xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 1018a546)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 struct pagevec;
32 
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition)					\
37 	do {								\
38 		if (WARN_ON(condition))					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_SLAB_ALLOC,
60 	FAULT_DQUOT_INIT,
61 	FAULT_LOCK_OP,
62 	FAULT_MAX,
63 };
64 
65 #ifdef CONFIG_F2FS_FAULT_INJECTION
66 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
67 
68 struct f2fs_fault_info {
69 	atomic_t inject_ops;
70 	unsigned int inject_rate;
71 	unsigned int inject_type;
72 };
73 
74 extern const char *f2fs_fault_name[FAULT_MAX];
75 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
76 #endif
77 
78 /*
79  * For mount options
80  */
81 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
82 #define F2FS_MOUNT_DISCARD		0x00000004
83 #define F2FS_MOUNT_NOHEAP		0x00000008
84 #define F2FS_MOUNT_XATTR_USER		0x00000010
85 #define F2FS_MOUNT_POSIX_ACL		0x00000020
86 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
87 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
88 #define F2FS_MOUNT_INLINE_DATA		0x00000100
89 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
90 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
91 #define F2FS_MOUNT_NOBARRIER		0x00000800
92 #define F2FS_MOUNT_FASTBOOT		0x00001000
93 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
94 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
95 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 #define F2FS_MOUNT_NORECOVERY		0x04000000
104 #define F2FS_MOUNT_ATGC			0x08000000
105 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
106 #define	F2FS_MOUNT_GC_MERGE		0x20000000
107 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
108 
109 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
110 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
111 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
112 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
113 
114 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
115 		typecheck(unsigned long long, b) &&			\
116 		((long long)((a) - (b)) > 0))
117 
118 typedef u32 block_t;	/*
119 			 * should not change u32, since it is the on-disk block
120 			 * address format, __le32.
121 			 */
122 typedef u32 nid_t;
123 
124 #define COMPRESS_EXT_NUM		16
125 
126 /*
127  * An implementation of an rwsem that is explicitly unfair to readers. This
128  * prevents priority inversion when a low-priority reader acquires the read lock
129  * while sleeping on the write lock but the write lock is needed by
130  * higher-priority clients.
131  */
132 
133 struct f2fs_rwsem {
134         struct rw_semaphore internal_rwsem;
135         wait_queue_head_t read_waiters;
136 };
137 
138 struct f2fs_mount_info {
139 	unsigned int opt;
140 	int write_io_size_bits;		/* Write IO size bits */
141 	block_t root_reserved_blocks;	/* root reserved blocks */
142 	kuid_t s_resuid;		/* reserved blocks for uid */
143 	kgid_t s_resgid;		/* reserved blocks for gid */
144 	int active_logs;		/* # of active logs */
145 	int inline_xattr_size;		/* inline xattr size */
146 #ifdef CONFIG_F2FS_FAULT_INJECTION
147 	struct f2fs_fault_info fault_info;	/* For fault injection */
148 #endif
149 #ifdef CONFIG_QUOTA
150 	/* Names of quota files with journalled quota */
151 	char *s_qf_names[MAXQUOTAS];
152 	int s_jquota_fmt;			/* Format of quota to use */
153 #endif
154 	/* For which write hints are passed down to block layer */
155 	int whint_mode;
156 	int alloc_mode;			/* segment allocation policy */
157 	int fsync_mode;			/* fsync policy */
158 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
159 	int bggc_mode;			/* bggc mode: off, on or sync */
160 	int discard_unit;		/*
161 					 * discard command's offset/size should
162 					 * be aligned to this unit: block,
163 					 * segment or section
164 					 */
165 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
166 	block_t unusable_cap_perc;	/* percentage for cap */
167 	block_t unusable_cap;		/* Amount of space allowed to be
168 					 * unusable when disabling checkpoint
169 					 */
170 
171 	/* For compression */
172 	unsigned char compress_algorithm;	/* algorithm type */
173 	unsigned char compress_log_size;	/* cluster log size */
174 	unsigned char compress_level;		/* compress level */
175 	bool compress_chksum;			/* compressed data chksum */
176 	unsigned char compress_ext_cnt;		/* extension count */
177 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
178 	int compress_mode;			/* compression mode */
179 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
180 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
181 };
182 
183 #define F2FS_FEATURE_ENCRYPT		0x0001
184 #define F2FS_FEATURE_BLKZONED		0x0002
185 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
186 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
187 #define F2FS_FEATURE_PRJQUOTA		0x0010
188 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
189 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
190 #define F2FS_FEATURE_QUOTA_INO		0x0080
191 #define F2FS_FEATURE_INODE_CRTIME	0x0100
192 #define F2FS_FEATURE_LOST_FOUND		0x0200
193 #define F2FS_FEATURE_VERITY		0x0400
194 #define F2FS_FEATURE_SB_CHKSUM		0x0800
195 #define F2FS_FEATURE_CASEFOLD		0x1000
196 #define F2FS_FEATURE_COMPRESSION	0x2000
197 #define F2FS_FEATURE_RO			0x4000
198 
199 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
200 	((raw_super->feature & cpu_to_le32(mask)) != 0)
201 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
202 #define F2FS_SET_FEATURE(sbi, mask)					\
203 	(sbi->raw_super->feature |= cpu_to_le32(mask))
204 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
205 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
206 
207 /*
208  * Default values for user and/or group using reserved blocks
209  */
210 #define	F2FS_DEF_RESUID		0
211 #define	F2FS_DEF_RESGID		0
212 
213 /*
214  * For checkpoint manager
215  */
216 enum {
217 	NAT_BITMAP,
218 	SIT_BITMAP
219 };
220 
221 #define	CP_UMOUNT	0x00000001
222 #define	CP_FASTBOOT	0x00000002
223 #define	CP_SYNC		0x00000004
224 #define	CP_RECOVERY	0x00000008
225 #define	CP_DISCARD	0x00000010
226 #define CP_TRIMMED	0x00000020
227 #define CP_PAUSE	0x00000040
228 #define CP_RESIZE 	0x00000080
229 
230 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
231 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
232 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
233 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
234 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
235 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
236 #define DEF_CP_INTERVAL			60	/* 60 secs */
237 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
238 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
239 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
240 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
241 
242 struct cp_control {
243 	int reason;
244 	__u64 trim_start;
245 	__u64 trim_end;
246 	__u64 trim_minlen;
247 };
248 
249 /*
250  * indicate meta/data type
251  */
252 enum {
253 	META_CP,
254 	META_NAT,
255 	META_SIT,
256 	META_SSA,
257 	META_MAX,
258 	META_POR,
259 	DATA_GENERIC,		/* check range only */
260 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
261 	DATA_GENERIC_ENHANCE_READ,	/*
262 					 * strong check on range and segment
263 					 * bitmap but no warning due to race
264 					 * condition of read on truncated area
265 					 * by extent_cache
266 					 */
267 	META_GENERIC,
268 };
269 
270 /* for the list of ino */
271 enum {
272 	ORPHAN_INO,		/* for orphan ino list */
273 	APPEND_INO,		/* for append ino list */
274 	UPDATE_INO,		/* for update ino list */
275 	TRANS_DIR_INO,		/* for trasactions dir ino list */
276 	FLUSH_INO,		/* for multiple device flushing */
277 	MAX_INO_ENTRY,		/* max. list */
278 };
279 
280 struct ino_entry {
281 	struct list_head list;		/* list head */
282 	nid_t ino;			/* inode number */
283 	unsigned int dirty_device;	/* dirty device bitmap */
284 };
285 
286 /* for the list of inodes to be GCed */
287 struct inode_entry {
288 	struct list_head list;	/* list head */
289 	struct inode *inode;	/* vfs inode pointer */
290 };
291 
292 struct fsync_node_entry {
293 	struct list_head list;	/* list head */
294 	struct page *page;	/* warm node page pointer */
295 	unsigned int seq_id;	/* sequence id */
296 };
297 
298 struct ckpt_req {
299 	struct completion wait;		/* completion for checkpoint done */
300 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
301 	int ret;			/* return code of checkpoint */
302 	ktime_t queue_time;		/* request queued time */
303 };
304 
305 struct ckpt_req_control {
306 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
307 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
308 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
309 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
310 	atomic_t total_ckpt;		/* # of total ckpts */
311 	atomic_t queued_ckpt;		/* # of queued ckpts */
312 	struct llist_head issue_list;	/* list for command issue */
313 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
314 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
315 	unsigned int peak_time;		/* peak wait time in msec until now */
316 };
317 
318 /* for the bitmap indicate blocks to be discarded */
319 struct discard_entry {
320 	struct list_head list;	/* list head */
321 	block_t start_blkaddr;	/* start blockaddr of current segment */
322 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
323 };
324 
325 /* default discard granularity of inner discard thread, unit: block count */
326 #define DEFAULT_DISCARD_GRANULARITY		16
327 
328 /* max discard pend list number */
329 #define MAX_PLIST_NUM		512
330 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
331 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
332 
333 enum {
334 	D_PREP,			/* initial */
335 	D_PARTIAL,		/* partially submitted */
336 	D_SUBMIT,		/* all submitted */
337 	D_DONE,			/* finished */
338 };
339 
340 struct discard_info {
341 	block_t lstart;			/* logical start address */
342 	block_t len;			/* length */
343 	block_t start;			/* actual start address in dev */
344 };
345 
346 struct discard_cmd {
347 	struct rb_node rb_node;		/* rb node located in rb-tree */
348 	union {
349 		struct {
350 			block_t lstart;	/* logical start address */
351 			block_t len;	/* length */
352 			block_t start;	/* actual start address in dev */
353 		};
354 		struct discard_info di;	/* discard info */
355 
356 	};
357 	struct list_head list;		/* command list */
358 	struct completion wait;		/* compleation */
359 	struct block_device *bdev;	/* bdev */
360 	unsigned short ref;		/* reference count */
361 	unsigned char state;		/* state */
362 	unsigned char queued;		/* queued discard */
363 	int error;			/* bio error */
364 	spinlock_t lock;		/* for state/bio_ref updating */
365 	unsigned short bio_ref;		/* bio reference count */
366 };
367 
368 enum {
369 	DPOLICY_BG,
370 	DPOLICY_FORCE,
371 	DPOLICY_FSTRIM,
372 	DPOLICY_UMOUNT,
373 	MAX_DPOLICY,
374 };
375 
376 struct discard_policy {
377 	int type;			/* type of discard */
378 	unsigned int min_interval;	/* used for candidates exist */
379 	unsigned int mid_interval;	/* used for device busy */
380 	unsigned int max_interval;	/* used for candidates not exist */
381 	unsigned int max_requests;	/* # of discards issued per round */
382 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
383 	bool io_aware;			/* issue discard in idle time */
384 	bool sync;			/* submit discard with REQ_SYNC flag */
385 	bool ordered;			/* issue discard by lba order */
386 	bool timeout;			/* discard timeout for put_super */
387 	unsigned int granularity;	/* discard granularity */
388 };
389 
390 struct discard_cmd_control {
391 	struct task_struct *f2fs_issue_discard;	/* discard thread */
392 	struct list_head entry_list;		/* 4KB discard entry list */
393 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
394 	struct list_head wait_list;		/* store on-flushing entries */
395 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
396 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
397 	unsigned int discard_wake;		/* to wake up discard thread */
398 	struct mutex cmd_lock;
399 	unsigned int nr_discards;		/* # of discards in the list */
400 	unsigned int max_discards;		/* max. discards to be issued */
401 	unsigned int max_discard_request;	/* max. discard request per round */
402 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
403 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
404 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
405 	unsigned int discard_granularity;	/* discard granularity */
406 	unsigned int undiscard_blks;		/* # of undiscard blocks */
407 	unsigned int next_pos;			/* next discard position */
408 	atomic_t issued_discard;		/* # of issued discard */
409 	atomic_t queued_discard;		/* # of queued discard */
410 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
411 	struct rb_root_cached root;		/* root of discard rb-tree */
412 	bool rbtree_check;			/* config for consistence check */
413 };
414 
415 /* for the list of fsync inodes, used only during recovery */
416 struct fsync_inode_entry {
417 	struct list_head list;	/* list head */
418 	struct inode *inode;	/* vfs inode pointer */
419 	block_t blkaddr;	/* block address locating the last fsync */
420 	block_t last_dentry;	/* block address locating the last dentry */
421 };
422 
423 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
424 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
425 
426 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
427 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
428 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
429 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
430 
431 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
432 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
433 
434 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
435 {
436 	int before = nats_in_cursum(journal);
437 
438 	journal->n_nats = cpu_to_le16(before + i);
439 	return before;
440 }
441 
442 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
443 {
444 	int before = sits_in_cursum(journal);
445 
446 	journal->n_sits = cpu_to_le16(before + i);
447 	return before;
448 }
449 
450 static inline bool __has_cursum_space(struct f2fs_journal *journal,
451 							int size, int type)
452 {
453 	if (type == NAT_JOURNAL)
454 		return size <= MAX_NAT_JENTRIES(journal);
455 	return size <= MAX_SIT_JENTRIES(journal);
456 }
457 
458 /* for inline stuff */
459 #define DEF_INLINE_RESERVED_SIZE	1
460 static inline int get_extra_isize(struct inode *inode);
461 static inline int get_inline_xattr_addrs(struct inode *inode);
462 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
463 				(CUR_ADDRS_PER_INODE(inode) -		\
464 				get_inline_xattr_addrs(inode) -	\
465 				DEF_INLINE_RESERVED_SIZE))
466 
467 /* for inline dir */
468 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
469 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
470 				BITS_PER_BYTE + 1))
471 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
472 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
473 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
474 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
475 				NR_INLINE_DENTRY(inode) + \
476 				INLINE_DENTRY_BITMAP_SIZE(inode)))
477 
478 /*
479  * For INODE and NODE manager
480  */
481 /* for directory operations */
482 
483 struct f2fs_filename {
484 	/*
485 	 * The filename the user specified.  This is NULL for some
486 	 * filesystem-internal operations, e.g. converting an inline directory
487 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
488 	 */
489 	const struct qstr *usr_fname;
490 
491 	/*
492 	 * The on-disk filename.  For encrypted directories, this is encrypted.
493 	 * This may be NULL for lookups in an encrypted dir without the key.
494 	 */
495 	struct fscrypt_str disk_name;
496 
497 	/* The dirhash of this filename */
498 	f2fs_hash_t hash;
499 
500 #ifdef CONFIG_FS_ENCRYPTION
501 	/*
502 	 * For lookups in encrypted directories: either the buffer backing
503 	 * disk_name, or a buffer that holds the decoded no-key name.
504 	 */
505 	struct fscrypt_str crypto_buf;
506 #endif
507 #ifdef CONFIG_UNICODE
508 	/*
509 	 * For casefolded directories: the casefolded name, but it's left NULL
510 	 * if the original name is not valid Unicode, if the directory is both
511 	 * casefolded and encrypted and its encryption key is unavailable, or if
512 	 * the filesystem is doing an internal operation where usr_fname is also
513 	 * NULL.  In all these cases we fall back to treating the name as an
514 	 * opaque byte sequence.
515 	 */
516 	struct fscrypt_str cf_name;
517 #endif
518 };
519 
520 struct f2fs_dentry_ptr {
521 	struct inode *inode;
522 	void *bitmap;
523 	struct f2fs_dir_entry *dentry;
524 	__u8 (*filename)[F2FS_SLOT_LEN];
525 	int max;
526 	int nr_bitmap;
527 };
528 
529 static inline void make_dentry_ptr_block(struct inode *inode,
530 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
531 {
532 	d->inode = inode;
533 	d->max = NR_DENTRY_IN_BLOCK;
534 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
535 	d->bitmap = t->dentry_bitmap;
536 	d->dentry = t->dentry;
537 	d->filename = t->filename;
538 }
539 
540 static inline void make_dentry_ptr_inline(struct inode *inode,
541 					struct f2fs_dentry_ptr *d, void *t)
542 {
543 	int entry_cnt = NR_INLINE_DENTRY(inode);
544 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
545 	int reserved_size = INLINE_RESERVED_SIZE(inode);
546 
547 	d->inode = inode;
548 	d->max = entry_cnt;
549 	d->nr_bitmap = bitmap_size;
550 	d->bitmap = t;
551 	d->dentry = t + bitmap_size + reserved_size;
552 	d->filename = t + bitmap_size + reserved_size +
553 					SIZE_OF_DIR_ENTRY * entry_cnt;
554 }
555 
556 /*
557  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
558  * as its node offset to distinguish from index node blocks.
559  * But some bits are used to mark the node block.
560  */
561 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
562 				>> OFFSET_BIT_SHIFT)
563 enum {
564 	ALLOC_NODE,			/* allocate a new node page if needed */
565 	LOOKUP_NODE,			/* look up a node without readahead */
566 	LOOKUP_NODE_RA,			/*
567 					 * look up a node with readahead called
568 					 * by get_data_block.
569 					 */
570 };
571 
572 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
573 
574 /* congestion wait timeout value, default: 20ms */
575 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
576 
577 /* maximum retry quota flush count */
578 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
579 
580 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
581 
582 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
583 
584 /* dirty segments threshold for triggering CP */
585 #define DEFAULT_DIRTY_THRESHOLD		4
586 
587 /* for in-memory extent cache entry */
588 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
589 
590 /* number of extent info in extent cache we try to shrink */
591 #define EXTENT_CACHE_SHRINK_NUMBER	128
592 
593 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
594 #define RECOVERY_MIN_RA_BLOCKS		1
595 
596 struct rb_entry {
597 	struct rb_node rb_node;		/* rb node located in rb-tree */
598 	union {
599 		struct {
600 			unsigned int ofs;	/* start offset of the entry */
601 			unsigned int len;	/* length of the entry */
602 		};
603 		unsigned long long key;		/* 64-bits key */
604 	} __packed;
605 };
606 
607 struct extent_info {
608 	unsigned int fofs;		/* start offset in a file */
609 	unsigned int len;		/* length of the extent */
610 	u32 blk;			/* start block address of the extent */
611 #ifdef CONFIG_F2FS_FS_COMPRESSION
612 	unsigned int c_len;		/* physical extent length of compressed blocks */
613 #endif
614 };
615 
616 struct extent_node {
617 	struct rb_node rb_node;		/* rb node located in rb-tree */
618 	struct extent_info ei;		/* extent info */
619 	struct list_head list;		/* node in global extent list of sbi */
620 	struct extent_tree *et;		/* extent tree pointer */
621 };
622 
623 struct extent_tree {
624 	nid_t ino;			/* inode number */
625 	struct rb_root_cached root;	/* root of extent info rb-tree */
626 	struct extent_node *cached_en;	/* recently accessed extent node */
627 	struct extent_info largest;	/* largested extent info */
628 	struct list_head list;		/* to be used by sbi->zombie_list */
629 	rwlock_t lock;			/* protect extent info rb-tree */
630 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
631 	bool largest_updated;		/* largest extent updated */
632 };
633 
634 /*
635  * This structure is taken from ext4_map_blocks.
636  *
637  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
638  */
639 #define F2FS_MAP_NEW		(1 << BH_New)
640 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
641 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
642 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
643 				F2FS_MAP_UNWRITTEN)
644 
645 struct f2fs_map_blocks {
646 	struct block_device *m_bdev;	/* for multi-device dio */
647 	block_t m_pblk;
648 	block_t m_lblk;
649 	unsigned int m_len;
650 	unsigned int m_flags;
651 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
652 	pgoff_t *m_next_extent;		/* point to next possible extent */
653 	int m_seg_type;
654 	bool m_may_create;		/* indicate it is from write path */
655 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
656 };
657 
658 /* for flag in get_data_block */
659 enum {
660 	F2FS_GET_BLOCK_DEFAULT,
661 	F2FS_GET_BLOCK_FIEMAP,
662 	F2FS_GET_BLOCK_BMAP,
663 	F2FS_GET_BLOCK_DIO,
664 	F2FS_GET_BLOCK_PRE_DIO,
665 	F2FS_GET_BLOCK_PRE_AIO,
666 	F2FS_GET_BLOCK_PRECACHE,
667 };
668 
669 /*
670  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
671  */
672 #define FADVISE_COLD_BIT	0x01
673 #define FADVISE_LOST_PINO_BIT	0x02
674 #define FADVISE_ENCRYPT_BIT	0x04
675 #define FADVISE_ENC_NAME_BIT	0x08
676 #define FADVISE_KEEP_SIZE_BIT	0x10
677 #define FADVISE_HOT_BIT		0x20
678 #define FADVISE_VERITY_BIT	0x40
679 #define FADVISE_TRUNC_BIT	0x80
680 
681 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
682 
683 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
684 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
685 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
686 
687 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
688 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
689 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
690 
691 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
692 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
693 
694 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
695 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
696 
697 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
698 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
699 
700 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
701 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
702 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
703 
704 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
705 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
706 
707 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
708 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
709 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
710 
711 #define DEF_DIR_LEVEL		0
712 
713 enum {
714 	GC_FAILURE_PIN,
715 	GC_FAILURE_ATOMIC,
716 	MAX_GC_FAILURE
717 };
718 
719 /* used for f2fs_inode_info->flags */
720 enum {
721 	FI_NEW_INODE,		/* indicate newly allocated inode */
722 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
723 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
724 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
725 	FI_INC_LINK,		/* need to increment i_nlink */
726 	FI_ACL_MODE,		/* indicate acl mode */
727 	FI_NO_ALLOC,		/* should not allocate any blocks */
728 	FI_FREE_NID,		/* free allocated nide */
729 	FI_NO_EXTENT,		/* not to use the extent cache */
730 	FI_INLINE_XATTR,	/* used for inline xattr */
731 	FI_INLINE_DATA,		/* used for inline data*/
732 	FI_INLINE_DENTRY,	/* used for inline dentry */
733 	FI_APPEND_WRITE,	/* inode has appended data */
734 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
735 	FI_NEED_IPU,		/* used for ipu per file */
736 	FI_ATOMIC_FILE,		/* indicate atomic file */
737 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
738 	FI_VOLATILE_FILE,	/* indicate volatile file */
739 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
740 	FI_DROP_CACHE,		/* drop dirty page cache */
741 	FI_DATA_EXIST,		/* indicate data exists */
742 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
743 	FI_SKIP_WRITES,		/* should skip data page writeback */
744 	FI_OPU_WRITE,		/* used for opu per file */
745 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
746 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
747 	FI_HOT_DATA,		/* indicate file is hot */
748 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
749 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
750 	FI_PIN_FILE,		/* indicate file should not be gced */
751 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
752 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
753 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
754 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
755 	FI_MMAP_FILE,		/* indicate file was mmapped */
756 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
757 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
758 	FI_ALIGNED_WRITE,	/* enable aligned write */
759 	FI_MAX,			/* max flag, never be used */
760 };
761 
762 struct f2fs_inode_info {
763 	struct inode vfs_inode;		/* serve a vfs inode */
764 	unsigned long i_flags;		/* keep an inode flags for ioctl */
765 	unsigned char i_advise;		/* use to give file attribute hints */
766 	unsigned char i_dir_level;	/* use for dentry level for large dir */
767 	unsigned int i_current_depth;	/* only for directory depth */
768 	/* for gc failure statistic */
769 	unsigned int i_gc_failures[MAX_GC_FAILURE];
770 	unsigned int i_pino;		/* parent inode number */
771 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
772 
773 	/* Use below internally in f2fs*/
774 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
775 	struct f2fs_rwsem i_sem;	/* protect fi info */
776 	atomic_t dirty_pages;		/* # of dirty pages */
777 	f2fs_hash_t chash;		/* hash value of given file name */
778 	unsigned int clevel;		/* maximum level of given file name */
779 	struct task_struct *task;	/* lookup and create consistency */
780 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
781 	nid_t i_xattr_nid;		/* node id that contains xattrs */
782 	loff_t	last_disk_size;		/* lastly written file size */
783 	spinlock_t i_size_lock;		/* protect last_disk_size */
784 
785 #ifdef CONFIG_QUOTA
786 	struct dquot *i_dquot[MAXQUOTAS];
787 
788 	/* quota space reservation, managed internally by quota code */
789 	qsize_t i_reserved_quota;
790 #endif
791 	struct list_head dirty_list;	/* dirty list for dirs and files */
792 	struct list_head gdirty_list;	/* linked in global dirty list */
793 	struct list_head inmem_ilist;	/* list for inmem inodes */
794 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
795 	struct task_struct *inmem_task;	/* store inmemory task */
796 	struct mutex inmem_lock;	/* lock for inmemory pages */
797 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
798 
799 	/* avoid racing between foreground op and gc */
800 	struct f2fs_rwsem i_gc_rwsem[2];
801 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
802 
803 	int i_extra_isize;		/* size of extra space located in i_addr */
804 	kprojid_t i_projid;		/* id for project quota */
805 	int i_inline_xattr_size;	/* inline xattr size */
806 	struct timespec64 i_crtime;	/* inode creation time */
807 	struct timespec64 i_disk_time[4];/* inode disk times */
808 
809 	/* for file compress */
810 	atomic_t i_compr_blocks;		/* # of compressed blocks */
811 	unsigned char i_compress_algorithm;	/* algorithm type */
812 	unsigned char i_log_cluster_size;	/* log of cluster size */
813 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
814 	unsigned short i_compress_flag;		/* compress flag */
815 	unsigned int i_cluster_size;		/* cluster size */
816 };
817 
818 static inline void get_extent_info(struct extent_info *ext,
819 					struct f2fs_extent *i_ext)
820 {
821 	ext->fofs = le32_to_cpu(i_ext->fofs);
822 	ext->blk = le32_to_cpu(i_ext->blk);
823 	ext->len = le32_to_cpu(i_ext->len);
824 }
825 
826 static inline void set_raw_extent(struct extent_info *ext,
827 					struct f2fs_extent *i_ext)
828 {
829 	i_ext->fofs = cpu_to_le32(ext->fofs);
830 	i_ext->blk = cpu_to_le32(ext->blk);
831 	i_ext->len = cpu_to_le32(ext->len);
832 }
833 
834 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
835 						u32 blk, unsigned int len)
836 {
837 	ei->fofs = fofs;
838 	ei->blk = blk;
839 	ei->len = len;
840 #ifdef CONFIG_F2FS_FS_COMPRESSION
841 	ei->c_len = 0;
842 #endif
843 }
844 
845 static inline bool __is_discard_mergeable(struct discard_info *back,
846 			struct discard_info *front, unsigned int max_len)
847 {
848 	return (back->lstart + back->len == front->lstart) &&
849 		(back->len + front->len <= max_len);
850 }
851 
852 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
853 			struct discard_info *back, unsigned int max_len)
854 {
855 	return __is_discard_mergeable(back, cur, max_len);
856 }
857 
858 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
859 			struct discard_info *front, unsigned int max_len)
860 {
861 	return __is_discard_mergeable(cur, front, max_len);
862 }
863 
864 static inline bool __is_extent_mergeable(struct extent_info *back,
865 						struct extent_info *front)
866 {
867 #ifdef CONFIG_F2FS_FS_COMPRESSION
868 	if (back->c_len && back->len != back->c_len)
869 		return false;
870 	if (front->c_len && front->len != front->c_len)
871 		return false;
872 #endif
873 	return (back->fofs + back->len == front->fofs &&
874 			back->blk + back->len == front->blk);
875 }
876 
877 static inline bool __is_back_mergeable(struct extent_info *cur,
878 						struct extent_info *back)
879 {
880 	return __is_extent_mergeable(back, cur);
881 }
882 
883 static inline bool __is_front_mergeable(struct extent_info *cur,
884 						struct extent_info *front)
885 {
886 	return __is_extent_mergeable(cur, front);
887 }
888 
889 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
890 static inline void __try_update_largest_extent(struct extent_tree *et,
891 						struct extent_node *en)
892 {
893 	if (en->ei.len > et->largest.len) {
894 		et->largest = en->ei;
895 		et->largest_updated = true;
896 	}
897 }
898 
899 /*
900  * For free nid management
901  */
902 enum nid_state {
903 	FREE_NID,		/* newly added to free nid list */
904 	PREALLOC_NID,		/* it is preallocated */
905 	MAX_NID_STATE,
906 };
907 
908 enum nat_state {
909 	TOTAL_NAT,
910 	DIRTY_NAT,
911 	RECLAIMABLE_NAT,
912 	MAX_NAT_STATE,
913 };
914 
915 struct f2fs_nm_info {
916 	block_t nat_blkaddr;		/* base disk address of NAT */
917 	nid_t max_nid;			/* maximum possible node ids */
918 	nid_t available_nids;		/* # of available node ids */
919 	nid_t next_scan_nid;		/* the next nid to be scanned */
920 	unsigned int ram_thresh;	/* control the memory footprint */
921 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
922 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
923 
924 	/* NAT cache management */
925 	struct radix_tree_root nat_root;/* root of the nat entry cache */
926 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
927 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
928 	struct list_head nat_entries;	/* cached nat entry list (clean) */
929 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
930 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
931 	unsigned int nat_blocks;	/* # of nat blocks */
932 
933 	/* free node ids management */
934 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
935 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
936 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
937 	spinlock_t nid_list_lock;	/* protect nid lists ops */
938 	struct mutex build_lock;	/* lock for build free nids */
939 	unsigned char **free_nid_bitmap;
940 	unsigned char *nat_block_bitmap;
941 	unsigned short *free_nid_count;	/* free nid count of NAT block */
942 
943 	/* for checkpoint */
944 	char *nat_bitmap;		/* NAT bitmap pointer */
945 
946 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
947 	unsigned char *nat_bits;	/* NAT bits blocks */
948 	unsigned char *full_nat_bits;	/* full NAT pages */
949 	unsigned char *empty_nat_bits;	/* empty NAT pages */
950 #ifdef CONFIG_F2FS_CHECK_FS
951 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
952 #endif
953 	int bitmap_size;		/* bitmap size */
954 };
955 
956 /*
957  * this structure is used as one of function parameters.
958  * all the information are dedicated to a given direct node block determined
959  * by the data offset in a file.
960  */
961 struct dnode_of_data {
962 	struct inode *inode;		/* vfs inode pointer */
963 	struct page *inode_page;	/* its inode page, NULL is possible */
964 	struct page *node_page;		/* cached direct node page */
965 	nid_t nid;			/* node id of the direct node block */
966 	unsigned int ofs_in_node;	/* data offset in the node page */
967 	bool inode_page_locked;		/* inode page is locked or not */
968 	bool node_changed;		/* is node block changed */
969 	char cur_level;			/* level of hole node page */
970 	char max_level;			/* level of current page located */
971 	block_t	data_blkaddr;		/* block address of the node block */
972 };
973 
974 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
975 		struct page *ipage, struct page *npage, nid_t nid)
976 {
977 	memset(dn, 0, sizeof(*dn));
978 	dn->inode = inode;
979 	dn->inode_page = ipage;
980 	dn->node_page = npage;
981 	dn->nid = nid;
982 }
983 
984 /*
985  * For SIT manager
986  *
987  * By default, there are 6 active log areas across the whole main area.
988  * When considering hot and cold data separation to reduce cleaning overhead,
989  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
990  * respectively.
991  * In the current design, you should not change the numbers intentionally.
992  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
993  * logs individually according to the underlying devices. (default: 6)
994  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
995  * data and 8 for node logs.
996  */
997 #define	NR_CURSEG_DATA_TYPE	(3)
998 #define NR_CURSEG_NODE_TYPE	(3)
999 #define NR_CURSEG_INMEM_TYPE	(2)
1000 #define NR_CURSEG_RO_TYPE	(2)
1001 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1002 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1003 
1004 enum {
1005 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1006 	CURSEG_WARM_DATA,	/* data blocks */
1007 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1008 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1009 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1010 	CURSEG_COLD_NODE,	/* indirect node blocks */
1011 	NR_PERSISTENT_LOG,	/* number of persistent log */
1012 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1013 				/* pinned file that needs consecutive block address */
1014 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1015 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1016 };
1017 
1018 struct flush_cmd {
1019 	struct completion wait;
1020 	struct llist_node llnode;
1021 	nid_t ino;
1022 	int ret;
1023 };
1024 
1025 struct flush_cmd_control {
1026 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1027 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1028 	atomic_t issued_flush;			/* # of issued flushes */
1029 	atomic_t queued_flush;			/* # of queued flushes */
1030 	struct llist_head issue_list;		/* list for command issue */
1031 	struct llist_node *dispatch_list;	/* list for command dispatch */
1032 };
1033 
1034 struct f2fs_sm_info {
1035 	struct sit_info *sit_info;		/* whole segment information */
1036 	struct free_segmap_info *free_info;	/* free segment information */
1037 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1038 	struct curseg_info *curseg_array;	/* active segment information */
1039 
1040 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1041 
1042 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1043 	block_t main_blkaddr;		/* start block address of main area */
1044 	block_t ssa_blkaddr;		/* start block address of SSA area */
1045 
1046 	unsigned int segment_count;	/* total # of segments */
1047 	unsigned int main_segments;	/* # of segments in main area */
1048 	unsigned int reserved_segments;	/* # of reserved segments */
1049 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1050 	unsigned int ovp_segments;	/* # of overprovision segments */
1051 
1052 	/* a threshold to reclaim prefree segments */
1053 	unsigned int rec_prefree_segments;
1054 
1055 	/* for batched trimming */
1056 	unsigned int trim_sections;		/* # of sections to trim */
1057 
1058 	struct list_head sit_entry_set;	/* sit entry set list */
1059 
1060 	unsigned int ipu_policy;	/* in-place-update policy */
1061 	unsigned int min_ipu_util;	/* in-place-update threshold */
1062 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1063 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1064 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1065 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1066 
1067 	/* for flush command control */
1068 	struct flush_cmd_control *fcc_info;
1069 
1070 	/* for discard command control */
1071 	struct discard_cmd_control *dcc_info;
1072 };
1073 
1074 /*
1075  * For superblock
1076  */
1077 /*
1078  * COUNT_TYPE for monitoring
1079  *
1080  * f2fs monitors the number of several block types such as on-writeback,
1081  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1082  */
1083 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1084 enum count_type {
1085 	F2FS_DIRTY_DENTS,
1086 	F2FS_DIRTY_DATA,
1087 	F2FS_DIRTY_QDATA,
1088 	F2FS_DIRTY_NODES,
1089 	F2FS_DIRTY_META,
1090 	F2FS_INMEM_PAGES,
1091 	F2FS_DIRTY_IMETA,
1092 	F2FS_WB_CP_DATA,
1093 	F2FS_WB_DATA,
1094 	F2FS_RD_DATA,
1095 	F2FS_RD_NODE,
1096 	F2FS_RD_META,
1097 	F2FS_DIO_WRITE,
1098 	F2FS_DIO_READ,
1099 	NR_COUNT_TYPE,
1100 };
1101 
1102 /*
1103  * The below are the page types of bios used in submit_bio().
1104  * The available types are:
1105  * DATA			User data pages. It operates as async mode.
1106  * NODE			Node pages. It operates as async mode.
1107  * META			FS metadata pages such as SIT, NAT, CP.
1108  * NR_PAGE_TYPE		The number of page types.
1109  * META_FLUSH		Make sure the previous pages are written
1110  *			with waiting the bio's completion
1111  * ...			Only can be used with META.
1112  */
1113 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1114 enum page_type {
1115 	DATA,
1116 	NODE,
1117 	META,
1118 	NR_PAGE_TYPE,
1119 	META_FLUSH,
1120 	INMEM,		/* the below types are used by tracepoints only. */
1121 	INMEM_DROP,
1122 	INMEM_INVALIDATE,
1123 	INMEM_REVOKE,
1124 	IPU,
1125 	OPU,
1126 };
1127 
1128 enum temp_type {
1129 	HOT = 0,	/* must be zero for meta bio */
1130 	WARM,
1131 	COLD,
1132 	NR_TEMP_TYPE,
1133 };
1134 
1135 enum need_lock_type {
1136 	LOCK_REQ = 0,
1137 	LOCK_DONE,
1138 	LOCK_RETRY,
1139 };
1140 
1141 enum cp_reason_type {
1142 	CP_NO_NEEDED,
1143 	CP_NON_REGULAR,
1144 	CP_COMPRESSED,
1145 	CP_HARDLINK,
1146 	CP_SB_NEED_CP,
1147 	CP_WRONG_PINO,
1148 	CP_NO_SPC_ROLL,
1149 	CP_NODE_NEED_CP,
1150 	CP_FASTBOOT_MODE,
1151 	CP_SPEC_LOG_NUM,
1152 	CP_RECOVER_DIR,
1153 };
1154 
1155 enum iostat_type {
1156 	/* WRITE IO */
1157 	APP_DIRECT_IO,			/* app direct write IOs */
1158 	APP_BUFFERED_IO,		/* app buffered write IOs */
1159 	APP_WRITE_IO,			/* app write IOs */
1160 	APP_MAPPED_IO,			/* app mapped IOs */
1161 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1162 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1163 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1164 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1165 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1166 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1167 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1168 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1169 
1170 	/* READ IO */
1171 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1172 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1173 	APP_READ_IO,			/* app read IOs */
1174 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1175 	FS_DATA_READ_IO,		/* data read IOs */
1176 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1177 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1178 	FS_NODE_READ_IO,		/* node read IOs */
1179 	FS_META_READ_IO,		/* meta read IOs */
1180 
1181 	/* other */
1182 	FS_DISCARD,			/* discard */
1183 	NR_IO_TYPE,
1184 };
1185 
1186 struct f2fs_io_info {
1187 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1188 	nid_t ino;		/* inode number */
1189 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1190 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1191 	int op;			/* contains REQ_OP_ */
1192 	int op_flags;		/* req_flag_bits */
1193 	block_t new_blkaddr;	/* new block address to be written */
1194 	block_t old_blkaddr;	/* old block address before Cow */
1195 	struct page *page;	/* page to be written */
1196 	struct page *encrypted_page;	/* encrypted page */
1197 	struct page *compressed_page;	/* compressed page */
1198 	struct list_head list;		/* serialize IOs */
1199 	bool submitted;		/* indicate IO submission */
1200 	int need_lock;		/* indicate we need to lock cp_rwsem */
1201 	bool in_list;		/* indicate fio is in io_list */
1202 	bool is_por;		/* indicate IO is from recovery or not */
1203 	bool retry;		/* need to reallocate block address */
1204 	int compr_blocks;	/* # of compressed block addresses */
1205 	bool encrypted;		/* indicate file is encrypted */
1206 	enum iostat_type io_type;	/* io type */
1207 	struct writeback_control *io_wbc; /* writeback control */
1208 	struct bio **bio;		/* bio for ipu */
1209 	sector_t *last_block;		/* last block number in bio */
1210 	unsigned char version;		/* version of the node */
1211 };
1212 
1213 struct bio_entry {
1214 	struct bio *bio;
1215 	struct list_head list;
1216 };
1217 
1218 #define is_read_io(rw) ((rw) == READ)
1219 struct f2fs_bio_info {
1220 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1221 	struct bio *bio;		/* bios to merge */
1222 	sector_t last_block_in_bio;	/* last block number */
1223 	struct f2fs_io_info fio;	/* store buffered io info. */
1224 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1225 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1226 	struct list_head io_list;	/* track fios */
1227 	struct list_head bio_list;	/* bio entry list head */
1228 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1229 };
1230 
1231 #define FDEV(i)				(sbi->devs[i])
1232 #define RDEV(i)				(raw_super->devs[i])
1233 struct f2fs_dev_info {
1234 	struct block_device *bdev;
1235 	char path[MAX_PATH_LEN];
1236 	unsigned int total_segments;
1237 	block_t start_blk;
1238 	block_t end_blk;
1239 #ifdef CONFIG_BLK_DEV_ZONED
1240 	unsigned int nr_blkz;		/* Total number of zones */
1241 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1242 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1243 #endif
1244 };
1245 
1246 enum inode_type {
1247 	DIR_INODE,			/* for dirty dir inode */
1248 	FILE_INODE,			/* for dirty regular/symlink inode */
1249 	DIRTY_META,			/* for all dirtied inode metadata */
1250 	ATOMIC_FILE,			/* for all atomic files */
1251 	NR_INODE_TYPE,
1252 };
1253 
1254 /* for inner inode cache management */
1255 struct inode_management {
1256 	struct radix_tree_root ino_root;	/* ino entry array */
1257 	spinlock_t ino_lock;			/* for ino entry lock */
1258 	struct list_head ino_list;		/* inode list head */
1259 	unsigned long ino_num;			/* number of entries */
1260 };
1261 
1262 /* for GC_AT */
1263 struct atgc_management {
1264 	bool atgc_enabled;			/* ATGC is enabled or not */
1265 	struct rb_root_cached root;		/* root of victim rb-tree */
1266 	struct list_head victim_list;		/* linked with all victim entries */
1267 	unsigned int victim_count;		/* victim count in rb-tree */
1268 	unsigned int candidate_ratio;		/* candidate ratio */
1269 	unsigned int max_candidate_count;	/* max candidate count */
1270 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1271 	unsigned long long age_threshold;	/* age threshold */
1272 };
1273 
1274 /* For s_flag in struct f2fs_sb_info */
1275 enum {
1276 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1277 	SBI_IS_CLOSE,				/* specify unmounting */
1278 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1279 	SBI_POR_DOING,				/* recovery is doing or not */
1280 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1281 	SBI_NEED_CP,				/* need to checkpoint */
1282 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1283 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1284 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1285 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1286 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1287 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1288 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1289 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1290 };
1291 
1292 enum {
1293 	CP_TIME,
1294 	REQ_TIME,
1295 	DISCARD_TIME,
1296 	GC_TIME,
1297 	DISABLE_TIME,
1298 	UMOUNT_DISCARD_TIMEOUT,
1299 	MAX_TIME,
1300 };
1301 
1302 enum {
1303 	GC_NORMAL,
1304 	GC_IDLE_CB,
1305 	GC_IDLE_GREEDY,
1306 	GC_IDLE_AT,
1307 	GC_URGENT_HIGH,
1308 	GC_URGENT_LOW,
1309 	MAX_GC_MODE,
1310 };
1311 
1312 enum {
1313 	BGGC_MODE_ON,		/* background gc is on */
1314 	BGGC_MODE_OFF,		/* background gc is off */
1315 	BGGC_MODE_SYNC,		/*
1316 				 * background gc is on, migrating blocks
1317 				 * like foreground gc
1318 				 */
1319 };
1320 
1321 enum {
1322 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1323 	FS_MODE_LFS,			/* use lfs allocation only */
1324 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1325 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1326 };
1327 
1328 enum {
1329 	WHINT_MODE_OFF,		/* not pass down write hints */
1330 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1331 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1332 };
1333 
1334 enum {
1335 	ALLOC_MODE_DEFAULT,	/* stay default */
1336 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1337 };
1338 
1339 enum fsync_mode {
1340 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1341 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1342 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1343 };
1344 
1345 enum {
1346 	COMPR_MODE_FS,		/*
1347 				 * automatically compress compression
1348 				 * enabled files
1349 				 */
1350 	COMPR_MODE_USER,	/*
1351 				 * automatical compression is disabled.
1352 				 * user can control the file compression
1353 				 * using ioctls
1354 				 */
1355 };
1356 
1357 enum {
1358 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1359 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1360 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1361 };
1362 
1363 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1364 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1365 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1366 
1367 /*
1368  * Layout of f2fs page.private:
1369  *
1370  * Layout A: lowest bit should be 1
1371  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1372  * bit 0	PAGE_PRIVATE_NOT_POINTER
1373  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1374  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1375  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1376  * bit 4	PAGE_PRIVATE_INLINE_INODE
1377  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1378  * bit 6-	f2fs private data
1379  *
1380  * Layout B: lowest bit should be 0
1381  * page.private is a wrapped pointer.
1382  */
1383 enum {
1384 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1385 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1386 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1387 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1388 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1389 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1390 	PAGE_PRIVATE_MAX
1391 };
1392 
1393 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1394 static inline bool page_private_##name(struct page *page) \
1395 { \
1396 	return PagePrivate(page) && \
1397 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1398 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1399 }
1400 
1401 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1402 static inline void set_page_private_##name(struct page *page) \
1403 { \
1404 	if (!PagePrivate(page)) { \
1405 		get_page(page); \
1406 		SetPagePrivate(page); \
1407 		set_page_private(page, 0); \
1408 	} \
1409 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1410 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1411 }
1412 
1413 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1414 static inline void clear_page_private_##name(struct page *page) \
1415 { \
1416 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1417 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1418 		set_page_private(page, 0); \
1419 		if (PagePrivate(page)) { \
1420 			ClearPagePrivate(page); \
1421 			put_page(page); \
1422 		}\
1423 	} \
1424 }
1425 
1426 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1427 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1428 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1429 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1430 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1431 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1432 
1433 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1434 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1435 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1436 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1437 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1438 
1439 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1440 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1441 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1442 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1443 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1444 
1445 static inline unsigned long get_page_private_data(struct page *page)
1446 {
1447 	unsigned long data = page_private(page);
1448 
1449 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1450 		return 0;
1451 	return data >> PAGE_PRIVATE_MAX;
1452 }
1453 
1454 static inline void set_page_private_data(struct page *page, unsigned long data)
1455 {
1456 	if (!PagePrivate(page)) {
1457 		get_page(page);
1458 		SetPagePrivate(page);
1459 		set_page_private(page, 0);
1460 	}
1461 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1462 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1463 }
1464 
1465 static inline void clear_page_private_data(struct page *page)
1466 {
1467 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1468 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1469 		set_page_private(page, 0);
1470 		if (PagePrivate(page)) {
1471 			ClearPagePrivate(page);
1472 			put_page(page);
1473 		}
1474 	}
1475 }
1476 
1477 /* For compression */
1478 enum compress_algorithm_type {
1479 	COMPRESS_LZO,
1480 	COMPRESS_LZ4,
1481 	COMPRESS_ZSTD,
1482 	COMPRESS_LZORLE,
1483 	COMPRESS_MAX,
1484 };
1485 
1486 enum compress_flag {
1487 	COMPRESS_CHKSUM,
1488 	COMPRESS_MAX_FLAG,
1489 };
1490 
1491 #define	COMPRESS_WATERMARK			20
1492 #define	COMPRESS_PERCENT			20
1493 
1494 #define COMPRESS_DATA_RESERVED_SIZE		4
1495 struct compress_data {
1496 	__le32 clen;			/* compressed data size */
1497 	__le32 chksum;			/* compressed data chksum */
1498 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1499 	u8 cdata[];			/* compressed data */
1500 };
1501 
1502 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1503 
1504 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1505 
1506 #define	COMPRESS_LEVEL_OFFSET	8
1507 
1508 /* compress context */
1509 struct compress_ctx {
1510 	struct inode *inode;		/* inode the context belong to */
1511 	pgoff_t cluster_idx;		/* cluster index number */
1512 	unsigned int cluster_size;	/* page count in cluster */
1513 	unsigned int log_cluster_size;	/* log of cluster size */
1514 	struct page **rpages;		/* pages store raw data in cluster */
1515 	unsigned int nr_rpages;		/* total page number in rpages */
1516 	struct page **cpages;		/* pages store compressed data in cluster */
1517 	unsigned int nr_cpages;		/* total page number in cpages */
1518 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1519 	void *rbuf;			/* virtual mapped address on rpages */
1520 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1521 	size_t rlen;			/* valid data length in rbuf */
1522 	size_t clen;			/* valid data length in cbuf */
1523 	void *private;			/* payload buffer for specified compression algorithm */
1524 	void *private2;			/* extra payload buffer */
1525 };
1526 
1527 /* compress context for write IO path */
1528 struct compress_io_ctx {
1529 	u32 magic;			/* magic number to indicate page is compressed */
1530 	struct inode *inode;		/* inode the context belong to */
1531 	struct page **rpages;		/* pages store raw data in cluster */
1532 	unsigned int nr_rpages;		/* total page number in rpages */
1533 	atomic_t pending_pages;		/* in-flight compressed page count */
1534 };
1535 
1536 /* Context for decompressing one cluster on the read IO path */
1537 struct decompress_io_ctx {
1538 	u32 magic;			/* magic number to indicate page is compressed */
1539 	struct inode *inode;		/* inode the context belong to */
1540 	pgoff_t cluster_idx;		/* cluster index number */
1541 	unsigned int cluster_size;	/* page count in cluster */
1542 	unsigned int log_cluster_size;	/* log of cluster size */
1543 	struct page **rpages;		/* pages store raw data in cluster */
1544 	unsigned int nr_rpages;		/* total page number in rpages */
1545 	struct page **cpages;		/* pages store compressed data in cluster */
1546 	unsigned int nr_cpages;		/* total page number in cpages */
1547 	struct page **tpages;		/* temp pages to pad holes in cluster */
1548 	void *rbuf;			/* virtual mapped address on rpages */
1549 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1550 	size_t rlen;			/* valid data length in rbuf */
1551 	size_t clen;			/* valid data length in cbuf */
1552 
1553 	/*
1554 	 * The number of compressed pages remaining to be read in this cluster.
1555 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1556 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1557 	 * is decompressed (or an error is reported).
1558 	 *
1559 	 * If an error occurs before all the pages have been submitted for I/O,
1560 	 * then this will never reach 0.  In this case the I/O submitter is
1561 	 * responsible for calling f2fs_decompress_end_io() instead.
1562 	 */
1563 	atomic_t remaining_pages;
1564 
1565 	/*
1566 	 * Number of references to this decompress_io_ctx.
1567 	 *
1568 	 * One reference is held for I/O completion.  This reference is dropped
1569 	 * after the pagecache pages are updated and unlocked -- either after
1570 	 * decompression (and verity if enabled), or after an error.
1571 	 *
1572 	 * In addition, each compressed page holds a reference while it is in a
1573 	 * bio.  These references are necessary prevent compressed pages from
1574 	 * being freed while they are still in a bio.
1575 	 */
1576 	refcount_t refcnt;
1577 
1578 	bool failed;			/* IO error occurred before decompression? */
1579 	bool need_verity;		/* need fs-verity verification after decompression? */
1580 	void *private;			/* payload buffer for specified decompression algorithm */
1581 	void *private2;			/* extra payload buffer */
1582 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1583 };
1584 
1585 #define NULL_CLUSTER			((unsigned int)(~0))
1586 #define MIN_COMPRESS_LOG_SIZE		2
1587 #define MAX_COMPRESS_LOG_SIZE		8
1588 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1589 
1590 struct f2fs_sb_info {
1591 	struct super_block *sb;			/* pointer to VFS super block */
1592 	struct proc_dir_entry *s_proc;		/* proc entry */
1593 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1594 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1595 	int valid_super_block;			/* valid super block no */
1596 	unsigned long s_flag;				/* flags for sbi */
1597 	struct mutex writepages;		/* mutex for writepages() */
1598 
1599 #ifdef CONFIG_BLK_DEV_ZONED
1600 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1601 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1602 #endif
1603 
1604 	/* for node-related operations */
1605 	struct f2fs_nm_info *nm_info;		/* node manager */
1606 	struct inode *node_inode;		/* cache node blocks */
1607 
1608 	/* for segment-related operations */
1609 	struct f2fs_sm_info *sm_info;		/* segment manager */
1610 
1611 	/* for bio operations */
1612 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1613 	/* keep migration IO order for LFS mode */
1614 	struct f2fs_rwsem io_order_lock;
1615 	mempool_t *write_io_dummy;		/* Dummy pages */
1616 
1617 	/* for checkpoint */
1618 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1619 	int cur_cp_pack;			/* remain current cp pack */
1620 	spinlock_t cp_lock;			/* for flag in ckpt */
1621 	struct inode *meta_inode;		/* cache meta blocks */
1622 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1623 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1624 	struct f2fs_rwsem node_write;		/* locking node writes */
1625 	struct f2fs_rwsem node_change;	/* locking node change */
1626 	wait_queue_head_t cp_wait;
1627 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1628 	long interval_time[MAX_TIME];		/* to store thresholds */
1629 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1630 
1631 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1632 
1633 	spinlock_t fsync_node_lock;		/* for node entry lock */
1634 	struct list_head fsync_node_list;	/* node list head */
1635 	unsigned int fsync_seg_id;		/* sequence id */
1636 	unsigned int fsync_node_num;		/* number of node entries */
1637 
1638 	/* for orphan inode, use 0'th array */
1639 	unsigned int max_orphans;		/* max orphan inodes */
1640 
1641 	/* for inode management */
1642 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1643 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1644 	struct mutex flush_lock;		/* for flush exclusion */
1645 
1646 	/* for extent tree cache */
1647 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1648 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1649 	struct list_head extent_list;		/* lru list for shrinker */
1650 	spinlock_t extent_lock;			/* locking extent lru list */
1651 	atomic_t total_ext_tree;		/* extent tree count */
1652 	struct list_head zombie_list;		/* extent zombie tree list */
1653 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1654 	atomic_t total_ext_node;		/* extent info count */
1655 
1656 	/* basic filesystem units */
1657 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1658 	unsigned int log_blocksize;		/* log2 block size */
1659 	unsigned int blocksize;			/* block size */
1660 	unsigned int root_ino_num;		/* root inode number*/
1661 	unsigned int node_ino_num;		/* node inode number*/
1662 	unsigned int meta_ino_num;		/* meta inode number*/
1663 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1664 	unsigned int blocks_per_seg;		/* blocks per segment */
1665 	unsigned int segs_per_sec;		/* segments per section */
1666 	unsigned int secs_per_zone;		/* sections per zone */
1667 	unsigned int total_sections;		/* total section count */
1668 	unsigned int total_node_count;		/* total node block count */
1669 	unsigned int total_valid_node_count;	/* valid node block count */
1670 	int dir_level;				/* directory level */
1671 	int readdir_ra;				/* readahead inode in readdir */
1672 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1673 
1674 	block_t user_block_count;		/* # of user blocks */
1675 	block_t total_valid_block_count;	/* # of valid blocks */
1676 	block_t discard_blks;			/* discard command candidats */
1677 	block_t last_valid_block_count;		/* for recovery */
1678 	block_t reserved_blocks;		/* configurable reserved blocks */
1679 	block_t current_reserved_blocks;	/* current reserved blocks */
1680 
1681 	/* Additional tracking for no checkpoint mode */
1682 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1683 
1684 	unsigned int nquota_files;		/* # of quota sysfile */
1685 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1686 
1687 	/* # of pages, see count_type */
1688 	atomic_t nr_pages[NR_COUNT_TYPE];
1689 	/* # of allocated blocks */
1690 	struct percpu_counter alloc_valid_block_count;
1691 
1692 	/* writeback control */
1693 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1694 
1695 	/* valid inode count */
1696 	struct percpu_counter total_valid_inode_count;
1697 
1698 	struct f2fs_mount_info mount_opt;	/* mount options */
1699 
1700 	/* for cleaning operations */
1701 	struct f2fs_rwsem gc_lock;		/*
1702 						 * semaphore for GC, avoid
1703 						 * race between GC and GC or CP
1704 						 */
1705 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1706 	struct atgc_management am;		/* atgc management */
1707 	unsigned int cur_victim_sec;		/* current victim section num */
1708 	unsigned int gc_mode;			/* current GC state */
1709 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1710 	spinlock_t gc_urgent_high_lock;
1711 	bool gc_urgent_high_limited;		/* indicates having limited trial count */
1712 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1713 
1714 	/* for skip statistic */
1715 	unsigned int atomic_files;		/* # of opened atomic file */
1716 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1717 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1718 
1719 	/* threshold for gc trials on pinned files */
1720 	u64 gc_pin_file_threshold;
1721 	struct f2fs_rwsem pin_sem;
1722 
1723 	/* maximum # of trials to find a victim segment for SSR and GC */
1724 	unsigned int max_victim_search;
1725 	/* migration granularity of garbage collection, unit: segment */
1726 	unsigned int migration_granularity;
1727 
1728 	/*
1729 	 * for stat information.
1730 	 * one is for the LFS mode, and the other is for the SSR mode.
1731 	 */
1732 #ifdef CONFIG_F2FS_STAT_FS
1733 	struct f2fs_stat_info *stat_info;	/* FS status information */
1734 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1735 	unsigned int segment_count[2];		/* # of allocated segments */
1736 	unsigned int block_count[2];		/* # of allocated blocks */
1737 	atomic_t inplace_count;		/* # of inplace update */
1738 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1739 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1740 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1741 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1742 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1743 	atomic_t inline_inode;			/* # of inline_data inodes */
1744 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1745 	atomic_t compr_inode;			/* # of compressed inodes */
1746 	atomic64_t compr_blocks;		/* # of compressed blocks */
1747 	atomic_t vw_cnt;			/* # of volatile writes */
1748 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1749 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1750 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1751 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1752 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1753 #endif
1754 	spinlock_t stat_lock;			/* lock for stat operations */
1755 
1756 	/* to attach REQ_META|REQ_FUA flags */
1757 	unsigned int data_io_flag;
1758 	unsigned int node_io_flag;
1759 
1760 	/* For sysfs suppport */
1761 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1762 	struct completion s_kobj_unregister;
1763 
1764 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1765 	struct completion s_stat_kobj_unregister;
1766 
1767 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1768 	struct completion s_feature_list_kobj_unregister;
1769 
1770 	/* For shrinker support */
1771 	struct list_head s_list;
1772 	struct mutex umount_mutex;
1773 	unsigned int shrinker_run_no;
1774 
1775 	/* For multi devices */
1776 	int s_ndevs;				/* number of devices */
1777 	struct f2fs_dev_info *devs;		/* for device list */
1778 	unsigned int dirty_device;		/* for checkpoint data flush */
1779 	spinlock_t dev_lock;			/* protect dirty_device */
1780 	bool aligned_blksize;			/* all devices has the same logical blksize */
1781 
1782 	/* For write statistics */
1783 	u64 sectors_written_start;
1784 	u64 kbytes_written;
1785 
1786 	/* Reference to checksum algorithm driver via cryptoapi */
1787 	struct crypto_shash *s_chksum_driver;
1788 
1789 	/* Precomputed FS UUID checksum for seeding other checksums */
1790 	__u32 s_chksum_seed;
1791 
1792 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1793 
1794 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1795 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1796 
1797 	/* For reclaimed segs statistics per each GC mode */
1798 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1799 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1800 
1801 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1802 
1803 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1804 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1805 
1806 #ifdef CONFIG_F2FS_FS_COMPRESSION
1807 	struct kmem_cache *page_array_slab;	/* page array entry */
1808 	unsigned int page_array_slab_size;	/* default page array slab size */
1809 
1810 	/* For runtime compression statistics */
1811 	u64 compr_written_block;
1812 	u64 compr_saved_block;
1813 	u32 compr_new_inode;
1814 
1815 	/* For compressed block cache */
1816 	struct inode *compress_inode;		/* cache compressed blocks */
1817 	unsigned int compress_percent;		/* cache page percentage */
1818 	unsigned int compress_watermark;	/* cache page watermark */
1819 	atomic_t compress_page_hit;		/* cache hit count */
1820 #endif
1821 
1822 #ifdef CONFIG_F2FS_IOSTAT
1823 	/* For app/fs IO statistics */
1824 	spinlock_t iostat_lock;
1825 	unsigned long long rw_iostat[NR_IO_TYPE];
1826 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1827 	bool iostat_enable;
1828 	unsigned long iostat_next_period;
1829 	unsigned int iostat_period_ms;
1830 
1831 	/* For io latency related statistics info in one iostat period */
1832 	spinlock_t iostat_lat_lock;
1833 	struct iostat_lat_info *iostat_io_lat;
1834 #endif
1835 };
1836 
1837 #ifdef CONFIG_F2FS_FAULT_INJECTION
1838 #define f2fs_show_injection_info(sbi, type)					\
1839 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1840 		KERN_INFO, sbi->sb->s_id,				\
1841 		f2fs_fault_name[type],					\
1842 		__func__, __builtin_return_address(0))
1843 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1844 {
1845 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1846 
1847 	if (!ffi->inject_rate)
1848 		return false;
1849 
1850 	if (!IS_FAULT_SET(ffi, type))
1851 		return false;
1852 
1853 	atomic_inc(&ffi->inject_ops);
1854 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1855 		atomic_set(&ffi->inject_ops, 0);
1856 		return true;
1857 	}
1858 	return false;
1859 }
1860 #else
1861 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1862 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1863 {
1864 	return false;
1865 }
1866 #endif
1867 
1868 /*
1869  * Test if the mounted volume is a multi-device volume.
1870  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1871  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1872  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1873  */
1874 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1875 {
1876 	return sbi->s_ndevs > 1;
1877 }
1878 
1879 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1880 {
1881 	unsigned long now = jiffies;
1882 
1883 	sbi->last_time[type] = now;
1884 
1885 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1886 	if (type == REQ_TIME) {
1887 		sbi->last_time[DISCARD_TIME] = now;
1888 		sbi->last_time[GC_TIME] = now;
1889 	}
1890 }
1891 
1892 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1893 {
1894 	unsigned long interval = sbi->interval_time[type] * HZ;
1895 
1896 	return time_after(jiffies, sbi->last_time[type] + interval);
1897 }
1898 
1899 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1900 						int type)
1901 {
1902 	unsigned long interval = sbi->interval_time[type] * HZ;
1903 	unsigned int wait_ms = 0;
1904 	long delta;
1905 
1906 	delta = (sbi->last_time[type] + interval) - jiffies;
1907 	if (delta > 0)
1908 		wait_ms = jiffies_to_msecs(delta);
1909 
1910 	return wait_ms;
1911 }
1912 
1913 /*
1914  * Inline functions
1915  */
1916 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1917 			      const void *address, unsigned int length)
1918 {
1919 	struct {
1920 		struct shash_desc shash;
1921 		char ctx[4];
1922 	} desc;
1923 	int err;
1924 
1925 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1926 
1927 	desc.shash.tfm = sbi->s_chksum_driver;
1928 	*(u32 *)desc.ctx = crc;
1929 
1930 	err = crypto_shash_update(&desc.shash, address, length);
1931 	BUG_ON(err);
1932 
1933 	return *(u32 *)desc.ctx;
1934 }
1935 
1936 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1937 			   unsigned int length)
1938 {
1939 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1940 }
1941 
1942 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1943 				  void *buf, size_t buf_size)
1944 {
1945 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1946 }
1947 
1948 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1949 			      const void *address, unsigned int length)
1950 {
1951 	return __f2fs_crc32(sbi, crc, address, length);
1952 }
1953 
1954 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1955 {
1956 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1957 }
1958 
1959 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1960 {
1961 	return sb->s_fs_info;
1962 }
1963 
1964 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1965 {
1966 	return F2FS_SB(inode->i_sb);
1967 }
1968 
1969 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1970 {
1971 	return F2FS_I_SB(mapping->host);
1972 }
1973 
1974 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1975 {
1976 	return F2FS_M_SB(page_file_mapping(page));
1977 }
1978 
1979 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1980 {
1981 	return (struct f2fs_super_block *)(sbi->raw_super);
1982 }
1983 
1984 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1985 {
1986 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1987 }
1988 
1989 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1990 {
1991 	return (struct f2fs_node *)page_address(page);
1992 }
1993 
1994 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1995 {
1996 	return &((struct f2fs_node *)page_address(page))->i;
1997 }
1998 
1999 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2000 {
2001 	return (struct f2fs_nm_info *)(sbi->nm_info);
2002 }
2003 
2004 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2005 {
2006 	return (struct f2fs_sm_info *)(sbi->sm_info);
2007 }
2008 
2009 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2010 {
2011 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2012 }
2013 
2014 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2015 {
2016 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2017 }
2018 
2019 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2020 {
2021 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2022 }
2023 
2024 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2025 {
2026 	return sbi->meta_inode->i_mapping;
2027 }
2028 
2029 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2030 {
2031 	return sbi->node_inode->i_mapping;
2032 }
2033 
2034 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2035 {
2036 	return test_bit(type, &sbi->s_flag);
2037 }
2038 
2039 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2040 {
2041 	set_bit(type, &sbi->s_flag);
2042 }
2043 
2044 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2045 {
2046 	clear_bit(type, &sbi->s_flag);
2047 }
2048 
2049 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2050 {
2051 	return le64_to_cpu(cp->checkpoint_ver);
2052 }
2053 
2054 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2055 {
2056 	if (type < F2FS_MAX_QUOTAS)
2057 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2058 	return 0;
2059 }
2060 
2061 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2062 {
2063 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2064 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2065 }
2066 
2067 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2068 {
2069 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2070 
2071 	return ckpt_flags & f;
2072 }
2073 
2074 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2075 {
2076 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2077 }
2078 
2079 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2080 {
2081 	unsigned int ckpt_flags;
2082 
2083 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2084 	ckpt_flags |= f;
2085 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2086 }
2087 
2088 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2089 {
2090 	unsigned long flags;
2091 
2092 	spin_lock_irqsave(&sbi->cp_lock, flags);
2093 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2094 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2095 }
2096 
2097 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2098 {
2099 	unsigned int ckpt_flags;
2100 
2101 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2102 	ckpt_flags &= (~f);
2103 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2104 }
2105 
2106 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2107 {
2108 	unsigned long flags;
2109 
2110 	spin_lock_irqsave(&sbi->cp_lock, flags);
2111 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2112 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2113 }
2114 
2115 static inline void init_f2fs_rwsem(struct f2fs_rwsem *sem)
2116 {
2117 	init_rwsem(&sem->internal_rwsem);
2118 	init_waitqueue_head(&sem->read_waiters);
2119 }
2120 
2121 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2122 {
2123 	return rwsem_is_locked(&sem->internal_rwsem);
2124 }
2125 
2126 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2127 {
2128 	return rwsem_is_contended(&sem->internal_rwsem);
2129 }
2130 
2131 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2132 {
2133 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2134 }
2135 
2136 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2137 {
2138 	return down_read_trylock(&sem->internal_rwsem);
2139 }
2140 
2141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2142 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2143 {
2144 	down_read_nested(&sem->internal_rwsem, subclass);
2145 }
2146 #else
2147 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2148 #endif
2149 
2150 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2151 {
2152 	up_read(&sem->internal_rwsem);
2153 }
2154 
2155 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2156 {
2157 	down_write(&sem->internal_rwsem);
2158 }
2159 
2160 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2161 {
2162 	return down_write_trylock(&sem->internal_rwsem);
2163 }
2164 
2165 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2166 {
2167 	up_write(&sem->internal_rwsem);
2168 	wake_up_all(&sem->read_waiters);
2169 }
2170 
2171 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2172 {
2173 	f2fs_down_read(&sbi->cp_rwsem);
2174 }
2175 
2176 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2177 {
2178 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2179 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2180 		return 0;
2181 	}
2182 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2183 }
2184 
2185 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2186 {
2187 	f2fs_up_read(&sbi->cp_rwsem);
2188 }
2189 
2190 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2191 {
2192 	f2fs_down_write(&sbi->cp_rwsem);
2193 }
2194 
2195 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2196 {
2197 	f2fs_up_write(&sbi->cp_rwsem);
2198 }
2199 
2200 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2201 {
2202 	int reason = CP_SYNC;
2203 
2204 	if (test_opt(sbi, FASTBOOT))
2205 		reason = CP_FASTBOOT;
2206 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2207 		reason = CP_UMOUNT;
2208 	return reason;
2209 }
2210 
2211 static inline bool __remain_node_summaries(int reason)
2212 {
2213 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2214 }
2215 
2216 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2217 {
2218 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2219 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2220 }
2221 
2222 /*
2223  * Check whether the inode has blocks or not
2224  */
2225 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2226 {
2227 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2228 
2229 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2230 }
2231 
2232 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2233 {
2234 	return ofs == XATTR_NODE_OFFSET;
2235 }
2236 
2237 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2238 					struct inode *inode, bool cap)
2239 {
2240 	if (!inode)
2241 		return true;
2242 	if (!test_opt(sbi, RESERVE_ROOT))
2243 		return false;
2244 	if (IS_NOQUOTA(inode))
2245 		return true;
2246 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2247 		return true;
2248 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2249 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2250 		return true;
2251 	if (cap && capable(CAP_SYS_RESOURCE))
2252 		return true;
2253 	return false;
2254 }
2255 
2256 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2257 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2258 				 struct inode *inode, blkcnt_t *count)
2259 {
2260 	blkcnt_t diff = 0, release = 0;
2261 	block_t avail_user_block_count;
2262 	int ret;
2263 
2264 	ret = dquot_reserve_block(inode, *count);
2265 	if (ret)
2266 		return ret;
2267 
2268 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2269 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2270 		release = *count;
2271 		goto release_quota;
2272 	}
2273 
2274 	/*
2275 	 * let's increase this in prior to actual block count change in order
2276 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2277 	 */
2278 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2279 
2280 	spin_lock(&sbi->stat_lock);
2281 	sbi->total_valid_block_count += (block_t)(*count);
2282 	avail_user_block_count = sbi->user_block_count -
2283 					sbi->current_reserved_blocks;
2284 
2285 	if (!__allow_reserved_blocks(sbi, inode, true))
2286 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2287 
2288 	if (F2FS_IO_ALIGNED(sbi))
2289 		avail_user_block_count -= sbi->blocks_per_seg *
2290 				SM_I(sbi)->additional_reserved_segments;
2291 
2292 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2293 		if (avail_user_block_count > sbi->unusable_block_count)
2294 			avail_user_block_count -= sbi->unusable_block_count;
2295 		else
2296 			avail_user_block_count = 0;
2297 	}
2298 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2299 		diff = sbi->total_valid_block_count - avail_user_block_count;
2300 		if (diff > *count)
2301 			diff = *count;
2302 		*count -= diff;
2303 		release = diff;
2304 		sbi->total_valid_block_count -= diff;
2305 		if (!*count) {
2306 			spin_unlock(&sbi->stat_lock);
2307 			goto enospc;
2308 		}
2309 	}
2310 	spin_unlock(&sbi->stat_lock);
2311 
2312 	if (unlikely(release)) {
2313 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2314 		dquot_release_reservation_block(inode, release);
2315 	}
2316 	f2fs_i_blocks_write(inode, *count, true, true);
2317 	return 0;
2318 
2319 enospc:
2320 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2321 release_quota:
2322 	dquot_release_reservation_block(inode, release);
2323 	return -ENOSPC;
2324 }
2325 
2326 __printf(2, 3)
2327 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2328 
2329 #define f2fs_err(sbi, fmt, ...)						\
2330 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2331 #define f2fs_warn(sbi, fmt, ...)					\
2332 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2333 #define f2fs_notice(sbi, fmt, ...)					\
2334 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2335 #define f2fs_info(sbi, fmt, ...)					\
2336 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2337 #define f2fs_debug(sbi, fmt, ...)					\
2338 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2339 
2340 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2341 						struct inode *inode,
2342 						block_t count)
2343 {
2344 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2345 
2346 	spin_lock(&sbi->stat_lock);
2347 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2348 	sbi->total_valid_block_count -= (block_t)count;
2349 	if (sbi->reserved_blocks &&
2350 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2351 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2352 					sbi->current_reserved_blocks + count);
2353 	spin_unlock(&sbi->stat_lock);
2354 	if (unlikely(inode->i_blocks < sectors)) {
2355 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2356 			  inode->i_ino,
2357 			  (unsigned long long)inode->i_blocks,
2358 			  (unsigned long long)sectors);
2359 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2360 		return;
2361 	}
2362 	f2fs_i_blocks_write(inode, count, false, true);
2363 }
2364 
2365 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2366 {
2367 	atomic_inc(&sbi->nr_pages[count_type]);
2368 
2369 	if (count_type == F2FS_DIRTY_DENTS ||
2370 			count_type == F2FS_DIRTY_NODES ||
2371 			count_type == F2FS_DIRTY_META ||
2372 			count_type == F2FS_DIRTY_QDATA ||
2373 			count_type == F2FS_DIRTY_IMETA)
2374 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2375 }
2376 
2377 static inline void inode_inc_dirty_pages(struct inode *inode)
2378 {
2379 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2380 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2381 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2382 	if (IS_NOQUOTA(inode))
2383 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2384 }
2385 
2386 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2387 {
2388 	atomic_dec(&sbi->nr_pages[count_type]);
2389 }
2390 
2391 static inline void inode_dec_dirty_pages(struct inode *inode)
2392 {
2393 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2394 			!S_ISLNK(inode->i_mode))
2395 		return;
2396 
2397 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2398 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2399 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2400 	if (IS_NOQUOTA(inode))
2401 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2402 }
2403 
2404 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2405 {
2406 	return atomic_read(&sbi->nr_pages[count_type]);
2407 }
2408 
2409 static inline int get_dirty_pages(struct inode *inode)
2410 {
2411 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2412 }
2413 
2414 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2415 {
2416 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2417 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2418 						sbi->log_blocks_per_seg;
2419 
2420 	return segs / sbi->segs_per_sec;
2421 }
2422 
2423 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2424 {
2425 	return sbi->total_valid_block_count;
2426 }
2427 
2428 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2429 {
2430 	return sbi->discard_blks;
2431 }
2432 
2433 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2434 {
2435 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2436 
2437 	/* return NAT or SIT bitmap */
2438 	if (flag == NAT_BITMAP)
2439 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2440 	else if (flag == SIT_BITMAP)
2441 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2442 
2443 	return 0;
2444 }
2445 
2446 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2447 {
2448 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2449 }
2450 
2451 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2452 {
2453 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2454 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2455 	int offset;
2456 
2457 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2458 		offset = (flag == SIT_BITMAP) ?
2459 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2460 		/*
2461 		 * if large_nat_bitmap feature is enabled, leave checksum
2462 		 * protection for all nat/sit bitmaps.
2463 		 */
2464 		return tmp_ptr + offset + sizeof(__le32);
2465 	}
2466 
2467 	if (__cp_payload(sbi) > 0) {
2468 		if (flag == NAT_BITMAP)
2469 			return &ckpt->sit_nat_version_bitmap;
2470 		else
2471 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2472 	} else {
2473 		offset = (flag == NAT_BITMAP) ?
2474 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2475 		return tmp_ptr + offset;
2476 	}
2477 }
2478 
2479 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2480 {
2481 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2482 
2483 	if (sbi->cur_cp_pack == 2)
2484 		start_addr += sbi->blocks_per_seg;
2485 	return start_addr;
2486 }
2487 
2488 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2489 {
2490 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2491 
2492 	if (sbi->cur_cp_pack == 1)
2493 		start_addr += sbi->blocks_per_seg;
2494 	return start_addr;
2495 }
2496 
2497 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2498 {
2499 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2500 }
2501 
2502 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2503 {
2504 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2505 }
2506 
2507 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2508 					struct inode *inode, bool is_inode)
2509 {
2510 	block_t	valid_block_count;
2511 	unsigned int valid_node_count, user_block_count;
2512 	int err;
2513 
2514 	if (is_inode) {
2515 		if (inode) {
2516 			err = dquot_alloc_inode(inode);
2517 			if (err)
2518 				return err;
2519 		}
2520 	} else {
2521 		err = dquot_reserve_block(inode, 1);
2522 		if (err)
2523 			return err;
2524 	}
2525 
2526 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2527 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2528 		goto enospc;
2529 	}
2530 
2531 	spin_lock(&sbi->stat_lock);
2532 
2533 	valid_block_count = sbi->total_valid_block_count +
2534 					sbi->current_reserved_blocks + 1;
2535 
2536 	if (!__allow_reserved_blocks(sbi, inode, false))
2537 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2538 
2539 	if (F2FS_IO_ALIGNED(sbi))
2540 		valid_block_count += sbi->blocks_per_seg *
2541 				SM_I(sbi)->additional_reserved_segments;
2542 
2543 	user_block_count = sbi->user_block_count;
2544 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2545 		user_block_count -= sbi->unusable_block_count;
2546 
2547 	if (unlikely(valid_block_count > user_block_count)) {
2548 		spin_unlock(&sbi->stat_lock);
2549 		goto enospc;
2550 	}
2551 
2552 	valid_node_count = sbi->total_valid_node_count + 1;
2553 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2554 		spin_unlock(&sbi->stat_lock);
2555 		goto enospc;
2556 	}
2557 
2558 	sbi->total_valid_node_count++;
2559 	sbi->total_valid_block_count++;
2560 	spin_unlock(&sbi->stat_lock);
2561 
2562 	if (inode) {
2563 		if (is_inode)
2564 			f2fs_mark_inode_dirty_sync(inode, true);
2565 		else
2566 			f2fs_i_blocks_write(inode, 1, true, true);
2567 	}
2568 
2569 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2570 	return 0;
2571 
2572 enospc:
2573 	if (is_inode) {
2574 		if (inode)
2575 			dquot_free_inode(inode);
2576 	} else {
2577 		dquot_release_reservation_block(inode, 1);
2578 	}
2579 	return -ENOSPC;
2580 }
2581 
2582 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2583 					struct inode *inode, bool is_inode)
2584 {
2585 	spin_lock(&sbi->stat_lock);
2586 
2587 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2588 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2589 
2590 	sbi->total_valid_node_count--;
2591 	sbi->total_valid_block_count--;
2592 	if (sbi->reserved_blocks &&
2593 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2594 		sbi->current_reserved_blocks++;
2595 
2596 	spin_unlock(&sbi->stat_lock);
2597 
2598 	if (is_inode) {
2599 		dquot_free_inode(inode);
2600 	} else {
2601 		if (unlikely(inode->i_blocks == 0)) {
2602 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2603 				  inode->i_ino,
2604 				  (unsigned long long)inode->i_blocks);
2605 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2606 			return;
2607 		}
2608 		f2fs_i_blocks_write(inode, 1, false, true);
2609 	}
2610 }
2611 
2612 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2613 {
2614 	return sbi->total_valid_node_count;
2615 }
2616 
2617 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2618 {
2619 	percpu_counter_inc(&sbi->total_valid_inode_count);
2620 }
2621 
2622 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2623 {
2624 	percpu_counter_dec(&sbi->total_valid_inode_count);
2625 }
2626 
2627 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2628 {
2629 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2630 }
2631 
2632 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2633 						pgoff_t index, bool for_write)
2634 {
2635 	struct page *page;
2636 
2637 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2638 		if (!for_write)
2639 			page = find_get_page_flags(mapping, index,
2640 							FGP_LOCK | FGP_ACCESSED);
2641 		else
2642 			page = find_lock_page(mapping, index);
2643 		if (page)
2644 			return page;
2645 
2646 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2647 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2648 							FAULT_PAGE_ALLOC);
2649 			return NULL;
2650 		}
2651 	}
2652 
2653 	if (!for_write)
2654 		return grab_cache_page(mapping, index);
2655 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2656 }
2657 
2658 static inline struct page *f2fs_pagecache_get_page(
2659 				struct address_space *mapping, pgoff_t index,
2660 				int fgp_flags, gfp_t gfp_mask)
2661 {
2662 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2663 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2664 		return NULL;
2665 	}
2666 
2667 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2668 }
2669 
2670 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2671 {
2672 	char *src_kaddr = kmap(src);
2673 	char *dst_kaddr = kmap(dst);
2674 
2675 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2676 	kunmap(dst);
2677 	kunmap(src);
2678 }
2679 
2680 static inline void f2fs_put_page(struct page *page, int unlock)
2681 {
2682 	if (!page)
2683 		return;
2684 
2685 	if (unlock) {
2686 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2687 		unlock_page(page);
2688 	}
2689 	put_page(page);
2690 }
2691 
2692 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2693 {
2694 	if (dn->node_page)
2695 		f2fs_put_page(dn->node_page, 1);
2696 	if (dn->inode_page && dn->node_page != dn->inode_page)
2697 		f2fs_put_page(dn->inode_page, 0);
2698 	dn->node_page = NULL;
2699 	dn->inode_page = NULL;
2700 }
2701 
2702 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2703 					size_t size)
2704 {
2705 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2706 }
2707 
2708 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2709 						gfp_t flags)
2710 {
2711 	void *entry;
2712 
2713 	entry = kmem_cache_alloc(cachep, flags);
2714 	if (!entry)
2715 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2716 	return entry;
2717 }
2718 
2719 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2720 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2721 {
2722 	if (nofail)
2723 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2724 
2725 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2726 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2727 		return NULL;
2728 	}
2729 
2730 	return kmem_cache_alloc(cachep, flags);
2731 }
2732 
2733 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2734 {
2735 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2736 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2737 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2738 		get_pages(sbi, F2FS_DIO_READ) ||
2739 		get_pages(sbi, F2FS_DIO_WRITE))
2740 		return true;
2741 
2742 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2743 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2744 		return true;
2745 
2746 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2747 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2748 		return true;
2749 	return false;
2750 }
2751 
2752 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2753 {
2754 	if (sbi->gc_mode == GC_URGENT_HIGH)
2755 		return true;
2756 
2757 	if (is_inflight_io(sbi, type))
2758 		return false;
2759 
2760 	if (sbi->gc_mode == GC_URGENT_LOW &&
2761 			(type == DISCARD_TIME || type == GC_TIME))
2762 		return true;
2763 
2764 	return f2fs_time_over(sbi, type);
2765 }
2766 
2767 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2768 				unsigned long index, void *item)
2769 {
2770 	while (radix_tree_insert(root, index, item))
2771 		cond_resched();
2772 }
2773 
2774 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2775 
2776 static inline bool IS_INODE(struct page *page)
2777 {
2778 	struct f2fs_node *p = F2FS_NODE(page);
2779 
2780 	return RAW_IS_INODE(p);
2781 }
2782 
2783 static inline int offset_in_addr(struct f2fs_inode *i)
2784 {
2785 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2786 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2787 }
2788 
2789 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2790 {
2791 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2792 }
2793 
2794 static inline int f2fs_has_extra_attr(struct inode *inode);
2795 static inline block_t data_blkaddr(struct inode *inode,
2796 			struct page *node_page, unsigned int offset)
2797 {
2798 	struct f2fs_node *raw_node;
2799 	__le32 *addr_array;
2800 	int base = 0;
2801 	bool is_inode = IS_INODE(node_page);
2802 
2803 	raw_node = F2FS_NODE(node_page);
2804 
2805 	if (is_inode) {
2806 		if (!inode)
2807 			/* from GC path only */
2808 			base = offset_in_addr(&raw_node->i);
2809 		else if (f2fs_has_extra_attr(inode))
2810 			base = get_extra_isize(inode);
2811 	}
2812 
2813 	addr_array = blkaddr_in_node(raw_node);
2814 	return le32_to_cpu(addr_array[base + offset]);
2815 }
2816 
2817 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2818 {
2819 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2820 }
2821 
2822 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2823 {
2824 	int mask;
2825 
2826 	addr += (nr >> 3);
2827 	mask = 1 << (7 - (nr & 0x07));
2828 	return mask & *addr;
2829 }
2830 
2831 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2832 {
2833 	int mask;
2834 
2835 	addr += (nr >> 3);
2836 	mask = 1 << (7 - (nr & 0x07));
2837 	*addr |= mask;
2838 }
2839 
2840 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2841 {
2842 	int mask;
2843 
2844 	addr += (nr >> 3);
2845 	mask = 1 << (7 - (nr & 0x07));
2846 	*addr &= ~mask;
2847 }
2848 
2849 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2850 {
2851 	int mask;
2852 	int ret;
2853 
2854 	addr += (nr >> 3);
2855 	mask = 1 << (7 - (nr & 0x07));
2856 	ret = mask & *addr;
2857 	*addr |= mask;
2858 	return ret;
2859 }
2860 
2861 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2862 {
2863 	int mask;
2864 	int ret;
2865 
2866 	addr += (nr >> 3);
2867 	mask = 1 << (7 - (nr & 0x07));
2868 	ret = mask & *addr;
2869 	*addr &= ~mask;
2870 	return ret;
2871 }
2872 
2873 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2874 {
2875 	int mask;
2876 
2877 	addr += (nr >> 3);
2878 	mask = 1 << (7 - (nr & 0x07));
2879 	*addr ^= mask;
2880 }
2881 
2882 /*
2883  * On-disk inode flags (f2fs_inode::i_flags)
2884  */
2885 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2886 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2887 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2888 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2889 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2890 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2891 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2892 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2893 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2894 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2895 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2896 
2897 /* Flags that should be inherited by new inodes from their parent. */
2898 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2899 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2900 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2901 
2902 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2903 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2904 				F2FS_CASEFOLD_FL))
2905 
2906 /* Flags that are appropriate for non-directories/regular files. */
2907 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2908 
2909 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2910 {
2911 	if (S_ISDIR(mode))
2912 		return flags;
2913 	else if (S_ISREG(mode))
2914 		return flags & F2FS_REG_FLMASK;
2915 	else
2916 		return flags & F2FS_OTHER_FLMASK;
2917 }
2918 
2919 static inline void __mark_inode_dirty_flag(struct inode *inode,
2920 						int flag, bool set)
2921 {
2922 	switch (flag) {
2923 	case FI_INLINE_XATTR:
2924 	case FI_INLINE_DATA:
2925 	case FI_INLINE_DENTRY:
2926 	case FI_NEW_INODE:
2927 		if (set)
2928 			return;
2929 		fallthrough;
2930 	case FI_DATA_EXIST:
2931 	case FI_INLINE_DOTS:
2932 	case FI_PIN_FILE:
2933 	case FI_COMPRESS_RELEASED:
2934 		f2fs_mark_inode_dirty_sync(inode, true);
2935 	}
2936 }
2937 
2938 static inline void set_inode_flag(struct inode *inode, int flag)
2939 {
2940 	set_bit(flag, F2FS_I(inode)->flags);
2941 	__mark_inode_dirty_flag(inode, flag, true);
2942 }
2943 
2944 static inline int is_inode_flag_set(struct inode *inode, int flag)
2945 {
2946 	return test_bit(flag, F2FS_I(inode)->flags);
2947 }
2948 
2949 static inline void clear_inode_flag(struct inode *inode, int flag)
2950 {
2951 	clear_bit(flag, F2FS_I(inode)->flags);
2952 	__mark_inode_dirty_flag(inode, flag, false);
2953 }
2954 
2955 static inline bool f2fs_verity_in_progress(struct inode *inode)
2956 {
2957 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2958 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2959 }
2960 
2961 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2962 {
2963 	F2FS_I(inode)->i_acl_mode = mode;
2964 	set_inode_flag(inode, FI_ACL_MODE);
2965 	f2fs_mark_inode_dirty_sync(inode, false);
2966 }
2967 
2968 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2969 {
2970 	if (inc)
2971 		inc_nlink(inode);
2972 	else
2973 		drop_nlink(inode);
2974 	f2fs_mark_inode_dirty_sync(inode, true);
2975 }
2976 
2977 static inline void f2fs_i_blocks_write(struct inode *inode,
2978 					block_t diff, bool add, bool claim)
2979 {
2980 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2981 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2982 
2983 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2984 	if (add) {
2985 		if (claim)
2986 			dquot_claim_block(inode, diff);
2987 		else
2988 			dquot_alloc_block_nofail(inode, diff);
2989 	} else {
2990 		dquot_free_block(inode, diff);
2991 	}
2992 
2993 	f2fs_mark_inode_dirty_sync(inode, true);
2994 	if (clean || recover)
2995 		set_inode_flag(inode, FI_AUTO_RECOVER);
2996 }
2997 
2998 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2999 {
3000 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3001 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3002 
3003 	if (i_size_read(inode) == i_size)
3004 		return;
3005 
3006 	i_size_write(inode, i_size);
3007 	f2fs_mark_inode_dirty_sync(inode, true);
3008 	if (clean || recover)
3009 		set_inode_flag(inode, FI_AUTO_RECOVER);
3010 }
3011 
3012 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3013 {
3014 	F2FS_I(inode)->i_current_depth = depth;
3015 	f2fs_mark_inode_dirty_sync(inode, true);
3016 }
3017 
3018 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3019 					unsigned int count)
3020 {
3021 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3022 	f2fs_mark_inode_dirty_sync(inode, true);
3023 }
3024 
3025 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3026 {
3027 	F2FS_I(inode)->i_xattr_nid = xnid;
3028 	f2fs_mark_inode_dirty_sync(inode, true);
3029 }
3030 
3031 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3032 {
3033 	F2FS_I(inode)->i_pino = pino;
3034 	f2fs_mark_inode_dirty_sync(inode, true);
3035 }
3036 
3037 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3038 {
3039 	struct f2fs_inode_info *fi = F2FS_I(inode);
3040 
3041 	if (ri->i_inline & F2FS_INLINE_XATTR)
3042 		set_bit(FI_INLINE_XATTR, fi->flags);
3043 	if (ri->i_inline & F2FS_INLINE_DATA)
3044 		set_bit(FI_INLINE_DATA, fi->flags);
3045 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3046 		set_bit(FI_INLINE_DENTRY, fi->flags);
3047 	if (ri->i_inline & F2FS_DATA_EXIST)
3048 		set_bit(FI_DATA_EXIST, fi->flags);
3049 	if (ri->i_inline & F2FS_INLINE_DOTS)
3050 		set_bit(FI_INLINE_DOTS, fi->flags);
3051 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3052 		set_bit(FI_EXTRA_ATTR, fi->flags);
3053 	if (ri->i_inline & F2FS_PIN_FILE)
3054 		set_bit(FI_PIN_FILE, fi->flags);
3055 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3056 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3057 }
3058 
3059 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3060 {
3061 	ri->i_inline = 0;
3062 
3063 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3064 		ri->i_inline |= F2FS_INLINE_XATTR;
3065 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3066 		ri->i_inline |= F2FS_INLINE_DATA;
3067 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3068 		ri->i_inline |= F2FS_INLINE_DENTRY;
3069 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3070 		ri->i_inline |= F2FS_DATA_EXIST;
3071 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3072 		ri->i_inline |= F2FS_INLINE_DOTS;
3073 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3074 		ri->i_inline |= F2FS_EXTRA_ATTR;
3075 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3076 		ri->i_inline |= F2FS_PIN_FILE;
3077 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3078 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3079 }
3080 
3081 static inline int f2fs_has_extra_attr(struct inode *inode)
3082 {
3083 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3084 }
3085 
3086 static inline int f2fs_has_inline_xattr(struct inode *inode)
3087 {
3088 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3089 }
3090 
3091 static inline int f2fs_compressed_file(struct inode *inode)
3092 {
3093 	return S_ISREG(inode->i_mode) &&
3094 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3095 }
3096 
3097 static inline bool f2fs_need_compress_data(struct inode *inode)
3098 {
3099 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3100 
3101 	if (!f2fs_compressed_file(inode))
3102 		return false;
3103 
3104 	if (compress_mode == COMPR_MODE_FS)
3105 		return true;
3106 	else if (compress_mode == COMPR_MODE_USER &&
3107 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3108 		return true;
3109 
3110 	return false;
3111 }
3112 
3113 static inline unsigned int addrs_per_inode(struct inode *inode)
3114 {
3115 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3116 				get_inline_xattr_addrs(inode);
3117 
3118 	if (!f2fs_compressed_file(inode))
3119 		return addrs;
3120 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3121 }
3122 
3123 static inline unsigned int addrs_per_block(struct inode *inode)
3124 {
3125 	if (!f2fs_compressed_file(inode))
3126 		return DEF_ADDRS_PER_BLOCK;
3127 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3128 }
3129 
3130 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3131 {
3132 	struct f2fs_inode *ri = F2FS_INODE(page);
3133 
3134 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3135 					get_inline_xattr_addrs(inode)]);
3136 }
3137 
3138 static inline int inline_xattr_size(struct inode *inode)
3139 {
3140 	if (f2fs_has_inline_xattr(inode))
3141 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3142 	return 0;
3143 }
3144 
3145 static inline int f2fs_has_inline_data(struct inode *inode)
3146 {
3147 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3148 }
3149 
3150 static inline int f2fs_exist_data(struct inode *inode)
3151 {
3152 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3153 }
3154 
3155 static inline int f2fs_has_inline_dots(struct inode *inode)
3156 {
3157 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3158 }
3159 
3160 static inline int f2fs_is_mmap_file(struct inode *inode)
3161 {
3162 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3163 }
3164 
3165 static inline bool f2fs_is_pinned_file(struct inode *inode)
3166 {
3167 	return is_inode_flag_set(inode, FI_PIN_FILE);
3168 }
3169 
3170 static inline bool f2fs_is_atomic_file(struct inode *inode)
3171 {
3172 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3173 }
3174 
3175 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3176 {
3177 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3178 }
3179 
3180 static inline bool f2fs_is_volatile_file(struct inode *inode)
3181 {
3182 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3183 }
3184 
3185 static inline bool f2fs_is_first_block_written(struct inode *inode)
3186 {
3187 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3188 }
3189 
3190 static inline bool f2fs_is_drop_cache(struct inode *inode)
3191 {
3192 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3193 }
3194 
3195 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3196 {
3197 	struct f2fs_inode *ri = F2FS_INODE(page);
3198 	int extra_size = get_extra_isize(inode);
3199 
3200 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3201 }
3202 
3203 static inline int f2fs_has_inline_dentry(struct inode *inode)
3204 {
3205 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3206 }
3207 
3208 static inline int is_file(struct inode *inode, int type)
3209 {
3210 	return F2FS_I(inode)->i_advise & type;
3211 }
3212 
3213 static inline void set_file(struct inode *inode, int type)
3214 {
3215 	if (is_file(inode, type))
3216 		return;
3217 	F2FS_I(inode)->i_advise |= type;
3218 	f2fs_mark_inode_dirty_sync(inode, true);
3219 }
3220 
3221 static inline void clear_file(struct inode *inode, int type)
3222 {
3223 	if (!is_file(inode, type))
3224 		return;
3225 	F2FS_I(inode)->i_advise &= ~type;
3226 	f2fs_mark_inode_dirty_sync(inode, true);
3227 }
3228 
3229 static inline bool f2fs_is_time_consistent(struct inode *inode)
3230 {
3231 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3232 		return false;
3233 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3234 		return false;
3235 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3236 		return false;
3237 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3238 						&F2FS_I(inode)->i_crtime))
3239 		return false;
3240 	return true;
3241 }
3242 
3243 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3244 {
3245 	bool ret;
3246 
3247 	if (dsync) {
3248 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3249 
3250 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3251 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3252 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3253 		return ret;
3254 	}
3255 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3256 			file_keep_isize(inode) ||
3257 			i_size_read(inode) & ~PAGE_MASK)
3258 		return false;
3259 
3260 	if (!f2fs_is_time_consistent(inode))
3261 		return false;
3262 
3263 	spin_lock(&F2FS_I(inode)->i_size_lock);
3264 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3265 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3266 
3267 	return ret;
3268 }
3269 
3270 static inline bool f2fs_readonly(struct super_block *sb)
3271 {
3272 	return sb_rdonly(sb);
3273 }
3274 
3275 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3276 {
3277 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3278 }
3279 
3280 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3281 {
3282 	if (len == 1 && name[0] == '.')
3283 		return true;
3284 
3285 	if (len == 2 && name[0] == '.' && name[1] == '.')
3286 		return true;
3287 
3288 	return false;
3289 }
3290 
3291 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3292 					size_t size, gfp_t flags)
3293 {
3294 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3295 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3296 		return NULL;
3297 	}
3298 
3299 	return kmalloc(size, flags);
3300 }
3301 
3302 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3303 					size_t size, gfp_t flags)
3304 {
3305 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3306 }
3307 
3308 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3309 					size_t size, gfp_t flags)
3310 {
3311 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3312 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3313 		return NULL;
3314 	}
3315 
3316 	return kvmalloc(size, flags);
3317 }
3318 
3319 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3320 					size_t size, gfp_t flags)
3321 {
3322 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3323 }
3324 
3325 static inline int get_extra_isize(struct inode *inode)
3326 {
3327 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3328 }
3329 
3330 static inline int get_inline_xattr_addrs(struct inode *inode)
3331 {
3332 	return F2FS_I(inode)->i_inline_xattr_size;
3333 }
3334 
3335 #define f2fs_get_inode_mode(i) \
3336 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3337 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3338 
3339 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3340 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3341 	offsetof(struct f2fs_inode, i_extra_isize))	\
3342 
3343 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3344 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3345 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3346 		sizeof((f2fs_inode)->field))			\
3347 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3348 
3349 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3350 
3351 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3352 
3353 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3354 					block_t blkaddr, int type);
3355 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3356 					block_t blkaddr, int type)
3357 {
3358 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3359 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3360 			 blkaddr, type);
3361 		f2fs_bug_on(sbi, 1);
3362 	}
3363 }
3364 
3365 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3366 {
3367 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3368 			blkaddr == COMPRESS_ADDR)
3369 		return false;
3370 	return true;
3371 }
3372 
3373 /*
3374  * file.c
3375  */
3376 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3377 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3378 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3379 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3380 int f2fs_truncate(struct inode *inode);
3381 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3382 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3383 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3384 		 struct iattr *attr);
3385 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3386 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3387 int f2fs_precache_extents(struct inode *inode);
3388 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3389 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3390 		      struct dentry *dentry, struct fileattr *fa);
3391 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3392 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3393 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3394 int f2fs_pin_file_control(struct inode *inode, bool inc);
3395 
3396 /*
3397  * inode.c
3398  */
3399 void f2fs_set_inode_flags(struct inode *inode);
3400 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3401 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3402 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3403 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3404 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3405 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3406 void f2fs_update_inode_page(struct inode *inode);
3407 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3408 void f2fs_evict_inode(struct inode *inode);
3409 void f2fs_handle_failed_inode(struct inode *inode);
3410 
3411 /*
3412  * namei.c
3413  */
3414 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3415 							bool hot, bool set);
3416 struct dentry *f2fs_get_parent(struct dentry *child);
3417 
3418 /*
3419  * dir.c
3420  */
3421 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3422 int f2fs_init_casefolded_name(const struct inode *dir,
3423 			      struct f2fs_filename *fname);
3424 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3425 			int lookup, struct f2fs_filename *fname);
3426 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3427 			struct f2fs_filename *fname);
3428 void f2fs_free_filename(struct f2fs_filename *fname);
3429 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3430 			const struct f2fs_filename *fname, int *max_slots);
3431 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3432 			unsigned int start_pos, struct fscrypt_str *fstr);
3433 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3434 			struct f2fs_dentry_ptr *d);
3435 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3436 			const struct f2fs_filename *fname, struct page *dpage);
3437 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3438 			unsigned int current_depth);
3439 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3440 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3441 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3442 					 const struct f2fs_filename *fname,
3443 					 struct page **res_page);
3444 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3445 			const struct qstr *child, struct page **res_page);
3446 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3447 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3448 			struct page **page);
3449 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3450 			struct page *page, struct inode *inode);
3451 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3452 			  const struct f2fs_filename *fname);
3453 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3454 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3455 			unsigned int bit_pos);
3456 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3457 			struct inode *inode, nid_t ino, umode_t mode);
3458 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3459 			struct inode *inode, nid_t ino, umode_t mode);
3460 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3461 			struct inode *inode, nid_t ino, umode_t mode);
3462 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3463 			struct inode *dir, struct inode *inode);
3464 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3465 bool f2fs_empty_dir(struct inode *dir);
3466 
3467 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3468 {
3469 	if (fscrypt_is_nokey_name(dentry))
3470 		return -ENOKEY;
3471 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3472 				inode, inode->i_ino, inode->i_mode);
3473 }
3474 
3475 /*
3476  * super.c
3477  */
3478 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3479 void f2fs_inode_synced(struct inode *inode);
3480 int f2fs_dquot_initialize(struct inode *inode);
3481 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3482 int f2fs_quota_sync(struct super_block *sb, int type);
3483 loff_t max_file_blocks(struct inode *inode);
3484 void f2fs_quota_off_umount(struct super_block *sb);
3485 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3486 int f2fs_sync_fs(struct super_block *sb, int sync);
3487 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3488 
3489 /*
3490  * hash.c
3491  */
3492 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3493 
3494 /*
3495  * node.c
3496  */
3497 struct node_info;
3498 
3499 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3500 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3501 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3502 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3503 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3504 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3505 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3506 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3507 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3508 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3509 				struct node_info *ni, bool checkpoint_context);
3510 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3511 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3512 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3513 int f2fs_truncate_xattr_node(struct inode *inode);
3514 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3515 					unsigned int seq_id);
3516 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3517 int f2fs_remove_inode_page(struct inode *inode);
3518 struct page *f2fs_new_inode_page(struct inode *inode);
3519 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3520 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3521 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3522 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3523 int f2fs_move_node_page(struct page *node_page, int gc_type);
3524 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3525 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3526 			struct writeback_control *wbc, bool atomic,
3527 			unsigned int *seq_id);
3528 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3529 			struct writeback_control *wbc,
3530 			bool do_balance, enum iostat_type io_type);
3531 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3532 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3533 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3534 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3535 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3536 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3537 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3538 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3539 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3540 			unsigned int segno, struct f2fs_summary_block *sum);
3541 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3542 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3543 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3544 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3545 int __init f2fs_create_node_manager_caches(void);
3546 void f2fs_destroy_node_manager_caches(void);
3547 
3548 /*
3549  * segment.c
3550  */
3551 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3552 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3553 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3554 void f2fs_drop_inmem_pages(struct inode *inode);
3555 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3556 int f2fs_commit_inmem_pages(struct inode *inode);
3557 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3558 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3559 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3560 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3561 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3562 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3563 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3564 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3565 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3566 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3567 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3568 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3569 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3570 					struct cp_control *cpc);
3571 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3572 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3573 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3574 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3575 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3576 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3577 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3578 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3579 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3580 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3581 			unsigned int *newseg, bool new_sec, int dir);
3582 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3583 					unsigned int start, unsigned int end);
3584 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3585 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3586 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3587 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3588 					struct cp_control *cpc);
3589 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3590 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3591 					block_t blk_addr);
3592 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3593 						enum iostat_type io_type);
3594 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3595 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3596 			struct f2fs_io_info *fio);
3597 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3598 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3599 			block_t old_blkaddr, block_t new_blkaddr,
3600 			bool recover_curseg, bool recover_newaddr,
3601 			bool from_gc);
3602 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3603 			block_t old_addr, block_t new_addr,
3604 			unsigned char version, bool recover_curseg,
3605 			bool recover_newaddr);
3606 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3607 			block_t old_blkaddr, block_t *new_blkaddr,
3608 			struct f2fs_summary *sum, int type,
3609 			struct f2fs_io_info *fio);
3610 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3611 					block_t blkaddr, unsigned int blkcnt);
3612 void f2fs_wait_on_page_writeback(struct page *page,
3613 			enum page_type type, bool ordered, bool locked);
3614 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3615 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3616 								block_t len);
3617 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3618 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3619 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3620 			unsigned int val, int alloc);
3621 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3622 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3623 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3624 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3625 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3626 int __init f2fs_create_segment_manager_caches(void);
3627 void f2fs_destroy_segment_manager_caches(void);
3628 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3629 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3630 			enum page_type type, enum temp_type temp);
3631 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3632 			unsigned int segno);
3633 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3634 			unsigned int segno);
3635 
3636 #define DEF_FRAGMENT_SIZE	4
3637 #define MIN_FRAGMENT_SIZE	1
3638 #define MAX_FRAGMENT_SIZE	512
3639 
3640 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3641 {
3642 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3643 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3644 }
3645 
3646 /*
3647  * checkpoint.c
3648  */
3649 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3650 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3651 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3652 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3653 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3654 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3655 					block_t blkaddr, int type);
3656 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3657 			int type, bool sync);
3658 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3659 							unsigned int ra_blocks);
3660 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3661 			long nr_to_write, enum iostat_type io_type);
3662 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3663 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3664 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3665 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3666 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3667 					unsigned int devidx, int type);
3668 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3669 					unsigned int devidx, int type);
3670 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3671 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3672 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3673 void f2fs_add_orphan_inode(struct inode *inode);
3674 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3675 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3676 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3677 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3678 void f2fs_remove_dirty_inode(struct inode *inode);
3679 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3680 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3681 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3682 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3683 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3684 int __init f2fs_create_checkpoint_caches(void);
3685 void f2fs_destroy_checkpoint_caches(void);
3686 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3687 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3688 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3689 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3690 
3691 /*
3692  * data.c
3693  */
3694 int __init f2fs_init_bioset(void);
3695 void f2fs_destroy_bioset(void);
3696 int f2fs_init_bio_entry_cache(void);
3697 void f2fs_destroy_bio_entry_cache(void);
3698 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3699 				struct bio *bio, enum page_type type);
3700 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3701 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3702 				struct inode *inode, struct page *page,
3703 				nid_t ino, enum page_type type);
3704 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3705 					struct bio **bio, struct page *page);
3706 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3707 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3708 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3709 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3710 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3711 			block_t blk_addr, struct bio *bio);
3712 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3713 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3714 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3715 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3716 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3717 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3718 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3719 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3720 			int op_flags, bool for_write);
3721 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3722 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3723 			bool for_write);
3724 struct page *f2fs_get_new_data_page(struct inode *inode,
3725 			struct page *ipage, pgoff_t index, bool new_i_size);
3726 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3727 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3728 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3729 			int create, int flag);
3730 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3731 			u64 start, u64 len);
3732 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3733 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3734 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3735 int f2fs_write_single_data_page(struct page *page, int *submitted,
3736 				struct bio **bio, sector_t *last_block,
3737 				struct writeback_control *wbc,
3738 				enum iostat_type io_type,
3739 				int compr_blocks, bool allow_balance);
3740 void f2fs_write_failed(struct inode *inode, loff_t to);
3741 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3742 			unsigned int length);
3743 int f2fs_release_page(struct page *page, gfp_t wait);
3744 #ifdef CONFIG_MIGRATION
3745 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3746 			struct page *page, enum migrate_mode mode);
3747 #endif
3748 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3749 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3750 int f2fs_init_post_read_processing(void);
3751 void f2fs_destroy_post_read_processing(void);
3752 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3753 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3754 extern const struct iomap_ops f2fs_iomap_ops;
3755 
3756 /*
3757  * gc.c
3758  */
3759 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3760 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3761 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3762 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3763 			unsigned int segno);
3764 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3765 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3766 int __init f2fs_create_garbage_collection_cache(void);
3767 void f2fs_destroy_garbage_collection_cache(void);
3768 
3769 /*
3770  * recovery.c
3771  */
3772 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3773 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3774 int __init f2fs_create_recovery_cache(void);
3775 void f2fs_destroy_recovery_cache(void);
3776 
3777 /*
3778  * debug.c
3779  */
3780 #ifdef CONFIG_F2FS_STAT_FS
3781 struct f2fs_stat_info {
3782 	struct list_head stat_list;
3783 	struct f2fs_sb_info *sbi;
3784 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3785 	int main_area_segs, main_area_sections, main_area_zones;
3786 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3787 	unsigned long long hit_total, total_ext;
3788 	int ext_tree, zombie_tree, ext_node;
3789 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3790 	int ndirty_data, ndirty_qdata;
3791 	int inmem_pages;
3792 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3793 	int nats, dirty_nats, sits, dirty_sits;
3794 	int free_nids, avail_nids, alloc_nids;
3795 	int total_count, utilization;
3796 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3797 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3798 	int nr_dio_read, nr_dio_write;
3799 	unsigned int io_skip_bggc, other_skip_bggc;
3800 	int nr_flushing, nr_flushed, flush_list_empty;
3801 	int nr_discarding, nr_discarded;
3802 	int nr_discard_cmd;
3803 	unsigned int undiscard_blks;
3804 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3805 	unsigned int cur_ckpt_time, peak_ckpt_time;
3806 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3807 	int compr_inode;
3808 	unsigned long long compr_blocks;
3809 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3810 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3811 	unsigned int bimodal, avg_vblocks;
3812 	int util_free, util_valid, util_invalid;
3813 	int rsvd_segs, overp_segs;
3814 	int dirty_count, node_pages, meta_pages, compress_pages;
3815 	int compress_page_hit;
3816 	int prefree_count, call_count, cp_count, bg_cp_count;
3817 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3818 	int bg_node_segs, bg_data_segs;
3819 	int tot_blks, data_blks, node_blks;
3820 	int bg_data_blks, bg_node_blks;
3821 	unsigned long long skipped_atomic_files[2];
3822 	int curseg[NR_CURSEG_TYPE];
3823 	int cursec[NR_CURSEG_TYPE];
3824 	int curzone[NR_CURSEG_TYPE];
3825 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3826 	unsigned int full_seg[NR_CURSEG_TYPE];
3827 	unsigned int valid_blks[NR_CURSEG_TYPE];
3828 
3829 	unsigned int meta_count[META_MAX];
3830 	unsigned int segment_count[2];
3831 	unsigned int block_count[2];
3832 	unsigned int inplace_count;
3833 	unsigned long long base_mem, cache_mem, page_mem;
3834 };
3835 
3836 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3837 {
3838 	return (struct f2fs_stat_info *)sbi->stat_info;
3839 }
3840 
3841 #define stat_inc_cp_count(si)		((si)->cp_count++)
3842 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3843 #define stat_inc_call_count(si)		((si)->call_count++)
3844 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3845 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3846 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3847 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3848 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3849 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3850 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3851 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3852 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3853 #define stat_inc_inline_xattr(inode)					\
3854 	do {								\
3855 		if (f2fs_has_inline_xattr(inode))			\
3856 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3857 	} while (0)
3858 #define stat_dec_inline_xattr(inode)					\
3859 	do {								\
3860 		if (f2fs_has_inline_xattr(inode))			\
3861 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3862 	} while (0)
3863 #define stat_inc_inline_inode(inode)					\
3864 	do {								\
3865 		if (f2fs_has_inline_data(inode))			\
3866 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3867 	} while (0)
3868 #define stat_dec_inline_inode(inode)					\
3869 	do {								\
3870 		if (f2fs_has_inline_data(inode))			\
3871 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3872 	} while (0)
3873 #define stat_inc_inline_dir(inode)					\
3874 	do {								\
3875 		if (f2fs_has_inline_dentry(inode))			\
3876 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3877 	} while (0)
3878 #define stat_dec_inline_dir(inode)					\
3879 	do {								\
3880 		if (f2fs_has_inline_dentry(inode))			\
3881 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3882 	} while (0)
3883 #define stat_inc_compr_inode(inode)					\
3884 	do {								\
3885 		if (f2fs_compressed_file(inode))			\
3886 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3887 	} while (0)
3888 #define stat_dec_compr_inode(inode)					\
3889 	do {								\
3890 		if (f2fs_compressed_file(inode))			\
3891 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3892 	} while (0)
3893 #define stat_add_compr_blocks(inode, blocks)				\
3894 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3895 #define stat_sub_compr_blocks(inode, blocks)				\
3896 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3897 #define stat_inc_meta_count(sbi, blkaddr)				\
3898 	do {								\
3899 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3900 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3901 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3902 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3903 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3904 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3905 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3906 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3907 	} while (0)
3908 #define stat_inc_seg_type(sbi, curseg)					\
3909 		((sbi)->segment_count[(curseg)->alloc_type]++)
3910 #define stat_inc_block_count(sbi, curseg)				\
3911 		((sbi)->block_count[(curseg)->alloc_type]++)
3912 #define stat_inc_inplace_blocks(sbi)					\
3913 		(atomic_inc(&(sbi)->inplace_count))
3914 #define stat_update_max_atomic_write(inode)				\
3915 	do {								\
3916 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3917 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3918 		if (cur > max)						\
3919 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3920 	} while (0)
3921 #define stat_inc_volatile_write(inode)					\
3922 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3923 #define stat_dec_volatile_write(inode)					\
3924 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3925 #define stat_update_max_volatile_write(inode)				\
3926 	do {								\
3927 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3928 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3929 		if (cur > max)						\
3930 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3931 	} while (0)
3932 #define stat_inc_seg_count(sbi, type, gc_type)				\
3933 	do {								\
3934 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3935 		si->tot_segs++;						\
3936 		if ((type) == SUM_TYPE_DATA) {				\
3937 			si->data_segs++;				\
3938 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3939 		} else {						\
3940 			si->node_segs++;				\
3941 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3942 		}							\
3943 	} while (0)
3944 
3945 #define stat_inc_tot_blk_count(si, blks)				\
3946 	((si)->tot_blks += (blks))
3947 
3948 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3949 	do {								\
3950 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3951 		stat_inc_tot_blk_count(si, blks);			\
3952 		si->data_blks += (blks);				\
3953 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3954 	} while (0)
3955 
3956 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3957 	do {								\
3958 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3959 		stat_inc_tot_blk_count(si, blks);			\
3960 		si->node_blks += (blks);				\
3961 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3962 	} while (0)
3963 
3964 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3965 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3966 void __init f2fs_create_root_stats(void);
3967 void f2fs_destroy_root_stats(void);
3968 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3969 #else
3970 #define stat_inc_cp_count(si)				do { } while (0)
3971 #define stat_inc_bg_cp_count(si)			do { } while (0)
3972 #define stat_inc_call_count(si)				do { } while (0)
3973 #define stat_inc_bggc_count(si)				do { } while (0)
3974 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3975 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3976 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3977 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3978 #define stat_inc_total_hit(sbi)				do { } while (0)
3979 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3980 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3981 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3982 #define stat_inc_inline_xattr(inode)			do { } while (0)
3983 #define stat_dec_inline_xattr(inode)			do { } while (0)
3984 #define stat_inc_inline_inode(inode)			do { } while (0)
3985 #define stat_dec_inline_inode(inode)			do { } while (0)
3986 #define stat_inc_inline_dir(inode)			do { } while (0)
3987 #define stat_dec_inline_dir(inode)			do { } while (0)
3988 #define stat_inc_compr_inode(inode)			do { } while (0)
3989 #define stat_dec_compr_inode(inode)			do { } while (0)
3990 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3991 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3992 #define stat_update_max_atomic_write(inode)		do { } while (0)
3993 #define stat_inc_volatile_write(inode)			do { } while (0)
3994 #define stat_dec_volatile_write(inode)			do { } while (0)
3995 #define stat_update_max_volatile_write(inode)		do { } while (0)
3996 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3997 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3998 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3999 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4000 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4001 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4002 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4003 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4004 
4005 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4006 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4007 static inline void __init f2fs_create_root_stats(void) { }
4008 static inline void f2fs_destroy_root_stats(void) { }
4009 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4010 #endif
4011 
4012 extern const struct file_operations f2fs_dir_operations;
4013 extern const struct file_operations f2fs_file_operations;
4014 extern const struct inode_operations f2fs_file_inode_operations;
4015 extern const struct address_space_operations f2fs_dblock_aops;
4016 extern const struct address_space_operations f2fs_node_aops;
4017 extern const struct address_space_operations f2fs_meta_aops;
4018 extern const struct inode_operations f2fs_dir_inode_operations;
4019 extern const struct inode_operations f2fs_symlink_inode_operations;
4020 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4021 extern const struct inode_operations f2fs_special_inode_operations;
4022 extern struct kmem_cache *f2fs_inode_entry_slab;
4023 
4024 /*
4025  * inline.c
4026  */
4027 bool f2fs_may_inline_data(struct inode *inode);
4028 bool f2fs_may_inline_dentry(struct inode *inode);
4029 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4030 void f2fs_truncate_inline_inode(struct inode *inode,
4031 						struct page *ipage, u64 from);
4032 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4033 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4034 int f2fs_convert_inline_inode(struct inode *inode);
4035 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4036 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4037 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4038 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4039 					const struct f2fs_filename *fname,
4040 					struct page **res_page);
4041 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4042 			struct page *ipage);
4043 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4044 			struct inode *inode, nid_t ino, umode_t mode);
4045 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4046 				struct page *page, struct inode *dir,
4047 				struct inode *inode);
4048 bool f2fs_empty_inline_dir(struct inode *dir);
4049 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4050 			struct fscrypt_str *fstr);
4051 int f2fs_inline_data_fiemap(struct inode *inode,
4052 			struct fiemap_extent_info *fieinfo,
4053 			__u64 start, __u64 len);
4054 
4055 /*
4056  * shrinker.c
4057  */
4058 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4059 			struct shrink_control *sc);
4060 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4061 			struct shrink_control *sc);
4062 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4063 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4064 
4065 /*
4066  * extent_cache.c
4067  */
4068 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4069 				struct rb_entry *cached_re, unsigned int ofs);
4070 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4071 				struct rb_root_cached *root,
4072 				struct rb_node **parent,
4073 				unsigned long long key, bool *left_most);
4074 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4075 				struct rb_root_cached *root,
4076 				struct rb_node **parent,
4077 				unsigned int ofs, bool *leftmost);
4078 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4079 		struct rb_entry *cached_re, unsigned int ofs,
4080 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4081 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4082 		bool force, bool *leftmost);
4083 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4084 				struct rb_root_cached *root, bool check_key);
4085 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4086 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4087 void f2fs_drop_extent_tree(struct inode *inode);
4088 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4089 void f2fs_destroy_extent_tree(struct inode *inode);
4090 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4091 			struct extent_info *ei);
4092 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4093 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4094 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4095 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4096 int __init f2fs_create_extent_cache(void);
4097 void f2fs_destroy_extent_cache(void);
4098 
4099 /*
4100  * sysfs.c
4101  */
4102 #define MIN_RA_MUL	2
4103 #define MAX_RA_MUL	256
4104 
4105 int __init f2fs_init_sysfs(void);
4106 void f2fs_exit_sysfs(void);
4107 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4108 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4109 
4110 /* verity.c */
4111 extern const struct fsverity_operations f2fs_verityops;
4112 
4113 /*
4114  * crypto support
4115  */
4116 static inline bool f2fs_encrypted_file(struct inode *inode)
4117 {
4118 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4119 }
4120 
4121 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4122 {
4123 #ifdef CONFIG_FS_ENCRYPTION
4124 	file_set_encrypt(inode);
4125 	f2fs_set_inode_flags(inode);
4126 #endif
4127 }
4128 
4129 /*
4130  * Returns true if the reads of the inode's data need to undergo some
4131  * postprocessing step, like decryption or authenticity verification.
4132  */
4133 static inline bool f2fs_post_read_required(struct inode *inode)
4134 {
4135 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4136 		f2fs_compressed_file(inode);
4137 }
4138 
4139 /*
4140  * compress.c
4141  */
4142 #ifdef CONFIG_F2FS_FS_COMPRESSION
4143 bool f2fs_is_compressed_page(struct page *page);
4144 struct page *f2fs_compress_control_page(struct page *page);
4145 int f2fs_prepare_compress_overwrite(struct inode *inode,
4146 			struct page **pagep, pgoff_t index, void **fsdata);
4147 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4148 					pgoff_t index, unsigned copied);
4149 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4150 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4151 bool f2fs_is_compress_backend_ready(struct inode *inode);
4152 int f2fs_init_compress_mempool(void);
4153 void f2fs_destroy_compress_mempool(void);
4154 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4155 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4156 							block_t blkaddr);
4157 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4158 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4159 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4160 				int index, int nr_pages);
4161 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4163 int f2fs_write_multi_pages(struct compress_ctx *cc,
4164 						int *submitted,
4165 						struct writeback_control *wbc,
4166 						enum iostat_type io_type);
4167 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4168 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4169 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4170 				unsigned int c_len);
4171 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4172 				unsigned nr_pages, sector_t *last_block_in_bio,
4173 				bool is_readahead, bool for_write);
4174 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4175 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4176 void f2fs_put_page_dic(struct page *page);
4177 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4178 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4179 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4180 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4181 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4182 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4183 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4184 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4185 int __init f2fs_init_compress_cache(void);
4186 void f2fs_destroy_compress_cache(void);
4187 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4188 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4189 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4190 						nid_t ino, block_t blkaddr);
4191 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4192 								block_t blkaddr);
4193 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4194 #define inc_compr_inode_stat(inode)					\
4195 	do {								\
4196 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4197 		sbi->compr_new_inode++;					\
4198 	} while (0)
4199 #define add_compr_block_stat(inode, blocks)				\
4200 	do {								\
4201 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4202 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4203 		sbi->compr_written_block += blocks;			\
4204 		sbi->compr_saved_block += diff;				\
4205 	} while (0)
4206 #else
4207 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4208 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4209 {
4210 	if (!f2fs_compressed_file(inode))
4211 		return true;
4212 	/* not support compression */
4213 	return false;
4214 }
4215 static inline struct page *f2fs_compress_control_page(struct page *page)
4216 {
4217 	WARN_ON_ONCE(1);
4218 	return ERR_PTR(-EINVAL);
4219 }
4220 static inline int f2fs_init_compress_mempool(void) { return 0; }
4221 static inline void f2fs_destroy_compress_mempool(void) { }
4222 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4223 static inline void f2fs_end_read_compressed_page(struct page *page,
4224 						bool failed, block_t blkaddr)
4225 {
4226 	WARN_ON_ONCE(1);
4227 }
4228 static inline void f2fs_put_page_dic(struct page *page)
4229 {
4230 	WARN_ON_ONCE(1);
4231 }
4232 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4233 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4234 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4235 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4236 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4237 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4238 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4239 static inline void f2fs_destroy_compress_cache(void) { }
4240 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4241 				block_t blkaddr) { }
4242 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4243 				struct page *page, nid_t ino, block_t blkaddr) { }
4244 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4245 				struct page *page, block_t blkaddr) { return false; }
4246 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4247 							nid_t ino) { }
4248 #define inc_compr_inode_stat(inode)		do { } while (0)
4249 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4250 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4251 				unsigned int c_len) { }
4252 #endif
4253 
4254 static inline void set_compress_context(struct inode *inode)
4255 {
4256 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4257 
4258 	F2FS_I(inode)->i_compress_algorithm =
4259 			F2FS_OPTION(sbi).compress_algorithm;
4260 	F2FS_I(inode)->i_log_cluster_size =
4261 			F2FS_OPTION(sbi).compress_log_size;
4262 	F2FS_I(inode)->i_compress_flag =
4263 			F2FS_OPTION(sbi).compress_chksum ?
4264 				1 << COMPRESS_CHKSUM : 0;
4265 	F2FS_I(inode)->i_cluster_size =
4266 			1 << F2FS_I(inode)->i_log_cluster_size;
4267 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4268 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4269 			F2FS_OPTION(sbi).compress_level)
4270 		F2FS_I(inode)->i_compress_flag |=
4271 				F2FS_OPTION(sbi).compress_level <<
4272 				COMPRESS_LEVEL_OFFSET;
4273 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4274 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4275 	stat_inc_compr_inode(inode);
4276 	inc_compr_inode_stat(inode);
4277 	f2fs_mark_inode_dirty_sync(inode, true);
4278 }
4279 
4280 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4281 {
4282 	struct f2fs_inode_info *fi = F2FS_I(inode);
4283 
4284 	if (!f2fs_compressed_file(inode))
4285 		return true;
4286 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4287 		return false;
4288 
4289 	fi->i_flags &= ~F2FS_COMPR_FL;
4290 	stat_dec_compr_inode(inode);
4291 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4292 	f2fs_mark_inode_dirty_sync(inode, true);
4293 	return true;
4294 }
4295 
4296 #define F2FS_FEATURE_FUNCS(name, flagname) \
4297 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4298 { \
4299 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4300 }
4301 
4302 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4303 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4304 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4305 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4306 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4307 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4308 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4309 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4310 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4311 F2FS_FEATURE_FUNCS(verity, VERITY);
4312 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4313 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4314 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4315 F2FS_FEATURE_FUNCS(readonly, RO);
4316 
4317 static inline bool f2fs_may_extent_tree(struct inode *inode)
4318 {
4319 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4320 
4321 	if (!test_opt(sbi, EXTENT_CACHE) ||
4322 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4323 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4324 			 !f2fs_sb_has_readonly(sbi)))
4325 		return false;
4326 
4327 	/*
4328 	 * for recovered files during mount do not create extents
4329 	 * if shrinker is not registered.
4330 	 */
4331 	if (list_empty(&sbi->s_list))
4332 		return false;
4333 
4334 	return S_ISREG(inode->i_mode);
4335 }
4336 
4337 #ifdef CONFIG_BLK_DEV_ZONED
4338 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4339 				    block_t blkaddr)
4340 {
4341 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4342 
4343 	return test_bit(zno, FDEV(devi).blkz_seq);
4344 }
4345 #endif
4346 
4347 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4348 {
4349 	return f2fs_sb_has_blkzoned(sbi);
4350 }
4351 
4352 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4353 {
4354 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4355 	       bdev_is_zoned(bdev);
4356 }
4357 
4358 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4359 {
4360 	int i;
4361 
4362 	if (!f2fs_is_multi_device(sbi))
4363 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4364 
4365 	for (i = 0; i < sbi->s_ndevs; i++)
4366 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4367 			return true;
4368 	return false;
4369 }
4370 
4371 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4372 {
4373 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4374 					f2fs_hw_should_discard(sbi);
4375 }
4376 
4377 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4378 {
4379 	int i;
4380 
4381 	if (!f2fs_is_multi_device(sbi))
4382 		return bdev_read_only(sbi->sb->s_bdev);
4383 
4384 	for (i = 0; i < sbi->s_ndevs; i++)
4385 		if (bdev_read_only(FDEV(i).bdev))
4386 			return true;
4387 	return false;
4388 }
4389 
4390 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4391 {
4392 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4393 }
4394 
4395 static inline bool f2fs_may_compress(struct inode *inode)
4396 {
4397 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4398 				f2fs_is_atomic_file(inode) ||
4399 				f2fs_is_volatile_file(inode))
4400 		return false;
4401 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4402 }
4403 
4404 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4405 						u64 blocks, bool add)
4406 {
4407 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4408 	struct f2fs_inode_info *fi = F2FS_I(inode);
4409 
4410 	/* don't update i_compr_blocks if saved blocks were released */
4411 	if (!add && !atomic_read(&fi->i_compr_blocks))
4412 		return;
4413 
4414 	if (add) {
4415 		atomic_add(diff, &fi->i_compr_blocks);
4416 		stat_add_compr_blocks(inode, diff);
4417 	} else {
4418 		atomic_sub(diff, &fi->i_compr_blocks);
4419 		stat_sub_compr_blocks(inode, diff);
4420 	}
4421 	f2fs_mark_inode_dirty_sync(inode, true);
4422 }
4423 
4424 static inline int block_unaligned_IO(struct inode *inode,
4425 				struct kiocb *iocb, struct iov_iter *iter)
4426 {
4427 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4428 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4429 	loff_t offset = iocb->ki_pos;
4430 	unsigned long align = offset | iov_iter_alignment(iter);
4431 
4432 	return align & blocksize_mask;
4433 }
4434 
4435 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4436 								int flag)
4437 {
4438 	if (!f2fs_is_multi_device(sbi))
4439 		return false;
4440 	if (flag != F2FS_GET_BLOCK_DIO)
4441 		return false;
4442 	return sbi->aligned_blksize;
4443 }
4444 
4445 static inline bool f2fs_force_buffered_io(struct inode *inode,
4446 				struct kiocb *iocb, struct iov_iter *iter)
4447 {
4448 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4449 	int rw = iov_iter_rw(iter);
4450 
4451 	if (f2fs_post_read_required(inode))
4452 		return true;
4453 
4454 	/* disallow direct IO if any of devices has unaligned blksize */
4455 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4456 		return true;
4457 	/*
4458 	 * for blkzoned device, fallback direct IO to buffered IO, so
4459 	 * all IOs can be serialized by log-structured write.
4460 	 */
4461 	if (f2fs_sb_has_blkzoned(sbi))
4462 		return true;
4463 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4464 		if (block_unaligned_IO(inode, iocb, iter))
4465 			return true;
4466 		if (F2FS_IO_ALIGNED(sbi))
4467 			return true;
4468 	}
4469 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4470 		return true;
4471 
4472 	return false;
4473 }
4474 
4475 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4476 {
4477 	return fsverity_active(inode) &&
4478 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4479 }
4480 
4481 #ifdef CONFIG_F2FS_FAULT_INJECTION
4482 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4483 							unsigned int type);
4484 #else
4485 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4486 #endif
4487 
4488 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4489 {
4490 #ifdef CONFIG_QUOTA
4491 	if (f2fs_sb_has_quota_ino(sbi))
4492 		return true;
4493 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4494 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4495 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4496 		return true;
4497 #endif
4498 	return false;
4499 }
4500 
4501 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4502 {
4503 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4504 }
4505 
4506 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4507 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4508 
4509 #endif /* _LINUX_F2FS_H */
4510