xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 03f2c02d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
28 #include <linux/fscrypt.h>
29 
30 #ifdef CONFIG_F2FS_CHECK_FS
31 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
32 #else
33 #define f2fs_bug_on(sbi, condition)					\
34 	do {								\
35 		if (unlikely(condition)) {				\
36 			WARN_ON(1);					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 		}							\
39 	} while (0)
40 #endif
41 
42 enum {
43 	FAULT_KMALLOC,
44 	FAULT_KVMALLOC,
45 	FAULT_PAGE_ALLOC,
46 	FAULT_PAGE_GET,
47 	FAULT_ALLOC_BIO,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_TRUNCATE,
54 	FAULT_READ_IO,
55 	FAULT_CHECKPOINT,
56 	FAULT_DISCARD,
57 	FAULT_WRITE_IO,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_BG_GC		0x00000001
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_ADAPTIVE		0x00020000
95 #define F2FS_MOUNT_LFS			0x00040000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	bool test_dummy_encryption;	/* test dummy encryption */
140 };
141 
142 #define F2FS_FEATURE_ENCRYPT		0x0001
143 #define F2FS_FEATURE_BLKZONED		0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
146 #define F2FS_FEATURE_PRJQUOTA		0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
149 #define F2FS_FEATURE_QUOTA_INO		0x0080
150 #define F2FS_FEATURE_INODE_CRTIME	0x0100
151 #define F2FS_FEATURE_LOST_FOUND		0x0200
152 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
153 #define F2FS_FEATURE_SB_CHKSUM		0x0800
154 
155 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
156 	((raw_super->feature & cpu_to_le32(mask)) != 0)
157 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
158 #define F2FS_SET_FEATURE(sbi, mask)					\
159 	(sbi->raw_super->feature |= cpu_to_le32(mask))
160 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
161 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
162 
163 /*
164  * Default values for user and/or group using reserved blocks
165  */
166 #define	F2FS_DEF_RESUID		0
167 #define	F2FS_DEF_RESGID		0
168 
169 /*
170  * For checkpoint manager
171  */
172 enum {
173 	NAT_BITMAP,
174 	SIT_BITMAP
175 };
176 
177 #define	CP_UMOUNT	0x00000001
178 #define	CP_FASTBOOT	0x00000002
179 #define	CP_SYNC		0x00000004
180 #define	CP_RECOVERY	0x00000008
181 #define	CP_DISCARD	0x00000010
182 #define CP_TRIMMED	0x00000020
183 #define CP_PAUSE	0x00000040
184 
185 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
186 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
187 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
188 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
189 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
190 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
191 #define DEF_CP_INTERVAL			60	/* 60 secs */
192 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
193 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
194 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
195 
196 struct cp_control {
197 	int reason;
198 	__u64 trim_start;
199 	__u64 trim_end;
200 	__u64 trim_minlen;
201 };
202 
203 /*
204  * indicate meta/data type
205  */
206 enum {
207 	META_CP,
208 	META_NAT,
209 	META_SIT,
210 	META_SSA,
211 	META_MAX,
212 	META_POR,
213 	DATA_GENERIC,
214 	META_GENERIC,
215 };
216 
217 /* for the list of ino */
218 enum {
219 	ORPHAN_INO,		/* for orphan ino list */
220 	APPEND_INO,		/* for append ino list */
221 	UPDATE_INO,		/* for update ino list */
222 	TRANS_DIR_INO,		/* for trasactions dir ino list */
223 	FLUSH_INO,		/* for multiple device flushing */
224 	MAX_INO_ENTRY,		/* max. list */
225 };
226 
227 struct ino_entry {
228 	struct list_head list;		/* list head */
229 	nid_t ino;			/* inode number */
230 	unsigned int dirty_device;	/* dirty device bitmap */
231 };
232 
233 /* for the list of inodes to be GCed */
234 struct inode_entry {
235 	struct list_head list;	/* list head */
236 	struct inode *inode;	/* vfs inode pointer */
237 };
238 
239 struct fsync_node_entry {
240 	struct list_head list;	/* list head */
241 	struct page *page;	/* warm node page pointer */
242 	unsigned int seq_id;	/* sequence id */
243 };
244 
245 /* for the bitmap indicate blocks to be discarded */
246 struct discard_entry {
247 	struct list_head list;	/* list head */
248 	block_t start_blkaddr;	/* start blockaddr of current segment */
249 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
250 };
251 
252 /* default discard granularity of inner discard thread, unit: block count */
253 #define DEFAULT_DISCARD_GRANULARITY		16
254 
255 /* max discard pend list number */
256 #define MAX_PLIST_NUM		512
257 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
258 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
259 
260 enum {
261 	D_PREP,			/* initial */
262 	D_PARTIAL,		/* partially submitted */
263 	D_SUBMIT,		/* all submitted */
264 	D_DONE,			/* finished */
265 };
266 
267 struct discard_info {
268 	block_t lstart;			/* logical start address */
269 	block_t len;			/* length */
270 	block_t start;			/* actual start address in dev */
271 };
272 
273 struct discard_cmd {
274 	struct rb_node rb_node;		/* rb node located in rb-tree */
275 	union {
276 		struct {
277 			block_t lstart;	/* logical start address */
278 			block_t len;	/* length */
279 			block_t start;	/* actual start address in dev */
280 		};
281 		struct discard_info di;	/* discard info */
282 
283 	};
284 	struct list_head list;		/* command list */
285 	struct completion wait;		/* compleation */
286 	struct block_device *bdev;	/* bdev */
287 	unsigned short ref;		/* reference count */
288 	unsigned char state;		/* state */
289 	unsigned char queued;		/* queued discard */
290 	int error;			/* bio error */
291 	spinlock_t lock;		/* for state/bio_ref updating */
292 	unsigned short bio_ref;		/* bio reference count */
293 };
294 
295 enum {
296 	DPOLICY_BG,
297 	DPOLICY_FORCE,
298 	DPOLICY_FSTRIM,
299 	DPOLICY_UMOUNT,
300 	MAX_DPOLICY,
301 };
302 
303 struct discard_policy {
304 	int type;			/* type of discard */
305 	unsigned int min_interval;	/* used for candidates exist */
306 	unsigned int mid_interval;	/* used for device busy */
307 	unsigned int max_interval;	/* used for candidates not exist */
308 	unsigned int max_requests;	/* # of discards issued per round */
309 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
310 	bool io_aware;			/* issue discard in idle time */
311 	bool sync;			/* submit discard with REQ_SYNC flag */
312 	bool ordered;			/* issue discard by lba order */
313 	unsigned int granularity;	/* discard granularity */
314 	int timeout;			/* discard timeout for put_super */
315 };
316 
317 struct discard_cmd_control {
318 	struct task_struct *f2fs_issue_discard;	/* discard thread */
319 	struct list_head entry_list;		/* 4KB discard entry list */
320 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
321 	struct list_head wait_list;		/* store on-flushing entries */
322 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
323 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
324 	unsigned int discard_wake;		/* to wake up discard thread */
325 	struct mutex cmd_lock;
326 	unsigned int nr_discards;		/* # of discards in the list */
327 	unsigned int max_discards;		/* max. discards to be issued */
328 	unsigned int discard_granularity;	/* discard granularity */
329 	unsigned int undiscard_blks;		/* # of undiscard blocks */
330 	unsigned int next_pos;			/* next discard position */
331 	atomic_t issued_discard;		/* # of issued discard */
332 	atomic_t queued_discard;		/* # of queued discard */
333 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
334 	struct rb_root_cached root;		/* root of discard rb-tree */
335 	bool rbtree_check;			/* config for consistence check */
336 };
337 
338 /* for the list of fsync inodes, used only during recovery */
339 struct fsync_inode_entry {
340 	struct list_head list;	/* list head */
341 	struct inode *inode;	/* vfs inode pointer */
342 	block_t blkaddr;	/* block address locating the last fsync */
343 	block_t last_dentry;	/* block address locating the last dentry */
344 };
345 
346 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
347 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
348 
349 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
350 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
351 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
352 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
353 
354 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
355 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
356 
357 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
358 {
359 	int before = nats_in_cursum(journal);
360 
361 	journal->n_nats = cpu_to_le16(before + i);
362 	return before;
363 }
364 
365 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
366 {
367 	int before = sits_in_cursum(journal);
368 
369 	journal->n_sits = cpu_to_le16(before + i);
370 	return before;
371 }
372 
373 static inline bool __has_cursum_space(struct f2fs_journal *journal,
374 							int size, int type)
375 {
376 	if (type == NAT_JOURNAL)
377 		return size <= MAX_NAT_JENTRIES(journal);
378 	return size <= MAX_SIT_JENTRIES(journal);
379 }
380 
381 /*
382  * ioctl commands
383  */
384 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
385 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
386 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
387 
388 #define F2FS_IOCTL_MAGIC		0xf5
389 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
390 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
391 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
392 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
393 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
394 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
395 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
396 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
397 						struct f2fs_defragment)
398 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
399 						struct f2fs_move_range)
400 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
401 						struct f2fs_flush_device)
402 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
403 						struct f2fs_gc_range)
404 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
405 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
406 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
407 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
408 
409 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
410 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
411 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
412 
413 /*
414  * should be same as XFS_IOC_GOINGDOWN.
415  * Flags for going down operation used by FS_IOC_GOINGDOWN
416  */
417 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
418 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
419 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
420 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
421 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
422 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
423 
424 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
425 /*
426  * ioctl commands in 32 bit emulation
427  */
428 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
429 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
430 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
431 #endif
432 
433 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
434 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
435 
436 struct f2fs_gc_range {
437 	u32 sync;
438 	u64 start;
439 	u64 len;
440 };
441 
442 struct f2fs_defragment {
443 	u64 start;
444 	u64 len;
445 };
446 
447 struct f2fs_move_range {
448 	u32 dst_fd;		/* destination fd */
449 	u64 pos_in;		/* start position in src_fd */
450 	u64 pos_out;		/* start position in dst_fd */
451 	u64 len;		/* size to move */
452 };
453 
454 struct f2fs_flush_device {
455 	u32 dev_num;		/* device number to flush */
456 	u32 segments;		/* # of segments to flush */
457 };
458 
459 /* for inline stuff */
460 #define DEF_INLINE_RESERVED_SIZE	1
461 #define DEF_MIN_INLINE_SIZE		1
462 static inline int get_extra_isize(struct inode *inode);
463 static inline int get_inline_xattr_addrs(struct inode *inode);
464 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
465 				(CUR_ADDRS_PER_INODE(inode) -		\
466 				get_inline_xattr_addrs(inode) -	\
467 				DEF_INLINE_RESERVED_SIZE))
468 
469 /* for inline dir */
470 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
471 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
472 				BITS_PER_BYTE + 1))
473 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
474 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
475 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
476 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
477 				NR_INLINE_DENTRY(inode) + \
478 				INLINE_DENTRY_BITMAP_SIZE(inode)))
479 
480 /*
481  * For INODE and NODE manager
482  */
483 /* for directory operations */
484 struct f2fs_dentry_ptr {
485 	struct inode *inode;
486 	void *bitmap;
487 	struct f2fs_dir_entry *dentry;
488 	__u8 (*filename)[F2FS_SLOT_LEN];
489 	int max;
490 	int nr_bitmap;
491 };
492 
493 static inline void make_dentry_ptr_block(struct inode *inode,
494 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
495 {
496 	d->inode = inode;
497 	d->max = NR_DENTRY_IN_BLOCK;
498 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
499 	d->bitmap = t->dentry_bitmap;
500 	d->dentry = t->dentry;
501 	d->filename = t->filename;
502 }
503 
504 static inline void make_dentry_ptr_inline(struct inode *inode,
505 					struct f2fs_dentry_ptr *d, void *t)
506 {
507 	int entry_cnt = NR_INLINE_DENTRY(inode);
508 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
509 	int reserved_size = INLINE_RESERVED_SIZE(inode);
510 
511 	d->inode = inode;
512 	d->max = entry_cnt;
513 	d->nr_bitmap = bitmap_size;
514 	d->bitmap = t;
515 	d->dentry = t + bitmap_size + reserved_size;
516 	d->filename = t + bitmap_size + reserved_size +
517 					SIZE_OF_DIR_ENTRY * entry_cnt;
518 }
519 
520 /*
521  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
522  * as its node offset to distinguish from index node blocks.
523  * But some bits are used to mark the node block.
524  */
525 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
526 				>> OFFSET_BIT_SHIFT)
527 enum {
528 	ALLOC_NODE,			/* allocate a new node page if needed */
529 	LOOKUP_NODE,			/* look up a node without readahead */
530 	LOOKUP_NODE_RA,			/*
531 					 * look up a node with readahead called
532 					 * by get_data_block.
533 					 */
534 };
535 
536 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
537 
538 /* maximum retry quota flush count */
539 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
540 
541 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
542 
543 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
544 
545 /* for in-memory extent cache entry */
546 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
547 
548 /* number of extent info in extent cache we try to shrink */
549 #define EXTENT_CACHE_SHRINK_NUMBER	128
550 
551 struct rb_entry {
552 	struct rb_node rb_node;		/* rb node located in rb-tree */
553 	unsigned int ofs;		/* start offset of the entry */
554 	unsigned int len;		/* length of the entry */
555 };
556 
557 struct extent_info {
558 	unsigned int fofs;		/* start offset in a file */
559 	unsigned int len;		/* length of the extent */
560 	u32 blk;			/* start block address of the extent */
561 };
562 
563 struct extent_node {
564 	struct rb_node rb_node;		/* rb node located in rb-tree */
565 	struct extent_info ei;		/* extent info */
566 	struct list_head list;		/* node in global extent list of sbi */
567 	struct extent_tree *et;		/* extent tree pointer */
568 };
569 
570 struct extent_tree {
571 	nid_t ino;			/* inode number */
572 	struct rb_root_cached root;	/* root of extent info rb-tree */
573 	struct extent_node *cached_en;	/* recently accessed extent node */
574 	struct extent_info largest;	/* largested extent info */
575 	struct list_head list;		/* to be used by sbi->zombie_list */
576 	rwlock_t lock;			/* protect extent info rb-tree */
577 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
578 	bool largest_updated;		/* largest extent updated */
579 };
580 
581 /*
582  * This structure is taken from ext4_map_blocks.
583  *
584  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
585  */
586 #define F2FS_MAP_NEW		(1 << BH_New)
587 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
588 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
589 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
590 				F2FS_MAP_UNWRITTEN)
591 
592 struct f2fs_map_blocks {
593 	block_t m_pblk;
594 	block_t m_lblk;
595 	unsigned int m_len;
596 	unsigned int m_flags;
597 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
598 	pgoff_t *m_next_extent;		/* point to next possible extent */
599 	int m_seg_type;
600 	bool m_may_create;		/* indicate it is from write path */
601 };
602 
603 /* for flag in get_data_block */
604 enum {
605 	F2FS_GET_BLOCK_DEFAULT,
606 	F2FS_GET_BLOCK_FIEMAP,
607 	F2FS_GET_BLOCK_BMAP,
608 	F2FS_GET_BLOCK_DIO,
609 	F2FS_GET_BLOCK_PRE_DIO,
610 	F2FS_GET_BLOCK_PRE_AIO,
611 	F2FS_GET_BLOCK_PRECACHE,
612 };
613 
614 /*
615  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
616  */
617 #define FADVISE_COLD_BIT	0x01
618 #define FADVISE_LOST_PINO_BIT	0x02
619 #define FADVISE_ENCRYPT_BIT	0x04
620 #define FADVISE_ENC_NAME_BIT	0x08
621 #define FADVISE_KEEP_SIZE_BIT	0x10
622 #define FADVISE_HOT_BIT		0x20
623 #define FADVISE_VERITY_BIT	0x40	/* reserved */
624 
625 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
626 
627 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
628 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
629 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
630 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
631 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
632 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
633 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
634 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
635 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
636 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
637 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
638 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
639 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
640 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
641 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
642 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
643 
644 #define DEF_DIR_LEVEL		0
645 
646 enum {
647 	GC_FAILURE_PIN,
648 	GC_FAILURE_ATOMIC,
649 	MAX_GC_FAILURE
650 };
651 
652 struct f2fs_inode_info {
653 	struct inode vfs_inode;		/* serve a vfs inode */
654 	unsigned long i_flags;		/* keep an inode flags for ioctl */
655 	unsigned char i_advise;		/* use to give file attribute hints */
656 	unsigned char i_dir_level;	/* use for dentry level for large dir */
657 	unsigned int i_current_depth;	/* only for directory depth */
658 	/* for gc failure statistic */
659 	unsigned int i_gc_failures[MAX_GC_FAILURE];
660 	unsigned int i_pino;		/* parent inode number */
661 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
662 
663 	/* Use below internally in f2fs*/
664 	unsigned long flags;		/* use to pass per-file flags */
665 	struct rw_semaphore i_sem;	/* protect fi info */
666 	atomic_t dirty_pages;		/* # of dirty pages */
667 	f2fs_hash_t chash;		/* hash value of given file name */
668 	unsigned int clevel;		/* maximum level of given file name */
669 	struct task_struct *task;	/* lookup and create consistency */
670 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
671 	nid_t i_xattr_nid;		/* node id that contains xattrs */
672 	loff_t	last_disk_size;		/* lastly written file size */
673 
674 #ifdef CONFIG_QUOTA
675 	struct dquot *i_dquot[MAXQUOTAS];
676 
677 	/* quota space reservation, managed internally by quota code */
678 	qsize_t i_reserved_quota;
679 #endif
680 	struct list_head dirty_list;	/* dirty list for dirs and files */
681 	struct list_head gdirty_list;	/* linked in global dirty list */
682 	struct list_head inmem_ilist;	/* list for inmem inodes */
683 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
684 	struct task_struct *inmem_task;	/* store inmemory task */
685 	struct mutex inmem_lock;	/* lock for inmemory pages */
686 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
687 
688 	/* avoid racing between foreground op and gc */
689 	struct rw_semaphore i_gc_rwsem[2];
690 	struct rw_semaphore i_mmap_sem;
691 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
692 
693 	int i_extra_isize;		/* size of extra space located in i_addr */
694 	kprojid_t i_projid;		/* id for project quota */
695 	int i_inline_xattr_size;	/* inline xattr size */
696 	struct timespec64 i_crtime;	/* inode creation time */
697 	struct timespec64 i_disk_time[4];/* inode disk times */
698 };
699 
700 static inline void get_extent_info(struct extent_info *ext,
701 					struct f2fs_extent *i_ext)
702 {
703 	ext->fofs = le32_to_cpu(i_ext->fofs);
704 	ext->blk = le32_to_cpu(i_ext->blk);
705 	ext->len = le32_to_cpu(i_ext->len);
706 }
707 
708 static inline void set_raw_extent(struct extent_info *ext,
709 					struct f2fs_extent *i_ext)
710 {
711 	i_ext->fofs = cpu_to_le32(ext->fofs);
712 	i_ext->blk = cpu_to_le32(ext->blk);
713 	i_ext->len = cpu_to_le32(ext->len);
714 }
715 
716 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
717 						u32 blk, unsigned int len)
718 {
719 	ei->fofs = fofs;
720 	ei->blk = blk;
721 	ei->len = len;
722 }
723 
724 static inline bool __is_discard_mergeable(struct discard_info *back,
725 			struct discard_info *front, unsigned int max_len)
726 {
727 	return (back->lstart + back->len == front->lstart) &&
728 		(back->len + front->len <= max_len);
729 }
730 
731 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
732 			struct discard_info *back, unsigned int max_len)
733 {
734 	return __is_discard_mergeable(back, cur, max_len);
735 }
736 
737 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
738 			struct discard_info *front, unsigned int max_len)
739 {
740 	return __is_discard_mergeable(cur, front, max_len);
741 }
742 
743 static inline bool __is_extent_mergeable(struct extent_info *back,
744 						struct extent_info *front)
745 {
746 	return (back->fofs + back->len == front->fofs &&
747 			back->blk + back->len == front->blk);
748 }
749 
750 static inline bool __is_back_mergeable(struct extent_info *cur,
751 						struct extent_info *back)
752 {
753 	return __is_extent_mergeable(back, cur);
754 }
755 
756 static inline bool __is_front_mergeable(struct extent_info *cur,
757 						struct extent_info *front)
758 {
759 	return __is_extent_mergeable(cur, front);
760 }
761 
762 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
763 static inline void __try_update_largest_extent(struct extent_tree *et,
764 						struct extent_node *en)
765 {
766 	if (en->ei.len > et->largest.len) {
767 		et->largest = en->ei;
768 		et->largest_updated = true;
769 	}
770 }
771 
772 /*
773  * For free nid management
774  */
775 enum nid_state {
776 	FREE_NID,		/* newly added to free nid list */
777 	PREALLOC_NID,		/* it is preallocated */
778 	MAX_NID_STATE,
779 };
780 
781 struct f2fs_nm_info {
782 	block_t nat_blkaddr;		/* base disk address of NAT */
783 	nid_t max_nid;			/* maximum possible node ids */
784 	nid_t available_nids;		/* # of available node ids */
785 	nid_t next_scan_nid;		/* the next nid to be scanned */
786 	unsigned int ram_thresh;	/* control the memory footprint */
787 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
788 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
789 
790 	/* NAT cache management */
791 	struct radix_tree_root nat_root;/* root of the nat entry cache */
792 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
793 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
794 	struct list_head nat_entries;	/* cached nat entry list (clean) */
795 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
796 	unsigned int nat_cnt;		/* the # of cached nat entries */
797 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
798 	unsigned int nat_blocks;	/* # of nat blocks */
799 
800 	/* free node ids management */
801 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
802 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
803 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
804 	spinlock_t nid_list_lock;	/* protect nid lists ops */
805 	struct mutex build_lock;	/* lock for build free nids */
806 	unsigned char **free_nid_bitmap;
807 	unsigned char *nat_block_bitmap;
808 	unsigned short *free_nid_count;	/* free nid count of NAT block */
809 
810 	/* for checkpoint */
811 	char *nat_bitmap;		/* NAT bitmap pointer */
812 
813 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
814 	unsigned char *nat_bits;	/* NAT bits blocks */
815 	unsigned char *full_nat_bits;	/* full NAT pages */
816 	unsigned char *empty_nat_bits;	/* empty NAT pages */
817 #ifdef CONFIG_F2FS_CHECK_FS
818 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
819 #endif
820 	int bitmap_size;		/* bitmap size */
821 };
822 
823 /*
824  * this structure is used as one of function parameters.
825  * all the information are dedicated to a given direct node block determined
826  * by the data offset in a file.
827  */
828 struct dnode_of_data {
829 	struct inode *inode;		/* vfs inode pointer */
830 	struct page *inode_page;	/* its inode page, NULL is possible */
831 	struct page *node_page;		/* cached direct node page */
832 	nid_t nid;			/* node id of the direct node block */
833 	unsigned int ofs_in_node;	/* data offset in the node page */
834 	bool inode_page_locked;		/* inode page is locked or not */
835 	bool node_changed;		/* is node block changed */
836 	char cur_level;			/* level of hole node page */
837 	char max_level;			/* level of current page located */
838 	block_t	data_blkaddr;		/* block address of the node block */
839 };
840 
841 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
842 		struct page *ipage, struct page *npage, nid_t nid)
843 {
844 	memset(dn, 0, sizeof(*dn));
845 	dn->inode = inode;
846 	dn->inode_page = ipage;
847 	dn->node_page = npage;
848 	dn->nid = nid;
849 }
850 
851 /*
852  * For SIT manager
853  *
854  * By default, there are 6 active log areas across the whole main area.
855  * When considering hot and cold data separation to reduce cleaning overhead,
856  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
857  * respectively.
858  * In the current design, you should not change the numbers intentionally.
859  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
860  * logs individually according to the underlying devices. (default: 6)
861  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
862  * data and 8 for node logs.
863  */
864 #define	NR_CURSEG_DATA_TYPE	(3)
865 #define NR_CURSEG_NODE_TYPE	(3)
866 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
867 
868 enum {
869 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
870 	CURSEG_WARM_DATA,	/* data blocks */
871 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
872 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
873 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
874 	CURSEG_COLD_NODE,	/* indirect node blocks */
875 	NO_CHECK_TYPE,
876 };
877 
878 struct flush_cmd {
879 	struct completion wait;
880 	struct llist_node llnode;
881 	nid_t ino;
882 	int ret;
883 };
884 
885 struct flush_cmd_control {
886 	struct task_struct *f2fs_issue_flush;	/* flush thread */
887 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
888 	atomic_t issued_flush;			/* # of issued flushes */
889 	atomic_t queued_flush;			/* # of queued flushes */
890 	struct llist_head issue_list;		/* list for command issue */
891 	struct llist_node *dispatch_list;	/* list for command dispatch */
892 };
893 
894 struct f2fs_sm_info {
895 	struct sit_info *sit_info;		/* whole segment information */
896 	struct free_segmap_info *free_info;	/* free segment information */
897 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
898 	struct curseg_info *curseg_array;	/* active segment information */
899 
900 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
901 
902 	block_t seg0_blkaddr;		/* block address of 0'th segment */
903 	block_t main_blkaddr;		/* start block address of main area */
904 	block_t ssa_blkaddr;		/* start block address of SSA area */
905 
906 	unsigned int segment_count;	/* total # of segments */
907 	unsigned int main_segments;	/* # of segments in main area */
908 	unsigned int reserved_segments;	/* # of reserved segments */
909 	unsigned int ovp_segments;	/* # of overprovision segments */
910 
911 	/* a threshold to reclaim prefree segments */
912 	unsigned int rec_prefree_segments;
913 
914 	/* for batched trimming */
915 	unsigned int trim_sections;		/* # of sections to trim */
916 
917 	struct list_head sit_entry_set;	/* sit entry set list */
918 
919 	unsigned int ipu_policy;	/* in-place-update policy */
920 	unsigned int min_ipu_util;	/* in-place-update threshold */
921 	unsigned int min_fsync_blocks;	/* threshold for fsync */
922 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
923 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
924 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
925 
926 	/* for flush command control */
927 	struct flush_cmd_control *fcc_info;
928 
929 	/* for discard command control */
930 	struct discard_cmd_control *dcc_info;
931 };
932 
933 /*
934  * For superblock
935  */
936 /*
937  * COUNT_TYPE for monitoring
938  *
939  * f2fs monitors the number of several block types such as on-writeback,
940  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
941  */
942 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
943 enum count_type {
944 	F2FS_DIRTY_DENTS,
945 	F2FS_DIRTY_DATA,
946 	F2FS_DIRTY_QDATA,
947 	F2FS_DIRTY_NODES,
948 	F2FS_DIRTY_META,
949 	F2FS_INMEM_PAGES,
950 	F2FS_DIRTY_IMETA,
951 	F2FS_WB_CP_DATA,
952 	F2FS_WB_DATA,
953 	F2FS_RD_DATA,
954 	F2FS_RD_NODE,
955 	F2FS_RD_META,
956 	F2FS_DIO_WRITE,
957 	F2FS_DIO_READ,
958 	NR_COUNT_TYPE,
959 };
960 
961 /*
962  * The below are the page types of bios used in submit_bio().
963  * The available types are:
964  * DATA			User data pages. It operates as async mode.
965  * NODE			Node pages. It operates as async mode.
966  * META			FS metadata pages such as SIT, NAT, CP.
967  * NR_PAGE_TYPE		The number of page types.
968  * META_FLUSH		Make sure the previous pages are written
969  *			with waiting the bio's completion
970  * ...			Only can be used with META.
971  */
972 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
973 enum page_type {
974 	DATA,
975 	NODE,
976 	META,
977 	NR_PAGE_TYPE,
978 	META_FLUSH,
979 	INMEM,		/* the below types are used by tracepoints only. */
980 	INMEM_DROP,
981 	INMEM_INVALIDATE,
982 	INMEM_REVOKE,
983 	IPU,
984 	OPU,
985 };
986 
987 enum temp_type {
988 	HOT = 0,	/* must be zero for meta bio */
989 	WARM,
990 	COLD,
991 	NR_TEMP_TYPE,
992 };
993 
994 enum need_lock_type {
995 	LOCK_REQ = 0,
996 	LOCK_DONE,
997 	LOCK_RETRY,
998 };
999 
1000 enum cp_reason_type {
1001 	CP_NO_NEEDED,
1002 	CP_NON_REGULAR,
1003 	CP_HARDLINK,
1004 	CP_SB_NEED_CP,
1005 	CP_WRONG_PINO,
1006 	CP_NO_SPC_ROLL,
1007 	CP_NODE_NEED_CP,
1008 	CP_FASTBOOT_MODE,
1009 	CP_SPEC_LOG_NUM,
1010 	CP_RECOVER_DIR,
1011 };
1012 
1013 enum iostat_type {
1014 	APP_DIRECT_IO,			/* app direct IOs */
1015 	APP_BUFFERED_IO,		/* app buffered IOs */
1016 	APP_WRITE_IO,			/* app write IOs */
1017 	APP_MAPPED_IO,			/* app mapped IOs */
1018 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1019 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1020 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1021 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1022 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1023 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1024 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1025 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1026 	FS_DISCARD,			/* discard */
1027 	NR_IO_TYPE,
1028 };
1029 
1030 struct f2fs_io_info {
1031 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1032 	nid_t ino;		/* inode number */
1033 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1034 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1035 	int op;			/* contains REQ_OP_ */
1036 	int op_flags;		/* req_flag_bits */
1037 	block_t new_blkaddr;	/* new block address to be written */
1038 	block_t old_blkaddr;	/* old block address before Cow */
1039 	struct page *page;	/* page to be written */
1040 	struct page *encrypted_page;	/* encrypted page */
1041 	struct list_head list;		/* serialize IOs */
1042 	bool submitted;		/* indicate IO submission */
1043 	int need_lock;		/* indicate we need to lock cp_rwsem */
1044 	bool in_list;		/* indicate fio is in io_list */
1045 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1046 	bool retry;		/* need to reallocate block address */
1047 	enum iostat_type io_type;	/* io type */
1048 	struct writeback_control *io_wbc; /* writeback control */
1049 	unsigned char version;		/* version of the node */
1050 };
1051 
1052 #define is_read_io(rw) ((rw) == READ)
1053 struct f2fs_bio_info {
1054 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1055 	struct bio *bio;		/* bios to merge */
1056 	sector_t last_block_in_bio;	/* last block number */
1057 	struct f2fs_io_info fio;	/* store buffered io info. */
1058 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1059 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1060 	struct list_head io_list;	/* track fios */
1061 };
1062 
1063 #define FDEV(i)				(sbi->devs[i])
1064 #define RDEV(i)				(raw_super->devs[i])
1065 struct f2fs_dev_info {
1066 	struct block_device *bdev;
1067 	char path[MAX_PATH_LEN];
1068 	unsigned int total_segments;
1069 	block_t start_blk;
1070 	block_t end_blk;
1071 #ifdef CONFIG_BLK_DEV_ZONED
1072 	unsigned int nr_blkz;			/* Total number of zones */
1073 	u8 *blkz_type;				/* Array of zones type */
1074 #endif
1075 };
1076 
1077 enum inode_type {
1078 	DIR_INODE,			/* for dirty dir inode */
1079 	FILE_INODE,			/* for dirty regular/symlink inode */
1080 	DIRTY_META,			/* for all dirtied inode metadata */
1081 	ATOMIC_FILE,			/* for all atomic files */
1082 	NR_INODE_TYPE,
1083 };
1084 
1085 /* for inner inode cache management */
1086 struct inode_management {
1087 	struct radix_tree_root ino_root;	/* ino entry array */
1088 	spinlock_t ino_lock;			/* for ino entry lock */
1089 	struct list_head ino_list;		/* inode list head */
1090 	unsigned long ino_num;			/* number of entries */
1091 };
1092 
1093 /* For s_flag in struct f2fs_sb_info */
1094 enum {
1095 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1096 	SBI_IS_CLOSE,				/* specify unmounting */
1097 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1098 	SBI_POR_DOING,				/* recovery is doing or not */
1099 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1100 	SBI_NEED_CP,				/* need to checkpoint */
1101 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1102 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1103 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1104 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1105 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1106 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1107 };
1108 
1109 enum {
1110 	CP_TIME,
1111 	REQ_TIME,
1112 	DISCARD_TIME,
1113 	GC_TIME,
1114 	DISABLE_TIME,
1115 	UMOUNT_DISCARD_TIMEOUT,
1116 	MAX_TIME,
1117 };
1118 
1119 enum {
1120 	GC_NORMAL,
1121 	GC_IDLE_CB,
1122 	GC_IDLE_GREEDY,
1123 	GC_URGENT,
1124 };
1125 
1126 enum {
1127 	WHINT_MODE_OFF,		/* not pass down write hints */
1128 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1129 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1130 };
1131 
1132 enum {
1133 	ALLOC_MODE_DEFAULT,	/* stay default */
1134 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1135 };
1136 
1137 enum fsync_mode {
1138 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1139 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1140 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1141 };
1142 
1143 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1144 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1145 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1146 #else
1147 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1148 #endif
1149 
1150 struct f2fs_sb_info {
1151 	struct super_block *sb;			/* pointer to VFS super block */
1152 	struct proc_dir_entry *s_proc;		/* proc entry */
1153 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1154 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1155 	int valid_super_block;			/* valid super block no */
1156 	unsigned long s_flag;				/* flags for sbi */
1157 	struct mutex writepages;		/* mutex for writepages() */
1158 
1159 #ifdef CONFIG_BLK_DEV_ZONED
1160 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1161 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1162 #endif
1163 
1164 	/* for node-related operations */
1165 	struct f2fs_nm_info *nm_info;		/* node manager */
1166 	struct inode *node_inode;		/* cache node blocks */
1167 
1168 	/* for segment-related operations */
1169 	struct f2fs_sm_info *sm_info;		/* segment manager */
1170 
1171 	/* for bio operations */
1172 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1173 	/* keep migration IO order for LFS mode */
1174 	struct rw_semaphore io_order_lock;
1175 	mempool_t *write_io_dummy;		/* Dummy pages */
1176 
1177 	/* for checkpoint */
1178 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1179 	int cur_cp_pack;			/* remain current cp pack */
1180 	spinlock_t cp_lock;			/* for flag in ckpt */
1181 	struct inode *meta_inode;		/* cache meta blocks */
1182 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1183 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1184 	struct rw_semaphore node_write;		/* locking node writes */
1185 	struct rw_semaphore node_change;	/* locking node change */
1186 	wait_queue_head_t cp_wait;
1187 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1188 	long interval_time[MAX_TIME];		/* to store thresholds */
1189 
1190 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1191 
1192 	spinlock_t fsync_node_lock;		/* for node entry lock */
1193 	struct list_head fsync_node_list;	/* node list head */
1194 	unsigned int fsync_seg_id;		/* sequence id */
1195 	unsigned int fsync_node_num;		/* number of node entries */
1196 
1197 	/* for orphan inode, use 0'th array */
1198 	unsigned int max_orphans;		/* max orphan inodes */
1199 
1200 	/* for inode management */
1201 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1202 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1203 
1204 	/* for extent tree cache */
1205 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1206 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1207 	struct list_head extent_list;		/* lru list for shrinker */
1208 	spinlock_t extent_lock;			/* locking extent lru list */
1209 	atomic_t total_ext_tree;		/* extent tree count */
1210 	struct list_head zombie_list;		/* extent zombie tree list */
1211 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1212 	atomic_t total_ext_node;		/* extent info count */
1213 
1214 	/* basic filesystem units */
1215 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1216 	unsigned int log_blocksize;		/* log2 block size */
1217 	unsigned int blocksize;			/* block size */
1218 	unsigned int root_ino_num;		/* root inode number*/
1219 	unsigned int node_ino_num;		/* node inode number*/
1220 	unsigned int meta_ino_num;		/* meta inode number*/
1221 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1222 	unsigned int blocks_per_seg;		/* blocks per segment */
1223 	unsigned int segs_per_sec;		/* segments per section */
1224 	unsigned int secs_per_zone;		/* sections per zone */
1225 	unsigned int total_sections;		/* total section count */
1226 	unsigned int total_node_count;		/* total node block count */
1227 	unsigned int total_valid_node_count;	/* valid node block count */
1228 	loff_t max_file_blocks;			/* max block index of file */
1229 	int dir_level;				/* directory level */
1230 	int readdir_ra;				/* readahead inode in readdir */
1231 
1232 	block_t user_block_count;		/* # of user blocks */
1233 	block_t total_valid_block_count;	/* # of valid blocks */
1234 	block_t discard_blks;			/* discard command candidats */
1235 	block_t last_valid_block_count;		/* for recovery */
1236 	block_t reserved_blocks;		/* configurable reserved blocks */
1237 	block_t current_reserved_blocks;	/* current reserved blocks */
1238 
1239 	/* Additional tracking for no checkpoint mode */
1240 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1241 
1242 	unsigned int nquota_files;		/* # of quota sysfile */
1243 
1244 	u32 s_next_generation;			/* for NFS support */
1245 
1246 	/* # of pages, see count_type */
1247 	atomic_t nr_pages[NR_COUNT_TYPE];
1248 	/* # of allocated blocks */
1249 	struct percpu_counter alloc_valid_block_count;
1250 
1251 	/* writeback control */
1252 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1253 
1254 	/* valid inode count */
1255 	struct percpu_counter total_valid_inode_count;
1256 
1257 	struct f2fs_mount_info mount_opt;	/* mount options */
1258 
1259 	/* for cleaning operations */
1260 	struct mutex gc_mutex;			/* mutex for GC */
1261 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1262 	unsigned int cur_victim_sec;		/* current victim section num */
1263 	unsigned int gc_mode;			/* current GC state */
1264 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1265 	/* for skip statistic */
1266 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1267 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1268 
1269 	/* threshold for gc trials on pinned files */
1270 	u64 gc_pin_file_threshold;
1271 
1272 	/* maximum # of trials to find a victim segment for SSR and GC */
1273 	unsigned int max_victim_search;
1274 	/* migration granularity of garbage collection, unit: segment */
1275 	unsigned int migration_granularity;
1276 
1277 	/*
1278 	 * for stat information.
1279 	 * one is for the LFS mode, and the other is for the SSR mode.
1280 	 */
1281 #ifdef CONFIG_F2FS_STAT_FS
1282 	struct f2fs_stat_info *stat_info;	/* FS status information */
1283 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1284 	unsigned int segment_count[2];		/* # of allocated segments */
1285 	unsigned int block_count[2];		/* # of allocated blocks */
1286 	atomic_t inplace_count;		/* # of inplace update */
1287 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1288 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1289 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1290 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1291 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1292 	atomic_t inline_inode;			/* # of inline_data inodes */
1293 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1294 	atomic_t aw_cnt;			/* # of atomic writes */
1295 	atomic_t vw_cnt;			/* # of volatile writes */
1296 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1297 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1298 	int bg_gc;				/* background gc calls */
1299 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1300 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1301 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1302 #endif
1303 	spinlock_t stat_lock;			/* lock for stat operations */
1304 
1305 	/* For app/fs IO statistics */
1306 	spinlock_t iostat_lock;
1307 	unsigned long long write_iostat[NR_IO_TYPE];
1308 	bool iostat_enable;
1309 
1310 	/* For sysfs suppport */
1311 	struct kobject s_kobj;
1312 	struct completion s_kobj_unregister;
1313 
1314 	/* For shrinker support */
1315 	struct list_head s_list;
1316 	int s_ndevs;				/* number of devices */
1317 	struct f2fs_dev_info *devs;		/* for device list */
1318 	unsigned int dirty_device;		/* for checkpoint data flush */
1319 	spinlock_t dev_lock;			/* protect dirty_device */
1320 	struct mutex umount_mutex;
1321 	unsigned int shrinker_run_no;
1322 
1323 	/* For write statistics */
1324 	u64 sectors_written_start;
1325 	u64 kbytes_written;
1326 
1327 	/* Reference to checksum algorithm driver via cryptoapi */
1328 	struct crypto_shash *s_chksum_driver;
1329 
1330 	/* Precomputed FS UUID checksum for seeding other checksums */
1331 	__u32 s_chksum_seed;
1332 };
1333 
1334 struct f2fs_private_dio {
1335 	struct inode *inode;
1336 	void *orig_private;
1337 	bio_end_io_t *orig_end_io;
1338 	bool write;
1339 };
1340 
1341 #ifdef CONFIG_F2FS_FAULT_INJECTION
1342 #define f2fs_show_injection_info(type)					\
1343 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n",	\
1344 		KERN_INFO, f2fs_fault_name[type],			\
1345 		__func__, __builtin_return_address(0))
1346 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1347 {
1348 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1349 
1350 	if (!ffi->inject_rate)
1351 		return false;
1352 
1353 	if (!IS_FAULT_SET(ffi, type))
1354 		return false;
1355 
1356 	atomic_inc(&ffi->inject_ops);
1357 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1358 		atomic_set(&ffi->inject_ops, 0);
1359 		return true;
1360 	}
1361 	return false;
1362 }
1363 #else
1364 #define f2fs_show_injection_info(type) do { } while (0)
1365 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1366 {
1367 	return false;
1368 }
1369 #endif
1370 
1371 /* For write statistics. Suppose sector size is 512 bytes,
1372  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1373  */
1374 #define BD_PART_WRITTEN(s)						 \
1375 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1376 		(s)->sectors_written_start) >> 1)
1377 
1378 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1379 {
1380 	unsigned long now = jiffies;
1381 
1382 	sbi->last_time[type] = now;
1383 
1384 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1385 	if (type == REQ_TIME) {
1386 		sbi->last_time[DISCARD_TIME] = now;
1387 		sbi->last_time[GC_TIME] = now;
1388 	}
1389 }
1390 
1391 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1392 {
1393 	unsigned long interval = sbi->interval_time[type] * HZ;
1394 
1395 	return time_after(jiffies, sbi->last_time[type] + interval);
1396 }
1397 
1398 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1399 						int type)
1400 {
1401 	unsigned long interval = sbi->interval_time[type] * HZ;
1402 	unsigned int wait_ms = 0;
1403 	long delta;
1404 
1405 	delta = (sbi->last_time[type] + interval) - jiffies;
1406 	if (delta > 0)
1407 		wait_ms = jiffies_to_msecs(delta);
1408 
1409 	return wait_ms;
1410 }
1411 
1412 /*
1413  * Inline functions
1414  */
1415 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1416 			      const void *address, unsigned int length)
1417 {
1418 	struct {
1419 		struct shash_desc shash;
1420 		char ctx[4];
1421 	} desc;
1422 	int err;
1423 
1424 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1425 
1426 	desc.shash.tfm = sbi->s_chksum_driver;
1427 	desc.shash.flags = 0;
1428 	*(u32 *)desc.ctx = crc;
1429 
1430 	err = crypto_shash_update(&desc.shash, address, length);
1431 	BUG_ON(err);
1432 
1433 	return *(u32 *)desc.ctx;
1434 }
1435 
1436 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1437 			   unsigned int length)
1438 {
1439 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1440 }
1441 
1442 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1443 				  void *buf, size_t buf_size)
1444 {
1445 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1446 }
1447 
1448 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1449 			      const void *address, unsigned int length)
1450 {
1451 	return __f2fs_crc32(sbi, crc, address, length);
1452 }
1453 
1454 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1455 {
1456 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1457 }
1458 
1459 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1460 {
1461 	return sb->s_fs_info;
1462 }
1463 
1464 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1465 {
1466 	return F2FS_SB(inode->i_sb);
1467 }
1468 
1469 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1470 {
1471 	return F2FS_I_SB(mapping->host);
1472 }
1473 
1474 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1475 {
1476 	return F2FS_M_SB(page->mapping);
1477 }
1478 
1479 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1480 {
1481 	return (struct f2fs_super_block *)(sbi->raw_super);
1482 }
1483 
1484 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1485 {
1486 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1487 }
1488 
1489 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1490 {
1491 	return (struct f2fs_node *)page_address(page);
1492 }
1493 
1494 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1495 {
1496 	return &((struct f2fs_node *)page_address(page))->i;
1497 }
1498 
1499 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1500 {
1501 	return (struct f2fs_nm_info *)(sbi->nm_info);
1502 }
1503 
1504 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1505 {
1506 	return (struct f2fs_sm_info *)(sbi->sm_info);
1507 }
1508 
1509 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1510 {
1511 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1512 }
1513 
1514 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1515 {
1516 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1517 }
1518 
1519 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1520 {
1521 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1522 }
1523 
1524 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1525 {
1526 	return sbi->meta_inode->i_mapping;
1527 }
1528 
1529 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1530 {
1531 	return sbi->node_inode->i_mapping;
1532 }
1533 
1534 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1535 {
1536 	return test_bit(type, &sbi->s_flag);
1537 }
1538 
1539 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1540 {
1541 	set_bit(type, &sbi->s_flag);
1542 }
1543 
1544 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1545 {
1546 	clear_bit(type, &sbi->s_flag);
1547 }
1548 
1549 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1550 {
1551 	return le64_to_cpu(cp->checkpoint_ver);
1552 }
1553 
1554 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1555 {
1556 	if (type < F2FS_MAX_QUOTAS)
1557 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1558 	return 0;
1559 }
1560 
1561 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1562 {
1563 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1564 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1565 }
1566 
1567 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1568 {
1569 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1570 
1571 	return ckpt_flags & f;
1572 }
1573 
1574 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1575 {
1576 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1577 }
1578 
1579 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1580 {
1581 	unsigned int ckpt_flags;
1582 
1583 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1584 	ckpt_flags |= f;
1585 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1586 }
1587 
1588 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1589 {
1590 	unsigned long flags;
1591 
1592 	spin_lock_irqsave(&sbi->cp_lock, flags);
1593 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1594 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1595 }
1596 
1597 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1598 {
1599 	unsigned int ckpt_flags;
1600 
1601 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1602 	ckpt_flags &= (~f);
1603 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1604 }
1605 
1606 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1607 {
1608 	unsigned long flags;
1609 
1610 	spin_lock_irqsave(&sbi->cp_lock, flags);
1611 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1612 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1613 }
1614 
1615 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1616 {
1617 	unsigned long flags;
1618 
1619 	/*
1620 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1621 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1622 	 * so let's rely on regular fsck or unclean shutdown.
1623 	 */
1624 
1625 	if (lock)
1626 		spin_lock_irqsave(&sbi->cp_lock, flags);
1627 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1628 	kvfree(NM_I(sbi)->nat_bits);
1629 	NM_I(sbi)->nat_bits = NULL;
1630 	if (lock)
1631 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1632 }
1633 
1634 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1635 					struct cp_control *cpc)
1636 {
1637 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1638 
1639 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1640 }
1641 
1642 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1643 {
1644 	down_read(&sbi->cp_rwsem);
1645 }
1646 
1647 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1648 {
1649 	return down_read_trylock(&sbi->cp_rwsem);
1650 }
1651 
1652 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1653 {
1654 	up_read(&sbi->cp_rwsem);
1655 }
1656 
1657 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1658 {
1659 	down_write(&sbi->cp_rwsem);
1660 }
1661 
1662 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1663 {
1664 	up_write(&sbi->cp_rwsem);
1665 }
1666 
1667 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1668 {
1669 	int reason = CP_SYNC;
1670 
1671 	if (test_opt(sbi, FASTBOOT))
1672 		reason = CP_FASTBOOT;
1673 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1674 		reason = CP_UMOUNT;
1675 	return reason;
1676 }
1677 
1678 static inline bool __remain_node_summaries(int reason)
1679 {
1680 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1681 }
1682 
1683 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1684 {
1685 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1686 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1687 }
1688 
1689 /*
1690  * Check whether the inode has blocks or not
1691  */
1692 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1693 {
1694 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1695 
1696 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1697 }
1698 
1699 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1700 {
1701 	return ofs == XATTR_NODE_OFFSET;
1702 }
1703 
1704 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1705 					struct inode *inode, bool cap)
1706 {
1707 	if (!inode)
1708 		return true;
1709 	if (!test_opt(sbi, RESERVE_ROOT))
1710 		return false;
1711 	if (IS_NOQUOTA(inode))
1712 		return true;
1713 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1714 		return true;
1715 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1716 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1717 		return true;
1718 	if (cap && capable(CAP_SYS_RESOURCE))
1719 		return true;
1720 	return false;
1721 }
1722 
1723 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1724 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1725 				 struct inode *inode, blkcnt_t *count)
1726 {
1727 	blkcnt_t diff = 0, release = 0;
1728 	block_t avail_user_block_count;
1729 	int ret;
1730 
1731 	ret = dquot_reserve_block(inode, *count);
1732 	if (ret)
1733 		return ret;
1734 
1735 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1736 		f2fs_show_injection_info(FAULT_BLOCK);
1737 		release = *count;
1738 		goto enospc;
1739 	}
1740 
1741 	/*
1742 	 * let's increase this in prior to actual block count change in order
1743 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1744 	 */
1745 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1746 
1747 	spin_lock(&sbi->stat_lock);
1748 	sbi->total_valid_block_count += (block_t)(*count);
1749 	avail_user_block_count = sbi->user_block_count -
1750 					sbi->current_reserved_blocks;
1751 
1752 	if (!__allow_reserved_blocks(sbi, inode, true))
1753 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1754 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1755 		avail_user_block_count -= sbi->unusable_block_count;
1756 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1757 		diff = sbi->total_valid_block_count - avail_user_block_count;
1758 		if (diff > *count)
1759 			diff = *count;
1760 		*count -= diff;
1761 		release = diff;
1762 		sbi->total_valid_block_count -= diff;
1763 		if (!*count) {
1764 			spin_unlock(&sbi->stat_lock);
1765 			goto enospc;
1766 		}
1767 	}
1768 	spin_unlock(&sbi->stat_lock);
1769 
1770 	if (unlikely(release)) {
1771 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1772 		dquot_release_reservation_block(inode, release);
1773 	}
1774 	f2fs_i_blocks_write(inode, *count, true, true);
1775 	return 0;
1776 
1777 enospc:
1778 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1779 	dquot_release_reservation_block(inode, release);
1780 	return -ENOSPC;
1781 }
1782 
1783 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1784 						struct inode *inode,
1785 						block_t count)
1786 {
1787 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1788 
1789 	spin_lock(&sbi->stat_lock);
1790 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1791 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1792 	sbi->total_valid_block_count -= (block_t)count;
1793 	if (sbi->reserved_blocks &&
1794 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1795 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1796 					sbi->current_reserved_blocks + count);
1797 	spin_unlock(&sbi->stat_lock);
1798 	f2fs_i_blocks_write(inode, count, false, true);
1799 }
1800 
1801 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1802 {
1803 	atomic_inc(&sbi->nr_pages[count_type]);
1804 
1805 	if (count_type == F2FS_DIRTY_DENTS ||
1806 			count_type == F2FS_DIRTY_NODES ||
1807 			count_type == F2FS_DIRTY_META ||
1808 			count_type == F2FS_DIRTY_QDATA ||
1809 			count_type == F2FS_DIRTY_IMETA)
1810 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1811 }
1812 
1813 static inline void inode_inc_dirty_pages(struct inode *inode)
1814 {
1815 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1816 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1817 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1818 	if (IS_NOQUOTA(inode))
1819 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1820 }
1821 
1822 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1823 {
1824 	atomic_dec(&sbi->nr_pages[count_type]);
1825 }
1826 
1827 static inline void inode_dec_dirty_pages(struct inode *inode)
1828 {
1829 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1830 			!S_ISLNK(inode->i_mode))
1831 		return;
1832 
1833 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1834 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1835 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1836 	if (IS_NOQUOTA(inode))
1837 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1838 }
1839 
1840 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1841 {
1842 	return atomic_read(&sbi->nr_pages[count_type]);
1843 }
1844 
1845 static inline int get_dirty_pages(struct inode *inode)
1846 {
1847 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1848 }
1849 
1850 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1851 {
1852 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1853 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1854 						sbi->log_blocks_per_seg;
1855 
1856 	return segs / sbi->segs_per_sec;
1857 }
1858 
1859 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1860 {
1861 	return sbi->total_valid_block_count;
1862 }
1863 
1864 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1865 {
1866 	return sbi->discard_blks;
1867 }
1868 
1869 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1870 {
1871 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1872 
1873 	/* return NAT or SIT bitmap */
1874 	if (flag == NAT_BITMAP)
1875 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1876 	else if (flag == SIT_BITMAP)
1877 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1878 
1879 	return 0;
1880 }
1881 
1882 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1883 {
1884 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1885 }
1886 
1887 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1888 {
1889 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1890 	int offset;
1891 
1892 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1893 		offset = (flag == SIT_BITMAP) ?
1894 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1895 		return &ckpt->sit_nat_version_bitmap + offset;
1896 	}
1897 
1898 	if (__cp_payload(sbi) > 0) {
1899 		if (flag == NAT_BITMAP)
1900 			return &ckpt->sit_nat_version_bitmap;
1901 		else
1902 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1903 	} else {
1904 		offset = (flag == NAT_BITMAP) ?
1905 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1906 		return &ckpt->sit_nat_version_bitmap + offset;
1907 	}
1908 }
1909 
1910 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1911 {
1912 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1913 
1914 	if (sbi->cur_cp_pack == 2)
1915 		start_addr += sbi->blocks_per_seg;
1916 	return start_addr;
1917 }
1918 
1919 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1920 {
1921 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1922 
1923 	if (sbi->cur_cp_pack == 1)
1924 		start_addr += sbi->blocks_per_seg;
1925 	return start_addr;
1926 }
1927 
1928 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1929 {
1930 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1931 }
1932 
1933 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1934 {
1935 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1936 }
1937 
1938 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1939 					struct inode *inode, bool is_inode)
1940 {
1941 	block_t	valid_block_count;
1942 	unsigned int valid_node_count;
1943 	int err;
1944 
1945 	if (is_inode) {
1946 		if (inode) {
1947 			err = dquot_alloc_inode(inode);
1948 			if (err)
1949 				return err;
1950 		}
1951 	} else {
1952 		err = dquot_reserve_block(inode, 1);
1953 		if (err)
1954 			return err;
1955 	}
1956 
1957 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1958 		f2fs_show_injection_info(FAULT_BLOCK);
1959 		goto enospc;
1960 	}
1961 
1962 	spin_lock(&sbi->stat_lock);
1963 
1964 	valid_block_count = sbi->total_valid_block_count +
1965 					sbi->current_reserved_blocks + 1;
1966 
1967 	if (!__allow_reserved_blocks(sbi, inode, false))
1968 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1969 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1970 		valid_block_count += sbi->unusable_block_count;
1971 
1972 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1973 		spin_unlock(&sbi->stat_lock);
1974 		goto enospc;
1975 	}
1976 
1977 	valid_node_count = sbi->total_valid_node_count + 1;
1978 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1979 		spin_unlock(&sbi->stat_lock);
1980 		goto enospc;
1981 	}
1982 
1983 	sbi->total_valid_node_count++;
1984 	sbi->total_valid_block_count++;
1985 	spin_unlock(&sbi->stat_lock);
1986 
1987 	if (inode) {
1988 		if (is_inode)
1989 			f2fs_mark_inode_dirty_sync(inode, true);
1990 		else
1991 			f2fs_i_blocks_write(inode, 1, true, true);
1992 	}
1993 
1994 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1995 	return 0;
1996 
1997 enospc:
1998 	if (is_inode) {
1999 		if (inode)
2000 			dquot_free_inode(inode);
2001 	} else {
2002 		dquot_release_reservation_block(inode, 1);
2003 	}
2004 	return -ENOSPC;
2005 }
2006 
2007 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2008 					struct inode *inode, bool is_inode)
2009 {
2010 	spin_lock(&sbi->stat_lock);
2011 
2012 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2013 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2014 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
2015 
2016 	sbi->total_valid_node_count--;
2017 	sbi->total_valid_block_count--;
2018 	if (sbi->reserved_blocks &&
2019 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2020 		sbi->current_reserved_blocks++;
2021 
2022 	spin_unlock(&sbi->stat_lock);
2023 
2024 	if (is_inode)
2025 		dquot_free_inode(inode);
2026 	else
2027 		f2fs_i_blocks_write(inode, 1, false, true);
2028 }
2029 
2030 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2031 {
2032 	return sbi->total_valid_node_count;
2033 }
2034 
2035 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2036 {
2037 	percpu_counter_inc(&sbi->total_valid_inode_count);
2038 }
2039 
2040 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2041 {
2042 	percpu_counter_dec(&sbi->total_valid_inode_count);
2043 }
2044 
2045 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2046 {
2047 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2048 }
2049 
2050 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2051 						pgoff_t index, bool for_write)
2052 {
2053 	struct page *page;
2054 
2055 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2056 		if (!for_write)
2057 			page = find_get_page_flags(mapping, index,
2058 							FGP_LOCK | FGP_ACCESSED);
2059 		else
2060 			page = find_lock_page(mapping, index);
2061 		if (page)
2062 			return page;
2063 
2064 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2065 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2066 			return NULL;
2067 		}
2068 	}
2069 
2070 	if (!for_write)
2071 		return grab_cache_page(mapping, index);
2072 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2073 }
2074 
2075 static inline struct page *f2fs_pagecache_get_page(
2076 				struct address_space *mapping, pgoff_t index,
2077 				int fgp_flags, gfp_t gfp_mask)
2078 {
2079 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2080 		f2fs_show_injection_info(FAULT_PAGE_GET);
2081 		return NULL;
2082 	}
2083 
2084 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2085 }
2086 
2087 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2088 {
2089 	char *src_kaddr = kmap(src);
2090 	char *dst_kaddr = kmap(dst);
2091 
2092 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2093 	kunmap(dst);
2094 	kunmap(src);
2095 }
2096 
2097 static inline void f2fs_put_page(struct page *page, int unlock)
2098 {
2099 	if (!page)
2100 		return;
2101 
2102 	if (unlock) {
2103 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2104 		unlock_page(page);
2105 	}
2106 	put_page(page);
2107 }
2108 
2109 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2110 {
2111 	if (dn->node_page)
2112 		f2fs_put_page(dn->node_page, 1);
2113 	if (dn->inode_page && dn->node_page != dn->inode_page)
2114 		f2fs_put_page(dn->inode_page, 0);
2115 	dn->node_page = NULL;
2116 	dn->inode_page = NULL;
2117 }
2118 
2119 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2120 					size_t size)
2121 {
2122 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2123 }
2124 
2125 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2126 						gfp_t flags)
2127 {
2128 	void *entry;
2129 
2130 	entry = kmem_cache_alloc(cachep, flags);
2131 	if (!entry)
2132 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2133 	return entry;
2134 }
2135 
2136 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2137 						int npages, bool no_fail)
2138 {
2139 	struct bio *bio;
2140 
2141 	if (no_fail) {
2142 		/* No failure on bio allocation */
2143 		bio = bio_alloc(GFP_NOIO, npages);
2144 		if (!bio)
2145 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2146 		return bio;
2147 	}
2148 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2149 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2150 		return NULL;
2151 	}
2152 
2153 	return bio_alloc(GFP_KERNEL, npages);
2154 }
2155 
2156 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2157 {
2158 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2159 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2160 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2161 		get_pages(sbi, F2FS_DIO_READ) ||
2162 		get_pages(sbi, F2FS_DIO_WRITE) ||
2163 		atomic_read(&SM_I(sbi)->dcc_info->queued_discard) ||
2164 		atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2165 		return false;
2166 	return f2fs_time_over(sbi, type);
2167 }
2168 
2169 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2170 				unsigned long index, void *item)
2171 {
2172 	while (radix_tree_insert(root, index, item))
2173 		cond_resched();
2174 }
2175 
2176 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2177 
2178 static inline bool IS_INODE(struct page *page)
2179 {
2180 	struct f2fs_node *p = F2FS_NODE(page);
2181 
2182 	return RAW_IS_INODE(p);
2183 }
2184 
2185 static inline int offset_in_addr(struct f2fs_inode *i)
2186 {
2187 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2188 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2189 }
2190 
2191 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2192 {
2193 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2194 }
2195 
2196 static inline int f2fs_has_extra_attr(struct inode *inode);
2197 static inline block_t datablock_addr(struct inode *inode,
2198 			struct page *node_page, unsigned int offset)
2199 {
2200 	struct f2fs_node *raw_node;
2201 	__le32 *addr_array;
2202 	int base = 0;
2203 	bool is_inode = IS_INODE(node_page);
2204 
2205 	raw_node = F2FS_NODE(node_page);
2206 
2207 	/* from GC path only */
2208 	if (is_inode) {
2209 		if (!inode)
2210 			base = offset_in_addr(&raw_node->i);
2211 		else if (f2fs_has_extra_attr(inode))
2212 			base = get_extra_isize(inode);
2213 	}
2214 
2215 	addr_array = blkaddr_in_node(raw_node);
2216 	return le32_to_cpu(addr_array[base + offset]);
2217 }
2218 
2219 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2220 {
2221 	int mask;
2222 
2223 	addr += (nr >> 3);
2224 	mask = 1 << (7 - (nr & 0x07));
2225 	return mask & *addr;
2226 }
2227 
2228 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2229 {
2230 	int mask;
2231 
2232 	addr += (nr >> 3);
2233 	mask = 1 << (7 - (nr & 0x07));
2234 	*addr |= mask;
2235 }
2236 
2237 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2238 {
2239 	int mask;
2240 
2241 	addr += (nr >> 3);
2242 	mask = 1 << (7 - (nr & 0x07));
2243 	*addr &= ~mask;
2244 }
2245 
2246 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2247 {
2248 	int mask;
2249 	int ret;
2250 
2251 	addr += (nr >> 3);
2252 	mask = 1 << (7 - (nr & 0x07));
2253 	ret = mask & *addr;
2254 	*addr |= mask;
2255 	return ret;
2256 }
2257 
2258 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2259 {
2260 	int mask;
2261 	int ret;
2262 
2263 	addr += (nr >> 3);
2264 	mask = 1 << (7 - (nr & 0x07));
2265 	ret = mask & *addr;
2266 	*addr &= ~mask;
2267 	return ret;
2268 }
2269 
2270 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2271 {
2272 	int mask;
2273 
2274 	addr += (nr >> 3);
2275 	mask = 1 << (7 - (nr & 0x07));
2276 	*addr ^= mask;
2277 }
2278 
2279 /*
2280  * Inode flags
2281  */
2282 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2283 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2284 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2285 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2286 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2287 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2288 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2289 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2290 /* Reserved for compression usage... */
2291 #define F2FS_DIRTY_FL			0x00000100
2292 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2293 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2294 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2295 /* End compression flags --- maybe not all used */
2296 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2297 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2298 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2299 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2300 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2301 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2302 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2303 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2304 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2305 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2306 #define F2FS_NOCOW_FL			0x00800000 /* Do not cow file */
2307 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2308 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2309 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2310 
2311 #define F2FS_FL_USER_VISIBLE		0x30CBDFFF /* User visible flags */
2312 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2313 
2314 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2315 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2316 					 F2FS_IMMUTABLE_FL | \
2317 					 F2FS_APPEND_FL | \
2318 					 F2FS_NODUMP_FL | \
2319 					 F2FS_NOATIME_FL | \
2320 					 F2FS_PROJINHERIT_FL)
2321 
2322 /* Flags that should be inherited by new inodes from their parent. */
2323 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2324 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2325 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2326 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2327 			   F2FS_PROJINHERIT_FL)
2328 
2329 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2330 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2331 
2332 /* Flags that are appropriate for non-directories/regular files. */
2333 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2334 
2335 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2336 {
2337 	if (S_ISDIR(mode))
2338 		return flags;
2339 	else if (S_ISREG(mode))
2340 		return flags & F2FS_REG_FLMASK;
2341 	else
2342 		return flags & F2FS_OTHER_FLMASK;
2343 }
2344 
2345 /* used for f2fs_inode_info->flags */
2346 enum {
2347 	FI_NEW_INODE,		/* indicate newly allocated inode */
2348 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2349 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2350 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2351 	FI_INC_LINK,		/* need to increment i_nlink */
2352 	FI_ACL_MODE,		/* indicate acl mode */
2353 	FI_NO_ALLOC,		/* should not allocate any blocks */
2354 	FI_FREE_NID,		/* free allocated nide */
2355 	FI_NO_EXTENT,		/* not to use the extent cache */
2356 	FI_INLINE_XATTR,	/* used for inline xattr */
2357 	FI_INLINE_DATA,		/* used for inline data*/
2358 	FI_INLINE_DENTRY,	/* used for inline dentry */
2359 	FI_APPEND_WRITE,	/* inode has appended data */
2360 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2361 	FI_NEED_IPU,		/* used for ipu per file */
2362 	FI_ATOMIC_FILE,		/* indicate atomic file */
2363 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2364 	FI_VOLATILE_FILE,	/* indicate volatile file */
2365 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2366 	FI_DROP_CACHE,		/* drop dirty page cache */
2367 	FI_DATA_EXIST,		/* indicate data exists */
2368 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2369 	FI_DO_DEFRAG,		/* indicate defragment is running */
2370 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2371 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2372 	FI_HOT_DATA,		/* indicate file is hot */
2373 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2374 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2375 	FI_PIN_FILE,		/* indicate file should not be gced */
2376 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2377 };
2378 
2379 static inline void __mark_inode_dirty_flag(struct inode *inode,
2380 						int flag, bool set)
2381 {
2382 	switch (flag) {
2383 	case FI_INLINE_XATTR:
2384 	case FI_INLINE_DATA:
2385 	case FI_INLINE_DENTRY:
2386 	case FI_NEW_INODE:
2387 		if (set)
2388 			return;
2389 		/* fall through */
2390 	case FI_DATA_EXIST:
2391 	case FI_INLINE_DOTS:
2392 	case FI_PIN_FILE:
2393 		f2fs_mark_inode_dirty_sync(inode, true);
2394 	}
2395 }
2396 
2397 static inline void set_inode_flag(struct inode *inode, int flag)
2398 {
2399 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2400 		set_bit(flag, &F2FS_I(inode)->flags);
2401 	__mark_inode_dirty_flag(inode, flag, true);
2402 }
2403 
2404 static inline int is_inode_flag_set(struct inode *inode, int flag)
2405 {
2406 	return test_bit(flag, &F2FS_I(inode)->flags);
2407 }
2408 
2409 static inline void clear_inode_flag(struct inode *inode, int flag)
2410 {
2411 	if (test_bit(flag, &F2FS_I(inode)->flags))
2412 		clear_bit(flag, &F2FS_I(inode)->flags);
2413 	__mark_inode_dirty_flag(inode, flag, false);
2414 }
2415 
2416 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2417 {
2418 	F2FS_I(inode)->i_acl_mode = mode;
2419 	set_inode_flag(inode, FI_ACL_MODE);
2420 	f2fs_mark_inode_dirty_sync(inode, false);
2421 }
2422 
2423 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2424 {
2425 	if (inc)
2426 		inc_nlink(inode);
2427 	else
2428 		drop_nlink(inode);
2429 	f2fs_mark_inode_dirty_sync(inode, true);
2430 }
2431 
2432 static inline void f2fs_i_blocks_write(struct inode *inode,
2433 					block_t diff, bool add, bool claim)
2434 {
2435 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2436 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2437 
2438 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2439 	if (add) {
2440 		if (claim)
2441 			dquot_claim_block(inode, diff);
2442 		else
2443 			dquot_alloc_block_nofail(inode, diff);
2444 	} else {
2445 		dquot_free_block(inode, diff);
2446 	}
2447 
2448 	f2fs_mark_inode_dirty_sync(inode, true);
2449 	if (clean || recover)
2450 		set_inode_flag(inode, FI_AUTO_RECOVER);
2451 }
2452 
2453 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2454 {
2455 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2456 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2457 
2458 	if (i_size_read(inode) == i_size)
2459 		return;
2460 
2461 	i_size_write(inode, i_size);
2462 	f2fs_mark_inode_dirty_sync(inode, true);
2463 	if (clean || recover)
2464 		set_inode_flag(inode, FI_AUTO_RECOVER);
2465 }
2466 
2467 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2468 {
2469 	F2FS_I(inode)->i_current_depth = depth;
2470 	f2fs_mark_inode_dirty_sync(inode, true);
2471 }
2472 
2473 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2474 					unsigned int count)
2475 {
2476 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2477 	f2fs_mark_inode_dirty_sync(inode, true);
2478 }
2479 
2480 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2481 {
2482 	F2FS_I(inode)->i_xattr_nid = xnid;
2483 	f2fs_mark_inode_dirty_sync(inode, true);
2484 }
2485 
2486 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2487 {
2488 	F2FS_I(inode)->i_pino = pino;
2489 	f2fs_mark_inode_dirty_sync(inode, true);
2490 }
2491 
2492 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2493 {
2494 	struct f2fs_inode_info *fi = F2FS_I(inode);
2495 
2496 	if (ri->i_inline & F2FS_INLINE_XATTR)
2497 		set_bit(FI_INLINE_XATTR, &fi->flags);
2498 	if (ri->i_inline & F2FS_INLINE_DATA)
2499 		set_bit(FI_INLINE_DATA, &fi->flags);
2500 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2501 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2502 	if (ri->i_inline & F2FS_DATA_EXIST)
2503 		set_bit(FI_DATA_EXIST, &fi->flags);
2504 	if (ri->i_inline & F2FS_INLINE_DOTS)
2505 		set_bit(FI_INLINE_DOTS, &fi->flags);
2506 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2507 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2508 	if (ri->i_inline & F2FS_PIN_FILE)
2509 		set_bit(FI_PIN_FILE, &fi->flags);
2510 }
2511 
2512 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2513 {
2514 	ri->i_inline = 0;
2515 
2516 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2517 		ri->i_inline |= F2FS_INLINE_XATTR;
2518 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2519 		ri->i_inline |= F2FS_INLINE_DATA;
2520 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2521 		ri->i_inline |= F2FS_INLINE_DENTRY;
2522 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2523 		ri->i_inline |= F2FS_DATA_EXIST;
2524 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2525 		ri->i_inline |= F2FS_INLINE_DOTS;
2526 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2527 		ri->i_inline |= F2FS_EXTRA_ATTR;
2528 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2529 		ri->i_inline |= F2FS_PIN_FILE;
2530 }
2531 
2532 static inline int f2fs_has_extra_attr(struct inode *inode)
2533 {
2534 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2535 }
2536 
2537 static inline int f2fs_has_inline_xattr(struct inode *inode)
2538 {
2539 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2540 }
2541 
2542 static inline unsigned int addrs_per_inode(struct inode *inode)
2543 {
2544 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2545 }
2546 
2547 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2548 {
2549 	struct f2fs_inode *ri = F2FS_INODE(page);
2550 
2551 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2552 					get_inline_xattr_addrs(inode)]);
2553 }
2554 
2555 static inline int inline_xattr_size(struct inode *inode)
2556 {
2557 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2558 }
2559 
2560 static inline int f2fs_has_inline_data(struct inode *inode)
2561 {
2562 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2563 }
2564 
2565 static inline int f2fs_exist_data(struct inode *inode)
2566 {
2567 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2568 }
2569 
2570 static inline int f2fs_has_inline_dots(struct inode *inode)
2571 {
2572 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2573 }
2574 
2575 static inline bool f2fs_is_pinned_file(struct inode *inode)
2576 {
2577 	return is_inode_flag_set(inode, FI_PIN_FILE);
2578 }
2579 
2580 static inline bool f2fs_is_atomic_file(struct inode *inode)
2581 {
2582 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2583 }
2584 
2585 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2586 {
2587 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2588 }
2589 
2590 static inline bool f2fs_is_volatile_file(struct inode *inode)
2591 {
2592 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2593 }
2594 
2595 static inline bool f2fs_is_first_block_written(struct inode *inode)
2596 {
2597 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2598 }
2599 
2600 static inline bool f2fs_is_drop_cache(struct inode *inode)
2601 {
2602 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2603 }
2604 
2605 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2606 {
2607 	struct f2fs_inode *ri = F2FS_INODE(page);
2608 	int extra_size = get_extra_isize(inode);
2609 
2610 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2611 }
2612 
2613 static inline int f2fs_has_inline_dentry(struct inode *inode)
2614 {
2615 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2616 }
2617 
2618 static inline int is_file(struct inode *inode, int type)
2619 {
2620 	return F2FS_I(inode)->i_advise & type;
2621 }
2622 
2623 static inline void set_file(struct inode *inode, int type)
2624 {
2625 	F2FS_I(inode)->i_advise |= type;
2626 	f2fs_mark_inode_dirty_sync(inode, true);
2627 }
2628 
2629 static inline void clear_file(struct inode *inode, int type)
2630 {
2631 	F2FS_I(inode)->i_advise &= ~type;
2632 	f2fs_mark_inode_dirty_sync(inode, true);
2633 }
2634 
2635 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2636 {
2637 	bool ret;
2638 
2639 	if (dsync) {
2640 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2641 
2642 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2643 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2644 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2645 		return ret;
2646 	}
2647 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2648 			file_keep_isize(inode) ||
2649 			i_size_read(inode) & ~PAGE_MASK)
2650 		return false;
2651 
2652 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2653 		return false;
2654 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2655 		return false;
2656 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2657 		return false;
2658 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2659 						&F2FS_I(inode)->i_crtime))
2660 		return false;
2661 
2662 	down_read(&F2FS_I(inode)->i_sem);
2663 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2664 	up_read(&F2FS_I(inode)->i_sem);
2665 
2666 	return ret;
2667 }
2668 
2669 static inline bool f2fs_readonly(struct super_block *sb)
2670 {
2671 	return sb_rdonly(sb);
2672 }
2673 
2674 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2675 {
2676 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2677 }
2678 
2679 static inline bool is_dot_dotdot(const struct qstr *str)
2680 {
2681 	if (str->len == 1 && str->name[0] == '.')
2682 		return true;
2683 
2684 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2685 		return true;
2686 
2687 	return false;
2688 }
2689 
2690 static inline bool f2fs_may_extent_tree(struct inode *inode)
2691 {
2692 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2693 
2694 	if (!test_opt(sbi, EXTENT_CACHE) ||
2695 			is_inode_flag_set(inode, FI_NO_EXTENT))
2696 		return false;
2697 
2698 	/*
2699 	 * for recovered files during mount do not create extents
2700 	 * if shrinker is not registered.
2701 	 */
2702 	if (list_empty(&sbi->s_list))
2703 		return false;
2704 
2705 	return S_ISREG(inode->i_mode);
2706 }
2707 
2708 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2709 					size_t size, gfp_t flags)
2710 {
2711 	void *ret;
2712 
2713 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2714 		f2fs_show_injection_info(FAULT_KMALLOC);
2715 		return NULL;
2716 	}
2717 
2718 	ret = kmalloc(size, flags);
2719 	if (ret)
2720 		return ret;
2721 
2722 	return kvmalloc(size, flags);
2723 }
2724 
2725 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2726 					size_t size, gfp_t flags)
2727 {
2728 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2729 }
2730 
2731 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2732 					size_t size, gfp_t flags)
2733 {
2734 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2735 		f2fs_show_injection_info(FAULT_KVMALLOC);
2736 		return NULL;
2737 	}
2738 
2739 	return kvmalloc(size, flags);
2740 }
2741 
2742 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2743 					size_t size, gfp_t flags)
2744 {
2745 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2746 }
2747 
2748 static inline int get_extra_isize(struct inode *inode)
2749 {
2750 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2751 }
2752 
2753 static inline int get_inline_xattr_addrs(struct inode *inode)
2754 {
2755 	return F2FS_I(inode)->i_inline_xattr_size;
2756 }
2757 
2758 #define f2fs_get_inode_mode(i) \
2759 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2760 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2761 
2762 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2763 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2764 	offsetof(struct f2fs_inode, i_extra_isize))	\
2765 
2766 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2767 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2768 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2769 		sizeof((f2fs_inode)->field))			\
2770 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2771 
2772 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2773 {
2774 	int i;
2775 
2776 	spin_lock(&sbi->iostat_lock);
2777 	for (i = 0; i < NR_IO_TYPE; i++)
2778 		sbi->write_iostat[i] = 0;
2779 	spin_unlock(&sbi->iostat_lock);
2780 }
2781 
2782 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2783 			enum iostat_type type, unsigned long long io_bytes)
2784 {
2785 	if (!sbi->iostat_enable)
2786 		return;
2787 	spin_lock(&sbi->iostat_lock);
2788 	sbi->write_iostat[type] += io_bytes;
2789 
2790 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2791 		sbi->write_iostat[APP_BUFFERED_IO] =
2792 			sbi->write_iostat[APP_WRITE_IO] -
2793 			sbi->write_iostat[APP_DIRECT_IO];
2794 	spin_unlock(&sbi->iostat_lock);
2795 }
2796 
2797 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2798 
2799 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META &&	\
2800 				(!is_read_io((fio)->op) || (fio)->is_meta))
2801 
2802 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2803 					block_t blkaddr, int type);
2804 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2805 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2806 					block_t blkaddr, int type)
2807 {
2808 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2809 		f2fs_msg(sbi->sb, KERN_ERR,
2810 			"invalid blkaddr: %u, type: %d, run fsck to fix.",
2811 			blkaddr, type);
2812 		f2fs_bug_on(sbi, 1);
2813 	}
2814 }
2815 
2816 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2817 {
2818 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2819 		return false;
2820 	return true;
2821 }
2822 
2823 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2824 						block_t blkaddr)
2825 {
2826 	if (!__is_valid_data_blkaddr(blkaddr))
2827 		return false;
2828 	verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2829 	return true;
2830 }
2831 
2832 /*
2833  * file.c
2834  */
2835 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2836 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2837 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock,
2838 							bool buf_write);
2839 int f2fs_truncate(struct inode *inode);
2840 int f2fs_getattr(const struct path *path, struct kstat *stat,
2841 			u32 request_mask, unsigned int flags);
2842 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2843 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2844 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2845 int f2fs_precache_extents(struct inode *inode);
2846 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2847 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2848 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2849 int f2fs_pin_file_control(struct inode *inode, bool inc);
2850 
2851 /*
2852  * inode.c
2853  */
2854 void f2fs_set_inode_flags(struct inode *inode);
2855 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2856 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2857 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2858 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2859 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2860 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2861 void f2fs_update_inode_page(struct inode *inode);
2862 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2863 void f2fs_evict_inode(struct inode *inode);
2864 void f2fs_handle_failed_inode(struct inode *inode);
2865 
2866 /*
2867  * namei.c
2868  */
2869 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2870 							bool hot, bool set);
2871 struct dentry *f2fs_get_parent(struct dentry *child);
2872 
2873 /*
2874  * dir.c
2875  */
2876 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2877 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2878 			f2fs_hash_t namehash, int *max_slots,
2879 			struct f2fs_dentry_ptr *d);
2880 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2881 			unsigned int start_pos, struct fscrypt_str *fstr);
2882 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2883 			struct f2fs_dentry_ptr *d);
2884 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2885 			const struct qstr *new_name,
2886 			const struct qstr *orig_name, struct page *dpage);
2887 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2888 			unsigned int current_depth);
2889 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2890 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2891 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2892 			struct fscrypt_name *fname, struct page **res_page);
2893 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2894 			const struct qstr *child, struct page **res_page);
2895 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2896 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2897 			struct page **page);
2898 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2899 			struct page *page, struct inode *inode);
2900 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2901 			const struct qstr *name, f2fs_hash_t name_hash,
2902 			unsigned int bit_pos);
2903 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2904 			const struct qstr *orig_name,
2905 			struct inode *inode, nid_t ino, umode_t mode);
2906 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2907 			struct inode *inode, nid_t ino, umode_t mode);
2908 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2909 			struct inode *inode, nid_t ino, umode_t mode);
2910 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2911 			struct inode *dir, struct inode *inode);
2912 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2913 bool f2fs_empty_dir(struct inode *dir);
2914 
2915 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2916 {
2917 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2918 				inode, inode->i_ino, inode->i_mode);
2919 }
2920 
2921 /*
2922  * super.c
2923  */
2924 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2925 void f2fs_inode_synced(struct inode *inode);
2926 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2927 int f2fs_quota_sync(struct super_block *sb, int type);
2928 void f2fs_quota_off_umount(struct super_block *sb);
2929 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2930 int f2fs_sync_fs(struct super_block *sb, int sync);
2931 extern __printf(3, 4)
2932 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2933 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2934 
2935 /*
2936  * hash.c
2937  */
2938 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2939 				struct fscrypt_name *fname);
2940 
2941 /*
2942  * node.c
2943  */
2944 struct dnode_of_data;
2945 struct node_info;
2946 
2947 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2948 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2949 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2950 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2951 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2952 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2953 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2954 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2955 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2956 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2957 						struct node_info *ni);
2958 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2959 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2960 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2961 int f2fs_truncate_xattr_node(struct inode *inode);
2962 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2963 					unsigned int seq_id);
2964 int f2fs_remove_inode_page(struct inode *inode);
2965 struct page *f2fs_new_inode_page(struct inode *inode);
2966 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2967 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2968 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2969 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2970 int f2fs_move_node_page(struct page *node_page, int gc_type);
2971 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2972 			struct writeback_control *wbc, bool atomic,
2973 			unsigned int *seq_id);
2974 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2975 			struct writeback_control *wbc,
2976 			bool do_balance, enum iostat_type io_type);
2977 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2978 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2979 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2980 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2981 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2982 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2983 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2984 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2985 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2986 			unsigned int segno, struct f2fs_summary_block *sum);
2987 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2988 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2989 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2990 int __init f2fs_create_node_manager_caches(void);
2991 void f2fs_destroy_node_manager_caches(void);
2992 
2993 /*
2994  * segment.c
2995  */
2996 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
2997 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
2998 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
2999 void f2fs_drop_inmem_pages(struct inode *inode);
3000 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3001 int f2fs_commit_inmem_pages(struct inode *inode);
3002 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3003 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3004 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3005 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3006 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3007 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3008 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3009 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3010 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3011 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3012 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3013 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3014 					struct cp_control *cpc);
3015 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3016 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
3017 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3018 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3019 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3020 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3021 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3022 					struct cp_control *cpc);
3023 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3024 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3025 					block_t blk_addr);
3026 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3027 						enum iostat_type io_type);
3028 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3029 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3030 			struct f2fs_io_info *fio);
3031 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3032 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3033 			block_t old_blkaddr, block_t new_blkaddr,
3034 			bool recover_curseg, bool recover_newaddr);
3035 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3036 			block_t old_addr, block_t new_addr,
3037 			unsigned char version, bool recover_curseg,
3038 			bool recover_newaddr);
3039 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3040 			block_t old_blkaddr, block_t *new_blkaddr,
3041 			struct f2fs_summary *sum, int type,
3042 			struct f2fs_io_info *fio, bool add_list);
3043 void f2fs_wait_on_page_writeback(struct page *page,
3044 			enum page_type type, bool ordered, bool locked);
3045 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3046 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3047 								block_t len);
3048 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3049 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3050 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3051 			unsigned int val, int alloc);
3052 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3053 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3054 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3055 int __init f2fs_create_segment_manager_caches(void);
3056 void f2fs_destroy_segment_manager_caches(void);
3057 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3058 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3059 			enum page_type type, enum temp_type temp);
3060 
3061 /*
3062  * checkpoint.c
3063  */
3064 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3065 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3066 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3067 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3068 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3069 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3070 					block_t blkaddr, int type);
3071 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3072 			int type, bool sync);
3073 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3074 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3075 			long nr_to_write, enum iostat_type io_type);
3076 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3077 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3078 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3079 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3080 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3081 					unsigned int devidx, int type);
3082 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3083 					unsigned int devidx, int type);
3084 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3085 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3086 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3087 void f2fs_add_orphan_inode(struct inode *inode);
3088 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3089 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3090 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3091 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3092 void f2fs_remove_dirty_inode(struct inode *inode);
3093 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3094 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3095 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3096 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3097 int __init f2fs_create_checkpoint_caches(void);
3098 void f2fs_destroy_checkpoint_caches(void);
3099 
3100 /*
3101  * data.c
3102  */
3103 int f2fs_init_post_read_processing(void);
3104 void f2fs_destroy_post_read_processing(void);
3105 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3106 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3107 				struct inode *inode, struct page *page,
3108 				nid_t ino, enum page_type type);
3109 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3110 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3111 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3112 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3113 			block_t blk_addr, struct bio *bio);
3114 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3115 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3116 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3117 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3118 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3119 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3120 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3121 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3122 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3123 			int op_flags, bool for_write);
3124 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3125 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3126 			bool for_write);
3127 struct page *f2fs_get_new_data_page(struct inode *inode,
3128 			struct page *ipage, pgoff_t index, bool new_i_size);
3129 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3130 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3131 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3132 			int create, int flag);
3133 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3134 			u64 start, u64 len);
3135 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3136 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3137 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3138 			unsigned int length);
3139 int f2fs_release_page(struct page *page, gfp_t wait);
3140 #ifdef CONFIG_MIGRATION
3141 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3142 			struct page *page, enum migrate_mode mode);
3143 #endif
3144 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3145 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3146 
3147 /*
3148  * gc.c
3149  */
3150 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3151 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3152 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3153 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3154 			unsigned int segno);
3155 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3156 
3157 /*
3158  * recovery.c
3159  */
3160 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3161 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3162 
3163 /*
3164  * debug.c
3165  */
3166 #ifdef CONFIG_F2FS_STAT_FS
3167 struct f2fs_stat_info {
3168 	struct list_head stat_list;
3169 	struct f2fs_sb_info *sbi;
3170 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3171 	int main_area_segs, main_area_sections, main_area_zones;
3172 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3173 	unsigned long long hit_total, total_ext;
3174 	int ext_tree, zombie_tree, ext_node;
3175 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3176 	int ndirty_data, ndirty_qdata;
3177 	int inmem_pages;
3178 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3179 	int nats, dirty_nats, sits, dirty_sits;
3180 	int free_nids, avail_nids, alloc_nids;
3181 	int total_count, utilization;
3182 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3183 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3184 	int nr_dio_read, nr_dio_write;
3185 	unsigned int io_skip_bggc, other_skip_bggc;
3186 	int nr_flushing, nr_flushed, flush_list_empty;
3187 	int nr_discarding, nr_discarded;
3188 	int nr_discard_cmd;
3189 	unsigned int undiscard_blks;
3190 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3191 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3192 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3193 	unsigned int bimodal, avg_vblocks;
3194 	int util_free, util_valid, util_invalid;
3195 	int rsvd_segs, overp_segs;
3196 	int dirty_count, node_pages, meta_pages;
3197 	int prefree_count, call_count, cp_count, bg_cp_count;
3198 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3199 	int bg_node_segs, bg_data_segs;
3200 	int tot_blks, data_blks, node_blks;
3201 	int bg_data_blks, bg_node_blks;
3202 	unsigned long long skipped_atomic_files[2];
3203 	int curseg[NR_CURSEG_TYPE];
3204 	int cursec[NR_CURSEG_TYPE];
3205 	int curzone[NR_CURSEG_TYPE];
3206 
3207 	unsigned int meta_count[META_MAX];
3208 	unsigned int segment_count[2];
3209 	unsigned int block_count[2];
3210 	unsigned int inplace_count;
3211 	unsigned long long base_mem, cache_mem, page_mem;
3212 };
3213 
3214 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3215 {
3216 	return (struct f2fs_stat_info *)sbi->stat_info;
3217 }
3218 
3219 #define stat_inc_cp_count(si)		((si)->cp_count++)
3220 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3221 #define stat_inc_call_count(si)		((si)->call_count++)
3222 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3223 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3224 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3225 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3226 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3227 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3228 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3229 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3230 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3231 #define stat_inc_inline_xattr(inode)					\
3232 	do {								\
3233 		if (f2fs_has_inline_xattr(inode))			\
3234 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3235 	} while (0)
3236 #define stat_dec_inline_xattr(inode)					\
3237 	do {								\
3238 		if (f2fs_has_inline_xattr(inode))			\
3239 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3240 	} while (0)
3241 #define stat_inc_inline_inode(inode)					\
3242 	do {								\
3243 		if (f2fs_has_inline_data(inode))			\
3244 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3245 	} while (0)
3246 #define stat_dec_inline_inode(inode)					\
3247 	do {								\
3248 		if (f2fs_has_inline_data(inode))			\
3249 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3250 	} while (0)
3251 #define stat_inc_inline_dir(inode)					\
3252 	do {								\
3253 		if (f2fs_has_inline_dentry(inode))			\
3254 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3255 	} while (0)
3256 #define stat_dec_inline_dir(inode)					\
3257 	do {								\
3258 		if (f2fs_has_inline_dentry(inode))			\
3259 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3260 	} while (0)
3261 #define stat_inc_meta_count(sbi, blkaddr)				\
3262 	do {								\
3263 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3264 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3265 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3266 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3267 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3268 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3269 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3270 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3271 	} while (0)
3272 #define stat_inc_seg_type(sbi, curseg)					\
3273 		((sbi)->segment_count[(curseg)->alloc_type]++)
3274 #define stat_inc_block_count(sbi, curseg)				\
3275 		((sbi)->block_count[(curseg)->alloc_type]++)
3276 #define stat_inc_inplace_blocks(sbi)					\
3277 		(atomic_inc(&(sbi)->inplace_count))
3278 #define stat_inc_atomic_write(inode)					\
3279 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3280 #define stat_dec_atomic_write(inode)					\
3281 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3282 #define stat_update_max_atomic_write(inode)				\
3283 	do {								\
3284 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3285 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3286 		if (cur > max)						\
3287 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3288 	} while (0)
3289 #define stat_inc_volatile_write(inode)					\
3290 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3291 #define stat_dec_volatile_write(inode)					\
3292 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3293 #define stat_update_max_volatile_write(inode)				\
3294 	do {								\
3295 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3296 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3297 		if (cur > max)						\
3298 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3299 	} while (0)
3300 #define stat_inc_seg_count(sbi, type, gc_type)				\
3301 	do {								\
3302 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3303 		si->tot_segs++;						\
3304 		if ((type) == SUM_TYPE_DATA) {				\
3305 			si->data_segs++;				\
3306 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3307 		} else {						\
3308 			si->node_segs++;				\
3309 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3310 		}							\
3311 	} while (0)
3312 
3313 #define stat_inc_tot_blk_count(si, blks)				\
3314 	((si)->tot_blks += (blks))
3315 
3316 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3317 	do {								\
3318 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3319 		stat_inc_tot_blk_count(si, blks);			\
3320 		si->data_blks += (blks);				\
3321 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3322 	} while (0)
3323 
3324 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3325 	do {								\
3326 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3327 		stat_inc_tot_blk_count(si, blks);			\
3328 		si->node_blks += (blks);				\
3329 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3330 	} while (0)
3331 
3332 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3333 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3334 void __init f2fs_create_root_stats(void);
3335 void f2fs_destroy_root_stats(void);
3336 #else
3337 #define stat_inc_cp_count(si)				do { } while (0)
3338 #define stat_inc_bg_cp_count(si)			do { } while (0)
3339 #define stat_inc_call_count(si)				do { } while (0)
3340 #define stat_inc_bggc_count(si)				do { } while (0)
3341 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3342 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3343 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3344 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3345 #define stat_inc_total_hit(sb)				do { } while (0)
3346 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3347 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3348 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3349 #define stat_inc_inline_xattr(inode)			do { } while (0)
3350 #define stat_dec_inline_xattr(inode)			do { } while (0)
3351 #define stat_inc_inline_inode(inode)			do { } while (0)
3352 #define stat_dec_inline_inode(inode)			do { } while (0)
3353 #define stat_inc_inline_dir(inode)			do { } while (0)
3354 #define stat_dec_inline_dir(inode)			do { } while (0)
3355 #define stat_inc_atomic_write(inode)			do { } while (0)
3356 #define stat_dec_atomic_write(inode)			do { } while (0)
3357 #define stat_update_max_atomic_write(inode)		do { } while (0)
3358 #define stat_inc_volatile_write(inode)			do { } while (0)
3359 #define stat_dec_volatile_write(inode)			do { } while (0)
3360 #define stat_update_max_volatile_write(inode)		do { } while (0)
3361 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3362 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3363 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3364 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3365 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3366 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3367 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3368 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3369 
3370 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3371 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3372 static inline void __init f2fs_create_root_stats(void) { }
3373 static inline void f2fs_destroy_root_stats(void) { }
3374 #endif
3375 
3376 extern const struct file_operations f2fs_dir_operations;
3377 extern const struct file_operations f2fs_file_operations;
3378 extern const struct inode_operations f2fs_file_inode_operations;
3379 extern const struct address_space_operations f2fs_dblock_aops;
3380 extern const struct address_space_operations f2fs_node_aops;
3381 extern const struct address_space_operations f2fs_meta_aops;
3382 extern const struct inode_operations f2fs_dir_inode_operations;
3383 extern const struct inode_operations f2fs_symlink_inode_operations;
3384 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3385 extern const struct inode_operations f2fs_special_inode_operations;
3386 extern struct kmem_cache *f2fs_inode_entry_slab;
3387 
3388 /*
3389  * inline.c
3390  */
3391 bool f2fs_may_inline_data(struct inode *inode);
3392 bool f2fs_may_inline_dentry(struct inode *inode);
3393 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3394 void f2fs_truncate_inline_inode(struct inode *inode,
3395 						struct page *ipage, u64 from);
3396 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3397 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3398 int f2fs_convert_inline_inode(struct inode *inode);
3399 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3400 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3401 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3402 			struct fscrypt_name *fname, struct page **res_page);
3403 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3404 			struct page *ipage);
3405 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3406 			const struct qstr *orig_name,
3407 			struct inode *inode, nid_t ino, umode_t mode);
3408 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3409 				struct page *page, struct inode *dir,
3410 				struct inode *inode);
3411 bool f2fs_empty_inline_dir(struct inode *dir);
3412 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3413 			struct fscrypt_str *fstr);
3414 int f2fs_inline_data_fiemap(struct inode *inode,
3415 			struct fiemap_extent_info *fieinfo,
3416 			__u64 start, __u64 len);
3417 
3418 /*
3419  * shrinker.c
3420  */
3421 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3422 			struct shrink_control *sc);
3423 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3424 			struct shrink_control *sc);
3425 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3426 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3427 
3428 /*
3429  * extent_cache.c
3430  */
3431 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3432 				struct rb_entry *cached_re, unsigned int ofs);
3433 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3434 				struct rb_root_cached *root,
3435 				struct rb_node **parent,
3436 				unsigned int ofs, bool *leftmost);
3437 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3438 		struct rb_entry *cached_re, unsigned int ofs,
3439 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3440 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3441 		bool force, bool *leftmost);
3442 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3443 						struct rb_root_cached *root);
3444 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3445 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3446 void f2fs_drop_extent_tree(struct inode *inode);
3447 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3448 void f2fs_destroy_extent_tree(struct inode *inode);
3449 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3450 			struct extent_info *ei);
3451 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3452 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3453 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3454 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3455 int __init f2fs_create_extent_cache(void);
3456 void f2fs_destroy_extent_cache(void);
3457 
3458 /*
3459  * sysfs.c
3460  */
3461 int __init f2fs_init_sysfs(void);
3462 void f2fs_exit_sysfs(void);
3463 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3464 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3465 
3466 /*
3467  * crypto support
3468  */
3469 static inline bool f2fs_encrypted_inode(struct inode *inode)
3470 {
3471 	return file_is_encrypt(inode);
3472 }
3473 
3474 static inline bool f2fs_encrypted_file(struct inode *inode)
3475 {
3476 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3477 }
3478 
3479 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3480 {
3481 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3482 	file_set_encrypt(inode);
3483 	f2fs_set_inode_flags(inode);
3484 #endif
3485 }
3486 
3487 /*
3488  * Returns true if the reads of the inode's data need to undergo some
3489  * postprocessing step, like decryption or authenticity verification.
3490  */
3491 static inline bool f2fs_post_read_required(struct inode *inode)
3492 {
3493 	return f2fs_encrypted_file(inode);
3494 }
3495 
3496 #define F2FS_FEATURE_FUNCS(name, flagname) \
3497 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3498 { \
3499 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3500 }
3501 
3502 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3503 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3504 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3505 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3506 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3507 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3508 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3509 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3510 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3511 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3512 
3513 #ifdef CONFIG_BLK_DEV_ZONED
3514 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3515 			struct block_device *bdev, block_t blkaddr)
3516 {
3517 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3518 	int i;
3519 
3520 	for (i = 0; i < sbi->s_ndevs; i++)
3521 		if (FDEV(i).bdev == bdev)
3522 			return FDEV(i).blkz_type[zno];
3523 	return -EINVAL;
3524 }
3525 #endif
3526 
3527 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3528 {
3529 	return f2fs_sb_has_blkzoned(sbi);
3530 }
3531 
3532 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3533 {
3534 	return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3535 }
3536 
3537 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3538 {
3539 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3540 					f2fs_hw_should_discard(sbi);
3541 }
3542 
3543 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3544 {
3545 	clear_opt(sbi, ADAPTIVE);
3546 	clear_opt(sbi, LFS);
3547 
3548 	switch (mt) {
3549 	case F2FS_MOUNT_ADAPTIVE:
3550 		set_opt(sbi, ADAPTIVE);
3551 		break;
3552 	case F2FS_MOUNT_LFS:
3553 		set_opt(sbi, LFS);
3554 		break;
3555 	}
3556 }
3557 
3558 static inline bool f2fs_may_encrypt(struct inode *inode)
3559 {
3560 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3561 	umode_t mode = inode->i_mode;
3562 
3563 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3564 #else
3565 	return false;
3566 #endif
3567 }
3568 
3569 static inline int block_unaligned_IO(struct inode *inode,
3570 				struct kiocb *iocb, struct iov_iter *iter)
3571 {
3572 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3573 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3574 	loff_t offset = iocb->ki_pos;
3575 	unsigned long align = offset | iov_iter_alignment(iter);
3576 
3577 	return align & blocksize_mask;
3578 }
3579 
3580 static inline int allow_outplace_dio(struct inode *inode,
3581 				struct kiocb *iocb, struct iov_iter *iter)
3582 {
3583 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3584 	int rw = iov_iter_rw(iter);
3585 
3586 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3587 				!block_unaligned_IO(inode, iocb, iter));
3588 }
3589 
3590 static inline bool f2fs_force_buffered_io(struct inode *inode,
3591 				struct kiocb *iocb, struct iov_iter *iter)
3592 {
3593 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3594 	int rw = iov_iter_rw(iter);
3595 
3596 	if (f2fs_post_read_required(inode))
3597 		return true;
3598 	if (sbi->s_ndevs)
3599 		return true;
3600 	/*
3601 	 * for blkzoned device, fallback direct IO to buffered IO, so
3602 	 * all IOs can be serialized by log-structured write.
3603 	 */
3604 	if (f2fs_sb_has_blkzoned(sbi))
3605 		return true;
3606 	if (test_opt(sbi, LFS) && (rw == WRITE) &&
3607 				block_unaligned_IO(inode, iocb, iter))
3608 		return true;
3609 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3610 		return true;
3611 
3612 	return false;
3613 }
3614 
3615 #ifdef CONFIG_F2FS_FAULT_INJECTION
3616 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3617 							unsigned int type);
3618 #else
3619 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3620 #endif
3621 
3622 #endif
3623 
3624 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3625 {
3626 #ifdef CONFIG_QUOTA
3627 	if (f2fs_sb_has_quota_ino(sbi))
3628 		return true;
3629 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3630 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3631 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3632 		return true;
3633 #endif
3634 	return false;
3635 }
3636