xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 0b26ca68)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_MAX,
58 };
59 
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
62 
63 struct f2fs_fault_info {
64 	atomic_t inject_ops;
65 	unsigned int inject_rate;
66 	unsigned int inject_type;
67 };
68 
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72 
73 /*
74  * For mount options
75  */
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
90 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
91 #define F2FS_MOUNT_USRQUOTA		0x00080000
92 #define F2FS_MOUNT_GRPQUOTA		0x00100000
93 #define F2FS_MOUNT_PRJQUOTA		0x00200000
94 #define F2FS_MOUNT_QUOTA		0x00400000
95 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
96 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
97 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
98 #define F2FS_MOUNT_NORECOVERY		0x04000000
99 #define F2FS_MOUNT_ATGC			0x08000000
100 
101 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
102 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105 
106 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
107 		typecheck(unsigned long long, b) &&			\
108 		((long long)((a) - (b)) > 0))
109 
110 typedef u32 block_t;	/*
111 			 * should not change u32, since it is the on-disk block
112 			 * address format, __le32.
113 			 */
114 typedef u32 nid_t;
115 
116 #define COMPRESS_EXT_NUM		16
117 
118 struct f2fs_mount_info {
119 	unsigned int opt;
120 	int write_io_size_bits;		/* Write IO size bits */
121 	block_t root_reserved_blocks;	/* root reserved blocks */
122 	kuid_t s_resuid;		/* reserved blocks for uid */
123 	kgid_t s_resgid;		/* reserved blocks for gid */
124 	int active_logs;		/* # of active logs */
125 	int inline_xattr_size;		/* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 	struct f2fs_fault_info fault_info;	/* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 	/* Names of quota files with journalled quota */
131 	char *s_qf_names[MAXQUOTAS];
132 	int s_jquota_fmt;			/* Format of quota to use */
133 #endif
134 	/* For which write hints are passed down to block layer */
135 	int whint_mode;
136 	int alloc_mode;			/* segment allocation policy */
137 	int fsync_mode;			/* fsync policy */
138 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
139 	int bggc_mode;			/* bggc mode: off, on or sync */
140 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
141 	block_t unusable_cap_perc;	/* percentage for cap */
142 	block_t unusable_cap;		/* Amount of space allowed to be
143 					 * unusable when disabling checkpoint
144 					 */
145 
146 	/* For compression */
147 	unsigned char compress_algorithm;	/* algorithm type */
148 	unsigned char compress_log_size;	/* cluster log size */
149 	bool compress_chksum;			/* compressed data chksum */
150 	unsigned char compress_ext_cnt;		/* extension count */
151 	int compress_mode;			/* compression mode */
152 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
153 };
154 
155 #define F2FS_FEATURE_ENCRYPT		0x0001
156 #define F2FS_FEATURE_BLKZONED		0x0002
157 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
158 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
159 #define F2FS_FEATURE_PRJQUOTA		0x0010
160 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
161 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
162 #define F2FS_FEATURE_QUOTA_INO		0x0080
163 #define F2FS_FEATURE_INODE_CRTIME	0x0100
164 #define F2FS_FEATURE_LOST_FOUND		0x0200
165 #define F2FS_FEATURE_VERITY		0x0400
166 #define F2FS_FEATURE_SB_CHKSUM		0x0800
167 #define F2FS_FEATURE_CASEFOLD		0x1000
168 #define F2FS_FEATURE_COMPRESSION	0x2000
169 
170 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
171 	((raw_super->feature & cpu_to_le32(mask)) != 0)
172 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
173 #define F2FS_SET_FEATURE(sbi, mask)					\
174 	(sbi->raw_super->feature |= cpu_to_le32(mask))
175 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
176 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
177 
178 /*
179  * Default values for user and/or group using reserved blocks
180  */
181 #define	F2FS_DEF_RESUID		0
182 #define	F2FS_DEF_RESGID		0
183 
184 /*
185  * For checkpoint manager
186  */
187 enum {
188 	NAT_BITMAP,
189 	SIT_BITMAP
190 };
191 
192 #define	CP_UMOUNT	0x00000001
193 #define	CP_FASTBOOT	0x00000002
194 #define	CP_SYNC		0x00000004
195 #define	CP_RECOVERY	0x00000008
196 #define	CP_DISCARD	0x00000010
197 #define CP_TRIMMED	0x00000020
198 #define CP_PAUSE	0x00000040
199 #define CP_RESIZE 	0x00000080
200 
201 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
202 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
203 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
204 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
205 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
206 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
207 #define DEF_CP_INTERVAL			60	/* 60 secs */
208 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
209 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
210 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
211 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
212 
213 struct cp_control {
214 	int reason;
215 	__u64 trim_start;
216 	__u64 trim_end;
217 	__u64 trim_minlen;
218 };
219 
220 /*
221  * indicate meta/data type
222  */
223 enum {
224 	META_CP,
225 	META_NAT,
226 	META_SIT,
227 	META_SSA,
228 	META_MAX,
229 	META_POR,
230 	DATA_GENERIC,		/* check range only */
231 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
232 	DATA_GENERIC_ENHANCE_READ,	/*
233 					 * strong check on range and segment
234 					 * bitmap but no warning due to race
235 					 * condition of read on truncated area
236 					 * by extent_cache
237 					 */
238 	META_GENERIC,
239 };
240 
241 /* for the list of ino */
242 enum {
243 	ORPHAN_INO,		/* for orphan ino list */
244 	APPEND_INO,		/* for append ino list */
245 	UPDATE_INO,		/* for update ino list */
246 	TRANS_DIR_INO,		/* for trasactions dir ino list */
247 	FLUSH_INO,		/* for multiple device flushing */
248 	MAX_INO_ENTRY,		/* max. list */
249 };
250 
251 struct ino_entry {
252 	struct list_head list;		/* list head */
253 	nid_t ino;			/* inode number */
254 	unsigned int dirty_device;	/* dirty device bitmap */
255 };
256 
257 /* for the list of inodes to be GCed */
258 struct inode_entry {
259 	struct list_head list;	/* list head */
260 	struct inode *inode;	/* vfs inode pointer */
261 };
262 
263 struct fsync_node_entry {
264 	struct list_head list;	/* list head */
265 	struct page *page;	/* warm node page pointer */
266 	unsigned int seq_id;	/* sequence id */
267 };
268 
269 /* for the bitmap indicate blocks to be discarded */
270 struct discard_entry {
271 	struct list_head list;	/* list head */
272 	block_t start_blkaddr;	/* start blockaddr of current segment */
273 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
274 };
275 
276 /* default discard granularity of inner discard thread, unit: block count */
277 #define DEFAULT_DISCARD_GRANULARITY		16
278 
279 /* max discard pend list number */
280 #define MAX_PLIST_NUM		512
281 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
282 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
283 
284 enum {
285 	D_PREP,			/* initial */
286 	D_PARTIAL,		/* partially submitted */
287 	D_SUBMIT,		/* all submitted */
288 	D_DONE,			/* finished */
289 };
290 
291 struct discard_info {
292 	block_t lstart;			/* logical start address */
293 	block_t len;			/* length */
294 	block_t start;			/* actual start address in dev */
295 };
296 
297 struct discard_cmd {
298 	struct rb_node rb_node;		/* rb node located in rb-tree */
299 	union {
300 		struct {
301 			block_t lstart;	/* logical start address */
302 			block_t len;	/* length */
303 			block_t start;	/* actual start address in dev */
304 		};
305 		struct discard_info di;	/* discard info */
306 
307 	};
308 	struct list_head list;		/* command list */
309 	struct completion wait;		/* compleation */
310 	struct block_device *bdev;	/* bdev */
311 	unsigned short ref;		/* reference count */
312 	unsigned char state;		/* state */
313 	unsigned char queued;		/* queued discard */
314 	int error;			/* bio error */
315 	spinlock_t lock;		/* for state/bio_ref updating */
316 	unsigned short bio_ref;		/* bio reference count */
317 };
318 
319 enum {
320 	DPOLICY_BG,
321 	DPOLICY_FORCE,
322 	DPOLICY_FSTRIM,
323 	DPOLICY_UMOUNT,
324 	MAX_DPOLICY,
325 };
326 
327 struct discard_policy {
328 	int type;			/* type of discard */
329 	unsigned int min_interval;	/* used for candidates exist */
330 	unsigned int mid_interval;	/* used for device busy */
331 	unsigned int max_interval;	/* used for candidates not exist */
332 	unsigned int max_requests;	/* # of discards issued per round */
333 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
334 	bool io_aware;			/* issue discard in idle time */
335 	bool sync;			/* submit discard with REQ_SYNC flag */
336 	bool ordered;			/* issue discard by lba order */
337 	bool timeout;			/* discard timeout for put_super */
338 	unsigned int granularity;	/* discard granularity */
339 };
340 
341 struct discard_cmd_control {
342 	struct task_struct *f2fs_issue_discard;	/* discard thread */
343 	struct list_head entry_list;		/* 4KB discard entry list */
344 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
345 	struct list_head wait_list;		/* store on-flushing entries */
346 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
347 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
348 	unsigned int discard_wake;		/* to wake up discard thread */
349 	struct mutex cmd_lock;
350 	unsigned int nr_discards;		/* # of discards in the list */
351 	unsigned int max_discards;		/* max. discards to be issued */
352 	unsigned int discard_granularity;	/* discard granularity */
353 	unsigned int undiscard_blks;		/* # of undiscard blocks */
354 	unsigned int next_pos;			/* next discard position */
355 	atomic_t issued_discard;		/* # of issued discard */
356 	atomic_t queued_discard;		/* # of queued discard */
357 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
358 	struct rb_root_cached root;		/* root of discard rb-tree */
359 	bool rbtree_check;			/* config for consistence check */
360 };
361 
362 /* for the list of fsync inodes, used only during recovery */
363 struct fsync_inode_entry {
364 	struct list_head list;	/* list head */
365 	struct inode *inode;	/* vfs inode pointer */
366 	block_t blkaddr;	/* block address locating the last fsync */
367 	block_t last_dentry;	/* block address locating the last dentry */
368 };
369 
370 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
371 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
372 
373 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
374 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
375 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
376 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
377 
378 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
379 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
380 
381 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
382 {
383 	int before = nats_in_cursum(journal);
384 
385 	journal->n_nats = cpu_to_le16(before + i);
386 	return before;
387 }
388 
389 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
390 {
391 	int before = sits_in_cursum(journal);
392 
393 	journal->n_sits = cpu_to_le16(before + i);
394 	return before;
395 }
396 
397 static inline bool __has_cursum_space(struct f2fs_journal *journal,
398 							int size, int type)
399 {
400 	if (type == NAT_JOURNAL)
401 		return size <= MAX_NAT_JENTRIES(journal);
402 	return size <= MAX_SIT_JENTRIES(journal);
403 }
404 
405 /* for inline stuff */
406 #define DEF_INLINE_RESERVED_SIZE	1
407 static inline int get_extra_isize(struct inode *inode);
408 static inline int get_inline_xattr_addrs(struct inode *inode);
409 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
410 				(CUR_ADDRS_PER_INODE(inode) -		\
411 				get_inline_xattr_addrs(inode) -	\
412 				DEF_INLINE_RESERVED_SIZE))
413 
414 /* for inline dir */
415 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
416 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
417 				BITS_PER_BYTE + 1))
418 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
419 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
420 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
421 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
422 				NR_INLINE_DENTRY(inode) + \
423 				INLINE_DENTRY_BITMAP_SIZE(inode)))
424 
425 /*
426  * For INODE and NODE manager
427  */
428 /* for directory operations */
429 
430 struct f2fs_filename {
431 	/*
432 	 * The filename the user specified.  This is NULL for some
433 	 * filesystem-internal operations, e.g. converting an inline directory
434 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
435 	 */
436 	const struct qstr *usr_fname;
437 
438 	/*
439 	 * The on-disk filename.  For encrypted directories, this is encrypted.
440 	 * This may be NULL for lookups in an encrypted dir without the key.
441 	 */
442 	struct fscrypt_str disk_name;
443 
444 	/* The dirhash of this filename */
445 	f2fs_hash_t hash;
446 
447 #ifdef CONFIG_FS_ENCRYPTION
448 	/*
449 	 * For lookups in encrypted directories: either the buffer backing
450 	 * disk_name, or a buffer that holds the decoded no-key name.
451 	 */
452 	struct fscrypt_str crypto_buf;
453 #endif
454 #ifdef CONFIG_UNICODE
455 	/*
456 	 * For casefolded directories: the casefolded name, but it's left NULL
457 	 * if the original name is not valid Unicode, if the directory is both
458 	 * casefolded and encrypted and its encryption key is unavailable, or if
459 	 * the filesystem is doing an internal operation where usr_fname is also
460 	 * NULL.  In all these cases we fall back to treating the name as an
461 	 * opaque byte sequence.
462 	 */
463 	struct fscrypt_str cf_name;
464 #endif
465 };
466 
467 struct f2fs_dentry_ptr {
468 	struct inode *inode;
469 	void *bitmap;
470 	struct f2fs_dir_entry *dentry;
471 	__u8 (*filename)[F2FS_SLOT_LEN];
472 	int max;
473 	int nr_bitmap;
474 };
475 
476 static inline void make_dentry_ptr_block(struct inode *inode,
477 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
478 {
479 	d->inode = inode;
480 	d->max = NR_DENTRY_IN_BLOCK;
481 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
482 	d->bitmap = t->dentry_bitmap;
483 	d->dentry = t->dentry;
484 	d->filename = t->filename;
485 }
486 
487 static inline void make_dentry_ptr_inline(struct inode *inode,
488 					struct f2fs_dentry_ptr *d, void *t)
489 {
490 	int entry_cnt = NR_INLINE_DENTRY(inode);
491 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
492 	int reserved_size = INLINE_RESERVED_SIZE(inode);
493 
494 	d->inode = inode;
495 	d->max = entry_cnt;
496 	d->nr_bitmap = bitmap_size;
497 	d->bitmap = t;
498 	d->dentry = t + bitmap_size + reserved_size;
499 	d->filename = t + bitmap_size + reserved_size +
500 					SIZE_OF_DIR_ENTRY * entry_cnt;
501 }
502 
503 /*
504  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
505  * as its node offset to distinguish from index node blocks.
506  * But some bits are used to mark the node block.
507  */
508 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
509 				>> OFFSET_BIT_SHIFT)
510 enum {
511 	ALLOC_NODE,			/* allocate a new node page if needed */
512 	LOOKUP_NODE,			/* look up a node without readahead */
513 	LOOKUP_NODE_RA,			/*
514 					 * look up a node with readahead called
515 					 * by get_data_block.
516 					 */
517 };
518 
519 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
520 
521 /* congestion wait timeout value, default: 20ms */
522 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
523 
524 /* maximum retry quota flush count */
525 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
526 
527 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
528 
529 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
530 
531 /* for in-memory extent cache entry */
532 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
533 
534 /* number of extent info in extent cache we try to shrink */
535 #define EXTENT_CACHE_SHRINK_NUMBER	128
536 
537 struct rb_entry {
538 	struct rb_node rb_node;		/* rb node located in rb-tree */
539 	union {
540 		struct {
541 			unsigned int ofs;	/* start offset of the entry */
542 			unsigned int len;	/* length of the entry */
543 		};
544 		unsigned long long key;		/* 64-bits key */
545 	} __packed;
546 };
547 
548 struct extent_info {
549 	unsigned int fofs;		/* start offset in a file */
550 	unsigned int len;		/* length of the extent */
551 	u32 blk;			/* start block address of the extent */
552 };
553 
554 struct extent_node {
555 	struct rb_node rb_node;		/* rb node located in rb-tree */
556 	struct extent_info ei;		/* extent info */
557 	struct list_head list;		/* node in global extent list of sbi */
558 	struct extent_tree *et;		/* extent tree pointer */
559 };
560 
561 struct extent_tree {
562 	nid_t ino;			/* inode number */
563 	struct rb_root_cached root;	/* root of extent info rb-tree */
564 	struct extent_node *cached_en;	/* recently accessed extent node */
565 	struct extent_info largest;	/* largested extent info */
566 	struct list_head list;		/* to be used by sbi->zombie_list */
567 	rwlock_t lock;			/* protect extent info rb-tree */
568 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
569 	bool largest_updated;		/* largest extent updated */
570 };
571 
572 /*
573  * This structure is taken from ext4_map_blocks.
574  *
575  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
576  */
577 #define F2FS_MAP_NEW		(1 << BH_New)
578 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
579 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
580 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
581 				F2FS_MAP_UNWRITTEN)
582 
583 struct f2fs_map_blocks {
584 	block_t m_pblk;
585 	block_t m_lblk;
586 	unsigned int m_len;
587 	unsigned int m_flags;
588 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
589 	pgoff_t *m_next_extent;		/* point to next possible extent */
590 	int m_seg_type;
591 	bool m_may_create;		/* indicate it is from write path */
592 };
593 
594 /* for flag in get_data_block */
595 enum {
596 	F2FS_GET_BLOCK_DEFAULT,
597 	F2FS_GET_BLOCK_FIEMAP,
598 	F2FS_GET_BLOCK_BMAP,
599 	F2FS_GET_BLOCK_DIO,
600 	F2FS_GET_BLOCK_PRE_DIO,
601 	F2FS_GET_BLOCK_PRE_AIO,
602 	F2FS_GET_BLOCK_PRECACHE,
603 };
604 
605 /*
606  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
607  */
608 #define FADVISE_COLD_BIT	0x01
609 #define FADVISE_LOST_PINO_BIT	0x02
610 #define FADVISE_ENCRYPT_BIT	0x04
611 #define FADVISE_ENC_NAME_BIT	0x08
612 #define FADVISE_KEEP_SIZE_BIT	0x10
613 #define FADVISE_HOT_BIT		0x20
614 #define FADVISE_VERITY_BIT	0x40
615 
616 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
617 
618 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
619 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
620 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
621 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
622 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
623 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
624 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
625 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
626 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
627 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
628 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
629 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
630 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
631 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
632 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
633 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
634 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
635 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
636 
637 #define DEF_DIR_LEVEL		0
638 
639 enum {
640 	GC_FAILURE_PIN,
641 	GC_FAILURE_ATOMIC,
642 	MAX_GC_FAILURE
643 };
644 
645 /* used for f2fs_inode_info->flags */
646 enum {
647 	FI_NEW_INODE,		/* indicate newly allocated inode */
648 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
649 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
650 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
651 	FI_INC_LINK,		/* need to increment i_nlink */
652 	FI_ACL_MODE,		/* indicate acl mode */
653 	FI_NO_ALLOC,		/* should not allocate any blocks */
654 	FI_FREE_NID,		/* free allocated nide */
655 	FI_NO_EXTENT,		/* not to use the extent cache */
656 	FI_INLINE_XATTR,	/* used for inline xattr */
657 	FI_INLINE_DATA,		/* used for inline data*/
658 	FI_INLINE_DENTRY,	/* used for inline dentry */
659 	FI_APPEND_WRITE,	/* inode has appended data */
660 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
661 	FI_NEED_IPU,		/* used for ipu per file */
662 	FI_ATOMIC_FILE,		/* indicate atomic file */
663 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
664 	FI_VOLATILE_FILE,	/* indicate volatile file */
665 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
666 	FI_DROP_CACHE,		/* drop dirty page cache */
667 	FI_DATA_EXIST,		/* indicate data exists */
668 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
669 	FI_DO_DEFRAG,		/* indicate defragment is running */
670 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
671 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
672 	FI_HOT_DATA,		/* indicate file is hot */
673 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
674 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
675 	FI_PIN_FILE,		/* indicate file should not be gced */
676 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
677 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
678 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
679 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
680 	FI_MMAP_FILE,		/* indicate file was mmapped */
681 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
682 	FI_MAX,			/* max flag, never be used */
683 };
684 
685 struct f2fs_inode_info {
686 	struct inode vfs_inode;		/* serve a vfs inode */
687 	unsigned long i_flags;		/* keep an inode flags for ioctl */
688 	unsigned char i_advise;		/* use to give file attribute hints */
689 	unsigned char i_dir_level;	/* use for dentry level for large dir */
690 	unsigned int i_current_depth;	/* only for directory depth */
691 	/* for gc failure statistic */
692 	unsigned int i_gc_failures[MAX_GC_FAILURE];
693 	unsigned int i_pino;		/* parent inode number */
694 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
695 
696 	/* Use below internally in f2fs*/
697 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
698 	struct rw_semaphore i_sem;	/* protect fi info */
699 	atomic_t dirty_pages;		/* # of dirty pages */
700 	f2fs_hash_t chash;		/* hash value of given file name */
701 	unsigned int clevel;		/* maximum level of given file name */
702 	struct task_struct *task;	/* lookup and create consistency */
703 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
704 	nid_t i_xattr_nid;		/* node id that contains xattrs */
705 	loff_t	last_disk_size;		/* lastly written file size */
706 	spinlock_t i_size_lock;		/* protect last_disk_size */
707 
708 #ifdef CONFIG_QUOTA
709 	struct dquot *i_dquot[MAXQUOTAS];
710 
711 	/* quota space reservation, managed internally by quota code */
712 	qsize_t i_reserved_quota;
713 #endif
714 	struct list_head dirty_list;	/* dirty list for dirs and files */
715 	struct list_head gdirty_list;	/* linked in global dirty list */
716 	struct list_head inmem_ilist;	/* list for inmem inodes */
717 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
718 	struct task_struct *inmem_task;	/* store inmemory task */
719 	struct mutex inmem_lock;	/* lock for inmemory pages */
720 	pgoff_t ra_offset;		/* ongoing readahead offset */
721 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
722 
723 	/* avoid racing between foreground op and gc */
724 	struct rw_semaphore i_gc_rwsem[2];
725 	struct rw_semaphore i_mmap_sem;
726 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
727 
728 	int i_extra_isize;		/* size of extra space located in i_addr */
729 	kprojid_t i_projid;		/* id for project quota */
730 	int i_inline_xattr_size;	/* inline xattr size */
731 	struct timespec64 i_crtime;	/* inode creation time */
732 	struct timespec64 i_disk_time[4];/* inode disk times */
733 
734 	/* for file compress */
735 	atomic_t i_compr_blocks;		/* # of compressed blocks */
736 	unsigned char i_compress_algorithm;	/* algorithm type */
737 	unsigned char i_log_cluster_size;	/* log of cluster size */
738 	unsigned short i_compress_flag;		/* compress flag */
739 	unsigned int i_cluster_size;		/* cluster size */
740 };
741 
742 static inline void get_extent_info(struct extent_info *ext,
743 					struct f2fs_extent *i_ext)
744 {
745 	ext->fofs = le32_to_cpu(i_ext->fofs);
746 	ext->blk = le32_to_cpu(i_ext->blk);
747 	ext->len = le32_to_cpu(i_ext->len);
748 }
749 
750 static inline void set_raw_extent(struct extent_info *ext,
751 					struct f2fs_extent *i_ext)
752 {
753 	i_ext->fofs = cpu_to_le32(ext->fofs);
754 	i_ext->blk = cpu_to_le32(ext->blk);
755 	i_ext->len = cpu_to_le32(ext->len);
756 }
757 
758 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
759 						u32 blk, unsigned int len)
760 {
761 	ei->fofs = fofs;
762 	ei->blk = blk;
763 	ei->len = len;
764 }
765 
766 static inline bool __is_discard_mergeable(struct discard_info *back,
767 			struct discard_info *front, unsigned int max_len)
768 {
769 	return (back->lstart + back->len == front->lstart) &&
770 		(back->len + front->len <= max_len);
771 }
772 
773 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
774 			struct discard_info *back, unsigned int max_len)
775 {
776 	return __is_discard_mergeable(back, cur, max_len);
777 }
778 
779 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
780 			struct discard_info *front, unsigned int max_len)
781 {
782 	return __is_discard_mergeable(cur, front, max_len);
783 }
784 
785 static inline bool __is_extent_mergeable(struct extent_info *back,
786 						struct extent_info *front)
787 {
788 	return (back->fofs + back->len == front->fofs &&
789 			back->blk + back->len == front->blk);
790 }
791 
792 static inline bool __is_back_mergeable(struct extent_info *cur,
793 						struct extent_info *back)
794 {
795 	return __is_extent_mergeable(back, cur);
796 }
797 
798 static inline bool __is_front_mergeable(struct extent_info *cur,
799 						struct extent_info *front)
800 {
801 	return __is_extent_mergeable(cur, front);
802 }
803 
804 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
805 static inline void __try_update_largest_extent(struct extent_tree *et,
806 						struct extent_node *en)
807 {
808 	if (en->ei.len > et->largest.len) {
809 		et->largest = en->ei;
810 		et->largest_updated = true;
811 	}
812 }
813 
814 /*
815  * For free nid management
816  */
817 enum nid_state {
818 	FREE_NID,		/* newly added to free nid list */
819 	PREALLOC_NID,		/* it is preallocated */
820 	MAX_NID_STATE,
821 };
822 
823 enum nat_state {
824 	TOTAL_NAT,
825 	DIRTY_NAT,
826 	RECLAIMABLE_NAT,
827 	MAX_NAT_STATE,
828 };
829 
830 struct f2fs_nm_info {
831 	block_t nat_blkaddr;		/* base disk address of NAT */
832 	nid_t max_nid;			/* maximum possible node ids */
833 	nid_t available_nids;		/* # of available node ids */
834 	nid_t next_scan_nid;		/* the next nid to be scanned */
835 	unsigned int ram_thresh;	/* control the memory footprint */
836 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
837 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
838 
839 	/* NAT cache management */
840 	struct radix_tree_root nat_root;/* root of the nat entry cache */
841 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
842 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
843 	struct list_head nat_entries;	/* cached nat entry list (clean) */
844 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
845 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
846 	unsigned int nat_blocks;	/* # of nat blocks */
847 
848 	/* free node ids management */
849 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
850 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
851 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
852 	spinlock_t nid_list_lock;	/* protect nid lists ops */
853 	struct mutex build_lock;	/* lock for build free nids */
854 	unsigned char **free_nid_bitmap;
855 	unsigned char *nat_block_bitmap;
856 	unsigned short *free_nid_count;	/* free nid count of NAT block */
857 
858 	/* for checkpoint */
859 	char *nat_bitmap;		/* NAT bitmap pointer */
860 
861 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
862 	unsigned char *nat_bits;	/* NAT bits blocks */
863 	unsigned char *full_nat_bits;	/* full NAT pages */
864 	unsigned char *empty_nat_bits;	/* empty NAT pages */
865 #ifdef CONFIG_F2FS_CHECK_FS
866 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
867 #endif
868 	int bitmap_size;		/* bitmap size */
869 };
870 
871 /*
872  * this structure is used as one of function parameters.
873  * all the information are dedicated to a given direct node block determined
874  * by the data offset in a file.
875  */
876 struct dnode_of_data {
877 	struct inode *inode;		/* vfs inode pointer */
878 	struct page *inode_page;	/* its inode page, NULL is possible */
879 	struct page *node_page;		/* cached direct node page */
880 	nid_t nid;			/* node id of the direct node block */
881 	unsigned int ofs_in_node;	/* data offset in the node page */
882 	bool inode_page_locked;		/* inode page is locked or not */
883 	bool node_changed;		/* is node block changed */
884 	char cur_level;			/* level of hole node page */
885 	char max_level;			/* level of current page located */
886 	block_t	data_blkaddr;		/* block address of the node block */
887 };
888 
889 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
890 		struct page *ipage, struct page *npage, nid_t nid)
891 {
892 	memset(dn, 0, sizeof(*dn));
893 	dn->inode = inode;
894 	dn->inode_page = ipage;
895 	dn->node_page = npage;
896 	dn->nid = nid;
897 }
898 
899 /*
900  * For SIT manager
901  *
902  * By default, there are 6 active log areas across the whole main area.
903  * When considering hot and cold data separation to reduce cleaning overhead,
904  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
905  * respectively.
906  * In the current design, you should not change the numbers intentionally.
907  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
908  * logs individually according to the underlying devices. (default: 6)
909  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
910  * data and 8 for node logs.
911  */
912 #define	NR_CURSEG_DATA_TYPE	(3)
913 #define NR_CURSEG_NODE_TYPE	(3)
914 #define NR_CURSEG_INMEM_TYPE	(2)
915 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
916 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
917 
918 enum {
919 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
920 	CURSEG_WARM_DATA,	/* data blocks */
921 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
922 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
923 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
924 	CURSEG_COLD_NODE,	/* indirect node blocks */
925 	NR_PERSISTENT_LOG,	/* number of persistent log */
926 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
927 				/* pinned file that needs consecutive block address */
928 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
929 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
930 };
931 
932 struct flush_cmd {
933 	struct completion wait;
934 	struct llist_node llnode;
935 	nid_t ino;
936 	int ret;
937 };
938 
939 struct flush_cmd_control {
940 	struct task_struct *f2fs_issue_flush;	/* flush thread */
941 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
942 	atomic_t issued_flush;			/* # of issued flushes */
943 	atomic_t queued_flush;			/* # of queued flushes */
944 	struct llist_head issue_list;		/* list for command issue */
945 	struct llist_node *dispatch_list;	/* list for command dispatch */
946 };
947 
948 struct f2fs_sm_info {
949 	struct sit_info *sit_info;		/* whole segment information */
950 	struct free_segmap_info *free_info;	/* free segment information */
951 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
952 	struct curseg_info *curseg_array;	/* active segment information */
953 
954 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
955 
956 	block_t seg0_blkaddr;		/* block address of 0'th segment */
957 	block_t main_blkaddr;		/* start block address of main area */
958 	block_t ssa_blkaddr;		/* start block address of SSA area */
959 
960 	unsigned int segment_count;	/* total # of segments */
961 	unsigned int main_segments;	/* # of segments in main area */
962 	unsigned int reserved_segments;	/* # of reserved segments */
963 	unsigned int ovp_segments;	/* # of overprovision segments */
964 
965 	/* a threshold to reclaim prefree segments */
966 	unsigned int rec_prefree_segments;
967 
968 	/* for batched trimming */
969 	unsigned int trim_sections;		/* # of sections to trim */
970 
971 	struct list_head sit_entry_set;	/* sit entry set list */
972 
973 	unsigned int ipu_policy;	/* in-place-update policy */
974 	unsigned int min_ipu_util;	/* in-place-update threshold */
975 	unsigned int min_fsync_blocks;	/* threshold for fsync */
976 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
977 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
978 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
979 
980 	/* for flush command control */
981 	struct flush_cmd_control *fcc_info;
982 
983 	/* for discard command control */
984 	struct discard_cmd_control *dcc_info;
985 };
986 
987 /*
988  * For superblock
989  */
990 /*
991  * COUNT_TYPE for monitoring
992  *
993  * f2fs monitors the number of several block types such as on-writeback,
994  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
995  */
996 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
997 enum count_type {
998 	F2FS_DIRTY_DENTS,
999 	F2FS_DIRTY_DATA,
1000 	F2FS_DIRTY_QDATA,
1001 	F2FS_DIRTY_NODES,
1002 	F2FS_DIRTY_META,
1003 	F2FS_INMEM_PAGES,
1004 	F2FS_DIRTY_IMETA,
1005 	F2FS_WB_CP_DATA,
1006 	F2FS_WB_DATA,
1007 	F2FS_RD_DATA,
1008 	F2FS_RD_NODE,
1009 	F2FS_RD_META,
1010 	F2FS_DIO_WRITE,
1011 	F2FS_DIO_READ,
1012 	NR_COUNT_TYPE,
1013 };
1014 
1015 /*
1016  * The below are the page types of bios used in submit_bio().
1017  * The available types are:
1018  * DATA			User data pages. It operates as async mode.
1019  * NODE			Node pages. It operates as async mode.
1020  * META			FS metadata pages such as SIT, NAT, CP.
1021  * NR_PAGE_TYPE		The number of page types.
1022  * META_FLUSH		Make sure the previous pages are written
1023  *			with waiting the bio's completion
1024  * ...			Only can be used with META.
1025  */
1026 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1027 enum page_type {
1028 	DATA,
1029 	NODE,
1030 	META,
1031 	NR_PAGE_TYPE,
1032 	META_FLUSH,
1033 	INMEM,		/* the below types are used by tracepoints only. */
1034 	INMEM_DROP,
1035 	INMEM_INVALIDATE,
1036 	INMEM_REVOKE,
1037 	IPU,
1038 	OPU,
1039 };
1040 
1041 enum temp_type {
1042 	HOT = 0,	/* must be zero for meta bio */
1043 	WARM,
1044 	COLD,
1045 	NR_TEMP_TYPE,
1046 };
1047 
1048 enum need_lock_type {
1049 	LOCK_REQ = 0,
1050 	LOCK_DONE,
1051 	LOCK_RETRY,
1052 };
1053 
1054 enum cp_reason_type {
1055 	CP_NO_NEEDED,
1056 	CP_NON_REGULAR,
1057 	CP_COMPRESSED,
1058 	CP_HARDLINK,
1059 	CP_SB_NEED_CP,
1060 	CP_WRONG_PINO,
1061 	CP_NO_SPC_ROLL,
1062 	CP_NODE_NEED_CP,
1063 	CP_FASTBOOT_MODE,
1064 	CP_SPEC_LOG_NUM,
1065 	CP_RECOVER_DIR,
1066 };
1067 
1068 enum iostat_type {
1069 	/* WRITE IO */
1070 	APP_DIRECT_IO,			/* app direct write IOs */
1071 	APP_BUFFERED_IO,		/* app buffered write IOs */
1072 	APP_WRITE_IO,			/* app write IOs */
1073 	APP_MAPPED_IO,			/* app mapped IOs */
1074 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1075 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1076 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1077 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1078 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1079 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1080 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1081 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1082 
1083 	/* READ IO */
1084 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1085 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1086 	APP_READ_IO,			/* app read IOs */
1087 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1088 	FS_DATA_READ_IO,		/* data read IOs */
1089 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1090 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1091 	FS_NODE_READ_IO,		/* node read IOs */
1092 	FS_META_READ_IO,		/* meta read IOs */
1093 
1094 	/* other */
1095 	FS_DISCARD,			/* discard */
1096 	NR_IO_TYPE,
1097 };
1098 
1099 struct f2fs_io_info {
1100 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1101 	nid_t ino;		/* inode number */
1102 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1103 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1104 	int op;			/* contains REQ_OP_ */
1105 	int op_flags;		/* req_flag_bits */
1106 	block_t new_blkaddr;	/* new block address to be written */
1107 	block_t old_blkaddr;	/* old block address before Cow */
1108 	struct page *page;	/* page to be written */
1109 	struct page *encrypted_page;	/* encrypted page */
1110 	struct page *compressed_page;	/* compressed page */
1111 	struct list_head list;		/* serialize IOs */
1112 	bool submitted;		/* indicate IO submission */
1113 	int need_lock;		/* indicate we need to lock cp_rwsem */
1114 	bool in_list;		/* indicate fio is in io_list */
1115 	bool is_por;		/* indicate IO is from recovery or not */
1116 	bool retry;		/* need to reallocate block address */
1117 	int compr_blocks;	/* # of compressed block addresses */
1118 	bool encrypted;		/* indicate file is encrypted */
1119 	enum iostat_type io_type;	/* io type */
1120 	struct writeback_control *io_wbc; /* writeback control */
1121 	struct bio **bio;		/* bio for ipu */
1122 	sector_t *last_block;		/* last block number in bio */
1123 	unsigned char version;		/* version of the node */
1124 };
1125 
1126 struct bio_entry {
1127 	struct bio *bio;
1128 	struct list_head list;
1129 };
1130 
1131 #define is_read_io(rw) ((rw) == READ)
1132 struct f2fs_bio_info {
1133 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1134 	struct bio *bio;		/* bios to merge */
1135 	sector_t last_block_in_bio;	/* last block number */
1136 	struct f2fs_io_info fio;	/* store buffered io info. */
1137 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1138 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1139 	struct list_head io_list;	/* track fios */
1140 	struct list_head bio_list;	/* bio entry list head */
1141 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1142 };
1143 
1144 #define FDEV(i)				(sbi->devs[i])
1145 #define RDEV(i)				(raw_super->devs[i])
1146 struct f2fs_dev_info {
1147 	struct block_device *bdev;
1148 	char path[MAX_PATH_LEN];
1149 	unsigned int total_segments;
1150 	block_t start_blk;
1151 	block_t end_blk;
1152 #ifdef CONFIG_BLK_DEV_ZONED
1153 	unsigned int nr_blkz;		/* Total number of zones */
1154 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1155 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1156 #endif
1157 };
1158 
1159 enum inode_type {
1160 	DIR_INODE,			/* for dirty dir inode */
1161 	FILE_INODE,			/* for dirty regular/symlink inode */
1162 	DIRTY_META,			/* for all dirtied inode metadata */
1163 	ATOMIC_FILE,			/* for all atomic files */
1164 	NR_INODE_TYPE,
1165 };
1166 
1167 /* for inner inode cache management */
1168 struct inode_management {
1169 	struct radix_tree_root ino_root;	/* ino entry array */
1170 	spinlock_t ino_lock;			/* for ino entry lock */
1171 	struct list_head ino_list;		/* inode list head */
1172 	unsigned long ino_num;			/* number of entries */
1173 };
1174 
1175 /* for GC_AT */
1176 struct atgc_management {
1177 	bool atgc_enabled;			/* ATGC is enabled or not */
1178 	struct rb_root_cached root;		/* root of victim rb-tree */
1179 	struct list_head victim_list;		/* linked with all victim entries */
1180 	unsigned int victim_count;		/* victim count in rb-tree */
1181 	unsigned int candidate_ratio;		/* candidate ratio */
1182 	unsigned int max_candidate_count;	/* max candidate count */
1183 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1184 	unsigned long long age_threshold;	/* age threshold */
1185 };
1186 
1187 /* For s_flag in struct f2fs_sb_info */
1188 enum {
1189 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1190 	SBI_IS_CLOSE,				/* specify unmounting */
1191 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1192 	SBI_POR_DOING,				/* recovery is doing or not */
1193 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1194 	SBI_NEED_CP,				/* need to checkpoint */
1195 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1196 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1197 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1198 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1199 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1200 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1201 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1202 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1203 };
1204 
1205 enum {
1206 	CP_TIME,
1207 	REQ_TIME,
1208 	DISCARD_TIME,
1209 	GC_TIME,
1210 	DISABLE_TIME,
1211 	UMOUNT_DISCARD_TIMEOUT,
1212 	MAX_TIME,
1213 };
1214 
1215 enum {
1216 	GC_NORMAL,
1217 	GC_IDLE_CB,
1218 	GC_IDLE_GREEDY,
1219 	GC_IDLE_AT,
1220 	GC_URGENT_HIGH,
1221 	GC_URGENT_LOW,
1222 };
1223 
1224 enum {
1225 	BGGC_MODE_ON,		/* background gc is on */
1226 	BGGC_MODE_OFF,		/* background gc is off */
1227 	BGGC_MODE_SYNC,		/*
1228 				 * background gc is on, migrating blocks
1229 				 * like foreground gc
1230 				 */
1231 };
1232 
1233 enum {
1234 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1235 	FS_MODE_LFS,		/* use lfs allocation only */
1236 };
1237 
1238 enum {
1239 	WHINT_MODE_OFF,		/* not pass down write hints */
1240 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1241 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1242 };
1243 
1244 enum {
1245 	ALLOC_MODE_DEFAULT,	/* stay default */
1246 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1247 };
1248 
1249 enum fsync_mode {
1250 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1251 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1252 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1253 };
1254 
1255 enum {
1256 	COMPR_MODE_FS,		/*
1257 				 * automatically compress compression
1258 				 * enabled files
1259 				 */
1260 	COMPR_MODE_USER,	/*
1261 				 * automatical compression is disabled.
1262 				 * user can control the file compression
1263 				 * using ioctls
1264 				 */
1265 };
1266 
1267 /*
1268  * this value is set in page as a private data which indicate that
1269  * the page is atomically written, and it is in inmem_pages list.
1270  */
1271 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1272 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1273 
1274 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1275 		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1276 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1277 		(page_private(page) == DUMMY_WRITTEN_PAGE)
1278 
1279 #ifdef CONFIG_F2FS_IO_TRACE
1280 #define IS_IO_TRACED_PAGE(page)			\
1281 		(page_private(page) > 0 &&		\
1282 		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1283 #else
1284 #define IS_IO_TRACED_PAGE(page) (0)
1285 #endif
1286 
1287 /* For compression */
1288 enum compress_algorithm_type {
1289 	COMPRESS_LZO,
1290 	COMPRESS_LZ4,
1291 	COMPRESS_ZSTD,
1292 	COMPRESS_LZORLE,
1293 	COMPRESS_MAX,
1294 };
1295 
1296 enum compress_flag {
1297 	COMPRESS_CHKSUM,
1298 	COMPRESS_MAX_FLAG,
1299 };
1300 
1301 #define COMPRESS_DATA_RESERVED_SIZE		4
1302 struct compress_data {
1303 	__le32 clen;			/* compressed data size */
1304 	__le32 chksum;			/* compressed data chksum */
1305 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1306 	u8 cdata[];			/* compressed data */
1307 };
1308 
1309 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1310 
1311 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1312 
1313 /* compress context */
1314 struct compress_ctx {
1315 	struct inode *inode;		/* inode the context belong to */
1316 	pgoff_t cluster_idx;		/* cluster index number */
1317 	unsigned int cluster_size;	/* page count in cluster */
1318 	unsigned int log_cluster_size;	/* log of cluster size */
1319 	struct page **rpages;		/* pages store raw data in cluster */
1320 	unsigned int nr_rpages;		/* total page number in rpages */
1321 	struct page **cpages;		/* pages store compressed data in cluster */
1322 	unsigned int nr_cpages;		/* total page number in cpages */
1323 	void *rbuf;			/* virtual mapped address on rpages */
1324 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1325 	size_t rlen;			/* valid data length in rbuf */
1326 	size_t clen;			/* valid data length in cbuf */
1327 	void *private;			/* payload buffer for specified compression algorithm */
1328 	void *private2;			/* extra payload buffer */
1329 };
1330 
1331 /* compress context for write IO path */
1332 struct compress_io_ctx {
1333 	u32 magic;			/* magic number to indicate page is compressed */
1334 	struct inode *inode;		/* inode the context belong to */
1335 	struct page **rpages;		/* pages store raw data in cluster */
1336 	unsigned int nr_rpages;		/* total page number in rpages */
1337 	atomic_t pending_pages;		/* in-flight compressed page count */
1338 };
1339 
1340 /* decompress io context for read IO path */
1341 struct decompress_io_ctx {
1342 	u32 magic;			/* magic number to indicate page is compressed */
1343 	struct inode *inode;		/* inode the context belong to */
1344 	pgoff_t cluster_idx;		/* cluster index number */
1345 	unsigned int cluster_size;	/* page count in cluster */
1346 	unsigned int log_cluster_size;	/* log of cluster size */
1347 	struct page **rpages;		/* pages store raw data in cluster */
1348 	unsigned int nr_rpages;		/* total page number in rpages */
1349 	struct page **cpages;		/* pages store compressed data in cluster */
1350 	unsigned int nr_cpages;		/* total page number in cpages */
1351 	struct page **tpages;		/* temp pages to pad holes in cluster */
1352 	void *rbuf;			/* virtual mapped address on rpages */
1353 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1354 	size_t rlen;			/* valid data length in rbuf */
1355 	size_t clen;			/* valid data length in cbuf */
1356 	atomic_t pending_pages;		/* in-flight compressed page count */
1357 	atomic_t verity_pages;		/* in-flight page count for verity */
1358 	bool failed;			/* indicate IO error during decompression */
1359 	void *private;			/* payload buffer for specified decompression algorithm */
1360 	void *private2;			/* extra payload buffer */
1361 };
1362 
1363 #define NULL_CLUSTER			((unsigned int)(~0))
1364 #define MIN_COMPRESS_LOG_SIZE		2
1365 #define MAX_COMPRESS_LOG_SIZE		8
1366 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1367 
1368 struct f2fs_sb_info {
1369 	struct super_block *sb;			/* pointer to VFS super block */
1370 	struct proc_dir_entry *s_proc;		/* proc entry */
1371 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1372 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1373 	int valid_super_block;			/* valid super block no */
1374 	unsigned long s_flag;				/* flags for sbi */
1375 	struct mutex writepages;		/* mutex for writepages() */
1376 
1377 #ifdef CONFIG_BLK_DEV_ZONED
1378 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1379 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1380 #endif
1381 
1382 	/* for node-related operations */
1383 	struct f2fs_nm_info *nm_info;		/* node manager */
1384 	struct inode *node_inode;		/* cache node blocks */
1385 
1386 	/* for segment-related operations */
1387 	struct f2fs_sm_info *sm_info;		/* segment manager */
1388 
1389 	/* for bio operations */
1390 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1391 	/* keep migration IO order for LFS mode */
1392 	struct rw_semaphore io_order_lock;
1393 	mempool_t *write_io_dummy;		/* Dummy pages */
1394 
1395 	/* for checkpoint */
1396 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1397 	int cur_cp_pack;			/* remain current cp pack */
1398 	spinlock_t cp_lock;			/* for flag in ckpt */
1399 	struct inode *meta_inode;		/* cache meta blocks */
1400 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1401 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1402 	struct rw_semaphore node_write;		/* locking node writes */
1403 	struct rw_semaphore node_change;	/* locking node change */
1404 	wait_queue_head_t cp_wait;
1405 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1406 	long interval_time[MAX_TIME];		/* to store thresholds */
1407 
1408 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1409 
1410 	spinlock_t fsync_node_lock;		/* for node entry lock */
1411 	struct list_head fsync_node_list;	/* node list head */
1412 	unsigned int fsync_seg_id;		/* sequence id */
1413 	unsigned int fsync_node_num;		/* number of node entries */
1414 
1415 	/* for orphan inode, use 0'th array */
1416 	unsigned int max_orphans;		/* max orphan inodes */
1417 
1418 	/* for inode management */
1419 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1420 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1421 	struct mutex flush_lock;		/* for flush exclusion */
1422 
1423 	/* for extent tree cache */
1424 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1425 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1426 	struct list_head extent_list;		/* lru list for shrinker */
1427 	spinlock_t extent_lock;			/* locking extent lru list */
1428 	atomic_t total_ext_tree;		/* extent tree count */
1429 	struct list_head zombie_list;		/* extent zombie tree list */
1430 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1431 	atomic_t total_ext_node;		/* extent info count */
1432 
1433 	/* basic filesystem units */
1434 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1435 	unsigned int log_blocksize;		/* log2 block size */
1436 	unsigned int blocksize;			/* block size */
1437 	unsigned int root_ino_num;		/* root inode number*/
1438 	unsigned int node_ino_num;		/* node inode number*/
1439 	unsigned int meta_ino_num;		/* meta inode number*/
1440 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1441 	unsigned int blocks_per_seg;		/* blocks per segment */
1442 	unsigned int segs_per_sec;		/* segments per section */
1443 	unsigned int secs_per_zone;		/* sections per zone */
1444 	unsigned int total_sections;		/* total section count */
1445 	unsigned int total_node_count;		/* total node block count */
1446 	unsigned int total_valid_node_count;	/* valid node block count */
1447 	loff_t max_file_blocks;			/* max block index of file */
1448 	int dir_level;				/* directory level */
1449 	int readdir_ra;				/* readahead inode in readdir */
1450 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1451 
1452 	block_t user_block_count;		/* # of user blocks */
1453 	block_t total_valid_block_count;	/* # of valid blocks */
1454 	block_t discard_blks;			/* discard command candidats */
1455 	block_t last_valid_block_count;		/* for recovery */
1456 	block_t reserved_blocks;		/* configurable reserved blocks */
1457 	block_t current_reserved_blocks;	/* current reserved blocks */
1458 
1459 	/* Additional tracking for no checkpoint mode */
1460 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1461 
1462 	unsigned int nquota_files;		/* # of quota sysfile */
1463 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1464 
1465 	/* # of pages, see count_type */
1466 	atomic_t nr_pages[NR_COUNT_TYPE];
1467 	/* # of allocated blocks */
1468 	struct percpu_counter alloc_valid_block_count;
1469 
1470 	/* writeback control */
1471 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1472 
1473 	/* valid inode count */
1474 	struct percpu_counter total_valid_inode_count;
1475 
1476 	struct f2fs_mount_info mount_opt;	/* mount options */
1477 
1478 	/* for cleaning operations */
1479 	struct rw_semaphore gc_lock;		/*
1480 						 * semaphore for GC, avoid
1481 						 * race between GC and GC or CP
1482 						 */
1483 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1484 	struct atgc_management am;		/* atgc management */
1485 	unsigned int cur_victim_sec;		/* current victim section num */
1486 	unsigned int gc_mode;			/* current GC state */
1487 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1488 
1489 	/* for skip statistic */
1490 	unsigned int atomic_files;		/* # of opened atomic file */
1491 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1492 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1493 
1494 	/* threshold for gc trials on pinned files */
1495 	u64 gc_pin_file_threshold;
1496 	struct rw_semaphore pin_sem;
1497 
1498 	/* maximum # of trials to find a victim segment for SSR and GC */
1499 	unsigned int max_victim_search;
1500 	/* migration granularity of garbage collection, unit: segment */
1501 	unsigned int migration_granularity;
1502 
1503 	/*
1504 	 * for stat information.
1505 	 * one is for the LFS mode, and the other is for the SSR mode.
1506 	 */
1507 #ifdef CONFIG_F2FS_STAT_FS
1508 	struct f2fs_stat_info *stat_info;	/* FS status information */
1509 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1510 	unsigned int segment_count[2];		/* # of allocated segments */
1511 	unsigned int block_count[2];		/* # of allocated blocks */
1512 	atomic_t inplace_count;		/* # of inplace update */
1513 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1514 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1515 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1516 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1517 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1518 	atomic_t inline_inode;			/* # of inline_data inodes */
1519 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1520 	atomic_t compr_inode;			/* # of compressed inodes */
1521 	atomic64_t compr_blocks;		/* # of compressed blocks */
1522 	atomic_t vw_cnt;			/* # of volatile writes */
1523 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1524 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1525 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1526 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1527 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1528 #endif
1529 	spinlock_t stat_lock;			/* lock for stat operations */
1530 
1531 	/* For app/fs IO statistics */
1532 	spinlock_t iostat_lock;
1533 	unsigned long long rw_iostat[NR_IO_TYPE];
1534 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1535 	bool iostat_enable;
1536 	unsigned long iostat_next_period;
1537 	unsigned int iostat_period_ms;
1538 
1539 	/* to attach REQ_META|REQ_FUA flags */
1540 	unsigned int data_io_flag;
1541 	unsigned int node_io_flag;
1542 
1543 	/* For sysfs suppport */
1544 	struct kobject s_kobj;
1545 	struct completion s_kobj_unregister;
1546 
1547 	/* For shrinker support */
1548 	struct list_head s_list;
1549 	int s_ndevs;				/* number of devices */
1550 	struct f2fs_dev_info *devs;		/* for device list */
1551 	unsigned int dirty_device;		/* for checkpoint data flush */
1552 	spinlock_t dev_lock;			/* protect dirty_device */
1553 	struct mutex umount_mutex;
1554 	unsigned int shrinker_run_no;
1555 
1556 	/* For write statistics */
1557 	u64 sectors_written_start;
1558 	u64 kbytes_written;
1559 
1560 	/* Reference to checksum algorithm driver via cryptoapi */
1561 	struct crypto_shash *s_chksum_driver;
1562 
1563 	/* Precomputed FS UUID checksum for seeding other checksums */
1564 	__u32 s_chksum_seed;
1565 
1566 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1567 
1568 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1569 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1570 
1571 #ifdef CONFIG_F2FS_FS_COMPRESSION
1572 	struct kmem_cache *page_array_slab;	/* page array entry */
1573 	unsigned int page_array_slab_size;	/* default page array slab size */
1574 #endif
1575 };
1576 
1577 struct f2fs_private_dio {
1578 	struct inode *inode;
1579 	void *orig_private;
1580 	bio_end_io_t *orig_end_io;
1581 	bool write;
1582 };
1583 
1584 #ifdef CONFIG_F2FS_FAULT_INJECTION
1585 #define f2fs_show_injection_info(sbi, type)					\
1586 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1587 		KERN_INFO, sbi->sb->s_id,				\
1588 		f2fs_fault_name[type],					\
1589 		__func__, __builtin_return_address(0))
1590 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1591 {
1592 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1593 
1594 	if (!ffi->inject_rate)
1595 		return false;
1596 
1597 	if (!IS_FAULT_SET(ffi, type))
1598 		return false;
1599 
1600 	atomic_inc(&ffi->inject_ops);
1601 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1602 		atomic_set(&ffi->inject_ops, 0);
1603 		return true;
1604 	}
1605 	return false;
1606 }
1607 #else
1608 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1609 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1610 {
1611 	return false;
1612 }
1613 #endif
1614 
1615 /*
1616  * Test if the mounted volume is a multi-device volume.
1617  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1618  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1619  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1620  */
1621 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1622 {
1623 	return sbi->s_ndevs > 1;
1624 }
1625 
1626 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1627 {
1628 	unsigned long now = jiffies;
1629 
1630 	sbi->last_time[type] = now;
1631 
1632 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1633 	if (type == REQ_TIME) {
1634 		sbi->last_time[DISCARD_TIME] = now;
1635 		sbi->last_time[GC_TIME] = now;
1636 	}
1637 }
1638 
1639 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1640 {
1641 	unsigned long interval = sbi->interval_time[type] * HZ;
1642 
1643 	return time_after(jiffies, sbi->last_time[type] + interval);
1644 }
1645 
1646 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1647 						int type)
1648 {
1649 	unsigned long interval = sbi->interval_time[type] * HZ;
1650 	unsigned int wait_ms = 0;
1651 	long delta;
1652 
1653 	delta = (sbi->last_time[type] + interval) - jiffies;
1654 	if (delta > 0)
1655 		wait_ms = jiffies_to_msecs(delta);
1656 
1657 	return wait_ms;
1658 }
1659 
1660 /*
1661  * Inline functions
1662  */
1663 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1664 			      const void *address, unsigned int length)
1665 {
1666 	struct {
1667 		struct shash_desc shash;
1668 		char ctx[4];
1669 	} desc;
1670 	int err;
1671 
1672 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1673 
1674 	desc.shash.tfm = sbi->s_chksum_driver;
1675 	*(u32 *)desc.ctx = crc;
1676 
1677 	err = crypto_shash_update(&desc.shash, address, length);
1678 	BUG_ON(err);
1679 
1680 	return *(u32 *)desc.ctx;
1681 }
1682 
1683 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1684 			   unsigned int length)
1685 {
1686 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1687 }
1688 
1689 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1690 				  void *buf, size_t buf_size)
1691 {
1692 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1693 }
1694 
1695 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1696 			      const void *address, unsigned int length)
1697 {
1698 	return __f2fs_crc32(sbi, crc, address, length);
1699 }
1700 
1701 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1702 {
1703 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1704 }
1705 
1706 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1707 {
1708 	return sb->s_fs_info;
1709 }
1710 
1711 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1712 {
1713 	return F2FS_SB(inode->i_sb);
1714 }
1715 
1716 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1717 {
1718 	return F2FS_I_SB(mapping->host);
1719 }
1720 
1721 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1722 {
1723 	return F2FS_M_SB(page_file_mapping(page));
1724 }
1725 
1726 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1727 {
1728 	return (struct f2fs_super_block *)(sbi->raw_super);
1729 }
1730 
1731 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1732 {
1733 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1734 }
1735 
1736 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1737 {
1738 	return (struct f2fs_node *)page_address(page);
1739 }
1740 
1741 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1742 {
1743 	return &((struct f2fs_node *)page_address(page))->i;
1744 }
1745 
1746 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1747 {
1748 	return (struct f2fs_nm_info *)(sbi->nm_info);
1749 }
1750 
1751 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1752 {
1753 	return (struct f2fs_sm_info *)(sbi->sm_info);
1754 }
1755 
1756 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1757 {
1758 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1759 }
1760 
1761 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1762 {
1763 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1764 }
1765 
1766 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1767 {
1768 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1769 }
1770 
1771 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1772 {
1773 	return sbi->meta_inode->i_mapping;
1774 }
1775 
1776 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1777 {
1778 	return sbi->node_inode->i_mapping;
1779 }
1780 
1781 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1782 {
1783 	return test_bit(type, &sbi->s_flag);
1784 }
1785 
1786 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1787 {
1788 	set_bit(type, &sbi->s_flag);
1789 }
1790 
1791 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1792 {
1793 	clear_bit(type, &sbi->s_flag);
1794 }
1795 
1796 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1797 {
1798 	return le64_to_cpu(cp->checkpoint_ver);
1799 }
1800 
1801 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1802 {
1803 	if (type < F2FS_MAX_QUOTAS)
1804 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1805 	return 0;
1806 }
1807 
1808 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1809 {
1810 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1811 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1812 }
1813 
1814 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1815 {
1816 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1817 
1818 	return ckpt_flags & f;
1819 }
1820 
1821 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1822 {
1823 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1824 }
1825 
1826 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1827 {
1828 	unsigned int ckpt_flags;
1829 
1830 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1831 	ckpt_flags |= f;
1832 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1833 }
1834 
1835 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1836 {
1837 	unsigned long flags;
1838 
1839 	spin_lock_irqsave(&sbi->cp_lock, flags);
1840 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1841 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1842 }
1843 
1844 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1845 {
1846 	unsigned int ckpt_flags;
1847 
1848 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1849 	ckpt_flags &= (~f);
1850 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1851 }
1852 
1853 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1854 {
1855 	unsigned long flags;
1856 
1857 	spin_lock_irqsave(&sbi->cp_lock, flags);
1858 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1859 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1860 }
1861 
1862 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1863 {
1864 	unsigned long flags;
1865 	unsigned char *nat_bits;
1866 
1867 	/*
1868 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1869 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1870 	 * so let's rely on regular fsck or unclean shutdown.
1871 	 */
1872 
1873 	if (lock)
1874 		spin_lock_irqsave(&sbi->cp_lock, flags);
1875 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1876 	nat_bits = NM_I(sbi)->nat_bits;
1877 	NM_I(sbi)->nat_bits = NULL;
1878 	if (lock)
1879 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1880 
1881 	kvfree(nat_bits);
1882 }
1883 
1884 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1885 					struct cp_control *cpc)
1886 {
1887 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1888 
1889 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1890 }
1891 
1892 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1893 {
1894 	down_read(&sbi->cp_rwsem);
1895 }
1896 
1897 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1898 {
1899 	return down_read_trylock(&sbi->cp_rwsem);
1900 }
1901 
1902 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1903 {
1904 	up_read(&sbi->cp_rwsem);
1905 }
1906 
1907 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1908 {
1909 	down_write(&sbi->cp_rwsem);
1910 }
1911 
1912 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1913 {
1914 	up_write(&sbi->cp_rwsem);
1915 }
1916 
1917 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1918 {
1919 	int reason = CP_SYNC;
1920 
1921 	if (test_opt(sbi, FASTBOOT))
1922 		reason = CP_FASTBOOT;
1923 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1924 		reason = CP_UMOUNT;
1925 	return reason;
1926 }
1927 
1928 static inline bool __remain_node_summaries(int reason)
1929 {
1930 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1931 }
1932 
1933 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1934 {
1935 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1936 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1937 }
1938 
1939 /*
1940  * Check whether the inode has blocks or not
1941  */
1942 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1943 {
1944 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1945 
1946 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1947 }
1948 
1949 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1950 {
1951 	return ofs == XATTR_NODE_OFFSET;
1952 }
1953 
1954 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1955 					struct inode *inode, bool cap)
1956 {
1957 	if (!inode)
1958 		return true;
1959 	if (!test_opt(sbi, RESERVE_ROOT))
1960 		return false;
1961 	if (IS_NOQUOTA(inode))
1962 		return true;
1963 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1964 		return true;
1965 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1966 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1967 		return true;
1968 	if (cap && capable(CAP_SYS_RESOURCE))
1969 		return true;
1970 	return false;
1971 }
1972 
1973 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1974 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1975 				 struct inode *inode, blkcnt_t *count)
1976 {
1977 	blkcnt_t diff = 0, release = 0;
1978 	block_t avail_user_block_count;
1979 	int ret;
1980 
1981 	ret = dquot_reserve_block(inode, *count);
1982 	if (ret)
1983 		return ret;
1984 
1985 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1986 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
1987 		release = *count;
1988 		goto release_quota;
1989 	}
1990 
1991 	/*
1992 	 * let's increase this in prior to actual block count change in order
1993 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1994 	 */
1995 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1996 
1997 	spin_lock(&sbi->stat_lock);
1998 	sbi->total_valid_block_count += (block_t)(*count);
1999 	avail_user_block_count = sbi->user_block_count -
2000 					sbi->current_reserved_blocks;
2001 
2002 	if (!__allow_reserved_blocks(sbi, inode, true))
2003 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2004 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2005 		if (avail_user_block_count > sbi->unusable_block_count)
2006 			avail_user_block_count -= sbi->unusable_block_count;
2007 		else
2008 			avail_user_block_count = 0;
2009 	}
2010 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2011 		diff = sbi->total_valid_block_count - avail_user_block_count;
2012 		if (diff > *count)
2013 			diff = *count;
2014 		*count -= diff;
2015 		release = diff;
2016 		sbi->total_valid_block_count -= diff;
2017 		if (!*count) {
2018 			spin_unlock(&sbi->stat_lock);
2019 			goto enospc;
2020 		}
2021 	}
2022 	spin_unlock(&sbi->stat_lock);
2023 
2024 	if (unlikely(release)) {
2025 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2026 		dquot_release_reservation_block(inode, release);
2027 	}
2028 	f2fs_i_blocks_write(inode, *count, true, true);
2029 	return 0;
2030 
2031 enospc:
2032 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2033 release_quota:
2034 	dquot_release_reservation_block(inode, release);
2035 	return -ENOSPC;
2036 }
2037 
2038 __printf(2, 3)
2039 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2040 
2041 #define f2fs_err(sbi, fmt, ...)						\
2042 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2043 #define f2fs_warn(sbi, fmt, ...)					\
2044 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2045 #define f2fs_notice(sbi, fmt, ...)					\
2046 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2047 #define f2fs_info(sbi, fmt, ...)					\
2048 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2049 #define f2fs_debug(sbi, fmt, ...)					\
2050 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2051 
2052 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2053 						struct inode *inode,
2054 						block_t count)
2055 {
2056 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2057 
2058 	spin_lock(&sbi->stat_lock);
2059 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2060 	sbi->total_valid_block_count -= (block_t)count;
2061 	if (sbi->reserved_blocks &&
2062 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2063 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2064 					sbi->current_reserved_blocks + count);
2065 	spin_unlock(&sbi->stat_lock);
2066 	if (unlikely(inode->i_blocks < sectors)) {
2067 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2068 			  inode->i_ino,
2069 			  (unsigned long long)inode->i_blocks,
2070 			  (unsigned long long)sectors);
2071 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2072 		return;
2073 	}
2074 	f2fs_i_blocks_write(inode, count, false, true);
2075 }
2076 
2077 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2078 {
2079 	atomic_inc(&sbi->nr_pages[count_type]);
2080 
2081 	if (count_type == F2FS_DIRTY_DENTS ||
2082 			count_type == F2FS_DIRTY_NODES ||
2083 			count_type == F2FS_DIRTY_META ||
2084 			count_type == F2FS_DIRTY_QDATA ||
2085 			count_type == F2FS_DIRTY_IMETA)
2086 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2087 }
2088 
2089 static inline void inode_inc_dirty_pages(struct inode *inode)
2090 {
2091 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2092 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2093 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2094 	if (IS_NOQUOTA(inode))
2095 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2096 }
2097 
2098 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2099 {
2100 	atomic_dec(&sbi->nr_pages[count_type]);
2101 }
2102 
2103 static inline void inode_dec_dirty_pages(struct inode *inode)
2104 {
2105 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2106 			!S_ISLNK(inode->i_mode))
2107 		return;
2108 
2109 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2110 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2111 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2112 	if (IS_NOQUOTA(inode))
2113 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2114 }
2115 
2116 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2117 {
2118 	return atomic_read(&sbi->nr_pages[count_type]);
2119 }
2120 
2121 static inline int get_dirty_pages(struct inode *inode)
2122 {
2123 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2124 }
2125 
2126 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2127 {
2128 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2129 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2130 						sbi->log_blocks_per_seg;
2131 
2132 	return segs / sbi->segs_per_sec;
2133 }
2134 
2135 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2136 {
2137 	return sbi->total_valid_block_count;
2138 }
2139 
2140 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2141 {
2142 	return sbi->discard_blks;
2143 }
2144 
2145 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2146 {
2147 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2148 
2149 	/* return NAT or SIT bitmap */
2150 	if (flag == NAT_BITMAP)
2151 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2152 	else if (flag == SIT_BITMAP)
2153 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2154 
2155 	return 0;
2156 }
2157 
2158 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2159 {
2160 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2161 }
2162 
2163 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2164 {
2165 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2166 	int offset;
2167 
2168 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2169 		offset = (flag == SIT_BITMAP) ?
2170 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2171 		/*
2172 		 * if large_nat_bitmap feature is enabled, leave checksum
2173 		 * protection for all nat/sit bitmaps.
2174 		 */
2175 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2176 	}
2177 
2178 	if (__cp_payload(sbi) > 0) {
2179 		if (flag == NAT_BITMAP)
2180 			return &ckpt->sit_nat_version_bitmap;
2181 		else
2182 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2183 	} else {
2184 		offset = (flag == NAT_BITMAP) ?
2185 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2186 		return &ckpt->sit_nat_version_bitmap + offset;
2187 	}
2188 }
2189 
2190 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2191 {
2192 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2193 
2194 	if (sbi->cur_cp_pack == 2)
2195 		start_addr += sbi->blocks_per_seg;
2196 	return start_addr;
2197 }
2198 
2199 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2200 {
2201 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2202 
2203 	if (sbi->cur_cp_pack == 1)
2204 		start_addr += sbi->blocks_per_seg;
2205 	return start_addr;
2206 }
2207 
2208 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2209 {
2210 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2211 }
2212 
2213 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2214 {
2215 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2216 }
2217 
2218 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2219 					struct inode *inode, bool is_inode)
2220 {
2221 	block_t	valid_block_count;
2222 	unsigned int valid_node_count, user_block_count;
2223 	int err;
2224 
2225 	if (is_inode) {
2226 		if (inode) {
2227 			err = dquot_alloc_inode(inode);
2228 			if (err)
2229 				return err;
2230 		}
2231 	} else {
2232 		err = dquot_reserve_block(inode, 1);
2233 		if (err)
2234 			return err;
2235 	}
2236 
2237 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2238 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2239 		goto enospc;
2240 	}
2241 
2242 	spin_lock(&sbi->stat_lock);
2243 
2244 	valid_block_count = sbi->total_valid_block_count +
2245 					sbi->current_reserved_blocks + 1;
2246 
2247 	if (!__allow_reserved_blocks(sbi, inode, false))
2248 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2249 	user_block_count = sbi->user_block_count;
2250 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2251 		user_block_count -= sbi->unusable_block_count;
2252 
2253 	if (unlikely(valid_block_count > user_block_count)) {
2254 		spin_unlock(&sbi->stat_lock);
2255 		goto enospc;
2256 	}
2257 
2258 	valid_node_count = sbi->total_valid_node_count + 1;
2259 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2260 		spin_unlock(&sbi->stat_lock);
2261 		goto enospc;
2262 	}
2263 
2264 	sbi->total_valid_node_count++;
2265 	sbi->total_valid_block_count++;
2266 	spin_unlock(&sbi->stat_lock);
2267 
2268 	if (inode) {
2269 		if (is_inode)
2270 			f2fs_mark_inode_dirty_sync(inode, true);
2271 		else
2272 			f2fs_i_blocks_write(inode, 1, true, true);
2273 	}
2274 
2275 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2276 	return 0;
2277 
2278 enospc:
2279 	if (is_inode) {
2280 		if (inode)
2281 			dquot_free_inode(inode);
2282 	} else {
2283 		dquot_release_reservation_block(inode, 1);
2284 	}
2285 	return -ENOSPC;
2286 }
2287 
2288 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2289 					struct inode *inode, bool is_inode)
2290 {
2291 	spin_lock(&sbi->stat_lock);
2292 
2293 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2294 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2295 
2296 	sbi->total_valid_node_count--;
2297 	sbi->total_valid_block_count--;
2298 	if (sbi->reserved_blocks &&
2299 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2300 		sbi->current_reserved_blocks++;
2301 
2302 	spin_unlock(&sbi->stat_lock);
2303 
2304 	if (is_inode) {
2305 		dquot_free_inode(inode);
2306 	} else {
2307 		if (unlikely(inode->i_blocks == 0)) {
2308 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2309 				  inode->i_ino,
2310 				  (unsigned long long)inode->i_blocks);
2311 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2312 			return;
2313 		}
2314 		f2fs_i_blocks_write(inode, 1, false, true);
2315 	}
2316 }
2317 
2318 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2319 {
2320 	return sbi->total_valid_node_count;
2321 }
2322 
2323 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2324 {
2325 	percpu_counter_inc(&sbi->total_valid_inode_count);
2326 }
2327 
2328 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2329 {
2330 	percpu_counter_dec(&sbi->total_valid_inode_count);
2331 }
2332 
2333 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2334 {
2335 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2336 }
2337 
2338 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2339 						pgoff_t index, bool for_write)
2340 {
2341 	struct page *page;
2342 
2343 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2344 		if (!for_write)
2345 			page = find_get_page_flags(mapping, index,
2346 							FGP_LOCK | FGP_ACCESSED);
2347 		else
2348 			page = find_lock_page(mapping, index);
2349 		if (page)
2350 			return page;
2351 
2352 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2353 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2354 							FAULT_PAGE_ALLOC);
2355 			return NULL;
2356 		}
2357 	}
2358 
2359 	if (!for_write)
2360 		return grab_cache_page(mapping, index);
2361 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2362 }
2363 
2364 static inline struct page *f2fs_pagecache_get_page(
2365 				struct address_space *mapping, pgoff_t index,
2366 				int fgp_flags, gfp_t gfp_mask)
2367 {
2368 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2369 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2370 		return NULL;
2371 	}
2372 
2373 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2374 }
2375 
2376 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2377 {
2378 	char *src_kaddr = kmap(src);
2379 	char *dst_kaddr = kmap(dst);
2380 
2381 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2382 	kunmap(dst);
2383 	kunmap(src);
2384 }
2385 
2386 static inline void f2fs_put_page(struct page *page, int unlock)
2387 {
2388 	if (!page)
2389 		return;
2390 
2391 	if (unlock) {
2392 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2393 		unlock_page(page);
2394 	}
2395 	put_page(page);
2396 }
2397 
2398 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2399 {
2400 	if (dn->node_page)
2401 		f2fs_put_page(dn->node_page, 1);
2402 	if (dn->inode_page && dn->node_page != dn->inode_page)
2403 		f2fs_put_page(dn->inode_page, 0);
2404 	dn->node_page = NULL;
2405 	dn->inode_page = NULL;
2406 }
2407 
2408 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2409 					size_t size)
2410 {
2411 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2412 }
2413 
2414 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2415 						gfp_t flags)
2416 {
2417 	void *entry;
2418 
2419 	entry = kmem_cache_alloc(cachep, flags);
2420 	if (!entry)
2421 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2422 	return entry;
2423 }
2424 
2425 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2426 {
2427 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2428 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2429 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2430 		get_pages(sbi, F2FS_DIO_READ) ||
2431 		get_pages(sbi, F2FS_DIO_WRITE))
2432 		return true;
2433 
2434 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2435 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2436 		return true;
2437 
2438 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2439 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2440 		return true;
2441 	return false;
2442 }
2443 
2444 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2445 {
2446 	if (sbi->gc_mode == GC_URGENT_HIGH)
2447 		return true;
2448 
2449 	if (is_inflight_io(sbi, type))
2450 		return false;
2451 
2452 	if (sbi->gc_mode == GC_URGENT_LOW &&
2453 			(type == DISCARD_TIME || type == GC_TIME))
2454 		return true;
2455 
2456 	return f2fs_time_over(sbi, type);
2457 }
2458 
2459 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2460 				unsigned long index, void *item)
2461 {
2462 	while (radix_tree_insert(root, index, item))
2463 		cond_resched();
2464 }
2465 
2466 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2467 
2468 static inline bool IS_INODE(struct page *page)
2469 {
2470 	struct f2fs_node *p = F2FS_NODE(page);
2471 
2472 	return RAW_IS_INODE(p);
2473 }
2474 
2475 static inline int offset_in_addr(struct f2fs_inode *i)
2476 {
2477 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2478 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2479 }
2480 
2481 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2482 {
2483 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2484 }
2485 
2486 static inline int f2fs_has_extra_attr(struct inode *inode);
2487 static inline block_t data_blkaddr(struct inode *inode,
2488 			struct page *node_page, unsigned int offset)
2489 {
2490 	struct f2fs_node *raw_node;
2491 	__le32 *addr_array;
2492 	int base = 0;
2493 	bool is_inode = IS_INODE(node_page);
2494 
2495 	raw_node = F2FS_NODE(node_page);
2496 
2497 	if (is_inode) {
2498 		if (!inode)
2499 			/* from GC path only */
2500 			base = offset_in_addr(&raw_node->i);
2501 		else if (f2fs_has_extra_attr(inode))
2502 			base = get_extra_isize(inode);
2503 	}
2504 
2505 	addr_array = blkaddr_in_node(raw_node);
2506 	return le32_to_cpu(addr_array[base + offset]);
2507 }
2508 
2509 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2510 {
2511 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2512 }
2513 
2514 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2515 {
2516 	int mask;
2517 
2518 	addr += (nr >> 3);
2519 	mask = 1 << (7 - (nr & 0x07));
2520 	return mask & *addr;
2521 }
2522 
2523 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2524 {
2525 	int mask;
2526 
2527 	addr += (nr >> 3);
2528 	mask = 1 << (7 - (nr & 0x07));
2529 	*addr |= mask;
2530 }
2531 
2532 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2533 {
2534 	int mask;
2535 
2536 	addr += (nr >> 3);
2537 	mask = 1 << (7 - (nr & 0x07));
2538 	*addr &= ~mask;
2539 }
2540 
2541 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2542 {
2543 	int mask;
2544 	int ret;
2545 
2546 	addr += (nr >> 3);
2547 	mask = 1 << (7 - (nr & 0x07));
2548 	ret = mask & *addr;
2549 	*addr |= mask;
2550 	return ret;
2551 }
2552 
2553 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2554 {
2555 	int mask;
2556 	int ret;
2557 
2558 	addr += (nr >> 3);
2559 	mask = 1 << (7 - (nr & 0x07));
2560 	ret = mask & *addr;
2561 	*addr &= ~mask;
2562 	return ret;
2563 }
2564 
2565 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2566 {
2567 	int mask;
2568 
2569 	addr += (nr >> 3);
2570 	mask = 1 << (7 - (nr & 0x07));
2571 	*addr ^= mask;
2572 }
2573 
2574 /*
2575  * On-disk inode flags (f2fs_inode::i_flags)
2576  */
2577 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2578 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2579 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2580 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2581 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2582 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2583 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2584 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2585 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2586 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2587 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2588 
2589 /* Flags that should be inherited by new inodes from their parent. */
2590 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2591 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2592 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2593 
2594 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2595 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2596 				F2FS_CASEFOLD_FL))
2597 
2598 /* Flags that are appropriate for non-directories/regular files. */
2599 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2600 
2601 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2602 {
2603 	if (S_ISDIR(mode))
2604 		return flags;
2605 	else if (S_ISREG(mode))
2606 		return flags & F2FS_REG_FLMASK;
2607 	else
2608 		return flags & F2FS_OTHER_FLMASK;
2609 }
2610 
2611 static inline void __mark_inode_dirty_flag(struct inode *inode,
2612 						int flag, bool set)
2613 {
2614 	switch (flag) {
2615 	case FI_INLINE_XATTR:
2616 	case FI_INLINE_DATA:
2617 	case FI_INLINE_DENTRY:
2618 	case FI_NEW_INODE:
2619 		if (set)
2620 			return;
2621 		fallthrough;
2622 	case FI_DATA_EXIST:
2623 	case FI_INLINE_DOTS:
2624 	case FI_PIN_FILE:
2625 		f2fs_mark_inode_dirty_sync(inode, true);
2626 	}
2627 }
2628 
2629 static inline void set_inode_flag(struct inode *inode, int flag)
2630 {
2631 	set_bit(flag, F2FS_I(inode)->flags);
2632 	__mark_inode_dirty_flag(inode, flag, true);
2633 }
2634 
2635 static inline int is_inode_flag_set(struct inode *inode, int flag)
2636 {
2637 	return test_bit(flag, F2FS_I(inode)->flags);
2638 }
2639 
2640 static inline void clear_inode_flag(struct inode *inode, int flag)
2641 {
2642 	clear_bit(flag, F2FS_I(inode)->flags);
2643 	__mark_inode_dirty_flag(inode, flag, false);
2644 }
2645 
2646 static inline bool f2fs_verity_in_progress(struct inode *inode)
2647 {
2648 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2649 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2650 }
2651 
2652 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2653 {
2654 	F2FS_I(inode)->i_acl_mode = mode;
2655 	set_inode_flag(inode, FI_ACL_MODE);
2656 	f2fs_mark_inode_dirty_sync(inode, false);
2657 }
2658 
2659 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2660 {
2661 	if (inc)
2662 		inc_nlink(inode);
2663 	else
2664 		drop_nlink(inode);
2665 	f2fs_mark_inode_dirty_sync(inode, true);
2666 }
2667 
2668 static inline void f2fs_i_blocks_write(struct inode *inode,
2669 					block_t diff, bool add, bool claim)
2670 {
2671 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2672 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2673 
2674 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2675 	if (add) {
2676 		if (claim)
2677 			dquot_claim_block(inode, diff);
2678 		else
2679 			dquot_alloc_block_nofail(inode, diff);
2680 	} else {
2681 		dquot_free_block(inode, diff);
2682 	}
2683 
2684 	f2fs_mark_inode_dirty_sync(inode, true);
2685 	if (clean || recover)
2686 		set_inode_flag(inode, FI_AUTO_RECOVER);
2687 }
2688 
2689 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2690 {
2691 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2692 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2693 
2694 	if (i_size_read(inode) == i_size)
2695 		return;
2696 
2697 	i_size_write(inode, i_size);
2698 	f2fs_mark_inode_dirty_sync(inode, true);
2699 	if (clean || recover)
2700 		set_inode_flag(inode, FI_AUTO_RECOVER);
2701 }
2702 
2703 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2704 {
2705 	F2FS_I(inode)->i_current_depth = depth;
2706 	f2fs_mark_inode_dirty_sync(inode, true);
2707 }
2708 
2709 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2710 					unsigned int count)
2711 {
2712 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2713 	f2fs_mark_inode_dirty_sync(inode, true);
2714 }
2715 
2716 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2717 {
2718 	F2FS_I(inode)->i_xattr_nid = xnid;
2719 	f2fs_mark_inode_dirty_sync(inode, true);
2720 }
2721 
2722 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2723 {
2724 	F2FS_I(inode)->i_pino = pino;
2725 	f2fs_mark_inode_dirty_sync(inode, true);
2726 }
2727 
2728 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2729 {
2730 	struct f2fs_inode_info *fi = F2FS_I(inode);
2731 
2732 	if (ri->i_inline & F2FS_INLINE_XATTR)
2733 		set_bit(FI_INLINE_XATTR, fi->flags);
2734 	if (ri->i_inline & F2FS_INLINE_DATA)
2735 		set_bit(FI_INLINE_DATA, fi->flags);
2736 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2737 		set_bit(FI_INLINE_DENTRY, fi->flags);
2738 	if (ri->i_inline & F2FS_DATA_EXIST)
2739 		set_bit(FI_DATA_EXIST, fi->flags);
2740 	if (ri->i_inline & F2FS_INLINE_DOTS)
2741 		set_bit(FI_INLINE_DOTS, fi->flags);
2742 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2743 		set_bit(FI_EXTRA_ATTR, fi->flags);
2744 	if (ri->i_inline & F2FS_PIN_FILE)
2745 		set_bit(FI_PIN_FILE, fi->flags);
2746 }
2747 
2748 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2749 {
2750 	ri->i_inline = 0;
2751 
2752 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2753 		ri->i_inline |= F2FS_INLINE_XATTR;
2754 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2755 		ri->i_inline |= F2FS_INLINE_DATA;
2756 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2757 		ri->i_inline |= F2FS_INLINE_DENTRY;
2758 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2759 		ri->i_inline |= F2FS_DATA_EXIST;
2760 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2761 		ri->i_inline |= F2FS_INLINE_DOTS;
2762 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2763 		ri->i_inline |= F2FS_EXTRA_ATTR;
2764 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2765 		ri->i_inline |= F2FS_PIN_FILE;
2766 }
2767 
2768 static inline int f2fs_has_extra_attr(struct inode *inode)
2769 {
2770 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2771 }
2772 
2773 static inline int f2fs_has_inline_xattr(struct inode *inode)
2774 {
2775 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2776 }
2777 
2778 static inline int f2fs_compressed_file(struct inode *inode)
2779 {
2780 	return S_ISREG(inode->i_mode) &&
2781 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2782 }
2783 
2784 static inline bool f2fs_need_compress_data(struct inode *inode)
2785 {
2786 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2787 
2788 	if (!f2fs_compressed_file(inode))
2789 		return false;
2790 
2791 	if (compress_mode == COMPR_MODE_FS)
2792 		return true;
2793 	else if (compress_mode == COMPR_MODE_USER &&
2794 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2795 		return true;
2796 
2797 	return false;
2798 }
2799 
2800 static inline unsigned int addrs_per_inode(struct inode *inode)
2801 {
2802 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2803 				get_inline_xattr_addrs(inode);
2804 
2805 	if (!f2fs_compressed_file(inode))
2806 		return addrs;
2807 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2808 }
2809 
2810 static inline unsigned int addrs_per_block(struct inode *inode)
2811 {
2812 	if (!f2fs_compressed_file(inode))
2813 		return DEF_ADDRS_PER_BLOCK;
2814 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2815 }
2816 
2817 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2818 {
2819 	struct f2fs_inode *ri = F2FS_INODE(page);
2820 
2821 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2822 					get_inline_xattr_addrs(inode)]);
2823 }
2824 
2825 static inline int inline_xattr_size(struct inode *inode)
2826 {
2827 	if (f2fs_has_inline_xattr(inode))
2828 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2829 	return 0;
2830 }
2831 
2832 static inline int f2fs_has_inline_data(struct inode *inode)
2833 {
2834 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2835 }
2836 
2837 static inline int f2fs_exist_data(struct inode *inode)
2838 {
2839 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2840 }
2841 
2842 static inline int f2fs_has_inline_dots(struct inode *inode)
2843 {
2844 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2845 }
2846 
2847 static inline int f2fs_is_mmap_file(struct inode *inode)
2848 {
2849 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2850 }
2851 
2852 static inline bool f2fs_is_pinned_file(struct inode *inode)
2853 {
2854 	return is_inode_flag_set(inode, FI_PIN_FILE);
2855 }
2856 
2857 static inline bool f2fs_is_atomic_file(struct inode *inode)
2858 {
2859 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2860 }
2861 
2862 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2863 {
2864 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2865 }
2866 
2867 static inline bool f2fs_is_volatile_file(struct inode *inode)
2868 {
2869 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2870 }
2871 
2872 static inline bool f2fs_is_first_block_written(struct inode *inode)
2873 {
2874 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2875 }
2876 
2877 static inline bool f2fs_is_drop_cache(struct inode *inode)
2878 {
2879 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2880 }
2881 
2882 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2883 {
2884 	struct f2fs_inode *ri = F2FS_INODE(page);
2885 	int extra_size = get_extra_isize(inode);
2886 
2887 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2888 }
2889 
2890 static inline int f2fs_has_inline_dentry(struct inode *inode)
2891 {
2892 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2893 }
2894 
2895 static inline int is_file(struct inode *inode, int type)
2896 {
2897 	return F2FS_I(inode)->i_advise & type;
2898 }
2899 
2900 static inline void set_file(struct inode *inode, int type)
2901 {
2902 	F2FS_I(inode)->i_advise |= type;
2903 	f2fs_mark_inode_dirty_sync(inode, true);
2904 }
2905 
2906 static inline void clear_file(struct inode *inode, int type)
2907 {
2908 	F2FS_I(inode)->i_advise &= ~type;
2909 	f2fs_mark_inode_dirty_sync(inode, true);
2910 }
2911 
2912 static inline bool f2fs_is_time_consistent(struct inode *inode)
2913 {
2914 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2915 		return false;
2916 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2917 		return false;
2918 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2919 		return false;
2920 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2921 						&F2FS_I(inode)->i_crtime))
2922 		return false;
2923 	return true;
2924 }
2925 
2926 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2927 {
2928 	bool ret;
2929 
2930 	if (dsync) {
2931 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2932 
2933 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2934 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2935 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2936 		return ret;
2937 	}
2938 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2939 			file_keep_isize(inode) ||
2940 			i_size_read(inode) & ~PAGE_MASK)
2941 		return false;
2942 
2943 	if (!f2fs_is_time_consistent(inode))
2944 		return false;
2945 
2946 	spin_lock(&F2FS_I(inode)->i_size_lock);
2947 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2948 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2949 
2950 	return ret;
2951 }
2952 
2953 static inline bool f2fs_readonly(struct super_block *sb)
2954 {
2955 	return sb_rdonly(sb);
2956 }
2957 
2958 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2959 {
2960 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2961 }
2962 
2963 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2964 {
2965 	if (len == 1 && name[0] == '.')
2966 		return true;
2967 
2968 	if (len == 2 && name[0] == '.' && name[1] == '.')
2969 		return true;
2970 
2971 	return false;
2972 }
2973 
2974 static inline bool f2fs_may_extent_tree(struct inode *inode)
2975 {
2976 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2977 
2978 	if (!test_opt(sbi, EXTENT_CACHE) ||
2979 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
2980 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2981 		return false;
2982 
2983 	/*
2984 	 * for recovered files during mount do not create extents
2985 	 * if shrinker is not registered.
2986 	 */
2987 	if (list_empty(&sbi->s_list))
2988 		return false;
2989 
2990 	return S_ISREG(inode->i_mode);
2991 }
2992 
2993 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2994 					size_t size, gfp_t flags)
2995 {
2996 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2997 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2998 		return NULL;
2999 	}
3000 
3001 	return kmalloc(size, flags);
3002 }
3003 
3004 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3005 					size_t size, gfp_t flags)
3006 {
3007 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3008 }
3009 
3010 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3011 					size_t size, gfp_t flags)
3012 {
3013 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3014 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3015 		return NULL;
3016 	}
3017 
3018 	return kvmalloc(size, flags);
3019 }
3020 
3021 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3022 					size_t size, gfp_t flags)
3023 {
3024 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3025 }
3026 
3027 static inline int get_extra_isize(struct inode *inode)
3028 {
3029 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3030 }
3031 
3032 static inline int get_inline_xattr_addrs(struct inode *inode)
3033 {
3034 	return F2FS_I(inode)->i_inline_xattr_size;
3035 }
3036 
3037 #define f2fs_get_inode_mode(i) \
3038 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3039 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3040 
3041 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3042 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3043 	offsetof(struct f2fs_inode, i_extra_isize))	\
3044 
3045 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3046 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3047 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3048 		sizeof((f2fs_inode)->field))			\
3049 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3050 
3051 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3052 #define MIN_IOSTAT_PERIOD_MS		100
3053 /* maximum period of iostat tracing is 1 day */
3054 #define MAX_IOSTAT_PERIOD_MS		8640000
3055 
3056 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3057 {
3058 	int i;
3059 
3060 	spin_lock(&sbi->iostat_lock);
3061 	for (i = 0; i < NR_IO_TYPE; i++) {
3062 		sbi->rw_iostat[i] = 0;
3063 		sbi->prev_rw_iostat[i] = 0;
3064 	}
3065 	spin_unlock(&sbi->iostat_lock);
3066 }
3067 
3068 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3069 
3070 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3071 			enum iostat_type type, unsigned long long io_bytes)
3072 {
3073 	if (!sbi->iostat_enable)
3074 		return;
3075 	spin_lock(&sbi->iostat_lock);
3076 	sbi->rw_iostat[type] += io_bytes;
3077 
3078 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3079 		sbi->rw_iostat[APP_BUFFERED_IO] =
3080 			sbi->rw_iostat[APP_WRITE_IO] -
3081 			sbi->rw_iostat[APP_DIRECT_IO];
3082 
3083 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3084 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3085 			sbi->rw_iostat[APP_READ_IO] -
3086 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3087 	spin_unlock(&sbi->iostat_lock);
3088 
3089 	f2fs_record_iostat(sbi);
3090 }
3091 
3092 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3093 
3094 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3095 
3096 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3097 					block_t blkaddr, int type);
3098 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3099 					block_t blkaddr, int type)
3100 {
3101 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3102 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3103 			 blkaddr, type);
3104 		f2fs_bug_on(sbi, 1);
3105 	}
3106 }
3107 
3108 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3109 {
3110 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3111 			blkaddr == COMPRESS_ADDR)
3112 		return false;
3113 	return true;
3114 }
3115 
3116 static inline void f2fs_set_page_private(struct page *page,
3117 						unsigned long data)
3118 {
3119 	if (PagePrivate(page))
3120 		return;
3121 
3122 	attach_page_private(page, (void *)data);
3123 }
3124 
3125 static inline void f2fs_clear_page_private(struct page *page)
3126 {
3127 	detach_page_private(page);
3128 }
3129 
3130 /*
3131  * file.c
3132  */
3133 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3134 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3135 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3136 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3137 int f2fs_truncate(struct inode *inode);
3138 int f2fs_getattr(const struct path *path, struct kstat *stat,
3139 			u32 request_mask, unsigned int flags);
3140 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3141 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3142 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3143 int f2fs_precache_extents(struct inode *inode);
3144 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3145 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3146 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3147 int f2fs_pin_file_control(struct inode *inode, bool inc);
3148 
3149 /*
3150  * inode.c
3151  */
3152 void f2fs_set_inode_flags(struct inode *inode);
3153 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3154 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3155 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3156 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3157 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3158 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3159 void f2fs_update_inode_page(struct inode *inode);
3160 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3161 void f2fs_evict_inode(struct inode *inode);
3162 void f2fs_handle_failed_inode(struct inode *inode);
3163 
3164 /*
3165  * namei.c
3166  */
3167 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3168 							bool hot, bool set);
3169 struct dentry *f2fs_get_parent(struct dentry *child);
3170 
3171 /*
3172  * dir.c
3173  */
3174 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3175 int f2fs_init_casefolded_name(const struct inode *dir,
3176 			      struct f2fs_filename *fname);
3177 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3178 			int lookup, struct f2fs_filename *fname);
3179 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3180 			struct f2fs_filename *fname);
3181 void f2fs_free_filename(struct f2fs_filename *fname);
3182 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3183 			const struct f2fs_filename *fname, int *max_slots);
3184 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3185 			unsigned int start_pos, struct fscrypt_str *fstr);
3186 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3187 			struct f2fs_dentry_ptr *d);
3188 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3189 			const struct f2fs_filename *fname, struct page *dpage);
3190 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3191 			unsigned int current_depth);
3192 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3193 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3194 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3195 					 const struct f2fs_filename *fname,
3196 					 struct page **res_page);
3197 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3198 			const struct qstr *child, struct page **res_page);
3199 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3200 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3201 			struct page **page);
3202 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3203 			struct page *page, struct inode *inode);
3204 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3205 			  const struct f2fs_filename *fname);
3206 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3207 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3208 			unsigned int bit_pos);
3209 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3210 			struct inode *inode, nid_t ino, umode_t mode);
3211 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3212 			struct inode *inode, nid_t ino, umode_t mode);
3213 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3214 			struct inode *inode, nid_t ino, umode_t mode);
3215 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3216 			struct inode *dir, struct inode *inode);
3217 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3218 bool f2fs_empty_dir(struct inode *dir);
3219 
3220 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3221 {
3222 	if (fscrypt_is_nokey_name(dentry))
3223 		return -ENOKEY;
3224 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3225 				inode, inode->i_ino, inode->i_mode);
3226 }
3227 
3228 /*
3229  * super.c
3230  */
3231 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3232 void f2fs_inode_synced(struct inode *inode);
3233 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3234 int f2fs_quota_sync(struct super_block *sb, int type);
3235 void f2fs_quota_off_umount(struct super_block *sb);
3236 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3237 int f2fs_sync_fs(struct super_block *sb, int sync);
3238 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3239 
3240 /*
3241  * hash.c
3242  */
3243 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3244 
3245 /*
3246  * node.c
3247  */
3248 struct dnode_of_data;
3249 struct node_info;
3250 
3251 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3252 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3253 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3254 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3255 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3256 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3257 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3258 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3259 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3260 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3261 						struct node_info *ni);
3262 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3263 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3264 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3265 int f2fs_truncate_xattr_node(struct inode *inode);
3266 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3267 					unsigned int seq_id);
3268 int f2fs_remove_inode_page(struct inode *inode);
3269 struct page *f2fs_new_inode_page(struct inode *inode);
3270 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3271 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3272 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3273 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3274 int f2fs_move_node_page(struct page *node_page, int gc_type);
3275 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3276 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3277 			struct writeback_control *wbc, bool atomic,
3278 			unsigned int *seq_id);
3279 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3280 			struct writeback_control *wbc,
3281 			bool do_balance, enum iostat_type io_type);
3282 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3283 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3284 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3285 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3286 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3287 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3288 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3289 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3290 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3291 			unsigned int segno, struct f2fs_summary_block *sum);
3292 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3293 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3294 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3295 int __init f2fs_create_node_manager_caches(void);
3296 void f2fs_destroy_node_manager_caches(void);
3297 
3298 /*
3299  * segment.c
3300  */
3301 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3302 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3303 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3304 void f2fs_drop_inmem_pages(struct inode *inode);
3305 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3306 int f2fs_commit_inmem_pages(struct inode *inode);
3307 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3308 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3309 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3310 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3311 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3312 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3313 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3314 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3315 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3316 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3317 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3318 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3319 					struct cp_control *cpc);
3320 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3321 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3322 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3323 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3324 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3325 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3326 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3327 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3328 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3329 			unsigned int *newseg, bool new_sec, int dir);
3330 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3331 					unsigned int start, unsigned int end);
3332 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3333 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3334 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3335 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3336 					struct cp_control *cpc);
3337 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3338 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3339 					block_t blk_addr);
3340 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3341 						enum iostat_type io_type);
3342 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3343 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3344 			struct f2fs_io_info *fio);
3345 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3346 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3347 			block_t old_blkaddr, block_t new_blkaddr,
3348 			bool recover_curseg, bool recover_newaddr,
3349 			bool from_gc);
3350 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3351 			block_t old_addr, block_t new_addr,
3352 			unsigned char version, bool recover_curseg,
3353 			bool recover_newaddr);
3354 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3355 			block_t old_blkaddr, block_t *new_blkaddr,
3356 			struct f2fs_summary *sum, int type,
3357 			struct f2fs_io_info *fio);
3358 void f2fs_wait_on_page_writeback(struct page *page,
3359 			enum page_type type, bool ordered, bool locked);
3360 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3361 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3362 								block_t len);
3363 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3364 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3365 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3366 			unsigned int val, int alloc);
3367 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3368 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3369 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3370 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3371 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3372 int __init f2fs_create_segment_manager_caches(void);
3373 void f2fs_destroy_segment_manager_caches(void);
3374 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3375 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3376 			enum page_type type, enum temp_type temp);
3377 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3378 			unsigned int segno);
3379 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3380 			unsigned int segno);
3381 
3382 /*
3383  * checkpoint.c
3384  */
3385 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3386 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3387 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3388 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3389 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3390 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3391 					block_t blkaddr, int type);
3392 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3393 			int type, bool sync);
3394 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3395 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3396 			long nr_to_write, enum iostat_type io_type);
3397 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3398 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3399 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3400 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3401 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3402 					unsigned int devidx, int type);
3403 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3404 					unsigned int devidx, int type);
3405 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3406 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3407 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3408 void f2fs_add_orphan_inode(struct inode *inode);
3409 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3410 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3411 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3412 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3413 void f2fs_remove_dirty_inode(struct inode *inode);
3414 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3415 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3416 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3417 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3418 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3419 int __init f2fs_create_checkpoint_caches(void);
3420 void f2fs_destroy_checkpoint_caches(void);
3421 
3422 /*
3423  * data.c
3424  */
3425 int __init f2fs_init_bioset(void);
3426 void f2fs_destroy_bioset(void);
3427 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3428 int f2fs_init_bio_entry_cache(void);
3429 void f2fs_destroy_bio_entry_cache(void);
3430 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3431 				struct bio *bio, enum page_type type);
3432 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3433 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3434 				struct inode *inode, struct page *page,
3435 				nid_t ino, enum page_type type);
3436 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3437 					struct bio **bio, struct page *page);
3438 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3439 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3440 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3441 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3442 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3443 			block_t blk_addr, struct bio *bio);
3444 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3445 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3446 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3447 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3448 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3449 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3450 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3451 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3452 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3453 			int op_flags, bool for_write);
3454 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3455 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3456 			bool for_write);
3457 struct page *f2fs_get_new_data_page(struct inode *inode,
3458 			struct page *ipage, pgoff_t index, bool new_i_size);
3459 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3460 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3461 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3462 			int create, int flag);
3463 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3464 			u64 start, u64 len);
3465 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3466 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3467 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3468 int f2fs_write_single_data_page(struct page *page, int *submitted,
3469 				struct bio **bio, sector_t *last_block,
3470 				struct writeback_control *wbc,
3471 				enum iostat_type io_type,
3472 				int compr_blocks);
3473 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3474 			unsigned int length);
3475 int f2fs_release_page(struct page *page, gfp_t wait);
3476 #ifdef CONFIG_MIGRATION
3477 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3478 			struct page *page, enum migrate_mode mode);
3479 #endif
3480 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3481 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3482 int f2fs_init_post_read_processing(void);
3483 void f2fs_destroy_post_read_processing(void);
3484 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3485 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3486 
3487 /*
3488  * gc.c
3489  */
3490 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3491 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3492 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3493 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3494 			unsigned int segno);
3495 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3496 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3497 int __init f2fs_create_garbage_collection_cache(void);
3498 void f2fs_destroy_garbage_collection_cache(void);
3499 
3500 /*
3501  * recovery.c
3502  */
3503 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3504 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3505 
3506 /*
3507  * debug.c
3508  */
3509 #ifdef CONFIG_F2FS_STAT_FS
3510 struct f2fs_stat_info {
3511 	struct list_head stat_list;
3512 	struct f2fs_sb_info *sbi;
3513 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3514 	int main_area_segs, main_area_sections, main_area_zones;
3515 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3516 	unsigned long long hit_total, total_ext;
3517 	int ext_tree, zombie_tree, ext_node;
3518 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3519 	int ndirty_data, ndirty_qdata;
3520 	int inmem_pages;
3521 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3522 	int nats, dirty_nats, sits, dirty_sits;
3523 	int free_nids, avail_nids, alloc_nids;
3524 	int total_count, utilization;
3525 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3526 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3527 	int nr_dio_read, nr_dio_write;
3528 	unsigned int io_skip_bggc, other_skip_bggc;
3529 	int nr_flushing, nr_flushed, flush_list_empty;
3530 	int nr_discarding, nr_discarded;
3531 	int nr_discard_cmd;
3532 	unsigned int undiscard_blks;
3533 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3534 	int compr_inode;
3535 	unsigned long long compr_blocks;
3536 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3537 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3538 	unsigned int bimodal, avg_vblocks;
3539 	int util_free, util_valid, util_invalid;
3540 	int rsvd_segs, overp_segs;
3541 	int dirty_count, node_pages, meta_pages;
3542 	int prefree_count, call_count, cp_count, bg_cp_count;
3543 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3544 	int bg_node_segs, bg_data_segs;
3545 	int tot_blks, data_blks, node_blks;
3546 	int bg_data_blks, bg_node_blks;
3547 	unsigned long long skipped_atomic_files[2];
3548 	int curseg[NR_CURSEG_TYPE];
3549 	int cursec[NR_CURSEG_TYPE];
3550 	int curzone[NR_CURSEG_TYPE];
3551 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3552 	unsigned int full_seg[NR_CURSEG_TYPE];
3553 	unsigned int valid_blks[NR_CURSEG_TYPE];
3554 
3555 	unsigned int meta_count[META_MAX];
3556 	unsigned int segment_count[2];
3557 	unsigned int block_count[2];
3558 	unsigned int inplace_count;
3559 	unsigned long long base_mem, cache_mem, page_mem;
3560 };
3561 
3562 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3563 {
3564 	return (struct f2fs_stat_info *)sbi->stat_info;
3565 }
3566 
3567 #define stat_inc_cp_count(si)		((si)->cp_count++)
3568 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3569 #define stat_inc_call_count(si)		((si)->call_count++)
3570 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3571 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3572 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3573 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3574 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3575 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3576 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3577 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3578 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3579 #define stat_inc_inline_xattr(inode)					\
3580 	do {								\
3581 		if (f2fs_has_inline_xattr(inode))			\
3582 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3583 	} while (0)
3584 #define stat_dec_inline_xattr(inode)					\
3585 	do {								\
3586 		if (f2fs_has_inline_xattr(inode))			\
3587 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3588 	} while (0)
3589 #define stat_inc_inline_inode(inode)					\
3590 	do {								\
3591 		if (f2fs_has_inline_data(inode))			\
3592 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3593 	} while (0)
3594 #define stat_dec_inline_inode(inode)					\
3595 	do {								\
3596 		if (f2fs_has_inline_data(inode))			\
3597 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3598 	} while (0)
3599 #define stat_inc_inline_dir(inode)					\
3600 	do {								\
3601 		if (f2fs_has_inline_dentry(inode))			\
3602 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3603 	} while (0)
3604 #define stat_dec_inline_dir(inode)					\
3605 	do {								\
3606 		if (f2fs_has_inline_dentry(inode))			\
3607 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3608 	} while (0)
3609 #define stat_inc_compr_inode(inode)					\
3610 	do {								\
3611 		if (f2fs_compressed_file(inode))			\
3612 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3613 	} while (0)
3614 #define stat_dec_compr_inode(inode)					\
3615 	do {								\
3616 		if (f2fs_compressed_file(inode))			\
3617 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3618 	} while (0)
3619 #define stat_add_compr_blocks(inode, blocks)				\
3620 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3621 #define stat_sub_compr_blocks(inode, blocks)				\
3622 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3623 #define stat_inc_meta_count(sbi, blkaddr)				\
3624 	do {								\
3625 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3626 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3627 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3628 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3629 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3630 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3631 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3632 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3633 	} while (0)
3634 #define stat_inc_seg_type(sbi, curseg)					\
3635 		((sbi)->segment_count[(curseg)->alloc_type]++)
3636 #define stat_inc_block_count(sbi, curseg)				\
3637 		((sbi)->block_count[(curseg)->alloc_type]++)
3638 #define stat_inc_inplace_blocks(sbi)					\
3639 		(atomic_inc(&(sbi)->inplace_count))
3640 #define stat_update_max_atomic_write(inode)				\
3641 	do {								\
3642 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3643 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3644 		if (cur > max)						\
3645 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3646 	} while (0)
3647 #define stat_inc_volatile_write(inode)					\
3648 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3649 #define stat_dec_volatile_write(inode)					\
3650 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3651 #define stat_update_max_volatile_write(inode)				\
3652 	do {								\
3653 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3654 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3655 		if (cur > max)						\
3656 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3657 	} while (0)
3658 #define stat_inc_seg_count(sbi, type, gc_type)				\
3659 	do {								\
3660 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3661 		si->tot_segs++;						\
3662 		if ((type) == SUM_TYPE_DATA) {				\
3663 			si->data_segs++;				\
3664 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3665 		} else {						\
3666 			si->node_segs++;				\
3667 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3668 		}							\
3669 	} while (0)
3670 
3671 #define stat_inc_tot_blk_count(si, blks)				\
3672 	((si)->tot_blks += (blks))
3673 
3674 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3675 	do {								\
3676 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3677 		stat_inc_tot_blk_count(si, blks);			\
3678 		si->data_blks += (blks);				\
3679 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3680 	} while (0)
3681 
3682 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3683 	do {								\
3684 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3685 		stat_inc_tot_blk_count(si, blks);			\
3686 		si->node_blks += (blks);				\
3687 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3688 	} while (0)
3689 
3690 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3691 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3692 void __init f2fs_create_root_stats(void);
3693 void f2fs_destroy_root_stats(void);
3694 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3695 #else
3696 #define stat_inc_cp_count(si)				do { } while (0)
3697 #define stat_inc_bg_cp_count(si)			do { } while (0)
3698 #define stat_inc_call_count(si)				do { } while (0)
3699 #define stat_inc_bggc_count(si)				do { } while (0)
3700 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3701 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3702 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3703 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3704 #define stat_inc_total_hit(sbi)				do { } while (0)
3705 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3706 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3707 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3708 #define stat_inc_inline_xattr(inode)			do { } while (0)
3709 #define stat_dec_inline_xattr(inode)			do { } while (0)
3710 #define stat_inc_inline_inode(inode)			do { } while (0)
3711 #define stat_dec_inline_inode(inode)			do { } while (0)
3712 #define stat_inc_inline_dir(inode)			do { } while (0)
3713 #define stat_dec_inline_dir(inode)			do { } while (0)
3714 #define stat_inc_compr_inode(inode)			do { } while (0)
3715 #define stat_dec_compr_inode(inode)			do { } while (0)
3716 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3717 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3718 #define stat_inc_atomic_write(inode)			do { } while (0)
3719 #define stat_dec_atomic_write(inode)			do { } while (0)
3720 #define stat_update_max_atomic_write(inode)		do { } while (0)
3721 #define stat_inc_volatile_write(inode)			do { } while (0)
3722 #define stat_dec_volatile_write(inode)			do { } while (0)
3723 #define stat_update_max_volatile_write(inode)		do { } while (0)
3724 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3725 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3726 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3727 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3728 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3729 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3730 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3731 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3732 
3733 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3734 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3735 static inline void __init f2fs_create_root_stats(void) { }
3736 static inline void f2fs_destroy_root_stats(void) { }
3737 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3738 #endif
3739 
3740 extern const struct file_operations f2fs_dir_operations;
3741 extern const struct file_operations f2fs_file_operations;
3742 extern const struct inode_operations f2fs_file_inode_operations;
3743 extern const struct address_space_operations f2fs_dblock_aops;
3744 extern const struct address_space_operations f2fs_node_aops;
3745 extern const struct address_space_operations f2fs_meta_aops;
3746 extern const struct inode_operations f2fs_dir_inode_operations;
3747 extern const struct inode_operations f2fs_symlink_inode_operations;
3748 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3749 extern const struct inode_operations f2fs_special_inode_operations;
3750 extern struct kmem_cache *f2fs_inode_entry_slab;
3751 
3752 /*
3753  * inline.c
3754  */
3755 bool f2fs_may_inline_data(struct inode *inode);
3756 bool f2fs_may_inline_dentry(struct inode *inode);
3757 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3758 void f2fs_truncate_inline_inode(struct inode *inode,
3759 						struct page *ipage, u64 from);
3760 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3761 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3762 int f2fs_convert_inline_inode(struct inode *inode);
3763 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3764 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3765 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3766 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3767 					const struct f2fs_filename *fname,
3768 					struct page **res_page);
3769 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3770 			struct page *ipage);
3771 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3772 			struct inode *inode, nid_t ino, umode_t mode);
3773 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3774 				struct page *page, struct inode *dir,
3775 				struct inode *inode);
3776 bool f2fs_empty_inline_dir(struct inode *dir);
3777 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3778 			struct fscrypt_str *fstr);
3779 int f2fs_inline_data_fiemap(struct inode *inode,
3780 			struct fiemap_extent_info *fieinfo,
3781 			__u64 start, __u64 len);
3782 
3783 /*
3784  * shrinker.c
3785  */
3786 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3787 			struct shrink_control *sc);
3788 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3789 			struct shrink_control *sc);
3790 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3791 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3792 
3793 /*
3794  * extent_cache.c
3795  */
3796 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3797 				struct rb_entry *cached_re, unsigned int ofs);
3798 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3799 				struct rb_root_cached *root,
3800 				struct rb_node **parent,
3801 				unsigned long long key, bool *left_most);
3802 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3803 				struct rb_root_cached *root,
3804 				struct rb_node **parent,
3805 				unsigned int ofs, bool *leftmost);
3806 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3807 		struct rb_entry *cached_re, unsigned int ofs,
3808 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3809 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3810 		bool force, bool *leftmost);
3811 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3812 				struct rb_root_cached *root, bool check_key);
3813 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3814 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3815 void f2fs_drop_extent_tree(struct inode *inode);
3816 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3817 void f2fs_destroy_extent_tree(struct inode *inode);
3818 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3819 			struct extent_info *ei);
3820 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3821 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3822 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3823 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3824 int __init f2fs_create_extent_cache(void);
3825 void f2fs_destroy_extent_cache(void);
3826 
3827 /*
3828  * sysfs.c
3829  */
3830 int __init f2fs_init_sysfs(void);
3831 void f2fs_exit_sysfs(void);
3832 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3833 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3834 
3835 /* verity.c */
3836 extern const struct fsverity_operations f2fs_verityops;
3837 
3838 /*
3839  * crypto support
3840  */
3841 static inline bool f2fs_encrypted_file(struct inode *inode)
3842 {
3843 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3844 }
3845 
3846 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3847 {
3848 #ifdef CONFIG_FS_ENCRYPTION
3849 	file_set_encrypt(inode);
3850 	f2fs_set_inode_flags(inode);
3851 #endif
3852 }
3853 
3854 /*
3855  * Returns true if the reads of the inode's data need to undergo some
3856  * postprocessing step, like decryption or authenticity verification.
3857  */
3858 static inline bool f2fs_post_read_required(struct inode *inode)
3859 {
3860 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3861 		f2fs_compressed_file(inode);
3862 }
3863 
3864 /*
3865  * compress.c
3866  */
3867 #ifdef CONFIG_F2FS_FS_COMPRESSION
3868 bool f2fs_is_compressed_page(struct page *page);
3869 struct page *f2fs_compress_control_page(struct page *page);
3870 int f2fs_prepare_compress_overwrite(struct inode *inode,
3871 			struct page **pagep, pgoff_t index, void **fsdata);
3872 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3873 					pgoff_t index, unsigned copied);
3874 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3875 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3876 bool f2fs_is_compress_backend_ready(struct inode *inode);
3877 int f2fs_init_compress_mempool(void);
3878 void f2fs_destroy_compress_mempool(void);
3879 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3880 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3881 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3882 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3883 int f2fs_write_multi_pages(struct compress_ctx *cc,
3884 						int *submitted,
3885 						struct writeback_control *wbc,
3886 						enum iostat_type io_type);
3887 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3888 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3889 				unsigned nr_pages, sector_t *last_block_in_bio,
3890 				bool is_readahead, bool for_write);
3891 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3892 void f2fs_free_dic(struct decompress_io_ctx *dic);
3893 void f2fs_decompress_end_io(struct page **rpages,
3894 			unsigned int cluster_size, bool err, bool verity);
3895 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3896 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3897 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3898 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3899 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3900 int __init f2fs_init_compress_cache(void);
3901 void f2fs_destroy_compress_cache(void);
3902 #else
3903 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3904 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3905 {
3906 	if (!f2fs_compressed_file(inode))
3907 		return true;
3908 	/* not support compression */
3909 	return false;
3910 }
3911 static inline struct page *f2fs_compress_control_page(struct page *page)
3912 {
3913 	WARN_ON_ONCE(1);
3914 	return ERR_PTR(-EINVAL);
3915 }
3916 static inline int f2fs_init_compress_mempool(void) { return 0; }
3917 static inline void f2fs_destroy_compress_mempool(void) { }
3918 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3919 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3920 static inline int __init f2fs_init_compress_cache(void) { return 0; }
3921 static inline void f2fs_destroy_compress_cache(void) { }
3922 #endif
3923 
3924 static inline void set_compress_context(struct inode *inode)
3925 {
3926 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3927 
3928 	F2FS_I(inode)->i_compress_algorithm =
3929 			F2FS_OPTION(sbi).compress_algorithm;
3930 	F2FS_I(inode)->i_log_cluster_size =
3931 			F2FS_OPTION(sbi).compress_log_size;
3932 	F2FS_I(inode)->i_compress_flag =
3933 			F2FS_OPTION(sbi).compress_chksum ?
3934 				1 << COMPRESS_CHKSUM : 0;
3935 	F2FS_I(inode)->i_cluster_size =
3936 			1 << F2FS_I(inode)->i_log_cluster_size;
3937 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3938 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3939 	stat_inc_compr_inode(inode);
3940 	f2fs_mark_inode_dirty_sync(inode, true);
3941 }
3942 
3943 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3944 {
3945 	struct f2fs_inode_info *fi = F2FS_I(inode);
3946 
3947 	if (!f2fs_compressed_file(inode))
3948 		return true;
3949 	if (S_ISREG(inode->i_mode) &&
3950 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3951 		return false;
3952 
3953 	fi->i_flags &= ~F2FS_COMPR_FL;
3954 	stat_dec_compr_inode(inode);
3955 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3956 	f2fs_mark_inode_dirty_sync(inode, true);
3957 	return true;
3958 }
3959 
3960 #define F2FS_FEATURE_FUNCS(name, flagname) \
3961 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3962 { \
3963 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3964 }
3965 
3966 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3967 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3968 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3969 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3970 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3971 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3972 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3973 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3974 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3975 F2FS_FEATURE_FUNCS(verity, VERITY);
3976 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3977 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3978 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3979 
3980 #ifdef CONFIG_BLK_DEV_ZONED
3981 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3982 				    block_t blkaddr)
3983 {
3984 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3985 
3986 	return test_bit(zno, FDEV(devi).blkz_seq);
3987 }
3988 #endif
3989 
3990 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3991 {
3992 	return f2fs_sb_has_blkzoned(sbi);
3993 }
3994 
3995 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3996 {
3997 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3998 	       bdev_is_zoned(bdev);
3999 }
4000 
4001 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4002 {
4003 	int i;
4004 
4005 	if (!f2fs_is_multi_device(sbi))
4006 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4007 
4008 	for (i = 0; i < sbi->s_ndevs; i++)
4009 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4010 			return true;
4011 	return false;
4012 }
4013 
4014 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4015 {
4016 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4017 					f2fs_hw_should_discard(sbi);
4018 }
4019 
4020 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4021 {
4022 	int i;
4023 
4024 	if (!f2fs_is_multi_device(sbi))
4025 		return bdev_read_only(sbi->sb->s_bdev);
4026 
4027 	for (i = 0; i < sbi->s_ndevs; i++)
4028 		if (bdev_read_only(FDEV(i).bdev))
4029 			return true;
4030 	return false;
4031 }
4032 
4033 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4034 {
4035 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4036 }
4037 
4038 static inline bool f2fs_may_compress(struct inode *inode)
4039 {
4040 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4041 				f2fs_is_atomic_file(inode) ||
4042 				f2fs_is_volatile_file(inode))
4043 		return false;
4044 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4045 }
4046 
4047 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4048 						u64 blocks, bool add)
4049 {
4050 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4051 	struct f2fs_inode_info *fi = F2FS_I(inode);
4052 
4053 	/* don't update i_compr_blocks if saved blocks were released */
4054 	if (!add && !atomic_read(&fi->i_compr_blocks))
4055 		return;
4056 
4057 	if (add) {
4058 		atomic_add(diff, &fi->i_compr_blocks);
4059 		stat_add_compr_blocks(inode, diff);
4060 	} else {
4061 		atomic_sub(diff, &fi->i_compr_blocks);
4062 		stat_sub_compr_blocks(inode, diff);
4063 	}
4064 	f2fs_mark_inode_dirty_sync(inode, true);
4065 }
4066 
4067 static inline int block_unaligned_IO(struct inode *inode,
4068 				struct kiocb *iocb, struct iov_iter *iter)
4069 {
4070 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4071 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4072 	loff_t offset = iocb->ki_pos;
4073 	unsigned long align = offset | iov_iter_alignment(iter);
4074 
4075 	return align & blocksize_mask;
4076 }
4077 
4078 static inline int allow_outplace_dio(struct inode *inode,
4079 				struct kiocb *iocb, struct iov_iter *iter)
4080 {
4081 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4082 	int rw = iov_iter_rw(iter);
4083 
4084 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4085 				!block_unaligned_IO(inode, iocb, iter));
4086 }
4087 
4088 static inline bool f2fs_force_buffered_io(struct inode *inode,
4089 				struct kiocb *iocb, struct iov_iter *iter)
4090 {
4091 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4092 	int rw = iov_iter_rw(iter);
4093 
4094 	if (f2fs_post_read_required(inode))
4095 		return true;
4096 	if (f2fs_is_multi_device(sbi))
4097 		return true;
4098 	/*
4099 	 * for blkzoned device, fallback direct IO to buffered IO, so
4100 	 * all IOs can be serialized by log-structured write.
4101 	 */
4102 	if (f2fs_sb_has_blkzoned(sbi))
4103 		return true;
4104 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4105 		if (block_unaligned_IO(inode, iocb, iter))
4106 			return true;
4107 		if (F2FS_IO_ALIGNED(sbi))
4108 			return true;
4109 	}
4110 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4111 					!IS_SWAPFILE(inode))
4112 		return true;
4113 
4114 	return false;
4115 }
4116 
4117 #ifdef CONFIG_F2FS_FAULT_INJECTION
4118 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4119 							unsigned int type);
4120 #else
4121 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4122 #endif
4123 
4124 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4125 {
4126 #ifdef CONFIG_QUOTA
4127 	if (f2fs_sb_has_quota_ino(sbi))
4128 		return true;
4129 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4130 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4131 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4132 		return true;
4133 #endif
4134 	return false;
4135 }
4136 
4137 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4138 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4139 
4140 #endif /* _LINUX_F2FS_H */
4141