 
1938 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1939 {
1940 	down_write(&sbi->cp_rwsem);
1941 }
1942 
1943 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1944 {
1945 	up_write(&sbi->cp_rwsem);
1946 }
1947 
1948 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1949 {
1950 	int reason = CP_SYNC;
1951 
1952 	if (test_opt(sbi, FASTBOOT))
1953 		reason = CP_FASTBOOT;
1954 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1955 		reason = CP_UMOUNT;
1956 	return reason;
1957 }
1958 
1959 static inline bool __remain_node_summaries(int reason)
1960 {
1961 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1962 }
1963 
1964 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1965 {
1966 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1967 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1968 }
1969 
1970 /*
1971  * Check whether the inode has blocks or not
1972  */
1973 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1974 {
1975 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1976 
1977 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1978 }
1979 
1980 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1981 {
1982 	return ofs == XATTR_NODE_OFFSET;
1983 }
1984 
1985 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1986 					struct inode *inode, bool cap)
1987 {
1988 	if (!inode)
1989 		return true;
1990 	if (!test_opt(sbi, RESERVE_ROOT))
1991 		return false;
1992 	if (IS_NOQUOTA(inode))
1993 		return true;
1994 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1995 		return true;
1996 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1997 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1998 		return true;
1999 	if (cap && capable(CAP_SYS_RESOURCE))
2000 		return true;
2001 	return false;
2002 }
2003 
2004 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2005 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2006 				 struct inode *inode, blkcnt_t *count)
2007 {
2008 	blkcnt_t diff = 0, release = 0;
2009 	block_t avail_user_block_count;
2010 	int ret;
2011 
2012 	ret = dquot_reserve_block(inode, *count);
2013 	if (ret)
2014 		return ret;
2015 
2016 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2017 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2018 		release = *count;
2019 		goto release_quota;
2020 	}
2021 
2022 	/*
2023 	 * let's increase this in prior to actual block count change in order
2024 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2025 	 */
2026 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2027 
2028 	spin_lock(&sbi->stat_lock);
2029 	sbi->total_valid_block_count += (block_t)(*count);
2030 	avail_user_block_count = sbi->user_block_count -
2031 					sbi->current_reserved_blocks;
2032 
2033 	if (!__allow_reserved_blocks(sbi, inode, true))
2034 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2035 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2036 		if (avail_user_block_count > sbi->unusable_block_count)
2037 			avail_user_block_count -= sbi->unusable_block_count;
2038 		else
2039 			avail_user_block_count = 0;
2040 	}
2041 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2042 		diff = sbi->total_valid_block_count - avail_user_block_count;
2043 		if (diff > *count)
2044 			diff = *count;
2045 		*count -= diff;
2046 		release = diff;
2047 		sbi->total_valid_block_count -= diff;
2048 		if (!*count) {
2049 			spin_unlock(&sbi->stat_lock);
2050 			goto enospc;
2051 		}
2052 	}
2053 	spin_unlock(&sbi->stat_lock);
2054 
2055 	if (unlikely(release)) {
2056 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2057 		dquot_release_reservation_block(inode, release);
2058 	}
2059 	f2fs_i_blocks_write(inode, *count, true, true);
2060 	return 0;
2061 
2062 enospc:
2063 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2064 release_quota:
2065 	dquot_release_reservation_block(inode, release);
2066 	return -ENOSPC;
2067 }
2068 
2069 __printf(2, 3)
2070 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2071 
2072 #define f2fs_err(sbi, fmt, ...)						\
2073 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2074 #define f2fs_warn(sbi, fmt, ...)					\
2075 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2076 #define f2fs_notice(sbi, fmt, ...)					\
2077 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2078 #define f2fs_info(sbi, fmt, ...)					\
2079 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2080 #define f2fs_debug(sbi, fmt, ...)					\
2081 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2082 
2083 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2084 						struct inode *inode,
2085 						block_t count)
2086 {
2087 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2088 
2089 	spin_lock(&sbi->stat_lock);
2090 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2091 	sbi->total_valid_block_count -= (block_t)count;
2092 	if (sbi->reserved_blocks &&
2093 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2094 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2095 					sbi->current_reserved_blocks + count);
2096 	spin_unlock(&sbi->stat_lock);
2097 	if (unlikely(inode->i_blocks < sectors)) {
2098 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2099 			  inode->i_ino,
2100 			  (unsigned long long)inode->i_blocks,
2101 			  (unsigned long long)sectors);
2102 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2103 		return;
2104 	}
2105 	f2fs_i_blocks_write(inode, count, false, true);
2106 }
2107 
2108 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2109 {
2110 	atomic_inc(&sbi->nr_pages[count_type]);
2111 
2112 	if (count_type == F2FS_DIRTY_DENTS ||
2113 			count_type == F2FS_DIRTY_NODES ||
2114 			count_type == F2FS_DIRTY_META ||
2115 			count_type == F2FS_DIRTY_QDATA ||
2116 			count_type == F2FS_DIRTY_IMETA)
2117 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2118 }
2119 
2120 static inline void inode_inc_dirty_pages(struct inode *inode)
2121 {
2122 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2123 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2124 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2125 	if (IS_NOQUOTA(inode))
2126 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2127 }
2128 
2129 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2130 {
2131 	atomic_dec(&sbi->nr_pages[count_type]);
2132 }
2133 
2134 static inline void inode_dec_dirty_pages(struct inode *inode)
2135 {
2136 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2137 			!S_ISLNK(inode->i_mode))
2138 		return;
2139 
2140 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2141 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2142 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2143 	if (IS_NOQUOTA(inode))
2144 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2145 }
2146 
2147 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2148 {
2149 	return atomic_read(&sbi->nr_pages[count_type]);
2150 }
2151 
2152 static inline int get_dirty_pages(struct inode *inode)
2153 {
2154 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2155 }
2156 
2157 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2158 {
2159 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2160 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2161 						sbi->log_blocks_per_seg;
2162 
2163 	return segs / sbi->segs_per_sec;
2164 }
2165 
2166 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2167 {
2168 	return sbi->total_valid_block_count;
2169 }
2170 
2171 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2172 {
2173 	return sbi->discard_blks;
2174 }
2175 
2176 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2177 {
2178 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2179 
2180 	/* return NAT or SIT bitmap */
2181 	if (flag == NAT_BITMAP)
2182 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2183 	else if (flag == SIT_BITMAP)
2184 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2185 
2186 	return 0;
2187 }
2188 
2189 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2190 {
2191 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2192 }
2193 
2194 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2195 {
2196 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2197 	int offset;
2198 
2199 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2200 		offset = (flag == SIT_BITMAP) ?
2201 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2202 		/*
2203 		 * if large_nat_bitmap feature is enabled, leave checksum
2204 		 * protection for all nat/sit bitmaps.
2205 		 */
2206 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2207 	}
2208 
2209 	if (__cp_payload(sbi) > 0) {
2210 		if (flag == NAT_BITMAP)
2211 			return &ckpt->sit_nat_version_bitmap;
2212 		else
2213 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2214 	} else {
2215 		offset = (flag == NAT_BITMAP) ?
2216 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2217 		return &ckpt->sit_nat_version_bitmap + offset;
2218 	}
2219 }
2220 
2221 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2222 {
2223 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2224 
2225 	if (sbi->cur_cp_pack == 2)
2226 		start_addr += sbi->blocks_per_seg;
2227 	return start_addr;
2228 }
2229 
2230 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2231 {
2232 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2233 
2234 	if (sbi->cur_cp_pack == 1)
2235 		start_addr += sbi->blocks_per_seg;
2236 	return start_addr;
2237 }
2238 
2239 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2240 {
2241 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2242 }
2243 
2244 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2245 {
2246 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2247 }
2248 
2249 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2250 					struct inode *inode, bool is_inode)
2251 {
2252 	block_t	valid_block_count;
2253 	unsigned int valid_node_count, user_block_count;
2254 	int err;
2255 
2256 	if (is_inode) {
2257 		if (inode) {
2258 			err = dquot_alloc_inode(inode);
2259 			if (err)
2260 				return err;
2261 		}
2262 	} else {
2263 		err = dquot_reserve_block(inode, 1);
2264 		if (err)
2265 			return err;
2266 	}
2267 
2268 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2269 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2270 		goto enospc;
2271 	}
2272 
2273 	spin_lock(&sbi->stat_lock);
2274 
2275 	valid_block_count = sbi->total_valid_block_count +
2276 					sbi->current_reserved_blocks + 1;
2277 
2278 	if (!__allow_reserved_blocks(sbi, inode, false))
2279 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2280 	user_block_count = sbi->user_block_count;
2281 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2282 		user_block_count -= sbi->unusable_block_count;
2283 
2284 	if (unlikely(valid_block_count > user_block_count)) {
2285 		spin_unlock(&sbi->stat_lock);
2286 		goto enospc;
2287 	}
2288 
2289 	valid_node_count = sbi->total_valid_node_count + 1;
2290 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2291 		spin_unlock(&sbi->stat_lock);
2292 		goto enospc;
2293 	}
2294 
2295 	sbi->total_valid_node_count++;
2296 	sbi->total_valid_block_count++;
2297 	spin_unlock(&sbi->stat_lock);
2298 
2299 	if (inode) {
2300 		if (is_inode)
2301 			f2fs_mark_inode_dirty_sync(inode, true);
2302 		else
2303 			f2fs_i_blocks_write(inode, 1, true, true);
2304 	}
2305 
2306 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2307 	return 0;
2308 
2309 enospc:
2310 	if (is_inode) {
2311 		if (inode)
2312 			dquot_free_inode(inode);
2313 	} else {
2314 		dquot_release_reservation_block(inode, 1);
2315 	}
2316 	return -ENOSPC;
2317 }
2318 
2319 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2320 					struct inode *inode, bool is_inode)
2321 {
2322 	spin_lock(&sbi->stat_lock);
2323 
2324 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2325 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2326 
2327 	sbi->total_valid_node_count--;
2328 	sbi->total_valid_block_count--;
2329 	if (sbi->reserved_blocks &&
2330 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2331 		sbi->current_reserved_blocks++;
2332 
2333 	spin_unlock(&sbi->stat_lock);
2334 
2335 	if (is_inode) {
2336 		dquot_free_inode(inode);
2337 	} else {
2338 		if (unlikely(inode->i_blocks == 0)) {
2339 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2340 				  inode->i_ino,
2341 				  (unsigned long long)inode->i_blocks);
2342 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2343 			return;
2344 		}
2345 		f2fs_i_blocks_write(inode, 1, false, true);
2346 	}
2347 }
2348 
2349 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2350 {
2351 	return sbi->total_valid_node_count;
2352 }
2353 
2354 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2355 {
2356 	percpu_counter_inc(&sbi->total_valid_inode_count);
2357 }
2358 
2359 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2360 {
2361 	percpu_counter_dec(&sbi->total_valid_inode_count);
2362 }
2363 
2364 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2365 {
2366 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2367 }
2368 
2369 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2370 						pgoff_t index, bool for_write)
2371 {
2372 	struct page *page;
2373 
2374 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2375 		if (!for_write)
2376 			page = find_get_page_flags(mapping, index,
2377 							FGP_LOCK | FGP_ACCESSED);
2378 		else
2379 			page = find_lock_page(mapping, index);
2380 		if (page)
2381 			return page;
2382 
2383 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2384 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2385 							FAULT_PAGE_ALLOC);
2386 			return NULL;
2387 		}
2388 	}
2389 
2390 	if (!for_write)
2391 		return grab_cache_page(mapping, index);
2392 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2393 }
2394 
2395 static inline struct page *f2fs_pagecache_get_page(
2396 				struct address_space *mapping, pgoff_t index,
2397 				int fgp_flags, gfp_t gfp_mask)
2398 {
2399 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2400 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2401 		return NULL;
2402 	}
2403 
2404 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2405 }
2406 
2407 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2408 {
2409 	char *src_kaddr = kmap(src);
2410 	char *dst_kaddr = kmap(dst);
2411 
2412 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2413 	kunmap(dst);
2414 	kunmap(src);
2415 }
2416 
2417 static inline void f2fs_put_page(struct page *page, int unlock)
2418 {
2419 	if (!page)
2420 		return;
2421 
2422 	if (unlock) {
2423 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2424 		unlock_page(page);
2425 	}
2426 	put_page(page);
2427 }
2428 
2429 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2430 {
2431 	if (dn->node_page)
2432 		f2fs_put_page(dn->node_page, 1);
2433 	if (dn->inode_page && dn->node_page != dn->inode_page)
2434 		f2fs_put_page(dn->inode_page, 0);
2435 	dn->node_page = NULL;
2436 	dn->inode_page = NULL;
2437 }
2438 
2439 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2440 					size_t size)
2441 {
2442 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2443 }
2444 
2445 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2446 						gfp_t flags)
2447 {
2448 	void *entry;
2449 
2450 	entry = kmem_cache_alloc(cachep, flags);
2451 	if (!entry)
2452 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2453 	return entry;
2454 }
2455 
2456 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2457 {
2458 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2459 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2460 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2461 		get_pages(sbi, F2FS_DIO_READ) ||
2462 		get_pages(sbi, F2FS_DIO_WRITE))
2463 		return true;
2464 
2465 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2466 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2467 		return true;
2468 
2469 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2470 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2471 		return true;
2472 	return false;
2473 }
2474 
2475 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2476 {
2477 	if (sbi->gc_mode == GC_URGENT_HIGH)
2478 		return true;
2479 
2480 	if (is_inflight_io(sbi, type))
2481 		return false;
2482 
2483 	if (sbi->gc_mode == GC_URGENT_LOW &&
2484 			(type == DISCARD_TIME || type == GC_TIME))
2485 		return true;
2486 
2487 	return f2fs_time_over(sbi, type);
2488 }
2489 
2490 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2491 				unsigned long index, void *item)
2492 {
2493 	while (radix_tree_insert(root, index, item))
2494 		cond_resched();
2495 }
2496 
2497 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2498 
2499 static inline bool IS_INODE(struct page *page)
2500 {
2501 	struct f2fs_node *p = F2FS_NODE(page);
2502 
2503 	return RAW_IS_INODE(p);
2504 }
2505 
2506 static inline int offset_in_addr(struct f2fs_inode *i)
2507 {
2508 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2509 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2510 }
2511 
2512 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2513 {
2514 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2515 }
2516 
2517 static inline int f2fs_has_extra_attr(struct inode *inode);
2518 static inline block_t data_blkaddr(struct inode *inode,
2519 			struct page *node_page, unsigned int offset)
2520 {
2521 	struct f2fs_node *raw_node;
2522 	__le32 *addr_array;
2523 	int base = 0;
2524 	bool is_inode = IS_INODE(node_page);
2525 
2526 	raw_node = F2FS_NODE(node_page);
2527 
2528 	if (is_inode) {
2529 		if (!inode)
2530 			/* from GC path only */
2531 			base = offset_in_addr(&raw_node->i);
2532 		else if (f2fs_has_extra_attr(inode))
2533 			base = get_extra_isize(inode);
2534 	}
2535 
2536 	addr_array = blkaddr_in_node(raw_node);
2537 	return le32_to_cpu(addr_array[base + offset]);
2538 }
2539 
2540 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2541 {
2542 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2543 }
2544 
2545 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2546 {
2547 	int mask;
2548 
2549 	addr += (nr >> 3);
2550 	mask = 1 << (7 - (nr & 0x07));
2551 	return mask & *addr;
2552 }
2553 
2554 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2555 {
2556 	int mask;
2557 
2558 	addr += (nr >> 3);
2559 	mask = 1 << (7 - (nr & 0x07));
2560 	*addr |= mask;
2561 }
2562 
2563 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2564 {
2565 	int mask;
2566 
2567 	addr += (nr >> 3);
2568 	mask = 1 << (7 - (nr & 0x07));
2569 	*addr &= ~mask;
2570 }
2571 
2572 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2573 {
2574 	int mask;
2575 	int ret;
2576 
2577 	addr += (nr >> 3);
2578 	mask = 1 << (7 - (nr & 0x07));
2579 	ret = mask & *addr;
2580 	*addr |= mask;
2581 	return ret;
2582 }
2583 
2584 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2585 {
2586 	int mask;
2587 	int ret;
2588 
2589 	addr += (nr >> 3);
2590 	mask = 1 << (7 - (nr & 0x07));
2591 	ret = mask & *addr;
2592 	*addr &= ~mask;
2593 	return ret;
2594 }
2595 
2596 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2597 {
2598 	int mask;
2599 
2600 	addr += (nr >> 3);
2601 	mask = 1 << (7 - (nr & 0x07));
2602 	*addr ^= mask;
2603 }
2604 
2605 /*
2606  * On-disk inode flags (f2fs_inode::i_flags)
2607  */
2608 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2609 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2610 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2611 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2612 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2613 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2614 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2615 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2616 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2617 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2618 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2619 
2620 /* Flags that should be inherited by new inodes from their parent. */
2621 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2622 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2623 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2624 
2625 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2626 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2627 				F2FS_CASEFOLD_FL))
2628 
2629 /* Flags that are appropriate for non-directories/regular files. */
2630 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2631 
2632 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2633 {
2634 	if (S_ISDIR(mode))
2635 		return flags;
2636 	else if (S_ISREG(mode))
2637 		return flags & F2FS_REG_FLMASK;
2638 	else
2639 		return flags & F2FS_OTHER_FLMASK;
2640 }
2641 
2642 static inline void __mark_inode_dirty_flag(struct inode *inode,
2643 						int flag, bool set)
2644 {
2645 	switch (flag) {
2646 	case FI_INLINE_XATTR:
2647 	case FI_INLINE_DATA:
2648 	case FI_INLINE_DENTRY:
2649 	case FI_NEW_INODE:
2650 		if (set)
2651 			return;
2652 		fallthrough;
2653 	case FI_DATA_EXIST:
2654 	case FI_INLINE_DOTS:
2655 	case FI_PIN_FILE:
2656 		f2fs_mark_inode_dirty_sync(inode, true);
2657 	}
2658 }
2659 
2660 static inline void set_inode_flag(struct inode *inode, int flag)
2661 {
2662 	set_bit(flag, F2FS_I(inode)->flags);
2663 	__mark_inode_dirty_flag(inode, flag, true);
2664 }
2665 
2666 static inline int is_inode_flag_set(struct inode *inode, int flag)
2667 {
2668 	return test_bit(flag, F2FS_I(inode)->flags);
2669 }
2670 
2671 static inline void clear_inode_flag(struct inode *inode, int flag)
2672 {
2673 	clear_bit(flag, F2FS_I(inode)->flags);
2674 	__mark_inode_dirty_flag(inode, flag, false);
2675 }
2676 
2677 static inline bool f2fs_verity_in_progress(struct inode *inode)
2678 {
2679 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2680 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2681 }
2682 
2683 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2684 {
2685 	F2FS_I(inode)->i_acl_mode = mode;
2686 	set_inode_flag(inode, FI_ACL_MODE);
2687 	f2fs_mark_inode_dirty_sync(inode, false);
2688 }
2689 
2690 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2691 {
2692 	if (inc)
2693 		inc_nlink(inode);
2694 	else
2695 		drop_nlink(inode);
2696 	f2fs_mark_inode_dirty_sync(inode, true);
2697 }
2698 
2699 static inline void f2fs_i_blocks_write(struct inode *inode,
2700 					block_t diff, bool add, bool claim)
2701 {
2702 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2703 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2704 
2705 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2706 	if (add) {
2707 		if (claim)
2708 			dquot_claim_block(inode, diff);
2709 		else
2710 			dquot_alloc_block_nofail(inode, diff);
2711 	} else {
2712 		dquot_free_block(inode, diff);
2713 	}
2714 
2715 	f2fs_mark_inode_dirty_sync(inode, true);
2716 	if (clean || recover)
2717 		set_inode_flag(inode, FI_AUTO_RECOVER);
2718 }
2719 
2720 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2721 {
2722 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2723 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2724 
2725 	if (i_size_read(inode) == i_size)
2726 		return;
2727 
2728 	i_size_write(inode, i_size);
2729 	f2fs_mark_inode_dirty_sync(inode, true);
2730 	if (clean || recover)
2731 		set_inode_flag(inode, FI_AUTO_RECOVER);
2732 }
2733 
2734 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2735 {
2736 	F2FS_I(inode)->i_current_depth = depth;
2737 	f2fs_mark_inode_dirty_sync(inode, true);
2738 }
2739 
2740 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2741 					unsigned int count)
2742 {
2743 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2744 	f2fs_mark_inode_dirty_sync(inode, true);
2745 }
2746 
2747 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2748 {
2749 	F2FS_I(inode)->i_xattr_nid = xnid;
2750 	f2fs_mark_inode_dirty_sync(inode, true);
2751 }
2752 
2753 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2754 {
2755 	F2FS_I(inode)->i_pino = pino;
2756 	f2fs_mark_inode_dirty_sync(inode, true);
2757 }
2758 
2759 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2760 {
2761 	struct f2fs_inode_info *fi = F2FS_I(inode);
2762 
2763 	if (ri->i_inline & F2FS_INLINE_XATTR)
2764 		set_bit(FI_INLINE_XATTR, fi->flags);
2765 	if (ri->i_inline & F2FS_INLINE_DATA)
2766 		set_bit(FI_INLINE_DATA, fi->flags);
2767 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2768 		set_bit(FI_INLINE_DENTRY, fi->flags);
2769 	if (ri->i_inline & F2FS_DATA_EXIST)
2770 		set_bit(FI_DATA_EXIST, fi->flags);
2771 	if (ri->i_inline & F2FS_INLINE_DOTS)
2772 		set_bit(FI_INLINE_DOTS, fi->flags);
2773 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2774 		set_bit(FI_EXTRA_ATTR, fi->flags);
2775 	if (ri->i_inline & F2FS_PIN_FILE)
2776 		set_bit(FI_PIN_FILE, fi->flags);
2777 }
2778 
2779 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2780 {
2781 	ri->i_inline = 0;
2782 
2783 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2784 		ri->i_inline |= F2FS_INLINE_XATTR;
2785 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2786 		ri->i_inline |= F2FS_INLINE_DATA;
2787 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2788 		ri->i_inline |= F2FS_INLINE_DENTRY;
2789 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2790 		ri->i_inline |= F2FS_DATA_EXIST;
2791 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2792 		ri->i_inline |= F2FS_INLINE_DOTS;
2793 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2794 		ri->i_inline |= F2FS_EXTRA_ATTR;
2795 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2796 		ri->i_inline |= F2FS_PIN_FILE;
2797 }
2798 
2799 static inline int f2fs_has_extra_attr(struct inode *inode)
2800 {
2801 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2802 }
2803 
2804 static inline int f2fs_has_inline_xattr(struct inode *inode)
2805 {
2806 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2807 }
2808 
2809 static inline int f2fs_compressed_file(struct inode *inode)
2810 {
2811 	return S_ISREG(inode->i_mode) &&
2812 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2813 }
2814 
2815 static inline bool f2fs_need_compress_data(struct inode *inode)
2816 {
2817 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2818 
2819 	if (!f2fs_compressed_file(inode))
2820 		return false;
2821 
2822 	if (compress_mode == COMPR_MODE_FS)
2823 		return true;
2824 	else if (compress_mode == COMPR_MODE_USER &&
2825 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2826 		return true;
2827 
2828 	return false;
2829 }
2830 
2831 static inline unsigned int addrs_per_inode(struct inode *inode)
2832 {
2833 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2834 				get_inline_xattr_addrs(inode);
2835 
2836 	if (!f2fs_compressed_file(inode))
2837 		return addrs;
2838 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2839 }
2840 
2841 static inline unsigned int addrs_per_block(struct inode *inode)
2842 {
2843 	if (!f2fs_compressed_file(inode))
2844 		return DEF_ADDRS_PER_BLOCK;
2845 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2846 }
2847 
2848 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2849 {
2850 	struct f2fs_inode *ri = F2FS_INODE(page);
2851 
2852 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2853 					get_inline_xattr_addrs(inode)]);
2854 }
2855 
2856 static inline int inline_xattr_size(struct inode *inode)
2857 {
2858 	if (f2fs_has_inline_xattr(inode))
2859 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2860 	return 0;
2861 }
2862 
2863 static inline int f2fs_has_inline_data(struct inode *inode)
2864 {
2865 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2866 }
2867 
2868 static inline int f2fs_exist_data(struct inode *inode)
2869 {
2870 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2871 }
2872 
2873 static inline int f2fs_has_inline_dots(struct inode *inode)
2874 {
2875 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2876 }
2877 
2878 static inline int f2fs_is_mmap_file(struct inode *inode)
2879 {
2880 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2881 }
2882 
2883 static inline bool f2fs_is_pinned_file(struct inode *inode)
2884 {
2885 	return is_inode_flag_set(inode, FI_PIN_FILE);
2886 }
2887 
2888 static inline bool f2fs_is_atomic_file(struct inode *inode)
2889 {
2890 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2891 }
2892 
2893 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2894 {
2895 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2896 }
2897 
2898 static inline bool f2fs_is_volatile_file(struct inode *inode)
2899 {
2900 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2901 }
2902 
2903 static inline bool f2fs_is_first_block_written(struct inode *inode)
2904 {
2905 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2906 }
2907 
2908 static inline bool f2fs_is_drop_cache(struct inode *inode)
2909 {
2910 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2911 }
2912 
2913 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2914 {
2915 	struct f2fs_inode *ri = F2FS_INODE(page);
2916 	int extra_size = get_extra_isize(inode);
2917 
2918 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2919 }
2920 
2921 static inline int f2fs_has_inline_dentry(struct inode *inode)
2922 {
2923 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2924 }
2925 
2926 static inline int is_file(struct inode *inode, int type)
2927 {
2928 	return F2FS_I(inode)->i_advise & type;
2929 }
2930 
2931 static inline void set_file(struct inode *inode, int type)
2932 {
2933 	F2FS_I(inode)->i_advise |= type;
2934 	f2fs_mark_inode_dirty_sync(inode, true);
2935 }
2936 
2937 static inline void clear_file(struct inode *inode, int type)
2938 {
2939 	F2FS_I(inode)->i_advise &= ~type;
2940 	f2fs_mark_inode_dirty_sync(inode, true);
2941 }
2942 
2943 static inline bool f2fs_is_time_consistent(struct inode *inode)
2944 {
2945 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2946 		return false;
2947 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2948 		return false;
2949 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2950 		return false;
2951 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2952 						&F2FS_I(inode)->i_crtime))
2953 		return false;
2954 	return true;
2955 }
2956 
2957 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2958 {
2959 	bool ret;
2960 
2961 	if (dsync) {
2962 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2963 
2964 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2965 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2966 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2967 		return ret;
2968 	}
2969 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2970 			file_keep_isize(inode) ||
2971 			i_size_read(inode) & ~PAGE_MASK)
2972 		return false;
2973 
2974 	if (!f2fs_is_time_consistent(inode))
2975 		return false;
2976 
2977 	spin_lock(&F2FS_I(inode)->i_size_lock);
2978 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2979 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2980 
2981 	return ret;
2982 }
2983 
2984 static inline bool f2fs_readonly(struct super_block *sb)
2985 {
2986 	return sb_rdonly(sb);
2987 }
2988 
2989 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2990 {
2991 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2992 }
2993 
2994 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2995 {
2996 	if (len == 1 && name[0] == '.')
2997 		return true;
2998 
2999 	if (len == 2 && name[0] == '.' && name[1] == '.')
3000 		return true;
3001 
3002 	return false;
3003 }
3004 
3005 static inline bool f2fs_may_extent_tree(struct inode *inode)
3006 {
3007 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3008 
3009 	if (!test_opt(sbi, EXTENT_CACHE) ||
3010 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
3011 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3012 		return false;
3013 
3014 	/*
3015 	 * for recovered files during mount do not create extents
3016 	 * if shrinker is not registered.
3017 	 */
3018 	if (list_empty(&sbi->s_list))
3019 		return false;
3020 
3021 	return S_ISREG(inode->i_mode);
3022 }
3023 
3024 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3025 					size_t size, gfp_t flags)
3026 {
3027 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3028 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3029 		return NULL;
3030 	}
3031 
3032 	return kmalloc(size, flags);
3033 }
3034 
3035 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3036 					size_t size, gfp_t flags)
3037 {
3038 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3039 }
3040 
3041 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3042 					size_t size, gfp_t flags)
3043 {
3044 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3045 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3046 		return NULL;
3047 	}
3048 
3049 	return kvmalloc(size, flags);
3050 }
3051 
3052 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3053 					size_t size, gfp_t flags)
3054 {
3055 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3056 }
3057 
3058 static inline int get_extra_isize(struct inode *inode)
3059 {
3060 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3061 }
3062 
3063 static inline int get_inline_xattr_addrs(struct inode *inode)
3064 {
3065 	return F2FS_I(inode)->i_inline_xattr_size;
3066 }
3067 
3068 #define f2fs_get_inode_mode(i) \
3069 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3070 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3071 
3072 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3073 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3074 	offsetof(struct f2fs_inode, i_extra_isize))	\
3075 
3076 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3077 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3078 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3079 		sizeof((f2fs_inode)->field))			\
3080 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3081 
3082 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3083 #define MIN_IOSTAT_PERIOD_MS		100
3084 /* maximum period of iostat tracing is 1 day */
3085 #define MAX_IOSTAT_PERIOD_MS		8640000
3086 
3087 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3088 {
3089 	int i;
3090 
3091 	spin_lock(&sbi->iostat_lock);
3092 	for (i = 0; i < NR_IO_TYPE; i++) {
3093 		sbi->rw_iostat[i] = 0;
3094 		sbi->prev_rw_iostat[i] = 0;
3095 	}
3096 	spin_unlock(&sbi->iostat_lock);
3097 }
3098 
3099 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3100 
3101 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3102 			enum iostat_type type, unsigned long long io_bytes)
3103 {
3104 	if (!sbi->iostat_enable)
3105 		return;
3106 	spin_lock(&sbi->iostat_lock);
3107 	sbi->rw_iostat[type] += io_bytes;
3108 
3109 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3110 		sbi->rw_iostat[APP_BUFFERED_IO] =
3111 			sbi->rw_iostat[APP_WRITE_IO] -
3112 			sbi->rw_iostat[APP_DIRECT_IO];
3113 
3114 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3115 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3116 			sbi->rw_iostat[APP_READ_IO] -
3117 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3118 	spin_unlock(&sbi->iostat_lock);
3119 
3120 	f2fs_record_iostat(sbi);
3121 }
3122 
3123 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3124 
3125 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3126 
3127 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3128 					block_t blkaddr, int type);
3129 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3130 					block_t blkaddr, int type)
3131 {
3132 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3133 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3134 			 blkaddr, type);
3135 		f2fs_bug_on(sbi, 1);
3136 	}
3137 }
3138 
3139 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3140 {
3141 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3142 			blkaddr == COMPRESS_ADDR)
3143 		return false;
3144 	return true;
3145 }
3146 
3147 static inline void f2fs_set_page_private(struct page *page,
3148 						unsigned long data)
3149 {
3150 	if (PagePrivate(page))
3151 		return;
3152 
3153 	attach_page_private(page, (void *)data);
3154 }
3155 
3156 static inline void f2fs_clear_page_private(struct page *page)
3157 {
3158 	detach_page_private(page);
3159 }
3160 
3161 /*
3162  * file.c
3163  */
3164 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3165 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3166 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3167 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3168 int f2fs_truncate(struct inode *inode);
3169 int f2fs_getattr(const struct path *path, struct kstat *stat,
3170 			u32 request_mask, unsigned int flags);
3171 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3172 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3173 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3174 int f2fs_precache_extents(struct inode *inode);
3175 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3176 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3177 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3178 int f2fs_pin_file_control(struct inode *inode, bool inc);
3179 
3180 /*
3181  * inode.c
3182  */
3183 void f2fs_set_inode_flags(struct inode *inode);
3184 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3185 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3186 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3187 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3188 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3189 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3190 void f2fs_update_inode_page(struct inode *inode);
3191 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3192 void f2fs_evict_inode(struct inode *inode);
3193 void f2fs_handle_failed_inode(struct inode *inode);
3194 
3195 /*
3196  * namei.c
3197  */
3198 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3199 							bool hot, bool set);
3200 struct dentry *f2fs_get_parent(struct dentry *child);
3201 
3202 /*
3203  * dir.c
3204  */
3205 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3206 int f2fs_init_casefolded_name(const struct inode *dir,
3207 			      struct f2fs_filename *fname);
3208 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3209 			int lookup, struct f2fs_filename *fname);
3210 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3211 			struct f2fs_filename *fname);
3212 void f2fs_free_filename(struct f2fs_filename *fname);
3213 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3214 			const struct f2fs_filename *fname, int *max_slots);
3215 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3216 			unsigned int start_pos, struct fscrypt_str *fstr);
3217 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3218 			struct f2fs_dentry_ptr *d);
3219 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3220 			const struct f2fs_filename *fname, struct page *dpage);
3221 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3222 			unsigned int current_depth);
3223 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3224 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3225 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3226 					 const struct f2fs_filename *fname,
3227 					 struct page **res_page);
3228 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3229 			const struct qstr *child, struct page **res_page);
3230 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3231 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3232 			struct page **page);
3233 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3234 			struct page *page, struct inode *inode);
3235 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3236 			  const struct f2fs_filename *fname);
3237 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3238 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3239 			unsigned int bit_pos);
3240 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3241 			struct inode *inode, nid_t ino, umode_t mode);
3242 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3243 			struct inode *inode, nid_t ino, umode_t mode);
3244 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3245 			struct inode *inode, nid_t ino, umode_t mode);
3246 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3247 			struct inode *dir, struct inode *inode);
3248 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3249 bool f2fs_empty_dir(struct inode *dir);
3250 
3251 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3252 {
3253 	if (fscrypt_is_nokey_name(dentry))
3254 		return -ENOKEY;
3255 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3256 				inode, inode->i_ino, inode->i_mode);
3257 }
3258 
3259 /*
3260  * super.c
3261  */
3262 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3263 void f2fs_inode_synced(struct inode *inode);
3264 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3265 int f2fs_quota_sync(struct super_block *sb, int type);
3266 loff_t max_file_blocks(struct inode *inode);
3267 void f2fs_quota_off_umount(struct super_block *sb);
3268 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3269 int f2fs_sync_fs(struct super_block *sb, int sync);
3270 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3271 
3272 /*
3273  * hash.c
3274  */
3275 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3276 
3277 /*
3278  * node.c
3279  */
3280 struct dnode_of_data;
3281 struct node_info;
3282 
3283 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3284 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3285 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3286 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3287 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3288 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3289 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3290 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3291 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3292 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3293 						struct node_info *ni);
3294 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3295 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3296 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3297 int f2fs_truncate_xattr_node(struct inode *inode);
3298 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3299 					unsigned int seq_id);
3300 int f2fs_remove_inode_page(struct inode *inode);
3301 struct page *f2fs_new_inode_page(struct inode *inode);
3302 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3303 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3304 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3305 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3306 int f2fs_move_node_page(struct page *node_page, int gc_type);
3307 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3308 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3309 			struct writeback_control *wbc, bool atomic,
3310 			unsigned int *seq_id);
3311 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3312 			struct writeback_control *wbc,
3313 			bool do_balance, enum iostat_type io_type);
3314 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3315 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3316 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3317 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3318 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3319 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3320 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3321 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3322 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3323 			unsigned int segno, struct f2fs_summary_block *sum);
3324 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3325 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3326 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3327 int __init f2fs_create_node_manager_caches(void);
3328 void f2fs_destroy_node_manager_caches(void);
3329 
3330 /*
3331  * segment.c
3332  */
3333 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3334 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3335 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3336 void f2fs_drop_inmem_pages(struct inode *inode);
3337 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3338 int f2fs_commit_inmem_pages(struct inode *inode);
3339 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3340 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3341 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3342 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3343 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3344 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3345 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3346 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3347 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3348 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3349 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3350 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3351 					struct cp_control *cpc);
3352 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3353 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3354 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3355 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3356 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3357 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3358 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3359 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3360 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3361 			unsigned int *newseg, bool new_sec, int dir);
3362 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3363 					unsigned int start, unsigned int end);
3364 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3365 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3366 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3367 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3368 					struct cp_control *cpc);
3369 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3370 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3371 					block_t blk_addr);
3372 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3373 						enum iostat_type io_type);
3374 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3375 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3376 			struct f2fs_io_info *fio);
3377 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3378 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3379 			block_t old_blkaddr, block_t new_blkaddr,
3380 			bool recover_curseg, bool recover_newaddr,
3381 			bool from_gc);
3382 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3383 			block_t old_addr, block_t new_addr,
3384 			unsigned char version, bool recover_curseg,
3385 			bool recover_newaddr);
3386 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3387 			block_t old_blkaddr, block_t *new_blkaddr,
3388 			struct f2fs_summary *sum, int type,
3389 			struct f2fs_io_info *fio);
3390 void f2fs_wait_on_page_writeback(struct page *page,
3391 			enum page_type type, bool ordered, bool locked);
3392 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3393 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3394 								block_t len);
3395 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3396 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3397 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3398 			unsigned int val, int alloc);
3399 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3400 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3401 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3402 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3403 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3404 int __init f2fs_create_segment_manager_caches(void);
3405 void f2fs_destroy_segment_manager_caches(void);
3406 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3407 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3408 			enum page_type type, enum temp_type temp);
3409 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3410 			unsigned int segno);
3411 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3412 			unsigned int segno);
3413 
3414 /*
3415  * checkpoint.c
3416  */
3417 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3418 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3419 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3420 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3421 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3422 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3423 					block_t blkaddr, int type);
3424 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3425 			int type, bool sync);
3426 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3427 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3428 			long nr_to_write, enum iostat_type io_type);
3429 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3430 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3431 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3432 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3433 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3434 					unsigned int devidx, int type);
3435 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3436 					unsigned int devidx, int type);
3437 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3438 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3439 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3440 void f2fs_add_orphan_inode(struct inode *inode);
3441 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3442 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3443 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3444 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3445 void f2fs_remove_dirty_inode(struct inode *inode);
3446 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3447 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3448 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3449 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3450 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3451 int __init f2fs_create_checkpoint_caches(void);
3452 void f2fs_destroy_checkpoint_caches(void);
3453 
3454 /*
3455  * data.c
3456  */
3457 int __init f2fs_init_bioset(void);
3458 void f2fs_destroy_bioset(void);
3459 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3460 int f2fs_init_bio_entry_cache(void);
3461 void f2fs_destroy_bio_entry_cache(void);
3462 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3463 				struct bio *bio, enum page_type type);
3464 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3465 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3466 				struct inode *inode, struct page *page,
3467 				nid_t ino, enum page_type type);
3468 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3469 					struct bio **bio, struct page *page);
3470 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3471 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3472 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3473 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3474 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3475 			block_t blk_addr, struct bio *bio);
3476 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3477 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3478 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3479 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3480 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3481 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3482 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3483 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3484 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3485 			int op_flags, bool for_write);
3486 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3487 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3488 			bool for_write);
3489 struct page *f2fs_get_new_data_page(struct inode *inode,
3490 			struct page *ipage, pgoff_t index, bool new_i_size);
3491 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3492 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3493 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3494 			int create, int flag);
3495 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3496 			u64 start, u64 len);
3497 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3498 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3499 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3500 int f2fs_write_single_data_page(struct page *page, int *submitted,
3501 				struct bio **bio, sector_t *last_block,
3502 				struct writeback_control *wbc,
3503 				enum iostat_type io_type,
3504 				int compr_blocks, bool allow_balance);
3505 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3506 			unsigned int length);
3507 int f2fs_release_page(struct page *page, gfp_t wait);
3508 #ifdef CONFIG_MIGRATION
3509 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3510 			struct page *page, enum migrate_mode mode);
3511 #endif
3512 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3513 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3514 int f2fs_init_post_read_processing(void);
3515 void f2fs_destroy_post_read_processing(void);
3516 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3517 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3518 
3519 /*
3520  * gc.c
3521  */
3522 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3523 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3524 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3525 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3526 			unsigned int segno);
3527 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3528 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3529 int __init f2fs_create_garbage_collection_cache(void);
3530 void f2fs_destroy_garbage_collection_cache(void);
3531 
3532 /*
3533  * recovery.c
3534  */
3535 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3536 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3537 
3538 /*
3539  * debug.c
3540  */
3541 #ifdef CONFIG_F2FS_STAT_FS
3542 struct f2fs_stat_info {
3543 	struct list_head stat_list;
3544 	struct f2fs_sb_info *sbi;
3545 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3546 	int main_area_segs, main_area_sections, main_area_zones;
3547 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3548 	unsigned long long hit_total, total_ext;
3549 	int ext_tree, zombie_tree, ext_node;
3550 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3551 	int ndirty_data, ndirty_qdata;
3552 	int inmem_pages;
3553 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3554 	int nats, dirty_nats, sits, dirty_sits;
3555 	int free_nids, avail_nids, alloc_nids;
3556 	int total_count, utilization;
3557 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3558 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3559 	int nr_dio_read, nr_dio_write;
3560 	unsigned int io_skip_bggc, other_skip_bggc;
3561 	int nr_flushing, nr_flushed, flush_list_empty;
3562 	int nr_discarding, nr_discarded;
3563 	int nr_discard_cmd;
3564 	unsigned int undiscard_blks;
3565 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3566 	int compr_inode;
3567 	unsigned long long compr_blocks;
3568 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3569 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3570 	unsigned int bimodal, avg_vblocks;
3571 	int util_free, util_valid, util_invalid;
3572 	int rsvd_segs, overp_segs;
3573 	int dirty_count, node_pages, meta_pages;
3574 	int prefree_count, call_count, cp_count, bg_cp_count;
3575 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3576 	int bg_node_segs, bg_data_segs;
3577 	int tot_blks, data_blks, node_blks;
3578 	int bg_data_blks, bg_node_blks;
3579 	unsigned long long skipped_atomic_files[2];
3580 	int curseg[NR_CURSEG_TYPE];
3581 	int cursec[NR_CURSEG_TYPE];
3582 	int curzone[NR_CURSEG_TYPE];
3583 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3584 	unsigned int full_seg[NR_CURSEG_TYPE];
3585 	unsigned int valid_blks[NR_CURSEG_TYPE];
3586 
3587 	unsigned int meta_count[META_MAX];
3588 	unsigned int segment_count[2];
3589 	unsigned int block_count[2];
3590 	unsigned int inplace_count;
3591 	unsigned long long base_mem, cache_mem, page_mem;
3592 };
3593 
3594 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3595 {
3596 	return (struct f2fs_stat_info *)sbi->stat_info;
3597 }
3598 
3599 #define stat_inc_cp_count(si)		((si)->cp_count++)
3600 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3601 #define stat_inc_call_count(si)		((si)->call_count++)
3602 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3603 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3604 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3605 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3606 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3607 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3608 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3609 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3610 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3611 #define stat_inc_inline_xattr(inode)					\
3612 	do {								\
3613 		if (f2fs_has_inline_xattr(inode))			\
3614 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3615 	} while (0)
3616 #define stat_dec_inline_xattr(inode)					\
3617 	do {								\
3618 		if (f2fs_has_inline_xattr(inode))			\
3619 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3620 	} while (0)
3621 #define stat_inc_inline_inode(inode)					\
3622 	do {								\
3623 		if (f2fs_has_inline_data(inode))			\
3624 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3625 	} while (0)
3626 #define stat_dec_inline_inode(inode)					\
3627 	do {								\
3628 		if (f2fs_has_inline_data(inode))			\
3629 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3630 	} while (0)
3631 #define stat_inc_inline_dir(inode)					\
3632 	do {								\
3633 		if (f2fs_has_inline_dentry(inode))			\
3634 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3635 	} while (0)
3636 #define stat_dec_inline_dir(inode)					\
3637 	do {								\
3638 		if (f2fs_has_inline_dentry(inode))			\
3639 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3640 	} while (0)
3641 #define stat_inc_compr_inode(inode)					\
3642 	do {								\
3643 		if (f2fs_compressed_file(inode))			\
3644 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3645 	} while (0)
3646 #define stat_dec_compr_inode(inode)					\
3647 	do {								\
3648 		if (f2fs_compressed_file(inode))			\
3649 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3650 	} while (0)
3651 #define stat_add_compr_blocks(inode, blocks)				\
3652 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3653 #define stat_sub_compr_blocks(inode, blocks)				\
3654 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3655 #define stat_inc_meta_count(sbi, blkaddr)				\
3656 	do {								\
3657 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3658 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3659 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3660 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3661 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3662 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3663 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3664 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3665 	} while (0)
3666 #define stat_inc_seg_type(sbi, curseg)					\
3667 		((sbi)->segment_count[(curseg)->alloc_type]++)
3668 #define stat_inc_block_count(sbi, curseg)				\
3669 		((sbi)->block_count[(curseg)->alloc_type]++)
3670 #define stat_inc_inplace_blocks(sbi)					\
3671 		(atomic_inc(&(sbi)->inplace_count))
3672 #define stat_update_max_atomic_write(inode)				\
3673 	do {								\
3674 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3675 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3676 		if (cur > max)						\
3677 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3678 	} while (0)
3679 #define stat_inc_volatile_write(inode)					\
3680 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3681 #define stat_dec_volatile_write(inode)					\
3682 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3683 #define stat_update_max_volatile_write(inode)				\
3684 	do {								\
3685 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3686 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3687 		if (cur > max)						\
3688 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3689 	} while (0)
3690 #define stat_inc_seg_count(sbi, type, gc_type)				\
3691 	do {								\
3692 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3693 		si->tot_segs++;						\
3694 		if ((type) == SUM_TYPE_DATA) {				\
3695 			si->data_segs++;				\
3696 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3697 		} else {						\
3698 			si->node_segs++;				\
3699 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3700 		}							\
3701 	} while (0)
3702 
3703 #define stat_inc_tot_blk_count(si, blks)				\
3704 	((si)->tot_blks += (blks))
3705 
3706 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3707 	do {								\
3708 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3709 		stat_inc_tot_blk_count(si, blks);			\
3710 		si->data_blks += (blks);				\
3711 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3712 	} while (0)
3713 
3714 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3715 	do {								\
3716 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3717 		stat_inc_tot_blk_count(si, blks);			\
3718 		si->node_blks += (blks);				\
3719 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3720 	} while (0)
3721 
3722 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3723 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3724 void __init f2fs_create_root_stats(void);
3725 void f2fs_destroy_root_stats(void);
3726 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3727 #else
3728 #define stat_inc_cp_count(si)				do { } while (0)
3729 #define stat_inc_bg_cp_count(si)			do { } while (0)
3730 #define stat_inc_call_count(si)				do { } while (0)
3731 #define stat_inc_bggc_count(si)				do { } while (0)
3732 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3733 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3734 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3735 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3736 #define stat_inc_total_hit(sbi)				do { } while (0)
3737 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3738 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3739 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3740 #define stat_inc_inline_xattr(inode)			do { } while (0)
3741 #define stat_dec_inline_xattr(inode)			do { } while (0)
3742 #define stat_inc_inline_inode(inode)			do { } while (0)
3743 #define stat_dec_inline_inode(inode)			do { } while (0)
3744 #define stat_inc_inline_dir(inode)			do { } while (0)
3745 #define stat_dec_inline_dir(inode)			do { } while (0)
3746 #define stat_inc_compr_inode(inode)			do { } while (0)
3747 #define stat_dec_compr_inode(inode)			do { } while (0)
3748 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3749 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3750 #define stat_update_max_atomic_write(inode)		do { } while (0)
3751 #define stat_inc_volatile_write(inode)			do { } while (0)
3752 #define stat_dec_volatile_write(inode)			do { } while (0)
3753 #define stat_update_max_volatile_write(inode)		do { } while (0)
3754 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3755 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3756 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3757 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3758 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3759 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3760 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3761 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3762 
3763 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3764 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3765 static inline void __init f2fs_create_root_stats(void) { }
3766 static inline void f2fs_destroy_root_stats(void) { }
3767 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3768 #endif
3769 
3770 extern const struct file_operations f2fs_dir_operations;
3771 extern const struct file_operations f2fs_file_operations;
3772 extern const struct inode_operations f2fs_file_inode_operations;
3773 extern const struct address_space_operations f2fs_dblock_aops;
3774 extern const struct address_space_operations f2fs_node_aops;
3775 extern const struct address_space_operations f2fs_meta_aops;
3776 extern const struct inode_operations f2fs_dir_inode_operations;
3777 extern const struct inode_operations f2fs_symlink_inode_operations;
3778 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3779 extern const struct inode_operations f2fs_special_inode_operations;
3780 extern struct kmem_cache *f2fs_inode_entry_slab;
3781 
3782 /*
3783  * inline.c
3784  */
3785 bool f2fs_may_inline_data(struct inode *inode);
3786 bool f2fs_may_inline_dentry(struct inode *inode);
3787 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3788 void f2fs_truncate_inline_inode(struct inode *inode,
3789 						struct page *ipage, u64 from);
3790 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3791 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3792 int f2fs_convert_inline_inode(struct inode *inode);
3793 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3794 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3795 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3796 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3797 					const struct f2fs_filename *fname,
3798 					struct page **res_page);
3799 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3800 			struct page *ipage);
3801 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3802 			struct inode *inode, nid_t ino, umode_t mode);
3803 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3804 				struct page *page, struct inode *dir,
3805 				struct inode *inode);
3806 bool f2fs_empty_inline_dir(struct inode *dir);
3807 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3808 			struct fscrypt_str *fstr);
3809 int f2fs_inline_data_fiemap(struct inode *inode,
3810 			struct fiemap_extent_info *fieinfo,
3811 			__u64 start, __u64 len);
3812 
3813 /*
3814  * shrinker.c
3815  */
3816 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3817 			struct shrink_control *sc);
3818 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3819 			struct shrink_control *sc);
3820 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3821 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3822 
3823 /*
3824  * extent_cache.c
3825  */
3826 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3827 				struct rb_entry *cached_re, unsigned int ofs);
3828 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3829 				struct rb_root_cached *root,
3830 				struct rb_node **parent,
3831 				unsigned long long key, bool *left_most);
3832 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3833 				struct rb_root_cached *root,
3834 				struct rb_node **parent,
3835 				unsigned int ofs, bool *leftmost);
3836 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3837 		struct rb_entry *cached_re, unsigned int ofs,
3838 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3839 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3840 		bool force, bool *leftmost);
3841 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3842 				struct rb_root_cached *root, bool check_key);
3843 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3844 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3845 void f2fs_drop_extent_tree(struct inode *inode);
3846 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3847 void f2fs_destroy_extent_tree(struct inode *inode);
3848 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3849 			struct extent_info *ei);
3850 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3851 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3852 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3853 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3854 int __init f2fs_create_extent_cache(void);
3855 void f2fs_destroy_extent_cache(void);
3856 
3857 /*
3858  * sysfs.c
3859  */
3860 int __init f2fs_init_sysfs(void);
3861 void f2fs_exit_sysfs(void);
3862 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3863 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3864 
3865 /* verity.c */
3866 extern const struct fsverity_operations f2fs_verityops;
3867 
3868 /*
3869  * crypto support
3870  */
3871 static inline bool f2fs_encrypted_file(struct inode *inode)
3872 {
3873 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3874 }
3875 
3876 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3877 {
3878 #ifdef CONFIG_FS_ENCRYPTION
3879 	file_set_encrypt(inode);
3880 	f2fs_set_inode_flags(inode);
3881 #endif
3882 }
3883 
3884 /*
3885  * Returns true if the reads of the inode's data need to undergo some
3886  * postprocessing step, like decryption or authenticity verification.
3887  */
3888 static inline bool f2fs_post_read_required(struct inode *inode)
3889 {
3890 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3891 		f2fs_compressed_file(inode);
3892 }
3893 
3894 /*
3895  * compress.c
3896  */
3897 #ifdef CONFIG_F2FS_FS_COMPRESSION
3898 bool f2fs_is_compressed_page(struct page *page);
3899 struct page *f2fs_compress_control_page(struct page *page);
3900 int f2fs_prepare_compress_overwrite(struct inode *inode,
3901 			struct page **pagep, pgoff_t index, void **fsdata);
3902 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3903 					pgoff_t index, unsigned copied);
3904 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3905 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3906 bool f2fs_is_compress_backend_ready(struct inode *inode);
3907 int f2fs_init_compress_mempool(void);
3908 void f2fs_destroy_compress_mempool(void);
3909 void f2fs_end_read_compressed_page(struct page *page, bool failed);
3910 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3911 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3912 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3913 int f2fs_write_multi_pages(struct compress_ctx *cc,
3914 						int *submitted,
3915 						struct writeback_control *wbc,
3916 						enum iostat_type io_type);
3917 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3918 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3919 				unsigned nr_pages, sector_t *last_block_in_bio,
3920 				bool is_readahead, bool for_write);
3921 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3922 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
3923 void f2fs_put_page_dic(struct page *page);
3924 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3925 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3926 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3927 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3928 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3929 int __init f2fs_init_compress_cache(void);
3930 void f2fs_destroy_compress_cache(void);
3931 #else
3932 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3933 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3934 {
3935 	if (!f2fs_compressed_file(inode))
3936 		return true;
3937 	/* not support compression */
3938 	return false;
3939 }
3940 static inline struct page *f2fs_compress_control_page(struct page *page)
3941 {
3942 	WARN_ON_ONCE(1);
3943 	return ERR_PTR(-EINVAL);
3944 }
3945 static inline int f2fs_init_compress_mempool(void) { return 0; }
3946 static inline void f2fs_destroy_compress_mempool(void) { }
3947 static inline void f2fs_end_read_compressed_page(struct page *page, bool failed)
3948 {
3949 	WARN_ON_ONCE(1);
3950 }
3951 static inline void f2fs_put_page_dic(struct page *page)
3952 {
3953 	WARN_ON_ONCE(1);
3954 }
3955 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3956 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3957 static inline int __init f2fs_init_compress_cache(void) { return 0; }
3958 static inline void f2fs_destroy_compress_cache(void) { }
3959 #endif
3960 
3961 static inline void set_compress_context(struct inode *inode)
3962 {
3963 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3964 
3965 	F2FS_I(inode)->i_compress_algorithm =
3966 			F2FS_OPTION(sbi).compress_algorithm;
3967 	F2FS_I(inode)->i_log_cluster_size =
3968 			F2FS_OPTION(sbi).compress_log_size;
3969 	F2FS_I(inode)->i_compress_flag =
3970 			F2FS_OPTION(sbi).compress_chksum ?
3971 				1 << COMPRESS_CHKSUM : 0;
3972 	F2FS_I(inode)->i_cluster_size =
3973 			1 << F2FS_I(inode)->i_log_cluster_size;
3974 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 &&
3975 			F2FS_OPTION(sbi).compress_level)
3976 		F2FS_I(inode)->i_compress_flag |=
3977 				F2FS_OPTION(sbi).compress_level <<
3978 				COMPRESS_LEVEL_OFFSET;
3979 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3980 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3981 	stat_inc_compr_inode(inode);
3982 	f2fs_mark_inode_dirty_sync(inode, true);
3983 }
3984 
3985 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3986 {
3987 	struct f2fs_inode_info *fi = F2FS_I(inode);
3988 
3989 	if (!f2fs_compressed_file(inode))
3990 		return true;
3991 	if (S_ISREG(inode->i_mode) &&
3992 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3993 		return false;
3994 
3995 	fi->i_flags &= ~F2FS_COMPR_FL;
3996 	stat_dec_compr_inode(inode);
3997 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3998 	f2fs_mark_inode_dirty_sync(inode, true);
3999 	return true;
4000 }
4001 
4002 #define F2FS_FEATURE_FUNCS(name, flagname) \
4003 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4004 { \
4005 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4006 }
4007 
4008 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4009 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4010 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4011 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4012 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4013 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4014 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4015 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4016 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4017 F2FS_FEATURE_FUNCS(verity, VERITY);
4018 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4019 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4020 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4021 
4022 #ifdef CONFIG_BLK_DEV_ZONED
4023 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4024 				    block_t blkaddr)
4025 {
4026 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4027 
4028 	return test_bit(zno, FDEV(devi).blkz_seq);
4029 }
4030 #endif
4031 
4032 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4033 {
4034 	return f2fs_sb_has_blkzoned(sbi);
4035 }
4036 
4037 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4038 {
4039 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4040 	       bdev_is_zoned(bdev);
4041 }
4042 
4043 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4044 {
4045 	int i;
4046 
4047 	if (!f2fs_is_multi_device(sbi))
4048 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4049 
4050 	for (i = 0; i < sbi->s_ndevs; i++)
4051 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4052 			return true;
4053 	return false;
4054 }
4055 
4056 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4057 {
4058 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4059 					f2fs_hw_should_discard(sbi);
4060 }
4061 
4062 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4063 {
4064 	int i;
4065 
4066 	if (!f2fs_is_multi_device(sbi))
4067 		return bdev_read_only(sbi->sb->s_bdev);
4068 
4069 	for (i = 0; i < sbi->s_ndevs; i++)
4070 		if (bdev_read_only(FDEV(i).bdev))
4071 			return true;
4072 	return false;
4073 }
4074 
4075 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4076 {
4077 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4078 }
4079 
4080 static inline bool f2fs_may_compress(struct inode *inode)
4081 {
4082 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4083 				f2fs_is_atomic_file(inode) ||
4084 				f2fs_is_volatile_file(inode))
4085 		return false;
4086 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4087 }
4088 
4089 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4090 						u64 blocks, bool add)
4091 {
4092 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4093 	struct f2fs_inode_info *fi = F2FS_I(inode);
4094 
4095 	/* don't update i_compr_blocks if saved blocks were released */
4096 	if (!add && !atomic_read(&fi->i_compr_blocks))
4097 		return;
4098 
4099 	if (add) {
4100 		atomic_add(diff, &fi->i_compr_blocks);
4101 		stat_add_compr_blocks(inode, diff);
4102 	} else {
4103 		atomic_sub(diff, &fi->i_compr_blocks);
4104 		stat_sub_compr_blocks(inode, diff);
4105 	}
4106 	f2fs_mark_inode_dirty_sync(inode, true);
4107 }
4108 
4109 static inline int block_unaligned_IO(struct inode *inode,
4110 				struct kiocb *iocb, struct iov_iter *iter)
4111 {
4112 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4113 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4114 	loff_t offset = iocb->ki_pos;
4115 	unsigned long align = offset | iov_iter_alignment(iter);
4116 
4117 	return align & blocksize_mask;
4118 }
4119 
4120 static inline int allow_outplace_dio(struct inode *inode,
4121 				struct kiocb *iocb, struct iov_iter *iter)
4122 {
4123 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4124 	int rw = iov_iter_rw(iter);
4125 
4126 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4127 				!block_unaligned_IO(inode, iocb, iter));
4128 }
4129 
4130 static inline bool f2fs_force_buffered_io(struct inode *inode,
4131 				struct kiocb *iocb, struct iov_iter *iter)
4132 {
4133 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4134 	int rw = iov_iter_rw(iter);
4135 
4136 	if (f2fs_post_read_required(inode))
4137 		return true;
4138 	if (f2fs_is_multi_device(sbi))
4139 		return true;
4140 	/*
4141 	 * for blkzoned device, fallback direct IO to buffered IO, so
4142 	 * all IOs can be serialized by log-structured write.
4143 	 */
4144 	if (f2fs_sb_has_blkzoned(sbi))
4145 		return true;
4146 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4147 		if (block_unaligned_IO(inode, iocb, iter))
4148 			return true;
4149 		if (F2FS_IO_ALIGNED(sbi))
4150 			return true;
4151 	}
4152 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4153 					!IS_SWAPFILE(inode))
4154 		return true;
4155 
4156 	return false;
4157 }
4158 
4159 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4160 {
4161 	return fsverity_active(inode) &&
4162 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4163 }
4164 
4165 #ifdef CONFIG_F2FS_FAULT_INJECTION
4166 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4167 							unsigned int type);
4168 #else
4169 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4170 #endif
4171 
4172 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4173 {
4174 #ifdef CONFIG_QUOTA
4175 	if (f2fs_sb_has_quota_ino(sbi))
4176 		return true;
4177 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4178 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4179 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4180 		return true;
4181 #endif
4182 	return false;
4183 }
4184 
4185 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4186 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4187 
4188 #endif /* _LINUX_F2FS_H */
4189