xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 10208567)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_MAX,
58 };
59 
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
62 
63 struct f2fs_fault_info {
64 	atomic_t inject_ops;
65 	unsigned int inject_rate;
66 	unsigned int inject_type;
67 };
68 
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72 
73 /*
74  * For mount options
75  */
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
90 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
91 #define F2FS_MOUNT_USRQUOTA		0x00080000
92 #define F2FS_MOUNT_GRPQUOTA		0x00100000
93 #define F2FS_MOUNT_PRJQUOTA		0x00200000
94 #define F2FS_MOUNT_QUOTA		0x00400000
95 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
96 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
97 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
98 #define F2FS_MOUNT_NORECOVERY		0x04000000
99 #define F2FS_MOUNT_ATGC			0x08000000
100 
101 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
102 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105 
106 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
107 		typecheck(unsigned long long, b) &&			\
108 		((long long)((a) - (b)) > 0))
109 
110 typedef u32 block_t;	/*
111 			 * should not change u32, since it is the on-disk block
112 			 * address format, __le32.
113 			 */
114 typedef u32 nid_t;
115 
116 #define COMPRESS_EXT_NUM		16
117 
118 struct f2fs_mount_info {
119 	unsigned int opt;
120 	int write_io_size_bits;		/* Write IO size bits */
121 	block_t root_reserved_blocks;	/* root reserved blocks */
122 	kuid_t s_resuid;		/* reserved blocks for uid */
123 	kgid_t s_resgid;		/* reserved blocks for gid */
124 	int active_logs;		/* # of active logs */
125 	int inline_xattr_size;		/* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 	struct f2fs_fault_info fault_info;	/* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 	/* Names of quota files with journalled quota */
131 	char *s_qf_names[MAXQUOTAS];
132 	int s_jquota_fmt;			/* Format of quota to use */
133 #endif
134 	/* For which write hints are passed down to block layer */
135 	int whint_mode;
136 	int alloc_mode;			/* segment allocation policy */
137 	int fsync_mode;			/* fsync policy */
138 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
139 	int bggc_mode;			/* bggc mode: off, on or sync */
140 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
141 	block_t unusable_cap_perc;	/* percentage for cap */
142 	block_t unusable_cap;		/* Amount of space allowed to be
143 					 * unusable when disabling checkpoint
144 					 */
145 
146 	/* For compression */
147 	unsigned char compress_algorithm;	/* algorithm type */
148 	unsigned char compress_log_size;	/* cluster log size */
149 	bool compress_chksum;			/* compressed data chksum */
150 	unsigned char compress_ext_cnt;		/* extension count */
151 	int compress_mode;			/* compression mode */
152 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
153 };
154 
155 #define F2FS_FEATURE_ENCRYPT		0x0001
156 #define F2FS_FEATURE_BLKZONED		0x0002
157 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
158 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
159 #define F2FS_FEATURE_PRJQUOTA		0x0010
160 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
161 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
162 #define F2FS_FEATURE_QUOTA_INO		0x0080
163 #define F2FS_FEATURE_INODE_CRTIME	0x0100
164 #define F2FS_FEATURE_LOST_FOUND		0x0200
165 #define F2FS_FEATURE_VERITY		0x0400
166 #define F2FS_FEATURE_SB_CHKSUM		0x0800
167 #define F2FS_FEATURE_CASEFOLD		0x1000
168 #define F2FS_FEATURE_COMPRESSION	0x2000
169 
170 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
171 	((raw_super->feature & cpu_to_le32(mask)) != 0)
172 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
173 #define F2FS_SET_FEATURE(sbi, mask)					\
174 	(sbi->raw_super->feature |= cpu_to_le32(mask))
175 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
176 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
177 
178 /*
179  * Default values for user and/or group using reserved blocks
180  */
181 #define	F2FS_DEF_RESUID		0
182 #define	F2FS_DEF_RESGID		0
183 
184 /*
185  * For checkpoint manager
186  */
187 enum {
188 	NAT_BITMAP,
189 	SIT_BITMAP
190 };
191 
192 #define	CP_UMOUNT	0x00000001
193 #define	CP_FASTBOOT	0x00000002
194 #define	CP_SYNC		0x00000004
195 #define	CP_RECOVERY	0x00000008
196 #define	CP_DISCARD	0x00000010
197 #define CP_TRIMMED	0x00000020
198 #define CP_PAUSE	0x00000040
199 #define CP_RESIZE 	0x00000080
200 
201 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
202 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
203 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
204 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
205 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
206 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
207 #define DEF_CP_INTERVAL			60	/* 60 secs */
208 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
209 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
210 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
211 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
212 
213 struct cp_control {
214 	int reason;
215 	__u64 trim_start;
216 	__u64 trim_end;
217 	__u64 trim_minlen;
218 };
219 
220 /*
221  * indicate meta/data type
222  */
223 enum {
224 	META_CP,
225 	META_NAT,
226 	META_SIT,
227 	META_SSA,
228 	META_MAX,
229 	META_POR,
230 	DATA_GENERIC,		/* check range only */
231 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
232 	DATA_GENERIC_ENHANCE_READ,	/*
233 					 * strong check on range and segment
234 					 * bitmap but no warning due to race
235 					 * condition of read on truncated area
236 					 * by extent_cache
237 					 */
238 	META_GENERIC,
239 };
240 
241 /* for the list of ino */
242 enum {
243 	ORPHAN_INO,		/* for orphan ino list */
244 	APPEND_INO,		/* for append ino list */
245 	UPDATE_INO,		/* for update ino list */
246 	TRANS_DIR_INO,		/* for trasactions dir ino list */
247 	FLUSH_INO,		/* for multiple device flushing */
248 	MAX_INO_ENTRY,		/* max. list */
249 };
250 
251 struct ino_entry {
252 	struct list_head list;		/* list head */
253 	nid_t ino;			/* inode number */
254 	unsigned int dirty_device;	/* dirty device bitmap */
255 };
256 
257 /* for the list of inodes to be GCed */
258 struct inode_entry {
259 	struct list_head list;	/* list head */
260 	struct inode *inode;	/* vfs inode pointer */
261 };
262 
263 struct fsync_node_entry {
264 	struct list_head list;	/* list head */
265 	struct page *page;	/* warm node page pointer */
266 	unsigned int seq_id;	/* sequence id */
267 };
268 
269 /* for the bitmap indicate blocks to be discarded */
270 struct discard_entry {
271 	struct list_head list;	/* list head */
272 	block_t start_blkaddr;	/* start blockaddr of current segment */
273 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
274 };
275 
276 /* default discard granularity of inner discard thread, unit: block count */
277 #define DEFAULT_DISCARD_GRANULARITY		16
278 
279 /* max discard pend list number */
280 #define MAX_PLIST_NUM		512
281 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
282 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
283 
284 enum {
285 	D_PREP,			/* initial */
286 	D_PARTIAL,		/* partially submitted */
287 	D_SUBMIT,		/* all submitted */
288 	D_DONE,			/* finished */
289 };
290 
291 struct discard_info {
292 	block_t lstart;			/* logical start address */
293 	block_t len;			/* length */
294 	block_t start;			/* actual start address in dev */
295 };
296 
297 struct discard_cmd {
298 	struct rb_node rb_node;		/* rb node located in rb-tree */
299 	union {
300 		struct {
301 			block_t lstart;	/* logical start address */
302 			block_t len;	/* length */
303 			block_t start;	/* actual start address in dev */
304 		};
305 		struct discard_info di;	/* discard info */
306 
307 	};
308 	struct list_head list;		/* command list */
309 	struct completion wait;		/* compleation */
310 	struct block_device *bdev;	/* bdev */
311 	unsigned short ref;		/* reference count */
312 	unsigned char state;		/* state */
313 	unsigned char queued;		/* queued discard */
314 	int error;			/* bio error */
315 	spinlock_t lock;		/* for state/bio_ref updating */
316 	unsigned short bio_ref;		/* bio reference count */
317 };
318 
319 enum {
320 	DPOLICY_BG,
321 	DPOLICY_FORCE,
322 	DPOLICY_FSTRIM,
323 	DPOLICY_UMOUNT,
324 	MAX_DPOLICY,
325 };
326 
327 struct discard_policy {
328 	int type;			/* type of discard */
329 	unsigned int min_interval;	/* used for candidates exist */
330 	unsigned int mid_interval;	/* used for device busy */
331 	unsigned int max_interval;	/* used for candidates not exist */
332 	unsigned int max_requests;	/* # of discards issued per round */
333 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
334 	bool io_aware;			/* issue discard in idle time */
335 	bool sync;			/* submit discard with REQ_SYNC flag */
336 	bool ordered;			/* issue discard by lba order */
337 	bool timeout;			/* discard timeout for put_super */
338 	unsigned int granularity;	/* discard granularity */
339 };
340 
341 struct discard_cmd_control {
342 	struct task_struct *f2fs_issue_discard;	/* discard thread */
343 	struct list_head entry_list;		/* 4KB discard entry list */
344 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
345 	struct list_head wait_list;		/* store on-flushing entries */
346 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
347 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
348 	unsigned int discard_wake;		/* to wake up discard thread */
349 	struct mutex cmd_lock;
350 	unsigned int nr_discards;		/* # of discards in the list */
351 	unsigned int max_discards;		/* max. discards to be issued */
352 	unsigned int discard_granularity;	/* discard granularity */
353 	unsigned int undiscard_blks;		/* # of undiscard blocks */
354 	unsigned int next_pos;			/* next discard position */
355 	atomic_t issued_discard;		/* # of issued discard */
356 	atomic_t queued_discard;		/* # of queued discard */
357 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
358 	struct rb_root_cached root;		/* root of discard rb-tree */
359 	bool rbtree_check;			/* config for consistence check */
360 };
361 
362 /* for the list of fsync inodes, used only during recovery */
363 struct fsync_inode_entry {
364 	struct list_head list;	/* list head */
365 	struct inode *inode;	/* vfs inode pointer */
366 	block_t blkaddr;	/* block address locating the last fsync */
367 	block_t last_dentry;	/* block address locating the last dentry */
368 };
369 
370 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
371 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
372 
373 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
374 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
375 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
376 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
377 
378 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
379 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
380 
381 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
382 {
383 	int before = nats_in_cursum(journal);
384 
385 	journal->n_nats = cpu_to_le16(before + i);
386 	return before;
387 }
388 
389 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
390 {
391 	int before = sits_in_cursum(journal);
392 
393 	journal->n_sits = cpu_to_le16(before + i);
394 	return before;
395 }
396 
397 static inline bool __has_cursum_space(struct f2fs_journal *journal,
398 							int size, int type)
399 {
400 	if (type == NAT_JOURNAL)
401 		return size <= MAX_NAT_JENTRIES(journal);
402 	return size <= MAX_SIT_JENTRIES(journal);
403 }
404 
405 /* for inline stuff */
406 #define DEF_INLINE_RESERVED_SIZE	1
407 static inline int get_extra_isize(struct inode *inode);
408 static inline int get_inline_xattr_addrs(struct inode *inode);
409 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
410 				(CUR_ADDRS_PER_INODE(inode) -		\
411 				get_inline_xattr_addrs(inode) -	\
412 				DEF_INLINE_RESERVED_SIZE))
413 
414 /* for inline dir */
415 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
416 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
417 				BITS_PER_BYTE + 1))
418 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
419 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
420 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
421 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
422 				NR_INLINE_DENTRY(inode) + \
423 				INLINE_DENTRY_BITMAP_SIZE(inode)))
424 
425 /*
426  * For INODE and NODE manager
427  */
428 /* for directory operations */
429 
430 struct f2fs_filename {
431 	/*
432 	 * The filename the user specified.  This is NULL for some
433 	 * filesystem-internal operations, e.g. converting an inline directory
434 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
435 	 */
436 	const struct qstr *usr_fname;
437 
438 	/*
439 	 * The on-disk filename.  For encrypted directories, this is encrypted.
440 	 * This may be NULL for lookups in an encrypted dir without the key.
441 	 */
442 	struct fscrypt_str disk_name;
443 
444 	/* The dirhash of this filename */
445 	f2fs_hash_t hash;
446 
447 #ifdef CONFIG_FS_ENCRYPTION
448 	/*
449 	 * For lookups in encrypted directories: either the buffer backing
450 	 * disk_name, or a buffer that holds the decoded no-key name.
451 	 */
452 	struct fscrypt_str crypto_buf;
453 #endif
454 #ifdef CONFIG_UNICODE
455 	/*
456 	 * For casefolded directories: the casefolded name, but it's left NULL
457 	 * if the original name is not valid Unicode, if the directory is both
458 	 * casefolded and encrypted and its encryption key is unavailable, or if
459 	 * the filesystem is doing an internal operation where usr_fname is also
460 	 * NULL.  In all these cases we fall back to treating the name as an
461 	 * opaque byte sequence.
462 	 */
463 	struct fscrypt_str cf_name;
464 #endif
465 };
466 
467 struct f2fs_dentry_ptr {
468 	struct inode *inode;
469 	void *bitmap;
470 	struct f2fs_dir_entry *dentry;
471 	__u8 (*filename)[F2FS_SLOT_LEN];
472 	int max;
473 	int nr_bitmap;
474 };
475 
476 static inline void make_dentry_ptr_block(struct inode *inode,
477 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
478 {
479 	d->inode = inode;
480 	d->max = NR_DENTRY_IN_BLOCK;
481 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
482 	d->bitmap = t->dentry_bitmap;
483 	d->dentry = t->dentry;
484 	d->filename = t->filename;
485 }
486 
487 static inline void make_dentry_ptr_inline(struct inode *inode,
488 					struct f2fs_dentry_ptr *d, void *t)
489 {
490 	int entry_cnt = NR_INLINE_DENTRY(inode);
491 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
492 	int reserved_size = INLINE_RESERVED_SIZE(inode);
493 
494 	d->inode = inode;
495 	d->max = entry_cnt;
496 	d->nr_bitmap = bitmap_size;
497 	d->bitmap = t;
498 	d->dentry = t + bitmap_size + reserved_size;
499 	d->filename = t + bitmap_size + reserved_size +
500 					SIZE_OF_DIR_ENTRY * entry_cnt;
501 }
502 
503 /*
504  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
505  * as its node offset to distinguish from index node blocks.
506  * But some bits are used to mark the node block.
507  */
508 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
509 				>> OFFSET_BIT_SHIFT)
510 enum {
511 	ALLOC_NODE,			/* allocate a new node page if needed */
512 	LOOKUP_NODE,			/* look up a node without readahead */
513 	LOOKUP_NODE_RA,			/*
514 					 * look up a node with readahead called
515 					 * by get_data_block.
516 					 */
517 };
518 
519 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
520 
521 /* congestion wait timeout value, default: 20ms */
522 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
523 
524 /* maximum retry quota flush count */
525 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
526 
527 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
528 
529 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
530 
531 /* for in-memory extent cache entry */
532 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
533 
534 /* number of extent info in extent cache we try to shrink */
535 #define EXTENT_CACHE_SHRINK_NUMBER	128
536 
537 struct rb_entry {
538 	struct rb_node rb_node;		/* rb node located in rb-tree */
539 	union {
540 		struct {
541 			unsigned int ofs;	/* start offset of the entry */
542 			unsigned int len;	/* length of the entry */
543 		};
544 		unsigned long long key;		/* 64-bits key */
545 	} __packed;
546 };
547 
548 struct extent_info {
549 	unsigned int fofs;		/* start offset in a file */
550 	unsigned int len;		/* length of the extent */
551 	u32 blk;			/* start block address of the extent */
552 };
553 
554 struct extent_node {
555 	struct rb_node rb_node;		/* rb node located in rb-tree */
556 	struct extent_info ei;		/* extent info */
557 	struct list_head list;		/* node in global extent list of sbi */
558 	struct extent_tree *et;		/* extent tree pointer */
559 };
560 
561 struct extent_tree {
562 	nid_t ino;			/* inode number */
563 	struct rb_root_cached root;	/* root of extent info rb-tree */
564 	struct extent_node *cached_en;	/* recently accessed extent node */
565 	struct extent_info largest;	/* largested extent info */
566 	struct list_head list;		/* to be used by sbi->zombie_list */
567 	rwlock_t lock;			/* protect extent info rb-tree */
568 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
569 	bool largest_updated;		/* largest extent updated */
570 };
571 
572 /*
573  * This structure is taken from ext4_map_blocks.
574  *
575  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
576  */
577 #define F2FS_MAP_NEW		(1 << BH_New)
578 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
579 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
580 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
581 				F2FS_MAP_UNWRITTEN)
582 
583 struct f2fs_map_blocks {
584 	block_t m_pblk;
585 	block_t m_lblk;
586 	unsigned int m_len;
587 	unsigned int m_flags;
588 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
589 	pgoff_t *m_next_extent;		/* point to next possible extent */
590 	int m_seg_type;
591 	bool m_may_create;		/* indicate it is from write path */
592 };
593 
594 /* for flag in get_data_block */
595 enum {
596 	F2FS_GET_BLOCK_DEFAULT,
597 	F2FS_GET_BLOCK_FIEMAP,
598 	F2FS_GET_BLOCK_BMAP,
599 	F2FS_GET_BLOCK_DIO,
600 	F2FS_GET_BLOCK_PRE_DIO,
601 	F2FS_GET_BLOCK_PRE_AIO,
602 	F2FS_GET_BLOCK_PRECACHE,
603 };
604 
605 /*
606  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
607  */
608 #define FADVISE_COLD_BIT	0x01
609 #define FADVISE_LOST_PINO_BIT	0x02
610 #define FADVISE_ENCRYPT_BIT	0x04
611 #define FADVISE_ENC_NAME_BIT	0x08
612 #define FADVISE_KEEP_SIZE_BIT	0x10
613 #define FADVISE_HOT_BIT		0x20
614 #define FADVISE_VERITY_BIT	0x40
615 
616 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
617 
618 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
619 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
620 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
621 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
622 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
623 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
624 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
625 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
626 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
627 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
628 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
629 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
630 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
631 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
632 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
633 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
634 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
635 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
636 
637 #define DEF_DIR_LEVEL		0
638 
639 enum {
640 	GC_FAILURE_PIN,
641 	GC_FAILURE_ATOMIC,
642 	MAX_GC_FAILURE
643 };
644 
645 /* used for f2fs_inode_info->flags */
646 enum {
647 	FI_NEW_INODE,		/* indicate newly allocated inode */
648 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
649 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
650 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
651 	FI_INC_LINK,		/* need to increment i_nlink */
652 	FI_ACL_MODE,		/* indicate acl mode */
653 	FI_NO_ALLOC,		/* should not allocate any blocks */
654 	FI_FREE_NID,		/* free allocated nide */
655 	FI_NO_EXTENT,		/* not to use the extent cache */
656 	FI_INLINE_XATTR,	/* used for inline xattr */
657 	FI_INLINE_DATA,		/* used for inline data*/
658 	FI_INLINE_DENTRY,	/* used for inline dentry */
659 	FI_APPEND_WRITE,	/* inode has appended data */
660 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
661 	FI_NEED_IPU,		/* used for ipu per file */
662 	FI_ATOMIC_FILE,		/* indicate atomic file */
663 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
664 	FI_VOLATILE_FILE,	/* indicate volatile file */
665 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
666 	FI_DROP_CACHE,		/* drop dirty page cache */
667 	FI_DATA_EXIST,		/* indicate data exists */
668 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
669 	FI_DO_DEFRAG,		/* indicate defragment is running */
670 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
671 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
672 	FI_HOT_DATA,		/* indicate file is hot */
673 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
674 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
675 	FI_PIN_FILE,		/* indicate file should not be gced */
676 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
677 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
678 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
679 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
680 	FI_MMAP_FILE,		/* indicate file was mmapped */
681 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
682 	FI_MAX,			/* max flag, never be used */
683 };
684 
685 struct f2fs_inode_info {
686 	struct inode vfs_inode;		/* serve a vfs inode */
687 	unsigned long i_flags;		/* keep an inode flags for ioctl */
688 	unsigned char i_advise;		/* use to give file attribute hints */
689 	unsigned char i_dir_level;	/* use for dentry level for large dir */
690 	unsigned int i_current_depth;	/* only for directory depth */
691 	/* for gc failure statistic */
692 	unsigned int i_gc_failures[MAX_GC_FAILURE];
693 	unsigned int i_pino;		/* parent inode number */
694 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
695 
696 	/* Use below internally in f2fs*/
697 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
698 	struct rw_semaphore i_sem;	/* protect fi info */
699 	atomic_t dirty_pages;		/* # of dirty pages */
700 	f2fs_hash_t chash;		/* hash value of given file name */
701 	unsigned int clevel;		/* maximum level of given file name */
702 	struct task_struct *task;	/* lookup and create consistency */
703 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
704 	nid_t i_xattr_nid;		/* node id that contains xattrs */
705 	loff_t	last_disk_size;		/* lastly written file size */
706 	spinlock_t i_size_lock;		/* protect last_disk_size */
707 
708 #ifdef CONFIG_QUOTA
709 	struct dquot *i_dquot[MAXQUOTAS];
710 
711 	/* quota space reservation, managed internally by quota code */
712 	qsize_t i_reserved_quota;
713 #endif
714 	struct list_head dirty_list;	/* dirty list for dirs and files */
715 	struct list_head gdirty_list;	/* linked in global dirty list */
716 	struct list_head inmem_ilist;	/* list for inmem inodes */
717 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
718 	struct task_struct *inmem_task;	/* store inmemory task */
719 	struct mutex inmem_lock;	/* lock for inmemory pages */
720 	pgoff_t ra_offset;		/* ongoing readahead offset */
721 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
722 
723 	/* avoid racing between foreground op and gc */
724 	struct rw_semaphore i_gc_rwsem[2];
725 	struct rw_semaphore i_mmap_sem;
726 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
727 
728 	int i_extra_isize;		/* size of extra space located in i_addr */
729 	kprojid_t i_projid;		/* id for project quota */
730 	int i_inline_xattr_size;	/* inline xattr size */
731 	struct timespec64 i_crtime;	/* inode creation time */
732 	struct timespec64 i_disk_time[4];/* inode disk times */
733 
734 	/* for file compress */
735 	atomic_t i_compr_blocks;		/* # of compressed blocks */
736 	unsigned char i_compress_algorithm;	/* algorithm type */
737 	unsigned char i_log_cluster_size;	/* log of cluster size */
738 	unsigned short i_compress_flag;		/* compress flag */
739 	unsigned int i_cluster_size;		/* cluster size */
740 };
741 
742 static inline void get_extent_info(struct extent_info *ext,
743 					struct f2fs_extent *i_ext)
744 {
745 	ext->fofs = le32_to_cpu(i_ext->fofs);
746 	ext->blk = le32_to_cpu(i_ext->blk);
747 	ext->len = le32_to_cpu(i_ext->len);
748 }
749 
750 static inline void set_raw_extent(struct extent_info *ext,
751 					struct f2fs_extent *i_ext)
752 {
753 	i_ext->fofs = cpu_to_le32(ext->fofs);
754 	i_ext->blk = cpu_to_le32(ext->blk);
755 	i_ext->len = cpu_to_le32(ext->len);
756 }
757 
758 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
759 						u32 blk, unsigned int len)
760 {
761 	ei->fofs = fofs;
762 	ei->blk = blk;
763 	ei->len = len;
764 }
765 
766 static inline bool __is_discard_mergeable(struct discard_info *back,
767 			struct discard_info *front, unsigned int max_len)
768 {
769 	return (back->lstart + back->len == front->lstart) &&
770 		(back->len + front->len <= max_len);
771 }
772 
773 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
774 			struct discard_info *back, unsigned int max_len)
775 {
776 	return __is_discard_mergeable(back, cur, max_len);
777 }
778 
779 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
780 			struct discard_info *front, unsigned int max_len)
781 {
782 	return __is_discard_mergeable(cur, front, max_len);
783 }
784 
785 static inline bool __is_extent_mergeable(struct extent_info *back,
786 						struct extent_info *front)
787 {
788 	return (back->fofs + back->len == front->fofs &&
789 			back->blk + back->len == front->blk);
790 }
791 
792 static inline bool __is_back_mergeable(struct extent_info *cur,
793 						struct extent_info *back)
794 {
795 	return __is_extent_mergeable(back, cur);
796 }
797 
798 static inline bool __is_front_mergeable(struct extent_info *cur,
799 						struct extent_info *front)
800 {
801 	return __is_extent_mergeable(cur, front);
802 }
803 
804 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
805 static inline void __try_update_largest_extent(struct extent_tree *et,
806 						struct extent_node *en)
807 {
808 	if (en->ei.len > et->largest.len) {
809 		et->largest = en->ei;
810 		et->largest_updated = true;
811 	}
812 }
813 
814 /*
815  * For free nid management
816  */
817 enum nid_state {
818 	FREE_NID,		/* newly added to free nid list */
819 	PREALLOC_NID,		/* it is preallocated */
820 	MAX_NID_STATE,
821 };
822 
823 enum nat_state {
824 	TOTAL_NAT,
825 	DIRTY_NAT,
826 	RECLAIMABLE_NAT,
827 	MAX_NAT_STATE,
828 };
829 
830 struct f2fs_nm_info {
831 	block_t nat_blkaddr;		/* base disk address of NAT */
832 	nid_t max_nid;			/* maximum possible node ids */
833 	nid_t available_nids;		/* # of available node ids */
834 	nid_t next_scan_nid;		/* the next nid to be scanned */
835 	unsigned int ram_thresh;	/* control the memory footprint */
836 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
837 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
838 
839 	/* NAT cache management */
840 	struct radix_tree_root nat_root;/* root of the nat entry cache */
841 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
842 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
843 	struct list_head nat_entries;	/* cached nat entry list (clean) */
844 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
845 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
846 	unsigned int nat_blocks;	/* # of nat blocks */
847 
848 	/* free node ids management */
849 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
850 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
851 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
852 	spinlock_t nid_list_lock;	/* protect nid lists ops */
853 	struct mutex build_lock;	/* lock for build free nids */
854 	unsigned char **free_nid_bitmap;
855 	unsigned char *nat_block_bitmap;
856 	unsigned short *free_nid_count;	/* free nid count of NAT block */
857 
858 	/* for checkpoint */
859 	char *nat_bitmap;		/* NAT bitmap pointer */
860 
861 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
862 	unsigned char *nat_bits;	/* NAT bits blocks */
863 	unsigned char *full_nat_bits;	/* full NAT pages */
864 	unsigned char *empty_nat_bits;	/* empty NAT pages */
865 #ifdef CONFIG_F2FS_CHECK_FS
866 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
867 #endif
868 	int bitmap_size;		/* bitmap size */
869 };
870 
871 /*
872  * this structure is used as one of function parameters.
873  * all the information are dedicated to a given direct node block determined
874  * by the data offset in a file.
875  */
876 struct dnode_of_data {
877 	struct inode *inode;		/* vfs inode pointer */
878 	struct page *inode_page;	/* its inode page, NULL is possible */
879 	struct page *node_page;		/* cached direct node page */
880 	nid_t nid;			/* node id of the direct node block */
881 	unsigned int ofs_in_node;	/* data offset in the node page */
882 	bool inode_page_locked;		/* inode page is locked or not */
883 	bool node_changed;		/* is node block changed */
884 	char cur_level;			/* level of hole node page */
885 	char max_level;			/* level of current page located */
886 	block_t	data_blkaddr;		/* block address of the node block */
887 };
888 
889 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
890 		struct page *ipage, struct page *npage, nid_t nid)
891 {
892 	memset(dn, 0, sizeof(*dn));
893 	dn->inode = inode;
894 	dn->inode_page = ipage;
895 	dn->node_page = npage;
896 	dn->nid = nid;
897 }
898 
899 /*
900  * For SIT manager
901  *
902  * By default, there are 6 active log areas across the whole main area.
903  * When considering hot and cold data separation to reduce cleaning overhead,
904  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
905  * respectively.
906  * In the current design, you should not change the numbers intentionally.
907  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
908  * logs individually according to the underlying devices. (default: 6)
909  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
910  * data and 8 for node logs.
911  */
912 #define	NR_CURSEG_DATA_TYPE	(3)
913 #define NR_CURSEG_NODE_TYPE	(3)
914 #define NR_CURSEG_INMEM_TYPE	(2)
915 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
916 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
917 
918 enum {
919 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
920 	CURSEG_WARM_DATA,	/* data blocks */
921 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
922 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
923 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
924 	CURSEG_COLD_NODE,	/* indirect node blocks */
925 	NR_PERSISTENT_LOG,	/* number of persistent log */
926 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
927 				/* pinned file that needs consecutive block address */
928 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
929 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
930 };
931 
932 struct flush_cmd {
933 	struct completion wait;
934 	struct llist_node llnode;
935 	nid_t ino;
936 	int ret;
937 };
938 
939 struct flush_cmd_control {
940 	struct task_struct *f2fs_issue_flush;	/* flush thread */
941 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
942 	atomic_t issued_flush;			/* # of issued flushes */
943 	atomic_t queued_flush;			/* # of queued flushes */
944 	struct llist_head issue_list;		/* list for command issue */
945 	struct llist_node *dispatch_list;	/* list for command dispatch */
946 };
947 
948 struct f2fs_sm_info {
949 	struct sit_info *sit_info;		/* whole segment information */
950 	struct free_segmap_info *free_info;	/* free segment information */
951 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
952 	struct curseg_info *curseg_array;	/* active segment information */
953 
954 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
955 
956 	block_t seg0_blkaddr;		/* block address of 0'th segment */
957 	block_t main_blkaddr;		/* start block address of main area */
958 	block_t ssa_blkaddr;		/* start block address of SSA area */
959 
960 	unsigned int segment_count;	/* total # of segments */
961 	unsigned int main_segments;	/* # of segments in main area */
962 	unsigned int reserved_segments;	/* # of reserved segments */
963 	unsigned int ovp_segments;	/* # of overprovision segments */
964 
965 	/* a threshold to reclaim prefree segments */
966 	unsigned int rec_prefree_segments;
967 
968 	/* for batched trimming */
969 	unsigned int trim_sections;		/* # of sections to trim */
970 
971 	struct list_head sit_entry_set;	/* sit entry set list */
972 
973 	unsigned int ipu_policy;	/* in-place-update policy */
974 	unsigned int min_ipu_util;	/* in-place-update threshold */
975 	unsigned int min_fsync_blocks;	/* threshold for fsync */
976 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
977 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
978 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
979 
980 	/* for flush command control */
981 	struct flush_cmd_control *fcc_info;
982 
983 	/* for discard command control */
984 	struct discard_cmd_control *dcc_info;
985 };
986 
987 /*
988  * For superblock
989  */
990 /*
991  * COUNT_TYPE for monitoring
992  *
993  * f2fs monitors the number of several block types such as on-writeback,
994  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
995  */
996 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
997 enum count_type {
998 	F2FS_DIRTY_DENTS,
999 	F2FS_DIRTY_DATA,
1000 	F2FS_DIRTY_QDATA,
1001 	F2FS_DIRTY_NODES,
1002 	F2FS_DIRTY_META,
1003 	F2FS_INMEM_PAGES,
1004 	F2FS_DIRTY_IMETA,
1005 	F2FS_WB_CP_DATA,
1006 	F2FS_WB_DATA,
1007 	F2FS_RD_DATA,
1008 	F2FS_RD_NODE,
1009 	F2FS_RD_META,
1010 	F2FS_DIO_WRITE,
1011 	F2FS_DIO_READ,
1012 	NR_COUNT_TYPE,
1013 };
1014 
1015 /*
1016  * The below are the page types of bios used in submit_bio().
1017  * The available types are:
1018  * DATA			User data pages. It operates as async mode.
1019  * NODE			Node pages. It operates as async mode.
1020  * META			FS metadata pages such as SIT, NAT, CP.
1021  * NR_PAGE_TYPE		The number of page types.
1022  * META_FLUSH		Make sure the previous pages are written
1023  *			with waiting the bio's completion
1024  * ...			Only can be used with META.
1025  */
1026 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1027 enum page_type {
1028 	DATA,
1029 	NODE,
1030 	META,
1031 	NR_PAGE_TYPE,
1032 	META_FLUSH,
1033 	INMEM,		/* the below types are used by tracepoints only. */
1034 	INMEM_DROP,
1035 	INMEM_INVALIDATE,
1036 	INMEM_REVOKE,
1037 	IPU,
1038 	OPU,
1039 };
1040 
1041 enum temp_type {
1042 	HOT = 0,	/* must be zero for meta bio */
1043 	WARM,
1044 	COLD,
1045 	NR_TEMP_TYPE,
1046 };
1047 
1048 enum need_lock_type {
1049 	LOCK_REQ = 0,
1050 	LOCK_DONE,
1051 	LOCK_RETRY,
1052 };
1053 
1054 enum cp_reason_type {
1055 	CP_NO_NEEDED,
1056 	CP_NON_REGULAR,
1057 	CP_COMPRESSED,
1058 	CP_HARDLINK,
1059 	CP_SB_NEED_CP,
1060 	CP_WRONG_PINO,
1061 	CP_NO_SPC_ROLL,
1062 	CP_NODE_NEED_CP,
1063 	CP_FASTBOOT_MODE,
1064 	CP_SPEC_LOG_NUM,
1065 	CP_RECOVER_DIR,
1066 };
1067 
1068 enum iostat_type {
1069 	/* WRITE IO */
1070 	APP_DIRECT_IO,			/* app direct write IOs */
1071 	APP_BUFFERED_IO,		/* app buffered write IOs */
1072 	APP_WRITE_IO,			/* app write IOs */
1073 	APP_MAPPED_IO,			/* app mapped IOs */
1074 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1075 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1076 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1077 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1078 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1079 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1080 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1081 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1082 
1083 	/* READ IO */
1084 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1085 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1086 	APP_READ_IO,			/* app read IOs */
1087 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1088 	FS_DATA_READ_IO,		/* data read IOs */
1089 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1090 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1091 	FS_NODE_READ_IO,		/* node read IOs */
1092 	FS_META_READ_IO,		/* meta read IOs */
1093 
1094 	/* other */
1095 	FS_DISCARD,			/* discard */
1096 	NR_IO_TYPE,
1097 };
1098 
1099 struct f2fs_io_info {
1100 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1101 	nid_t ino;		/* inode number */
1102 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1103 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1104 	int op;			/* contains REQ_OP_ */
1105 	int op_flags;		/* req_flag_bits */
1106 	block_t new_blkaddr;	/* new block address to be written */
1107 	block_t old_blkaddr;	/* old block address before Cow */
1108 	struct page *page;	/* page to be written */
1109 	struct page *encrypted_page;	/* encrypted page */
1110 	struct page *compressed_page;	/* compressed page */
1111 	struct list_head list;		/* serialize IOs */
1112 	bool submitted;		/* indicate IO submission */
1113 	int need_lock;		/* indicate we need to lock cp_rwsem */
1114 	bool in_list;		/* indicate fio is in io_list */
1115 	bool is_por;		/* indicate IO is from recovery or not */
1116 	bool retry;		/* need to reallocate block address */
1117 	int compr_blocks;	/* # of compressed block addresses */
1118 	bool encrypted;		/* indicate file is encrypted */
1119 	enum iostat_type io_type;	/* io type */
1120 	struct writeback_control *io_wbc; /* writeback control */
1121 	struct bio **bio;		/* bio for ipu */
1122 	sector_t *last_block;		/* last block number in bio */
1123 	unsigned char version;		/* version of the node */
1124 };
1125 
1126 struct bio_entry {
1127 	struct bio *bio;
1128 	struct list_head list;
1129 };
1130 
1131 #define is_read_io(rw) ((rw) == READ)
1132 struct f2fs_bio_info {
1133 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1134 	struct bio *bio;		/* bios to merge */
1135 	sector_t last_block_in_bio;	/* last block number */
1136 	struct f2fs_io_info fio;	/* store buffered io info. */
1137 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1138 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1139 	struct list_head io_list;	/* track fios */
1140 	struct list_head bio_list;	/* bio entry list head */
1141 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1142 };
1143 
1144 #define FDEV(i)				(sbi->devs[i])
1145 #define RDEV(i)				(raw_super->devs[i])
1146 struct f2fs_dev_info {
1147 	struct block_device *bdev;
1148 	char path[MAX_PATH_LEN];
1149 	unsigned int total_segments;
1150 	block_t start_blk;
1151 	block_t end_blk;
1152 #ifdef CONFIG_BLK_DEV_ZONED
1153 	unsigned int nr_blkz;		/* Total number of zones */
1154 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1155 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1156 #endif
1157 };
1158 
1159 enum inode_type {
1160 	DIR_INODE,			/* for dirty dir inode */
1161 	FILE_INODE,			/* for dirty regular/symlink inode */
1162 	DIRTY_META,			/* for all dirtied inode metadata */
1163 	ATOMIC_FILE,			/* for all atomic files */
1164 	NR_INODE_TYPE,
1165 };
1166 
1167 /* for inner inode cache management */
1168 struct inode_management {
1169 	struct radix_tree_root ino_root;	/* ino entry array */
1170 	spinlock_t ino_lock;			/* for ino entry lock */
1171 	struct list_head ino_list;		/* inode list head */
1172 	unsigned long ino_num;			/* number of entries */
1173 };
1174 
1175 /* for GC_AT */
1176 struct atgc_management {
1177 	bool atgc_enabled;			/* ATGC is enabled or not */
1178 	struct rb_root_cached root;		/* root of victim rb-tree */
1179 	struct list_head victim_list;		/* linked with all victim entries */
1180 	unsigned int victim_count;		/* victim count in rb-tree */
1181 	unsigned int candidate_ratio;		/* candidate ratio */
1182 	unsigned int max_candidate_count;	/* max candidate count */
1183 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1184 	unsigned long long age_threshold;	/* age threshold */
1185 };
1186 
1187 /* For s_flag in struct f2fs_sb_info */
1188 enum {
1189 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1190 	SBI_IS_CLOSE,				/* specify unmounting */
1191 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1192 	SBI_POR_DOING,				/* recovery is doing or not */
1193 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1194 	SBI_NEED_CP,				/* need to checkpoint */
1195 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1196 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1197 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1198 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1199 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1200 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1201 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1202 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1203 };
1204 
1205 enum {
1206 	CP_TIME,
1207 	REQ_TIME,
1208 	DISCARD_TIME,
1209 	GC_TIME,
1210 	DISABLE_TIME,
1211 	UMOUNT_DISCARD_TIMEOUT,
1212 	MAX_TIME,
1213 };
1214 
1215 enum {
1216 	GC_NORMAL,
1217 	GC_IDLE_CB,
1218 	GC_IDLE_GREEDY,
1219 	GC_IDLE_AT,
1220 	GC_URGENT_HIGH,
1221 	GC_URGENT_LOW,
1222 };
1223 
1224 enum {
1225 	BGGC_MODE_ON,		/* background gc is on */
1226 	BGGC_MODE_OFF,		/* background gc is off */
1227 	BGGC_MODE_SYNC,		/*
1228 				 * background gc is on, migrating blocks
1229 				 * like foreground gc
1230 				 */
1231 };
1232 
1233 enum {
1234 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1235 	FS_MODE_LFS,		/* use lfs allocation only */
1236 };
1237 
1238 enum {
1239 	WHINT_MODE_OFF,		/* not pass down write hints */
1240 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1241 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1242 };
1243 
1244 enum {
1245 	ALLOC_MODE_DEFAULT,	/* stay default */
1246 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1247 };
1248 
1249 enum fsync_mode {
1250 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1251 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1252 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1253 };
1254 
1255 enum {
1256 	COMPR_MODE_FS,		/*
1257 				 * automatically compress compression
1258 				 * enabled files
1259 				 */
1260 	COMPR_MODE_USER,	/*
1261 				 * automatical compression is disabled.
1262 				 * user can control the file compression
1263 				 * using ioctls
1264 				 */
1265 };
1266 
1267 /*
1268  * this value is set in page as a private data which indicate that
1269  * the page is atomically written, and it is in inmem_pages list.
1270  */
1271 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1272 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1273 
1274 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1275 		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1276 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1277 		(page_private(page) == DUMMY_WRITTEN_PAGE)
1278 
1279 #ifdef CONFIG_F2FS_IO_TRACE
1280 #define IS_IO_TRACED_PAGE(page)			\
1281 		(page_private(page) > 0 &&		\
1282 		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1283 #else
1284 #define IS_IO_TRACED_PAGE(page) (0)
1285 #endif
1286 
1287 /* For compression */
1288 enum compress_algorithm_type {
1289 	COMPRESS_LZO,
1290 	COMPRESS_LZ4,
1291 	COMPRESS_ZSTD,
1292 	COMPRESS_LZORLE,
1293 	COMPRESS_MAX,
1294 };
1295 
1296 enum compress_flag {
1297 	COMPRESS_CHKSUM,
1298 	COMPRESS_MAX_FLAG,
1299 };
1300 
1301 #define COMPRESS_DATA_RESERVED_SIZE		4
1302 struct compress_data {
1303 	__le32 clen;			/* compressed data size */
1304 	__le32 chksum;			/* compressed data chksum */
1305 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1306 	u8 cdata[];			/* compressed data */
1307 };
1308 
1309 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1310 
1311 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1312 
1313 /* compress context */
1314 struct compress_ctx {
1315 	struct inode *inode;		/* inode the context belong to */
1316 	pgoff_t cluster_idx;		/* cluster index number */
1317 	unsigned int cluster_size;	/* page count in cluster */
1318 	unsigned int log_cluster_size;	/* log of cluster size */
1319 	struct page **rpages;		/* pages store raw data in cluster */
1320 	unsigned int nr_rpages;		/* total page number in rpages */
1321 	struct page **cpages;		/* pages store compressed data in cluster */
1322 	unsigned int nr_cpages;		/* total page number in cpages */
1323 	void *rbuf;			/* virtual mapped address on rpages */
1324 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1325 	size_t rlen;			/* valid data length in rbuf */
1326 	size_t clen;			/* valid data length in cbuf */
1327 	void *private;			/* payload buffer for specified compression algorithm */
1328 	void *private2;			/* extra payload buffer */
1329 };
1330 
1331 /* compress context for write IO path */
1332 struct compress_io_ctx {
1333 	u32 magic;			/* magic number to indicate page is compressed */
1334 	struct inode *inode;		/* inode the context belong to */
1335 	struct page **rpages;		/* pages store raw data in cluster */
1336 	unsigned int nr_rpages;		/* total page number in rpages */
1337 	atomic_t pending_pages;		/* in-flight compressed page count */
1338 };
1339 
1340 /* decompress io context for read IO path */
1341 struct decompress_io_ctx {
1342 	u32 magic;			/* magic number to indicate page is compressed */
1343 	struct inode *inode;		/* inode the context belong to */
1344 	pgoff_t cluster_idx;		/* cluster index number */
1345 	unsigned int cluster_size;	/* page count in cluster */
1346 	unsigned int log_cluster_size;	/* log of cluster size */
1347 	struct page **rpages;		/* pages store raw data in cluster */
1348 	unsigned int nr_rpages;		/* total page number in rpages */
1349 	struct page **cpages;		/* pages store compressed data in cluster */
1350 	unsigned int nr_cpages;		/* total page number in cpages */
1351 	struct page **tpages;		/* temp pages to pad holes in cluster */
1352 	void *rbuf;			/* virtual mapped address on rpages */
1353 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1354 	size_t rlen;			/* valid data length in rbuf */
1355 	size_t clen;			/* valid data length in cbuf */
1356 	atomic_t pending_pages;		/* in-flight compressed page count */
1357 	bool failed;			/* indicate IO error during decompression */
1358 	void *private;			/* payload buffer for specified decompression algorithm */
1359 	void *private2;			/* extra payload buffer */
1360 };
1361 
1362 #define NULL_CLUSTER			((unsigned int)(~0))
1363 #define MIN_COMPRESS_LOG_SIZE		2
1364 #define MAX_COMPRESS_LOG_SIZE		8
1365 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1366 
1367 struct f2fs_sb_info {
1368 	struct super_block *sb;			/* pointer to VFS super block */
1369 	struct proc_dir_entry *s_proc;		/* proc entry */
1370 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1371 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1372 	int valid_super_block;			/* valid super block no */
1373 	unsigned long s_flag;				/* flags for sbi */
1374 	struct mutex writepages;		/* mutex for writepages() */
1375 
1376 #ifdef CONFIG_BLK_DEV_ZONED
1377 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1378 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1379 #endif
1380 
1381 	/* for node-related operations */
1382 	struct f2fs_nm_info *nm_info;		/* node manager */
1383 	struct inode *node_inode;		/* cache node blocks */
1384 
1385 	/* for segment-related operations */
1386 	struct f2fs_sm_info *sm_info;		/* segment manager */
1387 
1388 	/* for bio operations */
1389 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1390 	/* keep migration IO order for LFS mode */
1391 	struct rw_semaphore io_order_lock;
1392 	mempool_t *write_io_dummy;		/* Dummy pages */
1393 
1394 	/* for checkpoint */
1395 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1396 	int cur_cp_pack;			/* remain current cp pack */
1397 	spinlock_t cp_lock;			/* for flag in ckpt */
1398 	struct inode *meta_inode;		/* cache meta blocks */
1399 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1400 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1401 	struct rw_semaphore node_write;		/* locking node writes */
1402 	struct rw_semaphore node_change;	/* locking node change */
1403 	wait_queue_head_t cp_wait;
1404 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1405 	long interval_time[MAX_TIME];		/* to store thresholds */
1406 
1407 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1408 
1409 	spinlock_t fsync_node_lock;		/* for node entry lock */
1410 	struct list_head fsync_node_list;	/* node list head */
1411 	unsigned int fsync_seg_id;		/* sequence id */
1412 	unsigned int fsync_node_num;		/* number of node entries */
1413 
1414 	/* for orphan inode, use 0'th array */
1415 	unsigned int max_orphans;		/* max orphan inodes */
1416 
1417 	/* for inode management */
1418 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1419 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1420 	struct mutex flush_lock;		/* for flush exclusion */
1421 
1422 	/* for extent tree cache */
1423 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1424 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1425 	struct list_head extent_list;		/* lru list for shrinker */
1426 	spinlock_t extent_lock;			/* locking extent lru list */
1427 	atomic_t total_ext_tree;		/* extent tree count */
1428 	struct list_head zombie_list;		/* extent zombie tree list */
1429 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1430 	atomic_t total_ext_node;		/* extent info count */
1431 
1432 	/* basic filesystem units */
1433 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1434 	unsigned int log_blocksize;		/* log2 block size */
1435 	unsigned int blocksize;			/* block size */
1436 	unsigned int root_ino_num;		/* root inode number*/
1437 	unsigned int node_ino_num;		/* node inode number*/
1438 	unsigned int meta_ino_num;		/* meta inode number*/
1439 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1440 	unsigned int blocks_per_seg;		/* blocks per segment */
1441 	unsigned int segs_per_sec;		/* segments per section */
1442 	unsigned int secs_per_zone;		/* sections per zone */
1443 	unsigned int total_sections;		/* total section count */
1444 	unsigned int total_node_count;		/* total node block count */
1445 	unsigned int total_valid_node_count;	/* valid node block count */
1446 	loff_t max_file_blocks;			/* max block index of file */
1447 	int dir_level;				/* directory level */
1448 	int readdir_ra;				/* readahead inode in readdir */
1449 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1450 
1451 	block_t user_block_count;		/* # of user blocks */
1452 	block_t total_valid_block_count;	/* # of valid blocks */
1453 	block_t discard_blks;			/* discard command candidats */
1454 	block_t last_valid_block_count;		/* for recovery */
1455 	block_t reserved_blocks;		/* configurable reserved blocks */
1456 	block_t current_reserved_blocks;	/* current reserved blocks */
1457 
1458 	/* Additional tracking for no checkpoint mode */
1459 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1460 
1461 	unsigned int nquota_files;		/* # of quota sysfile */
1462 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1463 
1464 	/* # of pages, see count_type */
1465 	atomic_t nr_pages[NR_COUNT_TYPE];
1466 	/* # of allocated blocks */
1467 	struct percpu_counter alloc_valid_block_count;
1468 
1469 	/* writeback control */
1470 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1471 
1472 	/* valid inode count */
1473 	struct percpu_counter total_valid_inode_count;
1474 
1475 	struct f2fs_mount_info mount_opt;	/* mount options */
1476 
1477 	/* for cleaning operations */
1478 	struct rw_semaphore gc_lock;		/*
1479 						 * semaphore for GC, avoid
1480 						 * race between GC and GC or CP
1481 						 */
1482 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1483 	struct atgc_management am;		/* atgc management */
1484 	unsigned int cur_victim_sec;		/* current victim section num */
1485 	unsigned int gc_mode;			/* current GC state */
1486 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1487 
1488 	/* for skip statistic */
1489 	unsigned int atomic_files;		/* # of opened atomic file */
1490 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1491 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1492 
1493 	/* threshold for gc trials on pinned files */
1494 	u64 gc_pin_file_threshold;
1495 	struct rw_semaphore pin_sem;
1496 
1497 	/* maximum # of trials to find a victim segment for SSR and GC */
1498 	unsigned int max_victim_search;
1499 	/* migration granularity of garbage collection, unit: segment */
1500 	unsigned int migration_granularity;
1501 
1502 	/*
1503 	 * for stat information.
1504 	 * one is for the LFS mode, and the other is for the SSR mode.
1505 	 */
1506 #ifdef CONFIG_F2FS_STAT_FS
1507 	struct f2fs_stat_info *stat_info;	/* FS status information */
1508 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1509 	unsigned int segment_count[2];		/* # of allocated segments */
1510 	unsigned int block_count[2];		/* # of allocated blocks */
1511 	atomic_t inplace_count;		/* # of inplace update */
1512 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1513 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1514 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1515 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1516 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1517 	atomic_t inline_inode;			/* # of inline_data inodes */
1518 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1519 	atomic_t compr_inode;			/* # of compressed inodes */
1520 	atomic64_t compr_blocks;		/* # of compressed blocks */
1521 	atomic_t vw_cnt;			/* # of volatile writes */
1522 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1523 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1524 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1525 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1526 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1527 #endif
1528 	spinlock_t stat_lock;			/* lock for stat operations */
1529 
1530 	/* For app/fs IO statistics */
1531 	spinlock_t iostat_lock;
1532 	unsigned long long rw_iostat[NR_IO_TYPE];
1533 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1534 	bool iostat_enable;
1535 	unsigned long iostat_next_period;
1536 	unsigned int iostat_period_ms;
1537 
1538 	/* to attach REQ_META|REQ_FUA flags */
1539 	unsigned int data_io_flag;
1540 	unsigned int node_io_flag;
1541 
1542 	/* For sysfs suppport */
1543 	struct kobject s_kobj;
1544 	struct completion s_kobj_unregister;
1545 
1546 	/* For shrinker support */
1547 	struct list_head s_list;
1548 	int s_ndevs;				/* number of devices */
1549 	struct f2fs_dev_info *devs;		/* for device list */
1550 	unsigned int dirty_device;		/* for checkpoint data flush */
1551 	spinlock_t dev_lock;			/* protect dirty_device */
1552 	struct mutex umount_mutex;
1553 	unsigned int shrinker_run_no;
1554 
1555 	/* For write statistics */
1556 	u64 sectors_written_start;
1557 	u64 kbytes_written;
1558 
1559 	/* Reference to checksum algorithm driver via cryptoapi */
1560 	struct crypto_shash *s_chksum_driver;
1561 
1562 	/* Precomputed FS UUID checksum for seeding other checksums */
1563 	__u32 s_chksum_seed;
1564 
1565 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1566 
1567 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1568 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1569 
1570 #ifdef CONFIG_F2FS_FS_COMPRESSION
1571 	struct kmem_cache *page_array_slab;	/* page array entry */
1572 	unsigned int page_array_slab_size;	/* default page array slab size */
1573 #endif
1574 };
1575 
1576 struct f2fs_private_dio {
1577 	struct inode *inode;
1578 	void *orig_private;
1579 	bio_end_io_t *orig_end_io;
1580 	bool write;
1581 };
1582 
1583 #ifdef CONFIG_F2FS_FAULT_INJECTION
1584 #define f2fs_show_injection_info(sbi, type)					\
1585 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1586 		KERN_INFO, sbi->sb->s_id,				\
1587 		f2fs_fault_name[type],					\
1588 		__func__, __builtin_return_address(0))
1589 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1590 {
1591 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1592 
1593 	if (!ffi->inject_rate)
1594 		return false;
1595 
1596 	if (!IS_FAULT_SET(ffi, type))
1597 		return false;
1598 
1599 	atomic_inc(&ffi->inject_ops);
1600 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1601 		atomic_set(&ffi->inject_ops, 0);
1602 		return true;
1603 	}
1604 	return false;
1605 }
1606 #else
1607 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1608 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1609 {
1610 	return false;
1611 }
1612 #endif
1613 
1614 /*
1615  * Test if the mounted volume is a multi-device volume.
1616  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1617  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1618  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1619  */
1620 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1621 {
1622 	return sbi->s_ndevs > 1;
1623 }
1624 
1625 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1626 {
1627 	unsigned long now = jiffies;
1628 
1629 	sbi->last_time[type] = now;
1630 
1631 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1632 	if (type == REQ_TIME) {
1633 		sbi->last_time[DISCARD_TIME] = now;
1634 		sbi->last_time[GC_TIME] = now;
1635 	}
1636 }
1637 
1638 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1639 {
1640 	unsigned long interval = sbi->interval_time[type] * HZ;
1641 
1642 	return time_after(jiffies, sbi->last_time[type] + interval);
1643 }
1644 
1645 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1646 						int type)
1647 {
1648 	unsigned long interval = sbi->interval_time[type] * HZ;
1649 	unsigned int wait_ms = 0;
1650 	long delta;
1651 
1652 	delta = (sbi->last_time[type] + interval) - jiffies;
1653 	if (delta > 0)
1654 		wait_ms = jiffies_to_msecs(delta);
1655 
1656 	return wait_ms;
1657 }
1658 
1659 /*
1660  * Inline functions
1661  */
1662 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1663 			      const void *address, unsigned int length)
1664 {
1665 	struct {
1666 		struct shash_desc shash;
1667 		char ctx[4];
1668 	} desc;
1669 	int err;
1670 
1671 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1672 
1673 	desc.shash.tfm = sbi->s_chksum_driver;
1674 	*(u32 *)desc.ctx = crc;
1675 
1676 	err = crypto_shash_update(&desc.shash, address, length);
1677 	BUG_ON(err);
1678 
1679 	return *(u32 *)desc.ctx;
1680 }
1681 
1682 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1683 			   unsigned int length)
1684 {
1685 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1686 }
1687 
1688 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1689 				  void *buf, size_t buf_size)
1690 {
1691 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1692 }
1693 
1694 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1695 			      const void *address, unsigned int length)
1696 {
1697 	return __f2fs_crc32(sbi, crc, address, length);
1698 }
1699 
1700 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1701 {
1702 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1703 }
1704 
1705 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1706 {
1707 	return sb->s_fs_info;
1708 }
1709 
1710 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1711 {
1712 	return F2FS_SB(inode->i_sb);
1713 }
1714 
1715 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1716 {
1717 	return F2FS_I_SB(mapping->host);
1718 }
1719 
1720 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1721 {
1722 	return F2FS_M_SB(page_file_mapping(page));
1723 }
1724 
1725 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1726 {
1727 	return (struct f2fs_super_block *)(sbi->raw_super);
1728 }
1729 
1730 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1731 {
1732 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1733 }
1734 
1735 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1736 {
1737 	return (struct f2fs_node *)page_address(page);
1738 }
1739 
1740 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1741 {
1742 	return &((struct f2fs_node *)page_address(page))->i;
1743 }
1744 
1745 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1746 {
1747 	return (struct f2fs_nm_info *)(sbi->nm_info);
1748 }
1749 
1750 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1751 {
1752 	return (struct f2fs_sm_info *)(sbi->sm_info);
1753 }
1754 
1755 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1756 {
1757 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1758 }
1759 
1760 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1761 {
1762 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1763 }
1764 
1765 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1766 {
1767 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1768 }
1769 
1770 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1771 {
1772 	return sbi->meta_inode->i_mapping;
1773 }
1774 
1775 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1776 {
1777 	return sbi->node_inode->i_mapping;
1778 }
1779 
1780 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1781 {
1782 	return test_bit(type, &sbi->s_flag);
1783 }
1784 
1785 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1786 {
1787 	set_bit(type, &sbi->s_flag);
1788 }
1789 
1790 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1791 {
1792 	clear_bit(type, &sbi->s_flag);
1793 }
1794 
1795 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1796 {
1797 	return le64_to_cpu(cp->checkpoint_ver);
1798 }
1799 
1800 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1801 {
1802 	if (type < F2FS_MAX_QUOTAS)
1803 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1804 	return 0;
1805 }
1806 
1807 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1808 {
1809 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1810 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1811 }
1812 
1813 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1814 {
1815 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1816 
1817 	return ckpt_flags & f;
1818 }
1819 
1820 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1821 {
1822 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1823 }
1824 
1825 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1826 {
1827 	unsigned int ckpt_flags;
1828 
1829 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1830 	ckpt_flags |= f;
1831 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1832 }
1833 
1834 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1835 {
1836 	unsigned long flags;
1837 
1838 	spin_lock_irqsave(&sbi->cp_lock, flags);
1839 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1840 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1841 }
1842 
1843 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1844 {
1845 	unsigned int ckpt_flags;
1846 
1847 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1848 	ckpt_flags &= (~f);
1849 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1850 }
1851 
1852 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1853 {
1854 	unsigned long flags;
1855 
1856 	spin_lock_irqsave(&sbi->cp_lock, flags);
1857 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1858 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1859 }
1860 
1861 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1862 {
1863 	unsigned long flags;
1864 	unsigned char *nat_bits;
1865 
1866 	/*
1867 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1868 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1869 	 * so let's rely on regular fsck or unclean shutdown.
1870 	 */
1871 
1872 	if (lock)
1873 		spin_lock_irqsave(&sbi->cp_lock, flags);
1874 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1875 	nat_bits = NM_I(sbi)->nat_bits;
1876 	NM_I(sbi)->nat_bits = NULL;
1877 	if (lock)
1878 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1879 
1880 	kvfree(nat_bits);
1881 }
1882 
1883 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1884 					struct cp_control *cpc)
1885 {
1886 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1887 
1888 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1889 }
1890 
1891 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1892 {
1893 	down_read(&sbi->cp_rwsem);
1894 }
1895 
1896 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1897 {
1898 	return down_read_trylock(&sbi->cp_rwsem);
1899 }
1900 
1901 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1902 {
1903 	up_read(&sbi->cp_rwsem);
1904 }
1905 
1906 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1907 {
1908 	down_write(&sbi->cp_rwsem);
1909 }
1910 
1911 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1912 {
1913 	up_write(&sbi->cp_rwsem);
1914 }
1915 
1916 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1917 {
1918 	int reason = CP_SYNC;
1919 
1920 	if (test_opt(sbi, FASTBOOT))
1921 		reason = CP_FASTBOOT;
1922 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1923 		reason = CP_UMOUNT;
1924 	return reason;
1925 }
1926 
1927 static inline bool __remain_node_summaries(int reason)
1928 {
1929 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1930 }
1931 
1932 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1933 {
1934 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1935 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1936 }
1937 
1938 /*
1939  * Check whether the inode has blocks or not
1940  */
1941 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1942 {
1943 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1944 
1945 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1946 }
1947 
1948 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1949 {
1950 	return ofs == XATTR_NODE_OFFSET;
1951 }
1952 
1953 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1954 					struct inode *inode, bool cap)
1955 {
1956 	if (!inode)
1957 		return true;
1958 	if (!test_opt(sbi, RESERVE_ROOT))
1959 		return false;
1960 	if (IS_NOQUOTA(inode))
1961 		return true;
1962 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1963 		return true;
1964 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1965 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1966 		return true;
1967 	if (cap && capable(CAP_SYS_RESOURCE))
1968 		return true;
1969 	return false;
1970 }
1971 
1972 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1973 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1974 				 struct inode *inode, blkcnt_t *count)
1975 {
1976 	blkcnt_t diff = 0, release = 0;
1977 	block_t avail_user_block_count;
1978 	int ret;
1979 
1980 	ret = dquot_reserve_block(inode, *count);
1981 	if (ret)
1982 		return ret;
1983 
1984 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1985 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
1986 		release = *count;
1987 		goto release_quota;
1988 	}
1989 
1990 	/*
1991 	 * let's increase this in prior to actual block count change in order
1992 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1993 	 */
1994 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1995 
1996 	spin_lock(&sbi->stat_lock);
1997 	sbi->total_valid_block_count += (block_t)(*count);
1998 	avail_user_block_count = sbi->user_block_count -
1999 					sbi->current_reserved_blocks;
2000 
2001 	if (!__allow_reserved_blocks(sbi, inode, true))
2002 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2003 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2004 		if (avail_user_block_count > sbi->unusable_block_count)
2005 			avail_user_block_count -= sbi->unusable_block_count;
2006 		else
2007 			avail_user_block_count = 0;
2008 	}
2009 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2010 		diff = sbi->total_valid_block_count - avail_user_block_count;
2011 		if (diff > *count)
2012 			diff = *count;
2013 		*count -= diff;
2014 		release = diff;
2015 		sbi->total_valid_block_count -= diff;
2016 		if (!*count) {
2017 			spin_unlock(&sbi->stat_lock);
2018 			goto enospc;
2019 		}
2020 	}
2021 	spin_unlock(&sbi->stat_lock);
2022 
2023 	if (unlikely(release)) {
2024 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2025 		dquot_release_reservation_block(inode, release);
2026 	}
2027 	f2fs_i_blocks_write(inode, *count, true, true);
2028 	return 0;
2029 
2030 enospc:
2031 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2032 release_quota:
2033 	dquot_release_reservation_block(inode, release);
2034 	return -ENOSPC;
2035 }
2036 
2037 __printf(2, 3)
2038 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2039 
2040 #define f2fs_err(sbi, fmt, ...)						\
2041 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2042 #define f2fs_warn(sbi, fmt, ...)					\
2043 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2044 #define f2fs_notice(sbi, fmt, ...)					\
2045 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2046 #define f2fs_info(sbi, fmt, ...)					\
2047 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2048 #define f2fs_debug(sbi, fmt, ...)					\
2049 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2050 
2051 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2052 						struct inode *inode,
2053 						block_t count)
2054 {
2055 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2056 
2057 	spin_lock(&sbi->stat_lock);
2058 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2059 	sbi->total_valid_block_count -= (block_t)count;
2060 	if (sbi->reserved_blocks &&
2061 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2062 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2063 					sbi->current_reserved_blocks + count);
2064 	spin_unlock(&sbi->stat_lock);
2065 	if (unlikely(inode->i_blocks < sectors)) {
2066 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2067 			  inode->i_ino,
2068 			  (unsigned long long)inode->i_blocks,
2069 			  (unsigned long long)sectors);
2070 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2071 		return;
2072 	}
2073 	f2fs_i_blocks_write(inode, count, false, true);
2074 }
2075 
2076 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2077 {
2078 	atomic_inc(&sbi->nr_pages[count_type]);
2079 
2080 	if (count_type == F2FS_DIRTY_DENTS ||
2081 			count_type == F2FS_DIRTY_NODES ||
2082 			count_type == F2FS_DIRTY_META ||
2083 			count_type == F2FS_DIRTY_QDATA ||
2084 			count_type == F2FS_DIRTY_IMETA)
2085 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2086 }
2087 
2088 static inline void inode_inc_dirty_pages(struct inode *inode)
2089 {
2090 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2091 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2092 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2093 	if (IS_NOQUOTA(inode))
2094 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2095 }
2096 
2097 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2098 {
2099 	atomic_dec(&sbi->nr_pages[count_type]);
2100 }
2101 
2102 static inline void inode_dec_dirty_pages(struct inode *inode)
2103 {
2104 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2105 			!S_ISLNK(inode->i_mode))
2106 		return;
2107 
2108 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2109 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2110 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2111 	if (IS_NOQUOTA(inode))
2112 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2113 }
2114 
2115 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2116 {
2117 	return atomic_read(&sbi->nr_pages[count_type]);
2118 }
2119 
2120 static inline int get_dirty_pages(struct inode *inode)
2121 {
2122 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2123 }
2124 
2125 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2126 {
2127 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2128 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2129 						sbi->log_blocks_per_seg;
2130 
2131 	return segs / sbi->segs_per_sec;
2132 }
2133 
2134 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2135 {
2136 	return sbi->total_valid_block_count;
2137 }
2138 
2139 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2140 {
2141 	return sbi->discard_blks;
2142 }
2143 
2144 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2145 {
2146 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2147 
2148 	/* return NAT or SIT bitmap */
2149 	if (flag == NAT_BITMAP)
2150 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2151 	else if (flag == SIT_BITMAP)
2152 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2153 
2154 	return 0;
2155 }
2156 
2157 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2158 {
2159 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2160 }
2161 
2162 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2163 {
2164 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2165 	int offset;
2166 
2167 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2168 		offset = (flag == SIT_BITMAP) ?
2169 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2170 		/*
2171 		 * if large_nat_bitmap feature is enabled, leave checksum
2172 		 * protection for all nat/sit bitmaps.
2173 		 */
2174 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2175 	}
2176 
2177 	if (__cp_payload(sbi) > 0) {
2178 		if (flag == NAT_BITMAP)
2179 			return &ckpt->sit_nat_version_bitmap;
2180 		else
2181 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2182 	} else {
2183 		offset = (flag == NAT_BITMAP) ?
2184 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2185 		return &ckpt->sit_nat_version_bitmap + offset;
2186 	}
2187 }
2188 
2189 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2190 {
2191 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2192 
2193 	if (sbi->cur_cp_pack == 2)
2194 		start_addr += sbi->blocks_per_seg;
2195 	return start_addr;
2196 }
2197 
2198 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2199 {
2200 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2201 
2202 	if (sbi->cur_cp_pack == 1)
2203 		start_addr += sbi->blocks_per_seg;
2204 	return start_addr;
2205 }
2206 
2207 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2208 {
2209 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2210 }
2211 
2212 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2213 {
2214 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2215 }
2216 
2217 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2218 					struct inode *inode, bool is_inode)
2219 {
2220 	block_t	valid_block_count;
2221 	unsigned int valid_node_count, user_block_count;
2222 	int err;
2223 
2224 	if (is_inode) {
2225 		if (inode) {
2226 			err = dquot_alloc_inode(inode);
2227 			if (err)
2228 				return err;
2229 		}
2230 	} else {
2231 		err = dquot_reserve_block(inode, 1);
2232 		if (err)
2233 			return err;
2234 	}
2235 
2236 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2237 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2238 		goto enospc;
2239 	}
2240 
2241 	spin_lock(&sbi->stat_lock);
2242 
2243 	valid_block_count = sbi->total_valid_block_count +
2244 					sbi->current_reserved_blocks + 1;
2245 
2246 	if (!__allow_reserved_blocks(sbi, inode, false))
2247 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2248 	user_block_count = sbi->user_block_count;
2249 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2250 		user_block_count -= sbi->unusable_block_count;
2251 
2252 	if (unlikely(valid_block_count > user_block_count)) {
2253 		spin_unlock(&sbi->stat_lock);
2254 		goto enospc;
2255 	}
2256 
2257 	valid_node_count = sbi->total_valid_node_count + 1;
2258 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2259 		spin_unlock(&sbi->stat_lock);
2260 		goto enospc;
2261 	}
2262 
2263 	sbi->total_valid_node_count++;
2264 	sbi->total_valid_block_count++;
2265 	spin_unlock(&sbi->stat_lock);
2266 
2267 	if (inode) {
2268 		if (is_inode)
2269 			f2fs_mark_inode_dirty_sync(inode, true);
2270 		else
2271 			f2fs_i_blocks_write(inode, 1, true, true);
2272 	}
2273 
2274 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2275 	return 0;
2276 
2277 enospc:
2278 	if (is_inode) {
2279 		if (inode)
2280 			dquot_free_inode(inode);
2281 	} else {
2282 		dquot_release_reservation_block(inode, 1);
2283 	}
2284 	return -ENOSPC;
2285 }
2286 
2287 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2288 					struct inode *inode, bool is_inode)
2289 {
2290 	spin_lock(&sbi->stat_lock);
2291 
2292 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2293 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2294 
2295 	sbi->total_valid_node_count--;
2296 	sbi->total_valid_block_count--;
2297 	if (sbi->reserved_blocks &&
2298 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2299 		sbi->current_reserved_blocks++;
2300 
2301 	spin_unlock(&sbi->stat_lock);
2302 
2303 	if (is_inode) {
2304 		dquot_free_inode(inode);
2305 	} else {
2306 		if (unlikely(inode->i_blocks == 0)) {
2307 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2308 				  inode->i_ino,
2309 				  (unsigned long long)inode->i_blocks);
2310 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2311 			return;
2312 		}
2313 		f2fs_i_blocks_write(inode, 1, false, true);
2314 	}
2315 }
2316 
2317 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2318 {
2319 	return sbi->total_valid_node_count;
2320 }
2321 
2322 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2323 {
2324 	percpu_counter_inc(&sbi->total_valid_inode_count);
2325 }
2326 
2327 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2328 {
2329 	percpu_counter_dec(&sbi->total_valid_inode_count);
2330 }
2331 
2332 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2333 {
2334 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2335 }
2336 
2337 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2338 						pgoff_t index, bool for_write)
2339 {
2340 	struct page *page;
2341 
2342 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2343 		if (!for_write)
2344 			page = find_get_page_flags(mapping, index,
2345 							FGP_LOCK | FGP_ACCESSED);
2346 		else
2347 			page = find_lock_page(mapping, index);
2348 		if (page)
2349 			return page;
2350 
2351 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2352 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2353 							FAULT_PAGE_ALLOC);
2354 			return NULL;
2355 		}
2356 	}
2357 
2358 	if (!for_write)
2359 		return grab_cache_page(mapping, index);
2360 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2361 }
2362 
2363 static inline struct page *f2fs_pagecache_get_page(
2364 				struct address_space *mapping, pgoff_t index,
2365 				int fgp_flags, gfp_t gfp_mask)
2366 {
2367 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2368 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2369 		return NULL;
2370 	}
2371 
2372 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2373 }
2374 
2375 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2376 {
2377 	char *src_kaddr = kmap(src);
2378 	char *dst_kaddr = kmap(dst);
2379 
2380 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2381 	kunmap(dst);
2382 	kunmap(src);
2383 }
2384 
2385 static inline void f2fs_put_page(struct page *page, int unlock)
2386 {
2387 	if (!page)
2388 		return;
2389 
2390 	if (unlock) {
2391 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2392 		unlock_page(page);
2393 	}
2394 	put_page(page);
2395 }
2396 
2397 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2398 {
2399 	if (dn->node_page)
2400 		f2fs_put_page(dn->node_page, 1);
2401 	if (dn->inode_page && dn->node_page != dn->inode_page)
2402 		f2fs_put_page(dn->inode_page, 0);
2403 	dn->node_page = NULL;
2404 	dn->inode_page = NULL;
2405 }
2406 
2407 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2408 					size_t size)
2409 {
2410 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2411 }
2412 
2413 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2414 						gfp_t flags)
2415 {
2416 	void *entry;
2417 
2418 	entry = kmem_cache_alloc(cachep, flags);
2419 	if (!entry)
2420 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2421 	return entry;
2422 }
2423 
2424 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2425 {
2426 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2427 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2428 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2429 		get_pages(sbi, F2FS_DIO_READ) ||
2430 		get_pages(sbi, F2FS_DIO_WRITE))
2431 		return true;
2432 
2433 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2434 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2435 		return true;
2436 
2437 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2438 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2439 		return true;
2440 	return false;
2441 }
2442 
2443 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2444 {
2445 	if (sbi->gc_mode == GC_URGENT_HIGH)
2446 		return true;
2447 
2448 	if (is_inflight_io(sbi, type))
2449 		return false;
2450 
2451 	if (sbi->gc_mode == GC_URGENT_LOW &&
2452 			(type == DISCARD_TIME || type == GC_TIME))
2453 		return true;
2454 
2455 	return f2fs_time_over(sbi, type);
2456 }
2457 
2458 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2459 				unsigned long index, void *item)
2460 {
2461 	while (radix_tree_insert(root, index, item))
2462 		cond_resched();
2463 }
2464 
2465 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2466 
2467 static inline bool IS_INODE(struct page *page)
2468 {
2469 	struct f2fs_node *p = F2FS_NODE(page);
2470 
2471 	return RAW_IS_INODE(p);
2472 }
2473 
2474 static inline int offset_in_addr(struct f2fs_inode *i)
2475 {
2476 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2477 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2478 }
2479 
2480 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2481 {
2482 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2483 }
2484 
2485 static inline int f2fs_has_extra_attr(struct inode *inode);
2486 static inline block_t data_blkaddr(struct inode *inode,
2487 			struct page *node_page, unsigned int offset)
2488 {
2489 	struct f2fs_node *raw_node;
2490 	__le32 *addr_array;
2491 	int base = 0;
2492 	bool is_inode = IS_INODE(node_page);
2493 
2494 	raw_node = F2FS_NODE(node_page);
2495 
2496 	if (is_inode) {
2497 		if (!inode)
2498 			/* from GC path only */
2499 			base = offset_in_addr(&raw_node->i);
2500 		else if (f2fs_has_extra_attr(inode))
2501 			base = get_extra_isize(inode);
2502 	}
2503 
2504 	addr_array = blkaddr_in_node(raw_node);
2505 	return le32_to_cpu(addr_array[base + offset]);
2506 }
2507 
2508 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2509 {
2510 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2511 }
2512 
2513 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2514 {
2515 	int mask;
2516 
2517 	addr += (nr >> 3);
2518 	mask = 1 << (7 - (nr & 0x07));
2519 	return mask & *addr;
2520 }
2521 
2522 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2523 {
2524 	int mask;
2525 
2526 	addr += (nr >> 3);
2527 	mask = 1 << (7 - (nr & 0x07));
2528 	*addr |= mask;
2529 }
2530 
2531 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2532 {
2533 	int mask;
2534 
2535 	addr += (nr >> 3);
2536 	mask = 1 << (7 - (nr & 0x07));
2537 	*addr &= ~mask;
2538 }
2539 
2540 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2541 {
2542 	int mask;
2543 	int ret;
2544 
2545 	addr += (nr >> 3);
2546 	mask = 1 << (7 - (nr & 0x07));
2547 	ret = mask & *addr;
2548 	*addr |= mask;
2549 	return ret;
2550 }
2551 
2552 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2553 {
2554 	int mask;
2555 	int ret;
2556 
2557 	addr += (nr >> 3);
2558 	mask = 1 << (7 - (nr & 0x07));
2559 	ret = mask & *addr;
2560 	*addr &= ~mask;
2561 	return ret;
2562 }
2563 
2564 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2565 {
2566 	int mask;
2567 
2568 	addr += (nr >> 3);
2569 	mask = 1 << (7 - (nr & 0x07));
2570 	*addr ^= mask;
2571 }
2572 
2573 /*
2574  * On-disk inode flags (f2fs_inode::i_flags)
2575  */
2576 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2577 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2578 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2579 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2580 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2581 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2582 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2583 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2584 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2585 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2586 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2587 
2588 /* Flags that should be inherited by new inodes from their parent. */
2589 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2590 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2591 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2592 
2593 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2594 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2595 				F2FS_CASEFOLD_FL))
2596 
2597 /* Flags that are appropriate for non-directories/regular files. */
2598 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2599 
2600 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2601 {
2602 	if (S_ISDIR(mode))
2603 		return flags;
2604 	else if (S_ISREG(mode))
2605 		return flags & F2FS_REG_FLMASK;
2606 	else
2607 		return flags & F2FS_OTHER_FLMASK;
2608 }
2609 
2610 static inline void __mark_inode_dirty_flag(struct inode *inode,
2611 						int flag, bool set)
2612 {
2613 	switch (flag) {
2614 	case FI_INLINE_XATTR:
2615 	case FI_INLINE_DATA:
2616 	case FI_INLINE_DENTRY:
2617 	case FI_NEW_INODE:
2618 		if (set)
2619 			return;
2620 		fallthrough;
2621 	case FI_DATA_EXIST:
2622 	case FI_INLINE_DOTS:
2623 	case FI_PIN_FILE:
2624 		f2fs_mark_inode_dirty_sync(inode, true);
2625 	}
2626 }
2627 
2628 static inline void set_inode_flag(struct inode *inode, int flag)
2629 {
2630 	set_bit(flag, F2FS_I(inode)->flags);
2631 	__mark_inode_dirty_flag(inode, flag, true);
2632 }
2633 
2634 static inline int is_inode_flag_set(struct inode *inode, int flag)
2635 {
2636 	return test_bit(flag, F2FS_I(inode)->flags);
2637 }
2638 
2639 static inline void clear_inode_flag(struct inode *inode, int flag)
2640 {
2641 	clear_bit(flag, F2FS_I(inode)->flags);
2642 	__mark_inode_dirty_flag(inode, flag, false);
2643 }
2644 
2645 static inline bool f2fs_verity_in_progress(struct inode *inode)
2646 {
2647 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2648 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2649 }
2650 
2651 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2652 {
2653 	F2FS_I(inode)->i_acl_mode = mode;
2654 	set_inode_flag(inode, FI_ACL_MODE);
2655 	f2fs_mark_inode_dirty_sync(inode, false);
2656 }
2657 
2658 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2659 {
2660 	if (inc)
2661 		inc_nlink(inode);
2662 	else
2663 		drop_nlink(inode);
2664 	f2fs_mark_inode_dirty_sync(inode, true);
2665 }
2666 
2667 static inline void f2fs_i_blocks_write(struct inode *inode,
2668 					block_t diff, bool add, bool claim)
2669 {
2670 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2671 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2672 
2673 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2674 	if (add) {
2675 		if (claim)
2676 			dquot_claim_block(inode, diff);
2677 		else
2678 			dquot_alloc_block_nofail(inode, diff);
2679 	} else {
2680 		dquot_free_block(inode, diff);
2681 	}
2682 
2683 	f2fs_mark_inode_dirty_sync(inode, true);
2684 	if (clean || recover)
2685 		set_inode_flag(inode, FI_AUTO_RECOVER);
2686 }
2687 
2688 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2689 {
2690 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2691 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2692 
2693 	if (i_size_read(inode) == i_size)
2694 		return;
2695 
2696 	i_size_write(inode, i_size);
2697 	f2fs_mark_inode_dirty_sync(inode, true);
2698 	if (clean || recover)
2699 		set_inode_flag(inode, FI_AUTO_RECOVER);
2700 }
2701 
2702 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2703 {
2704 	F2FS_I(inode)->i_current_depth = depth;
2705 	f2fs_mark_inode_dirty_sync(inode, true);
2706 }
2707 
2708 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2709 					unsigned int count)
2710 {
2711 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2712 	f2fs_mark_inode_dirty_sync(inode, true);
2713 }
2714 
2715 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2716 {
2717 	F2FS_I(inode)->i_xattr_nid = xnid;
2718 	f2fs_mark_inode_dirty_sync(inode, true);
2719 }
2720 
2721 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2722 {
2723 	F2FS_I(inode)->i_pino = pino;
2724 	f2fs_mark_inode_dirty_sync(inode, true);
2725 }
2726 
2727 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2728 {
2729 	struct f2fs_inode_info *fi = F2FS_I(inode);
2730 
2731 	if (ri->i_inline & F2FS_INLINE_XATTR)
2732 		set_bit(FI_INLINE_XATTR, fi->flags);
2733 	if (ri->i_inline & F2FS_INLINE_DATA)
2734 		set_bit(FI_INLINE_DATA, fi->flags);
2735 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2736 		set_bit(FI_INLINE_DENTRY, fi->flags);
2737 	if (ri->i_inline & F2FS_DATA_EXIST)
2738 		set_bit(FI_DATA_EXIST, fi->flags);
2739 	if (ri->i_inline & F2FS_INLINE_DOTS)
2740 		set_bit(FI_INLINE_DOTS, fi->flags);
2741 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2742 		set_bit(FI_EXTRA_ATTR, fi->flags);
2743 	if (ri->i_inline & F2FS_PIN_FILE)
2744 		set_bit(FI_PIN_FILE, fi->flags);
2745 }
2746 
2747 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2748 {
2749 	ri->i_inline = 0;
2750 
2751 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2752 		ri->i_inline |= F2FS_INLINE_XATTR;
2753 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2754 		ri->i_inline |= F2FS_INLINE_DATA;
2755 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2756 		ri->i_inline |= F2FS_INLINE_DENTRY;
2757 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2758 		ri->i_inline |= F2FS_DATA_EXIST;
2759 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2760 		ri->i_inline |= F2FS_INLINE_DOTS;
2761 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2762 		ri->i_inline |= F2FS_EXTRA_ATTR;
2763 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2764 		ri->i_inline |= F2FS_PIN_FILE;
2765 }
2766 
2767 static inline int f2fs_has_extra_attr(struct inode *inode)
2768 {
2769 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2770 }
2771 
2772 static inline int f2fs_has_inline_xattr(struct inode *inode)
2773 {
2774 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2775 }
2776 
2777 static inline int f2fs_compressed_file(struct inode *inode)
2778 {
2779 	return S_ISREG(inode->i_mode) &&
2780 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2781 }
2782 
2783 static inline bool f2fs_need_compress_data(struct inode *inode)
2784 {
2785 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2786 
2787 	if (!f2fs_compressed_file(inode))
2788 		return false;
2789 
2790 	if (compress_mode == COMPR_MODE_FS)
2791 		return true;
2792 	else if (compress_mode == COMPR_MODE_USER &&
2793 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2794 		return true;
2795 
2796 	return false;
2797 }
2798 
2799 static inline unsigned int addrs_per_inode(struct inode *inode)
2800 {
2801 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2802 				get_inline_xattr_addrs(inode);
2803 
2804 	if (!f2fs_compressed_file(inode))
2805 		return addrs;
2806 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2807 }
2808 
2809 static inline unsigned int addrs_per_block(struct inode *inode)
2810 {
2811 	if (!f2fs_compressed_file(inode))
2812 		return DEF_ADDRS_PER_BLOCK;
2813 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2814 }
2815 
2816 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2817 {
2818 	struct f2fs_inode *ri = F2FS_INODE(page);
2819 
2820 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2821 					get_inline_xattr_addrs(inode)]);
2822 }
2823 
2824 static inline int inline_xattr_size(struct inode *inode)
2825 {
2826 	if (f2fs_has_inline_xattr(inode))
2827 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2828 	return 0;
2829 }
2830 
2831 static inline int f2fs_has_inline_data(struct inode *inode)
2832 {
2833 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2834 }
2835 
2836 static inline int f2fs_exist_data(struct inode *inode)
2837 {
2838 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2839 }
2840 
2841 static inline int f2fs_has_inline_dots(struct inode *inode)
2842 {
2843 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2844 }
2845 
2846 static inline int f2fs_is_mmap_file(struct inode *inode)
2847 {
2848 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2849 }
2850 
2851 static inline bool f2fs_is_pinned_file(struct inode *inode)
2852 {
2853 	return is_inode_flag_set(inode, FI_PIN_FILE);
2854 }
2855 
2856 static inline bool f2fs_is_atomic_file(struct inode *inode)
2857 {
2858 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2859 }
2860 
2861 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2862 {
2863 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2864 }
2865 
2866 static inline bool f2fs_is_volatile_file(struct inode *inode)
2867 {
2868 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2869 }
2870 
2871 static inline bool f2fs_is_first_block_written(struct inode *inode)
2872 {
2873 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2874 }
2875 
2876 static inline bool f2fs_is_drop_cache(struct inode *inode)
2877 {
2878 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2879 }
2880 
2881 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2882 {
2883 	struct f2fs_inode *ri = F2FS_INODE(page);
2884 	int extra_size = get_extra_isize(inode);
2885 
2886 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2887 }
2888 
2889 static inline int f2fs_has_inline_dentry(struct inode *inode)
2890 {
2891 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2892 }
2893 
2894 static inline int is_file(struct inode *inode, int type)
2895 {
2896 	return F2FS_I(inode)->i_advise & type;
2897 }
2898 
2899 static inline void set_file(struct inode *inode, int type)
2900 {
2901 	F2FS_I(inode)->i_advise |= type;
2902 	f2fs_mark_inode_dirty_sync(inode, true);
2903 }
2904 
2905 static inline void clear_file(struct inode *inode, int type)
2906 {
2907 	F2FS_I(inode)->i_advise &= ~type;
2908 	f2fs_mark_inode_dirty_sync(inode, true);
2909 }
2910 
2911 static inline bool f2fs_is_time_consistent(struct inode *inode)
2912 {
2913 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2914 		return false;
2915 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2916 		return false;
2917 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2918 		return false;
2919 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2920 						&F2FS_I(inode)->i_crtime))
2921 		return false;
2922 	return true;
2923 }
2924 
2925 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2926 {
2927 	bool ret;
2928 
2929 	if (dsync) {
2930 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2931 
2932 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2933 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2934 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2935 		return ret;
2936 	}
2937 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2938 			file_keep_isize(inode) ||
2939 			i_size_read(inode) & ~PAGE_MASK)
2940 		return false;
2941 
2942 	if (!f2fs_is_time_consistent(inode))
2943 		return false;
2944 
2945 	spin_lock(&F2FS_I(inode)->i_size_lock);
2946 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2947 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2948 
2949 	return ret;
2950 }
2951 
2952 static inline bool f2fs_readonly(struct super_block *sb)
2953 {
2954 	return sb_rdonly(sb);
2955 }
2956 
2957 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2958 {
2959 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2960 }
2961 
2962 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2963 {
2964 	if (len == 1 && name[0] == '.')
2965 		return true;
2966 
2967 	if (len == 2 && name[0] == '.' && name[1] == '.')
2968 		return true;
2969 
2970 	return false;
2971 }
2972 
2973 static inline bool f2fs_may_extent_tree(struct inode *inode)
2974 {
2975 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2976 
2977 	if (!test_opt(sbi, EXTENT_CACHE) ||
2978 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
2979 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2980 		return false;
2981 
2982 	/*
2983 	 * for recovered files during mount do not create extents
2984 	 * if shrinker is not registered.
2985 	 */
2986 	if (list_empty(&sbi->s_list))
2987 		return false;
2988 
2989 	return S_ISREG(inode->i_mode);
2990 }
2991 
2992 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2993 					size_t size, gfp_t flags)
2994 {
2995 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2996 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2997 		return NULL;
2998 	}
2999 
3000 	return kmalloc(size, flags);
3001 }
3002 
3003 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3004 					size_t size, gfp_t flags)
3005 {
3006 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3007 }
3008 
3009 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3010 					size_t size, gfp_t flags)
3011 {
3012 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3013 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3014 		return NULL;
3015 	}
3016 
3017 	return kvmalloc(size, flags);
3018 }
3019 
3020 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3021 					size_t size, gfp_t flags)
3022 {
3023 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3024 }
3025 
3026 static inline int get_extra_isize(struct inode *inode)
3027 {
3028 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3029 }
3030 
3031 static inline int get_inline_xattr_addrs(struct inode *inode)
3032 {
3033 	return F2FS_I(inode)->i_inline_xattr_size;
3034 }
3035 
3036 #define f2fs_get_inode_mode(i) \
3037 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3038 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3039 
3040 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3041 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3042 	offsetof(struct f2fs_inode, i_extra_isize))	\
3043 
3044 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3045 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3046 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3047 		sizeof((f2fs_inode)->field))			\
3048 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3049 
3050 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3051 #define MIN_IOSTAT_PERIOD_MS		100
3052 /* maximum period of iostat tracing is 1 day */
3053 #define MAX_IOSTAT_PERIOD_MS		8640000
3054 
3055 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3056 {
3057 	int i;
3058 
3059 	spin_lock(&sbi->iostat_lock);
3060 	for (i = 0; i < NR_IO_TYPE; i++) {
3061 		sbi->rw_iostat[i] = 0;
3062 		sbi->prev_rw_iostat[i] = 0;
3063 	}
3064 	spin_unlock(&sbi->iostat_lock);
3065 }
3066 
3067 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3068 
3069 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3070 			enum iostat_type type, unsigned long long io_bytes)
3071 {
3072 	if (!sbi->iostat_enable)
3073 		return;
3074 	spin_lock(&sbi->iostat_lock);
3075 	sbi->rw_iostat[type] += io_bytes;
3076 
3077 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3078 		sbi->rw_iostat[APP_BUFFERED_IO] =
3079 			sbi->rw_iostat[APP_WRITE_IO] -
3080 			sbi->rw_iostat[APP_DIRECT_IO];
3081 
3082 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3083 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3084 			sbi->rw_iostat[APP_READ_IO] -
3085 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3086 	spin_unlock(&sbi->iostat_lock);
3087 
3088 	f2fs_record_iostat(sbi);
3089 }
3090 
3091 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3092 
3093 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3094 
3095 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3096 					block_t blkaddr, int type);
3097 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3098 					block_t blkaddr, int type)
3099 {
3100 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3101 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3102 			 blkaddr, type);
3103 		f2fs_bug_on(sbi, 1);
3104 	}
3105 }
3106 
3107 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3108 {
3109 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3110 			blkaddr == COMPRESS_ADDR)
3111 		return false;
3112 	return true;
3113 }
3114 
3115 static inline void f2fs_set_page_private(struct page *page,
3116 						unsigned long data)
3117 {
3118 	if (PagePrivate(page))
3119 		return;
3120 
3121 	attach_page_private(page, (void *)data);
3122 }
3123 
3124 static inline void f2fs_clear_page_private(struct page *page)
3125 {
3126 	detach_page_private(page);
3127 }
3128 
3129 /*
3130  * file.c
3131  */
3132 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3133 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3134 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3135 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3136 int f2fs_truncate(struct inode *inode);
3137 int f2fs_getattr(const struct path *path, struct kstat *stat,
3138 			u32 request_mask, unsigned int flags);
3139 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3140 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3141 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3142 int f2fs_precache_extents(struct inode *inode);
3143 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3144 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3145 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3146 int f2fs_pin_file_control(struct inode *inode, bool inc);
3147 
3148 /*
3149  * inode.c
3150  */
3151 void f2fs_set_inode_flags(struct inode *inode);
3152 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3153 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3154 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3155 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3156 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3157 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3158 void f2fs_update_inode_page(struct inode *inode);
3159 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3160 void f2fs_evict_inode(struct inode *inode);
3161 void f2fs_handle_failed_inode(struct inode *inode);
3162 
3163 /*
3164  * namei.c
3165  */
3166 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3167 							bool hot, bool set);
3168 struct dentry *f2fs_get_parent(struct dentry *child);
3169 
3170 /*
3171  * dir.c
3172  */
3173 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3174 int f2fs_init_casefolded_name(const struct inode *dir,
3175 			      struct f2fs_filename *fname);
3176 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3177 			int lookup, struct f2fs_filename *fname);
3178 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3179 			struct f2fs_filename *fname);
3180 void f2fs_free_filename(struct f2fs_filename *fname);
3181 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3182 			const struct f2fs_filename *fname, int *max_slots);
3183 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3184 			unsigned int start_pos, struct fscrypt_str *fstr);
3185 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3186 			struct f2fs_dentry_ptr *d);
3187 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3188 			const struct f2fs_filename *fname, struct page *dpage);
3189 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3190 			unsigned int current_depth);
3191 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3192 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3193 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3194 					 const struct f2fs_filename *fname,
3195 					 struct page **res_page);
3196 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3197 			const struct qstr *child, struct page **res_page);
3198 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3199 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3200 			struct page **page);
3201 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3202 			struct page *page, struct inode *inode);
3203 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3204 			  const struct f2fs_filename *fname);
3205 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3206 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3207 			unsigned int bit_pos);
3208 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3209 			struct inode *inode, nid_t ino, umode_t mode);
3210 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3211 			struct inode *inode, nid_t ino, umode_t mode);
3212 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3213 			struct inode *inode, nid_t ino, umode_t mode);
3214 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3215 			struct inode *dir, struct inode *inode);
3216 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3217 bool f2fs_empty_dir(struct inode *dir);
3218 
3219 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3220 {
3221 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3222 				inode, inode->i_ino, inode->i_mode);
3223 }
3224 
3225 /*
3226  * super.c
3227  */
3228 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3229 void f2fs_inode_synced(struct inode *inode);
3230 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3231 int f2fs_quota_sync(struct super_block *sb, int type);
3232 void f2fs_quota_off_umount(struct super_block *sb);
3233 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3234 int f2fs_sync_fs(struct super_block *sb, int sync);
3235 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3236 
3237 /*
3238  * hash.c
3239  */
3240 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3241 
3242 /*
3243  * node.c
3244  */
3245 struct dnode_of_data;
3246 struct node_info;
3247 
3248 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3249 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3250 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3251 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3252 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3253 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3254 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3255 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3256 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3257 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3258 						struct node_info *ni);
3259 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3260 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3261 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3262 int f2fs_truncate_xattr_node(struct inode *inode);
3263 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3264 					unsigned int seq_id);
3265 int f2fs_remove_inode_page(struct inode *inode);
3266 struct page *f2fs_new_inode_page(struct inode *inode);
3267 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3268 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3269 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3270 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3271 int f2fs_move_node_page(struct page *node_page, int gc_type);
3272 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3273 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3274 			struct writeback_control *wbc, bool atomic,
3275 			unsigned int *seq_id);
3276 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3277 			struct writeback_control *wbc,
3278 			bool do_balance, enum iostat_type io_type);
3279 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3280 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3281 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3282 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3283 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3284 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3285 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3286 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3287 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3288 			unsigned int segno, struct f2fs_summary_block *sum);
3289 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3290 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3291 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3292 int __init f2fs_create_node_manager_caches(void);
3293 void f2fs_destroy_node_manager_caches(void);
3294 
3295 /*
3296  * segment.c
3297  */
3298 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3299 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3300 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3301 void f2fs_drop_inmem_pages(struct inode *inode);
3302 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3303 int f2fs_commit_inmem_pages(struct inode *inode);
3304 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3305 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3306 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3307 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3308 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3309 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3310 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3311 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3312 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3313 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3314 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3315 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3316 					struct cp_control *cpc);
3317 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3318 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3319 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3320 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3321 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3322 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3323 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3324 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3325 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3326 			unsigned int *newseg, bool new_sec, int dir);
3327 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3328 					unsigned int start, unsigned int end);
3329 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3330 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3331 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3332 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3333 					struct cp_control *cpc);
3334 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3335 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3336 					block_t blk_addr);
3337 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3338 						enum iostat_type io_type);
3339 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3340 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3341 			struct f2fs_io_info *fio);
3342 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3343 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3344 			block_t old_blkaddr, block_t new_blkaddr,
3345 			bool recover_curseg, bool recover_newaddr,
3346 			bool from_gc);
3347 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3348 			block_t old_addr, block_t new_addr,
3349 			unsigned char version, bool recover_curseg,
3350 			bool recover_newaddr);
3351 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3352 			block_t old_blkaddr, block_t *new_blkaddr,
3353 			struct f2fs_summary *sum, int type,
3354 			struct f2fs_io_info *fio);
3355 void f2fs_wait_on_page_writeback(struct page *page,
3356 			enum page_type type, bool ordered, bool locked);
3357 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3358 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3359 								block_t len);
3360 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3361 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3362 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3363 			unsigned int val, int alloc);
3364 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3365 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3366 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3367 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3368 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3369 int __init f2fs_create_segment_manager_caches(void);
3370 void f2fs_destroy_segment_manager_caches(void);
3371 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3372 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3373 			enum page_type type, enum temp_type temp);
3374 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3375 			unsigned int segno);
3376 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3377 			unsigned int segno);
3378 
3379 /*
3380  * checkpoint.c
3381  */
3382 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3383 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3384 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3385 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3386 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3387 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3388 					block_t blkaddr, int type);
3389 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3390 			int type, bool sync);
3391 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3392 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3393 			long nr_to_write, enum iostat_type io_type);
3394 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3395 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3396 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3397 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3398 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3399 					unsigned int devidx, int type);
3400 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3401 					unsigned int devidx, int type);
3402 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3403 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3404 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3405 void f2fs_add_orphan_inode(struct inode *inode);
3406 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3407 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3408 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3409 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3410 void f2fs_remove_dirty_inode(struct inode *inode);
3411 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3412 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3413 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3414 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3415 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3416 int __init f2fs_create_checkpoint_caches(void);
3417 void f2fs_destroy_checkpoint_caches(void);
3418 
3419 /*
3420  * data.c
3421  */
3422 int __init f2fs_init_bioset(void);
3423 void f2fs_destroy_bioset(void);
3424 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3425 int f2fs_init_bio_entry_cache(void);
3426 void f2fs_destroy_bio_entry_cache(void);
3427 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3428 				struct bio *bio, enum page_type type);
3429 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3430 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3431 				struct inode *inode, struct page *page,
3432 				nid_t ino, enum page_type type);
3433 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3434 					struct bio **bio, struct page *page);
3435 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3436 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3437 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3438 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3439 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3440 			block_t blk_addr, struct bio *bio);
3441 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3442 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3443 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3444 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3445 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3446 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3447 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3448 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3449 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3450 			int op_flags, bool for_write);
3451 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3452 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3453 			bool for_write);
3454 struct page *f2fs_get_new_data_page(struct inode *inode,
3455 			struct page *ipage, pgoff_t index, bool new_i_size);
3456 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3457 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3458 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3459 			int create, int flag);
3460 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3461 			u64 start, u64 len);
3462 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3463 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3464 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3465 int f2fs_write_single_data_page(struct page *page, int *submitted,
3466 				struct bio **bio, sector_t *last_block,
3467 				struct writeback_control *wbc,
3468 				enum iostat_type io_type,
3469 				int compr_blocks);
3470 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3471 			unsigned int length);
3472 int f2fs_release_page(struct page *page, gfp_t wait);
3473 #ifdef CONFIG_MIGRATION
3474 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3475 			struct page *page, enum migrate_mode mode);
3476 #endif
3477 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3478 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3479 int f2fs_init_post_read_processing(void);
3480 void f2fs_destroy_post_read_processing(void);
3481 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3482 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3483 
3484 /*
3485  * gc.c
3486  */
3487 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3488 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3489 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3490 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3491 			unsigned int segno);
3492 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3493 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3494 int __init f2fs_create_garbage_collection_cache(void);
3495 void f2fs_destroy_garbage_collection_cache(void);
3496 
3497 /*
3498  * recovery.c
3499  */
3500 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3501 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3502 
3503 /*
3504  * debug.c
3505  */
3506 #ifdef CONFIG_F2FS_STAT_FS
3507 struct f2fs_stat_info {
3508 	struct list_head stat_list;
3509 	struct f2fs_sb_info *sbi;
3510 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3511 	int main_area_segs, main_area_sections, main_area_zones;
3512 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3513 	unsigned long long hit_total, total_ext;
3514 	int ext_tree, zombie_tree, ext_node;
3515 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3516 	int ndirty_data, ndirty_qdata;
3517 	int inmem_pages;
3518 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3519 	int nats, dirty_nats, sits, dirty_sits;
3520 	int free_nids, avail_nids, alloc_nids;
3521 	int total_count, utilization;
3522 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3523 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3524 	int nr_dio_read, nr_dio_write;
3525 	unsigned int io_skip_bggc, other_skip_bggc;
3526 	int nr_flushing, nr_flushed, flush_list_empty;
3527 	int nr_discarding, nr_discarded;
3528 	int nr_discard_cmd;
3529 	unsigned int undiscard_blks;
3530 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3531 	int compr_inode;
3532 	unsigned long long compr_blocks;
3533 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3534 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3535 	unsigned int bimodal, avg_vblocks;
3536 	int util_free, util_valid, util_invalid;
3537 	int rsvd_segs, overp_segs;
3538 	int dirty_count, node_pages, meta_pages;
3539 	int prefree_count, call_count, cp_count, bg_cp_count;
3540 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3541 	int bg_node_segs, bg_data_segs;
3542 	int tot_blks, data_blks, node_blks;
3543 	int bg_data_blks, bg_node_blks;
3544 	unsigned long long skipped_atomic_files[2];
3545 	int curseg[NR_CURSEG_TYPE];
3546 	int cursec[NR_CURSEG_TYPE];
3547 	int curzone[NR_CURSEG_TYPE];
3548 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3549 	unsigned int full_seg[NR_CURSEG_TYPE];
3550 	unsigned int valid_blks[NR_CURSEG_TYPE];
3551 
3552 	unsigned int meta_count[META_MAX];
3553 	unsigned int segment_count[2];
3554 	unsigned int block_count[2];
3555 	unsigned int inplace_count;
3556 	unsigned long long base_mem, cache_mem, page_mem;
3557 };
3558 
3559 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3560 {
3561 	return (struct f2fs_stat_info *)sbi->stat_info;
3562 }
3563 
3564 #define stat_inc_cp_count(si)		((si)->cp_count++)
3565 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3566 #define stat_inc_call_count(si)		((si)->call_count++)
3567 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3568 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3569 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3570 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3571 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3572 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3573 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3574 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3575 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3576 #define stat_inc_inline_xattr(inode)					\
3577 	do {								\
3578 		if (f2fs_has_inline_xattr(inode))			\
3579 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3580 	} while (0)
3581 #define stat_dec_inline_xattr(inode)					\
3582 	do {								\
3583 		if (f2fs_has_inline_xattr(inode))			\
3584 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3585 	} while (0)
3586 #define stat_inc_inline_inode(inode)					\
3587 	do {								\
3588 		if (f2fs_has_inline_data(inode))			\
3589 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3590 	} while (0)
3591 #define stat_dec_inline_inode(inode)					\
3592 	do {								\
3593 		if (f2fs_has_inline_data(inode))			\
3594 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3595 	} while (0)
3596 #define stat_inc_inline_dir(inode)					\
3597 	do {								\
3598 		if (f2fs_has_inline_dentry(inode))			\
3599 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3600 	} while (0)
3601 #define stat_dec_inline_dir(inode)					\
3602 	do {								\
3603 		if (f2fs_has_inline_dentry(inode))			\
3604 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3605 	} while (0)
3606 #define stat_inc_compr_inode(inode)					\
3607 	do {								\
3608 		if (f2fs_compressed_file(inode))			\
3609 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3610 	} while (0)
3611 #define stat_dec_compr_inode(inode)					\
3612 	do {								\
3613 		if (f2fs_compressed_file(inode))			\
3614 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3615 	} while (0)
3616 #define stat_add_compr_blocks(inode, blocks)				\
3617 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3618 #define stat_sub_compr_blocks(inode, blocks)				\
3619 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3620 #define stat_inc_meta_count(sbi, blkaddr)				\
3621 	do {								\
3622 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3623 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3624 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3625 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3626 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3627 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3628 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3629 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3630 	} while (0)
3631 #define stat_inc_seg_type(sbi, curseg)					\
3632 		((sbi)->segment_count[(curseg)->alloc_type]++)
3633 #define stat_inc_block_count(sbi, curseg)				\
3634 		((sbi)->block_count[(curseg)->alloc_type]++)
3635 #define stat_inc_inplace_blocks(sbi)					\
3636 		(atomic_inc(&(sbi)->inplace_count))
3637 #define stat_update_max_atomic_write(inode)				\
3638 	do {								\
3639 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3640 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3641 		if (cur > max)						\
3642 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3643 	} while (0)
3644 #define stat_inc_volatile_write(inode)					\
3645 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3646 #define stat_dec_volatile_write(inode)					\
3647 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3648 #define stat_update_max_volatile_write(inode)				\
3649 	do {								\
3650 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3651 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3652 		if (cur > max)						\
3653 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3654 	} while (0)
3655 #define stat_inc_seg_count(sbi, type, gc_type)				\
3656 	do {								\
3657 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3658 		si->tot_segs++;						\
3659 		if ((type) == SUM_TYPE_DATA) {				\
3660 			si->data_segs++;				\
3661 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3662 		} else {						\
3663 			si->node_segs++;				\
3664 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3665 		}							\
3666 	} while (0)
3667 
3668 #define stat_inc_tot_blk_count(si, blks)				\
3669 	((si)->tot_blks += (blks))
3670 
3671 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3672 	do {								\
3673 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3674 		stat_inc_tot_blk_count(si, blks);			\
3675 		si->data_blks += (blks);				\
3676 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3677 	} while (0)
3678 
3679 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3680 	do {								\
3681 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3682 		stat_inc_tot_blk_count(si, blks);			\
3683 		si->node_blks += (blks);				\
3684 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3685 	} while (0)
3686 
3687 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3688 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3689 void __init f2fs_create_root_stats(void);
3690 void f2fs_destroy_root_stats(void);
3691 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3692 #else
3693 #define stat_inc_cp_count(si)				do { } while (0)
3694 #define stat_inc_bg_cp_count(si)			do { } while (0)
3695 #define stat_inc_call_count(si)				do { } while (0)
3696 #define stat_inc_bggc_count(si)				do { } while (0)
3697 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3698 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3699 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3700 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3701 #define stat_inc_total_hit(sbi)				do { } while (0)
3702 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3703 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3704 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3705 #define stat_inc_inline_xattr(inode)			do { } while (0)
3706 #define stat_dec_inline_xattr(inode)			do { } while (0)
3707 #define stat_inc_inline_inode(inode)			do { } while (0)
3708 #define stat_dec_inline_inode(inode)			do { } while (0)
3709 #define stat_inc_inline_dir(inode)			do { } while (0)
3710 #define stat_dec_inline_dir(inode)			do { } while (0)
3711 #define stat_inc_compr_inode(inode)			do { } while (0)
3712 #define stat_dec_compr_inode(inode)			do { } while (0)
3713 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3714 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3715 #define stat_inc_atomic_write(inode)			do { } while (0)
3716 #define stat_dec_atomic_write(inode)			do { } while (0)
3717 #define stat_update_max_atomic_write(inode)		do { } while (0)
3718 #define stat_inc_volatile_write(inode)			do { } while (0)
3719 #define stat_dec_volatile_write(inode)			do { } while (0)
3720 #define stat_update_max_volatile_write(inode)		do { } while (0)
3721 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3722 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3723 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3724 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3725 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3726 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3727 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3728 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3729 
3730 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3731 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3732 static inline void __init f2fs_create_root_stats(void) { }
3733 static inline void f2fs_destroy_root_stats(void) { }
3734 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3735 #endif
3736 
3737 extern const struct file_operations f2fs_dir_operations;
3738 extern const struct file_operations f2fs_file_operations;
3739 extern const struct inode_operations f2fs_file_inode_operations;
3740 extern const struct address_space_operations f2fs_dblock_aops;
3741 extern const struct address_space_operations f2fs_node_aops;
3742 extern const struct address_space_operations f2fs_meta_aops;
3743 extern const struct inode_operations f2fs_dir_inode_operations;
3744 extern const struct inode_operations f2fs_symlink_inode_operations;
3745 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3746 extern const struct inode_operations f2fs_special_inode_operations;
3747 extern struct kmem_cache *f2fs_inode_entry_slab;
3748 
3749 /*
3750  * inline.c
3751  */
3752 bool f2fs_may_inline_data(struct inode *inode);
3753 bool f2fs_may_inline_dentry(struct inode *inode);
3754 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3755 void f2fs_truncate_inline_inode(struct inode *inode,
3756 						struct page *ipage, u64 from);
3757 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3758 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3759 int f2fs_convert_inline_inode(struct inode *inode);
3760 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3761 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3762 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3763 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3764 					const struct f2fs_filename *fname,
3765 					struct page **res_page);
3766 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3767 			struct page *ipage);
3768 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3769 			struct inode *inode, nid_t ino, umode_t mode);
3770 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3771 				struct page *page, struct inode *dir,
3772 				struct inode *inode);
3773 bool f2fs_empty_inline_dir(struct inode *dir);
3774 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3775 			struct fscrypt_str *fstr);
3776 int f2fs_inline_data_fiemap(struct inode *inode,
3777 			struct fiemap_extent_info *fieinfo,
3778 			__u64 start, __u64 len);
3779 
3780 /*
3781  * shrinker.c
3782  */
3783 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3784 			struct shrink_control *sc);
3785 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3786 			struct shrink_control *sc);
3787 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3788 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3789 
3790 /*
3791  * extent_cache.c
3792  */
3793 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3794 				struct rb_entry *cached_re, unsigned int ofs);
3795 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3796 				struct rb_root_cached *root,
3797 				struct rb_node **parent,
3798 				unsigned long long key, bool *left_most);
3799 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3800 				struct rb_root_cached *root,
3801 				struct rb_node **parent,
3802 				unsigned int ofs, bool *leftmost);
3803 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3804 		struct rb_entry *cached_re, unsigned int ofs,
3805 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3806 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3807 		bool force, bool *leftmost);
3808 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3809 				struct rb_root_cached *root, bool check_key);
3810 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3811 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3812 void f2fs_drop_extent_tree(struct inode *inode);
3813 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3814 void f2fs_destroy_extent_tree(struct inode *inode);
3815 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3816 			struct extent_info *ei);
3817 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3818 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3819 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3820 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3821 int __init f2fs_create_extent_cache(void);
3822 void f2fs_destroy_extent_cache(void);
3823 
3824 /*
3825  * sysfs.c
3826  */
3827 int __init f2fs_init_sysfs(void);
3828 void f2fs_exit_sysfs(void);
3829 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3830 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3831 
3832 /* verity.c */
3833 extern const struct fsverity_operations f2fs_verityops;
3834 
3835 /*
3836  * crypto support
3837  */
3838 static inline bool f2fs_encrypted_file(struct inode *inode)
3839 {
3840 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3841 }
3842 
3843 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3844 {
3845 #ifdef CONFIG_FS_ENCRYPTION
3846 	file_set_encrypt(inode);
3847 	f2fs_set_inode_flags(inode);
3848 #endif
3849 }
3850 
3851 /*
3852  * Returns true if the reads of the inode's data need to undergo some
3853  * postprocessing step, like decryption or authenticity verification.
3854  */
3855 static inline bool f2fs_post_read_required(struct inode *inode)
3856 {
3857 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3858 		f2fs_compressed_file(inode);
3859 }
3860 
3861 /*
3862  * compress.c
3863  */
3864 #ifdef CONFIG_F2FS_FS_COMPRESSION
3865 bool f2fs_is_compressed_page(struct page *page);
3866 struct page *f2fs_compress_control_page(struct page *page);
3867 int f2fs_prepare_compress_overwrite(struct inode *inode,
3868 			struct page **pagep, pgoff_t index, void **fsdata);
3869 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3870 					pgoff_t index, unsigned copied);
3871 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3872 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3873 bool f2fs_is_compress_backend_ready(struct inode *inode);
3874 int f2fs_init_compress_mempool(void);
3875 void f2fs_destroy_compress_mempool(void);
3876 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3877 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3878 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3879 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3880 int f2fs_write_multi_pages(struct compress_ctx *cc,
3881 						int *submitted,
3882 						struct writeback_control *wbc,
3883 						enum iostat_type io_type);
3884 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3885 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3886 				unsigned nr_pages, sector_t *last_block_in_bio,
3887 				bool is_readahead, bool for_write);
3888 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3889 void f2fs_free_dic(struct decompress_io_ctx *dic);
3890 void f2fs_decompress_end_io(struct page **rpages,
3891 			unsigned int cluster_size, bool err, bool verity);
3892 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3893 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3894 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3895 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3896 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3897 int __init f2fs_init_compress_cache(void);
3898 void f2fs_destroy_compress_cache(void);
3899 #else
3900 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3901 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3902 {
3903 	if (!f2fs_compressed_file(inode))
3904 		return true;
3905 	/* not support compression */
3906 	return false;
3907 }
3908 static inline struct page *f2fs_compress_control_page(struct page *page)
3909 {
3910 	WARN_ON_ONCE(1);
3911 	return ERR_PTR(-EINVAL);
3912 }
3913 static inline int f2fs_init_compress_mempool(void) { return 0; }
3914 static inline void f2fs_destroy_compress_mempool(void) { }
3915 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3916 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3917 static inline int __init f2fs_init_compress_cache(void) { return 0; }
3918 static inline void f2fs_destroy_compress_cache(void) { }
3919 #endif
3920 
3921 static inline void set_compress_context(struct inode *inode)
3922 {
3923 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3924 
3925 	F2FS_I(inode)->i_compress_algorithm =
3926 			F2FS_OPTION(sbi).compress_algorithm;
3927 	F2FS_I(inode)->i_log_cluster_size =
3928 			F2FS_OPTION(sbi).compress_log_size;
3929 	F2FS_I(inode)->i_compress_flag =
3930 			F2FS_OPTION(sbi).compress_chksum ?
3931 				1 << COMPRESS_CHKSUM : 0;
3932 	F2FS_I(inode)->i_cluster_size =
3933 			1 << F2FS_I(inode)->i_log_cluster_size;
3934 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3935 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3936 	stat_inc_compr_inode(inode);
3937 	f2fs_mark_inode_dirty_sync(inode, true);
3938 }
3939 
3940 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3941 {
3942 	struct f2fs_inode_info *fi = F2FS_I(inode);
3943 
3944 	if (!f2fs_compressed_file(inode))
3945 		return true;
3946 	if (S_ISREG(inode->i_mode) &&
3947 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3948 		return false;
3949 
3950 	fi->i_flags &= ~F2FS_COMPR_FL;
3951 	stat_dec_compr_inode(inode);
3952 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3953 	f2fs_mark_inode_dirty_sync(inode, true);
3954 	return true;
3955 }
3956 
3957 #define F2FS_FEATURE_FUNCS(name, flagname) \
3958 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3959 { \
3960 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3961 }
3962 
3963 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3964 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3965 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3966 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3967 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3968 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3969 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3970 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3971 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3972 F2FS_FEATURE_FUNCS(verity, VERITY);
3973 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3974 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3975 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3976 
3977 #ifdef CONFIG_BLK_DEV_ZONED
3978 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3979 				    block_t blkaddr)
3980 {
3981 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3982 
3983 	return test_bit(zno, FDEV(devi).blkz_seq);
3984 }
3985 #endif
3986 
3987 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3988 {
3989 	return f2fs_sb_has_blkzoned(sbi);
3990 }
3991 
3992 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3993 {
3994 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3995 	       bdev_is_zoned(bdev);
3996 }
3997 
3998 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3999 {
4000 	int i;
4001 
4002 	if (!f2fs_is_multi_device(sbi))
4003 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4004 
4005 	for (i = 0; i < sbi->s_ndevs; i++)
4006 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4007 			return true;
4008 	return false;
4009 }
4010 
4011 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4012 {
4013 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4014 					f2fs_hw_should_discard(sbi);
4015 }
4016 
4017 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4018 {
4019 	int i;
4020 
4021 	if (!f2fs_is_multi_device(sbi))
4022 		return bdev_read_only(sbi->sb->s_bdev);
4023 
4024 	for (i = 0; i < sbi->s_ndevs; i++)
4025 		if (bdev_read_only(FDEV(i).bdev))
4026 			return true;
4027 	return false;
4028 }
4029 
4030 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4031 {
4032 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4033 }
4034 
4035 static inline bool f2fs_may_compress(struct inode *inode)
4036 {
4037 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4038 				f2fs_is_atomic_file(inode) ||
4039 				f2fs_is_volatile_file(inode))
4040 		return false;
4041 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4042 }
4043 
4044 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4045 						u64 blocks, bool add)
4046 {
4047 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4048 	struct f2fs_inode_info *fi = F2FS_I(inode);
4049 
4050 	/* don't update i_compr_blocks if saved blocks were released */
4051 	if (!add && !atomic_read(&fi->i_compr_blocks))
4052 		return;
4053 
4054 	if (add) {
4055 		atomic_add(diff, &fi->i_compr_blocks);
4056 		stat_add_compr_blocks(inode, diff);
4057 	} else {
4058 		atomic_sub(diff, &fi->i_compr_blocks);
4059 		stat_sub_compr_blocks(inode, diff);
4060 	}
4061 	f2fs_mark_inode_dirty_sync(inode, true);
4062 }
4063 
4064 static inline int block_unaligned_IO(struct inode *inode,
4065 				struct kiocb *iocb, struct iov_iter *iter)
4066 {
4067 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4068 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4069 	loff_t offset = iocb->ki_pos;
4070 	unsigned long align = offset | iov_iter_alignment(iter);
4071 
4072 	return align & blocksize_mask;
4073 }
4074 
4075 static inline int allow_outplace_dio(struct inode *inode,
4076 				struct kiocb *iocb, struct iov_iter *iter)
4077 {
4078 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4079 	int rw = iov_iter_rw(iter);
4080 
4081 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4082 				!block_unaligned_IO(inode, iocb, iter));
4083 }
4084 
4085 static inline bool f2fs_force_buffered_io(struct inode *inode,
4086 				struct kiocb *iocb, struct iov_iter *iter)
4087 {
4088 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4089 	int rw = iov_iter_rw(iter);
4090 
4091 	if (f2fs_post_read_required(inode))
4092 		return true;
4093 	if (f2fs_is_multi_device(sbi))
4094 		return true;
4095 	/*
4096 	 * for blkzoned device, fallback direct IO to buffered IO, so
4097 	 * all IOs can be serialized by log-structured write.
4098 	 */
4099 	if (f2fs_sb_has_blkzoned(sbi))
4100 		return true;
4101 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4102 		if (block_unaligned_IO(inode, iocb, iter))
4103 			return true;
4104 		if (F2FS_IO_ALIGNED(sbi))
4105 			return true;
4106 	}
4107 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4108 					!IS_SWAPFILE(inode))
4109 		return true;
4110 
4111 	return false;
4112 }
4113 
4114 #ifdef CONFIG_F2FS_FAULT_INJECTION
4115 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4116 							unsigned int type);
4117 #else
4118 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4119 #endif
4120 
4121 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4122 {
4123 #ifdef CONFIG_QUOTA
4124 	if (f2fs_sb_has_quota_ino(sbi))
4125 		return true;
4126 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4127 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4128 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4129 		return true;
4130 #endif
4131 	return false;
4132 }
4133 
4134 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4135 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4136 
4137 #endif /* _LINUX_F2FS_H */
4138