1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/part_stat.h> 27 #include <crypto/hash.h> 28 29 #include <linux/fscrypt.h> 30 #include <linux/fsverity.h> 31 32 struct pagevec; 33 34 #ifdef CONFIG_F2FS_CHECK_FS 35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 36 #else 37 #define f2fs_bug_on(sbi, condition) \ 38 do { \ 39 if (WARN_ON(condition)) \ 40 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 41 } while (0) 42 #endif 43 44 enum { 45 FAULT_KMALLOC, 46 FAULT_KVMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_PAGE_GET, 49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 50 FAULT_ALLOC_NID, 51 FAULT_ORPHAN, 52 FAULT_BLOCK, 53 FAULT_DIR_DEPTH, 54 FAULT_EVICT_INODE, 55 FAULT_TRUNCATE, 56 FAULT_READ_IO, 57 FAULT_CHECKPOINT, 58 FAULT_DISCARD, 59 FAULT_WRITE_IO, 60 FAULT_SLAB_ALLOC, 61 FAULT_DQUOT_INIT, 62 FAULT_LOCK_OP, 63 FAULT_BLKADDR, 64 FAULT_MAX, 65 }; 66 67 #ifdef CONFIG_F2FS_FAULT_INJECTION 68 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0)) 69 70 struct f2fs_fault_info { 71 atomic_t inject_ops; 72 unsigned int inject_rate; 73 unsigned int inject_type; 74 }; 75 76 extern const char *f2fs_fault_name[FAULT_MAX]; 77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type)) 78 #endif 79 80 /* 81 * For mount options 82 */ 83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 84 #define F2FS_MOUNT_DISCARD 0x00000004 85 #define F2FS_MOUNT_NOHEAP 0x00000008 86 #define F2FS_MOUNT_XATTR_USER 0x00000010 87 #define F2FS_MOUNT_POSIX_ACL 0x00000020 88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 89 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 90 #define F2FS_MOUNT_INLINE_DATA 0x00000100 91 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 92 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 93 #define F2FS_MOUNT_NOBARRIER 0x00000800 94 #define F2FS_MOUNT_FASTBOOT 0x00001000 95 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00002000 96 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 97 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 98 #define F2FS_MOUNT_USRQUOTA 0x00080000 99 #define F2FS_MOUNT_GRPQUOTA 0x00100000 100 #define F2FS_MOUNT_PRJQUOTA 0x00200000 101 #define F2FS_MOUNT_QUOTA 0x00400000 102 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 103 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 104 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 105 #define F2FS_MOUNT_NORECOVERY 0x04000000 106 #define F2FS_MOUNT_ATGC 0x08000000 107 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000 108 #define F2FS_MOUNT_GC_MERGE 0x20000000 109 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000 110 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x80000000 111 112 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 113 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 114 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 115 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 116 117 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 118 typecheck(unsigned long long, b) && \ 119 ((long long)((a) - (b)) > 0)) 120 121 typedef u32 block_t; /* 122 * should not change u32, since it is the on-disk block 123 * address format, __le32. 124 */ 125 typedef u32 nid_t; 126 127 #define COMPRESS_EXT_NUM 16 128 129 /* 130 * An implementation of an rwsem that is explicitly unfair to readers. This 131 * prevents priority inversion when a low-priority reader acquires the read lock 132 * while sleeping on the write lock but the write lock is needed by 133 * higher-priority clients. 134 */ 135 136 struct f2fs_rwsem { 137 struct rw_semaphore internal_rwsem; 138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 139 wait_queue_head_t read_waiters; 140 #endif 141 }; 142 143 struct f2fs_mount_info { 144 unsigned int opt; 145 int write_io_size_bits; /* Write IO size bits */ 146 block_t root_reserved_blocks; /* root reserved blocks */ 147 kuid_t s_resuid; /* reserved blocks for uid */ 148 kgid_t s_resgid; /* reserved blocks for gid */ 149 int active_logs; /* # of active logs */ 150 int inline_xattr_size; /* inline xattr size */ 151 #ifdef CONFIG_F2FS_FAULT_INJECTION 152 struct f2fs_fault_info fault_info; /* For fault injection */ 153 #endif 154 #ifdef CONFIG_QUOTA 155 /* Names of quota files with journalled quota */ 156 char *s_qf_names[MAXQUOTAS]; 157 int s_jquota_fmt; /* Format of quota to use */ 158 #endif 159 /* For which write hints are passed down to block layer */ 160 int alloc_mode; /* segment allocation policy */ 161 int fsync_mode; /* fsync policy */ 162 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 163 int bggc_mode; /* bggc mode: off, on or sync */ 164 int memory_mode; /* memory mode */ 165 int discard_unit; /* 166 * discard command's offset/size should 167 * be aligned to this unit: block, 168 * segment or section 169 */ 170 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 171 block_t unusable_cap_perc; /* percentage for cap */ 172 block_t unusable_cap; /* Amount of space allowed to be 173 * unusable when disabling checkpoint 174 */ 175 176 /* For compression */ 177 unsigned char compress_algorithm; /* algorithm type */ 178 unsigned char compress_log_size; /* cluster log size */ 179 unsigned char compress_level; /* compress level */ 180 bool compress_chksum; /* compressed data chksum */ 181 unsigned char compress_ext_cnt; /* extension count */ 182 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 183 int compress_mode; /* compression mode */ 184 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 185 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 186 }; 187 188 #define F2FS_FEATURE_ENCRYPT 0x0001 189 #define F2FS_FEATURE_BLKZONED 0x0002 190 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 191 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 192 #define F2FS_FEATURE_PRJQUOTA 0x0010 193 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 194 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 195 #define F2FS_FEATURE_QUOTA_INO 0x0080 196 #define F2FS_FEATURE_INODE_CRTIME 0x0100 197 #define F2FS_FEATURE_LOST_FOUND 0x0200 198 #define F2FS_FEATURE_VERITY 0x0400 199 #define F2FS_FEATURE_SB_CHKSUM 0x0800 200 #define F2FS_FEATURE_CASEFOLD 0x1000 201 #define F2FS_FEATURE_COMPRESSION 0x2000 202 #define F2FS_FEATURE_RO 0x4000 203 204 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 205 ((raw_super->feature & cpu_to_le32(mask)) != 0) 206 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 207 208 /* 209 * Default values for user and/or group using reserved blocks 210 */ 211 #define F2FS_DEF_RESUID 0 212 #define F2FS_DEF_RESGID 0 213 214 /* 215 * For checkpoint manager 216 */ 217 enum { 218 NAT_BITMAP, 219 SIT_BITMAP 220 }; 221 222 #define CP_UMOUNT 0x00000001 223 #define CP_FASTBOOT 0x00000002 224 #define CP_SYNC 0x00000004 225 #define CP_RECOVERY 0x00000008 226 #define CP_DISCARD 0x00000010 227 #define CP_TRIMMED 0x00000020 228 #define CP_PAUSE 0x00000040 229 #define CP_RESIZE 0x00000080 230 231 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 232 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 233 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 234 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 235 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 236 #define DEF_CP_INTERVAL 60 /* 60 secs */ 237 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 238 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 239 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 240 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 241 242 struct cp_control { 243 int reason; 244 __u64 trim_start; 245 __u64 trim_end; 246 __u64 trim_minlen; 247 }; 248 249 /* 250 * indicate meta/data type 251 */ 252 enum { 253 META_CP, 254 META_NAT, 255 META_SIT, 256 META_SSA, 257 META_MAX, 258 META_POR, 259 DATA_GENERIC, /* check range only */ 260 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 261 DATA_GENERIC_ENHANCE_READ, /* 262 * strong check on range and segment 263 * bitmap but no warning due to race 264 * condition of read on truncated area 265 * by extent_cache 266 */ 267 DATA_GENERIC_ENHANCE_UPDATE, /* 268 * strong check on range and segment 269 * bitmap for update case 270 */ 271 META_GENERIC, 272 }; 273 274 /* for the list of ino */ 275 enum { 276 ORPHAN_INO, /* for orphan ino list */ 277 APPEND_INO, /* for append ino list */ 278 UPDATE_INO, /* for update ino list */ 279 TRANS_DIR_INO, /* for transactions dir ino list */ 280 FLUSH_INO, /* for multiple device flushing */ 281 MAX_INO_ENTRY, /* max. list */ 282 }; 283 284 struct ino_entry { 285 struct list_head list; /* list head */ 286 nid_t ino; /* inode number */ 287 unsigned int dirty_device; /* dirty device bitmap */ 288 }; 289 290 /* for the list of inodes to be GCed */ 291 struct inode_entry { 292 struct list_head list; /* list head */ 293 struct inode *inode; /* vfs inode pointer */ 294 }; 295 296 struct fsync_node_entry { 297 struct list_head list; /* list head */ 298 struct page *page; /* warm node page pointer */ 299 unsigned int seq_id; /* sequence id */ 300 }; 301 302 struct ckpt_req { 303 struct completion wait; /* completion for checkpoint done */ 304 struct llist_node llnode; /* llist_node to be linked in wait queue */ 305 int ret; /* return code of checkpoint */ 306 ktime_t queue_time; /* request queued time */ 307 }; 308 309 struct ckpt_req_control { 310 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 311 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 312 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 313 atomic_t issued_ckpt; /* # of actually issued ckpts */ 314 atomic_t total_ckpt; /* # of total ckpts */ 315 atomic_t queued_ckpt; /* # of queued ckpts */ 316 struct llist_head issue_list; /* list for command issue */ 317 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 318 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 319 unsigned int peak_time; /* peak wait time in msec until now */ 320 }; 321 322 /* for the bitmap indicate blocks to be discarded */ 323 struct discard_entry { 324 struct list_head list; /* list head */ 325 block_t start_blkaddr; /* start blockaddr of current segment */ 326 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 327 }; 328 329 /* minimum discard granularity, unit: block count */ 330 #define MIN_DISCARD_GRANULARITY 1 331 /* default discard granularity of inner discard thread, unit: block count */ 332 #define DEFAULT_DISCARD_GRANULARITY 16 333 /* default maximum discard granularity of ordered discard, unit: block count */ 334 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 335 336 /* max discard pend list number */ 337 #define MAX_PLIST_NUM 512 338 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 339 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 340 341 enum { 342 D_PREP, /* initial */ 343 D_PARTIAL, /* partially submitted */ 344 D_SUBMIT, /* all submitted */ 345 D_DONE, /* finished */ 346 }; 347 348 struct discard_info { 349 block_t lstart; /* logical start address */ 350 block_t len; /* length */ 351 block_t start; /* actual start address in dev */ 352 }; 353 354 struct discard_cmd { 355 struct rb_node rb_node; /* rb node located in rb-tree */ 356 struct discard_info di; /* discard info */ 357 struct list_head list; /* command list */ 358 struct completion wait; /* compleation */ 359 struct block_device *bdev; /* bdev */ 360 unsigned short ref; /* reference count */ 361 unsigned char state; /* state */ 362 unsigned char queued; /* queued discard */ 363 int error; /* bio error */ 364 spinlock_t lock; /* for state/bio_ref updating */ 365 unsigned short bio_ref; /* bio reference count */ 366 }; 367 368 enum { 369 DPOLICY_BG, 370 DPOLICY_FORCE, 371 DPOLICY_FSTRIM, 372 DPOLICY_UMOUNT, 373 MAX_DPOLICY, 374 }; 375 376 struct discard_policy { 377 int type; /* type of discard */ 378 unsigned int min_interval; /* used for candidates exist */ 379 unsigned int mid_interval; /* used for device busy */ 380 unsigned int max_interval; /* used for candidates not exist */ 381 unsigned int max_requests; /* # of discards issued per round */ 382 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 383 bool io_aware; /* issue discard in idle time */ 384 bool sync; /* submit discard with REQ_SYNC flag */ 385 bool ordered; /* issue discard by lba order */ 386 bool timeout; /* discard timeout for put_super */ 387 unsigned int granularity; /* discard granularity */ 388 }; 389 390 struct discard_cmd_control { 391 struct task_struct *f2fs_issue_discard; /* discard thread */ 392 struct list_head entry_list; /* 4KB discard entry list */ 393 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 394 struct list_head wait_list; /* store on-flushing entries */ 395 struct list_head fstrim_list; /* in-flight discard from fstrim */ 396 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 397 struct mutex cmd_lock; 398 unsigned int nr_discards; /* # of discards in the list */ 399 unsigned int max_discards; /* max. discards to be issued */ 400 unsigned int max_discard_request; /* max. discard request per round */ 401 unsigned int min_discard_issue_time; /* min. interval between discard issue */ 402 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ 403 unsigned int max_discard_issue_time; /* max. interval between discard issue */ 404 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */ 405 unsigned int discard_urgent_util; /* utilization which issue discard proactively */ 406 unsigned int discard_granularity; /* discard granularity */ 407 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ 408 unsigned int undiscard_blks; /* # of undiscard blocks */ 409 unsigned int next_pos; /* next discard position */ 410 atomic_t issued_discard; /* # of issued discard */ 411 atomic_t queued_discard; /* # of queued discard */ 412 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 413 struct rb_root_cached root; /* root of discard rb-tree */ 414 bool rbtree_check; /* config for consistence check */ 415 bool discard_wake; /* to wake up discard thread */ 416 }; 417 418 /* for the list of fsync inodes, used only during recovery */ 419 struct fsync_inode_entry { 420 struct list_head list; /* list head */ 421 struct inode *inode; /* vfs inode pointer */ 422 block_t blkaddr; /* block address locating the last fsync */ 423 block_t last_dentry; /* block address locating the last dentry */ 424 }; 425 426 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 427 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 428 429 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 430 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 431 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 432 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 433 434 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 435 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 436 437 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 438 { 439 int before = nats_in_cursum(journal); 440 441 journal->n_nats = cpu_to_le16(before + i); 442 return before; 443 } 444 445 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 446 { 447 int before = sits_in_cursum(journal); 448 449 journal->n_sits = cpu_to_le16(before + i); 450 return before; 451 } 452 453 static inline bool __has_cursum_space(struct f2fs_journal *journal, 454 int size, int type) 455 { 456 if (type == NAT_JOURNAL) 457 return size <= MAX_NAT_JENTRIES(journal); 458 return size <= MAX_SIT_JENTRIES(journal); 459 } 460 461 /* for inline stuff */ 462 #define DEF_INLINE_RESERVED_SIZE 1 463 static inline int get_extra_isize(struct inode *inode); 464 static inline int get_inline_xattr_addrs(struct inode *inode); 465 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 466 (CUR_ADDRS_PER_INODE(inode) - \ 467 get_inline_xattr_addrs(inode) - \ 468 DEF_INLINE_RESERVED_SIZE)) 469 470 /* for inline dir */ 471 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 472 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 473 BITS_PER_BYTE + 1)) 474 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 475 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 476 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 477 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 478 NR_INLINE_DENTRY(inode) + \ 479 INLINE_DENTRY_BITMAP_SIZE(inode))) 480 481 /* 482 * For INODE and NODE manager 483 */ 484 /* for directory operations */ 485 486 struct f2fs_filename { 487 /* 488 * The filename the user specified. This is NULL for some 489 * filesystem-internal operations, e.g. converting an inline directory 490 * to a non-inline one, or roll-forward recovering an encrypted dentry. 491 */ 492 const struct qstr *usr_fname; 493 494 /* 495 * The on-disk filename. For encrypted directories, this is encrypted. 496 * This may be NULL for lookups in an encrypted dir without the key. 497 */ 498 struct fscrypt_str disk_name; 499 500 /* The dirhash of this filename */ 501 f2fs_hash_t hash; 502 503 #ifdef CONFIG_FS_ENCRYPTION 504 /* 505 * For lookups in encrypted directories: either the buffer backing 506 * disk_name, or a buffer that holds the decoded no-key name. 507 */ 508 struct fscrypt_str crypto_buf; 509 #endif 510 #if IS_ENABLED(CONFIG_UNICODE) 511 /* 512 * For casefolded directories: the casefolded name, but it's left NULL 513 * if the original name is not valid Unicode, if the original name is 514 * "." or "..", if the directory is both casefolded and encrypted and 515 * its encryption key is unavailable, or if the filesystem is doing an 516 * internal operation where usr_fname is also NULL. In all these cases 517 * we fall back to treating the name as an opaque byte sequence. 518 */ 519 struct fscrypt_str cf_name; 520 #endif 521 }; 522 523 struct f2fs_dentry_ptr { 524 struct inode *inode; 525 void *bitmap; 526 struct f2fs_dir_entry *dentry; 527 __u8 (*filename)[F2FS_SLOT_LEN]; 528 int max; 529 int nr_bitmap; 530 }; 531 532 static inline void make_dentry_ptr_block(struct inode *inode, 533 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 534 { 535 d->inode = inode; 536 d->max = NR_DENTRY_IN_BLOCK; 537 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 538 d->bitmap = t->dentry_bitmap; 539 d->dentry = t->dentry; 540 d->filename = t->filename; 541 } 542 543 static inline void make_dentry_ptr_inline(struct inode *inode, 544 struct f2fs_dentry_ptr *d, void *t) 545 { 546 int entry_cnt = NR_INLINE_DENTRY(inode); 547 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 548 int reserved_size = INLINE_RESERVED_SIZE(inode); 549 550 d->inode = inode; 551 d->max = entry_cnt; 552 d->nr_bitmap = bitmap_size; 553 d->bitmap = t; 554 d->dentry = t + bitmap_size + reserved_size; 555 d->filename = t + bitmap_size + reserved_size + 556 SIZE_OF_DIR_ENTRY * entry_cnt; 557 } 558 559 /* 560 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 561 * as its node offset to distinguish from index node blocks. 562 * But some bits are used to mark the node block. 563 */ 564 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 565 >> OFFSET_BIT_SHIFT) 566 enum { 567 ALLOC_NODE, /* allocate a new node page if needed */ 568 LOOKUP_NODE, /* look up a node without readahead */ 569 LOOKUP_NODE_RA, /* 570 * look up a node with readahead called 571 * by get_data_block. 572 */ 573 }; 574 575 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 576 577 /* congestion wait timeout value, default: 20ms */ 578 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 579 580 /* maximum retry quota flush count */ 581 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 582 583 /* maximum retry of EIO'ed page */ 584 #define MAX_RETRY_PAGE_EIO 100 585 586 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 587 588 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 589 590 /* dirty segments threshold for triggering CP */ 591 #define DEFAULT_DIRTY_THRESHOLD 4 592 593 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS 594 #define RECOVERY_MIN_RA_BLOCKS 1 595 596 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ 597 598 /* for in-memory extent cache entry */ 599 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 600 601 /* number of extent info in extent cache we try to shrink */ 602 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 603 604 /* number of age extent info in extent cache we try to shrink */ 605 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 606 #define LAST_AGE_WEIGHT 30 607 #define SAME_AGE_REGION 1024 608 609 /* 610 * Define data block with age less than 1GB as hot data 611 * define data block with age less than 10GB but more than 1GB as warm data 612 */ 613 #define DEF_HOT_DATA_AGE_THRESHOLD 262144 614 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 615 616 /* extent cache type */ 617 enum extent_type { 618 EX_READ, 619 EX_BLOCK_AGE, 620 NR_EXTENT_CACHES, 621 }; 622 623 struct extent_info { 624 unsigned int fofs; /* start offset in a file */ 625 unsigned int len; /* length of the extent */ 626 union { 627 /* read extent_cache */ 628 struct { 629 /* start block address of the extent */ 630 block_t blk; 631 #ifdef CONFIG_F2FS_FS_COMPRESSION 632 /* physical extent length of compressed blocks */ 633 unsigned int c_len; 634 #endif 635 }; 636 /* block age extent_cache */ 637 struct { 638 /* block age of the extent */ 639 unsigned long long age; 640 /* last total blocks allocated */ 641 unsigned long long last_blocks; 642 }; 643 }; 644 }; 645 646 struct extent_node { 647 struct rb_node rb_node; /* rb node located in rb-tree */ 648 struct extent_info ei; /* extent info */ 649 struct list_head list; /* node in global extent list of sbi */ 650 struct extent_tree *et; /* extent tree pointer */ 651 }; 652 653 struct extent_tree { 654 nid_t ino; /* inode number */ 655 enum extent_type type; /* keep the extent tree type */ 656 struct rb_root_cached root; /* root of extent info rb-tree */ 657 struct extent_node *cached_en; /* recently accessed extent node */ 658 struct list_head list; /* to be used by sbi->zombie_list */ 659 rwlock_t lock; /* protect extent info rb-tree */ 660 atomic_t node_cnt; /* # of extent node in rb-tree*/ 661 bool largest_updated; /* largest extent updated */ 662 struct extent_info largest; /* largest cached extent for EX_READ */ 663 }; 664 665 struct extent_tree_info { 666 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 667 struct mutex extent_tree_lock; /* locking extent radix tree */ 668 struct list_head extent_list; /* lru list for shrinker */ 669 spinlock_t extent_lock; /* locking extent lru list */ 670 atomic_t total_ext_tree; /* extent tree count */ 671 struct list_head zombie_list; /* extent zombie tree list */ 672 atomic_t total_zombie_tree; /* extent zombie tree count */ 673 atomic_t total_ext_node; /* extent info count */ 674 }; 675 676 /* 677 * State of block returned by f2fs_map_blocks. 678 */ 679 #define F2FS_MAP_NEW (1U << 0) 680 #define F2FS_MAP_MAPPED (1U << 1) 681 #define F2FS_MAP_DELALLOC (1U << 2) 682 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 683 F2FS_MAP_DELALLOC) 684 685 struct f2fs_map_blocks { 686 struct block_device *m_bdev; /* for multi-device dio */ 687 block_t m_pblk; 688 block_t m_lblk; 689 unsigned int m_len; 690 unsigned int m_flags; 691 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 692 pgoff_t *m_next_extent; /* point to next possible extent */ 693 int m_seg_type; 694 bool m_may_create; /* indicate it is from write path */ 695 bool m_multidev_dio; /* indicate it allows multi-device dio */ 696 }; 697 698 /* for flag in get_data_block */ 699 enum { 700 F2FS_GET_BLOCK_DEFAULT, 701 F2FS_GET_BLOCK_FIEMAP, 702 F2FS_GET_BLOCK_BMAP, 703 F2FS_GET_BLOCK_DIO, 704 F2FS_GET_BLOCK_PRE_DIO, 705 F2FS_GET_BLOCK_PRE_AIO, 706 F2FS_GET_BLOCK_PRECACHE, 707 }; 708 709 /* 710 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 711 */ 712 #define FADVISE_COLD_BIT 0x01 713 #define FADVISE_LOST_PINO_BIT 0x02 714 #define FADVISE_ENCRYPT_BIT 0x04 715 #define FADVISE_ENC_NAME_BIT 0x08 716 #define FADVISE_KEEP_SIZE_BIT 0x10 717 #define FADVISE_HOT_BIT 0x20 718 #define FADVISE_VERITY_BIT 0x40 719 #define FADVISE_TRUNC_BIT 0x80 720 721 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 722 723 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 724 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 725 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 726 727 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 728 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 729 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 730 731 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 732 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 733 734 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 735 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 736 737 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 738 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 739 740 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 741 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 742 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 743 744 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 745 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 746 747 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) 748 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) 749 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) 750 751 #define DEF_DIR_LEVEL 0 752 753 enum { 754 GC_FAILURE_PIN, 755 MAX_GC_FAILURE 756 }; 757 758 /* used for f2fs_inode_info->flags */ 759 enum { 760 FI_NEW_INODE, /* indicate newly allocated inode */ 761 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 762 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 763 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 764 FI_INC_LINK, /* need to increment i_nlink */ 765 FI_ACL_MODE, /* indicate acl mode */ 766 FI_NO_ALLOC, /* should not allocate any blocks */ 767 FI_FREE_NID, /* free allocated nide */ 768 FI_NO_EXTENT, /* not to use the extent cache */ 769 FI_INLINE_XATTR, /* used for inline xattr */ 770 FI_INLINE_DATA, /* used for inline data*/ 771 FI_INLINE_DENTRY, /* used for inline dentry */ 772 FI_APPEND_WRITE, /* inode has appended data */ 773 FI_UPDATE_WRITE, /* inode has in-place-update data */ 774 FI_NEED_IPU, /* used for ipu per file */ 775 FI_ATOMIC_FILE, /* indicate atomic file */ 776 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 777 FI_DROP_CACHE, /* drop dirty page cache */ 778 FI_DATA_EXIST, /* indicate data exists */ 779 FI_INLINE_DOTS, /* indicate inline dot dentries */ 780 FI_SKIP_WRITES, /* should skip data page writeback */ 781 FI_OPU_WRITE, /* used for opu per file */ 782 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 783 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ 784 FI_HOT_DATA, /* indicate file is hot */ 785 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 786 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 787 FI_PIN_FILE, /* indicate file should not be gced */ 788 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 789 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 790 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 791 FI_MMAP_FILE, /* indicate file was mmapped */ 792 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 793 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 794 FI_ALIGNED_WRITE, /* enable aligned write */ 795 FI_COW_FILE, /* indicate COW file */ 796 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ 797 FI_ATOMIC_REPLACE, /* indicate atomic replace */ 798 FI_MAX, /* max flag, never be used */ 799 }; 800 801 struct f2fs_inode_info { 802 struct inode vfs_inode; /* serve a vfs inode */ 803 unsigned long i_flags; /* keep an inode flags for ioctl */ 804 unsigned char i_advise; /* use to give file attribute hints */ 805 unsigned char i_dir_level; /* use for dentry level for large dir */ 806 unsigned int i_current_depth; /* only for directory depth */ 807 /* for gc failure statistic */ 808 unsigned int i_gc_failures[MAX_GC_FAILURE]; 809 unsigned int i_pino; /* parent inode number */ 810 umode_t i_acl_mode; /* keep file acl mode temporarily */ 811 812 /* Use below internally in f2fs*/ 813 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 814 struct f2fs_rwsem i_sem; /* protect fi info */ 815 atomic_t dirty_pages; /* # of dirty pages */ 816 f2fs_hash_t chash; /* hash value of given file name */ 817 unsigned int clevel; /* maximum level of given file name */ 818 struct task_struct *task; /* lookup and create consistency */ 819 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 820 struct task_struct *wb_task; /* indicate inode is in context of writeback */ 821 nid_t i_xattr_nid; /* node id that contains xattrs */ 822 loff_t last_disk_size; /* lastly written file size */ 823 spinlock_t i_size_lock; /* protect last_disk_size */ 824 825 #ifdef CONFIG_QUOTA 826 struct dquot *i_dquot[MAXQUOTAS]; 827 828 /* quota space reservation, managed internally by quota code */ 829 qsize_t i_reserved_quota; 830 #endif 831 struct list_head dirty_list; /* dirty list for dirs and files */ 832 struct list_head gdirty_list; /* linked in global dirty list */ 833 struct task_struct *atomic_write_task; /* store atomic write task */ 834 struct extent_tree *extent_tree[NR_EXTENT_CACHES]; 835 /* cached extent_tree entry */ 836 struct inode *cow_inode; /* copy-on-write inode for atomic write */ 837 838 /* avoid racing between foreground op and gc */ 839 struct f2fs_rwsem i_gc_rwsem[2]; 840 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ 841 842 int i_extra_isize; /* size of extra space located in i_addr */ 843 kprojid_t i_projid; /* id for project quota */ 844 int i_inline_xattr_size; /* inline xattr size */ 845 struct timespec64 i_crtime; /* inode creation time */ 846 struct timespec64 i_disk_time[3];/* inode disk times */ 847 848 /* for file compress */ 849 atomic_t i_compr_blocks; /* # of compressed blocks */ 850 unsigned char i_compress_algorithm; /* algorithm type */ 851 unsigned char i_log_cluster_size; /* log of cluster size */ 852 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 853 unsigned char i_compress_flag; /* compress flag */ 854 unsigned int i_cluster_size; /* cluster size */ 855 856 unsigned int atomic_write_cnt; 857 loff_t original_i_size; /* original i_size before atomic write */ 858 }; 859 860 static inline void get_read_extent_info(struct extent_info *ext, 861 struct f2fs_extent *i_ext) 862 { 863 ext->fofs = le32_to_cpu(i_ext->fofs); 864 ext->blk = le32_to_cpu(i_ext->blk); 865 ext->len = le32_to_cpu(i_ext->len); 866 } 867 868 static inline void set_raw_read_extent(struct extent_info *ext, 869 struct f2fs_extent *i_ext) 870 { 871 i_ext->fofs = cpu_to_le32(ext->fofs); 872 i_ext->blk = cpu_to_le32(ext->blk); 873 i_ext->len = cpu_to_le32(ext->len); 874 } 875 876 static inline bool __is_discard_mergeable(struct discard_info *back, 877 struct discard_info *front, unsigned int max_len) 878 { 879 return (back->lstart + back->len == front->lstart) && 880 (back->len + front->len <= max_len); 881 } 882 883 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 884 struct discard_info *back, unsigned int max_len) 885 { 886 return __is_discard_mergeable(back, cur, max_len); 887 } 888 889 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 890 struct discard_info *front, unsigned int max_len) 891 { 892 return __is_discard_mergeable(cur, front, max_len); 893 } 894 895 /* 896 * For free nid management 897 */ 898 enum nid_state { 899 FREE_NID, /* newly added to free nid list */ 900 PREALLOC_NID, /* it is preallocated */ 901 MAX_NID_STATE, 902 }; 903 904 enum nat_state { 905 TOTAL_NAT, 906 DIRTY_NAT, 907 RECLAIMABLE_NAT, 908 MAX_NAT_STATE, 909 }; 910 911 struct f2fs_nm_info { 912 block_t nat_blkaddr; /* base disk address of NAT */ 913 nid_t max_nid; /* maximum possible node ids */ 914 nid_t available_nids; /* # of available node ids */ 915 nid_t next_scan_nid; /* the next nid to be scanned */ 916 nid_t max_rf_node_blocks; /* max # of nodes for recovery */ 917 unsigned int ram_thresh; /* control the memory footprint */ 918 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 919 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 920 921 /* NAT cache management */ 922 struct radix_tree_root nat_root;/* root of the nat entry cache */ 923 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 924 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ 925 struct list_head nat_entries; /* cached nat entry list (clean) */ 926 spinlock_t nat_list_lock; /* protect clean nat entry list */ 927 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 928 unsigned int nat_blocks; /* # of nat blocks */ 929 930 /* free node ids management */ 931 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 932 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 933 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 934 spinlock_t nid_list_lock; /* protect nid lists ops */ 935 struct mutex build_lock; /* lock for build free nids */ 936 unsigned char **free_nid_bitmap; 937 unsigned char *nat_block_bitmap; 938 unsigned short *free_nid_count; /* free nid count of NAT block */ 939 940 /* for checkpoint */ 941 char *nat_bitmap; /* NAT bitmap pointer */ 942 943 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 944 unsigned char *nat_bits; /* NAT bits blocks */ 945 unsigned char *full_nat_bits; /* full NAT pages */ 946 unsigned char *empty_nat_bits; /* empty NAT pages */ 947 #ifdef CONFIG_F2FS_CHECK_FS 948 char *nat_bitmap_mir; /* NAT bitmap mirror */ 949 #endif 950 int bitmap_size; /* bitmap size */ 951 }; 952 953 /* 954 * this structure is used as one of function parameters. 955 * all the information are dedicated to a given direct node block determined 956 * by the data offset in a file. 957 */ 958 struct dnode_of_data { 959 struct inode *inode; /* vfs inode pointer */ 960 struct page *inode_page; /* its inode page, NULL is possible */ 961 struct page *node_page; /* cached direct node page */ 962 nid_t nid; /* node id of the direct node block */ 963 unsigned int ofs_in_node; /* data offset in the node page */ 964 bool inode_page_locked; /* inode page is locked or not */ 965 bool node_changed; /* is node block changed */ 966 char cur_level; /* level of hole node page */ 967 char max_level; /* level of current page located */ 968 block_t data_blkaddr; /* block address of the node block */ 969 }; 970 971 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 972 struct page *ipage, struct page *npage, nid_t nid) 973 { 974 memset(dn, 0, sizeof(*dn)); 975 dn->inode = inode; 976 dn->inode_page = ipage; 977 dn->node_page = npage; 978 dn->nid = nid; 979 } 980 981 /* 982 * For SIT manager 983 * 984 * By default, there are 6 active log areas across the whole main area. 985 * When considering hot and cold data separation to reduce cleaning overhead, 986 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 987 * respectively. 988 * In the current design, you should not change the numbers intentionally. 989 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 990 * logs individually according to the underlying devices. (default: 6) 991 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 992 * data and 8 for node logs. 993 */ 994 #define NR_CURSEG_DATA_TYPE (3) 995 #define NR_CURSEG_NODE_TYPE (3) 996 #define NR_CURSEG_INMEM_TYPE (2) 997 #define NR_CURSEG_RO_TYPE (2) 998 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 999 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 1000 1001 enum { 1002 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 1003 CURSEG_WARM_DATA, /* data blocks */ 1004 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 1005 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 1006 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 1007 CURSEG_COLD_NODE, /* indirect node blocks */ 1008 NR_PERSISTENT_LOG, /* number of persistent log */ 1009 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 1010 /* pinned file that needs consecutive block address */ 1011 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 1012 NO_CHECK_TYPE, /* number of persistent & inmem log */ 1013 }; 1014 1015 struct flush_cmd { 1016 struct completion wait; 1017 struct llist_node llnode; 1018 nid_t ino; 1019 int ret; 1020 }; 1021 1022 struct flush_cmd_control { 1023 struct task_struct *f2fs_issue_flush; /* flush thread */ 1024 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 1025 atomic_t issued_flush; /* # of issued flushes */ 1026 atomic_t queued_flush; /* # of queued flushes */ 1027 struct llist_head issue_list; /* list for command issue */ 1028 struct llist_node *dispatch_list; /* list for command dispatch */ 1029 }; 1030 1031 struct f2fs_sm_info { 1032 struct sit_info *sit_info; /* whole segment information */ 1033 struct free_segmap_info *free_info; /* free segment information */ 1034 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1035 struct curseg_info *curseg_array; /* active segment information */ 1036 1037 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ 1038 1039 block_t seg0_blkaddr; /* block address of 0'th segment */ 1040 block_t main_blkaddr; /* start block address of main area */ 1041 block_t ssa_blkaddr; /* start block address of SSA area */ 1042 1043 unsigned int segment_count; /* total # of segments */ 1044 unsigned int main_segments; /* # of segments in main area */ 1045 unsigned int reserved_segments; /* # of reserved segments */ 1046 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */ 1047 unsigned int ovp_segments; /* # of overprovision segments */ 1048 1049 /* a threshold to reclaim prefree segments */ 1050 unsigned int rec_prefree_segments; 1051 1052 struct list_head sit_entry_set; /* sit entry set list */ 1053 1054 unsigned int ipu_policy; /* in-place-update policy */ 1055 unsigned int min_ipu_util; /* in-place-update threshold */ 1056 unsigned int min_fsync_blocks; /* threshold for fsync */ 1057 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1058 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1059 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1060 1061 /* for flush command control */ 1062 struct flush_cmd_control *fcc_info; 1063 1064 /* for discard command control */ 1065 struct discard_cmd_control *dcc_info; 1066 }; 1067 1068 /* 1069 * For superblock 1070 */ 1071 /* 1072 * COUNT_TYPE for monitoring 1073 * 1074 * f2fs monitors the number of several block types such as on-writeback, 1075 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1076 */ 1077 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1078 enum count_type { 1079 F2FS_DIRTY_DENTS, 1080 F2FS_DIRTY_DATA, 1081 F2FS_DIRTY_QDATA, 1082 F2FS_DIRTY_NODES, 1083 F2FS_DIRTY_META, 1084 F2FS_DIRTY_IMETA, 1085 F2FS_WB_CP_DATA, 1086 F2FS_WB_DATA, 1087 F2FS_RD_DATA, 1088 F2FS_RD_NODE, 1089 F2FS_RD_META, 1090 F2FS_DIO_WRITE, 1091 F2FS_DIO_READ, 1092 NR_COUNT_TYPE, 1093 }; 1094 1095 /* 1096 * The below are the page types of bios used in submit_bio(). 1097 * The available types are: 1098 * DATA User data pages. It operates as async mode. 1099 * NODE Node pages. It operates as async mode. 1100 * META FS metadata pages such as SIT, NAT, CP. 1101 * NR_PAGE_TYPE The number of page types. 1102 * META_FLUSH Make sure the previous pages are written 1103 * with waiting the bio's completion 1104 * ... Only can be used with META. 1105 */ 1106 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1107 enum page_type { 1108 DATA = 0, 1109 NODE = 1, /* should not change this */ 1110 META, 1111 NR_PAGE_TYPE, 1112 META_FLUSH, 1113 IPU, /* the below types are used by tracepoints only. */ 1114 OPU, 1115 }; 1116 1117 enum temp_type { 1118 HOT = 0, /* must be zero for meta bio */ 1119 WARM, 1120 COLD, 1121 NR_TEMP_TYPE, 1122 }; 1123 1124 enum need_lock_type { 1125 LOCK_REQ = 0, 1126 LOCK_DONE, 1127 LOCK_RETRY, 1128 }; 1129 1130 enum cp_reason_type { 1131 CP_NO_NEEDED, 1132 CP_NON_REGULAR, 1133 CP_COMPRESSED, 1134 CP_HARDLINK, 1135 CP_SB_NEED_CP, 1136 CP_WRONG_PINO, 1137 CP_NO_SPC_ROLL, 1138 CP_NODE_NEED_CP, 1139 CP_FASTBOOT_MODE, 1140 CP_SPEC_LOG_NUM, 1141 CP_RECOVER_DIR, 1142 }; 1143 1144 enum iostat_type { 1145 /* WRITE IO */ 1146 APP_DIRECT_IO, /* app direct write IOs */ 1147 APP_BUFFERED_IO, /* app buffered write IOs */ 1148 APP_WRITE_IO, /* app write IOs */ 1149 APP_MAPPED_IO, /* app mapped IOs */ 1150 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ 1151 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ 1152 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1153 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ 1154 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1155 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1156 FS_GC_DATA_IO, /* data IOs from forground gc */ 1157 FS_GC_NODE_IO, /* node IOs from forground gc */ 1158 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1159 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1160 FS_CP_META_IO, /* meta IOs from checkpoint */ 1161 1162 /* READ IO */ 1163 APP_DIRECT_READ_IO, /* app direct read IOs */ 1164 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1165 APP_READ_IO, /* app read IOs */ 1166 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1167 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ 1168 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ 1169 FS_DATA_READ_IO, /* data read IOs */ 1170 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1171 FS_CDATA_READ_IO, /* compressed data read IOs */ 1172 FS_NODE_READ_IO, /* node read IOs */ 1173 FS_META_READ_IO, /* meta read IOs */ 1174 1175 /* other */ 1176 FS_DISCARD_IO, /* discard */ 1177 FS_FLUSH_IO, /* flush */ 1178 NR_IO_TYPE, 1179 }; 1180 1181 struct f2fs_io_info { 1182 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1183 nid_t ino; /* inode number */ 1184 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1185 enum temp_type temp; /* contains HOT/WARM/COLD */ 1186 enum req_op op; /* contains REQ_OP_ */ 1187 blk_opf_t op_flags; /* req_flag_bits */ 1188 block_t new_blkaddr; /* new block address to be written */ 1189 block_t old_blkaddr; /* old block address before Cow */ 1190 struct page *page; /* page to be written */ 1191 struct page *encrypted_page; /* encrypted page */ 1192 struct page *compressed_page; /* compressed page */ 1193 struct list_head list; /* serialize IOs */ 1194 unsigned int compr_blocks; /* # of compressed block addresses */ 1195 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */ 1196 unsigned int version:8; /* version of the node */ 1197 unsigned int submitted:1; /* indicate IO submission */ 1198 unsigned int in_list:1; /* indicate fio is in io_list */ 1199 unsigned int is_por:1; /* indicate IO is from recovery or not */ 1200 unsigned int retry:1; /* need to reallocate block address */ 1201 unsigned int encrypted:1; /* indicate file is encrypted */ 1202 unsigned int post_read:1; /* require post read */ 1203 enum iostat_type io_type; /* io type */ 1204 struct writeback_control *io_wbc; /* writeback control */ 1205 struct bio **bio; /* bio for ipu */ 1206 sector_t *last_block; /* last block number in bio */ 1207 }; 1208 1209 struct bio_entry { 1210 struct bio *bio; 1211 struct list_head list; 1212 }; 1213 1214 #define is_read_io(rw) ((rw) == READ) 1215 struct f2fs_bio_info { 1216 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1217 struct bio *bio; /* bios to merge */ 1218 sector_t last_block_in_bio; /* last block number */ 1219 struct f2fs_io_info fio; /* store buffered io info. */ 1220 struct f2fs_rwsem io_rwsem; /* blocking op for bio */ 1221 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1222 struct list_head io_list; /* track fios */ 1223 struct list_head bio_list; /* bio entry list head */ 1224 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ 1225 }; 1226 1227 #define FDEV(i) (sbi->devs[i]) 1228 #define RDEV(i) (raw_super->devs[i]) 1229 struct f2fs_dev_info { 1230 struct block_device *bdev; 1231 char path[MAX_PATH_LEN]; 1232 unsigned int total_segments; 1233 block_t start_blk; 1234 block_t end_blk; 1235 #ifdef CONFIG_BLK_DEV_ZONED 1236 unsigned int nr_blkz; /* Total number of zones */ 1237 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1238 #endif 1239 }; 1240 1241 enum inode_type { 1242 DIR_INODE, /* for dirty dir inode */ 1243 FILE_INODE, /* for dirty regular/symlink inode */ 1244 DIRTY_META, /* for all dirtied inode metadata */ 1245 NR_INODE_TYPE, 1246 }; 1247 1248 /* for inner inode cache management */ 1249 struct inode_management { 1250 struct radix_tree_root ino_root; /* ino entry array */ 1251 spinlock_t ino_lock; /* for ino entry lock */ 1252 struct list_head ino_list; /* inode list head */ 1253 unsigned long ino_num; /* number of entries */ 1254 }; 1255 1256 /* for GC_AT */ 1257 struct atgc_management { 1258 bool atgc_enabled; /* ATGC is enabled or not */ 1259 struct rb_root_cached root; /* root of victim rb-tree */ 1260 struct list_head victim_list; /* linked with all victim entries */ 1261 unsigned int victim_count; /* victim count in rb-tree */ 1262 unsigned int candidate_ratio; /* candidate ratio */ 1263 unsigned int max_candidate_count; /* max candidate count */ 1264 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1265 unsigned long long age_threshold; /* age threshold */ 1266 }; 1267 1268 struct f2fs_gc_control { 1269 unsigned int victim_segno; /* target victim segment number */ 1270 int init_gc_type; /* FG_GC or BG_GC */ 1271 bool no_bg_gc; /* check the space and stop bg_gc */ 1272 bool should_migrate_blocks; /* should migrate blocks */ 1273 bool err_gc_skipped; /* return EAGAIN if GC skipped */ 1274 unsigned int nr_free_secs; /* # of free sections to do GC */ 1275 }; 1276 1277 /* 1278 * For s_flag in struct f2fs_sb_info 1279 * Modification on enum should be synchronized with s_flag array 1280 */ 1281 enum { 1282 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1283 SBI_IS_CLOSE, /* specify unmounting */ 1284 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1285 SBI_POR_DOING, /* recovery is doing or not */ 1286 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1287 SBI_NEED_CP, /* need to checkpoint */ 1288 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1289 SBI_IS_RECOVERED, /* recovered orphan/data */ 1290 SBI_CP_DISABLED, /* CP was disabled last mount */ 1291 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1292 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1293 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1294 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1295 SBI_IS_RESIZEFS, /* resizefs is in process */ 1296 SBI_IS_FREEZING, /* freezefs is in process */ 1297 SBI_IS_WRITABLE, /* remove ro mountoption transiently */ 1298 MAX_SBI_FLAG, 1299 }; 1300 1301 enum { 1302 CP_TIME, 1303 REQ_TIME, 1304 DISCARD_TIME, 1305 GC_TIME, 1306 DISABLE_TIME, 1307 UMOUNT_DISCARD_TIMEOUT, 1308 MAX_TIME, 1309 }; 1310 1311 /* Note that you need to keep synchronization with this gc_mode_names array */ 1312 enum { 1313 GC_NORMAL, 1314 GC_IDLE_CB, 1315 GC_IDLE_GREEDY, 1316 GC_IDLE_AT, 1317 GC_URGENT_HIGH, 1318 GC_URGENT_LOW, 1319 GC_URGENT_MID, 1320 MAX_GC_MODE, 1321 }; 1322 1323 enum { 1324 BGGC_MODE_ON, /* background gc is on */ 1325 BGGC_MODE_OFF, /* background gc is off */ 1326 BGGC_MODE_SYNC, /* 1327 * background gc is on, migrating blocks 1328 * like foreground gc 1329 */ 1330 }; 1331 1332 enum { 1333 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1334 FS_MODE_LFS, /* use lfs allocation only */ 1335 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1336 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1337 }; 1338 1339 enum { 1340 ALLOC_MODE_DEFAULT, /* stay default */ 1341 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1342 }; 1343 1344 enum fsync_mode { 1345 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1346 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1347 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1348 }; 1349 1350 enum { 1351 COMPR_MODE_FS, /* 1352 * automatically compress compression 1353 * enabled files 1354 */ 1355 COMPR_MODE_USER, /* 1356 * automatical compression is disabled. 1357 * user can control the file compression 1358 * using ioctls 1359 */ 1360 }; 1361 1362 enum { 1363 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1364 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1365 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1366 }; 1367 1368 enum { 1369 MEMORY_MODE_NORMAL, /* memory mode for normal devices */ 1370 MEMORY_MODE_LOW, /* memory mode for low memry devices */ 1371 }; 1372 1373 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1374 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1375 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1376 1377 /* 1378 * Layout of f2fs page.private: 1379 * 1380 * Layout A: lowest bit should be 1 1381 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1382 * bit 0 PAGE_PRIVATE_NOT_POINTER 1383 * bit 1 PAGE_PRIVATE_DUMMY_WRITE 1384 * bit 2 PAGE_PRIVATE_ONGOING_MIGRATION 1385 * bit 3 PAGE_PRIVATE_INLINE_INODE 1386 * bit 4 PAGE_PRIVATE_REF_RESOURCE 1387 * bit 5- f2fs private data 1388 * 1389 * Layout B: lowest bit should be 0 1390 * page.private is a wrapped pointer. 1391 */ 1392 enum { 1393 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1394 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */ 1395 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1396 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1397 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1398 PAGE_PRIVATE_MAX 1399 }; 1400 1401 /* For compression */ 1402 enum compress_algorithm_type { 1403 COMPRESS_LZO, 1404 COMPRESS_LZ4, 1405 COMPRESS_ZSTD, 1406 COMPRESS_LZORLE, 1407 COMPRESS_MAX, 1408 }; 1409 1410 enum compress_flag { 1411 COMPRESS_CHKSUM, 1412 COMPRESS_MAX_FLAG, 1413 }; 1414 1415 #define COMPRESS_WATERMARK 20 1416 #define COMPRESS_PERCENT 20 1417 1418 #define COMPRESS_DATA_RESERVED_SIZE 4 1419 struct compress_data { 1420 __le32 clen; /* compressed data size */ 1421 __le32 chksum; /* compressed data chksum */ 1422 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1423 u8 cdata[]; /* compressed data */ 1424 }; 1425 1426 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1427 1428 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1429 1430 #define COMPRESS_LEVEL_OFFSET 8 1431 1432 /* compress context */ 1433 struct compress_ctx { 1434 struct inode *inode; /* inode the context belong to */ 1435 pgoff_t cluster_idx; /* cluster index number */ 1436 unsigned int cluster_size; /* page count in cluster */ 1437 unsigned int log_cluster_size; /* log of cluster size */ 1438 struct page **rpages; /* pages store raw data in cluster */ 1439 unsigned int nr_rpages; /* total page number in rpages */ 1440 struct page **cpages; /* pages store compressed data in cluster */ 1441 unsigned int nr_cpages; /* total page number in cpages */ 1442 unsigned int valid_nr_cpages; /* valid page number in cpages */ 1443 void *rbuf; /* virtual mapped address on rpages */ 1444 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1445 size_t rlen; /* valid data length in rbuf */ 1446 size_t clen; /* valid data length in cbuf */ 1447 void *private; /* payload buffer for specified compression algorithm */ 1448 void *private2; /* extra payload buffer */ 1449 }; 1450 1451 /* compress context for write IO path */ 1452 struct compress_io_ctx { 1453 u32 magic; /* magic number to indicate page is compressed */ 1454 struct inode *inode; /* inode the context belong to */ 1455 struct page **rpages; /* pages store raw data in cluster */ 1456 unsigned int nr_rpages; /* total page number in rpages */ 1457 atomic_t pending_pages; /* in-flight compressed page count */ 1458 }; 1459 1460 /* Context for decompressing one cluster on the read IO path */ 1461 struct decompress_io_ctx { 1462 u32 magic; /* magic number to indicate page is compressed */ 1463 struct inode *inode; /* inode the context belong to */ 1464 pgoff_t cluster_idx; /* cluster index number */ 1465 unsigned int cluster_size; /* page count in cluster */ 1466 unsigned int log_cluster_size; /* log of cluster size */ 1467 struct page **rpages; /* pages store raw data in cluster */ 1468 unsigned int nr_rpages; /* total page number in rpages */ 1469 struct page **cpages; /* pages store compressed data in cluster */ 1470 unsigned int nr_cpages; /* total page number in cpages */ 1471 struct page **tpages; /* temp pages to pad holes in cluster */ 1472 void *rbuf; /* virtual mapped address on rpages */ 1473 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1474 size_t rlen; /* valid data length in rbuf */ 1475 size_t clen; /* valid data length in cbuf */ 1476 1477 /* 1478 * The number of compressed pages remaining to be read in this cluster. 1479 * This is initially nr_cpages. It is decremented by 1 each time a page 1480 * has been read (or failed to be read). When it reaches 0, the cluster 1481 * is decompressed (or an error is reported). 1482 * 1483 * If an error occurs before all the pages have been submitted for I/O, 1484 * then this will never reach 0. In this case the I/O submitter is 1485 * responsible for calling f2fs_decompress_end_io() instead. 1486 */ 1487 atomic_t remaining_pages; 1488 1489 /* 1490 * Number of references to this decompress_io_ctx. 1491 * 1492 * One reference is held for I/O completion. This reference is dropped 1493 * after the pagecache pages are updated and unlocked -- either after 1494 * decompression (and verity if enabled), or after an error. 1495 * 1496 * In addition, each compressed page holds a reference while it is in a 1497 * bio. These references are necessary prevent compressed pages from 1498 * being freed while they are still in a bio. 1499 */ 1500 refcount_t refcnt; 1501 1502 bool failed; /* IO error occurred before decompression? */ 1503 bool need_verity; /* need fs-verity verification after decompression? */ 1504 void *private; /* payload buffer for specified decompression algorithm */ 1505 void *private2; /* extra payload buffer */ 1506 struct work_struct verity_work; /* work to verify the decompressed pages */ 1507 struct work_struct free_work; /* work for late free this structure itself */ 1508 }; 1509 1510 #define NULL_CLUSTER ((unsigned int)(~0)) 1511 #define MIN_COMPRESS_LOG_SIZE 2 1512 #define MAX_COMPRESS_LOG_SIZE 8 1513 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1514 1515 struct f2fs_sb_info { 1516 struct super_block *sb; /* pointer to VFS super block */ 1517 struct proc_dir_entry *s_proc; /* proc entry */ 1518 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1519 struct f2fs_rwsem sb_lock; /* lock for raw super block */ 1520 int valid_super_block; /* valid super block no */ 1521 unsigned long s_flag; /* flags for sbi */ 1522 struct mutex writepages; /* mutex for writepages() */ 1523 1524 #ifdef CONFIG_BLK_DEV_ZONED 1525 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1526 #endif 1527 1528 /* for node-related operations */ 1529 struct f2fs_nm_info *nm_info; /* node manager */ 1530 struct inode *node_inode; /* cache node blocks */ 1531 1532 /* for segment-related operations */ 1533 struct f2fs_sm_info *sm_info; /* segment manager */ 1534 1535 /* for bio operations */ 1536 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1537 /* keep migration IO order for LFS mode */ 1538 struct f2fs_rwsem io_order_lock; 1539 mempool_t *write_io_dummy; /* Dummy pages */ 1540 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ 1541 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ 1542 1543 /* for checkpoint */ 1544 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1545 int cur_cp_pack; /* remain current cp pack */ 1546 spinlock_t cp_lock; /* for flag in ckpt */ 1547 struct inode *meta_inode; /* cache meta blocks */ 1548 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ 1549 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ 1550 struct f2fs_rwsem node_write; /* locking node writes */ 1551 struct f2fs_rwsem node_change; /* locking node change */ 1552 wait_queue_head_t cp_wait; 1553 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1554 long interval_time[MAX_TIME]; /* to store thresholds */ 1555 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1556 1557 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1558 1559 spinlock_t fsync_node_lock; /* for node entry lock */ 1560 struct list_head fsync_node_list; /* node list head */ 1561 unsigned int fsync_seg_id; /* sequence id */ 1562 unsigned int fsync_node_num; /* number of node entries */ 1563 1564 /* for orphan inode, use 0'th array */ 1565 unsigned int max_orphans; /* max orphan inodes */ 1566 1567 /* for inode management */ 1568 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1569 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1570 struct mutex flush_lock; /* for flush exclusion */ 1571 1572 /* for extent tree cache */ 1573 struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; 1574 atomic64_t allocated_data_blocks; /* for block age extent_cache */ 1575 1576 /* The threshold used for hot and warm data seperation*/ 1577 unsigned int hot_data_age_threshold; 1578 unsigned int warm_data_age_threshold; 1579 unsigned int last_age_weight; 1580 1581 /* basic filesystem units */ 1582 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1583 unsigned int log_blocksize; /* log2 block size */ 1584 unsigned int blocksize; /* block size */ 1585 unsigned int root_ino_num; /* root inode number*/ 1586 unsigned int node_ino_num; /* node inode number*/ 1587 unsigned int meta_ino_num; /* meta inode number*/ 1588 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1589 unsigned int blocks_per_seg; /* blocks per segment */ 1590 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ 1591 unsigned int segs_per_sec; /* segments per section */ 1592 unsigned int secs_per_zone; /* sections per zone */ 1593 unsigned int total_sections; /* total section count */ 1594 unsigned int total_node_count; /* total node block count */ 1595 unsigned int total_valid_node_count; /* valid node block count */ 1596 int dir_level; /* directory level */ 1597 bool readdir_ra; /* readahead inode in readdir */ 1598 u64 max_io_bytes; /* max io bytes to merge IOs */ 1599 1600 block_t user_block_count; /* # of user blocks */ 1601 block_t total_valid_block_count; /* # of valid blocks */ 1602 block_t discard_blks; /* discard command candidats */ 1603 block_t last_valid_block_count; /* for recovery */ 1604 block_t reserved_blocks; /* configurable reserved blocks */ 1605 block_t current_reserved_blocks; /* current reserved blocks */ 1606 1607 /* Additional tracking for no checkpoint mode */ 1608 block_t unusable_block_count; /* # of blocks saved by last cp */ 1609 1610 unsigned int nquota_files; /* # of quota sysfile */ 1611 struct f2fs_rwsem quota_sem; /* blocking cp for flags */ 1612 1613 /* # of pages, see count_type */ 1614 atomic_t nr_pages[NR_COUNT_TYPE]; 1615 /* # of allocated blocks */ 1616 struct percpu_counter alloc_valid_block_count; 1617 /* # of node block writes as roll forward recovery */ 1618 struct percpu_counter rf_node_block_count; 1619 1620 /* writeback control */ 1621 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1622 1623 /* valid inode count */ 1624 struct percpu_counter total_valid_inode_count; 1625 1626 struct f2fs_mount_info mount_opt; /* mount options */ 1627 1628 /* for cleaning operations */ 1629 struct f2fs_rwsem gc_lock; /* 1630 * semaphore for GC, avoid 1631 * race between GC and GC or CP 1632 */ 1633 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1634 struct atgc_management am; /* atgc management */ 1635 unsigned int cur_victim_sec; /* current victim section num */ 1636 unsigned int gc_mode; /* current GC state */ 1637 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1638 spinlock_t gc_remaining_trials_lock; 1639 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ 1640 unsigned int gc_remaining_trials; 1641 1642 /* for skip statistic */ 1643 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1644 1645 /* threshold for gc trials on pinned files */ 1646 u64 gc_pin_file_threshold; 1647 struct f2fs_rwsem pin_sem; 1648 1649 /* maximum # of trials to find a victim segment for SSR and GC */ 1650 unsigned int max_victim_search; 1651 /* migration granularity of garbage collection, unit: segment */ 1652 unsigned int migration_granularity; 1653 1654 /* 1655 * for stat information. 1656 * one is for the LFS mode, and the other is for the SSR mode. 1657 */ 1658 #ifdef CONFIG_F2FS_STAT_FS 1659 struct f2fs_stat_info *stat_info; /* FS status information */ 1660 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1661 unsigned int segment_count[2]; /* # of allocated segments */ 1662 unsigned int block_count[2]; /* # of allocated blocks */ 1663 atomic_t inplace_count; /* # of inplace update */ 1664 /* # of lookup extent cache */ 1665 atomic64_t total_hit_ext[NR_EXTENT_CACHES]; 1666 /* # of hit rbtree extent node */ 1667 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; 1668 /* # of hit cached extent node */ 1669 atomic64_t read_hit_cached[NR_EXTENT_CACHES]; 1670 /* # of hit largest extent node in read extent cache */ 1671 atomic64_t read_hit_largest; 1672 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1673 atomic_t inline_inode; /* # of inline_data inodes */ 1674 atomic_t inline_dir; /* # of inline_dentry inodes */ 1675 atomic_t compr_inode; /* # of compressed inodes */ 1676 atomic64_t compr_blocks; /* # of compressed blocks */ 1677 atomic_t swapfile_inode; /* # of swapfile inodes */ 1678 atomic_t atomic_files; /* # of opened atomic file */ 1679 atomic_t max_aw_cnt; /* max # of atomic writes */ 1680 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1681 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1682 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1683 #endif 1684 spinlock_t stat_lock; /* lock for stat operations */ 1685 1686 /* to attach REQ_META|REQ_FUA flags */ 1687 unsigned int data_io_flag; 1688 unsigned int node_io_flag; 1689 1690 /* For sysfs support */ 1691 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1692 struct completion s_kobj_unregister; 1693 1694 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1695 struct completion s_stat_kobj_unregister; 1696 1697 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1698 struct completion s_feature_list_kobj_unregister; 1699 1700 /* For shrinker support */ 1701 struct list_head s_list; 1702 struct mutex umount_mutex; 1703 unsigned int shrinker_run_no; 1704 1705 /* For multi devices */ 1706 int s_ndevs; /* number of devices */ 1707 struct f2fs_dev_info *devs; /* for device list */ 1708 unsigned int dirty_device; /* for checkpoint data flush */ 1709 spinlock_t dev_lock; /* protect dirty_device */ 1710 bool aligned_blksize; /* all devices has the same logical blksize */ 1711 1712 /* For write statistics */ 1713 u64 sectors_written_start; 1714 u64 kbytes_written; 1715 1716 /* Reference to checksum algorithm driver via cryptoapi */ 1717 struct crypto_shash *s_chksum_driver; 1718 1719 /* Precomputed FS UUID checksum for seeding other checksums */ 1720 __u32 s_chksum_seed; 1721 1722 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1723 1724 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ 1725 spinlock_t error_lock; /* protect errors array */ 1726 bool error_dirty; /* errors of sb is dirty */ 1727 1728 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1729 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1730 1731 /* For reclaimed segs statistics per each GC mode */ 1732 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1733 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1734 1735 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1736 1737 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1738 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1739 1740 /* For atomic write statistics */ 1741 atomic64_t current_atomic_write; 1742 s64 peak_atomic_write; 1743 u64 committed_atomic_block; 1744 u64 revoked_atomic_block; 1745 1746 #ifdef CONFIG_F2FS_FS_COMPRESSION 1747 struct kmem_cache *page_array_slab; /* page array entry */ 1748 unsigned int page_array_slab_size; /* default page array slab size */ 1749 1750 /* For runtime compression statistics */ 1751 u64 compr_written_block; 1752 u64 compr_saved_block; 1753 u32 compr_new_inode; 1754 1755 /* For compressed block cache */ 1756 struct inode *compress_inode; /* cache compressed blocks */ 1757 unsigned int compress_percent; /* cache page percentage */ 1758 unsigned int compress_watermark; /* cache page watermark */ 1759 atomic_t compress_page_hit; /* cache hit count */ 1760 #endif 1761 1762 #ifdef CONFIG_F2FS_IOSTAT 1763 /* For app/fs IO statistics */ 1764 spinlock_t iostat_lock; 1765 unsigned long long iostat_count[NR_IO_TYPE]; 1766 unsigned long long iostat_bytes[NR_IO_TYPE]; 1767 unsigned long long prev_iostat_bytes[NR_IO_TYPE]; 1768 bool iostat_enable; 1769 unsigned long iostat_next_period; 1770 unsigned int iostat_period_ms; 1771 1772 /* For io latency related statistics info in one iostat period */ 1773 spinlock_t iostat_lat_lock; 1774 struct iostat_lat_info *iostat_io_lat; 1775 #endif 1776 }; 1777 1778 #ifdef CONFIG_F2FS_FAULT_INJECTION 1779 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \ 1780 __builtin_return_address(0)) 1781 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type, 1782 const char *func, const char *parent_func) 1783 { 1784 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1785 1786 if (!ffi->inject_rate) 1787 return false; 1788 1789 if (!IS_FAULT_SET(ffi, type)) 1790 return false; 1791 1792 atomic_inc(&ffi->inject_ops); 1793 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1794 atomic_set(&ffi->inject_ops, 0); 1795 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", 1796 KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type], 1797 func, parent_func); 1798 return true; 1799 } 1800 return false; 1801 } 1802 #else 1803 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1804 { 1805 return false; 1806 } 1807 #endif 1808 1809 /* 1810 * Test if the mounted volume is a multi-device volume. 1811 * - For a single regular disk volume, sbi->s_ndevs is 0. 1812 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1813 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1814 */ 1815 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1816 { 1817 return sbi->s_ndevs > 1; 1818 } 1819 1820 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1821 { 1822 unsigned long now = jiffies; 1823 1824 sbi->last_time[type] = now; 1825 1826 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1827 if (type == REQ_TIME) { 1828 sbi->last_time[DISCARD_TIME] = now; 1829 sbi->last_time[GC_TIME] = now; 1830 } 1831 } 1832 1833 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1834 { 1835 unsigned long interval = sbi->interval_time[type] * HZ; 1836 1837 return time_after(jiffies, sbi->last_time[type] + interval); 1838 } 1839 1840 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1841 int type) 1842 { 1843 unsigned long interval = sbi->interval_time[type] * HZ; 1844 unsigned int wait_ms = 0; 1845 long delta; 1846 1847 delta = (sbi->last_time[type] + interval) - jiffies; 1848 if (delta > 0) 1849 wait_ms = jiffies_to_msecs(delta); 1850 1851 return wait_ms; 1852 } 1853 1854 /* 1855 * Inline functions 1856 */ 1857 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1858 const void *address, unsigned int length) 1859 { 1860 struct { 1861 struct shash_desc shash; 1862 char ctx[4]; 1863 } desc; 1864 int err; 1865 1866 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1867 1868 desc.shash.tfm = sbi->s_chksum_driver; 1869 *(u32 *)desc.ctx = crc; 1870 1871 err = crypto_shash_update(&desc.shash, address, length); 1872 BUG_ON(err); 1873 1874 return *(u32 *)desc.ctx; 1875 } 1876 1877 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1878 unsigned int length) 1879 { 1880 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1881 } 1882 1883 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1884 void *buf, size_t buf_size) 1885 { 1886 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1887 } 1888 1889 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1890 const void *address, unsigned int length) 1891 { 1892 return __f2fs_crc32(sbi, crc, address, length); 1893 } 1894 1895 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1896 { 1897 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1898 } 1899 1900 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1901 { 1902 return sb->s_fs_info; 1903 } 1904 1905 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1906 { 1907 return F2FS_SB(inode->i_sb); 1908 } 1909 1910 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1911 { 1912 return F2FS_I_SB(mapping->host); 1913 } 1914 1915 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1916 { 1917 return F2FS_M_SB(page_file_mapping(page)); 1918 } 1919 1920 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1921 { 1922 return (struct f2fs_super_block *)(sbi->raw_super); 1923 } 1924 1925 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1926 { 1927 return (struct f2fs_checkpoint *)(sbi->ckpt); 1928 } 1929 1930 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1931 { 1932 return (struct f2fs_node *)page_address(page); 1933 } 1934 1935 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1936 { 1937 return &((struct f2fs_node *)page_address(page))->i; 1938 } 1939 1940 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1941 { 1942 return (struct f2fs_nm_info *)(sbi->nm_info); 1943 } 1944 1945 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1946 { 1947 return (struct f2fs_sm_info *)(sbi->sm_info); 1948 } 1949 1950 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1951 { 1952 return (struct sit_info *)(SM_I(sbi)->sit_info); 1953 } 1954 1955 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1956 { 1957 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1958 } 1959 1960 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1961 { 1962 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1963 } 1964 1965 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1966 { 1967 return sbi->meta_inode->i_mapping; 1968 } 1969 1970 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1971 { 1972 return sbi->node_inode->i_mapping; 1973 } 1974 1975 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1976 { 1977 return test_bit(type, &sbi->s_flag); 1978 } 1979 1980 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1981 { 1982 set_bit(type, &sbi->s_flag); 1983 } 1984 1985 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1986 { 1987 clear_bit(type, &sbi->s_flag); 1988 } 1989 1990 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1991 { 1992 return le64_to_cpu(cp->checkpoint_ver); 1993 } 1994 1995 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1996 { 1997 if (type < F2FS_MAX_QUOTAS) 1998 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1999 return 0; 2000 } 2001 2002 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2003 { 2004 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2005 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2006 } 2007 2008 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2009 { 2010 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2011 2012 return ckpt_flags & f; 2013 } 2014 2015 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2016 { 2017 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2018 } 2019 2020 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2021 { 2022 unsigned int ckpt_flags; 2023 2024 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2025 ckpt_flags |= f; 2026 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2027 } 2028 2029 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2030 { 2031 unsigned long flags; 2032 2033 spin_lock_irqsave(&sbi->cp_lock, flags); 2034 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2035 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2036 } 2037 2038 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2039 { 2040 unsigned int ckpt_flags; 2041 2042 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2043 ckpt_flags &= (~f); 2044 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2045 } 2046 2047 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2048 { 2049 unsigned long flags; 2050 2051 spin_lock_irqsave(&sbi->cp_lock, flags); 2052 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2053 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2054 } 2055 2056 #define init_f2fs_rwsem(sem) \ 2057 do { \ 2058 static struct lock_class_key __key; \ 2059 \ 2060 __init_f2fs_rwsem((sem), #sem, &__key); \ 2061 } while (0) 2062 2063 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, 2064 const char *sem_name, struct lock_class_key *key) 2065 { 2066 __init_rwsem(&sem->internal_rwsem, sem_name, key); 2067 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2068 init_waitqueue_head(&sem->read_waiters); 2069 #endif 2070 } 2071 2072 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) 2073 { 2074 return rwsem_is_locked(&sem->internal_rwsem); 2075 } 2076 2077 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) 2078 { 2079 return rwsem_is_contended(&sem->internal_rwsem); 2080 } 2081 2082 static inline void f2fs_down_read(struct f2fs_rwsem *sem) 2083 { 2084 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2085 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); 2086 #else 2087 down_read(&sem->internal_rwsem); 2088 #endif 2089 } 2090 2091 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) 2092 { 2093 return down_read_trylock(&sem->internal_rwsem); 2094 } 2095 2096 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2097 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) 2098 { 2099 down_read_nested(&sem->internal_rwsem, subclass); 2100 } 2101 #else 2102 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) 2103 #endif 2104 2105 static inline void f2fs_up_read(struct f2fs_rwsem *sem) 2106 { 2107 up_read(&sem->internal_rwsem); 2108 } 2109 2110 static inline void f2fs_down_write(struct f2fs_rwsem *sem) 2111 { 2112 down_write(&sem->internal_rwsem); 2113 } 2114 2115 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) 2116 { 2117 return down_write_trylock(&sem->internal_rwsem); 2118 } 2119 2120 static inline void f2fs_up_write(struct f2fs_rwsem *sem) 2121 { 2122 up_write(&sem->internal_rwsem); 2123 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2124 wake_up_all(&sem->read_waiters); 2125 #endif 2126 } 2127 2128 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2129 { 2130 f2fs_down_read(&sbi->cp_rwsem); 2131 } 2132 2133 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2134 { 2135 if (time_to_inject(sbi, FAULT_LOCK_OP)) 2136 return 0; 2137 return f2fs_down_read_trylock(&sbi->cp_rwsem); 2138 } 2139 2140 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2141 { 2142 f2fs_up_read(&sbi->cp_rwsem); 2143 } 2144 2145 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2146 { 2147 f2fs_down_write(&sbi->cp_rwsem); 2148 } 2149 2150 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2151 { 2152 f2fs_up_write(&sbi->cp_rwsem); 2153 } 2154 2155 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2156 { 2157 int reason = CP_SYNC; 2158 2159 if (test_opt(sbi, FASTBOOT)) 2160 reason = CP_FASTBOOT; 2161 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2162 reason = CP_UMOUNT; 2163 return reason; 2164 } 2165 2166 static inline bool __remain_node_summaries(int reason) 2167 { 2168 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2169 } 2170 2171 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2172 { 2173 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2174 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2175 } 2176 2177 /* 2178 * Check whether the inode has blocks or not 2179 */ 2180 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2181 { 2182 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2183 2184 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2185 } 2186 2187 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2188 { 2189 return ofs == XATTR_NODE_OFFSET; 2190 } 2191 2192 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2193 struct inode *inode, bool cap) 2194 { 2195 if (!inode) 2196 return true; 2197 if (!test_opt(sbi, RESERVE_ROOT)) 2198 return false; 2199 if (IS_NOQUOTA(inode)) 2200 return true; 2201 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2202 return true; 2203 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2204 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2205 return true; 2206 if (cap && capable(CAP_SYS_RESOURCE)) 2207 return true; 2208 return false; 2209 } 2210 2211 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2212 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2213 struct inode *inode, blkcnt_t *count) 2214 { 2215 blkcnt_t diff = 0, release = 0; 2216 block_t avail_user_block_count; 2217 int ret; 2218 2219 ret = dquot_reserve_block(inode, *count); 2220 if (ret) 2221 return ret; 2222 2223 if (time_to_inject(sbi, FAULT_BLOCK)) { 2224 release = *count; 2225 goto release_quota; 2226 } 2227 2228 /* 2229 * let's increase this in prior to actual block count change in order 2230 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2231 */ 2232 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2233 2234 spin_lock(&sbi->stat_lock); 2235 sbi->total_valid_block_count += (block_t)(*count); 2236 avail_user_block_count = sbi->user_block_count - 2237 sbi->current_reserved_blocks; 2238 2239 if (!__allow_reserved_blocks(sbi, inode, true)) 2240 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2241 2242 if (F2FS_IO_ALIGNED(sbi)) 2243 avail_user_block_count -= sbi->blocks_per_seg * 2244 SM_I(sbi)->additional_reserved_segments; 2245 2246 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2247 if (avail_user_block_count > sbi->unusable_block_count) 2248 avail_user_block_count -= sbi->unusable_block_count; 2249 else 2250 avail_user_block_count = 0; 2251 } 2252 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 2253 diff = sbi->total_valid_block_count - avail_user_block_count; 2254 if (diff > *count) 2255 diff = *count; 2256 *count -= diff; 2257 release = diff; 2258 sbi->total_valid_block_count -= diff; 2259 if (!*count) { 2260 spin_unlock(&sbi->stat_lock); 2261 goto enospc; 2262 } 2263 } 2264 spin_unlock(&sbi->stat_lock); 2265 2266 if (unlikely(release)) { 2267 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2268 dquot_release_reservation_block(inode, release); 2269 } 2270 f2fs_i_blocks_write(inode, *count, true, true); 2271 return 0; 2272 2273 enospc: 2274 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2275 release_quota: 2276 dquot_release_reservation_block(inode, release); 2277 return -ENOSPC; 2278 } 2279 2280 __printf(2, 3) 2281 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 2282 2283 #define f2fs_err(sbi, fmt, ...) \ 2284 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 2285 #define f2fs_warn(sbi, fmt, ...) \ 2286 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 2287 #define f2fs_notice(sbi, fmt, ...) \ 2288 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 2289 #define f2fs_info(sbi, fmt, ...) \ 2290 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 2291 #define f2fs_debug(sbi, fmt, ...) \ 2292 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 2293 2294 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 2295 static inline bool page_private_##name(struct page *page) \ 2296 { \ 2297 return PagePrivate(page) && \ 2298 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 2299 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2300 } 2301 2302 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 2303 static inline void set_page_private_##name(struct page *page) \ 2304 { \ 2305 if (!PagePrivate(page)) \ 2306 attach_page_private(page, (void *)0); \ 2307 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 2308 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2309 } 2310 2311 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 2312 static inline void clear_page_private_##name(struct page *page) \ 2313 { \ 2314 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2315 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \ 2316 detach_page_private(page); \ 2317 } 2318 2319 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 2320 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 2321 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 2322 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE); 2323 2324 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 2325 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 2326 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 2327 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE); 2328 2329 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 2330 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 2331 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 2332 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE); 2333 2334 static inline unsigned long get_page_private_data(struct page *page) 2335 { 2336 unsigned long data = page_private(page); 2337 2338 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 2339 return 0; 2340 return data >> PAGE_PRIVATE_MAX; 2341 } 2342 2343 static inline void set_page_private_data(struct page *page, unsigned long data) 2344 { 2345 if (!PagePrivate(page)) 2346 attach_page_private(page, (void *)0); 2347 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 2348 page_private(page) |= data << PAGE_PRIVATE_MAX; 2349 } 2350 2351 static inline void clear_page_private_data(struct page *page) 2352 { 2353 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0); 2354 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) 2355 detach_page_private(page); 2356 } 2357 2358 static inline void clear_page_private_all(struct page *page) 2359 { 2360 clear_page_private_data(page); 2361 clear_page_private_reference(page); 2362 clear_page_private_gcing(page); 2363 clear_page_private_inline(page); 2364 2365 f2fs_bug_on(F2FS_P_SB(page), page_private(page)); 2366 } 2367 2368 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2369 struct inode *inode, 2370 block_t count) 2371 { 2372 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2373 2374 spin_lock(&sbi->stat_lock); 2375 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2376 sbi->total_valid_block_count -= (block_t)count; 2377 if (sbi->reserved_blocks && 2378 sbi->current_reserved_blocks < sbi->reserved_blocks) 2379 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2380 sbi->current_reserved_blocks + count); 2381 spin_unlock(&sbi->stat_lock); 2382 if (unlikely(inode->i_blocks < sectors)) { 2383 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2384 inode->i_ino, 2385 (unsigned long long)inode->i_blocks, 2386 (unsigned long long)sectors); 2387 set_sbi_flag(sbi, SBI_NEED_FSCK); 2388 return; 2389 } 2390 f2fs_i_blocks_write(inode, count, false, true); 2391 } 2392 2393 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2394 { 2395 atomic_inc(&sbi->nr_pages[count_type]); 2396 2397 if (count_type == F2FS_DIRTY_DENTS || 2398 count_type == F2FS_DIRTY_NODES || 2399 count_type == F2FS_DIRTY_META || 2400 count_type == F2FS_DIRTY_QDATA || 2401 count_type == F2FS_DIRTY_IMETA) 2402 set_sbi_flag(sbi, SBI_IS_DIRTY); 2403 } 2404 2405 static inline void inode_inc_dirty_pages(struct inode *inode) 2406 { 2407 atomic_inc(&F2FS_I(inode)->dirty_pages); 2408 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2409 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2410 if (IS_NOQUOTA(inode)) 2411 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2412 } 2413 2414 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2415 { 2416 atomic_dec(&sbi->nr_pages[count_type]); 2417 } 2418 2419 static inline void inode_dec_dirty_pages(struct inode *inode) 2420 { 2421 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2422 !S_ISLNK(inode->i_mode)) 2423 return; 2424 2425 atomic_dec(&F2FS_I(inode)->dirty_pages); 2426 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2427 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2428 if (IS_NOQUOTA(inode)) 2429 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2430 } 2431 2432 static inline void inc_atomic_write_cnt(struct inode *inode) 2433 { 2434 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2435 struct f2fs_inode_info *fi = F2FS_I(inode); 2436 u64 current_write; 2437 2438 fi->atomic_write_cnt++; 2439 atomic64_inc(&sbi->current_atomic_write); 2440 current_write = atomic64_read(&sbi->current_atomic_write); 2441 if (current_write > sbi->peak_atomic_write) 2442 sbi->peak_atomic_write = current_write; 2443 } 2444 2445 static inline void release_atomic_write_cnt(struct inode *inode) 2446 { 2447 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2448 struct f2fs_inode_info *fi = F2FS_I(inode); 2449 2450 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); 2451 fi->atomic_write_cnt = 0; 2452 } 2453 2454 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2455 { 2456 return atomic_read(&sbi->nr_pages[count_type]); 2457 } 2458 2459 static inline int get_dirty_pages(struct inode *inode) 2460 { 2461 return atomic_read(&F2FS_I(inode)->dirty_pages); 2462 } 2463 2464 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2465 { 2466 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 2467 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 2468 sbi->log_blocks_per_seg; 2469 2470 return segs / sbi->segs_per_sec; 2471 } 2472 2473 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2474 { 2475 return sbi->total_valid_block_count; 2476 } 2477 2478 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2479 { 2480 return sbi->discard_blks; 2481 } 2482 2483 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2484 { 2485 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2486 2487 /* return NAT or SIT bitmap */ 2488 if (flag == NAT_BITMAP) 2489 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2490 else if (flag == SIT_BITMAP) 2491 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2492 2493 return 0; 2494 } 2495 2496 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2497 { 2498 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2499 } 2500 2501 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2502 { 2503 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2504 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2505 int offset; 2506 2507 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2508 offset = (flag == SIT_BITMAP) ? 2509 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2510 /* 2511 * if large_nat_bitmap feature is enabled, leave checksum 2512 * protection for all nat/sit bitmaps. 2513 */ 2514 return tmp_ptr + offset + sizeof(__le32); 2515 } 2516 2517 if (__cp_payload(sbi) > 0) { 2518 if (flag == NAT_BITMAP) 2519 return tmp_ptr; 2520 else 2521 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2522 } else { 2523 offset = (flag == NAT_BITMAP) ? 2524 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2525 return tmp_ptr + offset; 2526 } 2527 } 2528 2529 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2530 { 2531 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2532 2533 if (sbi->cur_cp_pack == 2) 2534 start_addr += sbi->blocks_per_seg; 2535 return start_addr; 2536 } 2537 2538 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2539 { 2540 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2541 2542 if (sbi->cur_cp_pack == 1) 2543 start_addr += sbi->blocks_per_seg; 2544 return start_addr; 2545 } 2546 2547 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2548 { 2549 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2550 } 2551 2552 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2553 { 2554 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2555 } 2556 2557 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 2558 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2559 struct inode *inode, bool is_inode) 2560 { 2561 block_t valid_block_count; 2562 unsigned int valid_node_count, user_block_count; 2563 int err; 2564 2565 if (is_inode) { 2566 if (inode) { 2567 err = dquot_alloc_inode(inode); 2568 if (err) 2569 return err; 2570 } 2571 } else { 2572 err = dquot_reserve_block(inode, 1); 2573 if (err) 2574 return err; 2575 } 2576 2577 if (time_to_inject(sbi, FAULT_BLOCK)) 2578 goto enospc; 2579 2580 spin_lock(&sbi->stat_lock); 2581 2582 valid_block_count = sbi->total_valid_block_count + 2583 sbi->current_reserved_blocks + 1; 2584 2585 if (!__allow_reserved_blocks(sbi, inode, false)) 2586 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2587 2588 if (F2FS_IO_ALIGNED(sbi)) 2589 valid_block_count += sbi->blocks_per_seg * 2590 SM_I(sbi)->additional_reserved_segments; 2591 2592 user_block_count = sbi->user_block_count; 2593 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2594 user_block_count -= sbi->unusable_block_count; 2595 2596 if (unlikely(valid_block_count > user_block_count)) { 2597 spin_unlock(&sbi->stat_lock); 2598 goto enospc; 2599 } 2600 2601 valid_node_count = sbi->total_valid_node_count + 1; 2602 if (unlikely(valid_node_count > sbi->total_node_count)) { 2603 spin_unlock(&sbi->stat_lock); 2604 goto enospc; 2605 } 2606 2607 sbi->total_valid_node_count++; 2608 sbi->total_valid_block_count++; 2609 spin_unlock(&sbi->stat_lock); 2610 2611 if (inode) { 2612 if (is_inode) 2613 f2fs_mark_inode_dirty_sync(inode, true); 2614 else 2615 f2fs_i_blocks_write(inode, 1, true, true); 2616 } 2617 2618 percpu_counter_inc(&sbi->alloc_valid_block_count); 2619 return 0; 2620 2621 enospc: 2622 if (is_inode) { 2623 if (inode) 2624 dquot_free_inode(inode); 2625 } else { 2626 dquot_release_reservation_block(inode, 1); 2627 } 2628 return -ENOSPC; 2629 } 2630 2631 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2632 struct inode *inode, bool is_inode) 2633 { 2634 spin_lock(&sbi->stat_lock); 2635 2636 if (unlikely(!sbi->total_valid_block_count || 2637 !sbi->total_valid_node_count)) { 2638 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", 2639 sbi->total_valid_block_count, 2640 sbi->total_valid_node_count); 2641 set_sbi_flag(sbi, SBI_NEED_FSCK); 2642 } else { 2643 sbi->total_valid_block_count--; 2644 sbi->total_valid_node_count--; 2645 } 2646 2647 if (sbi->reserved_blocks && 2648 sbi->current_reserved_blocks < sbi->reserved_blocks) 2649 sbi->current_reserved_blocks++; 2650 2651 spin_unlock(&sbi->stat_lock); 2652 2653 if (is_inode) { 2654 dquot_free_inode(inode); 2655 } else { 2656 if (unlikely(inode->i_blocks == 0)) { 2657 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2658 inode->i_ino, 2659 (unsigned long long)inode->i_blocks); 2660 set_sbi_flag(sbi, SBI_NEED_FSCK); 2661 return; 2662 } 2663 f2fs_i_blocks_write(inode, 1, false, true); 2664 } 2665 } 2666 2667 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2668 { 2669 return sbi->total_valid_node_count; 2670 } 2671 2672 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2673 { 2674 percpu_counter_inc(&sbi->total_valid_inode_count); 2675 } 2676 2677 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2678 { 2679 percpu_counter_dec(&sbi->total_valid_inode_count); 2680 } 2681 2682 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2683 { 2684 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2685 } 2686 2687 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2688 pgoff_t index, bool for_write) 2689 { 2690 struct page *page; 2691 unsigned int flags; 2692 2693 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2694 if (!for_write) 2695 page = find_get_page_flags(mapping, index, 2696 FGP_LOCK | FGP_ACCESSED); 2697 else 2698 page = find_lock_page(mapping, index); 2699 if (page) 2700 return page; 2701 2702 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 2703 return NULL; 2704 } 2705 2706 if (!for_write) 2707 return grab_cache_page(mapping, index); 2708 2709 flags = memalloc_nofs_save(); 2710 page = grab_cache_page_write_begin(mapping, index); 2711 memalloc_nofs_restore(flags); 2712 2713 return page; 2714 } 2715 2716 static inline struct page *f2fs_pagecache_get_page( 2717 struct address_space *mapping, pgoff_t index, 2718 int fgp_flags, gfp_t gfp_mask) 2719 { 2720 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) 2721 return NULL; 2722 2723 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2724 } 2725 2726 static inline void f2fs_put_page(struct page *page, int unlock) 2727 { 2728 if (!page) 2729 return; 2730 2731 if (unlock) { 2732 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2733 unlock_page(page); 2734 } 2735 put_page(page); 2736 } 2737 2738 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2739 { 2740 if (dn->node_page) 2741 f2fs_put_page(dn->node_page, 1); 2742 if (dn->inode_page && dn->node_page != dn->inode_page) 2743 f2fs_put_page(dn->inode_page, 0); 2744 dn->node_page = NULL; 2745 dn->inode_page = NULL; 2746 } 2747 2748 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2749 size_t size) 2750 { 2751 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2752 } 2753 2754 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2755 gfp_t flags) 2756 { 2757 void *entry; 2758 2759 entry = kmem_cache_alloc(cachep, flags); 2760 if (!entry) 2761 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2762 return entry; 2763 } 2764 2765 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2766 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2767 { 2768 if (nofail) 2769 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2770 2771 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) 2772 return NULL; 2773 2774 return kmem_cache_alloc(cachep, flags); 2775 } 2776 2777 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2778 { 2779 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2780 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2781 get_pages(sbi, F2FS_WB_CP_DATA) || 2782 get_pages(sbi, F2FS_DIO_READ) || 2783 get_pages(sbi, F2FS_DIO_WRITE)) 2784 return true; 2785 2786 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2787 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2788 return true; 2789 2790 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2791 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2792 return true; 2793 return false; 2794 } 2795 2796 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2797 { 2798 if (sbi->gc_mode == GC_URGENT_HIGH) 2799 return true; 2800 2801 if (is_inflight_io(sbi, type)) 2802 return false; 2803 2804 if (sbi->gc_mode == GC_URGENT_MID) 2805 return true; 2806 2807 if (sbi->gc_mode == GC_URGENT_LOW && 2808 (type == DISCARD_TIME || type == GC_TIME)) 2809 return true; 2810 2811 return f2fs_time_over(sbi, type); 2812 } 2813 2814 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2815 unsigned long index, void *item) 2816 { 2817 while (radix_tree_insert(root, index, item)) 2818 cond_resched(); 2819 } 2820 2821 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2822 2823 static inline bool IS_INODE(struct page *page) 2824 { 2825 struct f2fs_node *p = F2FS_NODE(page); 2826 2827 return RAW_IS_INODE(p); 2828 } 2829 2830 static inline int offset_in_addr(struct f2fs_inode *i) 2831 { 2832 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2833 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2834 } 2835 2836 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2837 { 2838 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2839 } 2840 2841 static inline int f2fs_has_extra_attr(struct inode *inode); 2842 static inline block_t data_blkaddr(struct inode *inode, 2843 struct page *node_page, unsigned int offset) 2844 { 2845 struct f2fs_node *raw_node; 2846 __le32 *addr_array; 2847 int base = 0; 2848 bool is_inode = IS_INODE(node_page); 2849 2850 raw_node = F2FS_NODE(node_page); 2851 2852 if (is_inode) { 2853 if (!inode) 2854 /* from GC path only */ 2855 base = offset_in_addr(&raw_node->i); 2856 else if (f2fs_has_extra_attr(inode)) 2857 base = get_extra_isize(inode); 2858 } 2859 2860 addr_array = blkaddr_in_node(raw_node); 2861 return le32_to_cpu(addr_array[base + offset]); 2862 } 2863 2864 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2865 { 2866 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2867 } 2868 2869 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2870 { 2871 int mask; 2872 2873 addr += (nr >> 3); 2874 mask = BIT(7 - (nr & 0x07)); 2875 return mask & *addr; 2876 } 2877 2878 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2879 { 2880 int mask; 2881 2882 addr += (nr >> 3); 2883 mask = BIT(7 - (nr & 0x07)); 2884 *addr |= mask; 2885 } 2886 2887 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2888 { 2889 int mask; 2890 2891 addr += (nr >> 3); 2892 mask = BIT(7 - (nr & 0x07)); 2893 *addr &= ~mask; 2894 } 2895 2896 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2897 { 2898 int mask; 2899 int ret; 2900 2901 addr += (nr >> 3); 2902 mask = BIT(7 - (nr & 0x07)); 2903 ret = mask & *addr; 2904 *addr |= mask; 2905 return ret; 2906 } 2907 2908 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2909 { 2910 int mask; 2911 int ret; 2912 2913 addr += (nr >> 3); 2914 mask = BIT(7 - (nr & 0x07)); 2915 ret = mask & *addr; 2916 *addr &= ~mask; 2917 return ret; 2918 } 2919 2920 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2921 { 2922 int mask; 2923 2924 addr += (nr >> 3); 2925 mask = BIT(7 - (nr & 0x07)); 2926 *addr ^= mask; 2927 } 2928 2929 /* 2930 * On-disk inode flags (f2fs_inode::i_flags) 2931 */ 2932 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2933 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2934 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2935 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2936 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2937 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2938 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2939 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2940 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2941 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2942 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2943 2944 /* Flags that should be inherited by new inodes from their parent. */ 2945 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2946 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2947 F2FS_CASEFOLD_FL) 2948 2949 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2950 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2951 F2FS_CASEFOLD_FL)) 2952 2953 /* Flags that are appropriate for non-directories/regular files. */ 2954 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2955 2956 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2957 { 2958 if (S_ISDIR(mode)) 2959 return flags; 2960 else if (S_ISREG(mode)) 2961 return flags & F2FS_REG_FLMASK; 2962 else 2963 return flags & F2FS_OTHER_FLMASK; 2964 } 2965 2966 static inline void __mark_inode_dirty_flag(struct inode *inode, 2967 int flag, bool set) 2968 { 2969 switch (flag) { 2970 case FI_INLINE_XATTR: 2971 case FI_INLINE_DATA: 2972 case FI_INLINE_DENTRY: 2973 case FI_NEW_INODE: 2974 if (set) 2975 return; 2976 fallthrough; 2977 case FI_DATA_EXIST: 2978 case FI_INLINE_DOTS: 2979 case FI_PIN_FILE: 2980 case FI_COMPRESS_RELEASED: 2981 f2fs_mark_inode_dirty_sync(inode, true); 2982 } 2983 } 2984 2985 static inline void set_inode_flag(struct inode *inode, int flag) 2986 { 2987 set_bit(flag, F2FS_I(inode)->flags); 2988 __mark_inode_dirty_flag(inode, flag, true); 2989 } 2990 2991 static inline int is_inode_flag_set(struct inode *inode, int flag) 2992 { 2993 return test_bit(flag, F2FS_I(inode)->flags); 2994 } 2995 2996 static inline void clear_inode_flag(struct inode *inode, int flag) 2997 { 2998 clear_bit(flag, F2FS_I(inode)->flags); 2999 __mark_inode_dirty_flag(inode, flag, false); 3000 } 3001 3002 static inline bool f2fs_verity_in_progress(struct inode *inode) 3003 { 3004 return IS_ENABLED(CONFIG_FS_VERITY) && 3005 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 3006 } 3007 3008 static inline void set_acl_inode(struct inode *inode, umode_t mode) 3009 { 3010 F2FS_I(inode)->i_acl_mode = mode; 3011 set_inode_flag(inode, FI_ACL_MODE); 3012 f2fs_mark_inode_dirty_sync(inode, false); 3013 } 3014 3015 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 3016 { 3017 if (inc) 3018 inc_nlink(inode); 3019 else 3020 drop_nlink(inode); 3021 f2fs_mark_inode_dirty_sync(inode, true); 3022 } 3023 3024 static inline void f2fs_i_blocks_write(struct inode *inode, 3025 block_t diff, bool add, bool claim) 3026 { 3027 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3028 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3029 3030 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 3031 if (add) { 3032 if (claim) 3033 dquot_claim_block(inode, diff); 3034 else 3035 dquot_alloc_block_nofail(inode, diff); 3036 } else { 3037 dquot_free_block(inode, diff); 3038 } 3039 3040 f2fs_mark_inode_dirty_sync(inode, true); 3041 if (clean || recover) 3042 set_inode_flag(inode, FI_AUTO_RECOVER); 3043 } 3044 3045 static inline bool f2fs_is_atomic_file(struct inode *inode); 3046 3047 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 3048 { 3049 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3050 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3051 3052 if (i_size_read(inode) == i_size) 3053 return; 3054 3055 i_size_write(inode, i_size); 3056 3057 if (f2fs_is_atomic_file(inode)) 3058 return; 3059 3060 f2fs_mark_inode_dirty_sync(inode, true); 3061 if (clean || recover) 3062 set_inode_flag(inode, FI_AUTO_RECOVER); 3063 } 3064 3065 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 3066 { 3067 F2FS_I(inode)->i_current_depth = depth; 3068 f2fs_mark_inode_dirty_sync(inode, true); 3069 } 3070 3071 static inline void f2fs_i_gc_failures_write(struct inode *inode, 3072 unsigned int count) 3073 { 3074 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 3075 f2fs_mark_inode_dirty_sync(inode, true); 3076 } 3077 3078 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 3079 { 3080 F2FS_I(inode)->i_xattr_nid = xnid; 3081 f2fs_mark_inode_dirty_sync(inode, true); 3082 } 3083 3084 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 3085 { 3086 F2FS_I(inode)->i_pino = pino; 3087 f2fs_mark_inode_dirty_sync(inode, true); 3088 } 3089 3090 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 3091 { 3092 struct f2fs_inode_info *fi = F2FS_I(inode); 3093 3094 if (ri->i_inline & F2FS_INLINE_XATTR) 3095 set_bit(FI_INLINE_XATTR, fi->flags); 3096 if (ri->i_inline & F2FS_INLINE_DATA) 3097 set_bit(FI_INLINE_DATA, fi->flags); 3098 if (ri->i_inline & F2FS_INLINE_DENTRY) 3099 set_bit(FI_INLINE_DENTRY, fi->flags); 3100 if (ri->i_inline & F2FS_DATA_EXIST) 3101 set_bit(FI_DATA_EXIST, fi->flags); 3102 if (ri->i_inline & F2FS_INLINE_DOTS) 3103 set_bit(FI_INLINE_DOTS, fi->flags); 3104 if (ri->i_inline & F2FS_EXTRA_ATTR) 3105 set_bit(FI_EXTRA_ATTR, fi->flags); 3106 if (ri->i_inline & F2FS_PIN_FILE) 3107 set_bit(FI_PIN_FILE, fi->flags); 3108 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 3109 set_bit(FI_COMPRESS_RELEASED, fi->flags); 3110 } 3111 3112 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 3113 { 3114 ri->i_inline = 0; 3115 3116 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 3117 ri->i_inline |= F2FS_INLINE_XATTR; 3118 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 3119 ri->i_inline |= F2FS_INLINE_DATA; 3120 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 3121 ri->i_inline |= F2FS_INLINE_DENTRY; 3122 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 3123 ri->i_inline |= F2FS_DATA_EXIST; 3124 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 3125 ri->i_inline |= F2FS_INLINE_DOTS; 3126 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 3127 ri->i_inline |= F2FS_EXTRA_ATTR; 3128 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3129 ri->i_inline |= F2FS_PIN_FILE; 3130 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 3131 ri->i_inline |= F2FS_COMPRESS_RELEASED; 3132 } 3133 3134 static inline int f2fs_has_extra_attr(struct inode *inode) 3135 { 3136 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 3137 } 3138 3139 static inline int f2fs_has_inline_xattr(struct inode *inode) 3140 { 3141 return is_inode_flag_set(inode, FI_INLINE_XATTR); 3142 } 3143 3144 static inline int f2fs_compressed_file(struct inode *inode) 3145 { 3146 return S_ISREG(inode->i_mode) && 3147 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 3148 } 3149 3150 static inline bool f2fs_need_compress_data(struct inode *inode) 3151 { 3152 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3153 3154 if (!f2fs_compressed_file(inode)) 3155 return false; 3156 3157 if (compress_mode == COMPR_MODE_FS) 3158 return true; 3159 else if (compress_mode == COMPR_MODE_USER && 3160 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3161 return true; 3162 3163 return false; 3164 } 3165 3166 static inline unsigned int addrs_per_inode(struct inode *inode) 3167 { 3168 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 3169 get_inline_xattr_addrs(inode); 3170 3171 if (!f2fs_compressed_file(inode)) 3172 return addrs; 3173 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3174 } 3175 3176 static inline unsigned int addrs_per_block(struct inode *inode) 3177 { 3178 if (!f2fs_compressed_file(inode)) 3179 return DEF_ADDRS_PER_BLOCK; 3180 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 3181 } 3182 3183 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3184 { 3185 struct f2fs_inode *ri = F2FS_INODE(page); 3186 3187 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3188 get_inline_xattr_addrs(inode)]); 3189 } 3190 3191 static inline int inline_xattr_size(struct inode *inode) 3192 { 3193 if (f2fs_has_inline_xattr(inode)) 3194 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3195 return 0; 3196 } 3197 3198 /* 3199 * Notice: check inline_data flag without inode page lock is unsafe. 3200 * It could change at any time by f2fs_convert_inline_page(). 3201 */ 3202 static inline int f2fs_has_inline_data(struct inode *inode) 3203 { 3204 return is_inode_flag_set(inode, FI_INLINE_DATA); 3205 } 3206 3207 static inline int f2fs_exist_data(struct inode *inode) 3208 { 3209 return is_inode_flag_set(inode, FI_DATA_EXIST); 3210 } 3211 3212 static inline int f2fs_has_inline_dots(struct inode *inode) 3213 { 3214 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3215 } 3216 3217 static inline int f2fs_is_mmap_file(struct inode *inode) 3218 { 3219 return is_inode_flag_set(inode, FI_MMAP_FILE); 3220 } 3221 3222 static inline bool f2fs_is_pinned_file(struct inode *inode) 3223 { 3224 return is_inode_flag_set(inode, FI_PIN_FILE); 3225 } 3226 3227 static inline bool f2fs_is_atomic_file(struct inode *inode) 3228 { 3229 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3230 } 3231 3232 static inline bool f2fs_is_cow_file(struct inode *inode) 3233 { 3234 return is_inode_flag_set(inode, FI_COW_FILE); 3235 } 3236 3237 static inline bool f2fs_is_first_block_written(struct inode *inode) 3238 { 3239 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 3240 } 3241 3242 static inline bool f2fs_is_drop_cache(struct inode *inode) 3243 { 3244 return is_inode_flag_set(inode, FI_DROP_CACHE); 3245 } 3246 3247 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3248 { 3249 struct f2fs_inode *ri = F2FS_INODE(page); 3250 int extra_size = get_extra_isize(inode); 3251 3252 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 3253 } 3254 3255 static inline int f2fs_has_inline_dentry(struct inode *inode) 3256 { 3257 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3258 } 3259 3260 static inline int is_file(struct inode *inode, int type) 3261 { 3262 return F2FS_I(inode)->i_advise & type; 3263 } 3264 3265 static inline void set_file(struct inode *inode, int type) 3266 { 3267 if (is_file(inode, type)) 3268 return; 3269 F2FS_I(inode)->i_advise |= type; 3270 f2fs_mark_inode_dirty_sync(inode, true); 3271 } 3272 3273 static inline void clear_file(struct inode *inode, int type) 3274 { 3275 if (!is_file(inode, type)) 3276 return; 3277 F2FS_I(inode)->i_advise &= ~type; 3278 f2fs_mark_inode_dirty_sync(inode, true); 3279 } 3280 3281 static inline bool f2fs_is_time_consistent(struct inode *inode) 3282 { 3283 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 3284 return false; 3285 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 3286 return false; 3287 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 3288 return false; 3289 return true; 3290 } 3291 3292 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3293 { 3294 bool ret; 3295 3296 if (dsync) { 3297 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3298 3299 spin_lock(&sbi->inode_lock[DIRTY_META]); 3300 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3301 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3302 return ret; 3303 } 3304 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3305 file_keep_isize(inode) || 3306 i_size_read(inode) & ~PAGE_MASK) 3307 return false; 3308 3309 if (!f2fs_is_time_consistent(inode)) 3310 return false; 3311 3312 spin_lock(&F2FS_I(inode)->i_size_lock); 3313 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3314 spin_unlock(&F2FS_I(inode)->i_size_lock); 3315 3316 return ret; 3317 } 3318 3319 static inline bool f2fs_readonly(struct super_block *sb) 3320 { 3321 return sb_rdonly(sb); 3322 } 3323 3324 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3325 { 3326 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3327 } 3328 3329 static inline bool is_dot_dotdot(const u8 *name, size_t len) 3330 { 3331 if (len == 1 && name[0] == '.') 3332 return true; 3333 3334 if (len == 2 && name[0] == '.' && name[1] == '.') 3335 return true; 3336 3337 return false; 3338 } 3339 3340 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3341 size_t size, gfp_t flags) 3342 { 3343 if (time_to_inject(sbi, FAULT_KMALLOC)) 3344 return NULL; 3345 3346 return kmalloc(size, flags); 3347 } 3348 3349 static inline void *f2fs_getname(struct f2fs_sb_info *sbi) 3350 { 3351 if (time_to_inject(sbi, FAULT_KMALLOC)) 3352 return NULL; 3353 3354 return __getname(); 3355 } 3356 3357 static inline void f2fs_putname(char *buf) 3358 { 3359 __putname(buf); 3360 } 3361 3362 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3363 size_t size, gfp_t flags) 3364 { 3365 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3366 } 3367 3368 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3369 size_t size, gfp_t flags) 3370 { 3371 if (time_to_inject(sbi, FAULT_KVMALLOC)) 3372 return NULL; 3373 3374 return kvmalloc(size, flags); 3375 } 3376 3377 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3378 size_t size, gfp_t flags) 3379 { 3380 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3381 } 3382 3383 static inline int get_extra_isize(struct inode *inode) 3384 { 3385 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3386 } 3387 3388 static inline int get_inline_xattr_addrs(struct inode *inode) 3389 { 3390 return F2FS_I(inode)->i_inline_xattr_size; 3391 } 3392 3393 #define f2fs_get_inode_mode(i) \ 3394 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3395 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3396 3397 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3398 (offsetof(struct f2fs_inode, i_extra_end) - \ 3399 offsetof(struct f2fs_inode, i_extra_isize)) \ 3400 3401 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3402 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3403 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3404 sizeof((f2fs_inode)->field)) \ 3405 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3406 3407 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 3408 3409 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3410 3411 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3412 block_t blkaddr, int type); 3413 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3414 block_t blkaddr, int type) 3415 { 3416 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 3417 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3418 blkaddr, type); 3419 f2fs_bug_on(sbi, 1); 3420 } 3421 } 3422 3423 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3424 { 3425 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3426 blkaddr == COMPRESS_ADDR) 3427 return false; 3428 return true; 3429 } 3430 3431 /* 3432 * file.c 3433 */ 3434 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3435 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 3436 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3437 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3438 int f2fs_truncate(struct inode *inode); 3439 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 3440 struct kstat *stat, u32 request_mask, unsigned int flags); 3441 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3442 struct iattr *attr); 3443 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3444 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3445 int f2fs_precache_extents(struct inode *inode); 3446 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3447 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3448 struct dentry *dentry, struct fileattr *fa); 3449 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3450 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3451 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3452 int f2fs_pin_file_control(struct inode *inode, bool inc); 3453 3454 /* 3455 * inode.c 3456 */ 3457 void f2fs_set_inode_flags(struct inode *inode); 3458 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3459 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3460 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3461 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3462 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3463 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3464 void f2fs_update_inode_page(struct inode *inode); 3465 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3466 void f2fs_evict_inode(struct inode *inode); 3467 void f2fs_handle_failed_inode(struct inode *inode); 3468 3469 /* 3470 * namei.c 3471 */ 3472 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3473 bool hot, bool set); 3474 struct dentry *f2fs_get_parent(struct dentry *child); 3475 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3476 struct inode **new_inode); 3477 3478 /* 3479 * dir.c 3480 */ 3481 int f2fs_init_casefolded_name(const struct inode *dir, 3482 struct f2fs_filename *fname); 3483 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3484 int lookup, struct f2fs_filename *fname); 3485 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3486 struct f2fs_filename *fname); 3487 void f2fs_free_filename(struct f2fs_filename *fname); 3488 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3489 const struct f2fs_filename *fname, int *max_slots); 3490 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3491 unsigned int start_pos, struct fscrypt_str *fstr); 3492 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3493 struct f2fs_dentry_ptr *d); 3494 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3495 const struct f2fs_filename *fname, struct page *dpage); 3496 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3497 unsigned int current_depth); 3498 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3499 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3500 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3501 const struct f2fs_filename *fname, 3502 struct page **res_page); 3503 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3504 const struct qstr *child, struct page **res_page); 3505 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3506 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3507 struct page **page); 3508 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3509 struct page *page, struct inode *inode); 3510 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3511 const struct f2fs_filename *fname); 3512 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3513 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3514 unsigned int bit_pos); 3515 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3516 struct inode *inode, nid_t ino, umode_t mode); 3517 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3518 struct inode *inode, nid_t ino, umode_t mode); 3519 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3520 struct inode *inode, nid_t ino, umode_t mode); 3521 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3522 struct inode *dir, struct inode *inode); 3523 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 3524 bool f2fs_empty_dir(struct inode *dir); 3525 3526 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3527 { 3528 if (fscrypt_is_nokey_name(dentry)) 3529 return -ENOKEY; 3530 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3531 inode, inode->i_ino, inode->i_mode); 3532 } 3533 3534 /* 3535 * super.c 3536 */ 3537 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3538 void f2fs_inode_synced(struct inode *inode); 3539 int f2fs_dquot_initialize(struct inode *inode); 3540 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3541 int f2fs_quota_sync(struct super_block *sb, int type); 3542 loff_t max_file_blocks(struct inode *inode); 3543 void f2fs_quota_off_umount(struct super_block *sb); 3544 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason); 3545 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag); 3546 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); 3547 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3548 int f2fs_sync_fs(struct super_block *sb, int sync); 3549 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3550 3551 /* 3552 * hash.c 3553 */ 3554 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3555 3556 /* 3557 * node.c 3558 */ 3559 struct node_info; 3560 3561 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3562 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3563 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3564 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3565 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3566 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3567 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3568 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3569 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3570 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3571 struct node_info *ni, bool checkpoint_context); 3572 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3573 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3574 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3575 int f2fs_truncate_xattr_node(struct inode *inode); 3576 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3577 unsigned int seq_id); 3578 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3579 int f2fs_remove_inode_page(struct inode *inode); 3580 struct page *f2fs_new_inode_page(struct inode *inode); 3581 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3582 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3583 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3584 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3585 int f2fs_move_node_page(struct page *node_page, int gc_type); 3586 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3587 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3588 struct writeback_control *wbc, bool atomic, 3589 unsigned int *seq_id); 3590 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3591 struct writeback_control *wbc, 3592 bool do_balance, enum iostat_type io_type); 3593 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3594 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3595 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3596 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3597 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3598 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3599 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3600 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3601 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3602 unsigned int segno, struct f2fs_summary_block *sum); 3603 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3604 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3605 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3606 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3607 int __init f2fs_create_node_manager_caches(void); 3608 void f2fs_destroy_node_manager_caches(void); 3609 3610 /* 3611 * segment.c 3612 */ 3613 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3614 int f2fs_commit_atomic_write(struct inode *inode); 3615 void f2fs_abort_atomic_write(struct inode *inode, bool clean); 3616 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3617 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3618 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3619 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3620 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3621 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3622 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3623 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3624 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3625 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3626 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3627 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3628 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3629 struct cp_control *cpc); 3630 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3631 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3632 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3633 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3634 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3635 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3636 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3637 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3638 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3639 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3640 unsigned int *newseg, bool new_sec, int dir); 3641 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3642 unsigned int start, unsigned int end); 3643 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3644 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3645 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3646 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3647 struct cp_control *cpc); 3648 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3649 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3650 block_t blk_addr); 3651 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3652 enum iostat_type io_type); 3653 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3654 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3655 struct f2fs_io_info *fio); 3656 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3657 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3658 block_t old_blkaddr, block_t new_blkaddr, 3659 bool recover_curseg, bool recover_newaddr, 3660 bool from_gc); 3661 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3662 block_t old_addr, block_t new_addr, 3663 unsigned char version, bool recover_curseg, 3664 bool recover_newaddr); 3665 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3666 block_t old_blkaddr, block_t *new_blkaddr, 3667 struct f2fs_summary *sum, int type, 3668 struct f2fs_io_info *fio); 3669 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3670 block_t blkaddr, unsigned int blkcnt); 3671 void f2fs_wait_on_page_writeback(struct page *page, 3672 enum page_type type, bool ordered, bool locked); 3673 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3674 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3675 block_t len); 3676 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3677 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3678 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3679 unsigned int val, int alloc); 3680 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3681 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3682 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3683 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3684 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3685 int __init f2fs_create_segment_manager_caches(void); 3686 void f2fs_destroy_segment_manager_caches(void); 3687 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3688 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3689 unsigned int segno); 3690 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3691 unsigned int segno); 3692 3693 #define DEF_FRAGMENT_SIZE 4 3694 #define MIN_FRAGMENT_SIZE 1 3695 #define MAX_FRAGMENT_SIZE 512 3696 3697 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3698 { 3699 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3700 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3701 } 3702 3703 /* 3704 * checkpoint.c 3705 */ 3706 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 3707 unsigned char reason); 3708 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); 3709 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3710 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3711 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3712 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3713 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3714 block_t blkaddr, int type); 3715 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3716 int type, bool sync); 3717 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 3718 unsigned int ra_blocks); 3719 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3720 long nr_to_write, enum iostat_type io_type); 3721 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3722 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3723 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3724 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3725 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3726 unsigned int devidx, int type); 3727 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3728 unsigned int devidx, int type); 3729 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3730 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3731 void f2fs_add_orphan_inode(struct inode *inode); 3732 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3733 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3734 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3735 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); 3736 void f2fs_remove_dirty_inode(struct inode *inode); 3737 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 3738 bool from_cp); 3739 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3740 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3741 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3742 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3743 int __init f2fs_create_checkpoint_caches(void); 3744 void f2fs_destroy_checkpoint_caches(void); 3745 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3746 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3747 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3748 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3749 3750 /* 3751 * data.c 3752 */ 3753 int __init f2fs_init_bioset(void); 3754 void f2fs_destroy_bioset(void); 3755 int f2fs_init_bio_entry_cache(void); 3756 void f2fs_destroy_bio_entry_cache(void); 3757 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 3758 enum page_type type); 3759 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); 3760 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3761 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3762 struct inode *inode, struct page *page, 3763 nid_t ino, enum page_type type); 3764 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3765 struct bio **bio, struct page *page); 3766 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3767 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3768 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3769 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3770 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3771 block_t blk_addr, sector_t *sector); 3772 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3773 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3774 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3775 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3776 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3777 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index); 3778 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3779 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3780 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); 3781 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 3782 pgoff_t *next_pgofs); 3783 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3784 bool for_write); 3785 struct page *f2fs_get_new_data_page(struct inode *inode, 3786 struct page *ipage, pgoff_t index, bool new_i_size); 3787 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3788 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag); 3789 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3790 u64 start, u64 len); 3791 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3792 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3793 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3794 int f2fs_write_single_data_page(struct page *page, int *submitted, 3795 struct bio **bio, sector_t *last_block, 3796 struct writeback_control *wbc, 3797 enum iostat_type io_type, 3798 int compr_blocks, bool allow_balance); 3799 void f2fs_write_failed(struct inode *inode, loff_t to); 3800 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); 3801 bool f2fs_release_folio(struct folio *folio, gfp_t wait); 3802 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3803 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3804 int f2fs_init_post_read_processing(void); 3805 void f2fs_destroy_post_read_processing(void); 3806 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3807 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3808 extern const struct iomap_ops f2fs_iomap_ops; 3809 3810 /* 3811 * gc.c 3812 */ 3813 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3814 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3815 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3816 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); 3817 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3818 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3819 int __init f2fs_create_garbage_collection_cache(void); 3820 void f2fs_destroy_garbage_collection_cache(void); 3821 /* victim selection function for cleaning and SSR */ 3822 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 3823 int gc_type, int type, char alloc_mode, 3824 unsigned long long age); 3825 3826 /* 3827 * recovery.c 3828 */ 3829 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3830 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3831 int __init f2fs_create_recovery_cache(void); 3832 void f2fs_destroy_recovery_cache(void); 3833 3834 /* 3835 * debug.c 3836 */ 3837 #ifdef CONFIG_F2FS_STAT_FS 3838 struct f2fs_stat_info { 3839 struct list_head stat_list; 3840 struct f2fs_sb_info *sbi; 3841 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3842 int main_area_segs, main_area_sections, main_area_zones; 3843 unsigned long long hit_cached[NR_EXTENT_CACHES]; 3844 unsigned long long hit_rbtree[NR_EXTENT_CACHES]; 3845 unsigned long long total_ext[NR_EXTENT_CACHES]; 3846 unsigned long long hit_total[NR_EXTENT_CACHES]; 3847 int ext_tree[NR_EXTENT_CACHES]; 3848 int zombie_tree[NR_EXTENT_CACHES]; 3849 int ext_node[NR_EXTENT_CACHES]; 3850 /* to count memory footprint */ 3851 unsigned long long ext_mem[NR_EXTENT_CACHES]; 3852 /* for read extent cache */ 3853 unsigned long long hit_largest; 3854 /* for block age extent cache */ 3855 unsigned long long allocated_data_blocks; 3856 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3857 int ndirty_data, ndirty_qdata; 3858 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3859 int nats, dirty_nats, sits, dirty_sits; 3860 int free_nids, avail_nids, alloc_nids; 3861 int total_count, utilization; 3862 int bg_gc, nr_wb_cp_data, nr_wb_data; 3863 int nr_rd_data, nr_rd_node, nr_rd_meta; 3864 int nr_dio_read, nr_dio_write; 3865 unsigned int io_skip_bggc, other_skip_bggc; 3866 int nr_flushing, nr_flushed, flush_list_empty; 3867 int nr_discarding, nr_discarded; 3868 int nr_discard_cmd; 3869 unsigned int undiscard_blks; 3870 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3871 unsigned int cur_ckpt_time, peak_ckpt_time; 3872 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3873 int compr_inode, swapfile_inode; 3874 unsigned long long compr_blocks; 3875 int aw_cnt, max_aw_cnt; 3876 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3877 unsigned int bimodal, avg_vblocks; 3878 int util_free, util_valid, util_invalid; 3879 int rsvd_segs, overp_segs; 3880 int dirty_count, node_pages, meta_pages, compress_pages; 3881 int compress_page_hit; 3882 int prefree_count, call_count, cp_count, bg_cp_count; 3883 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3884 int bg_node_segs, bg_data_segs; 3885 int tot_blks, data_blks, node_blks; 3886 int bg_data_blks, bg_node_blks; 3887 int curseg[NR_CURSEG_TYPE]; 3888 int cursec[NR_CURSEG_TYPE]; 3889 int curzone[NR_CURSEG_TYPE]; 3890 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3891 unsigned int full_seg[NR_CURSEG_TYPE]; 3892 unsigned int valid_blks[NR_CURSEG_TYPE]; 3893 3894 unsigned int meta_count[META_MAX]; 3895 unsigned int segment_count[2]; 3896 unsigned int block_count[2]; 3897 unsigned int inplace_count; 3898 unsigned long long base_mem, cache_mem, page_mem; 3899 }; 3900 3901 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3902 { 3903 return (struct f2fs_stat_info *)sbi->stat_info; 3904 } 3905 3906 #define stat_inc_cp_count(si) ((si)->cp_count++) 3907 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3908 #define stat_inc_call_count(si) ((si)->call_count++) 3909 #define stat_inc_bggc_count(si) ((si)->bg_gc++) 3910 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3911 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3912 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3913 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3914 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) 3915 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) 3916 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3917 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) 3918 #define stat_inc_inline_xattr(inode) \ 3919 do { \ 3920 if (f2fs_has_inline_xattr(inode)) \ 3921 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3922 } while (0) 3923 #define stat_dec_inline_xattr(inode) \ 3924 do { \ 3925 if (f2fs_has_inline_xattr(inode)) \ 3926 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3927 } while (0) 3928 #define stat_inc_inline_inode(inode) \ 3929 do { \ 3930 if (f2fs_has_inline_data(inode)) \ 3931 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3932 } while (0) 3933 #define stat_dec_inline_inode(inode) \ 3934 do { \ 3935 if (f2fs_has_inline_data(inode)) \ 3936 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3937 } while (0) 3938 #define stat_inc_inline_dir(inode) \ 3939 do { \ 3940 if (f2fs_has_inline_dentry(inode)) \ 3941 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3942 } while (0) 3943 #define stat_dec_inline_dir(inode) \ 3944 do { \ 3945 if (f2fs_has_inline_dentry(inode)) \ 3946 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3947 } while (0) 3948 #define stat_inc_compr_inode(inode) \ 3949 do { \ 3950 if (f2fs_compressed_file(inode)) \ 3951 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 3952 } while (0) 3953 #define stat_dec_compr_inode(inode) \ 3954 do { \ 3955 if (f2fs_compressed_file(inode)) \ 3956 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 3957 } while (0) 3958 #define stat_add_compr_blocks(inode, blocks) \ 3959 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3960 #define stat_sub_compr_blocks(inode, blocks) \ 3961 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3962 #define stat_inc_swapfile_inode(inode) \ 3963 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) 3964 #define stat_dec_swapfile_inode(inode) \ 3965 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) 3966 #define stat_inc_atomic_inode(inode) \ 3967 (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) 3968 #define stat_dec_atomic_inode(inode) \ 3969 (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) 3970 #define stat_inc_meta_count(sbi, blkaddr) \ 3971 do { \ 3972 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3973 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3974 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3975 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3976 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3977 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3978 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3979 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3980 } while (0) 3981 #define stat_inc_seg_type(sbi, curseg) \ 3982 ((sbi)->segment_count[(curseg)->alloc_type]++) 3983 #define stat_inc_block_count(sbi, curseg) \ 3984 ((sbi)->block_count[(curseg)->alloc_type]++) 3985 #define stat_inc_inplace_blocks(sbi) \ 3986 (atomic_inc(&(sbi)->inplace_count)) 3987 #define stat_update_max_atomic_write(inode) \ 3988 do { \ 3989 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ 3990 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3991 if (cur > max) \ 3992 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3993 } while (0) 3994 #define stat_inc_seg_count(sbi, type, gc_type) \ 3995 do { \ 3996 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3997 si->tot_segs++; \ 3998 if ((type) == SUM_TYPE_DATA) { \ 3999 si->data_segs++; \ 4000 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 4001 } else { \ 4002 si->node_segs++; \ 4003 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 4004 } \ 4005 } while (0) 4006 4007 #define stat_inc_tot_blk_count(si, blks) \ 4008 ((si)->tot_blks += (blks)) 4009 4010 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 4011 do { \ 4012 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4013 stat_inc_tot_blk_count(si, blks); \ 4014 si->data_blks += (blks); \ 4015 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4016 } while (0) 4017 4018 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 4019 do { \ 4020 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4021 stat_inc_tot_blk_count(si, blks); \ 4022 si->node_blks += (blks); \ 4023 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4024 } while (0) 4025 4026 int f2fs_build_stats(struct f2fs_sb_info *sbi); 4027 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 4028 void __init f2fs_create_root_stats(void); 4029 void f2fs_destroy_root_stats(void); 4030 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 4031 #else 4032 #define stat_inc_cp_count(si) do { } while (0) 4033 #define stat_inc_bg_cp_count(si) do { } while (0) 4034 #define stat_inc_call_count(si) do { } while (0) 4035 #define stat_inc_bggc_count(si) do { } while (0) 4036 #define stat_io_skip_bggc_count(sbi) do { } while (0) 4037 #define stat_other_skip_bggc_count(sbi) do { } while (0) 4038 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 4039 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 4040 #define stat_inc_total_hit(sbi, type) do { } while (0) 4041 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) 4042 #define stat_inc_largest_node_hit(sbi) do { } while (0) 4043 #define stat_inc_cached_node_hit(sbi, type) do { } while (0) 4044 #define stat_inc_inline_xattr(inode) do { } while (0) 4045 #define stat_dec_inline_xattr(inode) do { } while (0) 4046 #define stat_inc_inline_inode(inode) do { } while (0) 4047 #define stat_dec_inline_inode(inode) do { } while (0) 4048 #define stat_inc_inline_dir(inode) do { } while (0) 4049 #define stat_dec_inline_dir(inode) do { } while (0) 4050 #define stat_inc_compr_inode(inode) do { } while (0) 4051 #define stat_dec_compr_inode(inode) do { } while (0) 4052 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 4053 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 4054 #define stat_inc_swapfile_inode(inode) do { } while (0) 4055 #define stat_dec_swapfile_inode(inode) do { } while (0) 4056 #define stat_inc_atomic_inode(inode) do { } while (0) 4057 #define stat_dec_atomic_inode(inode) do { } while (0) 4058 #define stat_update_max_atomic_write(inode) do { } while (0) 4059 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 4060 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 4061 #define stat_inc_block_count(sbi, curseg) do { } while (0) 4062 #define stat_inc_inplace_blocks(sbi) do { } while (0) 4063 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 4064 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 4065 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 4066 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 4067 4068 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 4069 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 4070 static inline void __init f2fs_create_root_stats(void) { } 4071 static inline void f2fs_destroy_root_stats(void) { } 4072 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 4073 #endif 4074 4075 extern const struct file_operations f2fs_dir_operations; 4076 extern const struct file_operations f2fs_file_operations; 4077 extern const struct inode_operations f2fs_file_inode_operations; 4078 extern const struct address_space_operations f2fs_dblock_aops; 4079 extern const struct address_space_operations f2fs_node_aops; 4080 extern const struct address_space_operations f2fs_meta_aops; 4081 extern const struct inode_operations f2fs_dir_inode_operations; 4082 extern const struct inode_operations f2fs_symlink_inode_operations; 4083 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 4084 extern const struct inode_operations f2fs_special_inode_operations; 4085 extern struct kmem_cache *f2fs_inode_entry_slab; 4086 4087 /* 4088 * inline.c 4089 */ 4090 bool f2fs_may_inline_data(struct inode *inode); 4091 bool f2fs_sanity_check_inline_data(struct inode *inode); 4092 bool f2fs_may_inline_dentry(struct inode *inode); 4093 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 4094 void f2fs_truncate_inline_inode(struct inode *inode, 4095 struct page *ipage, u64 from); 4096 int f2fs_read_inline_data(struct inode *inode, struct page *page); 4097 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 4098 int f2fs_convert_inline_inode(struct inode *inode); 4099 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 4100 int f2fs_write_inline_data(struct inode *inode, struct page *page); 4101 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 4102 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 4103 const struct f2fs_filename *fname, 4104 struct page **res_page); 4105 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 4106 struct page *ipage); 4107 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 4108 struct inode *inode, nid_t ino, umode_t mode); 4109 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 4110 struct page *page, struct inode *dir, 4111 struct inode *inode); 4112 bool f2fs_empty_inline_dir(struct inode *dir); 4113 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 4114 struct fscrypt_str *fstr); 4115 int f2fs_inline_data_fiemap(struct inode *inode, 4116 struct fiemap_extent_info *fieinfo, 4117 __u64 start, __u64 len); 4118 4119 /* 4120 * shrinker.c 4121 */ 4122 unsigned long f2fs_shrink_count(struct shrinker *shrink, 4123 struct shrink_control *sc); 4124 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 4125 struct shrink_control *sc); 4126 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 4127 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 4128 4129 /* 4130 * extent_cache.c 4131 */ 4132 bool sanity_check_extent_cache(struct inode *inode); 4133 void f2fs_init_extent_tree(struct inode *inode); 4134 void f2fs_drop_extent_tree(struct inode *inode); 4135 void f2fs_destroy_extent_node(struct inode *inode); 4136 void f2fs_destroy_extent_tree(struct inode *inode); 4137 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 4138 int __init f2fs_create_extent_cache(void); 4139 void f2fs_destroy_extent_cache(void); 4140 4141 /* read extent cache ops */ 4142 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); 4143 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 4144 struct extent_info *ei); 4145 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, 4146 block_t *blkaddr); 4147 void f2fs_update_read_extent_cache(struct dnode_of_data *dn); 4148 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 4149 pgoff_t fofs, block_t blkaddr, unsigned int len); 4150 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, 4151 int nr_shrink); 4152 4153 /* block age extent cache ops */ 4154 void f2fs_init_age_extent_tree(struct inode *inode); 4155 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 4156 struct extent_info *ei); 4157 void f2fs_update_age_extent_cache(struct dnode_of_data *dn); 4158 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 4159 pgoff_t fofs, unsigned int len); 4160 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, 4161 int nr_shrink); 4162 4163 /* 4164 * sysfs.c 4165 */ 4166 #define MIN_RA_MUL 2 4167 #define MAX_RA_MUL 256 4168 4169 int __init f2fs_init_sysfs(void); 4170 void f2fs_exit_sysfs(void); 4171 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4172 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4173 4174 /* verity.c */ 4175 extern const struct fsverity_operations f2fs_verityops; 4176 4177 /* 4178 * crypto support 4179 */ 4180 static inline bool f2fs_encrypted_file(struct inode *inode) 4181 { 4182 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4183 } 4184 4185 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4186 { 4187 #ifdef CONFIG_FS_ENCRYPTION 4188 file_set_encrypt(inode); 4189 f2fs_set_inode_flags(inode); 4190 #endif 4191 } 4192 4193 /* 4194 * Returns true if the reads of the inode's data need to undergo some 4195 * postprocessing step, like decryption or authenticity verification. 4196 */ 4197 static inline bool f2fs_post_read_required(struct inode *inode) 4198 { 4199 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4200 f2fs_compressed_file(inode); 4201 } 4202 4203 /* 4204 * compress.c 4205 */ 4206 #ifdef CONFIG_F2FS_FS_COMPRESSION 4207 bool f2fs_is_compressed_page(struct page *page); 4208 struct page *f2fs_compress_control_page(struct page *page); 4209 int f2fs_prepare_compress_overwrite(struct inode *inode, 4210 struct page **pagep, pgoff_t index, void **fsdata); 4211 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4212 pgoff_t index, unsigned copied); 4213 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4214 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4215 bool f2fs_is_compress_backend_ready(struct inode *inode); 4216 int __init f2fs_init_compress_mempool(void); 4217 void f2fs_destroy_compress_mempool(void); 4218 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); 4219 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4220 block_t blkaddr, bool in_task); 4221 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4222 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4223 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 4224 int index, int nr_pages, bool uptodate); 4225 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4226 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4227 int f2fs_write_multi_pages(struct compress_ctx *cc, 4228 int *submitted, 4229 struct writeback_control *wbc, 4230 enum iostat_type io_type); 4231 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4232 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 4233 pgoff_t fofs, block_t blkaddr, 4234 unsigned int llen, unsigned int c_len); 4235 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4236 unsigned nr_pages, sector_t *last_block_in_bio, 4237 bool is_readahead, bool for_write); 4238 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4239 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 4240 bool in_task); 4241 void f2fs_put_page_dic(struct page *page, bool in_task); 4242 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn); 4243 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4244 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4245 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4246 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4247 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4248 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4249 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4250 int __init f2fs_init_compress_cache(void); 4251 void f2fs_destroy_compress_cache(void); 4252 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4253 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4254 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4255 nid_t ino, block_t blkaddr); 4256 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4257 block_t blkaddr); 4258 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4259 #define inc_compr_inode_stat(inode) \ 4260 do { \ 4261 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4262 sbi->compr_new_inode++; \ 4263 } while (0) 4264 #define add_compr_block_stat(inode, blocks) \ 4265 do { \ 4266 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4267 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4268 sbi->compr_written_block += blocks; \ 4269 sbi->compr_saved_block += diff; \ 4270 } while (0) 4271 #else 4272 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4273 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4274 { 4275 if (!f2fs_compressed_file(inode)) 4276 return true; 4277 /* not support compression */ 4278 return false; 4279 } 4280 static inline struct page *f2fs_compress_control_page(struct page *page) 4281 { 4282 WARN_ON_ONCE(1); 4283 return ERR_PTR(-EINVAL); 4284 } 4285 static inline int __init f2fs_init_compress_mempool(void) { return 0; } 4286 static inline void f2fs_destroy_compress_mempool(void) { } 4287 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, 4288 bool in_task) { } 4289 static inline void f2fs_end_read_compressed_page(struct page *page, 4290 bool failed, block_t blkaddr, bool in_task) 4291 { 4292 WARN_ON_ONCE(1); 4293 } 4294 static inline void f2fs_put_page_dic(struct page *page, bool in_task) 4295 { 4296 WARN_ON_ONCE(1); 4297 } 4298 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; } 4299 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4300 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4301 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4302 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4303 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4304 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4305 static inline void f2fs_destroy_compress_cache(void) { } 4306 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4307 block_t blkaddr) { } 4308 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4309 struct page *page, nid_t ino, block_t blkaddr) { } 4310 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4311 struct page *page, block_t blkaddr) { return false; } 4312 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4313 nid_t ino) { } 4314 #define inc_compr_inode_stat(inode) do { } while (0) 4315 static inline void f2fs_update_read_extent_tree_range_compressed( 4316 struct inode *inode, 4317 pgoff_t fofs, block_t blkaddr, 4318 unsigned int llen, unsigned int c_len) { } 4319 #endif 4320 4321 static inline int set_compress_context(struct inode *inode) 4322 { 4323 #ifdef CONFIG_F2FS_FS_COMPRESSION 4324 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4325 4326 F2FS_I(inode)->i_compress_algorithm = 4327 F2FS_OPTION(sbi).compress_algorithm; 4328 F2FS_I(inode)->i_log_cluster_size = 4329 F2FS_OPTION(sbi).compress_log_size; 4330 F2FS_I(inode)->i_compress_flag = 4331 F2FS_OPTION(sbi).compress_chksum ? 4332 BIT(COMPRESS_CHKSUM) : 0; 4333 F2FS_I(inode)->i_cluster_size = 4334 BIT(F2FS_I(inode)->i_log_cluster_size); 4335 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 || 4336 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) && 4337 F2FS_OPTION(sbi).compress_level) 4338 F2FS_I(inode)->i_compress_level = 4339 F2FS_OPTION(sbi).compress_level; 4340 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4341 set_inode_flag(inode, FI_COMPRESSED_FILE); 4342 stat_inc_compr_inode(inode); 4343 inc_compr_inode_stat(inode); 4344 f2fs_mark_inode_dirty_sync(inode, true); 4345 return 0; 4346 #else 4347 return -EOPNOTSUPP; 4348 #endif 4349 } 4350 4351 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4352 { 4353 struct f2fs_inode_info *fi = F2FS_I(inode); 4354 4355 if (!f2fs_compressed_file(inode)) 4356 return true; 4357 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 4358 return false; 4359 4360 fi->i_flags &= ~F2FS_COMPR_FL; 4361 stat_dec_compr_inode(inode); 4362 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4363 f2fs_mark_inode_dirty_sync(inode, true); 4364 return true; 4365 } 4366 4367 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4368 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4369 { \ 4370 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4371 } 4372 4373 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4374 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4375 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4376 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4377 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4378 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4379 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4380 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4381 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4382 F2FS_FEATURE_FUNCS(verity, VERITY); 4383 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4384 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4385 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4386 F2FS_FEATURE_FUNCS(readonly, RO); 4387 4388 #ifdef CONFIG_BLK_DEV_ZONED 4389 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4390 block_t blkaddr) 4391 { 4392 unsigned int zno = blkaddr / sbi->blocks_per_blkz; 4393 4394 return test_bit(zno, FDEV(devi).blkz_seq); 4395 } 4396 #endif 4397 4398 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4399 { 4400 return f2fs_sb_has_blkzoned(sbi); 4401 } 4402 4403 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4404 { 4405 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); 4406 } 4407 4408 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4409 { 4410 int i; 4411 4412 if (!f2fs_is_multi_device(sbi)) 4413 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4414 4415 for (i = 0; i < sbi->s_ndevs; i++) 4416 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4417 return true; 4418 return false; 4419 } 4420 4421 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4422 { 4423 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4424 f2fs_hw_should_discard(sbi); 4425 } 4426 4427 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4428 { 4429 int i; 4430 4431 if (!f2fs_is_multi_device(sbi)) 4432 return bdev_read_only(sbi->sb->s_bdev); 4433 4434 for (i = 0; i < sbi->s_ndevs; i++) 4435 if (bdev_read_only(FDEV(i).bdev)) 4436 return true; 4437 return false; 4438 } 4439 4440 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi) 4441 { 4442 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi); 4443 } 4444 4445 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4446 { 4447 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4448 } 4449 4450 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) 4451 { 4452 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; 4453 } 4454 4455 static inline bool f2fs_may_compress(struct inode *inode) 4456 { 4457 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4458 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode)) 4459 return false; 4460 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4461 } 4462 4463 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4464 u64 blocks, bool add) 4465 { 4466 struct f2fs_inode_info *fi = F2FS_I(inode); 4467 int diff = fi->i_cluster_size - blocks; 4468 4469 /* don't update i_compr_blocks if saved blocks were released */ 4470 if (!add && !atomic_read(&fi->i_compr_blocks)) 4471 return; 4472 4473 if (add) { 4474 atomic_add(diff, &fi->i_compr_blocks); 4475 stat_add_compr_blocks(inode, diff); 4476 } else { 4477 atomic_sub(diff, &fi->i_compr_blocks); 4478 stat_sub_compr_blocks(inode, diff); 4479 } 4480 f2fs_mark_inode_dirty_sync(inode, true); 4481 } 4482 4483 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4484 int flag) 4485 { 4486 if (!f2fs_is_multi_device(sbi)) 4487 return false; 4488 if (flag != F2FS_GET_BLOCK_DIO) 4489 return false; 4490 return sbi->aligned_blksize; 4491 } 4492 4493 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4494 { 4495 return fsverity_active(inode) && 4496 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4497 } 4498 4499 #ifdef CONFIG_F2FS_FAULT_INJECTION 4500 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 4501 unsigned int type); 4502 #else 4503 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 4504 #endif 4505 4506 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4507 { 4508 #ifdef CONFIG_QUOTA 4509 if (f2fs_sb_has_quota_ino(sbi)) 4510 return true; 4511 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4512 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4513 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4514 return true; 4515 #endif 4516 return false; 4517 } 4518 4519 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4520 { 4521 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4522 } 4523 4524 static inline void f2fs_io_schedule_timeout(long timeout) 4525 { 4526 set_current_state(TASK_UNINTERRUPTIBLE); 4527 io_schedule_timeout(timeout); 4528 } 4529 4530 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs, 4531 enum page_type type) 4532 { 4533 if (unlikely(f2fs_cp_error(sbi))) 4534 return; 4535 4536 if (ofs == sbi->page_eio_ofs[type]) { 4537 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) 4538 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4539 } else { 4540 sbi->page_eio_ofs[type] = ofs; 4541 sbi->page_eio_cnt[type] = 0; 4542 } 4543 } 4544 4545 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) 4546 { 4547 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); 4548 } 4549 4550 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4551 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4552 4553 #endif /* _LINUX_F2FS_H */ 4554