xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 0d4bb5e4)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_MAX,
64 };
65 
66 #ifdef CONFIG_F2FS_FAULT_INJECTION
67 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
68 
69 struct f2fs_fault_info {
70 	atomic_t inject_ops;
71 	unsigned int inject_rate;
72 	unsigned int inject_type;
73 };
74 
75 extern const char *f2fs_fault_name[FAULT_MAX];
76 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
77 #endif
78 
79 /*
80  * For mount options
81  */
82 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
83 #define F2FS_MOUNT_DISCARD		0x00000004
84 #define F2FS_MOUNT_NOHEAP		0x00000008
85 #define F2FS_MOUNT_XATTR_USER		0x00000010
86 #define F2FS_MOUNT_POSIX_ACL		0x00000020
87 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
88 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
89 #define F2FS_MOUNT_INLINE_DATA		0x00000100
90 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
91 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
92 #define F2FS_MOUNT_NOBARRIER		0x00000800
93 #define F2FS_MOUNT_FASTBOOT		0x00001000
94 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
95 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
96 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
97 #define F2FS_MOUNT_USRQUOTA		0x00080000
98 #define F2FS_MOUNT_GRPQUOTA		0x00100000
99 #define F2FS_MOUNT_PRJQUOTA		0x00200000
100 #define F2FS_MOUNT_QUOTA		0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
103 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
104 #define F2FS_MOUNT_NORECOVERY		0x04000000
105 #define F2FS_MOUNT_ATGC			0x08000000
106 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
107 #define	F2FS_MOUNT_GC_MERGE		0x20000000
108 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
109 
110 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
111 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
112 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
113 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
114 
115 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
116 		typecheck(unsigned long long, b) &&			\
117 		((long long)((a) - (b)) > 0))
118 
119 typedef u32 block_t;	/*
120 			 * should not change u32, since it is the on-disk block
121 			 * address format, __le32.
122 			 */
123 typedef u32 nid_t;
124 
125 #define COMPRESS_EXT_NUM		16
126 
127 /*
128  * An implementation of an rwsem that is explicitly unfair to readers. This
129  * prevents priority inversion when a low-priority reader acquires the read lock
130  * while sleeping on the write lock but the write lock is needed by
131  * higher-priority clients.
132  */
133 
134 struct f2fs_rwsem {
135         struct rw_semaphore internal_rwsem;
136 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
137         wait_queue_head_t read_waiters;
138 #endif
139 };
140 
141 struct f2fs_mount_info {
142 	unsigned int opt;
143 	int write_io_size_bits;		/* Write IO size bits */
144 	block_t root_reserved_blocks;	/* root reserved blocks */
145 	kuid_t s_resuid;		/* reserved blocks for uid */
146 	kgid_t s_resgid;		/* reserved blocks for gid */
147 	int active_logs;		/* # of active logs */
148 	int inline_xattr_size;		/* inline xattr size */
149 #ifdef CONFIG_F2FS_FAULT_INJECTION
150 	struct f2fs_fault_info fault_info;	/* For fault injection */
151 #endif
152 #ifdef CONFIG_QUOTA
153 	/* Names of quota files with journalled quota */
154 	char *s_qf_names[MAXQUOTAS];
155 	int s_jquota_fmt;			/* Format of quota to use */
156 #endif
157 	/* For which write hints are passed down to block layer */
158 	int alloc_mode;			/* segment allocation policy */
159 	int fsync_mode;			/* fsync policy */
160 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
161 	int bggc_mode;			/* bggc mode: off, on or sync */
162 	int memory_mode;		/* memory mode */
163 	int discard_unit;		/*
164 					 * discard command's offset/size should
165 					 * be aligned to this unit: block,
166 					 * segment or section
167 					 */
168 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
169 	block_t unusable_cap_perc;	/* percentage for cap */
170 	block_t unusable_cap;		/* Amount of space allowed to be
171 					 * unusable when disabling checkpoint
172 					 */
173 
174 	/* For compression */
175 	unsigned char compress_algorithm;	/* algorithm type */
176 	unsigned char compress_log_size;	/* cluster log size */
177 	unsigned char compress_level;		/* compress level */
178 	bool compress_chksum;			/* compressed data chksum */
179 	unsigned char compress_ext_cnt;		/* extension count */
180 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
181 	int compress_mode;			/* compression mode */
182 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
183 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
184 };
185 
186 #define F2FS_FEATURE_ENCRYPT		0x0001
187 #define F2FS_FEATURE_BLKZONED		0x0002
188 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
189 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
190 #define F2FS_FEATURE_PRJQUOTA		0x0010
191 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
192 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
193 #define F2FS_FEATURE_QUOTA_INO		0x0080
194 #define F2FS_FEATURE_INODE_CRTIME	0x0100
195 #define F2FS_FEATURE_LOST_FOUND		0x0200
196 #define F2FS_FEATURE_VERITY		0x0400
197 #define F2FS_FEATURE_SB_CHKSUM		0x0800
198 #define F2FS_FEATURE_CASEFOLD		0x1000
199 #define F2FS_FEATURE_COMPRESSION	0x2000
200 #define F2FS_FEATURE_RO			0x4000
201 
202 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
203 	((raw_super->feature & cpu_to_le32(mask)) != 0)
204 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
205 #define F2FS_SET_FEATURE(sbi, mask)					\
206 	(sbi->raw_super->feature |= cpu_to_le32(mask))
207 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
208 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
209 
210 /*
211  * Default values for user and/or group using reserved blocks
212  */
213 #define	F2FS_DEF_RESUID		0
214 #define	F2FS_DEF_RESGID		0
215 
216 /*
217  * For checkpoint manager
218  */
219 enum {
220 	NAT_BITMAP,
221 	SIT_BITMAP
222 };
223 
224 #define	CP_UMOUNT	0x00000001
225 #define	CP_FASTBOOT	0x00000002
226 #define	CP_SYNC		0x00000004
227 #define	CP_RECOVERY	0x00000008
228 #define	CP_DISCARD	0x00000010
229 #define CP_TRIMMED	0x00000020
230 #define CP_PAUSE	0x00000040
231 #define CP_RESIZE 	0x00000080
232 
233 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
234 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
235 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
236 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
237 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
238 #define DEF_CP_INTERVAL			60	/* 60 secs */
239 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
240 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
241 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
242 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
243 
244 struct cp_control {
245 	int reason;
246 	__u64 trim_start;
247 	__u64 trim_end;
248 	__u64 trim_minlen;
249 };
250 
251 /*
252  * indicate meta/data type
253  */
254 enum {
255 	META_CP,
256 	META_NAT,
257 	META_SIT,
258 	META_SSA,
259 	META_MAX,
260 	META_POR,
261 	DATA_GENERIC,		/* check range only */
262 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
263 	DATA_GENERIC_ENHANCE_READ,	/*
264 					 * strong check on range and segment
265 					 * bitmap but no warning due to race
266 					 * condition of read on truncated area
267 					 * by extent_cache
268 					 */
269 	META_GENERIC,
270 };
271 
272 /* for the list of ino */
273 enum {
274 	ORPHAN_INO,		/* for orphan ino list */
275 	APPEND_INO,		/* for append ino list */
276 	UPDATE_INO,		/* for update ino list */
277 	TRANS_DIR_INO,		/* for trasactions dir ino list */
278 	FLUSH_INO,		/* for multiple device flushing */
279 	MAX_INO_ENTRY,		/* max. list */
280 };
281 
282 struct ino_entry {
283 	struct list_head list;		/* list head */
284 	nid_t ino;			/* inode number */
285 	unsigned int dirty_device;	/* dirty device bitmap */
286 };
287 
288 /* for the list of inodes to be GCed */
289 struct inode_entry {
290 	struct list_head list;	/* list head */
291 	struct inode *inode;	/* vfs inode pointer */
292 };
293 
294 struct fsync_node_entry {
295 	struct list_head list;	/* list head */
296 	struct page *page;	/* warm node page pointer */
297 	unsigned int seq_id;	/* sequence id */
298 };
299 
300 struct ckpt_req {
301 	struct completion wait;		/* completion for checkpoint done */
302 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
303 	int ret;			/* return code of checkpoint */
304 	ktime_t queue_time;		/* request queued time */
305 };
306 
307 struct ckpt_req_control {
308 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
309 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
310 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
311 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
312 	atomic_t total_ckpt;		/* # of total ckpts */
313 	atomic_t queued_ckpt;		/* # of queued ckpts */
314 	struct llist_head issue_list;	/* list for command issue */
315 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
316 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
317 	unsigned int peak_time;		/* peak wait time in msec until now */
318 };
319 
320 /* for the bitmap indicate blocks to be discarded */
321 struct discard_entry {
322 	struct list_head list;	/* list head */
323 	block_t start_blkaddr;	/* start blockaddr of current segment */
324 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
325 };
326 
327 /* default discard granularity of inner discard thread, unit: block count */
328 #define DEFAULT_DISCARD_GRANULARITY		16
329 
330 /* max discard pend list number */
331 #define MAX_PLIST_NUM		512
332 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
333 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
334 
335 enum {
336 	D_PREP,			/* initial */
337 	D_PARTIAL,		/* partially submitted */
338 	D_SUBMIT,		/* all submitted */
339 	D_DONE,			/* finished */
340 };
341 
342 struct discard_info {
343 	block_t lstart;			/* logical start address */
344 	block_t len;			/* length */
345 	block_t start;			/* actual start address in dev */
346 };
347 
348 struct discard_cmd {
349 	struct rb_node rb_node;		/* rb node located in rb-tree */
350 	union {
351 		struct {
352 			block_t lstart;	/* logical start address */
353 			block_t len;	/* length */
354 			block_t start;	/* actual start address in dev */
355 		};
356 		struct discard_info di;	/* discard info */
357 
358 	};
359 	struct list_head list;		/* command list */
360 	struct completion wait;		/* compleation */
361 	struct block_device *bdev;	/* bdev */
362 	unsigned short ref;		/* reference count */
363 	unsigned char state;		/* state */
364 	unsigned char queued;		/* queued discard */
365 	int error;			/* bio error */
366 	spinlock_t lock;		/* for state/bio_ref updating */
367 	unsigned short bio_ref;		/* bio reference count */
368 };
369 
370 enum {
371 	DPOLICY_BG,
372 	DPOLICY_FORCE,
373 	DPOLICY_FSTRIM,
374 	DPOLICY_UMOUNT,
375 	MAX_DPOLICY,
376 };
377 
378 struct discard_policy {
379 	int type;			/* type of discard */
380 	unsigned int min_interval;	/* used for candidates exist */
381 	unsigned int mid_interval;	/* used for device busy */
382 	unsigned int max_interval;	/* used for candidates not exist */
383 	unsigned int max_requests;	/* # of discards issued per round */
384 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
385 	bool io_aware;			/* issue discard in idle time */
386 	bool sync;			/* submit discard with REQ_SYNC flag */
387 	bool ordered;			/* issue discard by lba order */
388 	bool timeout;			/* discard timeout for put_super */
389 	unsigned int granularity;	/* discard granularity */
390 };
391 
392 struct discard_cmd_control {
393 	struct task_struct *f2fs_issue_discard;	/* discard thread */
394 	struct list_head entry_list;		/* 4KB discard entry list */
395 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
396 	struct list_head wait_list;		/* store on-flushing entries */
397 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
398 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
399 	unsigned int discard_wake;		/* to wake up discard thread */
400 	struct mutex cmd_lock;
401 	unsigned int nr_discards;		/* # of discards in the list */
402 	unsigned int max_discards;		/* max. discards to be issued */
403 	unsigned int max_discard_request;	/* max. discard request per round */
404 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
405 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
406 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
407 	unsigned int discard_granularity;	/* discard granularity */
408 	unsigned int undiscard_blks;		/* # of undiscard blocks */
409 	unsigned int next_pos;			/* next discard position */
410 	atomic_t issued_discard;		/* # of issued discard */
411 	atomic_t queued_discard;		/* # of queued discard */
412 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
413 	struct rb_root_cached root;		/* root of discard rb-tree */
414 	bool rbtree_check;			/* config for consistence check */
415 };
416 
417 /* for the list of fsync inodes, used only during recovery */
418 struct fsync_inode_entry {
419 	struct list_head list;	/* list head */
420 	struct inode *inode;	/* vfs inode pointer */
421 	block_t blkaddr;	/* block address locating the last fsync */
422 	block_t last_dentry;	/* block address locating the last dentry */
423 };
424 
425 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
426 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
427 
428 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
429 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
430 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
431 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
432 
433 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
434 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
435 
436 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
437 {
438 	int before = nats_in_cursum(journal);
439 
440 	journal->n_nats = cpu_to_le16(before + i);
441 	return before;
442 }
443 
444 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
445 {
446 	int before = sits_in_cursum(journal);
447 
448 	journal->n_sits = cpu_to_le16(before + i);
449 	return before;
450 }
451 
452 static inline bool __has_cursum_space(struct f2fs_journal *journal,
453 							int size, int type)
454 {
455 	if (type == NAT_JOURNAL)
456 		return size <= MAX_NAT_JENTRIES(journal);
457 	return size <= MAX_SIT_JENTRIES(journal);
458 }
459 
460 /* for inline stuff */
461 #define DEF_INLINE_RESERVED_SIZE	1
462 static inline int get_extra_isize(struct inode *inode);
463 static inline int get_inline_xattr_addrs(struct inode *inode);
464 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
465 				(CUR_ADDRS_PER_INODE(inode) -		\
466 				get_inline_xattr_addrs(inode) -	\
467 				DEF_INLINE_RESERVED_SIZE))
468 
469 /* for inline dir */
470 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
471 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
472 				BITS_PER_BYTE + 1))
473 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
474 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
475 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
476 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
477 				NR_INLINE_DENTRY(inode) + \
478 				INLINE_DENTRY_BITMAP_SIZE(inode)))
479 
480 /*
481  * For INODE and NODE manager
482  */
483 /* for directory operations */
484 
485 struct f2fs_filename {
486 	/*
487 	 * The filename the user specified.  This is NULL for some
488 	 * filesystem-internal operations, e.g. converting an inline directory
489 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
490 	 */
491 	const struct qstr *usr_fname;
492 
493 	/*
494 	 * The on-disk filename.  For encrypted directories, this is encrypted.
495 	 * This may be NULL for lookups in an encrypted dir without the key.
496 	 */
497 	struct fscrypt_str disk_name;
498 
499 	/* The dirhash of this filename */
500 	f2fs_hash_t hash;
501 
502 #ifdef CONFIG_FS_ENCRYPTION
503 	/*
504 	 * For lookups in encrypted directories: either the buffer backing
505 	 * disk_name, or a buffer that holds the decoded no-key name.
506 	 */
507 	struct fscrypt_str crypto_buf;
508 #endif
509 #if IS_ENABLED(CONFIG_UNICODE)
510 	/*
511 	 * For casefolded directories: the casefolded name, but it's left NULL
512 	 * if the original name is not valid Unicode, if the original name is
513 	 * "." or "..", if the directory is both casefolded and encrypted and
514 	 * its encryption key is unavailable, or if the filesystem is doing an
515 	 * internal operation where usr_fname is also NULL.  In all these cases
516 	 * we fall back to treating the name as an opaque byte sequence.
517 	 */
518 	struct fscrypt_str cf_name;
519 #endif
520 };
521 
522 struct f2fs_dentry_ptr {
523 	struct inode *inode;
524 	void *bitmap;
525 	struct f2fs_dir_entry *dentry;
526 	__u8 (*filename)[F2FS_SLOT_LEN];
527 	int max;
528 	int nr_bitmap;
529 };
530 
531 static inline void make_dentry_ptr_block(struct inode *inode,
532 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
533 {
534 	d->inode = inode;
535 	d->max = NR_DENTRY_IN_BLOCK;
536 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
537 	d->bitmap = t->dentry_bitmap;
538 	d->dentry = t->dentry;
539 	d->filename = t->filename;
540 }
541 
542 static inline void make_dentry_ptr_inline(struct inode *inode,
543 					struct f2fs_dentry_ptr *d, void *t)
544 {
545 	int entry_cnt = NR_INLINE_DENTRY(inode);
546 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
547 	int reserved_size = INLINE_RESERVED_SIZE(inode);
548 
549 	d->inode = inode;
550 	d->max = entry_cnt;
551 	d->nr_bitmap = bitmap_size;
552 	d->bitmap = t;
553 	d->dentry = t + bitmap_size + reserved_size;
554 	d->filename = t + bitmap_size + reserved_size +
555 					SIZE_OF_DIR_ENTRY * entry_cnt;
556 }
557 
558 /*
559  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
560  * as its node offset to distinguish from index node blocks.
561  * But some bits are used to mark the node block.
562  */
563 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
564 				>> OFFSET_BIT_SHIFT)
565 enum {
566 	ALLOC_NODE,			/* allocate a new node page if needed */
567 	LOOKUP_NODE,			/* look up a node without readahead */
568 	LOOKUP_NODE_RA,			/*
569 					 * look up a node with readahead called
570 					 * by get_data_block.
571 					 */
572 };
573 
574 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
575 
576 /* congestion wait timeout value, default: 20ms */
577 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
578 
579 /* maximum retry quota flush count */
580 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
581 
582 /* maximum retry of EIO'ed page */
583 #define MAX_RETRY_PAGE_EIO			100
584 
585 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
586 
587 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
588 
589 /* dirty segments threshold for triggering CP */
590 #define DEFAULT_DIRTY_THRESHOLD		4
591 
592 /* for in-memory extent cache entry */
593 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
594 
595 /* number of extent info in extent cache we try to shrink */
596 #define EXTENT_CACHE_SHRINK_NUMBER	128
597 
598 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
599 #define RECOVERY_MIN_RA_BLOCKS		1
600 
601 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
602 
603 struct rb_entry {
604 	struct rb_node rb_node;		/* rb node located in rb-tree */
605 	union {
606 		struct {
607 			unsigned int ofs;	/* start offset of the entry */
608 			unsigned int len;	/* length of the entry */
609 		};
610 		unsigned long long key;		/* 64-bits key */
611 	} __packed;
612 };
613 
614 struct extent_info {
615 	unsigned int fofs;		/* start offset in a file */
616 	unsigned int len;		/* length of the extent */
617 	u32 blk;			/* start block address of the extent */
618 #ifdef CONFIG_F2FS_FS_COMPRESSION
619 	unsigned int c_len;		/* physical extent length of compressed blocks */
620 #endif
621 };
622 
623 struct extent_node {
624 	struct rb_node rb_node;		/* rb node located in rb-tree */
625 	struct extent_info ei;		/* extent info */
626 	struct list_head list;		/* node in global extent list of sbi */
627 	struct extent_tree *et;		/* extent tree pointer */
628 };
629 
630 struct extent_tree {
631 	nid_t ino;			/* inode number */
632 	struct rb_root_cached root;	/* root of extent info rb-tree */
633 	struct extent_node *cached_en;	/* recently accessed extent node */
634 	struct extent_info largest;	/* largested extent info */
635 	struct list_head list;		/* to be used by sbi->zombie_list */
636 	rwlock_t lock;			/* protect extent info rb-tree */
637 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
638 	bool largest_updated;		/* largest extent updated */
639 };
640 
641 /*
642  * This structure is taken from ext4_map_blocks.
643  *
644  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
645  */
646 #define F2FS_MAP_NEW		(1 << BH_New)
647 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
648 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
649 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
650 				F2FS_MAP_UNWRITTEN)
651 
652 struct f2fs_map_blocks {
653 	struct block_device *m_bdev;	/* for multi-device dio */
654 	block_t m_pblk;
655 	block_t m_lblk;
656 	unsigned int m_len;
657 	unsigned int m_flags;
658 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
659 	pgoff_t *m_next_extent;		/* point to next possible extent */
660 	int m_seg_type;
661 	bool m_may_create;		/* indicate it is from write path */
662 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
663 };
664 
665 /* for flag in get_data_block */
666 enum {
667 	F2FS_GET_BLOCK_DEFAULT,
668 	F2FS_GET_BLOCK_FIEMAP,
669 	F2FS_GET_BLOCK_BMAP,
670 	F2FS_GET_BLOCK_DIO,
671 	F2FS_GET_BLOCK_PRE_DIO,
672 	F2FS_GET_BLOCK_PRE_AIO,
673 	F2FS_GET_BLOCK_PRECACHE,
674 };
675 
676 /*
677  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
678  */
679 #define FADVISE_COLD_BIT	0x01
680 #define FADVISE_LOST_PINO_BIT	0x02
681 #define FADVISE_ENCRYPT_BIT	0x04
682 #define FADVISE_ENC_NAME_BIT	0x08
683 #define FADVISE_KEEP_SIZE_BIT	0x10
684 #define FADVISE_HOT_BIT		0x20
685 #define FADVISE_VERITY_BIT	0x40
686 #define FADVISE_TRUNC_BIT	0x80
687 
688 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
689 
690 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
691 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
692 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
693 
694 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
695 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
696 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
697 
698 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
699 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
700 
701 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
702 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
703 
704 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
705 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
706 
707 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
708 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
709 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
710 
711 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
712 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
713 
714 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
715 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
716 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
717 
718 #define DEF_DIR_LEVEL		0
719 
720 enum {
721 	GC_FAILURE_PIN,
722 	MAX_GC_FAILURE
723 };
724 
725 /* used for f2fs_inode_info->flags */
726 enum {
727 	FI_NEW_INODE,		/* indicate newly allocated inode */
728 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
729 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
730 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
731 	FI_INC_LINK,		/* need to increment i_nlink */
732 	FI_ACL_MODE,		/* indicate acl mode */
733 	FI_NO_ALLOC,		/* should not allocate any blocks */
734 	FI_FREE_NID,		/* free allocated nide */
735 	FI_NO_EXTENT,		/* not to use the extent cache */
736 	FI_INLINE_XATTR,	/* used for inline xattr */
737 	FI_INLINE_DATA,		/* used for inline data*/
738 	FI_INLINE_DENTRY,	/* used for inline dentry */
739 	FI_APPEND_WRITE,	/* inode has appended data */
740 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
741 	FI_NEED_IPU,		/* used for ipu per file */
742 	FI_ATOMIC_FILE,		/* indicate atomic file */
743 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
744 	FI_DROP_CACHE,		/* drop dirty page cache */
745 	FI_DATA_EXIST,		/* indicate data exists */
746 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
747 	FI_SKIP_WRITES,		/* should skip data page writeback */
748 	FI_OPU_WRITE,		/* used for opu per file */
749 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
750 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
751 	FI_HOT_DATA,		/* indicate file is hot */
752 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
753 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
754 	FI_PIN_FILE,		/* indicate file should not be gced */
755 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
756 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
757 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
758 	FI_MMAP_FILE,		/* indicate file was mmapped */
759 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
760 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
761 	FI_ALIGNED_WRITE,	/* enable aligned write */
762 	FI_COW_FILE,		/* indicate COW file */
763 	FI_MAX,			/* max flag, never be used */
764 };
765 
766 struct f2fs_inode_info {
767 	struct inode vfs_inode;		/* serve a vfs inode */
768 	unsigned long i_flags;		/* keep an inode flags for ioctl */
769 	unsigned char i_advise;		/* use to give file attribute hints */
770 	unsigned char i_dir_level;	/* use for dentry level for large dir */
771 	unsigned int i_current_depth;	/* only for directory depth */
772 	/* for gc failure statistic */
773 	unsigned int i_gc_failures[MAX_GC_FAILURE];
774 	unsigned int i_pino;		/* parent inode number */
775 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
776 
777 	/* Use below internally in f2fs*/
778 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
779 	struct f2fs_rwsem i_sem;	/* protect fi info */
780 	atomic_t dirty_pages;		/* # of dirty pages */
781 	f2fs_hash_t chash;		/* hash value of given file name */
782 	unsigned int clevel;		/* maximum level of given file name */
783 	struct task_struct *task;	/* lookup and create consistency */
784 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
785 	nid_t i_xattr_nid;		/* node id that contains xattrs */
786 	loff_t	last_disk_size;		/* lastly written file size */
787 	spinlock_t i_size_lock;		/* protect last_disk_size */
788 
789 #ifdef CONFIG_QUOTA
790 	struct dquot *i_dquot[MAXQUOTAS];
791 
792 	/* quota space reservation, managed internally by quota code */
793 	qsize_t i_reserved_quota;
794 #endif
795 	struct list_head dirty_list;	/* dirty list for dirs and files */
796 	struct list_head gdirty_list;	/* linked in global dirty list */
797 	struct task_struct *atomic_write_task;	/* store atomic write task */
798 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
799 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
800 
801 	/* avoid racing between foreground op and gc */
802 	struct f2fs_rwsem i_gc_rwsem[2];
803 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
804 
805 	int i_extra_isize;		/* size of extra space located in i_addr */
806 	kprojid_t i_projid;		/* id for project quota */
807 	int i_inline_xattr_size;	/* inline xattr size */
808 	struct timespec64 i_crtime;	/* inode creation time */
809 	struct timespec64 i_disk_time[4];/* inode disk times */
810 
811 	/* for file compress */
812 	atomic_t i_compr_blocks;		/* # of compressed blocks */
813 	unsigned char i_compress_algorithm;	/* algorithm type */
814 	unsigned char i_log_cluster_size;	/* log of cluster size */
815 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
816 	unsigned short i_compress_flag;		/* compress flag */
817 	unsigned int i_cluster_size;		/* cluster size */
818 
819 	unsigned int atomic_write_cnt;
820 };
821 
822 static inline void get_extent_info(struct extent_info *ext,
823 					struct f2fs_extent *i_ext)
824 {
825 	ext->fofs = le32_to_cpu(i_ext->fofs);
826 	ext->blk = le32_to_cpu(i_ext->blk);
827 	ext->len = le32_to_cpu(i_ext->len);
828 }
829 
830 static inline void set_raw_extent(struct extent_info *ext,
831 					struct f2fs_extent *i_ext)
832 {
833 	i_ext->fofs = cpu_to_le32(ext->fofs);
834 	i_ext->blk = cpu_to_le32(ext->blk);
835 	i_ext->len = cpu_to_le32(ext->len);
836 }
837 
838 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
839 						u32 blk, unsigned int len)
840 {
841 	ei->fofs = fofs;
842 	ei->blk = blk;
843 	ei->len = len;
844 #ifdef CONFIG_F2FS_FS_COMPRESSION
845 	ei->c_len = 0;
846 #endif
847 }
848 
849 static inline bool __is_discard_mergeable(struct discard_info *back,
850 			struct discard_info *front, unsigned int max_len)
851 {
852 	return (back->lstart + back->len == front->lstart) &&
853 		(back->len + front->len <= max_len);
854 }
855 
856 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
857 			struct discard_info *back, unsigned int max_len)
858 {
859 	return __is_discard_mergeable(back, cur, max_len);
860 }
861 
862 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
863 			struct discard_info *front, unsigned int max_len)
864 {
865 	return __is_discard_mergeable(cur, front, max_len);
866 }
867 
868 static inline bool __is_extent_mergeable(struct extent_info *back,
869 						struct extent_info *front)
870 {
871 #ifdef CONFIG_F2FS_FS_COMPRESSION
872 	if (back->c_len && back->len != back->c_len)
873 		return false;
874 	if (front->c_len && front->len != front->c_len)
875 		return false;
876 #endif
877 	return (back->fofs + back->len == front->fofs &&
878 			back->blk + back->len == front->blk);
879 }
880 
881 static inline bool __is_back_mergeable(struct extent_info *cur,
882 						struct extent_info *back)
883 {
884 	return __is_extent_mergeable(back, cur);
885 }
886 
887 static inline bool __is_front_mergeable(struct extent_info *cur,
888 						struct extent_info *front)
889 {
890 	return __is_extent_mergeable(cur, front);
891 }
892 
893 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
894 static inline void __try_update_largest_extent(struct extent_tree *et,
895 						struct extent_node *en)
896 {
897 	if (en->ei.len > et->largest.len) {
898 		et->largest = en->ei;
899 		et->largest_updated = true;
900 	}
901 }
902 
903 /*
904  * For free nid management
905  */
906 enum nid_state {
907 	FREE_NID,		/* newly added to free nid list */
908 	PREALLOC_NID,		/* it is preallocated */
909 	MAX_NID_STATE,
910 };
911 
912 enum nat_state {
913 	TOTAL_NAT,
914 	DIRTY_NAT,
915 	RECLAIMABLE_NAT,
916 	MAX_NAT_STATE,
917 };
918 
919 struct f2fs_nm_info {
920 	block_t nat_blkaddr;		/* base disk address of NAT */
921 	nid_t max_nid;			/* maximum possible node ids */
922 	nid_t available_nids;		/* # of available node ids */
923 	nid_t next_scan_nid;		/* the next nid to be scanned */
924 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
925 	unsigned int ram_thresh;	/* control the memory footprint */
926 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
927 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
928 
929 	/* NAT cache management */
930 	struct radix_tree_root nat_root;/* root of the nat entry cache */
931 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
932 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
933 	struct list_head nat_entries;	/* cached nat entry list (clean) */
934 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
935 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
936 	unsigned int nat_blocks;	/* # of nat blocks */
937 
938 	/* free node ids management */
939 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
940 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
941 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
942 	spinlock_t nid_list_lock;	/* protect nid lists ops */
943 	struct mutex build_lock;	/* lock for build free nids */
944 	unsigned char **free_nid_bitmap;
945 	unsigned char *nat_block_bitmap;
946 	unsigned short *free_nid_count;	/* free nid count of NAT block */
947 
948 	/* for checkpoint */
949 	char *nat_bitmap;		/* NAT bitmap pointer */
950 
951 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
952 	unsigned char *nat_bits;	/* NAT bits blocks */
953 	unsigned char *full_nat_bits;	/* full NAT pages */
954 	unsigned char *empty_nat_bits;	/* empty NAT pages */
955 #ifdef CONFIG_F2FS_CHECK_FS
956 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
957 #endif
958 	int bitmap_size;		/* bitmap size */
959 };
960 
961 /*
962  * this structure is used as one of function parameters.
963  * all the information are dedicated to a given direct node block determined
964  * by the data offset in a file.
965  */
966 struct dnode_of_data {
967 	struct inode *inode;		/* vfs inode pointer */
968 	struct page *inode_page;	/* its inode page, NULL is possible */
969 	struct page *node_page;		/* cached direct node page */
970 	nid_t nid;			/* node id of the direct node block */
971 	unsigned int ofs_in_node;	/* data offset in the node page */
972 	bool inode_page_locked;		/* inode page is locked or not */
973 	bool node_changed;		/* is node block changed */
974 	char cur_level;			/* level of hole node page */
975 	char max_level;			/* level of current page located */
976 	block_t	data_blkaddr;		/* block address of the node block */
977 };
978 
979 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
980 		struct page *ipage, struct page *npage, nid_t nid)
981 {
982 	memset(dn, 0, sizeof(*dn));
983 	dn->inode = inode;
984 	dn->inode_page = ipage;
985 	dn->node_page = npage;
986 	dn->nid = nid;
987 }
988 
989 /*
990  * For SIT manager
991  *
992  * By default, there are 6 active log areas across the whole main area.
993  * When considering hot and cold data separation to reduce cleaning overhead,
994  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
995  * respectively.
996  * In the current design, you should not change the numbers intentionally.
997  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
998  * logs individually according to the underlying devices. (default: 6)
999  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1000  * data and 8 for node logs.
1001  */
1002 #define	NR_CURSEG_DATA_TYPE	(3)
1003 #define NR_CURSEG_NODE_TYPE	(3)
1004 #define NR_CURSEG_INMEM_TYPE	(2)
1005 #define NR_CURSEG_RO_TYPE	(2)
1006 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1007 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1008 
1009 enum {
1010 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1011 	CURSEG_WARM_DATA,	/* data blocks */
1012 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1013 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1014 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1015 	CURSEG_COLD_NODE,	/* indirect node blocks */
1016 	NR_PERSISTENT_LOG,	/* number of persistent log */
1017 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1018 				/* pinned file that needs consecutive block address */
1019 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1020 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1021 };
1022 
1023 struct flush_cmd {
1024 	struct completion wait;
1025 	struct llist_node llnode;
1026 	nid_t ino;
1027 	int ret;
1028 };
1029 
1030 struct flush_cmd_control {
1031 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1032 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1033 	atomic_t issued_flush;			/* # of issued flushes */
1034 	atomic_t queued_flush;			/* # of queued flushes */
1035 	struct llist_head issue_list;		/* list for command issue */
1036 	struct llist_node *dispatch_list;	/* list for command dispatch */
1037 };
1038 
1039 struct f2fs_sm_info {
1040 	struct sit_info *sit_info;		/* whole segment information */
1041 	struct free_segmap_info *free_info;	/* free segment information */
1042 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1043 	struct curseg_info *curseg_array;	/* active segment information */
1044 
1045 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1046 
1047 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1048 	block_t main_blkaddr;		/* start block address of main area */
1049 	block_t ssa_blkaddr;		/* start block address of SSA area */
1050 
1051 	unsigned int segment_count;	/* total # of segments */
1052 	unsigned int main_segments;	/* # of segments in main area */
1053 	unsigned int reserved_segments;	/* # of reserved segments */
1054 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1055 	unsigned int ovp_segments;	/* # of overprovision segments */
1056 
1057 	/* a threshold to reclaim prefree segments */
1058 	unsigned int rec_prefree_segments;
1059 
1060 	/* for batched trimming */
1061 	unsigned int trim_sections;		/* # of sections to trim */
1062 
1063 	struct list_head sit_entry_set;	/* sit entry set list */
1064 
1065 	unsigned int ipu_policy;	/* in-place-update policy */
1066 	unsigned int min_ipu_util;	/* in-place-update threshold */
1067 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1068 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1069 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1070 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1071 
1072 	/* for flush command control */
1073 	struct flush_cmd_control *fcc_info;
1074 
1075 	/* for discard command control */
1076 	struct discard_cmd_control *dcc_info;
1077 };
1078 
1079 /*
1080  * For superblock
1081  */
1082 /*
1083  * COUNT_TYPE for monitoring
1084  *
1085  * f2fs monitors the number of several block types such as on-writeback,
1086  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1087  */
1088 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1089 enum count_type {
1090 	F2FS_DIRTY_DENTS,
1091 	F2FS_DIRTY_DATA,
1092 	F2FS_DIRTY_QDATA,
1093 	F2FS_DIRTY_NODES,
1094 	F2FS_DIRTY_META,
1095 	F2FS_DIRTY_IMETA,
1096 	F2FS_WB_CP_DATA,
1097 	F2FS_WB_DATA,
1098 	F2FS_RD_DATA,
1099 	F2FS_RD_NODE,
1100 	F2FS_RD_META,
1101 	F2FS_DIO_WRITE,
1102 	F2FS_DIO_READ,
1103 	NR_COUNT_TYPE,
1104 };
1105 
1106 /*
1107  * The below are the page types of bios used in submit_bio().
1108  * The available types are:
1109  * DATA			User data pages. It operates as async mode.
1110  * NODE			Node pages. It operates as async mode.
1111  * META			FS metadata pages such as SIT, NAT, CP.
1112  * NR_PAGE_TYPE		The number of page types.
1113  * META_FLUSH		Make sure the previous pages are written
1114  *			with waiting the bio's completion
1115  * ...			Only can be used with META.
1116  */
1117 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1118 enum page_type {
1119 	DATA = 0,
1120 	NODE = 1,	/* should not change this */
1121 	META,
1122 	NR_PAGE_TYPE,
1123 	META_FLUSH,
1124 	IPU,		/* the below types are used by tracepoints only. */
1125 	OPU,
1126 };
1127 
1128 enum temp_type {
1129 	HOT = 0,	/* must be zero for meta bio */
1130 	WARM,
1131 	COLD,
1132 	NR_TEMP_TYPE,
1133 };
1134 
1135 enum need_lock_type {
1136 	LOCK_REQ = 0,
1137 	LOCK_DONE,
1138 	LOCK_RETRY,
1139 };
1140 
1141 enum cp_reason_type {
1142 	CP_NO_NEEDED,
1143 	CP_NON_REGULAR,
1144 	CP_COMPRESSED,
1145 	CP_HARDLINK,
1146 	CP_SB_NEED_CP,
1147 	CP_WRONG_PINO,
1148 	CP_NO_SPC_ROLL,
1149 	CP_NODE_NEED_CP,
1150 	CP_FASTBOOT_MODE,
1151 	CP_SPEC_LOG_NUM,
1152 	CP_RECOVER_DIR,
1153 };
1154 
1155 enum iostat_type {
1156 	/* WRITE IO */
1157 	APP_DIRECT_IO,			/* app direct write IOs */
1158 	APP_BUFFERED_IO,		/* app buffered write IOs */
1159 	APP_WRITE_IO,			/* app write IOs */
1160 	APP_MAPPED_IO,			/* app mapped IOs */
1161 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1162 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1163 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1164 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1165 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1166 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1167 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1168 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1169 
1170 	/* READ IO */
1171 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1172 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1173 	APP_READ_IO,			/* app read IOs */
1174 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1175 	FS_DATA_READ_IO,		/* data read IOs */
1176 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1177 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1178 	FS_NODE_READ_IO,		/* node read IOs */
1179 	FS_META_READ_IO,		/* meta read IOs */
1180 
1181 	/* other */
1182 	FS_DISCARD,			/* discard */
1183 	NR_IO_TYPE,
1184 };
1185 
1186 struct f2fs_io_info {
1187 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1188 	nid_t ino;		/* inode number */
1189 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1190 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1191 	enum req_op op;		/* contains REQ_OP_ */
1192 	blk_opf_t op_flags;	/* req_flag_bits */
1193 	block_t new_blkaddr;	/* new block address to be written */
1194 	block_t old_blkaddr;	/* old block address before Cow */
1195 	struct page *page;	/* page to be written */
1196 	struct page *encrypted_page;	/* encrypted page */
1197 	struct page *compressed_page;	/* compressed page */
1198 	struct list_head list;		/* serialize IOs */
1199 	bool submitted;		/* indicate IO submission */
1200 	int need_lock;		/* indicate we need to lock cp_rwsem */
1201 	bool in_list;		/* indicate fio is in io_list */
1202 	bool is_por;		/* indicate IO is from recovery or not */
1203 	bool retry;		/* need to reallocate block address */
1204 	int compr_blocks;	/* # of compressed block addresses */
1205 	bool encrypted;		/* indicate file is encrypted */
1206 	bool post_read;		/* require post read */
1207 	enum iostat_type io_type;	/* io type */
1208 	struct writeback_control *io_wbc; /* writeback control */
1209 	struct bio **bio;		/* bio for ipu */
1210 	sector_t *last_block;		/* last block number in bio */
1211 	unsigned char version;		/* version of the node */
1212 };
1213 
1214 struct bio_entry {
1215 	struct bio *bio;
1216 	struct list_head list;
1217 };
1218 
1219 #define is_read_io(rw) ((rw) == READ)
1220 struct f2fs_bio_info {
1221 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1222 	struct bio *bio;		/* bios to merge */
1223 	sector_t last_block_in_bio;	/* last block number */
1224 	struct f2fs_io_info fio;	/* store buffered io info. */
1225 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1226 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1227 	struct list_head io_list;	/* track fios */
1228 	struct list_head bio_list;	/* bio entry list head */
1229 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1230 };
1231 
1232 #define FDEV(i)				(sbi->devs[i])
1233 #define RDEV(i)				(raw_super->devs[i])
1234 struct f2fs_dev_info {
1235 	struct block_device *bdev;
1236 	char path[MAX_PATH_LEN];
1237 	unsigned int total_segments;
1238 	block_t start_blk;
1239 	block_t end_blk;
1240 #ifdef CONFIG_BLK_DEV_ZONED
1241 	unsigned int nr_blkz;		/* Total number of zones */
1242 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1243 #endif
1244 };
1245 
1246 enum inode_type {
1247 	DIR_INODE,			/* for dirty dir inode */
1248 	FILE_INODE,			/* for dirty regular/symlink inode */
1249 	DIRTY_META,			/* for all dirtied inode metadata */
1250 	ATOMIC_FILE,			/* for all atomic files */
1251 	NR_INODE_TYPE,
1252 };
1253 
1254 /* for inner inode cache management */
1255 struct inode_management {
1256 	struct radix_tree_root ino_root;	/* ino entry array */
1257 	spinlock_t ino_lock;			/* for ino entry lock */
1258 	struct list_head ino_list;		/* inode list head */
1259 	unsigned long ino_num;			/* number of entries */
1260 };
1261 
1262 /* for GC_AT */
1263 struct atgc_management {
1264 	bool atgc_enabled;			/* ATGC is enabled or not */
1265 	struct rb_root_cached root;		/* root of victim rb-tree */
1266 	struct list_head victim_list;		/* linked with all victim entries */
1267 	unsigned int victim_count;		/* victim count in rb-tree */
1268 	unsigned int candidate_ratio;		/* candidate ratio */
1269 	unsigned int max_candidate_count;	/* max candidate count */
1270 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1271 	unsigned long long age_threshold;	/* age threshold */
1272 };
1273 
1274 struct f2fs_gc_control {
1275 	unsigned int victim_segno;	/* target victim segment number */
1276 	int init_gc_type;		/* FG_GC or BG_GC */
1277 	bool no_bg_gc;			/* check the space and stop bg_gc */
1278 	bool should_migrate_blocks;	/* should migrate blocks */
1279 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1280 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1281 };
1282 
1283 /* For s_flag in struct f2fs_sb_info */
1284 enum {
1285 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1286 	SBI_IS_CLOSE,				/* specify unmounting */
1287 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1288 	SBI_POR_DOING,				/* recovery is doing or not */
1289 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1290 	SBI_NEED_CP,				/* need to checkpoint */
1291 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1292 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1293 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1294 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1295 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1296 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1297 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1298 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1299 	SBI_IS_FREEZING,			/* freezefs is in process */
1300 };
1301 
1302 enum {
1303 	CP_TIME,
1304 	REQ_TIME,
1305 	DISCARD_TIME,
1306 	GC_TIME,
1307 	DISABLE_TIME,
1308 	UMOUNT_DISCARD_TIMEOUT,
1309 	MAX_TIME,
1310 };
1311 
1312 enum {
1313 	GC_NORMAL,
1314 	GC_IDLE_CB,
1315 	GC_IDLE_GREEDY,
1316 	GC_IDLE_AT,
1317 	GC_URGENT_HIGH,
1318 	GC_URGENT_LOW,
1319 	GC_URGENT_MID,
1320 	MAX_GC_MODE,
1321 };
1322 
1323 enum {
1324 	BGGC_MODE_ON,		/* background gc is on */
1325 	BGGC_MODE_OFF,		/* background gc is off */
1326 	BGGC_MODE_SYNC,		/*
1327 				 * background gc is on, migrating blocks
1328 				 * like foreground gc
1329 				 */
1330 };
1331 
1332 enum {
1333 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1334 	FS_MODE_LFS,			/* use lfs allocation only */
1335 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1336 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1337 };
1338 
1339 enum {
1340 	ALLOC_MODE_DEFAULT,	/* stay default */
1341 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1342 };
1343 
1344 enum fsync_mode {
1345 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1346 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1347 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1348 };
1349 
1350 enum {
1351 	COMPR_MODE_FS,		/*
1352 				 * automatically compress compression
1353 				 * enabled files
1354 				 */
1355 	COMPR_MODE_USER,	/*
1356 				 * automatical compression is disabled.
1357 				 * user can control the file compression
1358 				 * using ioctls
1359 				 */
1360 };
1361 
1362 enum {
1363 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1364 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1365 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1366 };
1367 
1368 enum {
1369 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1370 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1371 };
1372 
1373 
1374 
1375 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1376 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1377 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1378 
1379 /*
1380  * Layout of f2fs page.private:
1381  *
1382  * Layout A: lowest bit should be 1
1383  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1384  * bit 0	PAGE_PRIVATE_NOT_POINTER
1385  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1386  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1387  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1388  * bit 4	PAGE_PRIVATE_INLINE_INODE
1389  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1390  * bit 6-	f2fs private data
1391  *
1392  * Layout B: lowest bit should be 0
1393  * page.private is a wrapped pointer.
1394  */
1395 enum {
1396 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1397 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1398 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1399 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1400 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1401 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1402 	PAGE_PRIVATE_MAX
1403 };
1404 
1405 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1406 static inline bool page_private_##name(struct page *page) \
1407 { \
1408 	return PagePrivate(page) && \
1409 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1410 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1411 }
1412 
1413 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1414 static inline void set_page_private_##name(struct page *page) \
1415 { \
1416 	if (!PagePrivate(page)) { \
1417 		get_page(page); \
1418 		SetPagePrivate(page); \
1419 		set_page_private(page, 0); \
1420 	} \
1421 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1422 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1423 }
1424 
1425 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1426 static inline void clear_page_private_##name(struct page *page) \
1427 { \
1428 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1429 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1430 		set_page_private(page, 0); \
1431 		if (PagePrivate(page)) { \
1432 			ClearPagePrivate(page); \
1433 			put_page(page); \
1434 		}\
1435 	} \
1436 }
1437 
1438 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1439 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1440 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1441 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1442 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1443 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1444 
1445 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1446 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1447 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1448 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1449 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1450 
1451 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1452 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1453 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1454 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1455 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1456 
1457 static inline unsigned long get_page_private_data(struct page *page)
1458 {
1459 	unsigned long data = page_private(page);
1460 
1461 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1462 		return 0;
1463 	return data >> PAGE_PRIVATE_MAX;
1464 }
1465 
1466 static inline void set_page_private_data(struct page *page, unsigned long data)
1467 {
1468 	if (!PagePrivate(page)) {
1469 		get_page(page);
1470 		SetPagePrivate(page);
1471 		set_page_private(page, 0);
1472 	}
1473 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1474 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1475 }
1476 
1477 static inline void clear_page_private_data(struct page *page)
1478 {
1479 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1480 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1481 		set_page_private(page, 0);
1482 		if (PagePrivate(page)) {
1483 			ClearPagePrivate(page);
1484 			put_page(page);
1485 		}
1486 	}
1487 }
1488 
1489 /* For compression */
1490 enum compress_algorithm_type {
1491 	COMPRESS_LZO,
1492 	COMPRESS_LZ4,
1493 	COMPRESS_ZSTD,
1494 	COMPRESS_LZORLE,
1495 	COMPRESS_MAX,
1496 };
1497 
1498 enum compress_flag {
1499 	COMPRESS_CHKSUM,
1500 	COMPRESS_MAX_FLAG,
1501 };
1502 
1503 #define	COMPRESS_WATERMARK			20
1504 #define	COMPRESS_PERCENT			20
1505 
1506 #define COMPRESS_DATA_RESERVED_SIZE		4
1507 struct compress_data {
1508 	__le32 clen;			/* compressed data size */
1509 	__le32 chksum;			/* compressed data chksum */
1510 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1511 	u8 cdata[];			/* compressed data */
1512 };
1513 
1514 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1515 
1516 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1517 
1518 #define	COMPRESS_LEVEL_OFFSET	8
1519 
1520 /* compress context */
1521 struct compress_ctx {
1522 	struct inode *inode;		/* inode the context belong to */
1523 	pgoff_t cluster_idx;		/* cluster index number */
1524 	unsigned int cluster_size;	/* page count in cluster */
1525 	unsigned int log_cluster_size;	/* log of cluster size */
1526 	struct page **rpages;		/* pages store raw data in cluster */
1527 	unsigned int nr_rpages;		/* total page number in rpages */
1528 	struct page **cpages;		/* pages store compressed data in cluster */
1529 	unsigned int nr_cpages;		/* total page number in cpages */
1530 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1531 	void *rbuf;			/* virtual mapped address on rpages */
1532 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1533 	size_t rlen;			/* valid data length in rbuf */
1534 	size_t clen;			/* valid data length in cbuf */
1535 	void *private;			/* payload buffer for specified compression algorithm */
1536 	void *private2;			/* extra payload buffer */
1537 };
1538 
1539 /* compress context for write IO path */
1540 struct compress_io_ctx {
1541 	u32 magic;			/* magic number to indicate page is compressed */
1542 	struct inode *inode;		/* inode the context belong to */
1543 	struct page **rpages;		/* pages store raw data in cluster */
1544 	unsigned int nr_rpages;		/* total page number in rpages */
1545 	atomic_t pending_pages;		/* in-flight compressed page count */
1546 };
1547 
1548 /* Context for decompressing one cluster on the read IO path */
1549 struct decompress_io_ctx {
1550 	u32 magic;			/* magic number to indicate page is compressed */
1551 	struct inode *inode;		/* inode the context belong to */
1552 	pgoff_t cluster_idx;		/* cluster index number */
1553 	unsigned int cluster_size;	/* page count in cluster */
1554 	unsigned int log_cluster_size;	/* log of cluster size */
1555 	struct page **rpages;		/* pages store raw data in cluster */
1556 	unsigned int nr_rpages;		/* total page number in rpages */
1557 	struct page **cpages;		/* pages store compressed data in cluster */
1558 	unsigned int nr_cpages;		/* total page number in cpages */
1559 	struct page **tpages;		/* temp pages to pad holes in cluster */
1560 	void *rbuf;			/* virtual mapped address on rpages */
1561 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1562 	size_t rlen;			/* valid data length in rbuf */
1563 	size_t clen;			/* valid data length in cbuf */
1564 
1565 	/*
1566 	 * The number of compressed pages remaining to be read in this cluster.
1567 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1568 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1569 	 * is decompressed (or an error is reported).
1570 	 *
1571 	 * If an error occurs before all the pages have been submitted for I/O,
1572 	 * then this will never reach 0.  In this case the I/O submitter is
1573 	 * responsible for calling f2fs_decompress_end_io() instead.
1574 	 */
1575 	atomic_t remaining_pages;
1576 
1577 	/*
1578 	 * Number of references to this decompress_io_ctx.
1579 	 *
1580 	 * One reference is held for I/O completion.  This reference is dropped
1581 	 * after the pagecache pages are updated and unlocked -- either after
1582 	 * decompression (and verity if enabled), or after an error.
1583 	 *
1584 	 * In addition, each compressed page holds a reference while it is in a
1585 	 * bio.  These references are necessary prevent compressed pages from
1586 	 * being freed while they are still in a bio.
1587 	 */
1588 	refcount_t refcnt;
1589 
1590 	bool failed;			/* IO error occurred before decompression? */
1591 	bool need_verity;		/* need fs-verity verification after decompression? */
1592 	void *private;			/* payload buffer for specified decompression algorithm */
1593 	void *private2;			/* extra payload buffer */
1594 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1595 	struct work_struct free_work;	/* work for late free this structure itself */
1596 };
1597 
1598 #define NULL_CLUSTER			((unsigned int)(~0))
1599 #define MIN_COMPRESS_LOG_SIZE		2
1600 #define MAX_COMPRESS_LOG_SIZE		8
1601 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1602 
1603 struct f2fs_sb_info {
1604 	struct super_block *sb;			/* pointer to VFS super block */
1605 	struct proc_dir_entry *s_proc;		/* proc entry */
1606 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1607 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1608 	int valid_super_block;			/* valid super block no */
1609 	unsigned long s_flag;				/* flags for sbi */
1610 	struct mutex writepages;		/* mutex for writepages() */
1611 
1612 #ifdef CONFIG_BLK_DEV_ZONED
1613 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1614 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1615 #endif
1616 
1617 	/* for node-related operations */
1618 	struct f2fs_nm_info *nm_info;		/* node manager */
1619 	struct inode *node_inode;		/* cache node blocks */
1620 
1621 	/* for segment-related operations */
1622 	struct f2fs_sm_info *sm_info;		/* segment manager */
1623 
1624 	/* for bio operations */
1625 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1626 	/* keep migration IO order for LFS mode */
1627 	struct f2fs_rwsem io_order_lock;
1628 	mempool_t *write_io_dummy;		/* Dummy pages */
1629 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1630 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1631 
1632 	/* for checkpoint */
1633 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1634 	int cur_cp_pack;			/* remain current cp pack */
1635 	spinlock_t cp_lock;			/* for flag in ckpt */
1636 	struct inode *meta_inode;		/* cache meta blocks */
1637 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1638 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1639 	struct f2fs_rwsem node_write;		/* locking node writes */
1640 	struct f2fs_rwsem node_change;	/* locking node change */
1641 	wait_queue_head_t cp_wait;
1642 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1643 	long interval_time[MAX_TIME];		/* to store thresholds */
1644 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1645 
1646 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1647 
1648 	spinlock_t fsync_node_lock;		/* for node entry lock */
1649 	struct list_head fsync_node_list;	/* node list head */
1650 	unsigned int fsync_seg_id;		/* sequence id */
1651 	unsigned int fsync_node_num;		/* number of node entries */
1652 
1653 	/* for orphan inode, use 0'th array */
1654 	unsigned int max_orphans;		/* max orphan inodes */
1655 
1656 	/* for inode management */
1657 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1658 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1659 	struct mutex flush_lock;		/* for flush exclusion */
1660 
1661 	/* for extent tree cache */
1662 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1663 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1664 	struct list_head extent_list;		/* lru list for shrinker */
1665 	spinlock_t extent_lock;			/* locking extent lru list */
1666 	atomic_t total_ext_tree;		/* extent tree count */
1667 	struct list_head zombie_list;		/* extent zombie tree list */
1668 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1669 	atomic_t total_ext_node;		/* extent info count */
1670 
1671 	/* basic filesystem units */
1672 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1673 	unsigned int log_blocksize;		/* log2 block size */
1674 	unsigned int blocksize;			/* block size */
1675 	unsigned int root_ino_num;		/* root inode number*/
1676 	unsigned int node_ino_num;		/* node inode number*/
1677 	unsigned int meta_ino_num;		/* meta inode number*/
1678 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1679 	unsigned int blocks_per_seg;		/* blocks per segment */
1680 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1681 	unsigned int segs_per_sec;		/* segments per section */
1682 	unsigned int secs_per_zone;		/* sections per zone */
1683 	unsigned int total_sections;		/* total section count */
1684 	unsigned int total_node_count;		/* total node block count */
1685 	unsigned int total_valid_node_count;	/* valid node block count */
1686 	int dir_level;				/* directory level */
1687 	int readdir_ra;				/* readahead inode in readdir */
1688 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1689 
1690 	block_t user_block_count;		/* # of user blocks */
1691 	block_t total_valid_block_count;	/* # of valid blocks */
1692 	block_t discard_blks;			/* discard command candidats */
1693 	block_t last_valid_block_count;		/* for recovery */
1694 	block_t reserved_blocks;		/* configurable reserved blocks */
1695 	block_t current_reserved_blocks;	/* current reserved blocks */
1696 
1697 	/* Additional tracking for no checkpoint mode */
1698 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1699 
1700 	unsigned int nquota_files;		/* # of quota sysfile */
1701 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1702 
1703 	/* # of pages, see count_type */
1704 	atomic_t nr_pages[NR_COUNT_TYPE];
1705 	/* # of allocated blocks */
1706 	struct percpu_counter alloc_valid_block_count;
1707 	/* # of node block writes as roll forward recovery */
1708 	struct percpu_counter rf_node_block_count;
1709 
1710 	/* writeback control */
1711 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1712 
1713 	/* valid inode count */
1714 	struct percpu_counter total_valid_inode_count;
1715 
1716 	struct f2fs_mount_info mount_opt;	/* mount options */
1717 
1718 	/* for cleaning operations */
1719 	struct f2fs_rwsem gc_lock;		/*
1720 						 * semaphore for GC, avoid
1721 						 * race between GC and GC or CP
1722 						 */
1723 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1724 	struct atgc_management am;		/* atgc management */
1725 	unsigned int cur_victim_sec;		/* current victim section num */
1726 	unsigned int gc_mode;			/* current GC state */
1727 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1728 	spinlock_t gc_urgent_high_lock;
1729 	bool gc_urgent_high_limited;		/* indicates having limited trial count */
1730 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1731 
1732 	/* for skip statistic */
1733 	unsigned int atomic_files;		/* # of opened atomic file */
1734 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1735 
1736 	/* threshold for gc trials on pinned files */
1737 	u64 gc_pin_file_threshold;
1738 	struct f2fs_rwsem pin_sem;
1739 
1740 	/* maximum # of trials to find a victim segment for SSR and GC */
1741 	unsigned int max_victim_search;
1742 	/* migration granularity of garbage collection, unit: segment */
1743 	unsigned int migration_granularity;
1744 
1745 	/*
1746 	 * for stat information.
1747 	 * one is for the LFS mode, and the other is for the SSR mode.
1748 	 */
1749 #ifdef CONFIG_F2FS_STAT_FS
1750 	struct f2fs_stat_info *stat_info;	/* FS status information */
1751 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1752 	unsigned int segment_count[2];		/* # of allocated segments */
1753 	unsigned int block_count[2];		/* # of allocated blocks */
1754 	atomic_t inplace_count;		/* # of inplace update */
1755 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1756 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1757 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1758 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1759 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1760 	atomic_t inline_inode;			/* # of inline_data inodes */
1761 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1762 	atomic_t compr_inode;			/* # of compressed inodes */
1763 	atomic64_t compr_blocks;		/* # of compressed blocks */
1764 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1765 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1766 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1767 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1768 #endif
1769 	spinlock_t stat_lock;			/* lock for stat operations */
1770 
1771 	/* to attach REQ_META|REQ_FUA flags */
1772 	unsigned int data_io_flag;
1773 	unsigned int node_io_flag;
1774 
1775 	/* For sysfs support */
1776 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1777 	struct completion s_kobj_unregister;
1778 
1779 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1780 	struct completion s_stat_kobj_unregister;
1781 
1782 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1783 	struct completion s_feature_list_kobj_unregister;
1784 
1785 	/* For shrinker support */
1786 	struct list_head s_list;
1787 	struct mutex umount_mutex;
1788 	unsigned int shrinker_run_no;
1789 
1790 	/* For multi devices */
1791 	int s_ndevs;				/* number of devices */
1792 	struct f2fs_dev_info *devs;		/* for device list */
1793 	unsigned int dirty_device;		/* for checkpoint data flush */
1794 	spinlock_t dev_lock;			/* protect dirty_device */
1795 	bool aligned_blksize;			/* all devices has the same logical blksize */
1796 
1797 	/* For write statistics */
1798 	u64 sectors_written_start;
1799 	u64 kbytes_written;
1800 
1801 	/* Reference to checksum algorithm driver via cryptoapi */
1802 	struct crypto_shash *s_chksum_driver;
1803 
1804 	/* Precomputed FS UUID checksum for seeding other checksums */
1805 	__u32 s_chksum_seed;
1806 
1807 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1808 
1809 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1810 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1811 
1812 	/* For reclaimed segs statistics per each GC mode */
1813 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1814 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1815 
1816 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1817 
1818 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1819 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1820 
1821 	/* For atomic write statistics */
1822 	atomic64_t current_atomic_write;
1823 	s64 peak_atomic_write;
1824 	u64 committed_atomic_block;
1825 	u64 revoked_atomic_block;
1826 
1827 #ifdef CONFIG_F2FS_FS_COMPRESSION
1828 	struct kmem_cache *page_array_slab;	/* page array entry */
1829 	unsigned int page_array_slab_size;	/* default page array slab size */
1830 
1831 	/* For runtime compression statistics */
1832 	u64 compr_written_block;
1833 	u64 compr_saved_block;
1834 	u32 compr_new_inode;
1835 
1836 	/* For compressed block cache */
1837 	struct inode *compress_inode;		/* cache compressed blocks */
1838 	unsigned int compress_percent;		/* cache page percentage */
1839 	unsigned int compress_watermark;	/* cache page watermark */
1840 	atomic_t compress_page_hit;		/* cache hit count */
1841 #endif
1842 
1843 #ifdef CONFIG_F2FS_IOSTAT
1844 	/* For app/fs IO statistics */
1845 	spinlock_t iostat_lock;
1846 	unsigned long long rw_iostat[NR_IO_TYPE];
1847 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1848 	bool iostat_enable;
1849 	unsigned long iostat_next_period;
1850 	unsigned int iostat_period_ms;
1851 
1852 	/* For io latency related statistics info in one iostat period */
1853 	spinlock_t iostat_lat_lock;
1854 	struct iostat_lat_info *iostat_io_lat;
1855 #endif
1856 };
1857 
1858 #ifdef CONFIG_F2FS_FAULT_INJECTION
1859 #define f2fs_show_injection_info(sbi, type)					\
1860 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1861 		KERN_INFO, sbi->sb->s_id,				\
1862 		f2fs_fault_name[type],					\
1863 		__func__, __builtin_return_address(0))
1864 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1865 {
1866 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1867 
1868 	if (!ffi->inject_rate)
1869 		return false;
1870 
1871 	if (!IS_FAULT_SET(ffi, type))
1872 		return false;
1873 
1874 	atomic_inc(&ffi->inject_ops);
1875 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1876 		atomic_set(&ffi->inject_ops, 0);
1877 		return true;
1878 	}
1879 	return false;
1880 }
1881 #else
1882 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1883 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1884 {
1885 	return false;
1886 }
1887 #endif
1888 
1889 /*
1890  * Test if the mounted volume is a multi-device volume.
1891  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1892  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1893  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1894  */
1895 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1896 {
1897 	return sbi->s_ndevs > 1;
1898 }
1899 
1900 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1901 {
1902 	unsigned long now = jiffies;
1903 
1904 	sbi->last_time[type] = now;
1905 
1906 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1907 	if (type == REQ_TIME) {
1908 		sbi->last_time[DISCARD_TIME] = now;
1909 		sbi->last_time[GC_TIME] = now;
1910 	}
1911 }
1912 
1913 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1914 {
1915 	unsigned long interval = sbi->interval_time[type] * HZ;
1916 
1917 	return time_after(jiffies, sbi->last_time[type] + interval);
1918 }
1919 
1920 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1921 						int type)
1922 {
1923 	unsigned long interval = sbi->interval_time[type] * HZ;
1924 	unsigned int wait_ms = 0;
1925 	long delta;
1926 
1927 	delta = (sbi->last_time[type] + interval) - jiffies;
1928 	if (delta > 0)
1929 		wait_ms = jiffies_to_msecs(delta);
1930 
1931 	return wait_ms;
1932 }
1933 
1934 /*
1935  * Inline functions
1936  */
1937 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1938 			      const void *address, unsigned int length)
1939 {
1940 	struct {
1941 		struct shash_desc shash;
1942 		char ctx[4];
1943 	} desc;
1944 	int err;
1945 
1946 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1947 
1948 	desc.shash.tfm = sbi->s_chksum_driver;
1949 	*(u32 *)desc.ctx = crc;
1950 
1951 	err = crypto_shash_update(&desc.shash, address, length);
1952 	BUG_ON(err);
1953 
1954 	return *(u32 *)desc.ctx;
1955 }
1956 
1957 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1958 			   unsigned int length)
1959 {
1960 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1961 }
1962 
1963 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1964 				  void *buf, size_t buf_size)
1965 {
1966 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1967 }
1968 
1969 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1970 			      const void *address, unsigned int length)
1971 {
1972 	return __f2fs_crc32(sbi, crc, address, length);
1973 }
1974 
1975 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1976 {
1977 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1978 }
1979 
1980 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1981 {
1982 	return sb->s_fs_info;
1983 }
1984 
1985 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1986 {
1987 	return F2FS_SB(inode->i_sb);
1988 }
1989 
1990 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1991 {
1992 	return F2FS_I_SB(mapping->host);
1993 }
1994 
1995 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1996 {
1997 	return F2FS_M_SB(page_file_mapping(page));
1998 }
1999 
2000 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2001 {
2002 	return (struct f2fs_super_block *)(sbi->raw_super);
2003 }
2004 
2005 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2006 {
2007 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2008 }
2009 
2010 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2011 {
2012 	return (struct f2fs_node *)page_address(page);
2013 }
2014 
2015 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2016 {
2017 	return &((struct f2fs_node *)page_address(page))->i;
2018 }
2019 
2020 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2021 {
2022 	return (struct f2fs_nm_info *)(sbi->nm_info);
2023 }
2024 
2025 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2026 {
2027 	return (struct f2fs_sm_info *)(sbi->sm_info);
2028 }
2029 
2030 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2031 {
2032 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2033 }
2034 
2035 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2036 {
2037 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2038 }
2039 
2040 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2041 {
2042 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2043 }
2044 
2045 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2046 {
2047 	return sbi->meta_inode->i_mapping;
2048 }
2049 
2050 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2051 {
2052 	return sbi->node_inode->i_mapping;
2053 }
2054 
2055 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2056 {
2057 	return test_bit(type, &sbi->s_flag);
2058 }
2059 
2060 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2061 {
2062 	set_bit(type, &sbi->s_flag);
2063 }
2064 
2065 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2066 {
2067 	clear_bit(type, &sbi->s_flag);
2068 }
2069 
2070 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2071 {
2072 	return le64_to_cpu(cp->checkpoint_ver);
2073 }
2074 
2075 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2076 {
2077 	if (type < F2FS_MAX_QUOTAS)
2078 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2079 	return 0;
2080 }
2081 
2082 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2083 {
2084 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2085 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2086 }
2087 
2088 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2089 {
2090 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2091 
2092 	return ckpt_flags & f;
2093 }
2094 
2095 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2096 {
2097 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2098 }
2099 
2100 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2101 {
2102 	unsigned int ckpt_flags;
2103 
2104 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2105 	ckpt_flags |= f;
2106 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2107 }
2108 
2109 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2110 {
2111 	unsigned long flags;
2112 
2113 	spin_lock_irqsave(&sbi->cp_lock, flags);
2114 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2115 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2116 }
2117 
2118 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2119 {
2120 	unsigned int ckpt_flags;
2121 
2122 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2123 	ckpt_flags &= (~f);
2124 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2125 }
2126 
2127 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2128 {
2129 	unsigned long flags;
2130 
2131 	spin_lock_irqsave(&sbi->cp_lock, flags);
2132 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2133 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2134 }
2135 
2136 #define init_f2fs_rwsem(sem)					\
2137 do {								\
2138 	static struct lock_class_key __key;			\
2139 								\
2140 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2141 } while (0)
2142 
2143 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2144 		const char *sem_name, struct lock_class_key *key)
2145 {
2146 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2147 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2148 	init_waitqueue_head(&sem->read_waiters);
2149 #endif
2150 }
2151 
2152 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2153 {
2154 	return rwsem_is_locked(&sem->internal_rwsem);
2155 }
2156 
2157 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2158 {
2159 	return rwsem_is_contended(&sem->internal_rwsem);
2160 }
2161 
2162 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2163 {
2164 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2165 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2166 #else
2167 	down_read(&sem->internal_rwsem);
2168 #endif
2169 }
2170 
2171 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2172 {
2173 	return down_read_trylock(&sem->internal_rwsem);
2174 }
2175 
2176 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2177 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2178 {
2179 	down_read_nested(&sem->internal_rwsem, subclass);
2180 }
2181 #else
2182 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2183 #endif
2184 
2185 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2186 {
2187 	up_read(&sem->internal_rwsem);
2188 }
2189 
2190 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2191 {
2192 	down_write(&sem->internal_rwsem);
2193 }
2194 
2195 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2196 {
2197 	return down_write_trylock(&sem->internal_rwsem);
2198 }
2199 
2200 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2201 {
2202 	up_write(&sem->internal_rwsem);
2203 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2204 	wake_up_all(&sem->read_waiters);
2205 #endif
2206 }
2207 
2208 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2209 {
2210 	f2fs_down_read(&sbi->cp_rwsem);
2211 }
2212 
2213 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2214 {
2215 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2216 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2217 		return 0;
2218 	}
2219 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2220 }
2221 
2222 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2223 {
2224 	f2fs_up_read(&sbi->cp_rwsem);
2225 }
2226 
2227 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2228 {
2229 	f2fs_down_write(&sbi->cp_rwsem);
2230 }
2231 
2232 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2233 {
2234 	f2fs_up_write(&sbi->cp_rwsem);
2235 }
2236 
2237 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2238 {
2239 	int reason = CP_SYNC;
2240 
2241 	if (test_opt(sbi, FASTBOOT))
2242 		reason = CP_FASTBOOT;
2243 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2244 		reason = CP_UMOUNT;
2245 	return reason;
2246 }
2247 
2248 static inline bool __remain_node_summaries(int reason)
2249 {
2250 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2251 }
2252 
2253 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2254 {
2255 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2256 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2257 }
2258 
2259 /*
2260  * Check whether the inode has blocks or not
2261  */
2262 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2263 {
2264 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2265 
2266 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2267 }
2268 
2269 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2270 {
2271 	return ofs == XATTR_NODE_OFFSET;
2272 }
2273 
2274 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2275 					struct inode *inode, bool cap)
2276 {
2277 	if (!inode)
2278 		return true;
2279 	if (!test_opt(sbi, RESERVE_ROOT))
2280 		return false;
2281 	if (IS_NOQUOTA(inode))
2282 		return true;
2283 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2284 		return true;
2285 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2286 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2287 		return true;
2288 	if (cap && capable(CAP_SYS_RESOURCE))
2289 		return true;
2290 	return false;
2291 }
2292 
2293 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2294 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2295 				 struct inode *inode, blkcnt_t *count)
2296 {
2297 	blkcnt_t diff = 0, release = 0;
2298 	block_t avail_user_block_count;
2299 	int ret;
2300 
2301 	ret = dquot_reserve_block(inode, *count);
2302 	if (ret)
2303 		return ret;
2304 
2305 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2306 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2307 		release = *count;
2308 		goto release_quota;
2309 	}
2310 
2311 	/*
2312 	 * let's increase this in prior to actual block count change in order
2313 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2314 	 */
2315 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2316 
2317 	spin_lock(&sbi->stat_lock);
2318 	sbi->total_valid_block_count += (block_t)(*count);
2319 	avail_user_block_count = sbi->user_block_count -
2320 					sbi->current_reserved_blocks;
2321 
2322 	if (!__allow_reserved_blocks(sbi, inode, true))
2323 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2324 
2325 	if (F2FS_IO_ALIGNED(sbi))
2326 		avail_user_block_count -= sbi->blocks_per_seg *
2327 				SM_I(sbi)->additional_reserved_segments;
2328 
2329 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2330 		if (avail_user_block_count > sbi->unusable_block_count)
2331 			avail_user_block_count -= sbi->unusable_block_count;
2332 		else
2333 			avail_user_block_count = 0;
2334 	}
2335 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2336 		diff = sbi->total_valid_block_count - avail_user_block_count;
2337 		if (diff > *count)
2338 			diff = *count;
2339 		*count -= diff;
2340 		release = diff;
2341 		sbi->total_valid_block_count -= diff;
2342 		if (!*count) {
2343 			spin_unlock(&sbi->stat_lock);
2344 			goto enospc;
2345 		}
2346 	}
2347 	spin_unlock(&sbi->stat_lock);
2348 
2349 	if (unlikely(release)) {
2350 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2351 		dquot_release_reservation_block(inode, release);
2352 	}
2353 	f2fs_i_blocks_write(inode, *count, true, true);
2354 	return 0;
2355 
2356 enospc:
2357 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2358 release_quota:
2359 	dquot_release_reservation_block(inode, release);
2360 	return -ENOSPC;
2361 }
2362 
2363 __printf(2, 3)
2364 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2365 
2366 #define f2fs_err(sbi, fmt, ...)						\
2367 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2368 #define f2fs_warn(sbi, fmt, ...)					\
2369 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2370 #define f2fs_notice(sbi, fmt, ...)					\
2371 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2372 #define f2fs_info(sbi, fmt, ...)					\
2373 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2374 #define f2fs_debug(sbi, fmt, ...)					\
2375 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2376 
2377 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2378 						struct inode *inode,
2379 						block_t count)
2380 {
2381 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2382 
2383 	spin_lock(&sbi->stat_lock);
2384 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2385 	sbi->total_valid_block_count -= (block_t)count;
2386 	if (sbi->reserved_blocks &&
2387 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2388 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2389 					sbi->current_reserved_blocks + count);
2390 	spin_unlock(&sbi->stat_lock);
2391 	if (unlikely(inode->i_blocks < sectors)) {
2392 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2393 			  inode->i_ino,
2394 			  (unsigned long long)inode->i_blocks,
2395 			  (unsigned long long)sectors);
2396 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2397 		return;
2398 	}
2399 	f2fs_i_blocks_write(inode, count, false, true);
2400 }
2401 
2402 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2403 {
2404 	atomic_inc(&sbi->nr_pages[count_type]);
2405 
2406 	if (count_type == F2FS_DIRTY_DENTS ||
2407 			count_type == F2FS_DIRTY_NODES ||
2408 			count_type == F2FS_DIRTY_META ||
2409 			count_type == F2FS_DIRTY_QDATA ||
2410 			count_type == F2FS_DIRTY_IMETA)
2411 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2412 }
2413 
2414 static inline void inode_inc_dirty_pages(struct inode *inode)
2415 {
2416 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2417 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2418 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2419 	if (IS_NOQUOTA(inode))
2420 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2421 }
2422 
2423 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2424 {
2425 	atomic_dec(&sbi->nr_pages[count_type]);
2426 }
2427 
2428 static inline void inode_dec_dirty_pages(struct inode *inode)
2429 {
2430 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2431 			!S_ISLNK(inode->i_mode))
2432 		return;
2433 
2434 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2435 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2436 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2437 	if (IS_NOQUOTA(inode))
2438 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2439 }
2440 
2441 static inline void inc_atomic_write_cnt(struct inode *inode)
2442 {
2443 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2444 	struct f2fs_inode_info *fi = F2FS_I(inode);
2445 	u64 current_write;
2446 
2447 	fi->atomic_write_cnt++;
2448 	atomic64_inc(&sbi->current_atomic_write);
2449 	current_write = atomic64_read(&sbi->current_atomic_write);
2450 	if (current_write > sbi->peak_atomic_write)
2451 		sbi->peak_atomic_write = current_write;
2452 }
2453 
2454 static inline void release_atomic_write_cnt(struct inode *inode)
2455 {
2456 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2457 	struct f2fs_inode_info *fi = F2FS_I(inode);
2458 
2459 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2460 	fi->atomic_write_cnt = 0;
2461 }
2462 
2463 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2464 {
2465 	return atomic_read(&sbi->nr_pages[count_type]);
2466 }
2467 
2468 static inline int get_dirty_pages(struct inode *inode)
2469 {
2470 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2471 }
2472 
2473 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2474 {
2475 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2476 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2477 						sbi->log_blocks_per_seg;
2478 
2479 	return segs / sbi->segs_per_sec;
2480 }
2481 
2482 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2483 {
2484 	return sbi->total_valid_block_count;
2485 }
2486 
2487 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2488 {
2489 	return sbi->discard_blks;
2490 }
2491 
2492 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2493 {
2494 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2495 
2496 	/* return NAT or SIT bitmap */
2497 	if (flag == NAT_BITMAP)
2498 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2499 	else if (flag == SIT_BITMAP)
2500 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2501 
2502 	return 0;
2503 }
2504 
2505 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2506 {
2507 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2508 }
2509 
2510 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2511 {
2512 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2513 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2514 	int offset;
2515 
2516 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2517 		offset = (flag == SIT_BITMAP) ?
2518 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2519 		/*
2520 		 * if large_nat_bitmap feature is enabled, leave checksum
2521 		 * protection for all nat/sit bitmaps.
2522 		 */
2523 		return tmp_ptr + offset + sizeof(__le32);
2524 	}
2525 
2526 	if (__cp_payload(sbi) > 0) {
2527 		if (flag == NAT_BITMAP)
2528 			return &ckpt->sit_nat_version_bitmap;
2529 		else
2530 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2531 	} else {
2532 		offset = (flag == NAT_BITMAP) ?
2533 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2534 		return tmp_ptr + offset;
2535 	}
2536 }
2537 
2538 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2539 {
2540 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2541 
2542 	if (sbi->cur_cp_pack == 2)
2543 		start_addr += sbi->blocks_per_seg;
2544 	return start_addr;
2545 }
2546 
2547 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2548 {
2549 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2550 
2551 	if (sbi->cur_cp_pack == 1)
2552 		start_addr += sbi->blocks_per_seg;
2553 	return start_addr;
2554 }
2555 
2556 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2557 {
2558 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2559 }
2560 
2561 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2562 {
2563 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2564 }
2565 
2566 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2567 					struct inode *inode, bool is_inode)
2568 {
2569 	block_t	valid_block_count;
2570 	unsigned int valid_node_count, user_block_count;
2571 	int err;
2572 
2573 	if (is_inode) {
2574 		if (inode) {
2575 			err = dquot_alloc_inode(inode);
2576 			if (err)
2577 				return err;
2578 		}
2579 	} else {
2580 		err = dquot_reserve_block(inode, 1);
2581 		if (err)
2582 			return err;
2583 	}
2584 
2585 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2586 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2587 		goto enospc;
2588 	}
2589 
2590 	spin_lock(&sbi->stat_lock);
2591 
2592 	valid_block_count = sbi->total_valid_block_count +
2593 					sbi->current_reserved_blocks + 1;
2594 
2595 	if (!__allow_reserved_blocks(sbi, inode, false))
2596 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2597 
2598 	if (F2FS_IO_ALIGNED(sbi))
2599 		valid_block_count += sbi->blocks_per_seg *
2600 				SM_I(sbi)->additional_reserved_segments;
2601 
2602 	user_block_count = sbi->user_block_count;
2603 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2604 		user_block_count -= sbi->unusable_block_count;
2605 
2606 	if (unlikely(valid_block_count > user_block_count)) {
2607 		spin_unlock(&sbi->stat_lock);
2608 		goto enospc;
2609 	}
2610 
2611 	valid_node_count = sbi->total_valid_node_count + 1;
2612 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2613 		spin_unlock(&sbi->stat_lock);
2614 		goto enospc;
2615 	}
2616 
2617 	sbi->total_valid_node_count++;
2618 	sbi->total_valid_block_count++;
2619 	spin_unlock(&sbi->stat_lock);
2620 
2621 	if (inode) {
2622 		if (is_inode)
2623 			f2fs_mark_inode_dirty_sync(inode, true);
2624 		else
2625 			f2fs_i_blocks_write(inode, 1, true, true);
2626 	}
2627 
2628 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2629 	return 0;
2630 
2631 enospc:
2632 	if (is_inode) {
2633 		if (inode)
2634 			dquot_free_inode(inode);
2635 	} else {
2636 		dquot_release_reservation_block(inode, 1);
2637 	}
2638 	return -ENOSPC;
2639 }
2640 
2641 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2642 					struct inode *inode, bool is_inode)
2643 {
2644 	spin_lock(&sbi->stat_lock);
2645 
2646 	if (unlikely(!sbi->total_valid_block_count ||
2647 			!sbi->total_valid_node_count)) {
2648 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2649 			  sbi->total_valid_block_count,
2650 			  sbi->total_valid_node_count);
2651 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2652 	} else {
2653 		sbi->total_valid_block_count--;
2654 		sbi->total_valid_node_count--;
2655 	}
2656 
2657 	if (sbi->reserved_blocks &&
2658 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2659 		sbi->current_reserved_blocks++;
2660 
2661 	spin_unlock(&sbi->stat_lock);
2662 
2663 	if (is_inode) {
2664 		dquot_free_inode(inode);
2665 	} else {
2666 		if (unlikely(inode->i_blocks == 0)) {
2667 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2668 				  inode->i_ino,
2669 				  (unsigned long long)inode->i_blocks);
2670 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2671 			return;
2672 		}
2673 		f2fs_i_blocks_write(inode, 1, false, true);
2674 	}
2675 }
2676 
2677 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2678 {
2679 	return sbi->total_valid_node_count;
2680 }
2681 
2682 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2683 {
2684 	percpu_counter_inc(&sbi->total_valid_inode_count);
2685 }
2686 
2687 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2688 {
2689 	percpu_counter_dec(&sbi->total_valid_inode_count);
2690 }
2691 
2692 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2693 {
2694 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2695 }
2696 
2697 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2698 						pgoff_t index, bool for_write)
2699 {
2700 	struct page *page;
2701 	unsigned int flags;
2702 
2703 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2704 		if (!for_write)
2705 			page = find_get_page_flags(mapping, index,
2706 							FGP_LOCK | FGP_ACCESSED);
2707 		else
2708 			page = find_lock_page(mapping, index);
2709 		if (page)
2710 			return page;
2711 
2712 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2713 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2714 							FAULT_PAGE_ALLOC);
2715 			return NULL;
2716 		}
2717 	}
2718 
2719 	if (!for_write)
2720 		return grab_cache_page(mapping, index);
2721 
2722 	flags = memalloc_nofs_save();
2723 	page = grab_cache_page_write_begin(mapping, index);
2724 	memalloc_nofs_restore(flags);
2725 
2726 	return page;
2727 }
2728 
2729 static inline struct page *f2fs_pagecache_get_page(
2730 				struct address_space *mapping, pgoff_t index,
2731 				int fgp_flags, gfp_t gfp_mask)
2732 {
2733 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2734 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2735 		return NULL;
2736 	}
2737 
2738 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2739 }
2740 
2741 static inline void f2fs_put_page(struct page *page, int unlock)
2742 {
2743 	if (!page)
2744 		return;
2745 
2746 	if (unlock) {
2747 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2748 		unlock_page(page);
2749 	}
2750 	put_page(page);
2751 }
2752 
2753 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2754 {
2755 	if (dn->node_page)
2756 		f2fs_put_page(dn->node_page, 1);
2757 	if (dn->inode_page && dn->node_page != dn->inode_page)
2758 		f2fs_put_page(dn->inode_page, 0);
2759 	dn->node_page = NULL;
2760 	dn->inode_page = NULL;
2761 }
2762 
2763 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2764 					size_t size)
2765 {
2766 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2767 }
2768 
2769 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2770 						gfp_t flags)
2771 {
2772 	void *entry;
2773 
2774 	entry = kmem_cache_alloc(cachep, flags);
2775 	if (!entry)
2776 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2777 	return entry;
2778 }
2779 
2780 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2781 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2782 {
2783 	if (nofail)
2784 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2785 
2786 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2787 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2788 		return NULL;
2789 	}
2790 
2791 	return kmem_cache_alloc(cachep, flags);
2792 }
2793 
2794 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2795 {
2796 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2797 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2798 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2799 		get_pages(sbi, F2FS_DIO_READ) ||
2800 		get_pages(sbi, F2FS_DIO_WRITE))
2801 		return true;
2802 
2803 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2804 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2805 		return true;
2806 
2807 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2808 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2809 		return true;
2810 	return false;
2811 }
2812 
2813 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2814 {
2815 	if (sbi->gc_mode == GC_URGENT_HIGH)
2816 		return true;
2817 
2818 	if (is_inflight_io(sbi, type))
2819 		return false;
2820 
2821 	if (sbi->gc_mode == GC_URGENT_MID)
2822 		return true;
2823 
2824 	if (sbi->gc_mode == GC_URGENT_LOW &&
2825 			(type == DISCARD_TIME || type == GC_TIME))
2826 		return true;
2827 
2828 	return f2fs_time_over(sbi, type);
2829 }
2830 
2831 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2832 				unsigned long index, void *item)
2833 {
2834 	while (radix_tree_insert(root, index, item))
2835 		cond_resched();
2836 }
2837 
2838 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2839 
2840 static inline bool IS_INODE(struct page *page)
2841 {
2842 	struct f2fs_node *p = F2FS_NODE(page);
2843 
2844 	return RAW_IS_INODE(p);
2845 }
2846 
2847 static inline int offset_in_addr(struct f2fs_inode *i)
2848 {
2849 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2850 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2851 }
2852 
2853 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2854 {
2855 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2856 }
2857 
2858 static inline int f2fs_has_extra_attr(struct inode *inode);
2859 static inline block_t data_blkaddr(struct inode *inode,
2860 			struct page *node_page, unsigned int offset)
2861 {
2862 	struct f2fs_node *raw_node;
2863 	__le32 *addr_array;
2864 	int base = 0;
2865 	bool is_inode = IS_INODE(node_page);
2866 
2867 	raw_node = F2FS_NODE(node_page);
2868 
2869 	if (is_inode) {
2870 		if (!inode)
2871 			/* from GC path only */
2872 			base = offset_in_addr(&raw_node->i);
2873 		else if (f2fs_has_extra_attr(inode))
2874 			base = get_extra_isize(inode);
2875 	}
2876 
2877 	addr_array = blkaddr_in_node(raw_node);
2878 	return le32_to_cpu(addr_array[base + offset]);
2879 }
2880 
2881 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2882 {
2883 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2884 }
2885 
2886 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2887 {
2888 	int mask;
2889 
2890 	addr += (nr >> 3);
2891 	mask = 1 << (7 - (nr & 0x07));
2892 	return mask & *addr;
2893 }
2894 
2895 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2896 {
2897 	int mask;
2898 
2899 	addr += (nr >> 3);
2900 	mask = 1 << (7 - (nr & 0x07));
2901 	*addr |= mask;
2902 }
2903 
2904 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2905 {
2906 	int mask;
2907 
2908 	addr += (nr >> 3);
2909 	mask = 1 << (7 - (nr & 0x07));
2910 	*addr &= ~mask;
2911 }
2912 
2913 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2914 {
2915 	int mask;
2916 	int ret;
2917 
2918 	addr += (nr >> 3);
2919 	mask = 1 << (7 - (nr & 0x07));
2920 	ret = mask & *addr;
2921 	*addr |= mask;
2922 	return ret;
2923 }
2924 
2925 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2926 {
2927 	int mask;
2928 	int ret;
2929 
2930 	addr += (nr >> 3);
2931 	mask = 1 << (7 - (nr & 0x07));
2932 	ret = mask & *addr;
2933 	*addr &= ~mask;
2934 	return ret;
2935 }
2936 
2937 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2938 {
2939 	int mask;
2940 
2941 	addr += (nr >> 3);
2942 	mask = 1 << (7 - (nr & 0x07));
2943 	*addr ^= mask;
2944 }
2945 
2946 /*
2947  * On-disk inode flags (f2fs_inode::i_flags)
2948  */
2949 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2950 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2951 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2952 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2953 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2954 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2955 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2956 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2957 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2958 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2959 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2960 
2961 /* Flags that should be inherited by new inodes from their parent. */
2962 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2963 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2964 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2965 
2966 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2967 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2968 				F2FS_CASEFOLD_FL))
2969 
2970 /* Flags that are appropriate for non-directories/regular files. */
2971 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2972 
2973 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2974 {
2975 	if (S_ISDIR(mode))
2976 		return flags;
2977 	else if (S_ISREG(mode))
2978 		return flags & F2FS_REG_FLMASK;
2979 	else
2980 		return flags & F2FS_OTHER_FLMASK;
2981 }
2982 
2983 static inline void __mark_inode_dirty_flag(struct inode *inode,
2984 						int flag, bool set)
2985 {
2986 	switch (flag) {
2987 	case FI_INLINE_XATTR:
2988 	case FI_INLINE_DATA:
2989 	case FI_INLINE_DENTRY:
2990 	case FI_NEW_INODE:
2991 		if (set)
2992 			return;
2993 		fallthrough;
2994 	case FI_DATA_EXIST:
2995 	case FI_INLINE_DOTS:
2996 	case FI_PIN_FILE:
2997 	case FI_COMPRESS_RELEASED:
2998 		f2fs_mark_inode_dirty_sync(inode, true);
2999 	}
3000 }
3001 
3002 static inline void set_inode_flag(struct inode *inode, int flag)
3003 {
3004 	set_bit(flag, F2FS_I(inode)->flags);
3005 	__mark_inode_dirty_flag(inode, flag, true);
3006 }
3007 
3008 static inline int is_inode_flag_set(struct inode *inode, int flag)
3009 {
3010 	return test_bit(flag, F2FS_I(inode)->flags);
3011 }
3012 
3013 static inline void clear_inode_flag(struct inode *inode, int flag)
3014 {
3015 	clear_bit(flag, F2FS_I(inode)->flags);
3016 	__mark_inode_dirty_flag(inode, flag, false);
3017 }
3018 
3019 static inline bool f2fs_verity_in_progress(struct inode *inode)
3020 {
3021 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3022 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3023 }
3024 
3025 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3026 {
3027 	F2FS_I(inode)->i_acl_mode = mode;
3028 	set_inode_flag(inode, FI_ACL_MODE);
3029 	f2fs_mark_inode_dirty_sync(inode, false);
3030 }
3031 
3032 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3033 {
3034 	if (inc)
3035 		inc_nlink(inode);
3036 	else
3037 		drop_nlink(inode);
3038 	f2fs_mark_inode_dirty_sync(inode, true);
3039 }
3040 
3041 static inline void f2fs_i_blocks_write(struct inode *inode,
3042 					block_t diff, bool add, bool claim)
3043 {
3044 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3045 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3046 
3047 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3048 	if (add) {
3049 		if (claim)
3050 			dquot_claim_block(inode, diff);
3051 		else
3052 			dquot_alloc_block_nofail(inode, diff);
3053 	} else {
3054 		dquot_free_block(inode, diff);
3055 	}
3056 
3057 	f2fs_mark_inode_dirty_sync(inode, true);
3058 	if (clean || recover)
3059 		set_inode_flag(inode, FI_AUTO_RECOVER);
3060 }
3061 
3062 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3063 {
3064 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3065 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3066 
3067 	if (i_size_read(inode) == i_size)
3068 		return;
3069 
3070 	i_size_write(inode, i_size);
3071 	f2fs_mark_inode_dirty_sync(inode, true);
3072 	if (clean || recover)
3073 		set_inode_flag(inode, FI_AUTO_RECOVER);
3074 }
3075 
3076 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3077 {
3078 	F2FS_I(inode)->i_current_depth = depth;
3079 	f2fs_mark_inode_dirty_sync(inode, true);
3080 }
3081 
3082 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3083 					unsigned int count)
3084 {
3085 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3086 	f2fs_mark_inode_dirty_sync(inode, true);
3087 }
3088 
3089 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3090 {
3091 	F2FS_I(inode)->i_xattr_nid = xnid;
3092 	f2fs_mark_inode_dirty_sync(inode, true);
3093 }
3094 
3095 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3096 {
3097 	F2FS_I(inode)->i_pino = pino;
3098 	f2fs_mark_inode_dirty_sync(inode, true);
3099 }
3100 
3101 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3102 {
3103 	struct f2fs_inode_info *fi = F2FS_I(inode);
3104 
3105 	if (ri->i_inline & F2FS_INLINE_XATTR)
3106 		set_bit(FI_INLINE_XATTR, fi->flags);
3107 	if (ri->i_inline & F2FS_INLINE_DATA)
3108 		set_bit(FI_INLINE_DATA, fi->flags);
3109 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3110 		set_bit(FI_INLINE_DENTRY, fi->flags);
3111 	if (ri->i_inline & F2FS_DATA_EXIST)
3112 		set_bit(FI_DATA_EXIST, fi->flags);
3113 	if (ri->i_inline & F2FS_INLINE_DOTS)
3114 		set_bit(FI_INLINE_DOTS, fi->flags);
3115 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3116 		set_bit(FI_EXTRA_ATTR, fi->flags);
3117 	if (ri->i_inline & F2FS_PIN_FILE)
3118 		set_bit(FI_PIN_FILE, fi->flags);
3119 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3120 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3121 }
3122 
3123 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3124 {
3125 	ri->i_inline = 0;
3126 
3127 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3128 		ri->i_inline |= F2FS_INLINE_XATTR;
3129 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3130 		ri->i_inline |= F2FS_INLINE_DATA;
3131 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3132 		ri->i_inline |= F2FS_INLINE_DENTRY;
3133 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3134 		ri->i_inline |= F2FS_DATA_EXIST;
3135 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3136 		ri->i_inline |= F2FS_INLINE_DOTS;
3137 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3138 		ri->i_inline |= F2FS_EXTRA_ATTR;
3139 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3140 		ri->i_inline |= F2FS_PIN_FILE;
3141 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3142 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3143 }
3144 
3145 static inline int f2fs_has_extra_attr(struct inode *inode)
3146 {
3147 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3148 }
3149 
3150 static inline int f2fs_has_inline_xattr(struct inode *inode)
3151 {
3152 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3153 }
3154 
3155 static inline int f2fs_compressed_file(struct inode *inode)
3156 {
3157 	return S_ISREG(inode->i_mode) &&
3158 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3159 }
3160 
3161 static inline bool f2fs_need_compress_data(struct inode *inode)
3162 {
3163 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3164 
3165 	if (!f2fs_compressed_file(inode))
3166 		return false;
3167 
3168 	if (compress_mode == COMPR_MODE_FS)
3169 		return true;
3170 	else if (compress_mode == COMPR_MODE_USER &&
3171 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3172 		return true;
3173 
3174 	return false;
3175 }
3176 
3177 static inline unsigned int addrs_per_inode(struct inode *inode)
3178 {
3179 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3180 				get_inline_xattr_addrs(inode);
3181 
3182 	if (!f2fs_compressed_file(inode))
3183 		return addrs;
3184 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3185 }
3186 
3187 static inline unsigned int addrs_per_block(struct inode *inode)
3188 {
3189 	if (!f2fs_compressed_file(inode))
3190 		return DEF_ADDRS_PER_BLOCK;
3191 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3192 }
3193 
3194 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3195 {
3196 	struct f2fs_inode *ri = F2FS_INODE(page);
3197 
3198 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3199 					get_inline_xattr_addrs(inode)]);
3200 }
3201 
3202 static inline int inline_xattr_size(struct inode *inode)
3203 {
3204 	if (f2fs_has_inline_xattr(inode))
3205 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3206 	return 0;
3207 }
3208 
3209 /*
3210  * Notice: check inline_data flag without inode page lock is unsafe.
3211  * It could change at any time by f2fs_convert_inline_page().
3212  */
3213 static inline int f2fs_has_inline_data(struct inode *inode)
3214 {
3215 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3216 }
3217 
3218 static inline int f2fs_exist_data(struct inode *inode)
3219 {
3220 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3221 }
3222 
3223 static inline int f2fs_has_inline_dots(struct inode *inode)
3224 {
3225 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3226 }
3227 
3228 static inline int f2fs_is_mmap_file(struct inode *inode)
3229 {
3230 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3231 }
3232 
3233 static inline bool f2fs_is_pinned_file(struct inode *inode)
3234 {
3235 	return is_inode_flag_set(inode, FI_PIN_FILE);
3236 }
3237 
3238 static inline bool f2fs_is_atomic_file(struct inode *inode)
3239 {
3240 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3241 }
3242 
3243 static inline bool f2fs_is_cow_file(struct inode *inode)
3244 {
3245 	return is_inode_flag_set(inode, FI_COW_FILE);
3246 }
3247 
3248 static inline bool f2fs_is_first_block_written(struct inode *inode)
3249 {
3250 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3251 }
3252 
3253 static inline bool f2fs_is_drop_cache(struct inode *inode)
3254 {
3255 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3256 }
3257 
3258 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3259 {
3260 	struct f2fs_inode *ri = F2FS_INODE(page);
3261 	int extra_size = get_extra_isize(inode);
3262 
3263 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3264 }
3265 
3266 static inline int f2fs_has_inline_dentry(struct inode *inode)
3267 {
3268 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3269 }
3270 
3271 static inline int is_file(struct inode *inode, int type)
3272 {
3273 	return F2FS_I(inode)->i_advise & type;
3274 }
3275 
3276 static inline void set_file(struct inode *inode, int type)
3277 {
3278 	if (is_file(inode, type))
3279 		return;
3280 	F2FS_I(inode)->i_advise |= type;
3281 	f2fs_mark_inode_dirty_sync(inode, true);
3282 }
3283 
3284 static inline void clear_file(struct inode *inode, int type)
3285 {
3286 	if (!is_file(inode, type))
3287 		return;
3288 	F2FS_I(inode)->i_advise &= ~type;
3289 	f2fs_mark_inode_dirty_sync(inode, true);
3290 }
3291 
3292 static inline bool f2fs_is_time_consistent(struct inode *inode)
3293 {
3294 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3295 		return false;
3296 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3297 		return false;
3298 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3299 		return false;
3300 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3301 						&F2FS_I(inode)->i_crtime))
3302 		return false;
3303 	return true;
3304 }
3305 
3306 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3307 {
3308 	bool ret;
3309 
3310 	if (dsync) {
3311 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3312 
3313 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3314 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3315 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3316 		return ret;
3317 	}
3318 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3319 			file_keep_isize(inode) ||
3320 			i_size_read(inode) & ~PAGE_MASK)
3321 		return false;
3322 
3323 	if (!f2fs_is_time_consistent(inode))
3324 		return false;
3325 
3326 	spin_lock(&F2FS_I(inode)->i_size_lock);
3327 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3328 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3329 
3330 	return ret;
3331 }
3332 
3333 static inline bool f2fs_readonly(struct super_block *sb)
3334 {
3335 	return sb_rdonly(sb);
3336 }
3337 
3338 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3339 {
3340 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3341 }
3342 
3343 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3344 {
3345 	if (len == 1 && name[0] == '.')
3346 		return true;
3347 
3348 	if (len == 2 && name[0] == '.' && name[1] == '.')
3349 		return true;
3350 
3351 	return false;
3352 }
3353 
3354 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3355 					size_t size, gfp_t flags)
3356 {
3357 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3358 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3359 		return NULL;
3360 	}
3361 
3362 	return kmalloc(size, flags);
3363 }
3364 
3365 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3366 					size_t size, gfp_t flags)
3367 {
3368 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3369 }
3370 
3371 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3372 					size_t size, gfp_t flags)
3373 {
3374 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3375 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3376 		return NULL;
3377 	}
3378 
3379 	return kvmalloc(size, flags);
3380 }
3381 
3382 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3383 					size_t size, gfp_t flags)
3384 {
3385 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3386 }
3387 
3388 static inline int get_extra_isize(struct inode *inode)
3389 {
3390 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3391 }
3392 
3393 static inline int get_inline_xattr_addrs(struct inode *inode)
3394 {
3395 	return F2FS_I(inode)->i_inline_xattr_size;
3396 }
3397 
3398 #define f2fs_get_inode_mode(i) \
3399 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3400 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3401 
3402 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3403 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3404 	offsetof(struct f2fs_inode, i_extra_isize))	\
3405 
3406 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3407 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3408 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3409 		sizeof((f2fs_inode)->field))			\
3410 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3411 
3412 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3413 
3414 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3415 
3416 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3417 					block_t blkaddr, int type);
3418 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3419 					block_t blkaddr, int type)
3420 {
3421 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3422 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3423 			 blkaddr, type);
3424 		f2fs_bug_on(sbi, 1);
3425 	}
3426 }
3427 
3428 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3429 {
3430 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3431 			blkaddr == COMPRESS_ADDR)
3432 		return false;
3433 	return true;
3434 }
3435 
3436 /*
3437  * file.c
3438  */
3439 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3440 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3441 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3442 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3443 int f2fs_truncate(struct inode *inode);
3444 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3445 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3446 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3447 		 struct iattr *attr);
3448 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3449 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3450 int f2fs_precache_extents(struct inode *inode);
3451 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3452 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3453 		      struct dentry *dentry, struct fileattr *fa);
3454 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3455 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3456 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3457 int f2fs_pin_file_control(struct inode *inode, bool inc);
3458 
3459 /*
3460  * inode.c
3461  */
3462 void f2fs_set_inode_flags(struct inode *inode);
3463 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3464 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3465 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3466 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3467 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3468 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3469 void f2fs_update_inode_page(struct inode *inode);
3470 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3471 void f2fs_evict_inode(struct inode *inode);
3472 void f2fs_handle_failed_inode(struct inode *inode);
3473 
3474 /*
3475  * namei.c
3476  */
3477 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3478 							bool hot, bool set);
3479 struct dentry *f2fs_get_parent(struct dentry *child);
3480 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3481 		     struct inode **new_inode);
3482 
3483 /*
3484  * dir.c
3485  */
3486 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3487 int f2fs_init_casefolded_name(const struct inode *dir,
3488 			      struct f2fs_filename *fname);
3489 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3490 			int lookup, struct f2fs_filename *fname);
3491 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3492 			struct f2fs_filename *fname);
3493 void f2fs_free_filename(struct f2fs_filename *fname);
3494 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3495 			const struct f2fs_filename *fname, int *max_slots);
3496 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3497 			unsigned int start_pos, struct fscrypt_str *fstr);
3498 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3499 			struct f2fs_dentry_ptr *d);
3500 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3501 			const struct f2fs_filename *fname, struct page *dpage);
3502 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3503 			unsigned int current_depth);
3504 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3505 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3506 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3507 					 const struct f2fs_filename *fname,
3508 					 struct page **res_page);
3509 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3510 			const struct qstr *child, struct page **res_page);
3511 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3512 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3513 			struct page **page);
3514 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3515 			struct page *page, struct inode *inode);
3516 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3517 			  const struct f2fs_filename *fname);
3518 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3519 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3520 			unsigned int bit_pos);
3521 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3522 			struct inode *inode, nid_t ino, umode_t mode);
3523 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3524 			struct inode *inode, nid_t ino, umode_t mode);
3525 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3526 			struct inode *inode, nid_t ino, umode_t mode);
3527 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3528 			struct inode *dir, struct inode *inode);
3529 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3530 bool f2fs_empty_dir(struct inode *dir);
3531 
3532 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3533 {
3534 	if (fscrypt_is_nokey_name(dentry))
3535 		return -ENOKEY;
3536 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3537 				inode, inode->i_ino, inode->i_mode);
3538 }
3539 
3540 /*
3541  * super.c
3542  */
3543 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3544 void f2fs_inode_synced(struct inode *inode);
3545 int f2fs_dquot_initialize(struct inode *inode);
3546 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3547 int f2fs_quota_sync(struct super_block *sb, int type);
3548 loff_t max_file_blocks(struct inode *inode);
3549 void f2fs_quota_off_umount(struct super_block *sb);
3550 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3551 int f2fs_sync_fs(struct super_block *sb, int sync);
3552 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3553 
3554 /*
3555  * hash.c
3556  */
3557 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3558 
3559 /*
3560  * node.c
3561  */
3562 struct node_info;
3563 
3564 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3565 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3566 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3567 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3568 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3569 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3570 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3571 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3572 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3573 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3574 				struct node_info *ni, bool checkpoint_context);
3575 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3576 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3577 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3578 int f2fs_truncate_xattr_node(struct inode *inode);
3579 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3580 					unsigned int seq_id);
3581 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3582 int f2fs_remove_inode_page(struct inode *inode);
3583 struct page *f2fs_new_inode_page(struct inode *inode);
3584 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3585 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3586 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3587 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3588 int f2fs_move_node_page(struct page *node_page, int gc_type);
3589 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3590 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3591 			struct writeback_control *wbc, bool atomic,
3592 			unsigned int *seq_id);
3593 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3594 			struct writeback_control *wbc,
3595 			bool do_balance, enum iostat_type io_type);
3596 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3597 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3598 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3599 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3600 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3601 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3602 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3603 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3604 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3605 			unsigned int segno, struct f2fs_summary_block *sum);
3606 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3607 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3608 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3609 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3610 int __init f2fs_create_node_manager_caches(void);
3611 void f2fs_destroy_node_manager_caches(void);
3612 
3613 /*
3614  * segment.c
3615  */
3616 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3617 int f2fs_commit_atomic_write(struct inode *inode);
3618 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3619 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3620 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3621 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3622 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3623 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3624 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3625 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3626 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3627 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3628 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3629 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3630 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3631 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3632 					struct cp_control *cpc);
3633 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3634 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3635 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3636 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3637 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3638 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3639 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3640 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3641 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3642 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3643 			unsigned int *newseg, bool new_sec, int dir);
3644 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3645 					unsigned int start, unsigned int end);
3646 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3647 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3648 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3649 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3650 					struct cp_control *cpc);
3651 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3652 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3653 					block_t blk_addr);
3654 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3655 						enum iostat_type io_type);
3656 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3657 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3658 			struct f2fs_io_info *fio);
3659 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3660 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3661 			block_t old_blkaddr, block_t new_blkaddr,
3662 			bool recover_curseg, bool recover_newaddr,
3663 			bool from_gc);
3664 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3665 			block_t old_addr, block_t new_addr,
3666 			unsigned char version, bool recover_curseg,
3667 			bool recover_newaddr);
3668 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3669 			block_t old_blkaddr, block_t *new_blkaddr,
3670 			struct f2fs_summary *sum, int type,
3671 			struct f2fs_io_info *fio);
3672 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3673 					block_t blkaddr, unsigned int blkcnt);
3674 void f2fs_wait_on_page_writeback(struct page *page,
3675 			enum page_type type, bool ordered, bool locked);
3676 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3677 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3678 								block_t len);
3679 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3680 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3681 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3682 			unsigned int val, int alloc);
3683 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3684 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3685 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3686 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3687 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3688 int __init f2fs_create_segment_manager_caches(void);
3689 void f2fs_destroy_segment_manager_caches(void);
3690 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3691 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3692 			unsigned int segno);
3693 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3694 			unsigned int segno);
3695 
3696 #define DEF_FRAGMENT_SIZE	4
3697 #define MIN_FRAGMENT_SIZE	1
3698 #define MAX_FRAGMENT_SIZE	512
3699 
3700 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3701 {
3702 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3703 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3704 }
3705 
3706 /*
3707  * checkpoint.c
3708  */
3709 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3710 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3711 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3712 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3713 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3714 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3715 					block_t blkaddr, int type);
3716 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3717 			int type, bool sync);
3718 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3719 							unsigned int ra_blocks);
3720 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3721 			long nr_to_write, enum iostat_type io_type);
3722 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3723 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3724 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3725 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3726 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3727 					unsigned int devidx, int type);
3728 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3729 					unsigned int devidx, int type);
3730 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3731 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3732 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3733 void f2fs_add_orphan_inode(struct inode *inode);
3734 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3735 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3736 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3737 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3738 void f2fs_remove_dirty_inode(struct inode *inode);
3739 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3740 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3741 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3742 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3743 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3744 int __init f2fs_create_checkpoint_caches(void);
3745 void f2fs_destroy_checkpoint_caches(void);
3746 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3747 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3748 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3749 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3750 
3751 /*
3752  * data.c
3753  */
3754 int __init f2fs_init_bioset(void);
3755 void f2fs_destroy_bioset(void);
3756 int f2fs_init_bio_entry_cache(void);
3757 void f2fs_destroy_bio_entry_cache(void);
3758 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3759 				struct bio *bio, enum page_type type);
3760 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3761 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3762 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3763 				struct inode *inode, struct page *page,
3764 				nid_t ino, enum page_type type);
3765 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3766 					struct bio **bio, struct page *page);
3767 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3768 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3769 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3770 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3771 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3772 		block_t blk_addr, sector_t *sector);
3773 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3774 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3775 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3776 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3777 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3778 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3779 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3780 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3781 			blk_opf_t op_flags, bool for_write);
3782 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3783 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3784 			bool for_write);
3785 struct page *f2fs_get_new_data_page(struct inode *inode,
3786 			struct page *ipage, pgoff_t index, bool new_i_size);
3787 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3788 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3789 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3790 			int create, int flag);
3791 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3792 			u64 start, u64 len);
3793 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3794 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3795 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3796 int f2fs_write_single_data_page(struct page *page, int *submitted,
3797 				struct bio **bio, sector_t *last_block,
3798 				struct writeback_control *wbc,
3799 				enum iostat_type io_type,
3800 				int compr_blocks, bool allow_balance);
3801 void f2fs_write_failed(struct inode *inode, loff_t to);
3802 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3803 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3804 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3805 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3806 int f2fs_init_post_read_processing(void);
3807 void f2fs_destroy_post_read_processing(void);
3808 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3809 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3810 extern const struct iomap_ops f2fs_iomap_ops;
3811 
3812 /*
3813  * gc.c
3814  */
3815 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3816 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3817 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3818 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3819 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3820 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3821 int __init f2fs_create_garbage_collection_cache(void);
3822 void f2fs_destroy_garbage_collection_cache(void);
3823 
3824 /*
3825  * recovery.c
3826  */
3827 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3828 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3829 int __init f2fs_create_recovery_cache(void);
3830 void f2fs_destroy_recovery_cache(void);
3831 
3832 /*
3833  * debug.c
3834  */
3835 #ifdef CONFIG_F2FS_STAT_FS
3836 struct f2fs_stat_info {
3837 	struct list_head stat_list;
3838 	struct f2fs_sb_info *sbi;
3839 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3840 	int main_area_segs, main_area_sections, main_area_zones;
3841 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3842 	unsigned long long hit_total, total_ext;
3843 	int ext_tree, zombie_tree, ext_node;
3844 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3845 	int ndirty_data, ndirty_qdata;
3846 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3847 	int nats, dirty_nats, sits, dirty_sits;
3848 	int free_nids, avail_nids, alloc_nids;
3849 	int total_count, utilization;
3850 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3851 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3852 	int nr_dio_read, nr_dio_write;
3853 	unsigned int io_skip_bggc, other_skip_bggc;
3854 	int nr_flushing, nr_flushed, flush_list_empty;
3855 	int nr_discarding, nr_discarded;
3856 	int nr_discard_cmd;
3857 	unsigned int undiscard_blks;
3858 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3859 	unsigned int cur_ckpt_time, peak_ckpt_time;
3860 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3861 	int compr_inode;
3862 	unsigned long long compr_blocks;
3863 	int aw_cnt, max_aw_cnt;
3864 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3865 	unsigned int bimodal, avg_vblocks;
3866 	int util_free, util_valid, util_invalid;
3867 	int rsvd_segs, overp_segs;
3868 	int dirty_count, node_pages, meta_pages, compress_pages;
3869 	int compress_page_hit;
3870 	int prefree_count, call_count, cp_count, bg_cp_count;
3871 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3872 	int bg_node_segs, bg_data_segs;
3873 	int tot_blks, data_blks, node_blks;
3874 	int bg_data_blks, bg_node_blks;
3875 	int curseg[NR_CURSEG_TYPE];
3876 	int cursec[NR_CURSEG_TYPE];
3877 	int curzone[NR_CURSEG_TYPE];
3878 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3879 	unsigned int full_seg[NR_CURSEG_TYPE];
3880 	unsigned int valid_blks[NR_CURSEG_TYPE];
3881 
3882 	unsigned int meta_count[META_MAX];
3883 	unsigned int segment_count[2];
3884 	unsigned int block_count[2];
3885 	unsigned int inplace_count;
3886 	unsigned long long base_mem, cache_mem, page_mem;
3887 };
3888 
3889 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3890 {
3891 	return (struct f2fs_stat_info *)sbi->stat_info;
3892 }
3893 
3894 #define stat_inc_cp_count(si)		((si)->cp_count++)
3895 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3896 #define stat_inc_call_count(si)		((si)->call_count++)
3897 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3898 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3899 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3900 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3901 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3902 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3903 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3904 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3905 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3906 #define stat_inc_inline_xattr(inode)					\
3907 	do {								\
3908 		if (f2fs_has_inline_xattr(inode))			\
3909 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3910 	} while (0)
3911 #define stat_dec_inline_xattr(inode)					\
3912 	do {								\
3913 		if (f2fs_has_inline_xattr(inode))			\
3914 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3915 	} while (0)
3916 #define stat_inc_inline_inode(inode)					\
3917 	do {								\
3918 		if (f2fs_has_inline_data(inode))			\
3919 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3920 	} while (0)
3921 #define stat_dec_inline_inode(inode)					\
3922 	do {								\
3923 		if (f2fs_has_inline_data(inode))			\
3924 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3925 	} while (0)
3926 #define stat_inc_inline_dir(inode)					\
3927 	do {								\
3928 		if (f2fs_has_inline_dentry(inode))			\
3929 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3930 	} while (0)
3931 #define stat_dec_inline_dir(inode)					\
3932 	do {								\
3933 		if (f2fs_has_inline_dentry(inode))			\
3934 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3935 	} while (0)
3936 #define stat_inc_compr_inode(inode)					\
3937 	do {								\
3938 		if (f2fs_compressed_file(inode))			\
3939 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3940 	} while (0)
3941 #define stat_dec_compr_inode(inode)					\
3942 	do {								\
3943 		if (f2fs_compressed_file(inode))			\
3944 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3945 	} while (0)
3946 #define stat_add_compr_blocks(inode, blocks)				\
3947 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3948 #define stat_sub_compr_blocks(inode, blocks)				\
3949 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3950 #define stat_inc_meta_count(sbi, blkaddr)				\
3951 	do {								\
3952 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3953 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3954 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3955 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3956 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3957 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3958 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3959 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3960 	} while (0)
3961 #define stat_inc_seg_type(sbi, curseg)					\
3962 		((sbi)->segment_count[(curseg)->alloc_type]++)
3963 #define stat_inc_block_count(sbi, curseg)				\
3964 		((sbi)->block_count[(curseg)->alloc_type]++)
3965 #define stat_inc_inplace_blocks(sbi)					\
3966 		(atomic_inc(&(sbi)->inplace_count))
3967 #define stat_update_max_atomic_write(inode)				\
3968 	do {								\
3969 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3970 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3971 		if (cur > max)						\
3972 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3973 	} while (0)
3974 #define stat_inc_seg_count(sbi, type, gc_type)				\
3975 	do {								\
3976 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3977 		si->tot_segs++;						\
3978 		if ((type) == SUM_TYPE_DATA) {				\
3979 			si->data_segs++;				\
3980 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3981 		} else {						\
3982 			si->node_segs++;				\
3983 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3984 		}							\
3985 	} while (0)
3986 
3987 #define stat_inc_tot_blk_count(si, blks)				\
3988 	((si)->tot_blks += (blks))
3989 
3990 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3991 	do {								\
3992 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3993 		stat_inc_tot_blk_count(si, blks);			\
3994 		si->data_blks += (blks);				\
3995 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3996 	} while (0)
3997 
3998 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3999 	do {								\
4000 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4001 		stat_inc_tot_blk_count(si, blks);			\
4002 		si->node_blks += (blks);				\
4003 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4004 	} while (0)
4005 
4006 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4007 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4008 void __init f2fs_create_root_stats(void);
4009 void f2fs_destroy_root_stats(void);
4010 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4011 #else
4012 #define stat_inc_cp_count(si)				do { } while (0)
4013 #define stat_inc_bg_cp_count(si)			do { } while (0)
4014 #define stat_inc_call_count(si)				do { } while (0)
4015 #define stat_inc_bggc_count(si)				do { } while (0)
4016 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4017 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4018 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4019 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4020 #define stat_inc_total_hit(sbi)				do { } while (0)
4021 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
4022 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4023 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
4024 #define stat_inc_inline_xattr(inode)			do { } while (0)
4025 #define stat_dec_inline_xattr(inode)			do { } while (0)
4026 #define stat_inc_inline_inode(inode)			do { } while (0)
4027 #define stat_dec_inline_inode(inode)			do { } while (0)
4028 #define stat_inc_inline_dir(inode)			do { } while (0)
4029 #define stat_dec_inline_dir(inode)			do { } while (0)
4030 #define stat_inc_compr_inode(inode)			do { } while (0)
4031 #define stat_dec_compr_inode(inode)			do { } while (0)
4032 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4033 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4034 #define stat_update_max_atomic_write(inode)		do { } while (0)
4035 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4036 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4037 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4038 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4039 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4040 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4041 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4042 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4043 
4044 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4045 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4046 static inline void __init f2fs_create_root_stats(void) { }
4047 static inline void f2fs_destroy_root_stats(void) { }
4048 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4049 #endif
4050 
4051 extern const struct file_operations f2fs_dir_operations;
4052 extern const struct file_operations f2fs_file_operations;
4053 extern const struct inode_operations f2fs_file_inode_operations;
4054 extern const struct address_space_operations f2fs_dblock_aops;
4055 extern const struct address_space_operations f2fs_node_aops;
4056 extern const struct address_space_operations f2fs_meta_aops;
4057 extern const struct inode_operations f2fs_dir_inode_operations;
4058 extern const struct inode_operations f2fs_symlink_inode_operations;
4059 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4060 extern const struct inode_operations f2fs_special_inode_operations;
4061 extern struct kmem_cache *f2fs_inode_entry_slab;
4062 
4063 /*
4064  * inline.c
4065  */
4066 bool f2fs_may_inline_data(struct inode *inode);
4067 bool f2fs_sanity_check_inline_data(struct inode *inode);
4068 bool f2fs_may_inline_dentry(struct inode *inode);
4069 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4070 void f2fs_truncate_inline_inode(struct inode *inode,
4071 						struct page *ipage, u64 from);
4072 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4073 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4074 int f2fs_convert_inline_inode(struct inode *inode);
4075 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4076 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4077 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4078 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4079 					const struct f2fs_filename *fname,
4080 					struct page **res_page);
4081 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4082 			struct page *ipage);
4083 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4084 			struct inode *inode, nid_t ino, umode_t mode);
4085 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4086 				struct page *page, struct inode *dir,
4087 				struct inode *inode);
4088 bool f2fs_empty_inline_dir(struct inode *dir);
4089 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4090 			struct fscrypt_str *fstr);
4091 int f2fs_inline_data_fiemap(struct inode *inode,
4092 			struct fiemap_extent_info *fieinfo,
4093 			__u64 start, __u64 len);
4094 
4095 /*
4096  * shrinker.c
4097  */
4098 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4099 			struct shrink_control *sc);
4100 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4101 			struct shrink_control *sc);
4102 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4103 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4104 
4105 /*
4106  * extent_cache.c
4107  */
4108 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4109 				struct rb_entry *cached_re, unsigned int ofs);
4110 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4111 				struct rb_root_cached *root,
4112 				struct rb_node **parent,
4113 				unsigned long long key, bool *left_most);
4114 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4115 				struct rb_root_cached *root,
4116 				struct rb_node **parent,
4117 				unsigned int ofs, bool *leftmost);
4118 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4119 		struct rb_entry *cached_re, unsigned int ofs,
4120 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4121 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4122 		bool force, bool *leftmost);
4123 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4124 				struct rb_root_cached *root, bool check_key);
4125 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4126 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4127 void f2fs_drop_extent_tree(struct inode *inode);
4128 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4129 void f2fs_destroy_extent_tree(struct inode *inode);
4130 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4131 			struct extent_info *ei);
4132 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4133 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4134 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4135 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4136 int __init f2fs_create_extent_cache(void);
4137 void f2fs_destroy_extent_cache(void);
4138 
4139 /*
4140  * sysfs.c
4141  */
4142 #define MIN_RA_MUL	2
4143 #define MAX_RA_MUL	256
4144 
4145 int __init f2fs_init_sysfs(void);
4146 void f2fs_exit_sysfs(void);
4147 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4148 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4149 
4150 /* verity.c */
4151 extern const struct fsverity_operations f2fs_verityops;
4152 
4153 /*
4154  * crypto support
4155  */
4156 static inline bool f2fs_encrypted_file(struct inode *inode)
4157 {
4158 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4159 }
4160 
4161 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4162 {
4163 #ifdef CONFIG_FS_ENCRYPTION
4164 	file_set_encrypt(inode);
4165 	f2fs_set_inode_flags(inode);
4166 #endif
4167 }
4168 
4169 /*
4170  * Returns true if the reads of the inode's data need to undergo some
4171  * postprocessing step, like decryption or authenticity verification.
4172  */
4173 static inline bool f2fs_post_read_required(struct inode *inode)
4174 {
4175 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4176 		f2fs_compressed_file(inode);
4177 }
4178 
4179 /*
4180  * compress.c
4181  */
4182 #ifdef CONFIG_F2FS_FS_COMPRESSION
4183 bool f2fs_is_compressed_page(struct page *page);
4184 struct page *f2fs_compress_control_page(struct page *page);
4185 int f2fs_prepare_compress_overwrite(struct inode *inode,
4186 			struct page **pagep, pgoff_t index, void **fsdata);
4187 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4188 					pgoff_t index, unsigned copied);
4189 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4190 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4191 bool f2fs_is_compress_backend_ready(struct inode *inode);
4192 int f2fs_init_compress_mempool(void);
4193 void f2fs_destroy_compress_mempool(void);
4194 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4195 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4196 				block_t blkaddr, bool in_task);
4197 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4198 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4199 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4200 				int index, int nr_pages, bool uptodate);
4201 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4202 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4203 int f2fs_write_multi_pages(struct compress_ctx *cc,
4204 						int *submitted,
4205 						struct writeback_control *wbc,
4206 						enum iostat_type io_type);
4207 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4208 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4209 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4210 				unsigned int c_len);
4211 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4212 				unsigned nr_pages, sector_t *last_block_in_bio,
4213 				bool is_readahead, bool for_write);
4214 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4215 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4216 				bool in_task);
4217 void f2fs_put_page_dic(struct page *page, bool in_task);
4218 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4219 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4220 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4221 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4222 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4223 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4224 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4225 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4226 int __init f2fs_init_compress_cache(void);
4227 void f2fs_destroy_compress_cache(void);
4228 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4229 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4230 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4231 						nid_t ino, block_t blkaddr);
4232 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4233 								block_t blkaddr);
4234 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4235 #define inc_compr_inode_stat(inode)					\
4236 	do {								\
4237 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4238 		sbi->compr_new_inode++;					\
4239 	} while (0)
4240 #define add_compr_block_stat(inode, blocks)				\
4241 	do {								\
4242 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4243 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4244 		sbi->compr_written_block += blocks;			\
4245 		sbi->compr_saved_block += diff;				\
4246 	} while (0)
4247 #else
4248 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4249 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4250 {
4251 	if (!f2fs_compressed_file(inode))
4252 		return true;
4253 	/* not support compression */
4254 	return false;
4255 }
4256 static inline struct page *f2fs_compress_control_page(struct page *page)
4257 {
4258 	WARN_ON_ONCE(1);
4259 	return ERR_PTR(-EINVAL);
4260 }
4261 static inline int f2fs_init_compress_mempool(void) { return 0; }
4262 static inline void f2fs_destroy_compress_mempool(void) { }
4263 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4264 				bool in_task) { }
4265 static inline void f2fs_end_read_compressed_page(struct page *page,
4266 				bool failed, block_t blkaddr, bool in_task)
4267 {
4268 	WARN_ON_ONCE(1);
4269 }
4270 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4271 {
4272 	WARN_ON_ONCE(1);
4273 }
4274 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4275 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4276 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4277 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4278 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4279 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4280 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4281 static inline void f2fs_destroy_compress_cache(void) { }
4282 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4283 				block_t blkaddr) { }
4284 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4285 				struct page *page, nid_t ino, block_t blkaddr) { }
4286 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4287 				struct page *page, block_t blkaddr) { return false; }
4288 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4289 							nid_t ino) { }
4290 #define inc_compr_inode_stat(inode)		do { } while (0)
4291 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4292 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4293 				unsigned int c_len) { }
4294 #endif
4295 
4296 static inline int set_compress_context(struct inode *inode)
4297 {
4298 #ifdef CONFIG_F2FS_FS_COMPRESSION
4299 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4300 
4301 	F2FS_I(inode)->i_compress_algorithm =
4302 			F2FS_OPTION(sbi).compress_algorithm;
4303 	F2FS_I(inode)->i_log_cluster_size =
4304 			F2FS_OPTION(sbi).compress_log_size;
4305 	F2FS_I(inode)->i_compress_flag =
4306 			F2FS_OPTION(sbi).compress_chksum ?
4307 				1 << COMPRESS_CHKSUM : 0;
4308 	F2FS_I(inode)->i_cluster_size =
4309 			1 << F2FS_I(inode)->i_log_cluster_size;
4310 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4311 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4312 			F2FS_OPTION(sbi).compress_level)
4313 		F2FS_I(inode)->i_compress_flag |=
4314 				F2FS_OPTION(sbi).compress_level <<
4315 				COMPRESS_LEVEL_OFFSET;
4316 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4317 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4318 	stat_inc_compr_inode(inode);
4319 	inc_compr_inode_stat(inode);
4320 	f2fs_mark_inode_dirty_sync(inode, true);
4321 	return 0;
4322 #else
4323 	return -EOPNOTSUPP;
4324 #endif
4325 }
4326 
4327 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4328 {
4329 	struct f2fs_inode_info *fi = F2FS_I(inode);
4330 
4331 	if (!f2fs_compressed_file(inode))
4332 		return true;
4333 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4334 		return false;
4335 
4336 	fi->i_flags &= ~F2FS_COMPR_FL;
4337 	stat_dec_compr_inode(inode);
4338 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4339 	f2fs_mark_inode_dirty_sync(inode, true);
4340 	return true;
4341 }
4342 
4343 #define F2FS_FEATURE_FUNCS(name, flagname) \
4344 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4345 { \
4346 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4347 }
4348 
4349 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4350 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4351 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4352 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4353 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4354 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4355 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4356 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4357 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4358 F2FS_FEATURE_FUNCS(verity, VERITY);
4359 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4360 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4361 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4362 F2FS_FEATURE_FUNCS(readonly, RO);
4363 
4364 static inline bool f2fs_may_extent_tree(struct inode *inode)
4365 {
4366 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4367 
4368 	if (!test_opt(sbi, EXTENT_CACHE) ||
4369 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4370 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4371 			 !f2fs_sb_has_readonly(sbi)))
4372 		return false;
4373 
4374 	/*
4375 	 * for recovered files during mount do not create extents
4376 	 * if shrinker is not registered.
4377 	 */
4378 	if (list_empty(&sbi->s_list))
4379 		return false;
4380 
4381 	return S_ISREG(inode->i_mode);
4382 }
4383 
4384 #ifdef CONFIG_BLK_DEV_ZONED
4385 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4386 				    block_t blkaddr)
4387 {
4388 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4389 
4390 	return test_bit(zno, FDEV(devi).blkz_seq);
4391 }
4392 #endif
4393 
4394 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4395 {
4396 	return f2fs_sb_has_blkzoned(sbi);
4397 }
4398 
4399 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4400 {
4401 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4402 }
4403 
4404 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4405 {
4406 	int i;
4407 
4408 	if (!f2fs_is_multi_device(sbi))
4409 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4410 
4411 	for (i = 0; i < sbi->s_ndevs; i++)
4412 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4413 			return true;
4414 	return false;
4415 }
4416 
4417 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4418 {
4419 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4420 					f2fs_hw_should_discard(sbi);
4421 }
4422 
4423 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4424 {
4425 	int i;
4426 
4427 	if (!f2fs_is_multi_device(sbi))
4428 		return bdev_read_only(sbi->sb->s_bdev);
4429 
4430 	for (i = 0; i < sbi->s_ndevs; i++)
4431 		if (bdev_read_only(FDEV(i).bdev))
4432 			return true;
4433 	return false;
4434 }
4435 
4436 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4437 {
4438 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4439 }
4440 
4441 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4442 {
4443 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4444 }
4445 
4446 static inline bool f2fs_may_compress(struct inode *inode)
4447 {
4448 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4449 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4450 		return false;
4451 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4452 }
4453 
4454 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4455 						u64 blocks, bool add)
4456 {
4457 	struct f2fs_inode_info *fi = F2FS_I(inode);
4458 	int diff = fi->i_cluster_size - blocks;
4459 
4460 	/* don't update i_compr_blocks if saved blocks were released */
4461 	if (!add && !atomic_read(&fi->i_compr_blocks))
4462 		return;
4463 
4464 	if (add) {
4465 		atomic_add(diff, &fi->i_compr_blocks);
4466 		stat_add_compr_blocks(inode, diff);
4467 	} else {
4468 		atomic_sub(diff, &fi->i_compr_blocks);
4469 		stat_sub_compr_blocks(inode, diff);
4470 	}
4471 	f2fs_mark_inode_dirty_sync(inode, true);
4472 }
4473 
4474 static inline int block_unaligned_IO(struct inode *inode,
4475 				struct kiocb *iocb, struct iov_iter *iter)
4476 {
4477 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4478 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4479 	loff_t offset = iocb->ki_pos;
4480 	unsigned long align = offset | iov_iter_alignment(iter);
4481 
4482 	return align & blocksize_mask;
4483 }
4484 
4485 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4486 								int flag)
4487 {
4488 	if (!f2fs_is_multi_device(sbi))
4489 		return false;
4490 	if (flag != F2FS_GET_BLOCK_DIO)
4491 		return false;
4492 	return sbi->aligned_blksize;
4493 }
4494 
4495 static inline bool f2fs_force_buffered_io(struct inode *inode,
4496 				struct kiocb *iocb, struct iov_iter *iter)
4497 {
4498 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4499 	int rw = iov_iter_rw(iter);
4500 
4501 	if (!fscrypt_dio_supported(iocb, iter))
4502 		return true;
4503 	if (fsverity_active(inode))
4504 		return true;
4505 	if (f2fs_compressed_file(inode))
4506 		return true;
4507 
4508 	/* disallow direct IO if any of devices has unaligned blksize */
4509 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4510 		return true;
4511 
4512 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4513 		if (block_unaligned_IO(inode, iocb, iter))
4514 			return true;
4515 		if (F2FS_IO_ALIGNED(sbi))
4516 			return true;
4517 	}
4518 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4519 		return true;
4520 
4521 	return false;
4522 }
4523 
4524 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4525 {
4526 	return fsverity_active(inode) &&
4527 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4528 }
4529 
4530 #ifdef CONFIG_F2FS_FAULT_INJECTION
4531 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4532 							unsigned int type);
4533 #else
4534 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4535 #endif
4536 
4537 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4538 {
4539 #ifdef CONFIG_QUOTA
4540 	if (f2fs_sb_has_quota_ino(sbi))
4541 		return true;
4542 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4543 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4544 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4545 		return true;
4546 #endif
4547 	return false;
4548 }
4549 
4550 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4551 {
4552 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4553 }
4554 
4555 static inline void f2fs_io_schedule_timeout(long timeout)
4556 {
4557 	set_current_state(TASK_UNINTERRUPTIBLE);
4558 	io_schedule_timeout(timeout);
4559 }
4560 
4561 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4562 					enum page_type type)
4563 {
4564 	if (unlikely(f2fs_cp_error(sbi)))
4565 		return;
4566 
4567 	if (ofs == sbi->page_eio_ofs[type]) {
4568 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4569 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4570 	} else {
4571 		sbi->page_eio_ofs[type] = ofs;
4572 		sbi->page_eio_cnt[type] = 0;
4573 	}
4574 }
4575 
4576 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4577 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4578 
4579 #endif /* _LINUX_F2FS_H */
4580