1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <crypto/hash.h> 26 27 #include <linux/fscrypt.h> 28 #include <linux/fsverity.h> 29 30 #ifdef CONFIG_F2FS_CHECK_FS 31 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 32 #else 33 #define f2fs_bug_on(sbi, condition) \ 34 do { \ 35 if (unlikely(condition)) { \ 36 WARN_ON(1); \ 37 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 38 } \ 39 } while (0) 40 #endif 41 42 enum { 43 FAULT_KMALLOC, 44 FAULT_KVMALLOC, 45 FAULT_PAGE_ALLOC, 46 FAULT_PAGE_GET, 47 FAULT_ALLOC_BIO, 48 FAULT_ALLOC_NID, 49 FAULT_ORPHAN, 50 FAULT_BLOCK, 51 FAULT_DIR_DEPTH, 52 FAULT_EVICT_INODE, 53 FAULT_TRUNCATE, 54 FAULT_READ_IO, 55 FAULT_CHECKPOINT, 56 FAULT_DISCARD, 57 FAULT_WRITE_IO, 58 FAULT_MAX, 59 }; 60 61 #ifdef CONFIG_F2FS_FAULT_INJECTION 62 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 63 64 struct f2fs_fault_info { 65 atomic_t inject_ops; 66 unsigned int inject_rate; 67 unsigned int inject_type; 68 }; 69 70 extern const char *f2fs_fault_name[FAULT_MAX]; 71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 72 #endif 73 74 /* 75 * For mount options 76 */ 77 #define F2FS_MOUNT_BG_GC 0x00000001 78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 79 #define F2FS_MOUNT_DISCARD 0x00000004 80 #define F2FS_MOUNT_NOHEAP 0x00000008 81 #define F2FS_MOUNT_XATTR_USER 0x00000010 82 #define F2FS_MOUNT_POSIX_ACL 0x00000020 83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 84 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 85 #define F2FS_MOUNT_INLINE_DATA 0x00000100 86 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 87 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 88 #define F2FS_MOUNT_NOBARRIER 0x00000800 89 #define F2FS_MOUNT_FASTBOOT 0x00001000 90 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 91 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 92 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 93 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 94 #define F2FS_MOUNT_ADAPTIVE 0x00020000 95 #define F2FS_MOUNT_LFS 0x00040000 96 #define F2FS_MOUNT_USRQUOTA 0x00080000 97 #define F2FS_MOUNT_GRPQUOTA 0x00100000 98 #define F2FS_MOUNT_PRJQUOTA 0x00200000 99 #define F2FS_MOUNT_QUOTA 0x00400000 100 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 101 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 102 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 103 104 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 105 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 106 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 107 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 108 109 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 110 typecheck(unsigned long long, b) && \ 111 ((long long)((a) - (b)) > 0)) 112 113 typedef u32 block_t; /* 114 * should not change u32, since it is the on-disk block 115 * address format, __le32. 116 */ 117 typedef u32 nid_t; 118 119 struct f2fs_mount_info { 120 unsigned int opt; 121 int write_io_size_bits; /* Write IO size bits */ 122 block_t root_reserved_blocks; /* root reserved blocks */ 123 kuid_t s_resuid; /* reserved blocks for uid */ 124 kgid_t s_resgid; /* reserved blocks for gid */ 125 int active_logs; /* # of active logs */ 126 int inline_xattr_size; /* inline xattr size */ 127 #ifdef CONFIG_F2FS_FAULT_INJECTION 128 struct f2fs_fault_info fault_info; /* For fault injection */ 129 #endif 130 #ifdef CONFIG_QUOTA 131 /* Names of quota files with journalled quota */ 132 char *s_qf_names[MAXQUOTAS]; 133 int s_jquota_fmt; /* Format of quota to use */ 134 #endif 135 /* For which write hints are passed down to block layer */ 136 int whint_mode; 137 int alloc_mode; /* segment allocation policy */ 138 int fsync_mode; /* fsync policy */ 139 bool test_dummy_encryption; /* test dummy encryption */ 140 block_t unusable_cap; /* Amount of space allowed to be 141 * unusable when disabling checkpoint 142 */ 143 }; 144 145 #define F2FS_FEATURE_ENCRYPT 0x0001 146 #define F2FS_FEATURE_BLKZONED 0x0002 147 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 148 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 149 #define F2FS_FEATURE_PRJQUOTA 0x0010 150 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 151 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 152 #define F2FS_FEATURE_QUOTA_INO 0x0080 153 #define F2FS_FEATURE_INODE_CRTIME 0x0100 154 #define F2FS_FEATURE_LOST_FOUND 0x0200 155 #define F2FS_FEATURE_VERITY 0x0400 156 #define F2FS_FEATURE_SB_CHKSUM 0x0800 157 #define F2FS_FEATURE_CASEFOLD 0x1000 158 159 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 160 ((raw_super->feature & cpu_to_le32(mask)) != 0) 161 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 162 #define F2FS_SET_FEATURE(sbi, mask) \ 163 (sbi->raw_super->feature |= cpu_to_le32(mask)) 164 #define F2FS_CLEAR_FEATURE(sbi, mask) \ 165 (sbi->raw_super->feature &= ~cpu_to_le32(mask)) 166 167 /* 168 * Default values for user and/or group using reserved blocks 169 */ 170 #define F2FS_DEF_RESUID 0 171 #define F2FS_DEF_RESGID 0 172 173 /* 174 * For checkpoint manager 175 */ 176 enum { 177 NAT_BITMAP, 178 SIT_BITMAP 179 }; 180 181 #define CP_UMOUNT 0x00000001 182 #define CP_FASTBOOT 0x00000002 183 #define CP_SYNC 0x00000004 184 #define CP_RECOVERY 0x00000008 185 #define CP_DISCARD 0x00000010 186 #define CP_TRIMMED 0x00000020 187 #define CP_PAUSE 0x00000040 188 189 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 190 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 191 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 192 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 193 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 194 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 195 #define DEF_CP_INTERVAL 60 /* 60 secs */ 196 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 197 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 198 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 199 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 200 201 struct cp_control { 202 int reason; 203 __u64 trim_start; 204 __u64 trim_end; 205 __u64 trim_minlen; 206 }; 207 208 /* 209 * indicate meta/data type 210 */ 211 enum { 212 META_CP, 213 META_NAT, 214 META_SIT, 215 META_SSA, 216 META_MAX, 217 META_POR, 218 DATA_GENERIC, /* check range only */ 219 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 220 DATA_GENERIC_ENHANCE_READ, /* 221 * strong check on range and segment 222 * bitmap but no warning due to race 223 * condition of read on truncated area 224 * by extent_cache 225 */ 226 META_GENERIC, 227 }; 228 229 /* for the list of ino */ 230 enum { 231 ORPHAN_INO, /* for orphan ino list */ 232 APPEND_INO, /* for append ino list */ 233 UPDATE_INO, /* for update ino list */ 234 TRANS_DIR_INO, /* for trasactions dir ino list */ 235 FLUSH_INO, /* for multiple device flushing */ 236 MAX_INO_ENTRY, /* max. list */ 237 }; 238 239 struct ino_entry { 240 struct list_head list; /* list head */ 241 nid_t ino; /* inode number */ 242 unsigned int dirty_device; /* dirty device bitmap */ 243 }; 244 245 /* for the list of inodes to be GCed */ 246 struct inode_entry { 247 struct list_head list; /* list head */ 248 struct inode *inode; /* vfs inode pointer */ 249 }; 250 251 struct fsync_node_entry { 252 struct list_head list; /* list head */ 253 struct page *page; /* warm node page pointer */ 254 unsigned int seq_id; /* sequence id */ 255 }; 256 257 /* for the bitmap indicate blocks to be discarded */ 258 struct discard_entry { 259 struct list_head list; /* list head */ 260 block_t start_blkaddr; /* start blockaddr of current segment */ 261 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 262 }; 263 264 /* default discard granularity of inner discard thread, unit: block count */ 265 #define DEFAULT_DISCARD_GRANULARITY 16 266 267 /* max discard pend list number */ 268 #define MAX_PLIST_NUM 512 269 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 270 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 271 272 enum { 273 D_PREP, /* initial */ 274 D_PARTIAL, /* partially submitted */ 275 D_SUBMIT, /* all submitted */ 276 D_DONE, /* finished */ 277 }; 278 279 struct discard_info { 280 block_t lstart; /* logical start address */ 281 block_t len; /* length */ 282 block_t start; /* actual start address in dev */ 283 }; 284 285 struct discard_cmd { 286 struct rb_node rb_node; /* rb node located in rb-tree */ 287 union { 288 struct { 289 block_t lstart; /* logical start address */ 290 block_t len; /* length */ 291 block_t start; /* actual start address in dev */ 292 }; 293 struct discard_info di; /* discard info */ 294 295 }; 296 struct list_head list; /* command list */ 297 struct completion wait; /* compleation */ 298 struct block_device *bdev; /* bdev */ 299 unsigned short ref; /* reference count */ 300 unsigned char state; /* state */ 301 unsigned char queued; /* queued discard */ 302 int error; /* bio error */ 303 spinlock_t lock; /* for state/bio_ref updating */ 304 unsigned short bio_ref; /* bio reference count */ 305 }; 306 307 enum { 308 DPOLICY_BG, 309 DPOLICY_FORCE, 310 DPOLICY_FSTRIM, 311 DPOLICY_UMOUNT, 312 MAX_DPOLICY, 313 }; 314 315 struct discard_policy { 316 int type; /* type of discard */ 317 unsigned int min_interval; /* used for candidates exist */ 318 unsigned int mid_interval; /* used for device busy */ 319 unsigned int max_interval; /* used for candidates not exist */ 320 unsigned int max_requests; /* # of discards issued per round */ 321 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 322 bool io_aware; /* issue discard in idle time */ 323 bool sync; /* submit discard with REQ_SYNC flag */ 324 bool ordered; /* issue discard by lba order */ 325 unsigned int granularity; /* discard granularity */ 326 int timeout; /* discard timeout for put_super */ 327 }; 328 329 struct discard_cmd_control { 330 struct task_struct *f2fs_issue_discard; /* discard thread */ 331 struct list_head entry_list; /* 4KB discard entry list */ 332 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 333 struct list_head wait_list; /* store on-flushing entries */ 334 struct list_head fstrim_list; /* in-flight discard from fstrim */ 335 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 336 unsigned int discard_wake; /* to wake up discard thread */ 337 struct mutex cmd_lock; 338 unsigned int nr_discards; /* # of discards in the list */ 339 unsigned int max_discards; /* max. discards to be issued */ 340 unsigned int discard_granularity; /* discard granularity */ 341 unsigned int undiscard_blks; /* # of undiscard blocks */ 342 unsigned int next_pos; /* next discard position */ 343 atomic_t issued_discard; /* # of issued discard */ 344 atomic_t queued_discard; /* # of queued discard */ 345 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 346 struct rb_root_cached root; /* root of discard rb-tree */ 347 bool rbtree_check; /* config for consistence check */ 348 }; 349 350 /* for the list of fsync inodes, used only during recovery */ 351 struct fsync_inode_entry { 352 struct list_head list; /* list head */ 353 struct inode *inode; /* vfs inode pointer */ 354 block_t blkaddr; /* block address locating the last fsync */ 355 block_t last_dentry; /* block address locating the last dentry */ 356 }; 357 358 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 359 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 360 361 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 362 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 363 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 364 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 365 366 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 367 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 368 369 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 370 { 371 int before = nats_in_cursum(journal); 372 373 journal->n_nats = cpu_to_le16(before + i); 374 return before; 375 } 376 377 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 378 { 379 int before = sits_in_cursum(journal); 380 381 journal->n_sits = cpu_to_le16(before + i); 382 return before; 383 } 384 385 static inline bool __has_cursum_space(struct f2fs_journal *journal, 386 int size, int type) 387 { 388 if (type == NAT_JOURNAL) 389 return size <= MAX_NAT_JENTRIES(journal); 390 return size <= MAX_SIT_JENTRIES(journal); 391 } 392 393 /* 394 * ioctl commands 395 */ 396 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 397 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 398 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 399 400 #define F2FS_IOCTL_MAGIC 0xf5 401 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 402 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 403 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 404 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 405 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 406 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 407 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 408 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 409 struct f2fs_defragment) 410 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 411 struct f2fs_move_range) 412 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 413 struct f2fs_flush_device) 414 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 415 struct f2fs_gc_range) 416 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 417 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 418 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 419 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 420 #define F2FS_IOC_RESIZE_FS _IOW(F2FS_IOCTL_MAGIC, 16, __u64) 421 422 #define F2FS_IOC_GET_VOLUME_NAME FS_IOC_GETFSLABEL 423 #define F2FS_IOC_SET_VOLUME_NAME FS_IOC_SETFSLABEL 424 425 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 426 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 427 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 428 429 /* 430 * should be same as XFS_IOC_GOINGDOWN. 431 * Flags for going down operation used by FS_IOC_GOINGDOWN 432 */ 433 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 434 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 435 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 436 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 437 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 438 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */ 439 440 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 441 /* 442 * ioctl commands in 32 bit emulation 443 */ 444 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 445 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 446 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 447 #endif 448 449 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 450 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 451 452 struct f2fs_gc_range { 453 u32 sync; 454 u64 start; 455 u64 len; 456 }; 457 458 struct f2fs_defragment { 459 u64 start; 460 u64 len; 461 }; 462 463 struct f2fs_move_range { 464 u32 dst_fd; /* destination fd */ 465 u64 pos_in; /* start position in src_fd */ 466 u64 pos_out; /* start position in dst_fd */ 467 u64 len; /* size to move */ 468 }; 469 470 struct f2fs_flush_device { 471 u32 dev_num; /* device number to flush */ 472 u32 segments; /* # of segments to flush */ 473 }; 474 475 /* for inline stuff */ 476 #define DEF_INLINE_RESERVED_SIZE 1 477 static inline int get_extra_isize(struct inode *inode); 478 static inline int get_inline_xattr_addrs(struct inode *inode); 479 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 480 (CUR_ADDRS_PER_INODE(inode) - \ 481 get_inline_xattr_addrs(inode) - \ 482 DEF_INLINE_RESERVED_SIZE)) 483 484 /* for inline dir */ 485 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 486 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 487 BITS_PER_BYTE + 1)) 488 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 489 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 490 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 491 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 492 NR_INLINE_DENTRY(inode) + \ 493 INLINE_DENTRY_BITMAP_SIZE(inode))) 494 495 /* 496 * For INODE and NODE manager 497 */ 498 /* for directory operations */ 499 struct f2fs_dentry_ptr { 500 struct inode *inode; 501 void *bitmap; 502 struct f2fs_dir_entry *dentry; 503 __u8 (*filename)[F2FS_SLOT_LEN]; 504 int max; 505 int nr_bitmap; 506 }; 507 508 static inline void make_dentry_ptr_block(struct inode *inode, 509 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 510 { 511 d->inode = inode; 512 d->max = NR_DENTRY_IN_BLOCK; 513 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 514 d->bitmap = t->dentry_bitmap; 515 d->dentry = t->dentry; 516 d->filename = t->filename; 517 } 518 519 static inline void make_dentry_ptr_inline(struct inode *inode, 520 struct f2fs_dentry_ptr *d, void *t) 521 { 522 int entry_cnt = NR_INLINE_DENTRY(inode); 523 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 524 int reserved_size = INLINE_RESERVED_SIZE(inode); 525 526 d->inode = inode; 527 d->max = entry_cnt; 528 d->nr_bitmap = bitmap_size; 529 d->bitmap = t; 530 d->dentry = t + bitmap_size + reserved_size; 531 d->filename = t + bitmap_size + reserved_size + 532 SIZE_OF_DIR_ENTRY * entry_cnt; 533 } 534 535 /* 536 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 537 * as its node offset to distinguish from index node blocks. 538 * But some bits are used to mark the node block. 539 */ 540 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 541 >> OFFSET_BIT_SHIFT) 542 enum { 543 ALLOC_NODE, /* allocate a new node page if needed */ 544 LOOKUP_NODE, /* look up a node without readahead */ 545 LOOKUP_NODE_RA, /* 546 * look up a node with readahead called 547 * by get_data_block. 548 */ 549 }; 550 551 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */ 552 553 /* maximum retry quota flush count */ 554 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 555 556 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 557 558 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 559 560 /* for in-memory extent cache entry */ 561 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 562 563 /* number of extent info in extent cache we try to shrink */ 564 #define EXTENT_CACHE_SHRINK_NUMBER 128 565 566 struct rb_entry { 567 struct rb_node rb_node; /* rb node located in rb-tree */ 568 unsigned int ofs; /* start offset of the entry */ 569 unsigned int len; /* length of the entry */ 570 }; 571 572 struct extent_info { 573 unsigned int fofs; /* start offset in a file */ 574 unsigned int len; /* length of the extent */ 575 u32 blk; /* start block address of the extent */ 576 }; 577 578 struct extent_node { 579 struct rb_node rb_node; /* rb node located in rb-tree */ 580 struct extent_info ei; /* extent info */ 581 struct list_head list; /* node in global extent list of sbi */ 582 struct extent_tree *et; /* extent tree pointer */ 583 }; 584 585 struct extent_tree { 586 nid_t ino; /* inode number */ 587 struct rb_root_cached root; /* root of extent info rb-tree */ 588 struct extent_node *cached_en; /* recently accessed extent node */ 589 struct extent_info largest; /* largested extent info */ 590 struct list_head list; /* to be used by sbi->zombie_list */ 591 rwlock_t lock; /* protect extent info rb-tree */ 592 atomic_t node_cnt; /* # of extent node in rb-tree*/ 593 bool largest_updated; /* largest extent updated */ 594 }; 595 596 /* 597 * This structure is taken from ext4_map_blocks. 598 * 599 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 600 */ 601 #define F2FS_MAP_NEW (1 << BH_New) 602 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 603 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 604 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 605 F2FS_MAP_UNWRITTEN) 606 607 struct f2fs_map_blocks { 608 block_t m_pblk; 609 block_t m_lblk; 610 unsigned int m_len; 611 unsigned int m_flags; 612 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 613 pgoff_t *m_next_extent; /* point to next possible extent */ 614 int m_seg_type; 615 bool m_may_create; /* indicate it is from write path */ 616 }; 617 618 /* for flag in get_data_block */ 619 enum { 620 F2FS_GET_BLOCK_DEFAULT, 621 F2FS_GET_BLOCK_FIEMAP, 622 F2FS_GET_BLOCK_BMAP, 623 F2FS_GET_BLOCK_DIO, 624 F2FS_GET_BLOCK_PRE_DIO, 625 F2FS_GET_BLOCK_PRE_AIO, 626 F2FS_GET_BLOCK_PRECACHE, 627 }; 628 629 /* 630 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 631 */ 632 #define FADVISE_COLD_BIT 0x01 633 #define FADVISE_LOST_PINO_BIT 0x02 634 #define FADVISE_ENCRYPT_BIT 0x04 635 #define FADVISE_ENC_NAME_BIT 0x08 636 #define FADVISE_KEEP_SIZE_BIT 0x10 637 #define FADVISE_HOT_BIT 0x20 638 #define FADVISE_VERITY_BIT 0x40 639 640 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 641 642 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 643 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 644 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 645 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 646 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 647 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 648 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 649 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 650 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 651 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 652 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 653 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 654 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 655 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 656 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 657 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 658 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 659 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 660 661 #define DEF_DIR_LEVEL 0 662 663 enum { 664 GC_FAILURE_PIN, 665 GC_FAILURE_ATOMIC, 666 MAX_GC_FAILURE 667 }; 668 669 struct f2fs_inode_info { 670 struct inode vfs_inode; /* serve a vfs inode */ 671 unsigned long i_flags; /* keep an inode flags for ioctl */ 672 unsigned char i_advise; /* use to give file attribute hints */ 673 unsigned char i_dir_level; /* use for dentry level for large dir */ 674 unsigned int i_current_depth; /* only for directory depth */ 675 /* for gc failure statistic */ 676 unsigned int i_gc_failures[MAX_GC_FAILURE]; 677 unsigned int i_pino; /* parent inode number */ 678 umode_t i_acl_mode; /* keep file acl mode temporarily */ 679 680 /* Use below internally in f2fs*/ 681 unsigned long flags; /* use to pass per-file flags */ 682 struct rw_semaphore i_sem; /* protect fi info */ 683 atomic_t dirty_pages; /* # of dirty pages */ 684 f2fs_hash_t chash; /* hash value of given file name */ 685 unsigned int clevel; /* maximum level of given file name */ 686 struct task_struct *task; /* lookup and create consistency */ 687 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 688 nid_t i_xattr_nid; /* node id that contains xattrs */ 689 loff_t last_disk_size; /* lastly written file size */ 690 691 #ifdef CONFIG_QUOTA 692 struct dquot *i_dquot[MAXQUOTAS]; 693 694 /* quota space reservation, managed internally by quota code */ 695 qsize_t i_reserved_quota; 696 #endif 697 struct list_head dirty_list; /* dirty list for dirs and files */ 698 struct list_head gdirty_list; /* linked in global dirty list */ 699 struct list_head inmem_ilist; /* list for inmem inodes */ 700 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 701 struct task_struct *inmem_task; /* store inmemory task */ 702 struct mutex inmem_lock; /* lock for inmemory pages */ 703 struct extent_tree *extent_tree; /* cached extent_tree entry */ 704 705 /* avoid racing between foreground op and gc */ 706 struct rw_semaphore i_gc_rwsem[2]; 707 struct rw_semaphore i_mmap_sem; 708 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 709 710 int i_extra_isize; /* size of extra space located in i_addr */ 711 kprojid_t i_projid; /* id for project quota */ 712 int i_inline_xattr_size; /* inline xattr size */ 713 struct timespec64 i_crtime; /* inode creation time */ 714 struct timespec64 i_disk_time[4];/* inode disk times */ 715 }; 716 717 static inline void get_extent_info(struct extent_info *ext, 718 struct f2fs_extent *i_ext) 719 { 720 ext->fofs = le32_to_cpu(i_ext->fofs); 721 ext->blk = le32_to_cpu(i_ext->blk); 722 ext->len = le32_to_cpu(i_ext->len); 723 } 724 725 static inline void set_raw_extent(struct extent_info *ext, 726 struct f2fs_extent *i_ext) 727 { 728 i_ext->fofs = cpu_to_le32(ext->fofs); 729 i_ext->blk = cpu_to_le32(ext->blk); 730 i_ext->len = cpu_to_le32(ext->len); 731 } 732 733 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 734 u32 blk, unsigned int len) 735 { 736 ei->fofs = fofs; 737 ei->blk = blk; 738 ei->len = len; 739 } 740 741 static inline bool __is_discard_mergeable(struct discard_info *back, 742 struct discard_info *front, unsigned int max_len) 743 { 744 return (back->lstart + back->len == front->lstart) && 745 (back->len + front->len <= max_len); 746 } 747 748 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 749 struct discard_info *back, unsigned int max_len) 750 { 751 return __is_discard_mergeable(back, cur, max_len); 752 } 753 754 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 755 struct discard_info *front, unsigned int max_len) 756 { 757 return __is_discard_mergeable(cur, front, max_len); 758 } 759 760 static inline bool __is_extent_mergeable(struct extent_info *back, 761 struct extent_info *front) 762 { 763 return (back->fofs + back->len == front->fofs && 764 back->blk + back->len == front->blk); 765 } 766 767 static inline bool __is_back_mergeable(struct extent_info *cur, 768 struct extent_info *back) 769 { 770 return __is_extent_mergeable(back, cur); 771 } 772 773 static inline bool __is_front_mergeable(struct extent_info *cur, 774 struct extent_info *front) 775 { 776 return __is_extent_mergeable(cur, front); 777 } 778 779 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 780 static inline void __try_update_largest_extent(struct extent_tree *et, 781 struct extent_node *en) 782 { 783 if (en->ei.len > et->largest.len) { 784 et->largest = en->ei; 785 et->largest_updated = true; 786 } 787 } 788 789 /* 790 * For free nid management 791 */ 792 enum nid_state { 793 FREE_NID, /* newly added to free nid list */ 794 PREALLOC_NID, /* it is preallocated */ 795 MAX_NID_STATE, 796 }; 797 798 struct f2fs_nm_info { 799 block_t nat_blkaddr; /* base disk address of NAT */ 800 nid_t max_nid; /* maximum possible node ids */ 801 nid_t available_nids; /* # of available node ids */ 802 nid_t next_scan_nid; /* the next nid to be scanned */ 803 unsigned int ram_thresh; /* control the memory footprint */ 804 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 805 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 806 807 /* NAT cache management */ 808 struct radix_tree_root nat_root;/* root of the nat entry cache */ 809 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 810 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 811 struct list_head nat_entries; /* cached nat entry list (clean) */ 812 spinlock_t nat_list_lock; /* protect clean nat entry list */ 813 unsigned int nat_cnt; /* the # of cached nat entries */ 814 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 815 unsigned int nat_blocks; /* # of nat blocks */ 816 817 /* free node ids management */ 818 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 819 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 820 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 821 spinlock_t nid_list_lock; /* protect nid lists ops */ 822 struct mutex build_lock; /* lock for build free nids */ 823 unsigned char **free_nid_bitmap; 824 unsigned char *nat_block_bitmap; 825 unsigned short *free_nid_count; /* free nid count of NAT block */ 826 827 /* for checkpoint */ 828 char *nat_bitmap; /* NAT bitmap pointer */ 829 830 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 831 unsigned char *nat_bits; /* NAT bits blocks */ 832 unsigned char *full_nat_bits; /* full NAT pages */ 833 unsigned char *empty_nat_bits; /* empty NAT pages */ 834 #ifdef CONFIG_F2FS_CHECK_FS 835 char *nat_bitmap_mir; /* NAT bitmap mirror */ 836 #endif 837 int bitmap_size; /* bitmap size */ 838 }; 839 840 /* 841 * this structure is used as one of function parameters. 842 * all the information are dedicated to a given direct node block determined 843 * by the data offset in a file. 844 */ 845 struct dnode_of_data { 846 struct inode *inode; /* vfs inode pointer */ 847 struct page *inode_page; /* its inode page, NULL is possible */ 848 struct page *node_page; /* cached direct node page */ 849 nid_t nid; /* node id of the direct node block */ 850 unsigned int ofs_in_node; /* data offset in the node page */ 851 bool inode_page_locked; /* inode page is locked or not */ 852 bool node_changed; /* is node block changed */ 853 char cur_level; /* level of hole node page */ 854 char max_level; /* level of current page located */ 855 block_t data_blkaddr; /* block address of the node block */ 856 }; 857 858 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 859 struct page *ipage, struct page *npage, nid_t nid) 860 { 861 memset(dn, 0, sizeof(*dn)); 862 dn->inode = inode; 863 dn->inode_page = ipage; 864 dn->node_page = npage; 865 dn->nid = nid; 866 } 867 868 /* 869 * For SIT manager 870 * 871 * By default, there are 6 active log areas across the whole main area. 872 * When considering hot and cold data separation to reduce cleaning overhead, 873 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 874 * respectively. 875 * In the current design, you should not change the numbers intentionally. 876 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 877 * logs individually according to the underlying devices. (default: 6) 878 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 879 * data and 8 for node logs. 880 */ 881 #define NR_CURSEG_DATA_TYPE (3) 882 #define NR_CURSEG_NODE_TYPE (3) 883 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 884 885 enum { 886 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 887 CURSEG_WARM_DATA, /* data blocks */ 888 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 889 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 890 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 891 CURSEG_COLD_NODE, /* indirect node blocks */ 892 NO_CHECK_TYPE, 893 }; 894 895 struct flush_cmd { 896 struct completion wait; 897 struct llist_node llnode; 898 nid_t ino; 899 int ret; 900 }; 901 902 struct flush_cmd_control { 903 struct task_struct *f2fs_issue_flush; /* flush thread */ 904 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 905 atomic_t issued_flush; /* # of issued flushes */ 906 atomic_t queued_flush; /* # of queued flushes */ 907 struct llist_head issue_list; /* list for command issue */ 908 struct llist_node *dispatch_list; /* list for command dispatch */ 909 }; 910 911 struct f2fs_sm_info { 912 struct sit_info *sit_info; /* whole segment information */ 913 struct free_segmap_info *free_info; /* free segment information */ 914 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 915 struct curseg_info *curseg_array; /* active segment information */ 916 917 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 918 919 block_t seg0_blkaddr; /* block address of 0'th segment */ 920 block_t main_blkaddr; /* start block address of main area */ 921 block_t ssa_blkaddr; /* start block address of SSA area */ 922 923 unsigned int segment_count; /* total # of segments */ 924 unsigned int main_segments; /* # of segments in main area */ 925 unsigned int reserved_segments; /* # of reserved segments */ 926 unsigned int ovp_segments; /* # of overprovision segments */ 927 928 /* a threshold to reclaim prefree segments */ 929 unsigned int rec_prefree_segments; 930 931 /* for batched trimming */ 932 unsigned int trim_sections; /* # of sections to trim */ 933 934 struct list_head sit_entry_set; /* sit entry set list */ 935 936 unsigned int ipu_policy; /* in-place-update policy */ 937 unsigned int min_ipu_util; /* in-place-update threshold */ 938 unsigned int min_fsync_blocks; /* threshold for fsync */ 939 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 940 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 941 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 942 943 /* for flush command control */ 944 struct flush_cmd_control *fcc_info; 945 946 /* for discard command control */ 947 struct discard_cmd_control *dcc_info; 948 }; 949 950 /* 951 * For superblock 952 */ 953 /* 954 * COUNT_TYPE for monitoring 955 * 956 * f2fs monitors the number of several block types such as on-writeback, 957 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 958 */ 959 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 960 enum count_type { 961 F2FS_DIRTY_DENTS, 962 F2FS_DIRTY_DATA, 963 F2FS_DIRTY_QDATA, 964 F2FS_DIRTY_NODES, 965 F2FS_DIRTY_META, 966 F2FS_INMEM_PAGES, 967 F2FS_DIRTY_IMETA, 968 F2FS_WB_CP_DATA, 969 F2FS_WB_DATA, 970 F2FS_RD_DATA, 971 F2FS_RD_NODE, 972 F2FS_RD_META, 973 F2FS_DIO_WRITE, 974 F2FS_DIO_READ, 975 NR_COUNT_TYPE, 976 }; 977 978 /* 979 * The below are the page types of bios used in submit_bio(). 980 * The available types are: 981 * DATA User data pages. It operates as async mode. 982 * NODE Node pages. It operates as async mode. 983 * META FS metadata pages such as SIT, NAT, CP. 984 * NR_PAGE_TYPE The number of page types. 985 * META_FLUSH Make sure the previous pages are written 986 * with waiting the bio's completion 987 * ... Only can be used with META. 988 */ 989 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 990 enum page_type { 991 DATA, 992 NODE, 993 META, 994 NR_PAGE_TYPE, 995 META_FLUSH, 996 INMEM, /* the below types are used by tracepoints only. */ 997 INMEM_DROP, 998 INMEM_INVALIDATE, 999 INMEM_REVOKE, 1000 IPU, 1001 OPU, 1002 }; 1003 1004 enum temp_type { 1005 HOT = 0, /* must be zero for meta bio */ 1006 WARM, 1007 COLD, 1008 NR_TEMP_TYPE, 1009 }; 1010 1011 enum need_lock_type { 1012 LOCK_REQ = 0, 1013 LOCK_DONE, 1014 LOCK_RETRY, 1015 }; 1016 1017 enum cp_reason_type { 1018 CP_NO_NEEDED, 1019 CP_NON_REGULAR, 1020 CP_HARDLINK, 1021 CP_SB_NEED_CP, 1022 CP_WRONG_PINO, 1023 CP_NO_SPC_ROLL, 1024 CP_NODE_NEED_CP, 1025 CP_FASTBOOT_MODE, 1026 CP_SPEC_LOG_NUM, 1027 CP_RECOVER_DIR, 1028 }; 1029 1030 enum iostat_type { 1031 APP_DIRECT_IO, /* app direct IOs */ 1032 APP_BUFFERED_IO, /* app buffered IOs */ 1033 APP_WRITE_IO, /* app write IOs */ 1034 APP_MAPPED_IO, /* app mapped IOs */ 1035 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1036 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1037 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1038 FS_GC_DATA_IO, /* data IOs from forground gc */ 1039 FS_GC_NODE_IO, /* node IOs from forground gc */ 1040 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1041 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1042 FS_CP_META_IO, /* meta IOs from checkpoint */ 1043 FS_DISCARD, /* discard */ 1044 NR_IO_TYPE, 1045 }; 1046 1047 struct f2fs_io_info { 1048 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1049 nid_t ino; /* inode number */ 1050 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1051 enum temp_type temp; /* contains HOT/WARM/COLD */ 1052 int op; /* contains REQ_OP_ */ 1053 int op_flags; /* req_flag_bits */ 1054 block_t new_blkaddr; /* new block address to be written */ 1055 block_t old_blkaddr; /* old block address before Cow */ 1056 struct page *page; /* page to be written */ 1057 struct page *encrypted_page; /* encrypted page */ 1058 struct list_head list; /* serialize IOs */ 1059 bool submitted; /* indicate IO submission */ 1060 int need_lock; /* indicate we need to lock cp_rwsem */ 1061 bool in_list; /* indicate fio is in io_list */ 1062 bool is_por; /* indicate IO is from recovery or not */ 1063 bool retry; /* need to reallocate block address */ 1064 enum iostat_type io_type; /* io type */ 1065 struct writeback_control *io_wbc; /* writeback control */ 1066 struct bio **bio; /* bio for ipu */ 1067 sector_t *last_block; /* last block number in bio */ 1068 unsigned char version; /* version of the node */ 1069 }; 1070 1071 #define is_read_io(rw) ((rw) == READ) 1072 struct f2fs_bio_info { 1073 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1074 struct bio *bio; /* bios to merge */ 1075 sector_t last_block_in_bio; /* last block number */ 1076 struct f2fs_io_info fio; /* store buffered io info. */ 1077 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1078 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1079 struct list_head io_list; /* track fios */ 1080 }; 1081 1082 #define FDEV(i) (sbi->devs[i]) 1083 #define RDEV(i) (raw_super->devs[i]) 1084 struct f2fs_dev_info { 1085 struct block_device *bdev; 1086 char path[MAX_PATH_LEN]; 1087 unsigned int total_segments; 1088 block_t start_blk; 1089 block_t end_blk; 1090 #ifdef CONFIG_BLK_DEV_ZONED 1091 unsigned int nr_blkz; /* Total number of zones */ 1092 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1093 #endif 1094 }; 1095 1096 enum inode_type { 1097 DIR_INODE, /* for dirty dir inode */ 1098 FILE_INODE, /* for dirty regular/symlink inode */ 1099 DIRTY_META, /* for all dirtied inode metadata */ 1100 ATOMIC_FILE, /* for all atomic files */ 1101 NR_INODE_TYPE, 1102 }; 1103 1104 /* for inner inode cache management */ 1105 struct inode_management { 1106 struct radix_tree_root ino_root; /* ino entry array */ 1107 spinlock_t ino_lock; /* for ino entry lock */ 1108 struct list_head ino_list; /* inode list head */ 1109 unsigned long ino_num; /* number of entries */ 1110 }; 1111 1112 /* For s_flag in struct f2fs_sb_info */ 1113 enum { 1114 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1115 SBI_IS_CLOSE, /* specify unmounting */ 1116 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1117 SBI_POR_DOING, /* recovery is doing or not */ 1118 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1119 SBI_NEED_CP, /* need to checkpoint */ 1120 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1121 SBI_IS_RECOVERED, /* recovered orphan/data */ 1122 SBI_CP_DISABLED, /* CP was disabled last mount */ 1123 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1124 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1125 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1126 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1127 SBI_IS_RESIZEFS, /* resizefs is in process */ 1128 }; 1129 1130 enum { 1131 CP_TIME, 1132 REQ_TIME, 1133 DISCARD_TIME, 1134 GC_TIME, 1135 DISABLE_TIME, 1136 UMOUNT_DISCARD_TIMEOUT, 1137 MAX_TIME, 1138 }; 1139 1140 enum { 1141 GC_NORMAL, 1142 GC_IDLE_CB, 1143 GC_IDLE_GREEDY, 1144 GC_URGENT, 1145 }; 1146 1147 enum { 1148 WHINT_MODE_OFF, /* not pass down write hints */ 1149 WHINT_MODE_USER, /* try to pass down hints given by users */ 1150 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1151 }; 1152 1153 enum { 1154 ALLOC_MODE_DEFAULT, /* stay default */ 1155 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1156 }; 1157 1158 enum fsync_mode { 1159 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1160 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1161 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1162 }; 1163 1164 #ifdef CONFIG_FS_ENCRYPTION 1165 #define DUMMY_ENCRYPTION_ENABLED(sbi) \ 1166 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption)) 1167 #else 1168 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0) 1169 #endif 1170 1171 struct f2fs_sb_info { 1172 struct super_block *sb; /* pointer to VFS super block */ 1173 struct proc_dir_entry *s_proc; /* proc entry */ 1174 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1175 struct rw_semaphore sb_lock; /* lock for raw super block */ 1176 int valid_super_block; /* valid super block no */ 1177 unsigned long s_flag; /* flags for sbi */ 1178 struct mutex writepages; /* mutex for writepages() */ 1179 #ifdef CONFIG_UNICODE 1180 struct unicode_map *s_encoding; 1181 __u16 s_encoding_flags; 1182 #endif 1183 1184 #ifdef CONFIG_BLK_DEV_ZONED 1185 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1186 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1187 #endif 1188 1189 /* for node-related operations */ 1190 struct f2fs_nm_info *nm_info; /* node manager */ 1191 struct inode *node_inode; /* cache node blocks */ 1192 1193 /* for segment-related operations */ 1194 struct f2fs_sm_info *sm_info; /* segment manager */ 1195 1196 /* for bio operations */ 1197 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1198 /* keep migration IO order for LFS mode */ 1199 struct rw_semaphore io_order_lock; 1200 mempool_t *write_io_dummy; /* Dummy pages */ 1201 1202 /* for checkpoint */ 1203 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1204 int cur_cp_pack; /* remain current cp pack */ 1205 spinlock_t cp_lock; /* for flag in ckpt */ 1206 struct inode *meta_inode; /* cache meta blocks */ 1207 struct mutex cp_mutex; /* checkpoint procedure lock */ 1208 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1209 struct rw_semaphore node_write; /* locking node writes */ 1210 struct rw_semaphore node_change; /* locking node change */ 1211 wait_queue_head_t cp_wait; 1212 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1213 long interval_time[MAX_TIME]; /* to store thresholds */ 1214 1215 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1216 1217 spinlock_t fsync_node_lock; /* for node entry lock */ 1218 struct list_head fsync_node_list; /* node list head */ 1219 unsigned int fsync_seg_id; /* sequence id */ 1220 unsigned int fsync_node_num; /* number of node entries */ 1221 1222 /* for orphan inode, use 0'th array */ 1223 unsigned int max_orphans; /* max orphan inodes */ 1224 1225 /* for inode management */ 1226 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1227 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1228 struct mutex flush_lock; /* for flush exclusion */ 1229 1230 /* for extent tree cache */ 1231 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1232 struct mutex extent_tree_lock; /* locking extent radix tree */ 1233 struct list_head extent_list; /* lru list for shrinker */ 1234 spinlock_t extent_lock; /* locking extent lru list */ 1235 atomic_t total_ext_tree; /* extent tree count */ 1236 struct list_head zombie_list; /* extent zombie tree list */ 1237 atomic_t total_zombie_tree; /* extent zombie tree count */ 1238 atomic_t total_ext_node; /* extent info count */ 1239 1240 /* basic filesystem units */ 1241 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1242 unsigned int log_blocksize; /* log2 block size */ 1243 unsigned int blocksize; /* block size */ 1244 unsigned int root_ino_num; /* root inode number*/ 1245 unsigned int node_ino_num; /* node inode number*/ 1246 unsigned int meta_ino_num; /* meta inode number*/ 1247 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1248 unsigned int blocks_per_seg; /* blocks per segment */ 1249 unsigned int segs_per_sec; /* segments per section */ 1250 unsigned int secs_per_zone; /* sections per zone */ 1251 unsigned int total_sections; /* total section count */ 1252 struct mutex resize_mutex; /* for resize exclusion */ 1253 unsigned int total_node_count; /* total node block count */ 1254 unsigned int total_valid_node_count; /* valid node block count */ 1255 loff_t max_file_blocks; /* max block index of file */ 1256 int dir_level; /* directory level */ 1257 int readdir_ra; /* readahead inode in readdir */ 1258 1259 block_t user_block_count; /* # of user blocks */ 1260 block_t total_valid_block_count; /* # of valid blocks */ 1261 block_t discard_blks; /* discard command candidats */ 1262 block_t last_valid_block_count; /* for recovery */ 1263 block_t reserved_blocks; /* configurable reserved blocks */ 1264 block_t current_reserved_blocks; /* current reserved blocks */ 1265 1266 /* Additional tracking for no checkpoint mode */ 1267 block_t unusable_block_count; /* # of blocks saved by last cp */ 1268 1269 unsigned int nquota_files; /* # of quota sysfile */ 1270 struct rw_semaphore quota_sem; /* blocking cp for flags */ 1271 1272 /* # of pages, see count_type */ 1273 atomic_t nr_pages[NR_COUNT_TYPE]; 1274 /* # of allocated blocks */ 1275 struct percpu_counter alloc_valid_block_count; 1276 1277 /* writeback control */ 1278 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1279 1280 /* valid inode count */ 1281 struct percpu_counter total_valid_inode_count; 1282 1283 struct f2fs_mount_info mount_opt; /* mount options */ 1284 1285 /* for cleaning operations */ 1286 struct mutex gc_mutex; /* mutex for GC */ 1287 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1288 unsigned int cur_victim_sec; /* current victim section num */ 1289 unsigned int gc_mode; /* current GC state */ 1290 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1291 /* for skip statistic */ 1292 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1293 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1294 1295 /* threshold for gc trials on pinned files */ 1296 u64 gc_pin_file_threshold; 1297 1298 /* maximum # of trials to find a victim segment for SSR and GC */ 1299 unsigned int max_victim_search; 1300 /* migration granularity of garbage collection, unit: segment */ 1301 unsigned int migration_granularity; 1302 1303 /* 1304 * for stat information. 1305 * one is for the LFS mode, and the other is for the SSR mode. 1306 */ 1307 #ifdef CONFIG_F2FS_STAT_FS 1308 struct f2fs_stat_info *stat_info; /* FS status information */ 1309 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1310 unsigned int segment_count[2]; /* # of allocated segments */ 1311 unsigned int block_count[2]; /* # of allocated blocks */ 1312 atomic_t inplace_count; /* # of inplace update */ 1313 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1314 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1315 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1316 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1317 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1318 atomic_t inline_inode; /* # of inline_data inodes */ 1319 atomic_t inline_dir; /* # of inline_dentry inodes */ 1320 atomic_t aw_cnt; /* # of atomic writes */ 1321 atomic_t vw_cnt; /* # of volatile writes */ 1322 atomic_t max_aw_cnt; /* max # of atomic writes */ 1323 atomic_t max_vw_cnt; /* max # of volatile writes */ 1324 int bg_gc; /* background gc calls */ 1325 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1326 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1327 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1328 #endif 1329 spinlock_t stat_lock; /* lock for stat operations */ 1330 1331 /* For app/fs IO statistics */ 1332 spinlock_t iostat_lock; 1333 unsigned long long write_iostat[NR_IO_TYPE]; 1334 bool iostat_enable; 1335 1336 /* For sysfs suppport */ 1337 struct kobject s_kobj; 1338 struct completion s_kobj_unregister; 1339 1340 /* For shrinker support */ 1341 struct list_head s_list; 1342 int s_ndevs; /* number of devices */ 1343 struct f2fs_dev_info *devs; /* for device list */ 1344 unsigned int dirty_device; /* for checkpoint data flush */ 1345 spinlock_t dev_lock; /* protect dirty_device */ 1346 struct mutex umount_mutex; 1347 unsigned int shrinker_run_no; 1348 1349 /* For write statistics */ 1350 u64 sectors_written_start; 1351 u64 kbytes_written; 1352 1353 /* Reference to checksum algorithm driver via cryptoapi */ 1354 struct crypto_shash *s_chksum_driver; 1355 1356 /* Precomputed FS UUID checksum for seeding other checksums */ 1357 __u32 s_chksum_seed; 1358 }; 1359 1360 struct f2fs_private_dio { 1361 struct inode *inode; 1362 void *orig_private; 1363 bio_end_io_t *orig_end_io; 1364 bool write; 1365 }; 1366 1367 #ifdef CONFIG_F2FS_FAULT_INJECTION 1368 #define f2fs_show_injection_info(type) \ 1369 printk_ratelimited("%sF2FS-fs : inject %s in %s of %pS\n", \ 1370 KERN_INFO, f2fs_fault_name[type], \ 1371 __func__, __builtin_return_address(0)) 1372 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1373 { 1374 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1375 1376 if (!ffi->inject_rate) 1377 return false; 1378 1379 if (!IS_FAULT_SET(ffi, type)) 1380 return false; 1381 1382 atomic_inc(&ffi->inject_ops); 1383 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1384 atomic_set(&ffi->inject_ops, 0); 1385 return true; 1386 } 1387 return false; 1388 } 1389 #else 1390 #define f2fs_show_injection_info(type) do { } while (0) 1391 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1392 { 1393 return false; 1394 } 1395 #endif 1396 1397 /* 1398 * Test if the mounted volume is a multi-device volume. 1399 * - For a single regular disk volume, sbi->s_ndevs is 0. 1400 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1401 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1402 */ 1403 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1404 { 1405 return sbi->s_ndevs > 1; 1406 } 1407 1408 /* For write statistics. Suppose sector size is 512 bytes, 1409 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1410 */ 1411 #define BD_PART_WRITTEN(s) \ 1412 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \ 1413 (s)->sectors_written_start) >> 1) 1414 1415 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1416 { 1417 unsigned long now = jiffies; 1418 1419 sbi->last_time[type] = now; 1420 1421 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1422 if (type == REQ_TIME) { 1423 sbi->last_time[DISCARD_TIME] = now; 1424 sbi->last_time[GC_TIME] = now; 1425 } 1426 } 1427 1428 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1429 { 1430 unsigned long interval = sbi->interval_time[type] * HZ; 1431 1432 return time_after(jiffies, sbi->last_time[type] + interval); 1433 } 1434 1435 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1436 int type) 1437 { 1438 unsigned long interval = sbi->interval_time[type] * HZ; 1439 unsigned int wait_ms = 0; 1440 long delta; 1441 1442 delta = (sbi->last_time[type] + interval) - jiffies; 1443 if (delta > 0) 1444 wait_ms = jiffies_to_msecs(delta); 1445 1446 return wait_ms; 1447 } 1448 1449 /* 1450 * Inline functions 1451 */ 1452 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1453 const void *address, unsigned int length) 1454 { 1455 struct { 1456 struct shash_desc shash; 1457 char ctx[4]; 1458 } desc; 1459 int err; 1460 1461 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1462 1463 desc.shash.tfm = sbi->s_chksum_driver; 1464 *(u32 *)desc.ctx = crc; 1465 1466 err = crypto_shash_update(&desc.shash, address, length); 1467 BUG_ON(err); 1468 1469 return *(u32 *)desc.ctx; 1470 } 1471 1472 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1473 unsigned int length) 1474 { 1475 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1476 } 1477 1478 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1479 void *buf, size_t buf_size) 1480 { 1481 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1482 } 1483 1484 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1485 const void *address, unsigned int length) 1486 { 1487 return __f2fs_crc32(sbi, crc, address, length); 1488 } 1489 1490 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1491 { 1492 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1493 } 1494 1495 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1496 { 1497 return sb->s_fs_info; 1498 } 1499 1500 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1501 { 1502 return F2FS_SB(inode->i_sb); 1503 } 1504 1505 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1506 { 1507 return F2FS_I_SB(mapping->host); 1508 } 1509 1510 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1511 { 1512 return F2FS_M_SB(page_file_mapping(page)); 1513 } 1514 1515 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1516 { 1517 return (struct f2fs_super_block *)(sbi->raw_super); 1518 } 1519 1520 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1521 { 1522 return (struct f2fs_checkpoint *)(sbi->ckpt); 1523 } 1524 1525 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1526 { 1527 return (struct f2fs_node *)page_address(page); 1528 } 1529 1530 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1531 { 1532 return &((struct f2fs_node *)page_address(page))->i; 1533 } 1534 1535 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1536 { 1537 return (struct f2fs_nm_info *)(sbi->nm_info); 1538 } 1539 1540 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1541 { 1542 return (struct f2fs_sm_info *)(sbi->sm_info); 1543 } 1544 1545 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1546 { 1547 return (struct sit_info *)(SM_I(sbi)->sit_info); 1548 } 1549 1550 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1551 { 1552 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1553 } 1554 1555 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1556 { 1557 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1558 } 1559 1560 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1561 { 1562 return sbi->meta_inode->i_mapping; 1563 } 1564 1565 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1566 { 1567 return sbi->node_inode->i_mapping; 1568 } 1569 1570 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1571 { 1572 return test_bit(type, &sbi->s_flag); 1573 } 1574 1575 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1576 { 1577 set_bit(type, &sbi->s_flag); 1578 } 1579 1580 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1581 { 1582 clear_bit(type, &sbi->s_flag); 1583 } 1584 1585 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1586 { 1587 return le64_to_cpu(cp->checkpoint_ver); 1588 } 1589 1590 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1591 { 1592 if (type < F2FS_MAX_QUOTAS) 1593 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1594 return 0; 1595 } 1596 1597 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1598 { 1599 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1600 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1601 } 1602 1603 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1604 { 1605 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1606 1607 return ckpt_flags & f; 1608 } 1609 1610 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1611 { 1612 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1613 } 1614 1615 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1616 { 1617 unsigned int ckpt_flags; 1618 1619 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1620 ckpt_flags |= f; 1621 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1622 } 1623 1624 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1625 { 1626 unsigned long flags; 1627 1628 spin_lock_irqsave(&sbi->cp_lock, flags); 1629 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1630 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1631 } 1632 1633 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1634 { 1635 unsigned int ckpt_flags; 1636 1637 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1638 ckpt_flags &= (~f); 1639 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1640 } 1641 1642 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1643 { 1644 unsigned long flags; 1645 1646 spin_lock_irqsave(&sbi->cp_lock, flags); 1647 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1648 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1649 } 1650 1651 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1652 { 1653 unsigned long flags; 1654 unsigned char *nat_bits; 1655 1656 /* 1657 * In order to re-enable nat_bits we need to call fsck.f2fs by 1658 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost, 1659 * so let's rely on regular fsck or unclean shutdown. 1660 */ 1661 1662 if (lock) 1663 spin_lock_irqsave(&sbi->cp_lock, flags); 1664 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1665 nat_bits = NM_I(sbi)->nat_bits; 1666 NM_I(sbi)->nat_bits = NULL; 1667 if (lock) 1668 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1669 1670 kvfree(nat_bits); 1671 } 1672 1673 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1674 struct cp_control *cpc) 1675 { 1676 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1677 1678 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1679 } 1680 1681 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1682 { 1683 down_read(&sbi->cp_rwsem); 1684 } 1685 1686 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1687 { 1688 return down_read_trylock(&sbi->cp_rwsem); 1689 } 1690 1691 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1692 { 1693 up_read(&sbi->cp_rwsem); 1694 } 1695 1696 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1697 { 1698 down_write(&sbi->cp_rwsem); 1699 } 1700 1701 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1702 { 1703 up_write(&sbi->cp_rwsem); 1704 } 1705 1706 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1707 { 1708 int reason = CP_SYNC; 1709 1710 if (test_opt(sbi, FASTBOOT)) 1711 reason = CP_FASTBOOT; 1712 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1713 reason = CP_UMOUNT; 1714 return reason; 1715 } 1716 1717 static inline bool __remain_node_summaries(int reason) 1718 { 1719 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1720 } 1721 1722 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1723 { 1724 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1725 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1726 } 1727 1728 /* 1729 * Check whether the inode has blocks or not 1730 */ 1731 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1732 { 1733 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1734 1735 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1736 } 1737 1738 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1739 { 1740 return ofs == XATTR_NODE_OFFSET; 1741 } 1742 1743 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1744 struct inode *inode, bool cap) 1745 { 1746 if (!inode) 1747 return true; 1748 if (!test_opt(sbi, RESERVE_ROOT)) 1749 return false; 1750 if (IS_NOQUOTA(inode)) 1751 return true; 1752 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1753 return true; 1754 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1755 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1756 return true; 1757 if (cap && capable(CAP_SYS_RESOURCE)) 1758 return true; 1759 return false; 1760 } 1761 1762 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1763 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1764 struct inode *inode, blkcnt_t *count) 1765 { 1766 blkcnt_t diff = 0, release = 0; 1767 block_t avail_user_block_count; 1768 int ret; 1769 1770 ret = dquot_reserve_block(inode, *count); 1771 if (ret) 1772 return ret; 1773 1774 if (time_to_inject(sbi, FAULT_BLOCK)) { 1775 f2fs_show_injection_info(FAULT_BLOCK); 1776 release = *count; 1777 goto release_quota; 1778 } 1779 1780 /* 1781 * let's increase this in prior to actual block count change in order 1782 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1783 */ 1784 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1785 1786 spin_lock(&sbi->stat_lock); 1787 sbi->total_valid_block_count += (block_t)(*count); 1788 avail_user_block_count = sbi->user_block_count - 1789 sbi->current_reserved_blocks; 1790 1791 if (!__allow_reserved_blocks(sbi, inode, true)) 1792 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1793 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1794 if (avail_user_block_count > sbi->unusable_block_count) 1795 avail_user_block_count -= sbi->unusable_block_count; 1796 else 1797 avail_user_block_count = 0; 1798 } 1799 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1800 diff = sbi->total_valid_block_count - avail_user_block_count; 1801 if (diff > *count) 1802 diff = *count; 1803 *count -= diff; 1804 release = diff; 1805 sbi->total_valid_block_count -= diff; 1806 if (!*count) { 1807 spin_unlock(&sbi->stat_lock); 1808 goto enospc; 1809 } 1810 } 1811 spin_unlock(&sbi->stat_lock); 1812 1813 if (unlikely(release)) { 1814 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1815 dquot_release_reservation_block(inode, release); 1816 } 1817 f2fs_i_blocks_write(inode, *count, true, true); 1818 return 0; 1819 1820 enospc: 1821 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1822 release_quota: 1823 dquot_release_reservation_block(inode, release); 1824 return -ENOSPC; 1825 } 1826 1827 __printf(2, 3) 1828 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 1829 1830 #define f2fs_err(sbi, fmt, ...) \ 1831 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 1832 #define f2fs_warn(sbi, fmt, ...) \ 1833 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 1834 #define f2fs_notice(sbi, fmt, ...) \ 1835 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 1836 #define f2fs_info(sbi, fmt, ...) \ 1837 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 1838 #define f2fs_debug(sbi, fmt, ...) \ 1839 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 1840 1841 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1842 struct inode *inode, 1843 block_t count) 1844 { 1845 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1846 1847 spin_lock(&sbi->stat_lock); 1848 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1849 sbi->total_valid_block_count -= (block_t)count; 1850 if (sbi->reserved_blocks && 1851 sbi->current_reserved_blocks < sbi->reserved_blocks) 1852 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1853 sbi->current_reserved_blocks + count); 1854 spin_unlock(&sbi->stat_lock); 1855 if (unlikely(inode->i_blocks < sectors)) { 1856 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 1857 inode->i_ino, 1858 (unsigned long long)inode->i_blocks, 1859 (unsigned long long)sectors); 1860 set_sbi_flag(sbi, SBI_NEED_FSCK); 1861 return; 1862 } 1863 f2fs_i_blocks_write(inode, count, false, true); 1864 } 1865 1866 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1867 { 1868 atomic_inc(&sbi->nr_pages[count_type]); 1869 1870 if (count_type == F2FS_DIRTY_DENTS || 1871 count_type == F2FS_DIRTY_NODES || 1872 count_type == F2FS_DIRTY_META || 1873 count_type == F2FS_DIRTY_QDATA || 1874 count_type == F2FS_DIRTY_IMETA) 1875 set_sbi_flag(sbi, SBI_IS_DIRTY); 1876 } 1877 1878 static inline void inode_inc_dirty_pages(struct inode *inode) 1879 { 1880 atomic_inc(&F2FS_I(inode)->dirty_pages); 1881 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1882 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1883 if (IS_NOQUOTA(inode)) 1884 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1885 } 1886 1887 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1888 { 1889 atomic_dec(&sbi->nr_pages[count_type]); 1890 } 1891 1892 static inline void inode_dec_dirty_pages(struct inode *inode) 1893 { 1894 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1895 !S_ISLNK(inode->i_mode)) 1896 return; 1897 1898 atomic_dec(&F2FS_I(inode)->dirty_pages); 1899 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1900 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1901 if (IS_NOQUOTA(inode)) 1902 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1903 } 1904 1905 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1906 { 1907 return atomic_read(&sbi->nr_pages[count_type]); 1908 } 1909 1910 static inline int get_dirty_pages(struct inode *inode) 1911 { 1912 return atomic_read(&F2FS_I(inode)->dirty_pages); 1913 } 1914 1915 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1916 { 1917 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1918 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1919 sbi->log_blocks_per_seg; 1920 1921 return segs / sbi->segs_per_sec; 1922 } 1923 1924 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1925 { 1926 return sbi->total_valid_block_count; 1927 } 1928 1929 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1930 { 1931 return sbi->discard_blks; 1932 } 1933 1934 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1935 { 1936 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1937 1938 /* return NAT or SIT bitmap */ 1939 if (flag == NAT_BITMAP) 1940 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1941 else if (flag == SIT_BITMAP) 1942 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1943 1944 return 0; 1945 } 1946 1947 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1948 { 1949 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1950 } 1951 1952 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1953 { 1954 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1955 int offset; 1956 1957 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 1958 offset = (flag == SIT_BITMAP) ? 1959 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 1960 /* 1961 * if large_nat_bitmap feature is enabled, leave checksum 1962 * protection for all nat/sit bitmaps. 1963 */ 1964 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32); 1965 } 1966 1967 if (__cp_payload(sbi) > 0) { 1968 if (flag == NAT_BITMAP) 1969 return &ckpt->sit_nat_version_bitmap; 1970 else 1971 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1972 } else { 1973 offset = (flag == NAT_BITMAP) ? 1974 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1975 return &ckpt->sit_nat_version_bitmap + offset; 1976 } 1977 } 1978 1979 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1980 { 1981 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1982 1983 if (sbi->cur_cp_pack == 2) 1984 start_addr += sbi->blocks_per_seg; 1985 return start_addr; 1986 } 1987 1988 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1989 { 1990 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1991 1992 if (sbi->cur_cp_pack == 1) 1993 start_addr += sbi->blocks_per_seg; 1994 return start_addr; 1995 } 1996 1997 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1998 { 1999 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2000 } 2001 2002 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2003 { 2004 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2005 } 2006 2007 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2008 struct inode *inode, bool is_inode) 2009 { 2010 block_t valid_block_count; 2011 unsigned int valid_node_count, user_block_count; 2012 int err; 2013 2014 if (is_inode) { 2015 if (inode) { 2016 err = dquot_alloc_inode(inode); 2017 if (err) 2018 return err; 2019 } 2020 } else { 2021 err = dquot_reserve_block(inode, 1); 2022 if (err) 2023 return err; 2024 } 2025 2026 if (time_to_inject(sbi, FAULT_BLOCK)) { 2027 f2fs_show_injection_info(FAULT_BLOCK); 2028 goto enospc; 2029 } 2030 2031 spin_lock(&sbi->stat_lock); 2032 2033 valid_block_count = sbi->total_valid_block_count + 2034 sbi->current_reserved_blocks + 1; 2035 2036 if (!__allow_reserved_blocks(sbi, inode, false)) 2037 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2038 user_block_count = sbi->user_block_count; 2039 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2040 user_block_count -= sbi->unusable_block_count; 2041 2042 if (unlikely(valid_block_count > user_block_count)) { 2043 spin_unlock(&sbi->stat_lock); 2044 goto enospc; 2045 } 2046 2047 valid_node_count = sbi->total_valid_node_count + 1; 2048 if (unlikely(valid_node_count > sbi->total_node_count)) { 2049 spin_unlock(&sbi->stat_lock); 2050 goto enospc; 2051 } 2052 2053 sbi->total_valid_node_count++; 2054 sbi->total_valid_block_count++; 2055 spin_unlock(&sbi->stat_lock); 2056 2057 if (inode) { 2058 if (is_inode) 2059 f2fs_mark_inode_dirty_sync(inode, true); 2060 else 2061 f2fs_i_blocks_write(inode, 1, true, true); 2062 } 2063 2064 percpu_counter_inc(&sbi->alloc_valid_block_count); 2065 return 0; 2066 2067 enospc: 2068 if (is_inode) { 2069 if (inode) 2070 dquot_free_inode(inode); 2071 } else { 2072 dquot_release_reservation_block(inode, 1); 2073 } 2074 return -ENOSPC; 2075 } 2076 2077 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2078 struct inode *inode, bool is_inode) 2079 { 2080 spin_lock(&sbi->stat_lock); 2081 2082 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 2083 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 2084 2085 sbi->total_valid_node_count--; 2086 sbi->total_valid_block_count--; 2087 if (sbi->reserved_blocks && 2088 sbi->current_reserved_blocks < sbi->reserved_blocks) 2089 sbi->current_reserved_blocks++; 2090 2091 spin_unlock(&sbi->stat_lock); 2092 2093 if (is_inode) { 2094 dquot_free_inode(inode); 2095 } else { 2096 if (unlikely(inode->i_blocks == 0)) { 2097 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu", 2098 inode->i_ino, 2099 (unsigned long long)inode->i_blocks); 2100 set_sbi_flag(sbi, SBI_NEED_FSCK); 2101 return; 2102 } 2103 f2fs_i_blocks_write(inode, 1, false, true); 2104 } 2105 } 2106 2107 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2108 { 2109 return sbi->total_valid_node_count; 2110 } 2111 2112 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2113 { 2114 percpu_counter_inc(&sbi->total_valid_inode_count); 2115 } 2116 2117 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2118 { 2119 percpu_counter_dec(&sbi->total_valid_inode_count); 2120 } 2121 2122 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2123 { 2124 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2125 } 2126 2127 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2128 pgoff_t index, bool for_write) 2129 { 2130 struct page *page; 2131 2132 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2133 if (!for_write) 2134 page = find_get_page_flags(mapping, index, 2135 FGP_LOCK | FGP_ACCESSED); 2136 else 2137 page = find_lock_page(mapping, index); 2138 if (page) 2139 return page; 2140 2141 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2142 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 2143 return NULL; 2144 } 2145 } 2146 2147 if (!for_write) 2148 return grab_cache_page(mapping, index); 2149 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 2150 } 2151 2152 static inline struct page *f2fs_pagecache_get_page( 2153 struct address_space *mapping, pgoff_t index, 2154 int fgp_flags, gfp_t gfp_mask) 2155 { 2156 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2157 f2fs_show_injection_info(FAULT_PAGE_GET); 2158 return NULL; 2159 } 2160 2161 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2162 } 2163 2164 static inline void f2fs_copy_page(struct page *src, struct page *dst) 2165 { 2166 char *src_kaddr = kmap(src); 2167 char *dst_kaddr = kmap(dst); 2168 2169 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 2170 kunmap(dst); 2171 kunmap(src); 2172 } 2173 2174 static inline void f2fs_put_page(struct page *page, int unlock) 2175 { 2176 if (!page) 2177 return; 2178 2179 if (unlock) { 2180 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2181 unlock_page(page); 2182 } 2183 put_page(page); 2184 } 2185 2186 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2187 { 2188 if (dn->node_page) 2189 f2fs_put_page(dn->node_page, 1); 2190 if (dn->inode_page && dn->node_page != dn->inode_page) 2191 f2fs_put_page(dn->inode_page, 0); 2192 dn->node_page = NULL; 2193 dn->inode_page = NULL; 2194 } 2195 2196 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2197 size_t size) 2198 { 2199 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2200 } 2201 2202 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2203 gfp_t flags) 2204 { 2205 void *entry; 2206 2207 entry = kmem_cache_alloc(cachep, flags); 2208 if (!entry) 2209 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2210 return entry; 2211 } 2212 2213 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 2214 int npages, bool no_fail) 2215 { 2216 struct bio *bio; 2217 2218 if (no_fail) { 2219 /* No failure on bio allocation */ 2220 bio = bio_alloc(GFP_NOIO, npages); 2221 if (!bio) 2222 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 2223 return bio; 2224 } 2225 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2226 f2fs_show_injection_info(FAULT_ALLOC_BIO); 2227 return NULL; 2228 } 2229 2230 return bio_alloc(GFP_KERNEL, npages); 2231 } 2232 2233 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2234 { 2235 if (sbi->gc_mode == GC_URGENT) 2236 return true; 2237 2238 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2239 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2240 get_pages(sbi, F2FS_WB_CP_DATA) || 2241 get_pages(sbi, F2FS_DIO_READ) || 2242 get_pages(sbi, F2FS_DIO_WRITE)) 2243 return false; 2244 2245 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2246 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2247 return false; 2248 2249 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2250 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2251 return false; 2252 2253 return f2fs_time_over(sbi, type); 2254 } 2255 2256 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2257 unsigned long index, void *item) 2258 { 2259 while (radix_tree_insert(root, index, item)) 2260 cond_resched(); 2261 } 2262 2263 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2264 2265 static inline bool IS_INODE(struct page *page) 2266 { 2267 struct f2fs_node *p = F2FS_NODE(page); 2268 2269 return RAW_IS_INODE(p); 2270 } 2271 2272 static inline int offset_in_addr(struct f2fs_inode *i) 2273 { 2274 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2275 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2276 } 2277 2278 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2279 { 2280 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2281 } 2282 2283 static inline int f2fs_has_extra_attr(struct inode *inode); 2284 static inline block_t datablock_addr(struct inode *inode, 2285 struct page *node_page, unsigned int offset) 2286 { 2287 struct f2fs_node *raw_node; 2288 __le32 *addr_array; 2289 int base = 0; 2290 bool is_inode = IS_INODE(node_page); 2291 2292 raw_node = F2FS_NODE(node_page); 2293 2294 /* from GC path only */ 2295 if (is_inode) { 2296 if (!inode) 2297 base = offset_in_addr(&raw_node->i); 2298 else if (f2fs_has_extra_attr(inode)) 2299 base = get_extra_isize(inode); 2300 } 2301 2302 addr_array = blkaddr_in_node(raw_node); 2303 return le32_to_cpu(addr_array[base + offset]); 2304 } 2305 2306 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2307 { 2308 int mask; 2309 2310 addr += (nr >> 3); 2311 mask = 1 << (7 - (nr & 0x07)); 2312 return mask & *addr; 2313 } 2314 2315 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2316 { 2317 int mask; 2318 2319 addr += (nr >> 3); 2320 mask = 1 << (7 - (nr & 0x07)); 2321 *addr |= mask; 2322 } 2323 2324 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2325 { 2326 int mask; 2327 2328 addr += (nr >> 3); 2329 mask = 1 << (7 - (nr & 0x07)); 2330 *addr &= ~mask; 2331 } 2332 2333 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2334 { 2335 int mask; 2336 int ret; 2337 2338 addr += (nr >> 3); 2339 mask = 1 << (7 - (nr & 0x07)); 2340 ret = mask & *addr; 2341 *addr |= mask; 2342 return ret; 2343 } 2344 2345 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2346 { 2347 int mask; 2348 int ret; 2349 2350 addr += (nr >> 3); 2351 mask = 1 << (7 - (nr & 0x07)); 2352 ret = mask & *addr; 2353 *addr &= ~mask; 2354 return ret; 2355 } 2356 2357 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2358 { 2359 int mask; 2360 2361 addr += (nr >> 3); 2362 mask = 1 << (7 - (nr & 0x07)); 2363 *addr ^= mask; 2364 } 2365 2366 /* 2367 * On-disk inode flags (f2fs_inode::i_flags) 2368 */ 2369 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2370 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2371 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2372 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2373 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2374 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2375 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2376 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2377 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2378 2379 /* Flags that should be inherited by new inodes from their parent. */ 2380 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2381 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2382 F2FS_CASEFOLD_FL) 2383 2384 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2385 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2386 F2FS_CASEFOLD_FL)) 2387 2388 /* Flags that are appropriate for non-directories/regular files. */ 2389 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2390 2391 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2392 { 2393 if (S_ISDIR(mode)) 2394 return flags; 2395 else if (S_ISREG(mode)) 2396 return flags & F2FS_REG_FLMASK; 2397 else 2398 return flags & F2FS_OTHER_FLMASK; 2399 } 2400 2401 /* used for f2fs_inode_info->flags */ 2402 enum { 2403 FI_NEW_INODE, /* indicate newly allocated inode */ 2404 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2405 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2406 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2407 FI_INC_LINK, /* need to increment i_nlink */ 2408 FI_ACL_MODE, /* indicate acl mode */ 2409 FI_NO_ALLOC, /* should not allocate any blocks */ 2410 FI_FREE_NID, /* free allocated nide */ 2411 FI_NO_EXTENT, /* not to use the extent cache */ 2412 FI_INLINE_XATTR, /* used for inline xattr */ 2413 FI_INLINE_DATA, /* used for inline data*/ 2414 FI_INLINE_DENTRY, /* used for inline dentry */ 2415 FI_APPEND_WRITE, /* inode has appended data */ 2416 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2417 FI_NEED_IPU, /* used for ipu per file */ 2418 FI_ATOMIC_FILE, /* indicate atomic file */ 2419 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2420 FI_VOLATILE_FILE, /* indicate volatile file */ 2421 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2422 FI_DROP_CACHE, /* drop dirty page cache */ 2423 FI_DATA_EXIST, /* indicate data exists */ 2424 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2425 FI_DO_DEFRAG, /* indicate defragment is running */ 2426 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2427 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2428 FI_HOT_DATA, /* indicate file is hot */ 2429 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2430 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2431 FI_PIN_FILE, /* indicate file should not be gced */ 2432 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 2433 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 2434 }; 2435 2436 static inline void __mark_inode_dirty_flag(struct inode *inode, 2437 int flag, bool set) 2438 { 2439 switch (flag) { 2440 case FI_INLINE_XATTR: 2441 case FI_INLINE_DATA: 2442 case FI_INLINE_DENTRY: 2443 case FI_NEW_INODE: 2444 if (set) 2445 return; 2446 /* fall through */ 2447 case FI_DATA_EXIST: 2448 case FI_INLINE_DOTS: 2449 case FI_PIN_FILE: 2450 f2fs_mark_inode_dirty_sync(inode, true); 2451 } 2452 } 2453 2454 static inline void set_inode_flag(struct inode *inode, int flag) 2455 { 2456 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2457 set_bit(flag, &F2FS_I(inode)->flags); 2458 __mark_inode_dirty_flag(inode, flag, true); 2459 } 2460 2461 static inline int is_inode_flag_set(struct inode *inode, int flag) 2462 { 2463 return test_bit(flag, &F2FS_I(inode)->flags); 2464 } 2465 2466 static inline void clear_inode_flag(struct inode *inode, int flag) 2467 { 2468 if (test_bit(flag, &F2FS_I(inode)->flags)) 2469 clear_bit(flag, &F2FS_I(inode)->flags); 2470 __mark_inode_dirty_flag(inode, flag, false); 2471 } 2472 2473 static inline bool f2fs_verity_in_progress(struct inode *inode) 2474 { 2475 return IS_ENABLED(CONFIG_FS_VERITY) && 2476 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 2477 } 2478 2479 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2480 { 2481 F2FS_I(inode)->i_acl_mode = mode; 2482 set_inode_flag(inode, FI_ACL_MODE); 2483 f2fs_mark_inode_dirty_sync(inode, false); 2484 } 2485 2486 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2487 { 2488 if (inc) 2489 inc_nlink(inode); 2490 else 2491 drop_nlink(inode); 2492 f2fs_mark_inode_dirty_sync(inode, true); 2493 } 2494 2495 static inline void f2fs_i_blocks_write(struct inode *inode, 2496 block_t diff, bool add, bool claim) 2497 { 2498 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2499 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2500 2501 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2502 if (add) { 2503 if (claim) 2504 dquot_claim_block(inode, diff); 2505 else 2506 dquot_alloc_block_nofail(inode, diff); 2507 } else { 2508 dquot_free_block(inode, diff); 2509 } 2510 2511 f2fs_mark_inode_dirty_sync(inode, true); 2512 if (clean || recover) 2513 set_inode_flag(inode, FI_AUTO_RECOVER); 2514 } 2515 2516 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2517 { 2518 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2519 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2520 2521 if (i_size_read(inode) == i_size) 2522 return; 2523 2524 i_size_write(inode, i_size); 2525 f2fs_mark_inode_dirty_sync(inode, true); 2526 if (clean || recover) 2527 set_inode_flag(inode, FI_AUTO_RECOVER); 2528 } 2529 2530 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2531 { 2532 F2FS_I(inode)->i_current_depth = depth; 2533 f2fs_mark_inode_dirty_sync(inode, true); 2534 } 2535 2536 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2537 unsigned int count) 2538 { 2539 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2540 f2fs_mark_inode_dirty_sync(inode, true); 2541 } 2542 2543 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2544 { 2545 F2FS_I(inode)->i_xattr_nid = xnid; 2546 f2fs_mark_inode_dirty_sync(inode, true); 2547 } 2548 2549 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2550 { 2551 F2FS_I(inode)->i_pino = pino; 2552 f2fs_mark_inode_dirty_sync(inode, true); 2553 } 2554 2555 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2556 { 2557 struct f2fs_inode_info *fi = F2FS_I(inode); 2558 2559 if (ri->i_inline & F2FS_INLINE_XATTR) 2560 set_bit(FI_INLINE_XATTR, &fi->flags); 2561 if (ri->i_inline & F2FS_INLINE_DATA) 2562 set_bit(FI_INLINE_DATA, &fi->flags); 2563 if (ri->i_inline & F2FS_INLINE_DENTRY) 2564 set_bit(FI_INLINE_DENTRY, &fi->flags); 2565 if (ri->i_inline & F2FS_DATA_EXIST) 2566 set_bit(FI_DATA_EXIST, &fi->flags); 2567 if (ri->i_inline & F2FS_INLINE_DOTS) 2568 set_bit(FI_INLINE_DOTS, &fi->flags); 2569 if (ri->i_inline & F2FS_EXTRA_ATTR) 2570 set_bit(FI_EXTRA_ATTR, &fi->flags); 2571 if (ri->i_inline & F2FS_PIN_FILE) 2572 set_bit(FI_PIN_FILE, &fi->flags); 2573 } 2574 2575 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2576 { 2577 ri->i_inline = 0; 2578 2579 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2580 ri->i_inline |= F2FS_INLINE_XATTR; 2581 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2582 ri->i_inline |= F2FS_INLINE_DATA; 2583 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2584 ri->i_inline |= F2FS_INLINE_DENTRY; 2585 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2586 ri->i_inline |= F2FS_DATA_EXIST; 2587 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2588 ri->i_inline |= F2FS_INLINE_DOTS; 2589 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2590 ri->i_inline |= F2FS_EXTRA_ATTR; 2591 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2592 ri->i_inline |= F2FS_PIN_FILE; 2593 } 2594 2595 static inline int f2fs_has_extra_attr(struct inode *inode) 2596 { 2597 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2598 } 2599 2600 static inline int f2fs_has_inline_xattr(struct inode *inode) 2601 { 2602 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2603 } 2604 2605 static inline unsigned int addrs_per_inode(struct inode *inode) 2606 { 2607 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 2608 get_inline_xattr_addrs(inode); 2609 return ALIGN_DOWN(addrs, 1); 2610 } 2611 2612 static inline unsigned int addrs_per_block(struct inode *inode) 2613 { 2614 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1); 2615 } 2616 2617 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2618 { 2619 struct f2fs_inode *ri = F2FS_INODE(page); 2620 2621 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2622 get_inline_xattr_addrs(inode)]); 2623 } 2624 2625 static inline int inline_xattr_size(struct inode *inode) 2626 { 2627 if (f2fs_has_inline_xattr(inode)) 2628 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2629 return 0; 2630 } 2631 2632 static inline int f2fs_has_inline_data(struct inode *inode) 2633 { 2634 return is_inode_flag_set(inode, FI_INLINE_DATA); 2635 } 2636 2637 static inline int f2fs_exist_data(struct inode *inode) 2638 { 2639 return is_inode_flag_set(inode, FI_DATA_EXIST); 2640 } 2641 2642 static inline int f2fs_has_inline_dots(struct inode *inode) 2643 { 2644 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2645 } 2646 2647 static inline bool f2fs_is_pinned_file(struct inode *inode) 2648 { 2649 return is_inode_flag_set(inode, FI_PIN_FILE); 2650 } 2651 2652 static inline bool f2fs_is_atomic_file(struct inode *inode) 2653 { 2654 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2655 } 2656 2657 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2658 { 2659 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2660 } 2661 2662 static inline bool f2fs_is_volatile_file(struct inode *inode) 2663 { 2664 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2665 } 2666 2667 static inline bool f2fs_is_first_block_written(struct inode *inode) 2668 { 2669 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2670 } 2671 2672 static inline bool f2fs_is_drop_cache(struct inode *inode) 2673 { 2674 return is_inode_flag_set(inode, FI_DROP_CACHE); 2675 } 2676 2677 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2678 { 2679 struct f2fs_inode *ri = F2FS_INODE(page); 2680 int extra_size = get_extra_isize(inode); 2681 2682 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2683 } 2684 2685 static inline int f2fs_has_inline_dentry(struct inode *inode) 2686 { 2687 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2688 } 2689 2690 static inline int is_file(struct inode *inode, int type) 2691 { 2692 return F2FS_I(inode)->i_advise & type; 2693 } 2694 2695 static inline void set_file(struct inode *inode, int type) 2696 { 2697 F2FS_I(inode)->i_advise |= type; 2698 f2fs_mark_inode_dirty_sync(inode, true); 2699 } 2700 2701 static inline void clear_file(struct inode *inode, int type) 2702 { 2703 F2FS_I(inode)->i_advise &= ~type; 2704 f2fs_mark_inode_dirty_sync(inode, true); 2705 } 2706 2707 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2708 { 2709 bool ret; 2710 2711 if (dsync) { 2712 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2713 2714 spin_lock(&sbi->inode_lock[DIRTY_META]); 2715 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2716 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2717 return ret; 2718 } 2719 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2720 file_keep_isize(inode) || 2721 i_size_read(inode) & ~PAGE_MASK) 2722 return false; 2723 2724 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 2725 return false; 2726 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 2727 return false; 2728 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 2729 return false; 2730 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 2731 &F2FS_I(inode)->i_crtime)) 2732 return false; 2733 2734 down_read(&F2FS_I(inode)->i_sem); 2735 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2736 up_read(&F2FS_I(inode)->i_sem); 2737 2738 return ret; 2739 } 2740 2741 static inline bool f2fs_readonly(struct super_block *sb) 2742 { 2743 return sb_rdonly(sb); 2744 } 2745 2746 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2747 { 2748 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2749 } 2750 2751 static inline bool is_dot_dotdot(const struct qstr *str) 2752 { 2753 if (str->len == 1 && str->name[0] == '.') 2754 return true; 2755 2756 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2757 return true; 2758 2759 return false; 2760 } 2761 2762 static inline bool f2fs_may_extent_tree(struct inode *inode) 2763 { 2764 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2765 2766 if (!test_opt(sbi, EXTENT_CACHE) || 2767 is_inode_flag_set(inode, FI_NO_EXTENT)) 2768 return false; 2769 2770 /* 2771 * for recovered files during mount do not create extents 2772 * if shrinker is not registered. 2773 */ 2774 if (list_empty(&sbi->s_list)) 2775 return false; 2776 2777 return S_ISREG(inode->i_mode); 2778 } 2779 2780 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2781 size_t size, gfp_t flags) 2782 { 2783 void *ret; 2784 2785 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2786 f2fs_show_injection_info(FAULT_KMALLOC); 2787 return NULL; 2788 } 2789 2790 ret = kmalloc(size, flags); 2791 if (ret) 2792 return ret; 2793 2794 return kvmalloc(size, flags); 2795 } 2796 2797 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2798 size_t size, gfp_t flags) 2799 { 2800 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2801 } 2802 2803 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2804 size_t size, gfp_t flags) 2805 { 2806 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2807 f2fs_show_injection_info(FAULT_KVMALLOC); 2808 return NULL; 2809 } 2810 2811 return kvmalloc(size, flags); 2812 } 2813 2814 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2815 size_t size, gfp_t flags) 2816 { 2817 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2818 } 2819 2820 static inline int get_extra_isize(struct inode *inode) 2821 { 2822 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2823 } 2824 2825 static inline int get_inline_xattr_addrs(struct inode *inode) 2826 { 2827 return F2FS_I(inode)->i_inline_xattr_size; 2828 } 2829 2830 #define f2fs_get_inode_mode(i) \ 2831 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2832 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2833 2834 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2835 (offsetof(struct f2fs_inode, i_extra_end) - \ 2836 offsetof(struct f2fs_inode, i_extra_isize)) \ 2837 2838 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2839 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2840 ((offsetof(typeof(*(f2fs_inode)), field) + \ 2841 sizeof((f2fs_inode)->field)) \ 2842 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 2843 2844 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2845 { 2846 int i; 2847 2848 spin_lock(&sbi->iostat_lock); 2849 for (i = 0; i < NR_IO_TYPE; i++) 2850 sbi->write_iostat[i] = 0; 2851 spin_unlock(&sbi->iostat_lock); 2852 } 2853 2854 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2855 enum iostat_type type, unsigned long long io_bytes) 2856 { 2857 if (!sbi->iostat_enable) 2858 return; 2859 spin_lock(&sbi->iostat_lock); 2860 sbi->write_iostat[type] += io_bytes; 2861 2862 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2863 sbi->write_iostat[APP_BUFFERED_IO] = 2864 sbi->write_iostat[APP_WRITE_IO] - 2865 sbi->write_iostat[APP_DIRECT_IO]; 2866 spin_unlock(&sbi->iostat_lock); 2867 } 2868 2869 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 2870 2871 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 2872 2873 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 2874 block_t blkaddr, int type); 2875 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 2876 block_t blkaddr, int type) 2877 { 2878 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 2879 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 2880 blkaddr, type); 2881 f2fs_bug_on(sbi, 1); 2882 } 2883 } 2884 2885 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 2886 { 2887 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 2888 return false; 2889 return true; 2890 } 2891 2892 static inline void f2fs_set_page_private(struct page *page, 2893 unsigned long data) 2894 { 2895 if (PagePrivate(page)) 2896 return; 2897 2898 get_page(page); 2899 SetPagePrivate(page); 2900 set_page_private(page, data); 2901 } 2902 2903 static inline void f2fs_clear_page_private(struct page *page) 2904 { 2905 if (!PagePrivate(page)) 2906 return; 2907 2908 set_page_private(page, 0); 2909 ClearPagePrivate(page); 2910 f2fs_put_page(page, 0); 2911 } 2912 2913 /* 2914 * file.c 2915 */ 2916 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2917 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 2918 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 2919 int f2fs_truncate(struct inode *inode); 2920 int f2fs_getattr(const struct path *path, struct kstat *stat, 2921 u32 request_mask, unsigned int flags); 2922 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2923 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2924 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2925 int f2fs_precache_extents(struct inode *inode); 2926 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2927 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2928 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 2929 int f2fs_pin_file_control(struct inode *inode, bool inc); 2930 2931 /* 2932 * inode.c 2933 */ 2934 void f2fs_set_inode_flags(struct inode *inode); 2935 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2936 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2937 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2938 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2939 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2940 void f2fs_update_inode(struct inode *inode, struct page *node_page); 2941 void f2fs_update_inode_page(struct inode *inode); 2942 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2943 void f2fs_evict_inode(struct inode *inode); 2944 void f2fs_handle_failed_inode(struct inode *inode); 2945 2946 /* 2947 * namei.c 2948 */ 2949 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 2950 bool hot, bool set); 2951 struct dentry *f2fs_get_parent(struct dentry *child); 2952 2953 extern int f2fs_ci_compare(const struct inode *parent, 2954 const struct qstr *name, 2955 const struct qstr *entry, 2956 bool quick); 2957 2958 /* 2959 * dir.c 2960 */ 2961 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 2962 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname, 2963 f2fs_hash_t namehash, int *max_slots, 2964 struct f2fs_dentry_ptr *d); 2965 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2966 unsigned int start_pos, struct fscrypt_str *fstr); 2967 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 2968 struct f2fs_dentry_ptr *d); 2969 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 2970 const struct qstr *new_name, 2971 const struct qstr *orig_name, struct page *dpage); 2972 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 2973 unsigned int current_depth); 2974 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 2975 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2976 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2977 struct fscrypt_name *fname, struct page **res_page); 2978 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2979 const struct qstr *child, struct page **res_page); 2980 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2981 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2982 struct page **page); 2983 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2984 struct page *page, struct inode *inode); 2985 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2986 const struct qstr *name, f2fs_hash_t name_hash, 2987 unsigned int bit_pos); 2988 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2989 const struct qstr *orig_name, 2990 struct inode *inode, nid_t ino, umode_t mode); 2991 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname, 2992 struct inode *inode, nid_t ino, umode_t mode); 2993 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 2994 struct inode *inode, nid_t ino, umode_t mode); 2995 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2996 struct inode *dir, struct inode *inode); 2997 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2998 bool f2fs_empty_dir(struct inode *dir); 2999 3000 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3001 { 3002 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3003 inode, inode->i_ino, inode->i_mode); 3004 } 3005 3006 /* 3007 * super.c 3008 */ 3009 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3010 void f2fs_inode_synced(struct inode *inode); 3011 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3012 int f2fs_quota_sync(struct super_block *sb, int type); 3013 void f2fs_quota_off_umount(struct super_block *sb); 3014 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3015 int f2fs_sync_fs(struct super_block *sb, int sync); 3016 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3017 3018 /* 3019 * hash.c 3020 */ 3021 f2fs_hash_t f2fs_dentry_hash(const struct inode *dir, 3022 const struct qstr *name_info, struct fscrypt_name *fname); 3023 3024 /* 3025 * node.c 3026 */ 3027 struct dnode_of_data; 3028 struct node_info; 3029 3030 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3031 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3032 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3033 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3034 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3035 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3036 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3037 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3038 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3039 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3040 struct node_info *ni); 3041 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3042 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3043 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3044 int f2fs_truncate_xattr_node(struct inode *inode); 3045 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3046 unsigned int seq_id); 3047 int f2fs_remove_inode_page(struct inode *inode); 3048 struct page *f2fs_new_inode_page(struct inode *inode); 3049 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3050 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3051 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3052 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3053 int f2fs_move_node_page(struct page *node_page, int gc_type); 3054 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3055 struct writeback_control *wbc, bool atomic, 3056 unsigned int *seq_id); 3057 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3058 struct writeback_control *wbc, 3059 bool do_balance, enum iostat_type io_type); 3060 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3061 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3062 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3063 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3064 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3065 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3066 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3067 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3068 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3069 unsigned int segno, struct f2fs_summary_block *sum); 3070 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3071 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3072 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3073 int __init f2fs_create_node_manager_caches(void); 3074 void f2fs_destroy_node_manager_caches(void); 3075 3076 /* 3077 * segment.c 3078 */ 3079 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3080 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 3081 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 3082 void f2fs_drop_inmem_pages(struct inode *inode); 3083 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 3084 int f2fs_commit_inmem_pages(struct inode *inode); 3085 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3086 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 3087 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3088 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3089 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3090 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3091 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3092 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3093 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3094 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3095 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3096 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3097 struct cp_control *cpc); 3098 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3099 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3100 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3101 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3102 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3103 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3104 unsigned int start, unsigned int end); 3105 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3106 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3107 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3108 struct cp_control *cpc); 3109 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3110 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3111 block_t blk_addr); 3112 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3113 enum iostat_type io_type); 3114 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3115 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3116 struct f2fs_io_info *fio); 3117 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3118 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3119 block_t old_blkaddr, block_t new_blkaddr, 3120 bool recover_curseg, bool recover_newaddr); 3121 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3122 block_t old_addr, block_t new_addr, 3123 unsigned char version, bool recover_curseg, 3124 bool recover_newaddr); 3125 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3126 block_t old_blkaddr, block_t *new_blkaddr, 3127 struct f2fs_summary *sum, int type, 3128 struct f2fs_io_info *fio, bool add_list); 3129 void f2fs_wait_on_page_writeback(struct page *page, 3130 enum page_type type, bool ordered, bool locked); 3131 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3132 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3133 block_t len); 3134 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3135 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3136 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3137 unsigned int val, int alloc); 3138 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3139 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3140 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3141 int __init f2fs_create_segment_manager_caches(void); 3142 void f2fs_destroy_segment_manager_caches(void); 3143 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3144 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3145 enum page_type type, enum temp_type temp); 3146 3147 /* 3148 * checkpoint.c 3149 */ 3150 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 3151 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3152 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3153 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index); 3154 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3155 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3156 block_t blkaddr, int type); 3157 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3158 int type, bool sync); 3159 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 3160 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3161 long nr_to_write, enum iostat_type io_type); 3162 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3163 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3164 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3165 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3166 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3167 unsigned int devidx, int type); 3168 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3169 unsigned int devidx, int type); 3170 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3171 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3172 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3173 void f2fs_add_orphan_inode(struct inode *inode); 3174 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3175 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3176 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3177 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 3178 void f2fs_remove_dirty_inode(struct inode *inode); 3179 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 3180 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi); 3181 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3182 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3183 int __init f2fs_create_checkpoint_caches(void); 3184 void f2fs_destroy_checkpoint_caches(void); 3185 3186 /* 3187 * data.c 3188 */ 3189 int f2fs_init_post_read_processing(void); 3190 void f2fs_destroy_post_read_processing(void); 3191 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3192 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3193 struct inode *inode, struct page *page, 3194 nid_t ino, enum page_type type); 3195 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3196 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3197 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3198 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3199 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3200 block_t blk_addr, struct bio *bio); 3201 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3202 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3203 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3204 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3205 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3206 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3207 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 3208 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3209 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3210 int op_flags, bool for_write); 3211 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 3212 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3213 bool for_write); 3214 struct page *f2fs_get_new_data_page(struct inode *inode, 3215 struct page *ipage, pgoff_t index, bool new_i_size); 3216 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3217 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock); 3218 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3219 int create, int flag); 3220 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3221 u64 start, u64 len); 3222 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3223 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3224 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3225 unsigned int length); 3226 int f2fs_release_page(struct page *page, gfp_t wait); 3227 #ifdef CONFIG_MIGRATION 3228 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 3229 struct page *page, enum migrate_mode mode); 3230 #endif 3231 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3232 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3233 3234 /* 3235 * gc.c 3236 */ 3237 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3238 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3239 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3240 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 3241 unsigned int segno); 3242 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3243 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3244 3245 /* 3246 * recovery.c 3247 */ 3248 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3249 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3250 3251 /* 3252 * debug.c 3253 */ 3254 #ifdef CONFIG_F2FS_STAT_FS 3255 struct f2fs_stat_info { 3256 struct list_head stat_list; 3257 struct f2fs_sb_info *sbi; 3258 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3259 int main_area_segs, main_area_sections, main_area_zones; 3260 unsigned long long hit_largest, hit_cached, hit_rbtree; 3261 unsigned long long hit_total, total_ext; 3262 int ext_tree, zombie_tree, ext_node; 3263 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3264 int ndirty_data, ndirty_qdata; 3265 int inmem_pages; 3266 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3267 int nats, dirty_nats, sits, dirty_sits; 3268 int free_nids, avail_nids, alloc_nids; 3269 int total_count, utilization; 3270 int bg_gc, nr_wb_cp_data, nr_wb_data; 3271 int nr_rd_data, nr_rd_node, nr_rd_meta; 3272 int nr_dio_read, nr_dio_write; 3273 unsigned int io_skip_bggc, other_skip_bggc; 3274 int nr_flushing, nr_flushed, flush_list_empty; 3275 int nr_discarding, nr_discarded; 3276 int nr_discard_cmd; 3277 unsigned int undiscard_blks; 3278 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3279 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3280 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3281 unsigned int bimodal, avg_vblocks; 3282 int util_free, util_valid, util_invalid; 3283 int rsvd_segs, overp_segs; 3284 int dirty_count, node_pages, meta_pages; 3285 int prefree_count, call_count, cp_count, bg_cp_count; 3286 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3287 int bg_node_segs, bg_data_segs; 3288 int tot_blks, data_blks, node_blks; 3289 int bg_data_blks, bg_node_blks; 3290 unsigned long long skipped_atomic_files[2]; 3291 int curseg[NR_CURSEG_TYPE]; 3292 int cursec[NR_CURSEG_TYPE]; 3293 int curzone[NR_CURSEG_TYPE]; 3294 3295 unsigned int meta_count[META_MAX]; 3296 unsigned int segment_count[2]; 3297 unsigned int block_count[2]; 3298 unsigned int inplace_count; 3299 unsigned long long base_mem, cache_mem, page_mem; 3300 }; 3301 3302 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3303 { 3304 return (struct f2fs_stat_info *)sbi->stat_info; 3305 } 3306 3307 #define stat_inc_cp_count(si) ((si)->cp_count++) 3308 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3309 #define stat_inc_call_count(si) ((si)->call_count++) 3310 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 3311 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3312 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3313 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3314 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3315 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3316 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3317 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3318 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3319 #define stat_inc_inline_xattr(inode) \ 3320 do { \ 3321 if (f2fs_has_inline_xattr(inode)) \ 3322 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3323 } while (0) 3324 #define stat_dec_inline_xattr(inode) \ 3325 do { \ 3326 if (f2fs_has_inline_xattr(inode)) \ 3327 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3328 } while (0) 3329 #define stat_inc_inline_inode(inode) \ 3330 do { \ 3331 if (f2fs_has_inline_data(inode)) \ 3332 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3333 } while (0) 3334 #define stat_dec_inline_inode(inode) \ 3335 do { \ 3336 if (f2fs_has_inline_data(inode)) \ 3337 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3338 } while (0) 3339 #define stat_inc_inline_dir(inode) \ 3340 do { \ 3341 if (f2fs_has_inline_dentry(inode)) \ 3342 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3343 } while (0) 3344 #define stat_dec_inline_dir(inode) \ 3345 do { \ 3346 if (f2fs_has_inline_dentry(inode)) \ 3347 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3348 } while (0) 3349 #define stat_inc_meta_count(sbi, blkaddr) \ 3350 do { \ 3351 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3352 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3353 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3354 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3355 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3356 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3357 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3358 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3359 } while (0) 3360 #define stat_inc_seg_type(sbi, curseg) \ 3361 ((sbi)->segment_count[(curseg)->alloc_type]++) 3362 #define stat_inc_block_count(sbi, curseg) \ 3363 ((sbi)->block_count[(curseg)->alloc_type]++) 3364 #define stat_inc_inplace_blocks(sbi) \ 3365 (atomic_inc(&(sbi)->inplace_count)) 3366 #define stat_inc_atomic_write(inode) \ 3367 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 3368 #define stat_dec_atomic_write(inode) \ 3369 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 3370 #define stat_update_max_atomic_write(inode) \ 3371 do { \ 3372 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 3373 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3374 if (cur > max) \ 3375 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3376 } while (0) 3377 #define stat_inc_volatile_write(inode) \ 3378 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3379 #define stat_dec_volatile_write(inode) \ 3380 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3381 #define stat_update_max_volatile_write(inode) \ 3382 do { \ 3383 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3384 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3385 if (cur > max) \ 3386 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3387 } while (0) 3388 #define stat_inc_seg_count(sbi, type, gc_type) \ 3389 do { \ 3390 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3391 si->tot_segs++; \ 3392 if ((type) == SUM_TYPE_DATA) { \ 3393 si->data_segs++; \ 3394 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3395 } else { \ 3396 si->node_segs++; \ 3397 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3398 } \ 3399 } while (0) 3400 3401 #define stat_inc_tot_blk_count(si, blks) \ 3402 ((si)->tot_blks += (blks)) 3403 3404 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3405 do { \ 3406 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3407 stat_inc_tot_blk_count(si, blks); \ 3408 si->data_blks += (blks); \ 3409 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3410 } while (0) 3411 3412 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3413 do { \ 3414 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3415 stat_inc_tot_blk_count(si, blks); \ 3416 si->node_blks += (blks); \ 3417 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3418 } while (0) 3419 3420 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3421 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3422 void __init f2fs_create_root_stats(void); 3423 void f2fs_destroy_root_stats(void); 3424 #else 3425 #define stat_inc_cp_count(si) do { } while (0) 3426 #define stat_inc_bg_cp_count(si) do { } while (0) 3427 #define stat_inc_call_count(si) do { } while (0) 3428 #define stat_inc_bggc_count(si) do { } while (0) 3429 #define stat_io_skip_bggc_count(sbi) do { } while (0) 3430 #define stat_other_skip_bggc_count(sbi) do { } while (0) 3431 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3432 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3433 #define stat_inc_total_hit(sb) do { } while (0) 3434 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3435 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3436 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3437 #define stat_inc_inline_xattr(inode) do { } while (0) 3438 #define stat_dec_inline_xattr(inode) do { } while (0) 3439 #define stat_inc_inline_inode(inode) do { } while (0) 3440 #define stat_dec_inline_inode(inode) do { } while (0) 3441 #define stat_inc_inline_dir(inode) do { } while (0) 3442 #define stat_dec_inline_dir(inode) do { } while (0) 3443 #define stat_inc_atomic_write(inode) do { } while (0) 3444 #define stat_dec_atomic_write(inode) do { } while (0) 3445 #define stat_update_max_atomic_write(inode) do { } while (0) 3446 #define stat_inc_volatile_write(inode) do { } while (0) 3447 #define stat_dec_volatile_write(inode) do { } while (0) 3448 #define stat_update_max_volatile_write(inode) do { } while (0) 3449 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 3450 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3451 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3452 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3453 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3454 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3455 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3456 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3457 3458 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3459 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3460 static inline void __init f2fs_create_root_stats(void) { } 3461 static inline void f2fs_destroy_root_stats(void) { } 3462 #endif 3463 3464 extern const struct file_operations f2fs_dir_operations; 3465 #ifdef CONFIG_UNICODE 3466 extern const struct dentry_operations f2fs_dentry_ops; 3467 #endif 3468 extern const struct file_operations f2fs_file_operations; 3469 extern const struct inode_operations f2fs_file_inode_operations; 3470 extern const struct address_space_operations f2fs_dblock_aops; 3471 extern const struct address_space_operations f2fs_node_aops; 3472 extern const struct address_space_operations f2fs_meta_aops; 3473 extern const struct inode_operations f2fs_dir_inode_operations; 3474 extern const struct inode_operations f2fs_symlink_inode_operations; 3475 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3476 extern const struct inode_operations f2fs_special_inode_operations; 3477 extern struct kmem_cache *f2fs_inode_entry_slab; 3478 3479 /* 3480 * inline.c 3481 */ 3482 bool f2fs_may_inline_data(struct inode *inode); 3483 bool f2fs_may_inline_dentry(struct inode *inode); 3484 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3485 void f2fs_truncate_inline_inode(struct inode *inode, 3486 struct page *ipage, u64 from); 3487 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3488 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3489 int f2fs_convert_inline_inode(struct inode *inode); 3490 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3491 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3492 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3493 struct fscrypt_name *fname, struct page **res_page); 3494 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3495 struct page *ipage); 3496 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3497 const struct qstr *orig_name, 3498 struct inode *inode, nid_t ino, umode_t mode); 3499 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3500 struct page *page, struct inode *dir, 3501 struct inode *inode); 3502 bool f2fs_empty_inline_dir(struct inode *dir); 3503 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3504 struct fscrypt_str *fstr); 3505 int f2fs_inline_data_fiemap(struct inode *inode, 3506 struct fiemap_extent_info *fieinfo, 3507 __u64 start, __u64 len); 3508 3509 /* 3510 * shrinker.c 3511 */ 3512 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3513 struct shrink_control *sc); 3514 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3515 struct shrink_control *sc); 3516 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3517 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3518 3519 /* 3520 * extent_cache.c 3521 */ 3522 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 3523 struct rb_entry *cached_re, unsigned int ofs); 3524 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3525 struct rb_root_cached *root, 3526 struct rb_node **parent, 3527 unsigned int ofs, bool *leftmost); 3528 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 3529 struct rb_entry *cached_re, unsigned int ofs, 3530 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3531 struct rb_node ***insert_p, struct rb_node **insert_parent, 3532 bool force, bool *leftmost); 3533 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3534 struct rb_root_cached *root); 3535 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3536 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3537 void f2fs_drop_extent_tree(struct inode *inode); 3538 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3539 void f2fs_destroy_extent_tree(struct inode *inode); 3540 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3541 struct extent_info *ei); 3542 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3543 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3544 pgoff_t fofs, block_t blkaddr, unsigned int len); 3545 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3546 int __init f2fs_create_extent_cache(void); 3547 void f2fs_destroy_extent_cache(void); 3548 3549 /* 3550 * sysfs.c 3551 */ 3552 int __init f2fs_init_sysfs(void); 3553 void f2fs_exit_sysfs(void); 3554 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3555 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3556 3557 /* verity.c */ 3558 extern const struct fsverity_operations f2fs_verityops; 3559 3560 /* 3561 * crypto support 3562 */ 3563 static inline bool f2fs_encrypted_file(struct inode *inode) 3564 { 3565 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 3566 } 3567 3568 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3569 { 3570 #ifdef CONFIG_FS_ENCRYPTION 3571 file_set_encrypt(inode); 3572 f2fs_set_inode_flags(inode); 3573 #endif 3574 } 3575 3576 /* 3577 * Returns true if the reads of the inode's data need to undergo some 3578 * postprocessing step, like decryption or authenticity verification. 3579 */ 3580 static inline bool f2fs_post_read_required(struct inode *inode) 3581 { 3582 return f2fs_encrypted_file(inode) || fsverity_active(inode); 3583 } 3584 3585 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3586 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 3587 { \ 3588 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 3589 } 3590 3591 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3592 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3593 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3594 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3595 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3596 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3597 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3598 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3599 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 3600 F2FS_FEATURE_FUNCS(verity, VERITY); 3601 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 3602 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 3603 3604 #ifdef CONFIG_BLK_DEV_ZONED 3605 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 3606 block_t blkaddr) 3607 { 3608 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3609 3610 return test_bit(zno, FDEV(devi).blkz_seq); 3611 } 3612 #endif 3613 3614 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 3615 { 3616 return f2fs_sb_has_blkzoned(sbi); 3617 } 3618 3619 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 3620 { 3621 return blk_queue_discard(bdev_get_queue(bdev)) || 3622 bdev_is_zoned(bdev); 3623 } 3624 3625 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 3626 { 3627 int i; 3628 3629 if (!f2fs_is_multi_device(sbi)) 3630 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 3631 3632 for (i = 0; i < sbi->s_ndevs; i++) 3633 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 3634 return true; 3635 return false; 3636 } 3637 3638 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 3639 { 3640 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 3641 f2fs_hw_should_discard(sbi); 3642 } 3643 3644 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 3645 { 3646 int i; 3647 3648 if (!f2fs_is_multi_device(sbi)) 3649 return bdev_read_only(sbi->sb->s_bdev); 3650 3651 for (i = 0; i < sbi->s_ndevs; i++) 3652 if (bdev_read_only(FDEV(i).bdev)) 3653 return true; 3654 return false; 3655 } 3656 3657 3658 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3659 { 3660 clear_opt(sbi, ADAPTIVE); 3661 clear_opt(sbi, LFS); 3662 3663 switch (mt) { 3664 case F2FS_MOUNT_ADAPTIVE: 3665 set_opt(sbi, ADAPTIVE); 3666 break; 3667 case F2FS_MOUNT_LFS: 3668 set_opt(sbi, LFS); 3669 break; 3670 } 3671 } 3672 3673 static inline bool f2fs_may_encrypt(struct inode *inode) 3674 { 3675 #ifdef CONFIG_FS_ENCRYPTION 3676 umode_t mode = inode->i_mode; 3677 3678 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3679 #else 3680 return false; 3681 #endif 3682 } 3683 3684 static inline int block_unaligned_IO(struct inode *inode, 3685 struct kiocb *iocb, struct iov_iter *iter) 3686 { 3687 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits); 3688 unsigned int blocksize_mask = (1 << i_blkbits) - 1; 3689 loff_t offset = iocb->ki_pos; 3690 unsigned long align = offset | iov_iter_alignment(iter); 3691 3692 return align & blocksize_mask; 3693 } 3694 3695 static inline int allow_outplace_dio(struct inode *inode, 3696 struct kiocb *iocb, struct iov_iter *iter) 3697 { 3698 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3699 int rw = iov_iter_rw(iter); 3700 3701 return (test_opt(sbi, LFS) && (rw == WRITE) && 3702 !block_unaligned_IO(inode, iocb, iter)); 3703 } 3704 3705 static inline bool f2fs_force_buffered_io(struct inode *inode, 3706 struct kiocb *iocb, struct iov_iter *iter) 3707 { 3708 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3709 int rw = iov_iter_rw(iter); 3710 3711 if (f2fs_post_read_required(inode)) 3712 return true; 3713 if (f2fs_is_multi_device(sbi)) 3714 return true; 3715 /* 3716 * for blkzoned device, fallback direct IO to buffered IO, so 3717 * all IOs can be serialized by log-structured write. 3718 */ 3719 if (f2fs_sb_has_blkzoned(sbi)) 3720 return true; 3721 if (test_opt(sbi, LFS) && (rw == WRITE)) { 3722 if (block_unaligned_IO(inode, iocb, iter)) 3723 return true; 3724 if (F2FS_IO_ALIGNED(sbi)) 3725 return true; 3726 } 3727 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) && 3728 !IS_SWAPFILE(inode)) 3729 return true; 3730 3731 return false; 3732 } 3733 3734 #ifdef CONFIG_F2FS_FAULT_INJECTION 3735 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 3736 unsigned int type); 3737 #else 3738 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 3739 #endif 3740 3741 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 3742 { 3743 #ifdef CONFIG_QUOTA 3744 if (f2fs_sb_has_quota_ino(sbi)) 3745 return true; 3746 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 3747 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 3748 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 3749 return true; 3750 #endif 3751 return false; 3752 } 3753 3754 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 3755 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 3756 3757 #endif /* _LINUX_F2FS_H */ 3758