xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 0edbfea5)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27 
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition)					\
32 	do {								\
33 		if (unlikely(condition)) {				\
34 			WARN_ON(1);					\
35 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
36 		}							\
37 	} while (0)
38 #endif
39 
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_PAGE_ALLOC,
44 	FAULT_ALLOC_NID,
45 	FAULT_ORPHAN,
46 	FAULT_BLOCK,
47 	FAULT_DIR_DEPTH,
48 	FAULT_MAX,
49 };
50 
51 struct f2fs_fault_info {
52 	atomic_t inject_ops;
53 	unsigned int inject_rate;
54 	unsigned int inject_type;
55 };
56 
57 extern struct f2fs_fault_info f2fs_fault;
58 extern char *fault_name[FAULT_MAX];
59 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
60 
61 static inline bool time_to_inject(int type)
62 {
63 	if (!f2fs_fault.inject_rate)
64 		return false;
65 	if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
66 		return false;
67 	else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
68 		return false;
69 	else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
70 		return false;
71 	else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
72 		return false;
73 	else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
74 		return false;
75 	else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
76 		return false;
77 
78 	atomic_inc(&f2fs_fault.inject_ops);
79 	if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
80 		atomic_set(&f2fs_fault.inject_ops, 0);
81 		printk("%sF2FS-fs : inject %s in %pF\n",
82 				KERN_INFO,
83 				fault_name[type],
84 				__builtin_return_address(0));
85 		return true;
86 	}
87 	return false;
88 }
89 #endif
90 
91 /*
92  * For mount options
93  */
94 #define F2FS_MOUNT_BG_GC		0x00000001
95 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
96 #define F2FS_MOUNT_DISCARD		0x00000004
97 #define F2FS_MOUNT_NOHEAP		0x00000008
98 #define F2FS_MOUNT_XATTR_USER		0x00000010
99 #define F2FS_MOUNT_POSIX_ACL		0x00000020
100 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
101 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
102 #define F2FS_MOUNT_INLINE_DATA		0x00000100
103 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
104 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
105 #define F2FS_MOUNT_NOBARRIER		0x00000800
106 #define F2FS_MOUNT_FASTBOOT		0x00001000
107 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
108 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
109 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
110 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
111 
112 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
113 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
114 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
115 
116 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
117 		typecheck(unsigned long long, b) &&			\
118 		((long long)((a) - (b)) > 0))
119 
120 typedef u32 block_t;	/*
121 			 * should not change u32, since it is the on-disk block
122 			 * address format, __le32.
123 			 */
124 typedef u32 nid_t;
125 
126 struct f2fs_mount_info {
127 	unsigned int	opt;
128 };
129 
130 #define F2FS_FEATURE_ENCRYPT	0x0001
131 
132 #define F2FS_HAS_FEATURE(sb, mask)					\
133 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
134 #define F2FS_SET_FEATURE(sb, mask)					\
135 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
136 #define F2FS_CLEAR_FEATURE(sb, mask)					\
137 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
138 
139 /*
140  * For checkpoint manager
141  */
142 enum {
143 	NAT_BITMAP,
144 	SIT_BITMAP
145 };
146 
147 enum {
148 	CP_UMOUNT,
149 	CP_FASTBOOT,
150 	CP_SYNC,
151 	CP_RECOVERY,
152 	CP_DISCARD,
153 };
154 
155 #define DEF_BATCHED_TRIM_SECTIONS	32
156 #define BATCHED_TRIM_SEGMENTS(sbi)	\
157 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
158 #define BATCHED_TRIM_BLOCKS(sbi)	\
159 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
160 #define DEF_CP_INTERVAL			60	/* 60 secs */
161 #define DEF_IDLE_INTERVAL		120	/* 2 mins */
162 
163 struct cp_control {
164 	int reason;
165 	__u64 trim_start;
166 	__u64 trim_end;
167 	__u64 trim_minlen;
168 	__u64 trimmed;
169 };
170 
171 /*
172  * For CP/NAT/SIT/SSA readahead
173  */
174 enum {
175 	META_CP,
176 	META_NAT,
177 	META_SIT,
178 	META_SSA,
179 	META_POR,
180 };
181 
182 /* for the list of ino */
183 enum {
184 	ORPHAN_INO,		/* for orphan ino list */
185 	APPEND_INO,		/* for append ino list */
186 	UPDATE_INO,		/* for update ino list */
187 	MAX_INO_ENTRY,		/* max. list */
188 };
189 
190 struct ino_entry {
191 	struct list_head list;	/* list head */
192 	nid_t ino;		/* inode number */
193 };
194 
195 /* for the list of inodes to be GCed */
196 struct inode_entry {
197 	struct list_head list;	/* list head */
198 	struct inode *inode;	/* vfs inode pointer */
199 };
200 
201 /* for the list of blockaddresses to be discarded */
202 struct discard_entry {
203 	struct list_head list;	/* list head */
204 	block_t blkaddr;	/* block address to be discarded */
205 	int len;		/* # of consecutive blocks of the discard */
206 };
207 
208 /* for the list of fsync inodes, used only during recovery */
209 struct fsync_inode_entry {
210 	struct list_head list;	/* list head */
211 	struct inode *inode;	/* vfs inode pointer */
212 	block_t blkaddr;	/* block address locating the last fsync */
213 	block_t last_dentry;	/* block address locating the last dentry */
214 };
215 
216 #define nats_in_cursum(jnl)		(le16_to_cpu(jnl->n_nats))
217 #define sits_in_cursum(jnl)		(le16_to_cpu(jnl->n_sits))
218 
219 #define nat_in_journal(jnl, i)		(jnl->nat_j.entries[i].ne)
220 #define nid_in_journal(jnl, i)		(jnl->nat_j.entries[i].nid)
221 #define sit_in_journal(jnl, i)		(jnl->sit_j.entries[i].se)
222 #define segno_in_journal(jnl, i)	(jnl->sit_j.entries[i].segno)
223 
224 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
225 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
226 
227 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
228 {
229 	int before = nats_in_cursum(journal);
230 	journal->n_nats = cpu_to_le16(before + i);
231 	return before;
232 }
233 
234 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
235 {
236 	int before = sits_in_cursum(journal);
237 	journal->n_sits = cpu_to_le16(before + i);
238 	return before;
239 }
240 
241 static inline bool __has_cursum_space(struct f2fs_journal *journal,
242 							int size, int type)
243 {
244 	if (type == NAT_JOURNAL)
245 		return size <= MAX_NAT_JENTRIES(journal);
246 	return size <= MAX_SIT_JENTRIES(journal);
247 }
248 
249 /*
250  * ioctl commands
251  */
252 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
253 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
254 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
255 
256 #define F2FS_IOCTL_MAGIC		0xf5
257 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
258 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
259 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
260 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
261 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
262 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
263 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
264 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
265 
266 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
267 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
268 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
269 
270 /*
271  * should be same as XFS_IOC_GOINGDOWN.
272  * Flags for going down operation used by FS_IOC_GOINGDOWN
273  */
274 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
275 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
276 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
277 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
278 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
279 
280 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
281 /*
282  * ioctl commands in 32 bit emulation
283  */
284 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
285 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
286 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
287 #endif
288 
289 struct f2fs_defragment {
290 	u64 start;
291 	u64 len;
292 };
293 
294 /*
295  * For INODE and NODE manager
296  */
297 /* for directory operations */
298 struct f2fs_dentry_ptr {
299 	struct inode *inode;
300 	const void *bitmap;
301 	struct f2fs_dir_entry *dentry;
302 	__u8 (*filename)[F2FS_SLOT_LEN];
303 	int max;
304 };
305 
306 static inline void make_dentry_ptr(struct inode *inode,
307 		struct f2fs_dentry_ptr *d, void *src, int type)
308 {
309 	d->inode = inode;
310 
311 	if (type == 1) {
312 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
313 		d->max = NR_DENTRY_IN_BLOCK;
314 		d->bitmap = &t->dentry_bitmap;
315 		d->dentry = t->dentry;
316 		d->filename = t->filename;
317 	} else {
318 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
319 		d->max = NR_INLINE_DENTRY;
320 		d->bitmap = &t->dentry_bitmap;
321 		d->dentry = t->dentry;
322 		d->filename = t->filename;
323 	}
324 }
325 
326 /*
327  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
328  * as its node offset to distinguish from index node blocks.
329  * But some bits are used to mark the node block.
330  */
331 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
332 				>> OFFSET_BIT_SHIFT)
333 enum {
334 	ALLOC_NODE,			/* allocate a new node page if needed */
335 	LOOKUP_NODE,			/* look up a node without readahead */
336 	LOOKUP_NODE_RA,			/*
337 					 * look up a node with readahead called
338 					 * by get_data_block.
339 					 */
340 };
341 
342 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
343 
344 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
345 
346 /* vector size for gang look-up from extent cache that consists of radix tree */
347 #define EXT_TREE_VEC_SIZE	64
348 
349 /* for in-memory extent cache entry */
350 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
351 
352 /* number of extent info in extent cache we try to shrink */
353 #define EXTENT_CACHE_SHRINK_NUMBER	128
354 
355 struct extent_info {
356 	unsigned int fofs;		/* start offset in a file */
357 	u32 blk;			/* start block address of the extent */
358 	unsigned int len;		/* length of the extent */
359 };
360 
361 struct extent_node {
362 	struct rb_node rb_node;		/* rb node located in rb-tree */
363 	struct list_head list;		/* node in global extent list of sbi */
364 	struct extent_info ei;		/* extent info */
365 	struct extent_tree *et;		/* extent tree pointer */
366 };
367 
368 struct extent_tree {
369 	nid_t ino;			/* inode number */
370 	struct rb_root root;		/* root of extent info rb-tree */
371 	struct extent_node *cached_en;	/* recently accessed extent node */
372 	struct extent_info largest;	/* largested extent info */
373 	struct list_head list;		/* to be used by sbi->zombie_list */
374 	rwlock_t lock;			/* protect extent info rb-tree */
375 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
376 };
377 
378 /*
379  * This structure is taken from ext4_map_blocks.
380  *
381  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
382  */
383 #define F2FS_MAP_NEW		(1 << BH_New)
384 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
385 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
386 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
387 				F2FS_MAP_UNWRITTEN)
388 
389 struct f2fs_map_blocks {
390 	block_t m_pblk;
391 	block_t m_lblk;
392 	unsigned int m_len;
393 	unsigned int m_flags;
394 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
395 };
396 
397 /* for flag in get_data_block */
398 #define F2FS_GET_BLOCK_READ		0
399 #define F2FS_GET_BLOCK_DIO		1
400 #define F2FS_GET_BLOCK_FIEMAP		2
401 #define F2FS_GET_BLOCK_BMAP		3
402 #define F2FS_GET_BLOCK_PRE_DIO		4
403 #define F2FS_GET_BLOCK_PRE_AIO		5
404 
405 /*
406  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
407  */
408 #define FADVISE_COLD_BIT	0x01
409 #define FADVISE_LOST_PINO_BIT	0x02
410 #define FADVISE_ENCRYPT_BIT	0x04
411 #define FADVISE_ENC_NAME_BIT	0x08
412 
413 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
414 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
415 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
416 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
417 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
418 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
419 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
420 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
421 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
422 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
423 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
424 
425 #define DEF_DIR_LEVEL		0
426 
427 struct f2fs_inode_info {
428 	struct inode vfs_inode;		/* serve a vfs inode */
429 	unsigned long i_flags;		/* keep an inode flags for ioctl */
430 	unsigned char i_advise;		/* use to give file attribute hints */
431 	unsigned char i_dir_level;	/* use for dentry level for large dir */
432 	unsigned int i_current_depth;	/* use only in directory structure */
433 	unsigned int i_pino;		/* parent inode number */
434 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
435 
436 	/* Use below internally in f2fs*/
437 	unsigned long flags;		/* use to pass per-file flags */
438 	struct rw_semaphore i_sem;	/* protect fi info */
439 	struct percpu_counter dirty_pages;	/* # of dirty pages */
440 	f2fs_hash_t chash;		/* hash value of given file name */
441 	unsigned int clevel;		/* maximum level of given file name */
442 	nid_t i_xattr_nid;		/* node id that contains xattrs */
443 	unsigned long long xattr_ver;	/* cp version of xattr modification */
444 
445 	struct list_head dirty_list;	/* linked in global dirty list */
446 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
447 	struct mutex inmem_lock;	/* lock for inmemory pages */
448 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
449 };
450 
451 static inline void get_extent_info(struct extent_info *ext,
452 					struct f2fs_extent *i_ext)
453 {
454 	ext->fofs = le32_to_cpu(i_ext->fofs);
455 	ext->blk = le32_to_cpu(i_ext->blk);
456 	ext->len = le32_to_cpu(i_ext->len);
457 }
458 
459 static inline void set_raw_extent(struct extent_info *ext,
460 					struct f2fs_extent *i_ext)
461 {
462 	i_ext->fofs = cpu_to_le32(ext->fofs);
463 	i_ext->blk = cpu_to_le32(ext->blk);
464 	i_ext->len = cpu_to_le32(ext->len);
465 }
466 
467 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
468 						u32 blk, unsigned int len)
469 {
470 	ei->fofs = fofs;
471 	ei->blk = blk;
472 	ei->len = len;
473 }
474 
475 static inline bool __is_extent_same(struct extent_info *ei1,
476 						struct extent_info *ei2)
477 {
478 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
479 						ei1->len == ei2->len);
480 }
481 
482 static inline bool __is_extent_mergeable(struct extent_info *back,
483 						struct extent_info *front)
484 {
485 	return (back->fofs + back->len == front->fofs &&
486 			back->blk + back->len == front->blk);
487 }
488 
489 static inline bool __is_back_mergeable(struct extent_info *cur,
490 						struct extent_info *back)
491 {
492 	return __is_extent_mergeable(back, cur);
493 }
494 
495 static inline bool __is_front_mergeable(struct extent_info *cur,
496 						struct extent_info *front)
497 {
498 	return __is_extent_mergeable(cur, front);
499 }
500 
501 static inline void __try_update_largest_extent(struct extent_tree *et,
502 						struct extent_node *en)
503 {
504 	if (en->ei.len > et->largest.len)
505 		et->largest = en->ei;
506 }
507 
508 struct f2fs_nm_info {
509 	block_t nat_blkaddr;		/* base disk address of NAT */
510 	nid_t max_nid;			/* maximum possible node ids */
511 	nid_t available_nids;		/* maximum available node ids */
512 	nid_t next_scan_nid;		/* the next nid to be scanned */
513 	unsigned int ram_thresh;	/* control the memory footprint */
514 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
515 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
516 
517 	/* NAT cache management */
518 	struct radix_tree_root nat_root;/* root of the nat entry cache */
519 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
520 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
521 	struct list_head nat_entries;	/* cached nat entry list (clean) */
522 	unsigned int nat_cnt;		/* the # of cached nat entries */
523 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
524 
525 	/* free node ids management */
526 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
527 	struct list_head free_nid_list;	/* a list for free nids */
528 	spinlock_t free_nid_list_lock;	/* protect free nid list */
529 	unsigned int fcnt;		/* the number of free node id */
530 	struct mutex build_lock;	/* lock for build free nids */
531 
532 	/* for checkpoint */
533 	char *nat_bitmap;		/* NAT bitmap pointer */
534 	int bitmap_size;		/* bitmap size */
535 };
536 
537 /*
538  * this structure is used as one of function parameters.
539  * all the information are dedicated to a given direct node block determined
540  * by the data offset in a file.
541  */
542 struct dnode_of_data {
543 	struct inode *inode;		/* vfs inode pointer */
544 	struct page *inode_page;	/* its inode page, NULL is possible */
545 	struct page *node_page;		/* cached direct node page */
546 	nid_t nid;			/* node id of the direct node block */
547 	unsigned int ofs_in_node;	/* data offset in the node page */
548 	bool inode_page_locked;		/* inode page is locked or not */
549 	bool node_changed;		/* is node block changed */
550 	char cur_level;			/* level of hole node page */
551 	char max_level;			/* level of current page located */
552 	block_t	data_blkaddr;		/* block address of the node block */
553 };
554 
555 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
556 		struct page *ipage, struct page *npage, nid_t nid)
557 {
558 	memset(dn, 0, sizeof(*dn));
559 	dn->inode = inode;
560 	dn->inode_page = ipage;
561 	dn->node_page = npage;
562 	dn->nid = nid;
563 }
564 
565 /*
566  * For SIT manager
567  *
568  * By default, there are 6 active log areas across the whole main area.
569  * When considering hot and cold data separation to reduce cleaning overhead,
570  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
571  * respectively.
572  * In the current design, you should not change the numbers intentionally.
573  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
574  * logs individually according to the underlying devices. (default: 6)
575  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
576  * data and 8 for node logs.
577  */
578 #define	NR_CURSEG_DATA_TYPE	(3)
579 #define NR_CURSEG_NODE_TYPE	(3)
580 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
581 
582 enum {
583 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
584 	CURSEG_WARM_DATA,	/* data blocks */
585 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
586 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
587 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
588 	CURSEG_COLD_NODE,	/* indirect node blocks */
589 	NO_CHECK_TYPE,
590 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
591 };
592 
593 struct flush_cmd {
594 	struct completion wait;
595 	struct llist_node llnode;
596 	int ret;
597 };
598 
599 struct flush_cmd_control {
600 	struct task_struct *f2fs_issue_flush;	/* flush thread */
601 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
602 	struct llist_head issue_list;		/* list for command issue */
603 	struct llist_node *dispatch_list;	/* list for command dispatch */
604 };
605 
606 struct f2fs_sm_info {
607 	struct sit_info *sit_info;		/* whole segment information */
608 	struct free_segmap_info *free_info;	/* free segment information */
609 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
610 	struct curseg_info *curseg_array;	/* active segment information */
611 
612 	block_t seg0_blkaddr;		/* block address of 0'th segment */
613 	block_t main_blkaddr;		/* start block address of main area */
614 	block_t ssa_blkaddr;		/* start block address of SSA area */
615 
616 	unsigned int segment_count;	/* total # of segments */
617 	unsigned int main_segments;	/* # of segments in main area */
618 	unsigned int reserved_segments;	/* # of reserved segments */
619 	unsigned int ovp_segments;	/* # of overprovision segments */
620 
621 	/* a threshold to reclaim prefree segments */
622 	unsigned int rec_prefree_segments;
623 
624 	/* for small discard management */
625 	struct list_head discard_list;		/* 4KB discard list */
626 	int nr_discards;			/* # of discards in the list */
627 	int max_discards;			/* max. discards to be issued */
628 
629 	/* for batched trimming */
630 	unsigned int trim_sections;		/* # of sections to trim */
631 
632 	struct list_head sit_entry_set;	/* sit entry set list */
633 
634 	unsigned int ipu_policy;	/* in-place-update policy */
635 	unsigned int min_ipu_util;	/* in-place-update threshold */
636 	unsigned int min_fsync_blocks;	/* threshold for fsync */
637 
638 	/* for flush command control */
639 	struct flush_cmd_control *cmd_control_info;
640 
641 };
642 
643 /*
644  * For superblock
645  */
646 /*
647  * COUNT_TYPE for monitoring
648  *
649  * f2fs monitors the number of several block types such as on-writeback,
650  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
651  */
652 enum count_type {
653 	F2FS_DIRTY_DENTS,
654 	F2FS_DIRTY_DATA,
655 	F2FS_DIRTY_NODES,
656 	F2FS_DIRTY_META,
657 	F2FS_INMEM_PAGES,
658 	NR_COUNT_TYPE,
659 };
660 
661 /*
662  * The below are the page types of bios used in submit_bio().
663  * The available types are:
664  * DATA			User data pages. It operates as async mode.
665  * NODE			Node pages. It operates as async mode.
666  * META			FS metadata pages such as SIT, NAT, CP.
667  * NR_PAGE_TYPE		The number of page types.
668  * META_FLUSH		Make sure the previous pages are written
669  *			with waiting the bio's completion
670  * ...			Only can be used with META.
671  */
672 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
673 enum page_type {
674 	DATA,
675 	NODE,
676 	META,
677 	NR_PAGE_TYPE,
678 	META_FLUSH,
679 	INMEM,		/* the below types are used by tracepoints only. */
680 	INMEM_DROP,
681 	INMEM_REVOKE,
682 	IPU,
683 	OPU,
684 };
685 
686 struct f2fs_io_info {
687 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
688 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
689 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
690 	block_t new_blkaddr;	/* new block address to be written */
691 	block_t old_blkaddr;	/* old block address before Cow */
692 	struct page *page;	/* page to be written */
693 	struct page *encrypted_page;	/* encrypted page */
694 };
695 
696 #define is_read_io(rw)	(((rw) & 1) == READ)
697 struct f2fs_bio_info {
698 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
699 	struct bio *bio;		/* bios to merge */
700 	sector_t last_block_in_bio;	/* last block number */
701 	struct f2fs_io_info fio;	/* store buffered io info. */
702 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
703 };
704 
705 enum inode_type {
706 	DIR_INODE,			/* for dirty dir inode */
707 	FILE_INODE,			/* for dirty regular/symlink inode */
708 	NR_INODE_TYPE,
709 };
710 
711 /* for inner inode cache management */
712 struct inode_management {
713 	struct radix_tree_root ino_root;	/* ino entry array */
714 	spinlock_t ino_lock;			/* for ino entry lock */
715 	struct list_head ino_list;		/* inode list head */
716 	unsigned long ino_num;			/* number of entries */
717 };
718 
719 /* For s_flag in struct f2fs_sb_info */
720 enum {
721 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
722 	SBI_IS_CLOSE,				/* specify unmounting */
723 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
724 	SBI_POR_DOING,				/* recovery is doing or not */
725 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
726 };
727 
728 enum {
729 	CP_TIME,
730 	REQ_TIME,
731 	MAX_TIME,
732 };
733 
734 #ifdef CONFIG_F2FS_FS_ENCRYPTION
735 #define F2FS_KEY_DESC_PREFIX "f2fs:"
736 #define F2FS_KEY_DESC_PREFIX_SIZE 5
737 #endif
738 struct f2fs_sb_info {
739 	struct super_block *sb;			/* pointer to VFS super block */
740 	struct proc_dir_entry *s_proc;		/* proc entry */
741 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
742 	int valid_super_block;			/* valid super block no */
743 	int s_flag;				/* flags for sbi */
744 
745 #ifdef CONFIG_F2FS_FS_ENCRYPTION
746 	u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
747 	u8 key_prefix_size;
748 #endif
749 	/* for node-related operations */
750 	struct f2fs_nm_info *nm_info;		/* node manager */
751 	struct inode *node_inode;		/* cache node blocks */
752 
753 	/* for segment-related operations */
754 	struct f2fs_sm_info *sm_info;		/* segment manager */
755 
756 	/* for bio operations */
757 	struct f2fs_bio_info read_io;			/* for read bios */
758 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
759 
760 	/* for checkpoint */
761 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
762 	struct inode *meta_inode;		/* cache meta blocks */
763 	struct mutex cp_mutex;			/* checkpoint procedure lock */
764 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
765 	struct rw_semaphore node_write;		/* locking node writes */
766 	struct mutex writepages;		/* mutex for writepages() */
767 	wait_queue_head_t cp_wait;
768 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
769 	long interval_time[MAX_TIME];		/* to store thresholds */
770 
771 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
772 
773 	/* for orphan inode, use 0'th array */
774 	unsigned int max_orphans;		/* max orphan inodes */
775 
776 	/* for inode management */
777 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
778 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
779 
780 	/* for extent tree cache */
781 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
782 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
783 	struct list_head extent_list;		/* lru list for shrinker */
784 	spinlock_t extent_lock;			/* locking extent lru list */
785 	atomic_t total_ext_tree;		/* extent tree count */
786 	struct list_head zombie_list;		/* extent zombie tree list */
787 	atomic_t total_zombie_tree;		/* extent zombie tree count */
788 	atomic_t total_ext_node;		/* extent info count */
789 
790 	/* basic filesystem units */
791 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
792 	unsigned int log_blocksize;		/* log2 block size */
793 	unsigned int blocksize;			/* block size */
794 	unsigned int root_ino_num;		/* root inode number*/
795 	unsigned int node_ino_num;		/* node inode number*/
796 	unsigned int meta_ino_num;		/* meta inode number*/
797 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
798 	unsigned int blocks_per_seg;		/* blocks per segment */
799 	unsigned int segs_per_sec;		/* segments per section */
800 	unsigned int secs_per_zone;		/* sections per zone */
801 	unsigned int total_sections;		/* total section count */
802 	unsigned int total_node_count;		/* total node block count */
803 	unsigned int total_valid_node_count;	/* valid node block count */
804 	loff_t max_file_blocks;			/* max block index of file */
805 	int active_logs;			/* # of active logs */
806 	int dir_level;				/* directory level */
807 
808 	block_t user_block_count;		/* # of user blocks */
809 	block_t total_valid_block_count;	/* # of valid blocks */
810 	block_t discard_blks;			/* discard command candidats */
811 	block_t last_valid_block_count;		/* for recovery */
812 	u32 s_next_generation;			/* for NFS support */
813 	atomic_t nr_wb_bios;			/* # of writeback bios */
814 
815 	/* # of pages, see count_type */
816 	struct percpu_counter nr_pages[NR_COUNT_TYPE];
817 	/* # of allocated blocks */
818 	struct percpu_counter alloc_valid_block_count;
819 
820 	/* valid inode count */
821 	struct percpu_counter total_valid_inode_count;
822 
823 	struct f2fs_mount_info mount_opt;	/* mount options */
824 
825 	/* for cleaning operations */
826 	struct mutex gc_mutex;			/* mutex for GC */
827 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
828 	unsigned int cur_victim_sec;		/* current victim section num */
829 
830 	/* maximum # of trials to find a victim segment for SSR and GC */
831 	unsigned int max_victim_search;
832 
833 	/*
834 	 * for stat information.
835 	 * one is for the LFS mode, and the other is for the SSR mode.
836 	 */
837 #ifdef CONFIG_F2FS_STAT_FS
838 	struct f2fs_stat_info *stat_info;	/* FS status information */
839 	unsigned int segment_count[2];		/* # of allocated segments */
840 	unsigned int block_count[2];		/* # of allocated blocks */
841 	atomic_t inplace_count;		/* # of inplace update */
842 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
843 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
844 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
845 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
846 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
847 	atomic_t inline_inode;			/* # of inline_data inodes */
848 	atomic_t inline_dir;			/* # of inline_dentry inodes */
849 	int bg_gc;				/* background gc calls */
850 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
851 #endif
852 	unsigned int last_victim[2];		/* last victim segment # */
853 	spinlock_t stat_lock;			/* lock for stat operations */
854 
855 	/* For sysfs suppport */
856 	struct kobject s_kobj;
857 	struct completion s_kobj_unregister;
858 
859 	/* For shrinker support */
860 	struct list_head s_list;
861 	struct mutex umount_mutex;
862 	unsigned int shrinker_run_no;
863 
864 	/* For write statistics */
865 	u64 sectors_written_start;
866 	u64 kbytes_written;
867 
868 	/* Reference to checksum algorithm driver via cryptoapi */
869 	struct crypto_shash *s_chksum_driver;
870 };
871 
872 /* For write statistics. Suppose sector size is 512 bytes,
873  * and the return value is in kbytes. s is of struct f2fs_sb_info.
874  */
875 #define BD_PART_WRITTEN(s)						 \
876 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) -		 \
877 		s->sectors_written_start) >> 1)
878 
879 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
880 {
881 	sbi->last_time[type] = jiffies;
882 }
883 
884 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
885 {
886 	struct timespec ts = {sbi->interval_time[type], 0};
887 	unsigned long interval = timespec_to_jiffies(&ts);
888 
889 	return time_after(jiffies, sbi->last_time[type] + interval);
890 }
891 
892 static inline bool is_idle(struct f2fs_sb_info *sbi)
893 {
894 	struct block_device *bdev = sbi->sb->s_bdev;
895 	struct request_queue *q = bdev_get_queue(bdev);
896 	struct request_list *rl = &q->root_rl;
897 
898 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
899 		return 0;
900 
901 	return f2fs_time_over(sbi, REQ_TIME);
902 }
903 
904 /*
905  * Inline functions
906  */
907 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
908 			   unsigned int length)
909 {
910 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
911 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
912 	int err;
913 
914 	shash->tfm = sbi->s_chksum_driver;
915 	shash->flags = 0;
916 	*ctx = F2FS_SUPER_MAGIC;
917 
918 	err = crypto_shash_update(shash, address, length);
919 	BUG_ON(err);
920 
921 	return *ctx;
922 }
923 
924 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
925 				  void *buf, size_t buf_size)
926 {
927 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
928 }
929 
930 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
931 {
932 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
933 }
934 
935 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
936 {
937 	return sb->s_fs_info;
938 }
939 
940 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
941 {
942 	return F2FS_SB(inode->i_sb);
943 }
944 
945 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
946 {
947 	return F2FS_I_SB(mapping->host);
948 }
949 
950 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
951 {
952 	return F2FS_M_SB(page->mapping);
953 }
954 
955 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
956 {
957 	return (struct f2fs_super_block *)(sbi->raw_super);
958 }
959 
960 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
961 {
962 	return (struct f2fs_checkpoint *)(sbi->ckpt);
963 }
964 
965 static inline struct f2fs_node *F2FS_NODE(struct page *page)
966 {
967 	return (struct f2fs_node *)page_address(page);
968 }
969 
970 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
971 {
972 	return &((struct f2fs_node *)page_address(page))->i;
973 }
974 
975 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
976 {
977 	return (struct f2fs_nm_info *)(sbi->nm_info);
978 }
979 
980 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
981 {
982 	return (struct f2fs_sm_info *)(sbi->sm_info);
983 }
984 
985 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
986 {
987 	return (struct sit_info *)(SM_I(sbi)->sit_info);
988 }
989 
990 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
991 {
992 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
993 }
994 
995 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
996 {
997 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
998 }
999 
1000 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1001 {
1002 	return sbi->meta_inode->i_mapping;
1003 }
1004 
1005 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1006 {
1007 	return sbi->node_inode->i_mapping;
1008 }
1009 
1010 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1011 {
1012 	return sbi->s_flag & (0x01 << type);
1013 }
1014 
1015 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1016 {
1017 	sbi->s_flag |= (0x01 << type);
1018 }
1019 
1020 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1021 {
1022 	sbi->s_flag &= ~(0x01 << type);
1023 }
1024 
1025 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1026 {
1027 	return le64_to_cpu(cp->checkpoint_ver);
1028 }
1029 
1030 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1031 {
1032 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1033 	return ckpt_flags & f;
1034 }
1035 
1036 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1037 {
1038 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1039 	ckpt_flags |= f;
1040 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1041 }
1042 
1043 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1044 {
1045 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1046 	ckpt_flags &= (~f);
1047 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1048 }
1049 
1050 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1051 {
1052 	down_read(&sbi->cp_rwsem);
1053 }
1054 
1055 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1056 {
1057 	up_read(&sbi->cp_rwsem);
1058 }
1059 
1060 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1061 {
1062 	down_write(&sbi->cp_rwsem);
1063 }
1064 
1065 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1066 {
1067 	up_write(&sbi->cp_rwsem);
1068 }
1069 
1070 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1071 {
1072 	int reason = CP_SYNC;
1073 
1074 	if (test_opt(sbi, FASTBOOT))
1075 		reason = CP_FASTBOOT;
1076 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1077 		reason = CP_UMOUNT;
1078 	return reason;
1079 }
1080 
1081 static inline bool __remain_node_summaries(int reason)
1082 {
1083 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1084 }
1085 
1086 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1087 {
1088 	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1089 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1090 }
1091 
1092 /*
1093  * Check whether the given nid is within node id range.
1094  */
1095 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1096 {
1097 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1098 		return -EINVAL;
1099 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1100 		return -EINVAL;
1101 	return 0;
1102 }
1103 
1104 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1105 
1106 /*
1107  * Check whether the inode has blocks or not
1108  */
1109 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1110 {
1111 	if (F2FS_I(inode)->i_xattr_nid)
1112 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1113 	else
1114 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1115 }
1116 
1117 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1118 {
1119 	return ofs == XATTR_NODE_OFFSET;
1120 }
1121 
1122 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1123 				 struct inode *inode, blkcnt_t *count)
1124 {
1125 	block_t	valid_block_count;
1126 
1127 	spin_lock(&sbi->stat_lock);
1128 #ifdef CONFIG_F2FS_FAULT_INJECTION
1129 	if (time_to_inject(FAULT_BLOCK)) {
1130 		spin_unlock(&sbi->stat_lock);
1131 		return false;
1132 	}
1133 #endif
1134 	valid_block_count =
1135 		sbi->total_valid_block_count + (block_t)(*count);
1136 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1137 		*count = sbi->user_block_count - sbi->total_valid_block_count;
1138 		if (!*count) {
1139 			spin_unlock(&sbi->stat_lock);
1140 			return false;
1141 		}
1142 	}
1143 	/* *count can be recalculated */
1144 	inode->i_blocks += *count;
1145 	sbi->total_valid_block_count =
1146 		sbi->total_valid_block_count + (block_t)(*count);
1147 	spin_unlock(&sbi->stat_lock);
1148 
1149 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1150 	return true;
1151 }
1152 
1153 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1154 						struct inode *inode,
1155 						blkcnt_t count)
1156 {
1157 	spin_lock(&sbi->stat_lock);
1158 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1159 	f2fs_bug_on(sbi, inode->i_blocks < count);
1160 	inode->i_blocks -= count;
1161 	sbi->total_valid_block_count -= (block_t)count;
1162 	spin_unlock(&sbi->stat_lock);
1163 }
1164 
1165 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1166 {
1167 	percpu_counter_inc(&sbi->nr_pages[count_type]);
1168 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1169 }
1170 
1171 static inline void inode_inc_dirty_pages(struct inode *inode)
1172 {
1173 	percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1174 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1175 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1176 }
1177 
1178 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1179 {
1180 	percpu_counter_dec(&sbi->nr_pages[count_type]);
1181 }
1182 
1183 static inline void inode_dec_dirty_pages(struct inode *inode)
1184 {
1185 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1186 			!S_ISLNK(inode->i_mode))
1187 		return;
1188 
1189 	percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1190 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1191 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1192 }
1193 
1194 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1195 {
1196 	return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1197 }
1198 
1199 static inline s64 get_dirty_pages(struct inode *inode)
1200 {
1201 	return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1202 }
1203 
1204 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1205 {
1206 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1207 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1208 						sbi->log_blocks_per_seg;
1209 
1210 	return segs / sbi->segs_per_sec;
1211 }
1212 
1213 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1214 {
1215 	return sbi->total_valid_block_count;
1216 }
1217 
1218 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1219 {
1220 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1221 
1222 	/* return NAT or SIT bitmap */
1223 	if (flag == NAT_BITMAP)
1224 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1225 	else if (flag == SIT_BITMAP)
1226 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1227 
1228 	return 0;
1229 }
1230 
1231 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1232 {
1233 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1234 }
1235 
1236 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1237 {
1238 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1239 	int offset;
1240 
1241 	if (__cp_payload(sbi) > 0) {
1242 		if (flag == NAT_BITMAP)
1243 			return &ckpt->sit_nat_version_bitmap;
1244 		else
1245 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1246 	} else {
1247 		offset = (flag == NAT_BITMAP) ?
1248 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1249 		return &ckpt->sit_nat_version_bitmap + offset;
1250 	}
1251 }
1252 
1253 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1254 {
1255 	block_t start_addr;
1256 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1257 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1258 
1259 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1260 
1261 	/*
1262 	 * odd numbered checkpoint should at cp segment 0
1263 	 * and even segment must be at cp segment 1
1264 	 */
1265 	if (!(ckpt_version & 1))
1266 		start_addr += sbi->blocks_per_seg;
1267 
1268 	return start_addr;
1269 }
1270 
1271 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1272 {
1273 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1274 }
1275 
1276 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1277 						struct inode *inode)
1278 {
1279 	block_t	valid_block_count;
1280 	unsigned int valid_node_count;
1281 
1282 	spin_lock(&sbi->stat_lock);
1283 
1284 	valid_block_count = sbi->total_valid_block_count + 1;
1285 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1286 		spin_unlock(&sbi->stat_lock);
1287 		return false;
1288 	}
1289 
1290 	valid_node_count = sbi->total_valid_node_count + 1;
1291 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1292 		spin_unlock(&sbi->stat_lock);
1293 		return false;
1294 	}
1295 
1296 	if (inode)
1297 		inode->i_blocks++;
1298 
1299 	sbi->total_valid_node_count++;
1300 	sbi->total_valid_block_count++;
1301 	spin_unlock(&sbi->stat_lock);
1302 
1303 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1304 	return true;
1305 }
1306 
1307 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1308 						struct inode *inode)
1309 {
1310 	spin_lock(&sbi->stat_lock);
1311 
1312 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1313 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1314 	f2fs_bug_on(sbi, !inode->i_blocks);
1315 
1316 	inode->i_blocks--;
1317 	sbi->total_valid_node_count--;
1318 	sbi->total_valid_block_count--;
1319 
1320 	spin_unlock(&sbi->stat_lock);
1321 }
1322 
1323 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1324 {
1325 	return sbi->total_valid_node_count;
1326 }
1327 
1328 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1329 {
1330 	percpu_counter_inc(&sbi->total_valid_inode_count);
1331 }
1332 
1333 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1334 {
1335 	percpu_counter_dec(&sbi->total_valid_inode_count);
1336 }
1337 
1338 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1339 {
1340 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1341 }
1342 
1343 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1344 						pgoff_t index, bool for_write)
1345 {
1346 #ifdef CONFIG_F2FS_FAULT_INJECTION
1347 	struct page *page = find_lock_page(mapping, index);
1348 	if (page)
1349 		return page;
1350 
1351 	if (time_to_inject(FAULT_PAGE_ALLOC))
1352 		return NULL;
1353 #endif
1354 	if (!for_write)
1355 		return grab_cache_page(mapping, index);
1356 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1357 }
1358 
1359 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1360 {
1361 	char *src_kaddr = kmap(src);
1362 	char *dst_kaddr = kmap(dst);
1363 
1364 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1365 	kunmap(dst);
1366 	kunmap(src);
1367 }
1368 
1369 static inline void f2fs_put_page(struct page *page, int unlock)
1370 {
1371 	if (!page)
1372 		return;
1373 
1374 	if (unlock) {
1375 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1376 		unlock_page(page);
1377 	}
1378 	put_page(page);
1379 }
1380 
1381 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1382 {
1383 	if (dn->node_page)
1384 		f2fs_put_page(dn->node_page, 1);
1385 	if (dn->inode_page && dn->node_page != dn->inode_page)
1386 		f2fs_put_page(dn->inode_page, 0);
1387 	dn->node_page = NULL;
1388 	dn->inode_page = NULL;
1389 }
1390 
1391 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1392 					size_t size)
1393 {
1394 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1395 }
1396 
1397 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1398 						gfp_t flags)
1399 {
1400 	void *entry;
1401 
1402 	entry = kmem_cache_alloc(cachep, flags);
1403 	if (!entry)
1404 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1405 	return entry;
1406 }
1407 
1408 static inline struct bio *f2fs_bio_alloc(int npages)
1409 {
1410 	struct bio *bio;
1411 
1412 	/* No failure on bio allocation */
1413 	bio = bio_alloc(GFP_NOIO, npages);
1414 	if (!bio)
1415 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1416 	return bio;
1417 }
1418 
1419 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1420 				unsigned long index, void *item)
1421 {
1422 	while (radix_tree_insert(root, index, item))
1423 		cond_resched();
1424 }
1425 
1426 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1427 
1428 static inline bool IS_INODE(struct page *page)
1429 {
1430 	struct f2fs_node *p = F2FS_NODE(page);
1431 	return RAW_IS_INODE(p);
1432 }
1433 
1434 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1435 {
1436 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1437 }
1438 
1439 static inline block_t datablock_addr(struct page *node_page,
1440 		unsigned int offset)
1441 {
1442 	struct f2fs_node *raw_node;
1443 	__le32 *addr_array;
1444 	raw_node = F2FS_NODE(node_page);
1445 	addr_array = blkaddr_in_node(raw_node);
1446 	return le32_to_cpu(addr_array[offset]);
1447 }
1448 
1449 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1450 {
1451 	int mask;
1452 
1453 	addr += (nr >> 3);
1454 	mask = 1 << (7 - (nr & 0x07));
1455 	return mask & *addr;
1456 }
1457 
1458 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1459 {
1460 	int mask;
1461 
1462 	addr += (nr >> 3);
1463 	mask = 1 << (7 - (nr & 0x07));
1464 	*addr |= mask;
1465 }
1466 
1467 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1468 {
1469 	int mask;
1470 
1471 	addr += (nr >> 3);
1472 	mask = 1 << (7 - (nr & 0x07));
1473 	*addr &= ~mask;
1474 }
1475 
1476 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1477 {
1478 	int mask;
1479 	int ret;
1480 
1481 	addr += (nr >> 3);
1482 	mask = 1 << (7 - (nr & 0x07));
1483 	ret = mask & *addr;
1484 	*addr |= mask;
1485 	return ret;
1486 }
1487 
1488 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1489 {
1490 	int mask;
1491 	int ret;
1492 
1493 	addr += (nr >> 3);
1494 	mask = 1 << (7 - (nr & 0x07));
1495 	ret = mask & *addr;
1496 	*addr &= ~mask;
1497 	return ret;
1498 }
1499 
1500 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1501 {
1502 	int mask;
1503 
1504 	addr += (nr >> 3);
1505 	mask = 1 << (7 - (nr & 0x07));
1506 	*addr ^= mask;
1507 }
1508 
1509 /* used for f2fs_inode_info->flags */
1510 enum {
1511 	FI_NEW_INODE,		/* indicate newly allocated inode */
1512 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1513 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1514 	FI_INC_LINK,		/* need to increment i_nlink */
1515 	FI_ACL_MODE,		/* indicate acl mode */
1516 	FI_NO_ALLOC,		/* should not allocate any blocks */
1517 	FI_FREE_NID,		/* free allocated nide */
1518 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1519 	FI_NO_EXTENT,		/* not to use the extent cache */
1520 	FI_INLINE_XATTR,	/* used for inline xattr */
1521 	FI_INLINE_DATA,		/* used for inline data*/
1522 	FI_INLINE_DENTRY,	/* used for inline dentry */
1523 	FI_APPEND_WRITE,	/* inode has appended data */
1524 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1525 	FI_NEED_IPU,		/* used for ipu per file */
1526 	FI_ATOMIC_FILE,		/* indicate atomic file */
1527 	FI_VOLATILE_FILE,	/* indicate volatile file */
1528 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1529 	FI_DROP_CACHE,		/* drop dirty page cache */
1530 	FI_DATA_EXIST,		/* indicate data exists */
1531 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1532 	FI_DO_DEFRAG,		/* indicate defragment is running */
1533 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1534 };
1535 
1536 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1537 {
1538 	if (!test_bit(flag, &fi->flags))
1539 		set_bit(flag, &fi->flags);
1540 }
1541 
1542 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1543 {
1544 	return test_bit(flag, &fi->flags);
1545 }
1546 
1547 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1548 {
1549 	if (test_bit(flag, &fi->flags))
1550 		clear_bit(flag, &fi->flags);
1551 }
1552 
1553 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1554 {
1555 	fi->i_acl_mode = mode;
1556 	set_inode_flag(fi, FI_ACL_MODE);
1557 }
1558 
1559 static inline void get_inline_info(struct f2fs_inode_info *fi,
1560 					struct f2fs_inode *ri)
1561 {
1562 	if (ri->i_inline & F2FS_INLINE_XATTR)
1563 		set_inode_flag(fi, FI_INLINE_XATTR);
1564 	if (ri->i_inline & F2FS_INLINE_DATA)
1565 		set_inode_flag(fi, FI_INLINE_DATA);
1566 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1567 		set_inode_flag(fi, FI_INLINE_DENTRY);
1568 	if (ri->i_inline & F2FS_DATA_EXIST)
1569 		set_inode_flag(fi, FI_DATA_EXIST);
1570 	if (ri->i_inline & F2FS_INLINE_DOTS)
1571 		set_inode_flag(fi, FI_INLINE_DOTS);
1572 }
1573 
1574 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1575 					struct f2fs_inode *ri)
1576 {
1577 	ri->i_inline = 0;
1578 
1579 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1580 		ri->i_inline |= F2FS_INLINE_XATTR;
1581 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1582 		ri->i_inline |= F2FS_INLINE_DATA;
1583 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1584 		ri->i_inline |= F2FS_INLINE_DENTRY;
1585 	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1586 		ri->i_inline |= F2FS_DATA_EXIST;
1587 	if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1588 		ri->i_inline |= F2FS_INLINE_DOTS;
1589 }
1590 
1591 static inline int f2fs_has_inline_xattr(struct inode *inode)
1592 {
1593 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1594 }
1595 
1596 static inline unsigned int addrs_per_inode(struct inode *inode)
1597 {
1598 	if (f2fs_has_inline_xattr(inode))
1599 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1600 	return DEF_ADDRS_PER_INODE;
1601 }
1602 
1603 static inline void *inline_xattr_addr(struct page *page)
1604 {
1605 	struct f2fs_inode *ri = F2FS_INODE(page);
1606 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1607 					F2FS_INLINE_XATTR_ADDRS]);
1608 }
1609 
1610 static inline int inline_xattr_size(struct inode *inode)
1611 {
1612 	if (f2fs_has_inline_xattr(inode))
1613 		return F2FS_INLINE_XATTR_ADDRS << 2;
1614 	else
1615 		return 0;
1616 }
1617 
1618 static inline int f2fs_has_inline_data(struct inode *inode)
1619 {
1620 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1621 }
1622 
1623 static inline void f2fs_clear_inline_inode(struct inode *inode)
1624 {
1625 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1626 	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1627 }
1628 
1629 static inline int f2fs_exist_data(struct inode *inode)
1630 {
1631 	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1632 }
1633 
1634 static inline int f2fs_has_inline_dots(struct inode *inode)
1635 {
1636 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1637 }
1638 
1639 static inline bool f2fs_is_atomic_file(struct inode *inode)
1640 {
1641 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1642 }
1643 
1644 static inline bool f2fs_is_volatile_file(struct inode *inode)
1645 {
1646 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1647 }
1648 
1649 static inline bool f2fs_is_first_block_written(struct inode *inode)
1650 {
1651 	return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1652 }
1653 
1654 static inline bool f2fs_is_drop_cache(struct inode *inode)
1655 {
1656 	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1657 }
1658 
1659 static inline void *inline_data_addr(struct page *page)
1660 {
1661 	struct f2fs_inode *ri = F2FS_INODE(page);
1662 	return (void *)&(ri->i_addr[1]);
1663 }
1664 
1665 static inline int f2fs_has_inline_dentry(struct inode *inode)
1666 {
1667 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1668 }
1669 
1670 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1671 {
1672 	if (!f2fs_has_inline_dentry(dir))
1673 		kunmap(page);
1674 }
1675 
1676 static inline int is_file(struct inode *inode, int type)
1677 {
1678 	return F2FS_I(inode)->i_advise & type;
1679 }
1680 
1681 static inline void set_file(struct inode *inode, int type)
1682 {
1683 	F2FS_I(inode)->i_advise |= type;
1684 }
1685 
1686 static inline void clear_file(struct inode *inode, int type)
1687 {
1688 	F2FS_I(inode)->i_advise &= ~type;
1689 }
1690 
1691 static inline int f2fs_readonly(struct super_block *sb)
1692 {
1693 	return sb->s_flags & MS_RDONLY;
1694 }
1695 
1696 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1697 {
1698 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1699 }
1700 
1701 static inline bool is_dot_dotdot(const struct qstr *str)
1702 {
1703 	if (str->len == 1 && str->name[0] == '.')
1704 		return true;
1705 
1706 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1707 		return true;
1708 
1709 	return false;
1710 }
1711 
1712 static inline bool f2fs_may_extent_tree(struct inode *inode)
1713 {
1714 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1715 			is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1716 		return false;
1717 
1718 	return S_ISREG(inode->i_mode);
1719 }
1720 
1721 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1722 {
1723 #ifdef CONFIG_F2FS_FAULT_INJECTION
1724 	if (time_to_inject(FAULT_KMALLOC))
1725 		return NULL;
1726 #endif
1727 	return kmalloc(size, flags);
1728 }
1729 
1730 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1731 {
1732 	void *ret;
1733 
1734 	ret = kmalloc(size, flags | __GFP_NOWARN);
1735 	if (!ret)
1736 		ret = __vmalloc(size, flags, PAGE_KERNEL);
1737 	return ret;
1738 }
1739 
1740 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1741 {
1742 	void *ret;
1743 
1744 	ret = kzalloc(size, flags | __GFP_NOWARN);
1745 	if (!ret)
1746 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1747 	return ret;
1748 }
1749 
1750 #define get_inode_mode(i) \
1751 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1752 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1753 
1754 /* get offset of first page in next direct node */
1755 #define PGOFS_OF_NEXT_DNODE(pgofs, inode)				\
1756 	((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) :	\
1757 	(pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) /	\
1758 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1759 
1760 /*
1761  * file.c
1762  */
1763 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1764 void truncate_data_blocks(struct dnode_of_data *);
1765 int truncate_blocks(struct inode *, u64, bool);
1766 int f2fs_truncate(struct inode *, bool);
1767 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1768 int f2fs_setattr(struct dentry *, struct iattr *);
1769 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1770 int truncate_data_blocks_range(struct dnode_of_data *, int);
1771 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1772 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1773 
1774 /*
1775  * inode.c
1776  */
1777 void f2fs_set_inode_flags(struct inode *);
1778 struct inode *f2fs_iget(struct super_block *, unsigned long);
1779 int try_to_free_nats(struct f2fs_sb_info *, int);
1780 int update_inode(struct inode *, struct page *);
1781 int update_inode_page(struct inode *);
1782 int f2fs_write_inode(struct inode *, struct writeback_control *);
1783 void f2fs_evict_inode(struct inode *);
1784 void handle_failed_inode(struct inode *);
1785 
1786 /*
1787  * namei.c
1788  */
1789 struct dentry *f2fs_get_parent(struct dentry *child);
1790 
1791 /*
1792  * dir.c
1793  */
1794 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1795 void set_de_type(struct f2fs_dir_entry *, umode_t);
1796 unsigned char get_de_type(struct f2fs_dir_entry *);
1797 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1798 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1799 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1800 			unsigned int, struct fscrypt_str *);
1801 void do_make_empty_dir(struct inode *, struct inode *,
1802 			struct f2fs_dentry_ptr *);
1803 struct page *init_inode_metadata(struct inode *, struct inode *,
1804 			const struct qstr *, struct page *);
1805 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1806 int room_for_filename(const void *, int, int);
1807 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1808 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1809 							struct page **);
1810 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1811 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1812 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1813 				struct page *, struct inode *);
1814 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1815 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1816 			const struct qstr *, f2fs_hash_t , unsigned int);
1817 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1818 						struct inode *, nid_t, umode_t);
1819 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1820 			umode_t);
1821 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1822 							struct inode *);
1823 int f2fs_do_tmpfile(struct inode *, struct inode *);
1824 bool f2fs_empty_dir(struct inode *);
1825 
1826 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1827 {
1828 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1829 				inode, inode->i_ino, inode->i_mode);
1830 }
1831 
1832 /*
1833  * super.c
1834  */
1835 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1836 int f2fs_sync_fs(struct super_block *, int);
1837 extern __printf(3, 4)
1838 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1839 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1840 
1841 /*
1842  * hash.c
1843  */
1844 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1845 
1846 /*
1847  * node.c
1848  */
1849 struct dnode_of_data;
1850 struct node_info;
1851 
1852 bool available_free_memory(struct f2fs_sb_info *, int);
1853 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1854 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1855 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1856 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1857 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1858 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1859 int truncate_inode_blocks(struct inode *, pgoff_t);
1860 int truncate_xattr_node(struct inode *, struct page *);
1861 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1862 int remove_inode_page(struct inode *);
1863 struct page *new_inode_page(struct inode *);
1864 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1865 void ra_node_page(struct f2fs_sb_info *, nid_t);
1866 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1867 struct page *get_node_page_ra(struct page *, int);
1868 void sync_inode_page(struct dnode_of_data *);
1869 void move_node_page(struct page *, int);
1870 int fsync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *,
1871 								bool);
1872 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1873 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1874 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1875 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1876 int try_to_free_nids(struct f2fs_sb_info *, int);
1877 void recover_inline_xattr(struct inode *, struct page *);
1878 void recover_xattr_data(struct inode *, struct page *, block_t);
1879 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1880 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1881 				struct f2fs_summary_block *);
1882 void flush_nat_entries(struct f2fs_sb_info *);
1883 int build_node_manager(struct f2fs_sb_info *);
1884 void destroy_node_manager(struct f2fs_sb_info *);
1885 int __init create_node_manager_caches(void);
1886 void destroy_node_manager_caches(void);
1887 
1888 /*
1889  * segment.c
1890  */
1891 void register_inmem_page(struct inode *, struct page *);
1892 void drop_inmem_pages(struct inode *);
1893 int commit_inmem_pages(struct inode *);
1894 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1895 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1896 int f2fs_issue_flush(struct f2fs_sb_info *);
1897 int create_flush_cmd_control(struct f2fs_sb_info *);
1898 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1899 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1900 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1901 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1902 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1903 void release_discard_addrs(struct f2fs_sb_info *);
1904 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1905 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1906 void allocate_new_segments(struct f2fs_sb_info *);
1907 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1908 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1909 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1910 void write_meta_page(struct f2fs_sb_info *, struct page *);
1911 void write_node_page(unsigned int, struct f2fs_io_info *);
1912 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1913 void rewrite_data_page(struct f2fs_io_info *);
1914 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1915 					block_t, block_t, bool, bool);
1916 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1917 				block_t, block_t, unsigned char, bool, bool);
1918 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1919 		block_t, block_t *, struct f2fs_summary *, int);
1920 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1921 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1922 void write_data_summaries(struct f2fs_sb_info *, block_t);
1923 void write_node_summaries(struct f2fs_sb_info *, block_t);
1924 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1925 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1926 int build_segment_manager(struct f2fs_sb_info *);
1927 void destroy_segment_manager(struct f2fs_sb_info *);
1928 int __init create_segment_manager_caches(void);
1929 void destroy_segment_manager_caches(void);
1930 
1931 /*
1932  * checkpoint.c
1933  */
1934 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
1935 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1936 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1937 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1938 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1939 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1940 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1941 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1942 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1943 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1944 void release_ino_entry(struct f2fs_sb_info *, bool);
1945 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1946 int acquire_orphan_inode(struct f2fs_sb_info *);
1947 void release_orphan_inode(struct f2fs_sb_info *);
1948 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1949 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1950 int recover_orphan_inodes(struct f2fs_sb_info *);
1951 int get_valid_checkpoint(struct f2fs_sb_info *);
1952 void update_dirty_page(struct inode *, struct page *);
1953 void remove_dirty_inode(struct inode *);
1954 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1955 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1956 void init_ino_entry_info(struct f2fs_sb_info *);
1957 int __init create_checkpoint_caches(void);
1958 void destroy_checkpoint_caches(void);
1959 
1960 /*
1961  * data.c
1962  */
1963 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1964 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1965 				struct page *, nid_t, enum page_type, int);
1966 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
1967 int f2fs_submit_page_bio(struct f2fs_io_info *);
1968 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1969 void set_data_blkaddr(struct dnode_of_data *);
1970 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
1971 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
1972 int reserve_new_block(struct dnode_of_data *);
1973 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1974 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
1975 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1976 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1977 struct page *find_data_page(struct inode *, pgoff_t);
1978 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1979 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1980 int do_write_data_page(struct f2fs_io_info *);
1981 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1982 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1983 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1984 int f2fs_release_page(struct page *, gfp_t);
1985 
1986 /*
1987  * gc.c
1988  */
1989 int start_gc_thread(struct f2fs_sb_info *);
1990 void stop_gc_thread(struct f2fs_sb_info *);
1991 block_t start_bidx_of_node(unsigned int, struct inode *);
1992 int f2fs_gc(struct f2fs_sb_info *, bool);
1993 void build_gc_manager(struct f2fs_sb_info *);
1994 
1995 /*
1996  * recovery.c
1997  */
1998 int recover_fsync_data(struct f2fs_sb_info *, bool);
1999 bool space_for_roll_forward(struct f2fs_sb_info *);
2000 
2001 /*
2002  * debug.c
2003  */
2004 #ifdef CONFIG_F2FS_STAT_FS
2005 struct f2fs_stat_info {
2006 	struct list_head stat_list;
2007 	struct f2fs_sb_info *sbi;
2008 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2009 	int main_area_segs, main_area_sections, main_area_zones;
2010 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2011 	unsigned long long hit_total, total_ext;
2012 	int ext_tree, zombie_tree, ext_node;
2013 	s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2014 	unsigned int ndirty_dirs, ndirty_files;
2015 	int nats, dirty_nats, sits, dirty_sits, fnids;
2016 	int total_count, utilization;
2017 	int bg_gc, wb_bios;
2018 	int inline_xattr, inline_inode, inline_dir, orphans;
2019 	unsigned int valid_count, valid_node_count, valid_inode_count;
2020 	unsigned int bimodal, avg_vblocks;
2021 	int util_free, util_valid, util_invalid;
2022 	int rsvd_segs, overp_segs;
2023 	int dirty_count, node_pages, meta_pages;
2024 	int prefree_count, call_count, cp_count, bg_cp_count;
2025 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2026 	int bg_node_segs, bg_data_segs;
2027 	int tot_blks, data_blks, node_blks;
2028 	int bg_data_blks, bg_node_blks;
2029 	int curseg[NR_CURSEG_TYPE];
2030 	int cursec[NR_CURSEG_TYPE];
2031 	int curzone[NR_CURSEG_TYPE];
2032 
2033 	unsigned int segment_count[2];
2034 	unsigned int block_count[2];
2035 	unsigned int inplace_count;
2036 	unsigned long long base_mem, cache_mem, page_mem;
2037 };
2038 
2039 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2040 {
2041 	return (struct f2fs_stat_info *)sbi->stat_info;
2042 }
2043 
2044 #define stat_inc_cp_count(si)		((si)->cp_count++)
2045 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2046 #define stat_inc_call_count(si)		((si)->call_count++)
2047 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2048 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2049 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2050 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2051 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2052 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2053 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2054 #define stat_inc_inline_xattr(inode)					\
2055 	do {								\
2056 		if (f2fs_has_inline_xattr(inode))			\
2057 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2058 	} while (0)
2059 #define stat_dec_inline_xattr(inode)					\
2060 	do {								\
2061 		if (f2fs_has_inline_xattr(inode))			\
2062 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2063 	} while (0)
2064 #define stat_inc_inline_inode(inode)					\
2065 	do {								\
2066 		if (f2fs_has_inline_data(inode))			\
2067 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2068 	} while (0)
2069 #define stat_dec_inline_inode(inode)					\
2070 	do {								\
2071 		if (f2fs_has_inline_data(inode))			\
2072 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2073 	} while (0)
2074 #define stat_inc_inline_dir(inode)					\
2075 	do {								\
2076 		if (f2fs_has_inline_dentry(inode))			\
2077 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2078 	} while (0)
2079 #define stat_dec_inline_dir(inode)					\
2080 	do {								\
2081 		if (f2fs_has_inline_dentry(inode))			\
2082 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2083 	} while (0)
2084 #define stat_inc_seg_type(sbi, curseg)					\
2085 		((sbi)->segment_count[(curseg)->alloc_type]++)
2086 #define stat_inc_block_count(sbi, curseg)				\
2087 		((sbi)->block_count[(curseg)->alloc_type]++)
2088 #define stat_inc_inplace_blocks(sbi)					\
2089 		(atomic_inc(&(sbi)->inplace_count))
2090 #define stat_inc_seg_count(sbi, type, gc_type)				\
2091 	do {								\
2092 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2093 		(si)->tot_segs++;					\
2094 		if (type == SUM_TYPE_DATA) {				\
2095 			si->data_segs++;				\
2096 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2097 		} else {						\
2098 			si->node_segs++;				\
2099 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2100 		}							\
2101 	} while (0)
2102 
2103 #define stat_inc_tot_blk_count(si, blks)				\
2104 	(si->tot_blks += (blks))
2105 
2106 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2107 	do {								\
2108 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2109 		stat_inc_tot_blk_count(si, blks);			\
2110 		si->data_blks += (blks);				\
2111 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2112 	} while (0)
2113 
2114 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2115 	do {								\
2116 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2117 		stat_inc_tot_blk_count(si, blks);			\
2118 		si->node_blks += (blks);				\
2119 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2120 	} while (0)
2121 
2122 int f2fs_build_stats(struct f2fs_sb_info *);
2123 void f2fs_destroy_stats(struct f2fs_sb_info *);
2124 int __init f2fs_create_root_stats(void);
2125 void f2fs_destroy_root_stats(void);
2126 #else
2127 #define stat_inc_cp_count(si)
2128 #define stat_inc_bg_cp_count(si)
2129 #define stat_inc_call_count(si)
2130 #define stat_inc_bggc_count(si)
2131 #define stat_inc_dirty_inode(sbi, type)
2132 #define stat_dec_dirty_inode(sbi, type)
2133 #define stat_inc_total_hit(sb)
2134 #define stat_inc_rbtree_node_hit(sb)
2135 #define stat_inc_largest_node_hit(sbi)
2136 #define stat_inc_cached_node_hit(sbi)
2137 #define stat_inc_inline_xattr(inode)
2138 #define stat_dec_inline_xattr(inode)
2139 #define stat_inc_inline_inode(inode)
2140 #define stat_dec_inline_inode(inode)
2141 #define stat_inc_inline_dir(inode)
2142 #define stat_dec_inline_dir(inode)
2143 #define stat_inc_seg_type(sbi, curseg)
2144 #define stat_inc_block_count(sbi, curseg)
2145 #define stat_inc_inplace_blocks(sbi)
2146 #define stat_inc_seg_count(sbi, type, gc_type)
2147 #define stat_inc_tot_blk_count(si, blks)
2148 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2149 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2150 
2151 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2152 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2153 static inline int __init f2fs_create_root_stats(void) { return 0; }
2154 static inline void f2fs_destroy_root_stats(void) { }
2155 #endif
2156 
2157 extern const struct file_operations f2fs_dir_operations;
2158 extern const struct file_operations f2fs_file_operations;
2159 extern const struct inode_operations f2fs_file_inode_operations;
2160 extern const struct address_space_operations f2fs_dblock_aops;
2161 extern const struct address_space_operations f2fs_node_aops;
2162 extern const struct address_space_operations f2fs_meta_aops;
2163 extern const struct inode_operations f2fs_dir_inode_operations;
2164 extern const struct inode_operations f2fs_symlink_inode_operations;
2165 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2166 extern const struct inode_operations f2fs_special_inode_operations;
2167 extern struct kmem_cache *inode_entry_slab;
2168 
2169 /*
2170  * inline.c
2171  */
2172 bool f2fs_may_inline_data(struct inode *);
2173 bool f2fs_may_inline_dentry(struct inode *);
2174 void read_inline_data(struct page *, struct page *);
2175 bool truncate_inline_inode(struct page *, u64);
2176 int f2fs_read_inline_data(struct inode *, struct page *);
2177 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2178 int f2fs_convert_inline_inode(struct inode *);
2179 int f2fs_write_inline_data(struct inode *, struct page *);
2180 bool recover_inline_data(struct inode *, struct page *);
2181 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2182 				struct fscrypt_name *, struct page **);
2183 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2184 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2185 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2186 						nid_t, umode_t);
2187 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2188 						struct inode *, struct inode *);
2189 bool f2fs_empty_inline_dir(struct inode *);
2190 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2191 						struct fscrypt_str *);
2192 int f2fs_inline_data_fiemap(struct inode *,
2193 		struct fiemap_extent_info *, __u64, __u64);
2194 
2195 /*
2196  * shrinker.c
2197  */
2198 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2199 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2200 void f2fs_join_shrinker(struct f2fs_sb_info *);
2201 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2202 
2203 /*
2204  * extent_cache.c
2205  */
2206 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2207 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2208 unsigned int f2fs_destroy_extent_node(struct inode *);
2209 void f2fs_destroy_extent_tree(struct inode *);
2210 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2211 void f2fs_update_extent_cache(struct dnode_of_data *);
2212 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2213 						pgoff_t, block_t, unsigned int);
2214 void init_extent_cache_info(struct f2fs_sb_info *);
2215 int __init create_extent_cache(void);
2216 void destroy_extent_cache(void);
2217 
2218 /*
2219  * crypto support
2220  */
2221 static inline bool f2fs_encrypted_inode(struct inode *inode)
2222 {
2223 	return file_is_encrypt(inode);
2224 }
2225 
2226 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2227 {
2228 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2229 	file_set_encrypt(inode);
2230 #endif
2231 }
2232 
2233 static inline bool f2fs_bio_encrypted(struct bio *bio)
2234 {
2235 	return bio->bi_private != NULL;
2236 }
2237 
2238 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2239 {
2240 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2241 }
2242 
2243 static inline bool f2fs_may_encrypt(struct inode *inode)
2244 {
2245 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2246 	umode_t mode = inode->i_mode;
2247 
2248 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2249 #else
2250 	return 0;
2251 #endif
2252 }
2253 
2254 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2255 #define fscrypt_set_d_op(i)
2256 #define fscrypt_get_ctx			fscrypt_notsupp_get_ctx
2257 #define fscrypt_release_ctx		fscrypt_notsupp_release_ctx
2258 #define fscrypt_encrypt_page		fscrypt_notsupp_encrypt_page
2259 #define fscrypt_decrypt_page		fscrypt_notsupp_decrypt_page
2260 #define fscrypt_decrypt_bio_pages	fscrypt_notsupp_decrypt_bio_pages
2261 #define fscrypt_pullback_bio_page	fscrypt_notsupp_pullback_bio_page
2262 #define fscrypt_restore_control_page	fscrypt_notsupp_restore_control_page
2263 #define fscrypt_zeroout_range		fscrypt_notsupp_zeroout_range
2264 #define fscrypt_process_policy		fscrypt_notsupp_process_policy
2265 #define fscrypt_get_policy		fscrypt_notsupp_get_policy
2266 #define fscrypt_has_permitted_context	fscrypt_notsupp_has_permitted_context
2267 #define fscrypt_inherit_context		fscrypt_notsupp_inherit_context
2268 #define fscrypt_get_encryption_info	fscrypt_notsupp_get_encryption_info
2269 #define fscrypt_put_encryption_info	fscrypt_notsupp_put_encryption_info
2270 #define fscrypt_setup_filename		fscrypt_notsupp_setup_filename
2271 #define fscrypt_free_filename		fscrypt_notsupp_free_filename
2272 #define fscrypt_fname_encrypted_size	fscrypt_notsupp_fname_encrypted_size
2273 #define fscrypt_fname_alloc_buffer	fscrypt_notsupp_fname_alloc_buffer
2274 #define fscrypt_fname_free_buffer	fscrypt_notsupp_fname_free_buffer
2275 #define fscrypt_fname_disk_to_usr	fscrypt_notsupp_fname_disk_to_usr
2276 #define fscrypt_fname_usr_to_disk	fscrypt_notsupp_fname_usr_to_disk
2277 #endif
2278 #endif
2279