xref: /openbmc/linux/fs/f2fs/f2fs.h (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * fs/f2fs/f2fs.h
4   *
5   * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6   *             http://www.samsung.com/
7   */
8  #ifndef _LINUX_F2FS_H
9  #define _LINUX_F2FS_H
10  
11  #include <linux/uio.h>
12  #include <linux/types.h>
13  #include <linux/page-flags.h>
14  #include <linux/buffer_head.h>
15  #include <linux/slab.h>
16  #include <linux/crc32.h>
17  #include <linux/magic.h>
18  #include <linux/kobject.h>
19  #include <linux/sched.h>
20  #include <linux/cred.h>
21  #include <linux/sched/mm.h>
22  #include <linux/vmalloc.h>
23  #include <linux/bio.h>
24  #include <linux/blkdev.h>
25  #include <linux/quotaops.h>
26  #include <linux/part_stat.h>
27  #include <crypto/hash.h>
28  
29  #include <linux/fscrypt.h>
30  #include <linux/fsverity.h>
31  
32  struct pagevec;
33  
34  #ifdef CONFIG_F2FS_CHECK_FS
35  #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36  #else
37  #define f2fs_bug_on(sbi, condition)					\
38  	do {								\
39  		if (WARN_ON(condition))					\
40  			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41  	} while (0)
42  #endif
43  
44  enum {
45  	FAULT_KMALLOC,
46  	FAULT_KVMALLOC,
47  	FAULT_PAGE_ALLOC,
48  	FAULT_PAGE_GET,
49  	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50  	FAULT_ALLOC_NID,
51  	FAULT_ORPHAN,
52  	FAULT_BLOCK,
53  	FAULT_DIR_DEPTH,
54  	FAULT_EVICT_INODE,
55  	FAULT_TRUNCATE,
56  	FAULT_READ_IO,
57  	FAULT_CHECKPOINT,
58  	FAULT_DISCARD,
59  	FAULT_WRITE_IO,
60  	FAULT_SLAB_ALLOC,
61  	FAULT_DQUOT_INIT,
62  	FAULT_LOCK_OP,
63  	FAULT_BLKADDR,
64  	FAULT_MAX,
65  };
66  
67  #ifdef CONFIG_F2FS_FAULT_INJECTION
68  #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
69  
70  struct f2fs_fault_info {
71  	atomic_t inject_ops;
72  	int inject_rate;
73  	unsigned int inject_type;
74  };
75  
76  extern const char *f2fs_fault_name[FAULT_MAX];
77  #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
78  
79  /* maximum retry count for injected failure */
80  #define DEFAULT_FAILURE_RETRY_COUNT		8
81  #else
82  #define DEFAULT_FAILURE_RETRY_COUNT		1
83  #endif
84  
85  /*
86   * For mount options
87   */
88  #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
89  #define F2FS_MOUNT_DISCARD		0x00000002
90  #define F2FS_MOUNT_NOHEAP		0x00000004
91  #define F2FS_MOUNT_XATTR_USER		0x00000008
92  #define F2FS_MOUNT_POSIX_ACL		0x00000010
93  #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
94  #define F2FS_MOUNT_INLINE_XATTR		0x00000040
95  #define F2FS_MOUNT_INLINE_DATA		0x00000080
96  #define F2FS_MOUNT_INLINE_DENTRY	0x00000100
97  #define F2FS_MOUNT_FLUSH_MERGE		0x00000200
98  #define F2FS_MOUNT_NOBARRIER		0x00000400
99  #define F2FS_MOUNT_FASTBOOT		0x00000800
100  #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
101  #define F2FS_MOUNT_DATA_FLUSH		0x00002000
102  #define F2FS_MOUNT_FAULT_INJECTION	0x00004000
103  #define F2FS_MOUNT_USRQUOTA		0x00008000
104  #define F2FS_MOUNT_GRPQUOTA		0x00010000
105  #define F2FS_MOUNT_PRJQUOTA		0x00020000
106  #define F2FS_MOUNT_QUOTA		0x00040000
107  #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
108  #define F2FS_MOUNT_RESERVE_ROOT		0x00100000
109  #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
110  #define F2FS_MOUNT_NORECOVERY		0x00400000
111  #define F2FS_MOUNT_ATGC			0x00800000
112  #define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
113  #define	F2FS_MOUNT_GC_MERGE		0x02000000
114  #define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
115  #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
116  
117  #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
118  #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
119  #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
120  #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
121  
122  #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
123  		typecheck(unsigned long long, b) &&			\
124  		((long long)((a) - (b)) > 0))
125  
126  typedef u32 block_t;	/*
127  			 * should not change u32, since it is the on-disk block
128  			 * address format, __le32.
129  			 */
130  typedef u32 nid_t;
131  
132  #define COMPRESS_EXT_NUM		16
133  
134  /*
135   * An implementation of an rwsem that is explicitly unfair to readers. This
136   * prevents priority inversion when a low-priority reader acquires the read lock
137   * while sleeping on the write lock but the write lock is needed by
138   * higher-priority clients.
139   */
140  
141  struct f2fs_rwsem {
142          struct rw_semaphore internal_rwsem;
143  #ifdef CONFIG_F2FS_UNFAIR_RWSEM
144          wait_queue_head_t read_waiters;
145  #endif
146  };
147  
148  struct f2fs_mount_info {
149  	unsigned int opt;
150  	block_t root_reserved_blocks;	/* root reserved blocks */
151  	kuid_t s_resuid;		/* reserved blocks for uid */
152  	kgid_t s_resgid;		/* reserved blocks for gid */
153  	int active_logs;		/* # of active logs */
154  	int inline_xattr_size;		/* inline xattr size */
155  #ifdef CONFIG_F2FS_FAULT_INJECTION
156  	struct f2fs_fault_info fault_info;	/* For fault injection */
157  #endif
158  #ifdef CONFIG_QUOTA
159  	/* Names of quota files with journalled quota */
160  	char *s_qf_names[MAXQUOTAS];
161  	int s_jquota_fmt;			/* Format of quota to use */
162  #endif
163  	/* For which write hints are passed down to block layer */
164  	int alloc_mode;			/* segment allocation policy */
165  	int fsync_mode;			/* fsync policy */
166  	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
167  	int bggc_mode;			/* bggc mode: off, on or sync */
168  	int memory_mode;		/* memory mode */
169  	int errors;			/* errors parameter */
170  	int discard_unit;		/*
171  					 * discard command's offset/size should
172  					 * be aligned to this unit: block,
173  					 * segment or section
174  					 */
175  	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
176  	block_t unusable_cap_perc;	/* percentage for cap */
177  	block_t unusable_cap;		/* Amount of space allowed to be
178  					 * unusable when disabling checkpoint
179  					 */
180  
181  	/* For compression */
182  	unsigned char compress_algorithm;	/* algorithm type */
183  	unsigned char compress_log_size;	/* cluster log size */
184  	unsigned char compress_level;		/* compress level */
185  	bool compress_chksum;			/* compressed data chksum */
186  	unsigned char compress_ext_cnt;		/* extension count */
187  	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
188  	int compress_mode;			/* compression mode */
189  	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
190  	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
191  };
192  
193  #define F2FS_FEATURE_ENCRYPT			0x00000001
194  #define F2FS_FEATURE_BLKZONED			0x00000002
195  #define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
196  #define F2FS_FEATURE_EXTRA_ATTR			0x00000008
197  #define F2FS_FEATURE_PRJQUOTA			0x00000010
198  #define F2FS_FEATURE_INODE_CHKSUM		0x00000020
199  #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
200  #define F2FS_FEATURE_QUOTA_INO			0x00000080
201  #define F2FS_FEATURE_INODE_CRTIME		0x00000100
202  #define F2FS_FEATURE_LOST_FOUND			0x00000200
203  #define F2FS_FEATURE_VERITY			0x00000400
204  #define F2FS_FEATURE_SB_CHKSUM			0x00000800
205  #define F2FS_FEATURE_CASEFOLD			0x00001000
206  #define F2FS_FEATURE_COMPRESSION		0x00002000
207  #define F2FS_FEATURE_RO				0x00004000
208  
209  #define __F2FS_HAS_FEATURE(raw_super, mask)				\
210  	((raw_super->feature & cpu_to_le32(mask)) != 0)
211  #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
212  
213  /*
214   * Default values for user and/or group using reserved blocks
215   */
216  #define	F2FS_DEF_RESUID		0
217  #define	F2FS_DEF_RESGID		0
218  
219  /*
220   * For checkpoint manager
221   */
222  enum {
223  	NAT_BITMAP,
224  	SIT_BITMAP
225  };
226  
227  #define	CP_UMOUNT	0x00000001
228  #define	CP_FASTBOOT	0x00000002
229  #define	CP_SYNC		0x00000004
230  #define	CP_RECOVERY	0x00000008
231  #define	CP_DISCARD	0x00000010
232  #define CP_TRIMMED	0x00000020
233  #define CP_PAUSE	0x00000040
234  #define CP_RESIZE 	0x00000080
235  
236  #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
237  #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
238  #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
239  #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
240  #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
241  #define DEF_CP_INTERVAL			60	/* 60 secs */
242  #define DEF_IDLE_INTERVAL		5	/* 5 secs */
243  #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
244  #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
245  #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
246  
247  struct cp_control {
248  	int reason;
249  	__u64 trim_start;
250  	__u64 trim_end;
251  	__u64 trim_minlen;
252  };
253  
254  /*
255   * indicate meta/data type
256   */
257  enum {
258  	META_CP,
259  	META_NAT,
260  	META_SIT,
261  	META_SSA,
262  	META_MAX,
263  	META_POR,
264  	DATA_GENERIC,		/* check range only */
265  	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
266  	DATA_GENERIC_ENHANCE_READ,	/*
267  					 * strong check on range and segment
268  					 * bitmap but no warning due to race
269  					 * condition of read on truncated area
270  					 * by extent_cache
271  					 */
272  	DATA_GENERIC_ENHANCE_UPDATE,	/*
273  					 * strong check on range and segment
274  					 * bitmap for update case
275  					 */
276  	META_GENERIC,
277  };
278  
279  /* for the list of ino */
280  enum {
281  	ORPHAN_INO,		/* for orphan ino list */
282  	APPEND_INO,		/* for append ino list */
283  	UPDATE_INO,		/* for update ino list */
284  	TRANS_DIR_INO,		/* for transactions dir ino list */
285  	XATTR_DIR_INO,		/* for xattr updated dir ino list */
286  	FLUSH_INO,		/* for multiple device flushing */
287  	MAX_INO_ENTRY,		/* max. list */
288  };
289  
290  struct ino_entry {
291  	struct list_head list;		/* list head */
292  	nid_t ino;			/* inode number */
293  	unsigned int dirty_device;	/* dirty device bitmap */
294  };
295  
296  /* for the list of inodes to be GCed */
297  struct inode_entry {
298  	struct list_head list;	/* list head */
299  	struct inode *inode;	/* vfs inode pointer */
300  };
301  
302  struct fsync_node_entry {
303  	struct list_head list;	/* list head */
304  	struct page *page;	/* warm node page pointer */
305  	unsigned int seq_id;	/* sequence id */
306  };
307  
308  struct ckpt_req {
309  	struct completion wait;		/* completion for checkpoint done */
310  	struct llist_node llnode;	/* llist_node to be linked in wait queue */
311  	int ret;			/* return code of checkpoint */
312  	ktime_t queue_time;		/* request queued time */
313  };
314  
315  struct ckpt_req_control {
316  	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
317  	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
318  	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
319  	atomic_t issued_ckpt;		/* # of actually issued ckpts */
320  	atomic_t total_ckpt;		/* # of total ckpts */
321  	atomic_t queued_ckpt;		/* # of queued ckpts */
322  	struct llist_head issue_list;	/* list for command issue */
323  	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
324  	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
325  	unsigned int peak_time;		/* peak wait time in msec until now */
326  };
327  
328  /* for the bitmap indicate blocks to be discarded */
329  struct discard_entry {
330  	struct list_head list;	/* list head */
331  	block_t start_blkaddr;	/* start blockaddr of current segment */
332  	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
333  };
334  
335  /* minimum discard granularity, unit: block count */
336  #define MIN_DISCARD_GRANULARITY		1
337  /* default discard granularity of inner discard thread, unit: block count */
338  #define DEFAULT_DISCARD_GRANULARITY		16
339  /* default maximum discard granularity of ordered discard, unit: block count */
340  #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
341  
342  /* max discard pend list number */
343  #define MAX_PLIST_NUM		512
344  #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
345  					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
346  
347  enum {
348  	D_PREP,			/* initial */
349  	D_PARTIAL,		/* partially submitted */
350  	D_SUBMIT,		/* all submitted */
351  	D_DONE,			/* finished */
352  };
353  
354  struct discard_info {
355  	block_t lstart;			/* logical start address */
356  	block_t len;			/* length */
357  	block_t start;			/* actual start address in dev */
358  };
359  
360  struct discard_cmd {
361  	struct rb_node rb_node;		/* rb node located in rb-tree */
362  	struct discard_info di;		/* discard info */
363  	struct list_head list;		/* command list */
364  	struct completion wait;		/* compleation */
365  	struct block_device *bdev;	/* bdev */
366  	unsigned short ref;		/* reference count */
367  	unsigned char state;		/* state */
368  	unsigned char queued;		/* queued discard */
369  	int error;			/* bio error */
370  	spinlock_t lock;		/* for state/bio_ref updating */
371  	unsigned short bio_ref;		/* bio reference count */
372  };
373  
374  enum {
375  	DPOLICY_BG,
376  	DPOLICY_FORCE,
377  	DPOLICY_FSTRIM,
378  	DPOLICY_UMOUNT,
379  	MAX_DPOLICY,
380  };
381  
382  struct discard_policy {
383  	int type;			/* type of discard */
384  	unsigned int min_interval;	/* used for candidates exist */
385  	unsigned int mid_interval;	/* used for device busy */
386  	unsigned int max_interval;	/* used for candidates not exist */
387  	unsigned int max_requests;	/* # of discards issued per round */
388  	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
389  	bool io_aware;			/* issue discard in idle time */
390  	bool sync;			/* submit discard with REQ_SYNC flag */
391  	bool ordered;			/* issue discard by lba order */
392  	bool timeout;			/* discard timeout for put_super */
393  	unsigned int granularity;	/* discard granularity */
394  };
395  
396  struct discard_cmd_control {
397  	struct task_struct *f2fs_issue_discard;	/* discard thread */
398  	struct list_head entry_list;		/* 4KB discard entry list */
399  	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
400  	struct list_head wait_list;		/* store on-flushing entries */
401  	struct list_head fstrim_list;		/* in-flight discard from fstrim */
402  	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
403  	struct mutex cmd_lock;
404  	unsigned int nr_discards;		/* # of discards in the list */
405  	unsigned int max_discards;		/* max. discards to be issued */
406  	unsigned int max_discard_request;	/* max. discard request per round */
407  	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
408  	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
409  	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
410  	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
411  	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
412  	unsigned int discard_granularity;	/* discard granularity */
413  	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
414  	unsigned int undiscard_blks;		/* # of undiscard blocks */
415  	unsigned int next_pos;			/* next discard position */
416  	atomic_t issued_discard;		/* # of issued discard */
417  	atomic_t queued_discard;		/* # of queued discard */
418  	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
419  	struct rb_root_cached root;		/* root of discard rb-tree */
420  	bool rbtree_check;			/* config for consistence check */
421  	bool discard_wake;			/* to wake up discard thread */
422  };
423  
424  /* for the list of fsync inodes, used only during recovery */
425  struct fsync_inode_entry {
426  	struct list_head list;	/* list head */
427  	struct inode *inode;	/* vfs inode pointer */
428  	block_t blkaddr;	/* block address locating the last fsync */
429  	block_t last_dentry;	/* block address locating the last dentry */
430  };
431  
432  #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
433  #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
434  
435  #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
436  #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
437  #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
438  #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
439  
440  #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
441  #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
442  
443  static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
444  {
445  	int before = nats_in_cursum(journal);
446  
447  	journal->n_nats = cpu_to_le16(before + i);
448  	return before;
449  }
450  
451  static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
452  {
453  	int before = sits_in_cursum(journal);
454  
455  	journal->n_sits = cpu_to_le16(before + i);
456  	return before;
457  }
458  
459  static inline bool __has_cursum_space(struct f2fs_journal *journal,
460  							int size, int type)
461  {
462  	if (type == NAT_JOURNAL)
463  		return size <= MAX_NAT_JENTRIES(journal);
464  	return size <= MAX_SIT_JENTRIES(journal);
465  }
466  
467  /* for inline stuff */
468  #define DEF_INLINE_RESERVED_SIZE	1
469  static inline int get_extra_isize(struct inode *inode);
470  static inline int get_inline_xattr_addrs(struct inode *inode);
471  #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
472  				(CUR_ADDRS_PER_INODE(inode) -		\
473  				get_inline_xattr_addrs(inode) -	\
474  				DEF_INLINE_RESERVED_SIZE))
475  
476  /* for inline dir */
477  #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
478  				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
479  				BITS_PER_BYTE + 1))
480  #define INLINE_DENTRY_BITMAP_SIZE(inode) \
481  	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
482  #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
483  				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
484  				NR_INLINE_DENTRY(inode) + \
485  				INLINE_DENTRY_BITMAP_SIZE(inode)))
486  
487  /*
488   * For INODE and NODE manager
489   */
490  /* for directory operations */
491  
492  struct f2fs_filename {
493  	/*
494  	 * The filename the user specified.  This is NULL for some
495  	 * filesystem-internal operations, e.g. converting an inline directory
496  	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
497  	 */
498  	const struct qstr *usr_fname;
499  
500  	/*
501  	 * The on-disk filename.  For encrypted directories, this is encrypted.
502  	 * This may be NULL for lookups in an encrypted dir without the key.
503  	 */
504  	struct fscrypt_str disk_name;
505  
506  	/* The dirhash of this filename */
507  	f2fs_hash_t hash;
508  
509  #ifdef CONFIG_FS_ENCRYPTION
510  	/*
511  	 * For lookups in encrypted directories: either the buffer backing
512  	 * disk_name, or a buffer that holds the decoded no-key name.
513  	 */
514  	struct fscrypt_str crypto_buf;
515  #endif
516  #if IS_ENABLED(CONFIG_UNICODE)
517  	/*
518  	 * For casefolded directories: the casefolded name, but it's left NULL
519  	 * if the original name is not valid Unicode, if the original name is
520  	 * "." or "..", if the directory is both casefolded and encrypted and
521  	 * its encryption key is unavailable, or if the filesystem is doing an
522  	 * internal operation where usr_fname is also NULL.  In all these cases
523  	 * we fall back to treating the name as an opaque byte sequence.
524  	 */
525  	struct fscrypt_str cf_name;
526  #endif
527  };
528  
529  struct f2fs_dentry_ptr {
530  	struct inode *inode;
531  	void *bitmap;
532  	struct f2fs_dir_entry *dentry;
533  	__u8 (*filename)[F2FS_SLOT_LEN];
534  	int max;
535  	int nr_bitmap;
536  };
537  
538  static inline void make_dentry_ptr_block(struct inode *inode,
539  		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
540  {
541  	d->inode = inode;
542  	d->max = NR_DENTRY_IN_BLOCK;
543  	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
544  	d->bitmap = t->dentry_bitmap;
545  	d->dentry = t->dentry;
546  	d->filename = t->filename;
547  }
548  
549  static inline void make_dentry_ptr_inline(struct inode *inode,
550  					struct f2fs_dentry_ptr *d, void *t)
551  {
552  	int entry_cnt = NR_INLINE_DENTRY(inode);
553  	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
554  	int reserved_size = INLINE_RESERVED_SIZE(inode);
555  
556  	d->inode = inode;
557  	d->max = entry_cnt;
558  	d->nr_bitmap = bitmap_size;
559  	d->bitmap = t;
560  	d->dentry = t + bitmap_size + reserved_size;
561  	d->filename = t + bitmap_size + reserved_size +
562  					SIZE_OF_DIR_ENTRY * entry_cnt;
563  }
564  
565  /*
566   * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
567   * as its node offset to distinguish from index node blocks.
568   * But some bits are used to mark the node block.
569   */
570  #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
571  				>> OFFSET_BIT_SHIFT)
572  enum {
573  	ALLOC_NODE,			/* allocate a new node page if needed */
574  	LOOKUP_NODE,			/* look up a node without readahead */
575  	LOOKUP_NODE_RA,			/*
576  					 * look up a node with readahead called
577  					 * by get_data_block.
578  					 */
579  };
580  
581  #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
582  
583  /* congestion wait timeout value, default: 20ms */
584  #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
585  
586  /* maximum retry quota flush count */
587  #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
588  
589  /* maximum retry of EIO'ed page */
590  #define MAX_RETRY_PAGE_EIO			100
591  
592  #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
593  
594  #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
595  
596  /* dirty segments threshold for triggering CP */
597  #define DEFAULT_DIRTY_THRESHOLD		4
598  
599  #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
600  #define RECOVERY_MIN_RA_BLOCKS		1
601  
602  #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
603  
604  /* for in-memory extent cache entry */
605  #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
606  
607  /* number of extent info in extent cache we try to shrink */
608  #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
609  
610  /* number of age extent info in extent cache we try to shrink */
611  #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
612  #define LAST_AGE_WEIGHT			30
613  #define SAME_AGE_REGION			1024
614  
615  /*
616   * Define data block with age less than 1GB as hot data
617   * define data block with age less than 10GB but more than 1GB as warm data
618   */
619  #define DEF_HOT_DATA_AGE_THRESHOLD	262144
620  #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
621  
622  /* extent cache type */
623  enum extent_type {
624  	EX_READ,
625  	EX_BLOCK_AGE,
626  	NR_EXTENT_CACHES,
627  };
628  
629  struct extent_info {
630  	unsigned int fofs;		/* start offset in a file */
631  	unsigned int len;		/* length of the extent */
632  	union {
633  		/* read extent_cache */
634  		struct {
635  			/* start block address of the extent */
636  			block_t blk;
637  #ifdef CONFIG_F2FS_FS_COMPRESSION
638  			/* physical extent length of compressed blocks */
639  			unsigned int c_len;
640  #endif
641  		};
642  		/* block age extent_cache */
643  		struct {
644  			/* block age of the extent */
645  			unsigned long long age;
646  			/* last total blocks allocated */
647  			unsigned long long last_blocks;
648  		};
649  	};
650  };
651  
652  struct extent_node {
653  	struct rb_node rb_node;		/* rb node located in rb-tree */
654  	struct extent_info ei;		/* extent info */
655  	struct list_head list;		/* node in global extent list of sbi */
656  	struct extent_tree *et;		/* extent tree pointer */
657  };
658  
659  struct extent_tree {
660  	nid_t ino;			/* inode number */
661  	enum extent_type type;		/* keep the extent tree type */
662  	struct rb_root_cached root;	/* root of extent info rb-tree */
663  	struct extent_node *cached_en;	/* recently accessed extent node */
664  	struct list_head list;		/* to be used by sbi->zombie_list */
665  	rwlock_t lock;			/* protect extent info rb-tree */
666  	atomic_t node_cnt;		/* # of extent node in rb-tree*/
667  	bool largest_updated;		/* largest extent updated */
668  	struct extent_info largest;	/* largest cached extent for EX_READ */
669  };
670  
671  struct extent_tree_info {
672  	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
673  	struct mutex extent_tree_lock;	/* locking extent radix tree */
674  	struct list_head extent_list;		/* lru list for shrinker */
675  	spinlock_t extent_lock;			/* locking extent lru list */
676  	atomic_t total_ext_tree;		/* extent tree count */
677  	struct list_head zombie_list;		/* extent zombie tree list */
678  	atomic_t total_zombie_tree;		/* extent zombie tree count */
679  	atomic_t total_ext_node;		/* extent info count */
680  };
681  
682  /*
683   * State of block returned by f2fs_map_blocks.
684   */
685  #define F2FS_MAP_NEW		(1U << 0)
686  #define F2FS_MAP_MAPPED		(1U << 1)
687  #define F2FS_MAP_DELALLOC	(1U << 2)
688  #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
689  				F2FS_MAP_DELALLOC)
690  
691  struct f2fs_map_blocks {
692  	struct block_device *m_bdev;	/* for multi-device dio */
693  	block_t m_pblk;
694  	block_t m_lblk;
695  	unsigned int m_len;
696  	unsigned int m_flags;
697  	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
698  	pgoff_t *m_next_extent;		/* point to next possible extent */
699  	int m_seg_type;
700  	bool m_may_create;		/* indicate it is from write path */
701  	bool m_multidev_dio;		/* indicate it allows multi-device dio */
702  };
703  
704  /* for flag in get_data_block */
705  enum {
706  	F2FS_GET_BLOCK_DEFAULT,
707  	F2FS_GET_BLOCK_FIEMAP,
708  	F2FS_GET_BLOCK_BMAP,
709  	F2FS_GET_BLOCK_DIO,
710  	F2FS_GET_BLOCK_PRE_DIO,
711  	F2FS_GET_BLOCK_PRE_AIO,
712  	F2FS_GET_BLOCK_PRECACHE,
713  };
714  
715  /*
716   * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
717   */
718  #define FADVISE_COLD_BIT	0x01
719  #define FADVISE_LOST_PINO_BIT	0x02
720  #define FADVISE_ENCRYPT_BIT	0x04
721  #define FADVISE_ENC_NAME_BIT	0x08
722  #define FADVISE_KEEP_SIZE_BIT	0x10
723  #define FADVISE_HOT_BIT		0x20
724  #define FADVISE_VERITY_BIT	0x40
725  #define FADVISE_TRUNC_BIT	0x80
726  
727  #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
728  
729  #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
730  #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
731  #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
732  
733  #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
734  #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
735  #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
736  
737  #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
738  #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
739  
740  #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
741  #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
742  
743  #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
744  #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
745  
746  #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
747  #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
748  #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
749  
750  #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
751  #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
752  
753  #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
754  #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
755  #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
756  
757  #define DEF_DIR_LEVEL		0
758  
759  enum {
760  	GC_FAILURE_PIN,
761  	MAX_GC_FAILURE
762  };
763  
764  /* used for f2fs_inode_info->flags */
765  enum {
766  	FI_NEW_INODE,		/* indicate newly allocated inode */
767  	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
768  	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
769  	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
770  	FI_INC_LINK,		/* need to increment i_nlink */
771  	FI_ACL_MODE,		/* indicate acl mode */
772  	FI_NO_ALLOC,		/* should not allocate any blocks */
773  	FI_FREE_NID,		/* free allocated nide */
774  	FI_NO_EXTENT,		/* not to use the extent cache */
775  	FI_INLINE_XATTR,	/* used for inline xattr */
776  	FI_INLINE_DATA,		/* used for inline data*/
777  	FI_INLINE_DENTRY,	/* used for inline dentry */
778  	FI_APPEND_WRITE,	/* inode has appended data */
779  	FI_UPDATE_WRITE,	/* inode has in-place-update data */
780  	FI_NEED_IPU,		/* used for ipu per file */
781  	FI_ATOMIC_FILE,		/* indicate atomic file */
782  	FI_DATA_EXIST,		/* indicate data exists */
783  	FI_SKIP_WRITES,		/* should skip data page writeback */
784  	FI_OPU_WRITE,		/* used for opu per file */
785  	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
786  	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
787  	FI_HOT_DATA,		/* indicate file is hot */
788  	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
789  	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
790  	FI_PIN_FILE,		/* indicate file should not be gced */
791  	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
792  	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
793  	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
794  	FI_MMAP_FILE,		/* indicate file was mmapped */
795  	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
796  	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
797  	FI_ALIGNED_WRITE,	/* enable aligned write */
798  	FI_COW_FILE,		/* indicate COW file */
799  	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
800  	FI_ATOMIC_DIRTIED,	/* indicate atomic file is dirtied */
801  	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
802  	FI_OPENED_FILE,		/* indicate file has been opened */
803  	FI_MAX,			/* max flag, never be used */
804  };
805  
806  struct f2fs_inode_info {
807  	struct inode vfs_inode;		/* serve a vfs inode */
808  	unsigned long i_flags;		/* keep an inode flags for ioctl */
809  	unsigned char i_advise;		/* use to give file attribute hints */
810  	unsigned char i_dir_level;	/* use for dentry level for large dir */
811  	unsigned int i_current_depth;	/* only for directory depth */
812  	/* for gc failure statistic */
813  	unsigned int i_gc_failures[MAX_GC_FAILURE];
814  	unsigned int i_pino;		/* parent inode number */
815  	umode_t i_acl_mode;		/* keep file acl mode temporarily */
816  
817  	/* Use below internally in f2fs*/
818  	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
819  	struct f2fs_rwsem i_sem;	/* protect fi info */
820  	atomic_t dirty_pages;		/* # of dirty pages */
821  	f2fs_hash_t chash;		/* hash value of given file name */
822  	unsigned int clevel;		/* maximum level of given file name */
823  	struct task_struct *task;	/* lookup and create consistency */
824  	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
825  	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
826  	nid_t i_xattr_nid;		/* node id that contains xattrs */
827  	loff_t	last_disk_size;		/* lastly written file size */
828  	spinlock_t i_size_lock;		/* protect last_disk_size */
829  
830  #ifdef CONFIG_QUOTA
831  	struct dquot __rcu *i_dquot[MAXQUOTAS];
832  
833  	/* quota space reservation, managed internally by quota code */
834  	qsize_t i_reserved_quota;
835  #endif
836  	struct list_head dirty_list;	/* dirty list for dirs and files */
837  	struct list_head gdirty_list;	/* linked in global dirty list */
838  	struct task_struct *atomic_write_task;	/* store atomic write task */
839  	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
840  					/* cached extent_tree entry */
841  	union {
842  		struct inode *cow_inode;	/* copy-on-write inode for atomic write */
843  		struct inode *atomic_inode;
844  					/* point to atomic_inode, available only for cow_inode */
845  	};
846  
847  	/* avoid racing between foreground op and gc */
848  	struct f2fs_rwsem i_gc_rwsem[2];
849  	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
850  
851  	int i_extra_isize;		/* size of extra space located in i_addr */
852  	kprojid_t i_projid;		/* id for project quota */
853  	int i_inline_xattr_size;	/* inline xattr size */
854  	struct timespec64 i_crtime;	/* inode creation time */
855  	struct timespec64 i_disk_time[3];/* inode disk times */
856  
857  	/* for file compress */
858  	atomic_t i_compr_blocks;		/* # of compressed blocks */
859  	unsigned char i_compress_algorithm;	/* algorithm type */
860  	unsigned char i_log_cluster_size;	/* log of cluster size */
861  	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
862  	unsigned char i_compress_flag;		/* compress flag */
863  	unsigned int i_cluster_size;		/* cluster size */
864  
865  	unsigned int atomic_write_cnt;
866  	loff_t original_i_size;		/* original i_size before atomic write */
867  };
868  
869  static inline void get_read_extent_info(struct extent_info *ext,
870  					struct f2fs_extent *i_ext)
871  {
872  	ext->fofs = le32_to_cpu(i_ext->fofs);
873  	ext->blk = le32_to_cpu(i_ext->blk);
874  	ext->len = le32_to_cpu(i_ext->len);
875  }
876  
877  static inline void set_raw_read_extent(struct extent_info *ext,
878  					struct f2fs_extent *i_ext)
879  {
880  	i_ext->fofs = cpu_to_le32(ext->fofs);
881  	i_ext->blk = cpu_to_le32(ext->blk);
882  	i_ext->len = cpu_to_le32(ext->len);
883  }
884  
885  static inline bool __is_discard_mergeable(struct discard_info *back,
886  			struct discard_info *front, unsigned int max_len)
887  {
888  	return (back->lstart + back->len == front->lstart) &&
889  		(back->len + front->len <= max_len);
890  }
891  
892  static inline bool __is_discard_back_mergeable(struct discard_info *cur,
893  			struct discard_info *back, unsigned int max_len)
894  {
895  	return __is_discard_mergeable(back, cur, max_len);
896  }
897  
898  static inline bool __is_discard_front_mergeable(struct discard_info *cur,
899  			struct discard_info *front, unsigned int max_len)
900  {
901  	return __is_discard_mergeable(cur, front, max_len);
902  }
903  
904  /*
905   * For free nid management
906   */
907  enum nid_state {
908  	FREE_NID,		/* newly added to free nid list */
909  	PREALLOC_NID,		/* it is preallocated */
910  	MAX_NID_STATE,
911  };
912  
913  enum nat_state {
914  	TOTAL_NAT,
915  	DIRTY_NAT,
916  	RECLAIMABLE_NAT,
917  	MAX_NAT_STATE,
918  };
919  
920  struct f2fs_nm_info {
921  	block_t nat_blkaddr;		/* base disk address of NAT */
922  	nid_t max_nid;			/* maximum possible node ids */
923  	nid_t available_nids;		/* # of available node ids */
924  	nid_t next_scan_nid;		/* the next nid to be scanned */
925  	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
926  	unsigned int ram_thresh;	/* control the memory footprint */
927  	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
928  	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
929  
930  	/* NAT cache management */
931  	struct radix_tree_root nat_root;/* root of the nat entry cache */
932  	struct radix_tree_root nat_set_root;/* root of the nat set cache */
933  	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
934  	struct list_head nat_entries;	/* cached nat entry list (clean) */
935  	spinlock_t nat_list_lock;	/* protect clean nat entry list */
936  	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
937  	unsigned int nat_blocks;	/* # of nat blocks */
938  
939  	/* free node ids management */
940  	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
941  	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
942  	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
943  	spinlock_t nid_list_lock;	/* protect nid lists ops */
944  	struct mutex build_lock;	/* lock for build free nids */
945  	unsigned char **free_nid_bitmap;
946  	unsigned char *nat_block_bitmap;
947  	unsigned short *free_nid_count;	/* free nid count of NAT block */
948  
949  	/* for checkpoint */
950  	char *nat_bitmap;		/* NAT bitmap pointer */
951  
952  	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
953  	unsigned char *nat_bits;	/* NAT bits blocks */
954  	unsigned char *full_nat_bits;	/* full NAT pages */
955  	unsigned char *empty_nat_bits;	/* empty NAT pages */
956  #ifdef CONFIG_F2FS_CHECK_FS
957  	char *nat_bitmap_mir;		/* NAT bitmap mirror */
958  #endif
959  	int bitmap_size;		/* bitmap size */
960  };
961  
962  /*
963   * this structure is used as one of function parameters.
964   * all the information are dedicated to a given direct node block determined
965   * by the data offset in a file.
966   */
967  struct dnode_of_data {
968  	struct inode *inode;		/* vfs inode pointer */
969  	struct page *inode_page;	/* its inode page, NULL is possible */
970  	struct page *node_page;		/* cached direct node page */
971  	nid_t nid;			/* node id of the direct node block */
972  	unsigned int ofs_in_node;	/* data offset in the node page */
973  	bool inode_page_locked;		/* inode page is locked or not */
974  	bool node_changed;		/* is node block changed */
975  	char cur_level;			/* level of hole node page */
976  	char max_level;			/* level of current page located */
977  	block_t	data_blkaddr;		/* block address of the node block */
978  };
979  
980  static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
981  		struct page *ipage, struct page *npage, nid_t nid)
982  {
983  	memset(dn, 0, sizeof(*dn));
984  	dn->inode = inode;
985  	dn->inode_page = ipage;
986  	dn->node_page = npage;
987  	dn->nid = nid;
988  }
989  
990  /*
991   * For SIT manager
992   *
993   * By default, there are 6 active log areas across the whole main area.
994   * When considering hot and cold data separation to reduce cleaning overhead,
995   * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
996   * respectively.
997   * In the current design, you should not change the numbers intentionally.
998   * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
999   * logs individually according to the underlying devices. (default: 6)
1000   * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1001   * data and 8 for node logs.
1002   */
1003  #define	NR_CURSEG_DATA_TYPE	(3)
1004  #define NR_CURSEG_NODE_TYPE	(3)
1005  #define NR_CURSEG_INMEM_TYPE	(2)
1006  #define NR_CURSEG_RO_TYPE	(2)
1007  #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1008  #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1009  
1010  enum {
1011  	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1012  	CURSEG_WARM_DATA,	/* data blocks */
1013  	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1014  	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1015  	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1016  	CURSEG_COLD_NODE,	/* indirect node blocks */
1017  	NR_PERSISTENT_LOG,	/* number of persistent log */
1018  	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1019  				/* pinned file that needs consecutive block address */
1020  	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1021  	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1022  };
1023  
1024  struct flush_cmd {
1025  	struct completion wait;
1026  	struct llist_node llnode;
1027  	nid_t ino;
1028  	int ret;
1029  };
1030  
1031  struct flush_cmd_control {
1032  	struct task_struct *f2fs_issue_flush;	/* flush thread */
1033  	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1034  	atomic_t issued_flush;			/* # of issued flushes */
1035  	atomic_t queued_flush;			/* # of queued flushes */
1036  	struct llist_head issue_list;		/* list for command issue */
1037  	struct llist_node *dispatch_list;	/* list for command dispatch */
1038  };
1039  
1040  struct f2fs_sm_info {
1041  	struct sit_info *sit_info;		/* whole segment information */
1042  	struct free_segmap_info *free_info;	/* free segment information */
1043  	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1044  	struct curseg_info *curseg_array;	/* active segment information */
1045  
1046  	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1047  
1048  	block_t seg0_blkaddr;		/* block address of 0'th segment */
1049  	block_t main_blkaddr;		/* start block address of main area */
1050  	block_t ssa_blkaddr;		/* start block address of SSA area */
1051  
1052  	unsigned int segment_count;	/* total # of segments */
1053  	unsigned int main_segments;	/* # of segments in main area */
1054  	unsigned int reserved_segments;	/* # of reserved segments */
1055  	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1056  	unsigned int ovp_segments;	/* # of overprovision segments */
1057  
1058  	/* a threshold to reclaim prefree segments */
1059  	unsigned int rec_prefree_segments;
1060  
1061  	struct list_head sit_entry_set;	/* sit entry set list */
1062  
1063  	unsigned int ipu_policy;	/* in-place-update policy */
1064  	unsigned int min_ipu_util;	/* in-place-update threshold */
1065  	unsigned int min_fsync_blocks;	/* threshold for fsync */
1066  	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1067  	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1068  	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1069  
1070  	/* for flush command control */
1071  	struct flush_cmd_control *fcc_info;
1072  
1073  	/* for discard command control */
1074  	struct discard_cmd_control *dcc_info;
1075  };
1076  
1077  /*
1078   * For superblock
1079   */
1080  /*
1081   * COUNT_TYPE for monitoring
1082   *
1083   * f2fs monitors the number of several block types such as on-writeback,
1084   * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1085   */
1086  #define WB_DATA_TYPE(p, f)			\
1087  	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1088  enum count_type {
1089  	F2FS_DIRTY_DENTS,
1090  	F2FS_DIRTY_DATA,
1091  	F2FS_DIRTY_QDATA,
1092  	F2FS_DIRTY_NODES,
1093  	F2FS_DIRTY_META,
1094  	F2FS_DIRTY_IMETA,
1095  	F2FS_WB_CP_DATA,
1096  	F2FS_WB_DATA,
1097  	F2FS_RD_DATA,
1098  	F2FS_RD_NODE,
1099  	F2FS_RD_META,
1100  	F2FS_DIO_WRITE,
1101  	F2FS_DIO_READ,
1102  	NR_COUNT_TYPE,
1103  };
1104  
1105  /*
1106   * The below are the page types of bios used in submit_bio().
1107   * The available types are:
1108   * DATA			User data pages. It operates as async mode.
1109   * NODE			Node pages. It operates as async mode.
1110   * META			FS metadata pages such as SIT, NAT, CP.
1111   * NR_PAGE_TYPE		The number of page types.
1112   * META_FLUSH		Make sure the previous pages are written
1113   *			with waiting the bio's completion
1114   * ...			Only can be used with META.
1115   */
1116  #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1117  #define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1118  enum page_type {
1119  	DATA = 0,
1120  	NODE = 1,	/* should not change this */
1121  	META,
1122  	NR_PAGE_TYPE,
1123  	META_FLUSH,
1124  	IPU,		/* the below types are used by tracepoints only. */
1125  	OPU,
1126  };
1127  
1128  enum temp_type {
1129  	HOT = 0,	/* must be zero for meta bio */
1130  	WARM,
1131  	COLD,
1132  	NR_TEMP_TYPE,
1133  };
1134  
1135  enum need_lock_type {
1136  	LOCK_REQ = 0,
1137  	LOCK_DONE,
1138  	LOCK_RETRY,
1139  };
1140  
1141  enum cp_reason_type {
1142  	CP_NO_NEEDED,
1143  	CP_NON_REGULAR,
1144  	CP_COMPRESSED,
1145  	CP_HARDLINK,
1146  	CP_SB_NEED_CP,
1147  	CP_WRONG_PINO,
1148  	CP_NO_SPC_ROLL,
1149  	CP_NODE_NEED_CP,
1150  	CP_FASTBOOT_MODE,
1151  	CP_SPEC_LOG_NUM,
1152  	CP_RECOVER_DIR,
1153  	CP_XATTR_DIR,
1154  };
1155  
1156  enum iostat_type {
1157  	/* WRITE IO */
1158  	APP_DIRECT_IO,			/* app direct write IOs */
1159  	APP_BUFFERED_IO,		/* app buffered write IOs */
1160  	APP_WRITE_IO,			/* app write IOs */
1161  	APP_MAPPED_IO,			/* app mapped IOs */
1162  	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1163  	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1164  	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1165  	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1166  	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1167  	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1168  	FS_GC_DATA_IO,			/* data IOs from forground gc */
1169  	FS_GC_NODE_IO,			/* node IOs from forground gc */
1170  	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1171  	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1172  	FS_CP_META_IO,			/* meta IOs from checkpoint */
1173  
1174  	/* READ IO */
1175  	APP_DIRECT_READ_IO,		/* app direct read IOs */
1176  	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1177  	APP_READ_IO,			/* app read IOs */
1178  	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1179  	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1180  	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1181  	FS_DATA_READ_IO,		/* data read IOs */
1182  	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1183  	FS_CDATA_READ_IO,		/* compressed data read IOs */
1184  	FS_NODE_READ_IO,		/* node read IOs */
1185  	FS_META_READ_IO,		/* meta read IOs */
1186  
1187  	/* other */
1188  	FS_DISCARD_IO,			/* discard */
1189  	FS_FLUSH_IO,			/* flush */
1190  	FS_ZONE_RESET_IO,		/* zone reset */
1191  	NR_IO_TYPE,
1192  };
1193  
1194  struct f2fs_io_info {
1195  	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1196  	nid_t ino;		/* inode number */
1197  	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1198  	enum temp_type temp;	/* contains HOT/WARM/COLD */
1199  	enum req_op op;		/* contains REQ_OP_ */
1200  	blk_opf_t op_flags;	/* req_flag_bits */
1201  	block_t new_blkaddr;	/* new block address to be written */
1202  	block_t old_blkaddr;	/* old block address before Cow */
1203  	struct page *page;	/* page to be written */
1204  	struct page *encrypted_page;	/* encrypted page */
1205  	struct page *compressed_page;	/* compressed page */
1206  	struct list_head list;		/* serialize IOs */
1207  	unsigned int compr_blocks;	/* # of compressed block addresses */
1208  	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1209  	unsigned int version:8;		/* version of the node */
1210  	unsigned int submitted:1;	/* indicate IO submission */
1211  	unsigned int in_list:1;		/* indicate fio is in io_list */
1212  	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1213  	unsigned int encrypted:1;	/* indicate file is encrypted */
1214  	unsigned int meta_gc:1;		/* require meta inode GC */
1215  	enum iostat_type io_type;	/* io type */
1216  	struct writeback_control *io_wbc; /* writeback control */
1217  	struct bio **bio;		/* bio for ipu */
1218  	sector_t *last_block;		/* last block number in bio */
1219  };
1220  
1221  struct bio_entry {
1222  	struct bio *bio;
1223  	struct list_head list;
1224  };
1225  
1226  #define is_read_io(rw) ((rw) == READ)
1227  struct f2fs_bio_info {
1228  	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1229  	struct bio *bio;		/* bios to merge */
1230  	sector_t last_block_in_bio;	/* last block number */
1231  	struct f2fs_io_info fio;	/* store buffered io info. */
1232  #ifdef CONFIG_BLK_DEV_ZONED
1233  	struct completion zone_wait;	/* condition value for the previous open zone to close */
1234  	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1235  	void *bi_private;		/* previous bi_private for pending bio */
1236  #endif
1237  	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1238  	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1239  	struct list_head io_list;	/* track fios */
1240  	struct list_head bio_list;	/* bio entry list head */
1241  	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1242  };
1243  
1244  #define FDEV(i)				(sbi->devs[i])
1245  #define RDEV(i)				(raw_super->devs[i])
1246  struct f2fs_dev_info {
1247  	struct block_device *bdev;
1248  	char path[MAX_PATH_LEN];
1249  	unsigned int total_segments;
1250  	block_t start_blk;
1251  	block_t end_blk;
1252  #ifdef CONFIG_BLK_DEV_ZONED
1253  	unsigned int nr_blkz;		/* Total number of zones */
1254  	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1255  #endif
1256  };
1257  
1258  enum inode_type {
1259  	DIR_INODE,			/* for dirty dir inode */
1260  	FILE_INODE,			/* for dirty regular/symlink inode */
1261  	DIRTY_META,			/* for all dirtied inode metadata */
1262  	NR_INODE_TYPE,
1263  };
1264  
1265  /* for inner inode cache management */
1266  struct inode_management {
1267  	struct radix_tree_root ino_root;	/* ino entry array */
1268  	spinlock_t ino_lock;			/* for ino entry lock */
1269  	struct list_head ino_list;		/* inode list head */
1270  	unsigned long ino_num;			/* number of entries */
1271  };
1272  
1273  /* for GC_AT */
1274  struct atgc_management {
1275  	bool atgc_enabled;			/* ATGC is enabled or not */
1276  	struct rb_root_cached root;		/* root of victim rb-tree */
1277  	struct list_head victim_list;		/* linked with all victim entries */
1278  	unsigned int victim_count;		/* victim count in rb-tree */
1279  	unsigned int candidate_ratio;		/* candidate ratio */
1280  	unsigned int max_candidate_count;	/* max candidate count */
1281  	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1282  	unsigned long long age_threshold;	/* age threshold */
1283  };
1284  
1285  struct f2fs_gc_control {
1286  	unsigned int victim_segno;	/* target victim segment number */
1287  	int init_gc_type;		/* FG_GC or BG_GC */
1288  	bool no_bg_gc;			/* check the space and stop bg_gc */
1289  	bool should_migrate_blocks;	/* should migrate blocks */
1290  	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1291  	unsigned int nr_free_secs;	/* # of free sections to do GC */
1292  };
1293  
1294  /*
1295   * For s_flag in struct f2fs_sb_info
1296   * Modification on enum should be synchronized with s_flag array
1297   */
1298  enum {
1299  	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1300  	SBI_IS_CLOSE,				/* specify unmounting */
1301  	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1302  	SBI_POR_DOING,				/* recovery is doing or not */
1303  	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1304  	SBI_NEED_CP,				/* need to checkpoint */
1305  	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1306  	SBI_IS_RECOVERED,			/* recovered orphan/data */
1307  	SBI_CP_DISABLED,			/* CP was disabled last mount */
1308  	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1309  	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1310  	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1311  	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1312  	SBI_IS_RESIZEFS,			/* resizefs is in process */
1313  	SBI_IS_FREEZING,			/* freezefs is in process */
1314  	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1315  	MAX_SBI_FLAG,
1316  };
1317  
1318  enum {
1319  	CP_TIME,
1320  	REQ_TIME,
1321  	DISCARD_TIME,
1322  	GC_TIME,
1323  	DISABLE_TIME,
1324  	UMOUNT_DISCARD_TIMEOUT,
1325  	MAX_TIME,
1326  };
1327  
1328  /* Note that you need to keep synchronization with this gc_mode_names array */
1329  enum {
1330  	GC_NORMAL,
1331  	GC_IDLE_CB,
1332  	GC_IDLE_GREEDY,
1333  	GC_IDLE_AT,
1334  	GC_URGENT_HIGH,
1335  	GC_URGENT_LOW,
1336  	GC_URGENT_MID,
1337  	MAX_GC_MODE,
1338  };
1339  
1340  enum {
1341  	BGGC_MODE_ON,		/* background gc is on */
1342  	BGGC_MODE_OFF,		/* background gc is off */
1343  	BGGC_MODE_SYNC,		/*
1344  				 * background gc is on, migrating blocks
1345  				 * like foreground gc
1346  				 */
1347  };
1348  
1349  enum {
1350  	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1351  	FS_MODE_LFS,			/* use lfs allocation only */
1352  	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1353  	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1354  };
1355  
1356  enum {
1357  	ALLOC_MODE_DEFAULT,	/* stay default */
1358  	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1359  };
1360  
1361  enum fsync_mode {
1362  	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1363  	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1364  	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1365  };
1366  
1367  enum {
1368  	COMPR_MODE_FS,		/*
1369  				 * automatically compress compression
1370  				 * enabled files
1371  				 */
1372  	COMPR_MODE_USER,	/*
1373  				 * automatical compression is disabled.
1374  				 * user can control the file compression
1375  				 * using ioctls
1376  				 */
1377  };
1378  
1379  enum {
1380  	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1381  	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1382  	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1383  };
1384  
1385  enum {
1386  	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1387  	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1388  };
1389  
1390  enum errors_option {
1391  	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1392  	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1393  	MOUNT_ERRORS_PANIC,	/* panic on errors */
1394  };
1395  
1396  enum {
1397  	BACKGROUND,
1398  	FOREGROUND,
1399  	MAX_CALL_TYPE,
1400  	TOTAL_CALL = FOREGROUND,
1401  };
1402  
1403  static inline int f2fs_test_bit(unsigned int nr, char *addr);
1404  static inline void f2fs_set_bit(unsigned int nr, char *addr);
1405  static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1406  
1407  /*
1408   * Layout of f2fs page.private:
1409   *
1410   * Layout A: lowest bit should be 1
1411   * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1412   * bit 0	PAGE_PRIVATE_NOT_POINTER
1413   * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1414   * bit 2	PAGE_PRIVATE_INLINE_INODE
1415   * bit 3	PAGE_PRIVATE_REF_RESOURCE
1416   * bit 4	PAGE_PRIVATE_ATOMIC_WRITE
1417   * bit 5-	f2fs private data
1418   *
1419   * Layout B: lowest bit should be 0
1420   * page.private is a wrapped pointer.
1421   */
1422  enum {
1423  	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1424  	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1425  	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1426  	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1427  	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1428  	PAGE_PRIVATE_MAX
1429  };
1430  
1431  /* For compression */
1432  enum compress_algorithm_type {
1433  	COMPRESS_LZO,
1434  	COMPRESS_LZ4,
1435  	COMPRESS_ZSTD,
1436  	COMPRESS_LZORLE,
1437  	COMPRESS_MAX,
1438  };
1439  
1440  enum compress_flag {
1441  	COMPRESS_CHKSUM,
1442  	COMPRESS_MAX_FLAG,
1443  };
1444  
1445  #define	COMPRESS_WATERMARK			20
1446  #define	COMPRESS_PERCENT			20
1447  
1448  #define COMPRESS_DATA_RESERVED_SIZE		4
1449  struct compress_data {
1450  	__le32 clen;			/* compressed data size */
1451  	__le32 chksum;			/* compressed data chksum */
1452  	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1453  	u8 cdata[];			/* compressed data */
1454  };
1455  
1456  #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1457  
1458  #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1459  
1460  #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1461  
1462  #define	COMPRESS_LEVEL_OFFSET	8
1463  
1464  /* compress context */
1465  struct compress_ctx {
1466  	struct inode *inode;		/* inode the context belong to */
1467  	pgoff_t cluster_idx;		/* cluster index number */
1468  	unsigned int cluster_size;	/* page count in cluster */
1469  	unsigned int log_cluster_size;	/* log of cluster size */
1470  	struct page **rpages;		/* pages store raw data in cluster */
1471  	unsigned int nr_rpages;		/* total page number in rpages */
1472  	struct page **cpages;		/* pages store compressed data in cluster */
1473  	unsigned int nr_cpages;		/* total page number in cpages */
1474  	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1475  	void *rbuf;			/* virtual mapped address on rpages */
1476  	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1477  	size_t rlen;			/* valid data length in rbuf */
1478  	size_t clen;			/* valid data length in cbuf */
1479  	void *private;			/* payload buffer for specified compression algorithm */
1480  	void *private2;			/* extra payload buffer */
1481  };
1482  
1483  /* compress context for write IO path */
1484  struct compress_io_ctx {
1485  	u32 magic;			/* magic number to indicate page is compressed */
1486  	struct inode *inode;		/* inode the context belong to */
1487  	struct page **rpages;		/* pages store raw data in cluster */
1488  	unsigned int nr_rpages;		/* total page number in rpages */
1489  	atomic_t pending_pages;		/* in-flight compressed page count */
1490  };
1491  
1492  /* Context for decompressing one cluster on the read IO path */
1493  struct decompress_io_ctx {
1494  	u32 magic;			/* magic number to indicate page is compressed */
1495  	struct inode *inode;		/* inode the context belong to */
1496  	pgoff_t cluster_idx;		/* cluster index number */
1497  	unsigned int cluster_size;	/* page count in cluster */
1498  	unsigned int log_cluster_size;	/* log of cluster size */
1499  	struct page **rpages;		/* pages store raw data in cluster */
1500  	unsigned int nr_rpages;		/* total page number in rpages */
1501  	struct page **cpages;		/* pages store compressed data in cluster */
1502  	unsigned int nr_cpages;		/* total page number in cpages */
1503  	struct page **tpages;		/* temp pages to pad holes in cluster */
1504  	void *rbuf;			/* virtual mapped address on rpages */
1505  	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1506  	size_t rlen;			/* valid data length in rbuf */
1507  	size_t clen;			/* valid data length in cbuf */
1508  
1509  	/*
1510  	 * The number of compressed pages remaining to be read in this cluster.
1511  	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1512  	 * has been read (or failed to be read).  When it reaches 0, the cluster
1513  	 * is decompressed (or an error is reported).
1514  	 *
1515  	 * If an error occurs before all the pages have been submitted for I/O,
1516  	 * then this will never reach 0.  In this case the I/O submitter is
1517  	 * responsible for calling f2fs_decompress_end_io() instead.
1518  	 */
1519  	atomic_t remaining_pages;
1520  
1521  	/*
1522  	 * Number of references to this decompress_io_ctx.
1523  	 *
1524  	 * One reference is held for I/O completion.  This reference is dropped
1525  	 * after the pagecache pages are updated and unlocked -- either after
1526  	 * decompression (and verity if enabled), or after an error.
1527  	 *
1528  	 * In addition, each compressed page holds a reference while it is in a
1529  	 * bio.  These references are necessary prevent compressed pages from
1530  	 * being freed while they are still in a bio.
1531  	 */
1532  	refcount_t refcnt;
1533  
1534  	bool failed;			/* IO error occurred before decompression? */
1535  	bool need_verity;		/* need fs-verity verification after decompression? */
1536  	void *private;			/* payload buffer for specified decompression algorithm */
1537  	void *private2;			/* extra payload buffer */
1538  	struct work_struct verity_work;	/* work to verify the decompressed pages */
1539  	struct work_struct free_work;	/* work for late free this structure itself */
1540  };
1541  
1542  #define NULL_CLUSTER			((unsigned int)(~0))
1543  #define MIN_COMPRESS_LOG_SIZE		2
1544  #define MAX_COMPRESS_LOG_SIZE		8
1545  #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1546  
1547  struct f2fs_sb_info {
1548  	struct super_block *sb;			/* pointer to VFS super block */
1549  	struct proc_dir_entry *s_proc;		/* proc entry */
1550  	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1551  	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1552  	int valid_super_block;			/* valid super block no */
1553  	unsigned long s_flag;				/* flags for sbi */
1554  	struct mutex writepages;		/* mutex for writepages() */
1555  
1556  #ifdef CONFIG_BLK_DEV_ZONED
1557  	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1558  #endif
1559  
1560  	/* for node-related operations */
1561  	struct f2fs_nm_info *nm_info;		/* node manager */
1562  	struct inode *node_inode;		/* cache node blocks */
1563  
1564  	/* for segment-related operations */
1565  	struct f2fs_sm_info *sm_info;		/* segment manager */
1566  
1567  	/* for bio operations */
1568  	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1569  	/* keep migration IO order for LFS mode */
1570  	struct f2fs_rwsem io_order_lock;
1571  	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1572  	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1573  
1574  	/* for checkpoint */
1575  	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1576  	int cur_cp_pack;			/* remain current cp pack */
1577  	spinlock_t cp_lock;			/* for flag in ckpt */
1578  	struct inode *meta_inode;		/* cache meta blocks */
1579  	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1580  	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1581  	struct f2fs_rwsem node_write;		/* locking node writes */
1582  	struct f2fs_rwsem node_change;	/* locking node change */
1583  	wait_queue_head_t cp_wait;
1584  	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1585  	long interval_time[MAX_TIME];		/* to store thresholds */
1586  	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1587  
1588  	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1589  
1590  	spinlock_t fsync_node_lock;		/* for node entry lock */
1591  	struct list_head fsync_node_list;	/* node list head */
1592  	unsigned int fsync_seg_id;		/* sequence id */
1593  	unsigned int fsync_node_num;		/* number of node entries */
1594  
1595  	/* for orphan inode, use 0'th array */
1596  	unsigned int max_orphans;		/* max orphan inodes */
1597  
1598  	/* for inode management */
1599  	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1600  	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1601  	struct mutex flush_lock;		/* for flush exclusion */
1602  
1603  	/* for extent tree cache */
1604  	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1605  	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1606  
1607  	/* The threshold used for hot and warm data seperation*/
1608  	unsigned int hot_data_age_threshold;
1609  	unsigned int warm_data_age_threshold;
1610  	unsigned int last_age_weight;
1611  
1612  	/* basic filesystem units */
1613  	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1614  	unsigned int log_blocksize;		/* log2 block size */
1615  	unsigned int blocksize;			/* block size */
1616  	unsigned int root_ino_num;		/* root inode number*/
1617  	unsigned int node_ino_num;		/* node inode number*/
1618  	unsigned int meta_ino_num;		/* meta inode number*/
1619  	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1620  	unsigned int blocks_per_seg;		/* blocks per segment */
1621  	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1622  	unsigned int segs_per_sec;		/* segments per section */
1623  	unsigned int secs_per_zone;		/* sections per zone */
1624  	unsigned int total_sections;		/* total section count */
1625  	unsigned int total_node_count;		/* total node block count */
1626  	unsigned int total_valid_node_count;	/* valid node block count */
1627  	int dir_level;				/* directory level */
1628  	bool readdir_ra;			/* readahead inode in readdir */
1629  	u64 max_io_bytes;			/* max io bytes to merge IOs */
1630  
1631  	block_t user_block_count;		/* # of user blocks */
1632  	block_t total_valid_block_count;	/* # of valid blocks */
1633  	block_t discard_blks;			/* discard command candidats */
1634  	block_t last_valid_block_count;		/* for recovery */
1635  	block_t reserved_blocks;		/* configurable reserved blocks */
1636  	block_t current_reserved_blocks;	/* current reserved blocks */
1637  
1638  	/* Additional tracking for no checkpoint mode */
1639  	block_t unusable_block_count;		/* # of blocks saved by last cp */
1640  
1641  	unsigned int nquota_files;		/* # of quota sysfile */
1642  	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1643  
1644  	/* # of pages, see count_type */
1645  	atomic_t nr_pages[NR_COUNT_TYPE];
1646  	/* # of allocated blocks */
1647  	struct percpu_counter alloc_valid_block_count;
1648  	/* # of node block writes as roll forward recovery */
1649  	struct percpu_counter rf_node_block_count;
1650  
1651  	/* writeback control */
1652  	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1653  
1654  	/* valid inode count */
1655  	struct percpu_counter total_valid_inode_count;
1656  
1657  	struct f2fs_mount_info mount_opt;	/* mount options */
1658  
1659  	/* for cleaning operations */
1660  	struct f2fs_rwsem gc_lock;		/*
1661  						 * semaphore for GC, avoid
1662  						 * race between GC and GC or CP
1663  						 */
1664  	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1665  	struct atgc_management am;		/* atgc management */
1666  	unsigned int cur_victim_sec;		/* current victim section num */
1667  	unsigned int gc_mode;			/* current GC state */
1668  	unsigned int next_victim_seg[2];	/* next segment in victim section */
1669  	spinlock_t gc_remaining_trials_lock;
1670  	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1671  	unsigned int gc_remaining_trials;
1672  
1673  	/* for skip statistic */
1674  	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1675  
1676  	/* threshold for gc trials on pinned files */
1677  	u64 gc_pin_file_threshold;
1678  	struct f2fs_rwsem pin_sem;
1679  
1680  	/* maximum # of trials to find a victim segment for SSR and GC */
1681  	unsigned int max_victim_search;
1682  	/* migration granularity of garbage collection, unit: segment */
1683  	unsigned int migration_granularity;
1684  
1685  	/*
1686  	 * for stat information.
1687  	 * one is for the LFS mode, and the other is for the SSR mode.
1688  	 */
1689  #ifdef CONFIG_F2FS_STAT_FS
1690  	struct f2fs_stat_info *stat_info;	/* FS status information */
1691  	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1692  	unsigned int segment_count[2];		/* # of allocated segments */
1693  	unsigned int block_count[2];		/* # of allocated blocks */
1694  	atomic_t inplace_count;		/* # of inplace update */
1695  	/* # of lookup extent cache */
1696  	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1697  	/* # of hit rbtree extent node */
1698  	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1699  	/* # of hit cached extent node */
1700  	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1701  	/* # of hit largest extent node in read extent cache */
1702  	atomic64_t read_hit_largest;
1703  	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1704  	atomic_t inline_inode;			/* # of inline_data inodes */
1705  	atomic_t inline_dir;			/* # of inline_dentry inodes */
1706  	atomic_t compr_inode;			/* # of compressed inodes */
1707  	atomic64_t compr_blocks;		/* # of compressed blocks */
1708  	atomic_t swapfile_inode;		/* # of swapfile inodes */
1709  	atomic_t atomic_files;			/* # of opened atomic file */
1710  	atomic_t max_aw_cnt;			/* max # of atomic writes */
1711  	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1712  	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1713  	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1714  	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1715  #endif
1716  	spinlock_t stat_lock;			/* lock for stat operations */
1717  
1718  	/* to attach REQ_META|REQ_FUA flags */
1719  	unsigned int data_io_flag;
1720  	unsigned int node_io_flag;
1721  
1722  	/* For sysfs support */
1723  	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1724  	struct completion s_kobj_unregister;
1725  
1726  	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1727  	struct completion s_stat_kobj_unregister;
1728  
1729  	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1730  	struct completion s_feature_list_kobj_unregister;
1731  
1732  	/* For shrinker support */
1733  	struct list_head s_list;
1734  	struct mutex umount_mutex;
1735  	unsigned int shrinker_run_no;
1736  
1737  	/* For multi devices */
1738  	int s_ndevs;				/* number of devices */
1739  	struct f2fs_dev_info *devs;		/* for device list */
1740  	unsigned int dirty_device;		/* for checkpoint data flush */
1741  	spinlock_t dev_lock;			/* protect dirty_device */
1742  	bool aligned_blksize;			/* all devices has the same logical blksize */
1743  
1744  	/* For write statistics */
1745  	u64 sectors_written_start;
1746  	u64 kbytes_written;
1747  
1748  	/* Reference to checksum algorithm driver via cryptoapi */
1749  	struct crypto_shash *s_chksum_driver;
1750  
1751  	/* Precomputed FS UUID checksum for seeding other checksums */
1752  	__u32 s_chksum_seed;
1753  
1754  	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1755  
1756  	/*
1757  	 * If we are in irq context, let's update error information into
1758  	 * on-disk superblock in the work.
1759  	 */
1760  	struct work_struct s_error_work;
1761  	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1762  	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1763  	spinlock_t error_lock;			/* protect errors/stop_reason array */
1764  	bool error_dirty;			/* errors of sb is dirty */
1765  
1766  	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1767  	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1768  
1769  	/* For reclaimed segs statistics per each GC mode */
1770  	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1771  	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1772  
1773  	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1774  
1775  	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1776  	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1777  
1778  	/* For atomic write statistics */
1779  	atomic64_t current_atomic_write;
1780  	s64 peak_atomic_write;
1781  	u64 committed_atomic_block;
1782  	u64 revoked_atomic_block;
1783  
1784  #ifdef CONFIG_F2FS_FS_COMPRESSION
1785  	struct kmem_cache *page_array_slab;	/* page array entry */
1786  	unsigned int page_array_slab_size;	/* default page array slab size */
1787  
1788  	/* For runtime compression statistics */
1789  	u64 compr_written_block;
1790  	u64 compr_saved_block;
1791  	u32 compr_new_inode;
1792  
1793  	/* For compressed block cache */
1794  	struct inode *compress_inode;		/* cache compressed blocks */
1795  	unsigned int compress_percent;		/* cache page percentage */
1796  	unsigned int compress_watermark;	/* cache page watermark */
1797  	atomic_t compress_page_hit;		/* cache hit count */
1798  #endif
1799  
1800  #ifdef CONFIG_F2FS_IOSTAT
1801  	/* For app/fs IO statistics */
1802  	spinlock_t iostat_lock;
1803  	unsigned long long iostat_count[NR_IO_TYPE];
1804  	unsigned long long iostat_bytes[NR_IO_TYPE];
1805  	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1806  	bool iostat_enable;
1807  	unsigned long iostat_next_period;
1808  	unsigned int iostat_period_ms;
1809  
1810  	/* For io latency related statistics info in one iostat period */
1811  	spinlock_t iostat_lat_lock;
1812  	struct iostat_lat_info *iostat_io_lat;
1813  #endif
1814  };
1815  
1816  /* Definitions to access f2fs_sb_info */
1817  #define BLKS_PER_SEG(sbi)					\
1818  	((sbi)->blocks_per_seg)
1819  #define BLKS_PER_SEC(sbi)					\
1820  	((sbi)->segs_per_sec << (sbi)->log_blocks_per_seg)
1821  #define SEGS_PER_SEC(sbi)					\
1822  	((sbi)->segs_per_sec)
1823  
1824  __printf(3, 4)
1825  void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1826  
1827  #define f2fs_err(sbi, fmt, ...)						\
1828  	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1829  #define f2fs_warn(sbi, fmt, ...)					\
1830  	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1831  #define f2fs_notice(sbi, fmt, ...)					\
1832  	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1833  #define f2fs_info(sbi, fmt, ...)					\
1834  	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1835  #define f2fs_debug(sbi, fmt, ...)					\
1836  	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1837  
1838  #define f2fs_err_ratelimited(sbi, fmt, ...)				\
1839  	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1840  #define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1841  	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1842  #define f2fs_info_ratelimited(sbi, fmt, ...)				\
1843  	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1844  
1845  #ifdef CONFIG_F2FS_FAULT_INJECTION
1846  #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1847  									__builtin_return_address(0))
1848  static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1849  				const char *func, const char *parent_func)
1850  {
1851  	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1852  
1853  	if (!ffi->inject_rate)
1854  		return false;
1855  
1856  	if (!IS_FAULT_SET(ffi, type))
1857  		return false;
1858  
1859  	atomic_inc(&ffi->inject_ops);
1860  	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1861  		atomic_set(&ffi->inject_ops, 0);
1862  		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1863  				f2fs_fault_name[type], func, parent_func);
1864  		return true;
1865  	}
1866  	return false;
1867  }
1868  #else
1869  static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1870  {
1871  	return false;
1872  }
1873  #endif
1874  
1875  /*
1876   * Test if the mounted volume is a multi-device volume.
1877   *   - For a single regular disk volume, sbi->s_ndevs is 0.
1878   *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1879   *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1880   */
1881  static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1882  {
1883  	return sbi->s_ndevs > 1;
1884  }
1885  
1886  static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1887  {
1888  	unsigned long now = jiffies;
1889  
1890  	sbi->last_time[type] = now;
1891  
1892  	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1893  	if (type == REQ_TIME) {
1894  		sbi->last_time[DISCARD_TIME] = now;
1895  		sbi->last_time[GC_TIME] = now;
1896  	}
1897  }
1898  
1899  static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1900  {
1901  	unsigned long interval = sbi->interval_time[type] * HZ;
1902  
1903  	return time_after(jiffies, sbi->last_time[type] + interval);
1904  }
1905  
1906  static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1907  						int type)
1908  {
1909  	unsigned long interval = sbi->interval_time[type] * HZ;
1910  	unsigned int wait_ms = 0;
1911  	long delta;
1912  
1913  	delta = (sbi->last_time[type] + interval) - jiffies;
1914  	if (delta > 0)
1915  		wait_ms = jiffies_to_msecs(delta);
1916  
1917  	return wait_ms;
1918  }
1919  
1920  /*
1921   * Inline functions
1922   */
1923  static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1924  			      const void *address, unsigned int length)
1925  {
1926  	struct {
1927  		struct shash_desc shash;
1928  		char ctx[4];
1929  	} desc;
1930  	int err;
1931  
1932  	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1933  
1934  	desc.shash.tfm = sbi->s_chksum_driver;
1935  	*(u32 *)desc.ctx = crc;
1936  
1937  	err = crypto_shash_update(&desc.shash, address, length);
1938  	BUG_ON(err);
1939  
1940  	return *(u32 *)desc.ctx;
1941  }
1942  
1943  static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1944  			   unsigned int length)
1945  {
1946  	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1947  }
1948  
1949  static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1950  				  void *buf, size_t buf_size)
1951  {
1952  	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1953  }
1954  
1955  static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1956  			      const void *address, unsigned int length)
1957  {
1958  	return __f2fs_crc32(sbi, crc, address, length);
1959  }
1960  
1961  static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1962  {
1963  	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1964  }
1965  
1966  static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1967  {
1968  	return sb->s_fs_info;
1969  }
1970  
1971  static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1972  {
1973  	return F2FS_SB(inode->i_sb);
1974  }
1975  
1976  static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1977  {
1978  	return F2FS_I_SB(mapping->host);
1979  }
1980  
1981  static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1982  {
1983  	return F2FS_M_SB(page_file_mapping(page));
1984  }
1985  
1986  static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1987  {
1988  	return (struct f2fs_super_block *)(sbi->raw_super);
1989  }
1990  
1991  static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1992  {
1993  	return (struct f2fs_checkpoint *)(sbi->ckpt);
1994  }
1995  
1996  static inline struct f2fs_node *F2FS_NODE(struct page *page)
1997  {
1998  	return (struct f2fs_node *)page_address(page);
1999  }
2000  
2001  static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2002  {
2003  	return &((struct f2fs_node *)page_address(page))->i;
2004  }
2005  
2006  static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2007  {
2008  	return (struct f2fs_nm_info *)(sbi->nm_info);
2009  }
2010  
2011  static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2012  {
2013  	return (struct f2fs_sm_info *)(sbi->sm_info);
2014  }
2015  
2016  static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2017  {
2018  	return (struct sit_info *)(SM_I(sbi)->sit_info);
2019  }
2020  
2021  static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2022  {
2023  	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2024  }
2025  
2026  static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2027  {
2028  	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2029  }
2030  
2031  static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2032  {
2033  	return sbi->meta_inode->i_mapping;
2034  }
2035  
2036  static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2037  {
2038  	return sbi->node_inode->i_mapping;
2039  }
2040  
2041  static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2042  {
2043  	return test_bit(type, &sbi->s_flag);
2044  }
2045  
2046  static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2047  {
2048  	set_bit(type, &sbi->s_flag);
2049  }
2050  
2051  static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2052  {
2053  	clear_bit(type, &sbi->s_flag);
2054  }
2055  
2056  static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2057  {
2058  	return le64_to_cpu(cp->checkpoint_ver);
2059  }
2060  
2061  static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2062  {
2063  	if (type < F2FS_MAX_QUOTAS)
2064  		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2065  	return 0;
2066  }
2067  
2068  static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2069  {
2070  	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2071  	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2072  }
2073  
2074  static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2075  {
2076  	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2077  
2078  	return ckpt_flags & f;
2079  }
2080  
2081  static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2082  {
2083  	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2084  }
2085  
2086  static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2087  {
2088  	unsigned int ckpt_flags;
2089  
2090  	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2091  	ckpt_flags |= f;
2092  	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2093  }
2094  
2095  static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2096  {
2097  	unsigned long flags;
2098  
2099  	spin_lock_irqsave(&sbi->cp_lock, flags);
2100  	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2101  	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2102  }
2103  
2104  static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2105  {
2106  	unsigned int ckpt_flags;
2107  
2108  	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2109  	ckpt_flags &= (~f);
2110  	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2111  }
2112  
2113  static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2114  {
2115  	unsigned long flags;
2116  
2117  	spin_lock_irqsave(&sbi->cp_lock, flags);
2118  	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2119  	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2120  }
2121  
2122  #define init_f2fs_rwsem(sem)					\
2123  do {								\
2124  	static struct lock_class_key __key;			\
2125  								\
2126  	__init_f2fs_rwsem((sem), #sem, &__key);			\
2127  } while (0)
2128  
2129  static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2130  		const char *sem_name, struct lock_class_key *key)
2131  {
2132  	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2133  #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2134  	init_waitqueue_head(&sem->read_waiters);
2135  #endif
2136  }
2137  
2138  static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2139  {
2140  	return rwsem_is_locked(&sem->internal_rwsem);
2141  }
2142  
2143  static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2144  {
2145  	return rwsem_is_contended(&sem->internal_rwsem);
2146  }
2147  
2148  static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2149  {
2150  #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2151  	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2152  #else
2153  	down_read(&sem->internal_rwsem);
2154  #endif
2155  }
2156  
2157  static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2158  {
2159  	return down_read_trylock(&sem->internal_rwsem);
2160  }
2161  
2162  static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2163  {
2164  	up_read(&sem->internal_rwsem);
2165  }
2166  
2167  static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2168  {
2169  	down_write(&sem->internal_rwsem);
2170  }
2171  
2172  #ifdef CONFIG_DEBUG_LOCK_ALLOC
2173  static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2174  {
2175  	down_read_nested(&sem->internal_rwsem, subclass);
2176  }
2177  
2178  static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2179  {
2180  	down_write_nested(&sem->internal_rwsem, subclass);
2181  }
2182  #else
2183  #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2184  #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2185  #endif
2186  
2187  static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2188  {
2189  	return down_write_trylock(&sem->internal_rwsem);
2190  }
2191  
2192  static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2193  {
2194  	up_write(&sem->internal_rwsem);
2195  #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2196  	wake_up_all(&sem->read_waiters);
2197  #endif
2198  }
2199  
2200  static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2201  {
2202  	f2fs_down_read(&sbi->cp_rwsem);
2203  }
2204  
2205  static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2206  {
2207  	if (time_to_inject(sbi, FAULT_LOCK_OP))
2208  		return 0;
2209  	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2210  }
2211  
2212  static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2213  {
2214  	f2fs_up_read(&sbi->cp_rwsem);
2215  }
2216  
2217  static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2218  {
2219  	f2fs_down_write(&sbi->cp_rwsem);
2220  }
2221  
2222  static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2223  {
2224  	f2fs_up_write(&sbi->cp_rwsem);
2225  }
2226  
2227  static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2228  {
2229  	int reason = CP_SYNC;
2230  
2231  	if (test_opt(sbi, FASTBOOT))
2232  		reason = CP_FASTBOOT;
2233  	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2234  		reason = CP_UMOUNT;
2235  	return reason;
2236  }
2237  
2238  static inline bool __remain_node_summaries(int reason)
2239  {
2240  	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2241  }
2242  
2243  static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2244  {
2245  	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2246  			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2247  }
2248  
2249  /*
2250   * Check whether the inode has blocks or not
2251   */
2252  static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2253  {
2254  	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2255  
2256  	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2257  }
2258  
2259  static inline bool f2fs_has_xattr_block(unsigned int ofs)
2260  {
2261  	return ofs == XATTR_NODE_OFFSET;
2262  }
2263  
2264  static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2265  					struct inode *inode, bool cap)
2266  {
2267  	if (!inode)
2268  		return true;
2269  	if (!test_opt(sbi, RESERVE_ROOT))
2270  		return false;
2271  	if (IS_NOQUOTA(inode))
2272  		return true;
2273  	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2274  		return true;
2275  	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2276  					in_group_p(F2FS_OPTION(sbi).s_resgid))
2277  		return true;
2278  	if (cap && capable(CAP_SYS_RESOURCE))
2279  		return true;
2280  	return false;
2281  }
2282  
2283  static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2284  						struct inode *inode, bool cap)
2285  {
2286  	block_t avail_user_block_count;
2287  
2288  	avail_user_block_count = sbi->user_block_count -
2289  					sbi->current_reserved_blocks;
2290  
2291  	if (!__allow_reserved_blocks(sbi, inode, cap))
2292  		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2293  
2294  	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2295  		if (avail_user_block_count > sbi->unusable_block_count)
2296  			avail_user_block_count -= sbi->unusable_block_count;
2297  		else
2298  			avail_user_block_count = 0;
2299  	}
2300  
2301  	return avail_user_block_count;
2302  }
2303  
2304  static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2305  static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2306  				 struct inode *inode, blkcnt_t *count, bool partial)
2307  {
2308  	long long diff = 0, release = 0;
2309  	block_t avail_user_block_count;
2310  	int ret;
2311  
2312  	ret = dquot_reserve_block(inode, *count);
2313  	if (ret)
2314  		return ret;
2315  
2316  	if (time_to_inject(sbi, FAULT_BLOCK)) {
2317  		release = *count;
2318  		goto release_quota;
2319  	}
2320  
2321  	/*
2322  	 * let's increase this in prior to actual block count change in order
2323  	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2324  	 */
2325  	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2326  
2327  	spin_lock(&sbi->stat_lock);
2328  
2329  	avail_user_block_count = get_available_block_count(sbi, inode, true);
2330  	diff = (long long)sbi->total_valid_block_count + *count -
2331  						avail_user_block_count;
2332  	if (unlikely(diff > 0)) {
2333  		if (!partial) {
2334  			spin_unlock(&sbi->stat_lock);
2335  			release = *count;
2336  			goto enospc;
2337  		}
2338  		if (diff > *count)
2339  			diff = *count;
2340  		*count -= diff;
2341  		release = diff;
2342  		if (!*count) {
2343  			spin_unlock(&sbi->stat_lock);
2344  			goto enospc;
2345  		}
2346  	}
2347  	sbi->total_valid_block_count += (block_t)(*count);
2348  
2349  	spin_unlock(&sbi->stat_lock);
2350  
2351  	if (unlikely(release)) {
2352  		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2353  		dquot_release_reservation_block(inode, release);
2354  	}
2355  	f2fs_i_blocks_write(inode, *count, true, true);
2356  	return 0;
2357  
2358  enospc:
2359  	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2360  release_quota:
2361  	dquot_release_reservation_block(inode, release);
2362  	return -ENOSPC;
2363  }
2364  
2365  #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2366  static inline bool page_private_##name(struct page *page) \
2367  { \
2368  	return PagePrivate(page) && \
2369  		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2370  		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2371  }
2372  
2373  #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2374  static inline void set_page_private_##name(struct page *page) \
2375  { \
2376  	if (!PagePrivate(page)) \
2377  		attach_page_private(page, (void *)0); \
2378  	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2379  	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2380  }
2381  
2382  #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2383  static inline void clear_page_private_##name(struct page *page) \
2384  { \
2385  	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2386  	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2387  		detach_page_private(page); \
2388  }
2389  
2390  PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2391  PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2392  PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2393  PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2394  
2395  PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2396  PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2397  PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2398  PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2399  
2400  PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2401  PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2402  PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2403  PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2404  
2405  static inline unsigned long get_page_private_data(struct page *page)
2406  {
2407  	unsigned long data = page_private(page);
2408  
2409  	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2410  		return 0;
2411  	return data >> PAGE_PRIVATE_MAX;
2412  }
2413  
2414  static inline void set_page_private_data(struct page *page, unsigned long data)
2415  {
2416  	if (!PagePrivate(page))
2417  		attach_page_private(page, (void *)0);
2418  	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2419  	page_private(page) |= data << PAGE_PRIVATE_MAX;
2420  }
2421  
2422  static inline void clear_page_private_data(struct page *page)
2423  {
2424  	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2425  	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2426  		detach_page_private(page);
2427  }
2428  
2429  static inline void clear_page_private_all(struct page *page)
2430  {
2431  	clear_page_private_data(page);
2432  	clear_page_private_reference(page);
2433  	clear_page_private_gcing(page);
2434  	clear_page_private_inline(page);
2435  	clear_page_private_atomic(page);
2436  
2437  	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2438  }
2439  
2440  static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2441  						struct inode *inode,
2442  						block_t count)
2443  {
2444  	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2445  
2446  	spin_lock(&sbi->stat_lock);
2447  	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2448  	sbi->total_valid_block_count -= (block_t)count;
2449  	if (sbi->reserved_blocks &&
2450  		sbi->current_reserved_blocks < sbi->reserved_blocks)
2451  		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2452  					sbi->current_reserved_blocks + count);
2453  	spin_unlock(&sbi->stat_lock);
2454  	if (unlikely(inode->i_blocks < sectors)) {
2455  		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2456  			  inode->i_ino,
2457  			  (unsigned long long)inode->i_blocks,
2458  			  (unsigned long long)sectors);
2459  		set_sbi_flag(sbi, SBI_NEED_FSCK);
2460  		return;
2461  	}
2462  	f2fs_i_blocks_write(inode, count, false, true);
2463  }
2464  
2465  static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2466  {
2467  	atomic_inc(&sbi->nr_pages[count_type]);
2468  
2469  	if (count_type == F2FS_DIRTY_DENTS ||
2470  			count_type == F2FS_DIRTY_NODES ||
2471  			count_type == F2FS_DIRTY_META ||
2472  			count_type == F2FS_DIRTY_QDATA ||
2473  			count_type == F2FS_DIRTY_IMETA)
2474  		set_sbi_flag(sbi, SBI_IS_DIRTY);
2475  }
2476  
2477  static inline void inode_inc_dirty_pages(struct inode *inode)
2478  {
2479  	atomic_inc(&F2FS_I(inode)->dirty_pages);
2480  	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2481  				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2482  	if (IS_NOQUOTA(inode))
2483  		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2484  }
2485  
2486  static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2487  {
2488  	atomic_dec(&sbi->nr_pages[count_type]);
2489  }
2490  
2491  static inline void inode_dec_dirty_pages(struct inode *inode)
2492  {
2493  	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2494  			!S_ISLNK(inode->i_mode))
2495  		return;
2496  
2497  	atomic_dec(&F2FS_I(inode)->dirty_pages);
2498  	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2499  				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2500  	if (IS_NOQUOTA(inode))
2501  		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2502  }
2503  
2504  static inline void inc_atomic_write_cnt(struct inode *inode)
2505  {
2506  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2507  	struct f2fs_inode_info *fi = F2FS_I(inode);
2508  	u64 current_write;
2509  
2510  	fi->atomic_write_cnt++;
2511  	atomic64_inc(&sbi->current_atomic_write);
2512  	current_write = atomic64_read(&sbi->current_atomic_write);
2513  	if (current_write > sbi->peak_atomic_write)
2514  		sbi->peak_atomic_write = current_write;
2515  }
2516  
2517  static inline void release_atomic_write_cnt(struct inode *inode)
2518  {
2519  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2520  	struct f2fs_inode_info *fi = F2FS_I(inode);
2521  
2522  	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2523  	fi->atomic_write_cnt = 0;
2524  }
2525  
2526  static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2527  {
2528  	return atomic_read(&sbi->nr_pages[count_type]);
2529  }
2530  
2531  static inline int get_dirty_pages(struct inode *inode)
2532  {
2533  	return atomic_read(&F2FS_I(inode)->dirty_pages);
2534  }
2535  
2536  static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2537  {
2538  	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2539  							BLKS_PER_SEC(sbi));
2540  }
2541  
2542  static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2543  {
2544  	return sbi->total_valid_block_count;
2545  }
2546  
2547  static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2548  {
2549  	return sbi->discard_blks;
2550  }
2551  
2552  static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2553  {
2554  	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2555  
2556  	/* return NAT or SIT bitmap */
2557  	if (flag == NAT_BITMAP)
2558  		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2559  	else if (flag == SIT_BITMAP)
2560  		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2561  
2562  	return 0;
2563  }
2564  
2565  static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2566  {
2567  	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2568  }
2569  
2570  static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2571  {
2572  	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2573  	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2574  	int offset;
2575  
2576  	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2577  		offset = (flag == SIT_BITMAP) ?
2578  			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2579  		/*
2580  		 * if large_nat_bitmap feature is enabled, leave checksum
2581  		 * protection for all nat/sit bitmaps.
2582  		 */
2583  		return tmp_ptr + offset + sizeof(__le32);
2584  	}
2585  
2586  	if (__cp_payload(sbi) > 0) {
2587  		if (flag == NAT_BITMAP)
2588  			return tmp_ptr;
2589  		else
2590  			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2591  	} else {
2592  		offset = (flag == NAT_BITMAP) ?
2593  			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2594  		return tmp_ptr + offset;
2595  	}
2596  }
2597  
2598  static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2599  {
2600  	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2601  
2602  	if (sbi->cur_cp_pack == 2)
2603  		start_addr += BLKS_PER_SEG(sbi);
2604  	return start_addr;
2605  }
2606  
2607  static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2608  {
2609  	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2610  
2611  	if (sbi->cur_cp_pack == 1)
2612  		start_addr += BLKS_PER_SEG(sbi);
2613  	return start_addr;
2614  }
2615  
2616  static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2617  {
2618  	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2619  }
2620  
2621  static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2622  {
2623  	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2624  }
2625  
2626  extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2627  static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2628  					struct inode *inode, bool is_inode)
2629  {
2630  	block_t	valid_block_count;
2631  	unsigned int valid_node_count;
2632  	unsigned int avail_user_block_count;
2633  	int err;
2634  
2635  	if (is_inode) {
2636  		if (inode) {
2637  			err = dquot_alloc_inode(inode);
2638  			if (err)
2639  				return err;
2640  		}
2641  	} else {
2642  		err = dquot_reserve_block(inode, 1);
2643  		if (err)
2644  			return err;
2645  	}
2646  
2647  	if (time_to_inject(sbi, FAULT_BLOCK))
2648  		goto enospc;
2649  
2650  	spin_lock(&sbi->stat_lock);
2651  
2652  	valid_block_count = sbi->total_valid_block_count + 1;
2653  	avail_user_block_count = get_available_block_count(sbi, inode, false);
2654  
2655  	if (unlikely(valid_block_count > avail_user_block_count)) {
2656  		spin_unlock(&sbi->stat_lock);
2657  		goto enospc;
2658  	}
2659  
2660  	valid_node_count = sbi->total_valid_node_count + 1;
2661  	if (unlikely(valid_node_count > sbi->total_node_count)) {
2662  		spin_unlock(&sbi->stat_lock);
2663  		goto enospc;
2664  	}
2665  
2666  	sbi->total_valid_node_count++;
2667  	sbi->total_valid_block_count++;
2668  	spin_unlock(&sbi->stat_lock);
2669  
2670  	if (inode) {
2671  		if (is_inode)
2672  			f2fs_mark_inode_dirty_sync(inode, true);
2673  		else
2674  			f2fs_i_blocks_write(inode, 1, true, true);
2675  	}
2676  
2677  	percpu_counter_inc(&sbi->alloc_valid_block_count);
2678  	return 0;
2679  
2680  enospc:
2681  	if (is_inode) {
2682  		if (inode)
2683  			dquot_free_inode(inode);
2684  	} else {
2685  		dquot_release_reservation_block(inode, 1);
2686  	}
2687  	return -ENOSPC;
2688  }
2689  
2690  static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2691  					struct inode *inode, bool is_inode)
2692  {
2693  	spin_lock(&sbi->stat_lock);
2694  
2695  	if (unlikely(!sbi->total_valid_block_count ||
2696  			!sbi->total_valid_node_count)) {
2697  		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2698  			  sbi->total_valid_block_count,
2699  			  sbi->total_valid_node_count);
2700  		set_sbi_flag(sbi, SBI_NEED_FSCK);
2701  	} else {
2702  		sbi->total_valid_block_count--;
2703  		sbi->total_valid_node_count--;
2704  	}
2705  
2706  	if (sbi->reserved_blocks &&
2707  		sbi->current_reserved_blocks < sbi->reserved_blocks)
2708  		sbi->current_reserved_blocks++;
2709  
2710  	spin_unlock(&sbi->stat_lock);
2711  
2712  	if (is_inode) {
2713  		dquot_free_inode(inode);
2714  	} else {
2715  		if (unlikely(inode->i_blocks == 0)) {
2716  			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2717  				  inode->i_ino,
2718  				  (unsigned long long)inode->i_blocks);
2719  			set_sbi_flag(sbi, SBI_NEED_FSCK);
2720  			return;
2721  		}
2722  		f2fs_i_blocks_write(inode, 1, false, true);
2723  	}
2724  }
2725  
2726  static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2727  {
2728  	return sbi->total_valid_node_count;
2729  }
2730  
2731  static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2732  {
2733  	percpu_counter_inc(&sbi->total_valid_inode_count);
2734  }
2735  
2736  static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2737  {
2738  	percpu_counter_dec(&sbi->total_valid_inode_count);
2739  }
2740  
2741  static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2742  {
2743  	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2744  }
2745  
2746  static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2747  						pgoff_t index, bool for_write)
2748  {
2749  	struct page *page;
2750  	unsigned int flags;
2751  
2752  	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2753  		if (!for_write)
2754  			page = find_get_page_flags(mapping, index,
2755  							FGP_LOCK | FGP_ACCESSED);
2756  		else
2757  			page = find_lock_page(mapping, index);
2758  		if (page)
2759  			return page;
2760  
2761  		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2762  			return NULL;
2763  	}
2764  
2765  	if (!for_write)
2766  		return grab_cache_page(mapping, index);
2767  
2768  	flags = memalloc_nofs_save();
2769  	page = grab_cache_page_write_begin(mapping, index);
2770  	memalloc_nofs_restore(flags);
2771  
2772  	return page;
2773  }
2774  
2775  static inline struct page *f2fs_pagecache_get_page(
2776  				struct address_space *mapping, pgoff_t index,
2777  				fgf_t fgp_flags, gfp_t gfp_mask)
2778  {
2779  	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2780  		return NULL;
2781  
2782  	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2783  }
2784  
2785  static inline void f2fs_put_page(struct page *page, int unlock)
2786  {
2787  	if (!page)
2788  		return;
2789  
2790  	if (unlock) {
2791  		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2792  		unlock_page(page);
2793  	}
2794  	put_page(page);
2795  }
2796  
2797  static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2798  {
2799  	if (dn->node_page)
2800  		f2fs_put_page(dn->node_page, 1);
2801  	if (dn->inode_page && dn->node_page != dn->inode_page)
2802  		f2fs_put_page(dn->inode_page, 0);
2803  	dn->node_page = NULL;
2804  	dn->inode_page = NULL;
2805  }
2806  
2807  static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2808  					size_t size)
2809  {
2810  	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2811  }
2812  
2813  static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2814  						gfp_t flags)
2815  {
2816  	void *entry;
2817  
2818  	entry = kmem_cache_alloc(cachep, flags);
2819  	if (!entry)
2820  		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2821  	return entry;
2822  }
2823  
2824  static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2825  			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2826  {
2827  	if (nofail)
2828  		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2829  
2830  	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2831  		return NULL;
2832  
2833  	return kmem_cache_alloc(cachep, flags);
2834  }
2835  
2836  static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2837  {
2838  	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2839  		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2840  		get_pages(sbi, F2FS_WB_CP_DATA) ||
2841  		get_pages(sbi, F2FS_DIO_READ) ||
2842  		get_pages(sbi, F2FS_DIO_WRITE))
2843  		return true;
2844  
2845  	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2846  			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2847  		return true;
2848  
2849  	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2850  			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2851  		return true;
2852  	return false;
2853  }
2854  
2855  static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2856  {
2857  	if (sbi->gc_mode == GC_URGENT_HIGH)
2858  		return true;
2859  
2860  	if (is_inflight_io(sbi, type))
2861  		return false;
2862  
2863  	if (sbi->gc_mode == GC_URGENT_MID)
2864  		return true;
2865  
2866  	if (sbi->gc_mode == GC_URGENT_LOW &&
2867  			(type == DISCARD_TIME || type == GC_TIME))
2868  		return true;
2869  
2870  	return f2fs_time_over(sbi, type);
2871  }
2872  
2873  static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2874  				unsigned long index, void *item)
2875  {
2876  	while (radix_tree_insert(root, index, item))
2877  		cond_resched();
2878  }
2879  
2880  #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2881  
2882  static inline bool IS_INODE(struct page *page)
2883  {
2884  	struct f2fs_node *p = F2FS_NODE(page);
2885  
2886  	return RAW_IS_INODE(p);
2887  }
2888  
2889  static inline int offset_in_addr(struct f2fs_inode *i)
2890  {
2891  	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2892  			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2893  }
2894  
2895  static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2896  {
2897  	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2898  }
2899  
2900  static inline int f2fs_has_extra_attr(struct inode *inode);
2901  static inline block_t data_blkaddr(struct inode *inode,
2902  			struct page *node_page, unsigned int offset)
2903  {
2904  	struct f2fs_node *raw_node;
2905  	__le32 *addr_array;
2906  	int base = 0;
2907  	bool is_inode = IS_INODE(node_page);
2908  
2909  	raw_node = F2FS_NODE(node_page);
2910  
2911  	if (is_inode) {
2912  		if (!inode)
2913  			/* from GC path only */
2914  			base = offset_in_addr(&raw_node->i);
2915  		else if (f2fs_has_extra_attr(inode))
2916  			base = get_extra_isize(inode);
2917  	}
2918  
2919  	addr_array = blkaddr_in_node(raw_node);
2920  	return le32_to_cpu(addr_array[base + offset]);
2921  }
2922  
2923  static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2924  {
2925  	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2926  }
2927  
2928  static inline int f2fs_test_bit(unsigned int nr, char *addr)
2929  {
2930  	int mask;
2931  
2932  	addr += (nr >> 3);
2933  	mask = BIT(7 - (nr & 0x07));
2934  	return mask & *addr;
2935  }
2936  
2937  static inline void f2fs_set_bit(unsigned int nr, char *addr)
2938  {
2939  	int mask;
2940  
2941  	addr += (nr >> 3);
2942  	mask = BIT(7 - (nr & 0x07));
2943  	*addr |= mask;
2944  }
2945  
2946  static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2947  {
2948  	int mask;
2949  
2950  	addr += (nr >> 3);
2951  	mask = BIT(7 - (nr & 0x07));
2952  	*addr &= ~mask;
2953  }
2954  
2955  static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2956  {
2957  	int mask;
2958  	int ret;
2959  
2960  	addr += (nr >> 3);
2961  	mask = BIT(7 - (nr & 0x07));
2962  	ret = mask & *addr;
2963  	*addr |= mask;
2964  	return ret;
2965  }
2966  
2967  static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2968  {
2969  	int mask;
2970  	int ret;
2971  
2972  	addr += (nr >> 3);
2973  	mask = BIT(7 - (nr & 0x07));
2974  	ret = mask & *addr;
2975  	*addr &= ~mask;
2976  	return ret;
2977  }
2978  
2979  static inline void f2fs_change_bit(unsigned int nr, char *addr)
2980  {
2981  	int mask;
2982  
2983  	addr += (nr >> 3);
2984  	mask = BIT(7 - (nr & 0x07));
2985  	*addr ^= mask;
2986  }
2987  
2988  /*
2989   * On-disk inode flags (f2fs_inode::i_flags)
2990   */
2991  #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2992  #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2993  #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2994  #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2995  #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2996  #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2997  #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2998  #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2999  #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
3000  #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
3001  #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
3002  
3003  #define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3004  
3005  /* Flags that should be inherited by new inodes from their parent. */
3006  #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3007  			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3008  			   F2FS_CASEFOLD_FL)
3009  
3010  /* Flags that are appropriate for regular files (all but dir-specific ones). */
3011  #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3012  				F2FS_CASEFOLD_FL))
3013  
3014  /* Flags that are appropriate for non-directories/regular files. */
3015  #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3016  
3017  static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3018  {
3019  	if (S_ISDIR(mode))
3020  		return flags;
3021  	else if (S_ISREG(mode))
3022  		return flags & F2FS_REG_FLMASK;
3023  	else
3024  		return flags & F2FS_OTHER_FLMASK;
3025  }
3026  
3027  static inline void __mark_inode_dirty_flag(struct inode *inode,
3028  						int flag, bool set)
3029  {
3030  	switch (flag) {
3031  	case FI_INLINE_XATTR:
3032  	case FI_INLINE_DATA:
3033  	case FI_INLINE_DENTRY:
3034  	case FI_NEW_INODE:
3035  		if (set)
3036  			return;
3037  		fallthrough;
3038  	case FI_DATA_EXIST:
3039  	case FI_PIN_FILE:
3040  	case FI_COMPRESS_RELEASED:
3041  		f2fs_mark_inode_dirty_sync(inode, true);
3042  	}
3043  }
3044  
3045  static inline void set_inode_flag(struct inode *inode, int flag)
3046  {
3047  	set_bit(flag, F2FS_I(inode)->flags);
3048  	__mark_inode_dirty_flag(inode, flag, true);
3049  }
3050  
3051  static inline int is_inode_flag_set(struct inode *inode, int flag)
3052  {
3053  	return test_bit(flag, F2FS_I(inode)->flags);
3054  }
3055  
3056  static inline void clear_inode_flag(struct inode *inode, int flag)
3057  {
3058  	clear_bit(flag, F2FS_I(inode)->flags);
3059  	__mark_inode_dirty_flag(inode, flag, false);
3060  }
3061  
3062  static inline bool f2fs_verity_in_progress(struct inode *inode)
3063  {
3064  	return IS_ENABLED(CONFIG_FS_VERITY) &&
3065  	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3066  }
3067  
3068  static inline void set_acl_inode(struct inode *inode, umode_t mode)
3069  {
3070  	F2FS_I(inode)->i_acl_mode = mode;
3071  	set_inode_flag(inode, FI_ACL_MODE);
3072  	f2fs_mark_inode_dirty_sync(inode, false);
3073  }
3074  
3075  static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3076  {
3077  	if (inc)
3078  		inc_nlink(inode);
3079  	else
3080  		drop_nlink(inode);
3081  	f2fs_mark_inode_dirty_sync(inode, true);
3082  }
3083  
3084  static inline void f2fs_i_blocks_write(struct inode *inode,
3085  					block_t diff, bool add, bool claim)
3086  {
3087  	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3088  	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3089  
3090  	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3091  	if (add) {
3092  		if (claim)
3093  			dquot_claim_block(inode, diff);
3094  		else
3095  			dquot_alloc_block_nofail(inode, diff);
3096  	} else {
3097  		dquot_free_block(inode, diff);
3098  	}
3099  
3100  	f2fs_mark_inode_dirty_sync(inode, true);
3101  	if (clean || recover)
3102  		set_inode_flag(inode, FI_AUTO_RECOVER);
3103  }
3104  
3105  static inline bool f2fs_is_atomic_file(struct inode *inode);
3106  
3107  static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3108  {
3109  	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3110  	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3111  
3112  	if (i_size_read(inode) == i_size)
3113  		return;
3114  
3115  	i_size_write(inode, i_size);
3116  
3117  	if (f2fs_is_atomic_file(inode))
3118  		return;
3119  
3120  	f2fs_mark_inode_dirty_sync(inode, true);
3121  	if (clean || recover)
3122  		set_inode_flag(inode, FI_AUTO_RECOVER);
3123  }
3124  
3125  static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3126  {
3127  	F2FS_I(inode)->i_current_depth = depth;
3128  	f2fs_mark_inode_dirty_sync(inode, true);
3129  }
3130  
3131  static inline void f2fs_i_gc_failures_write(struct inode *inode,
3132  					unsigned int count)
3133  {
3134  	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3135  	f2fs_mark_inode_dirty_sync(inode, true);
3136  }
3137  
3138  static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3139  {
3140  	F2FS_I(inode)->i_xattr_nid = xnid;
3141  	f2fs_mark_inode_dirty_sync(inode, true);
3142  }
3143  
3144  static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3145  {
3146  	F2FS_I(inode)->i_pino = pino;
3147  	f2fs_mark_inode_dirty_sync(inode, true);
3148  }
3149  
3150  static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3151  {
3152  	struct f2fs_inode_info *fi = F2FS_I(inode);
3153  
3154  	if (ri->i_inline & F2FS_INLINE_XATTR)
3155  		set_bit(FI_INLINE_XATTR, fi->flags);
3156  	if (ri->i_inline & F2FS_INLINE_DATA)
3157  		set_bit(FI_INLINE_DATA, fi->flags);
3158  	if (ri->i_inline & F2FS_INLINE_DENTRY)
3159  		set_bit(FI_INLINE_DENTRY, fi->flags);
3160  	if (ri->i_inline & F2FS_DATA_EXIST)
3161  		set_bit(FI_DATA_EXIST, fi->flags);
3162  	if (ri->i_inline & F2FS_EXTRA_ATTR)
3163  		set_bit(FI_EXTRA_ATTR, fi->flags);
3164  	if (ri->i_inline & F2FS_PIN_FILE)
3165  		set_bit(FI_PIN_FILE, fi->flags);
3166  	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3167  		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3168  }
3169  
3170  static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3171  {
3172  	ri->i_inline = 0;
3173  
3174  	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3175  		ri->i_inline |= F2FS_INLINE_XATTR;
3176  	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3177  		ri->i_inline |= F2FS_INLINE_DATA;
3178  	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3179  		ri->i_inline |= F2FS_INLINE_DENTRY;
3180  	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3181  		ri->i_inline |= F2FS_DATA_EXIST;
3182  	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3183  		ri->i_inline |= F2FS_EXTRA_ATTR;
3184  	if (is_inode_flag_set(inode, FI_PIN_FILE))
3185  		ri->i_inline |= F2FS_PIN_FILE;
3186  	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3187  		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3188  }
3189  
3190  static inline int f2fs_has_extra_attr(struct inode *inode)
3191  {
3192  	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3193  }
3194  
3195  static inline int f2fs_has_inline_xattr(struct inode *inode)
3196  {
3197  	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3198  }
3199  
3200  static inline int f2fs_compressed_file(struct inode *inode)
3201  {
3202  	return S_ISREG(inode->i_mode) &&
3203  		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3204  }
3205  
3206  static inline bool f2fs_need_compress_data(struct inode *inode)
3207  {
3208  	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3209  
3210  	if (!f2fs_compressed_file(inode))
3211  		return false;
3212  
3213  	if (compress_mode == COMPR_MODE_FS)
3214  		return true;
3215  	else if (compress_mode == COMPR_MODE_USER &&
3216  			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3217  		return true;
3218  
3219  	return false;
3220  }
3221  
3222  static inline unsigned int addrs_per_inode(struct inode *inode)
3223  {
3224  	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3225  				get_inline_xattr_addrs(inode);
3226  
3227  	if (!f2fs_compressed_file(inode))
3228  		return addrs;
3229  	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3230  }
3231  
3232  static inline unsigned int addrs_per_block(struct inode *inode)
3233  {
3234  	if (!f2fs_compressed_file(inode))
3235  		return DEF_ADDRS_PER_BLOCK;
3236  	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3237  }
3238  
3239  static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3240  {
3241  	struct f2fs_inode *ri = F2FS_INODE(page);
3242  
3243  	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3244  					get_inline_xattr_addrs(inode)]);
3245  }
3246  
3247  static inline int inline_xattr_size(struct inode *inode)
3248  {
3249  	if (f2fs_has_inline_xattr(inode))
3250  		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3251  	return 0;
3252  }
3253  
3254  /*
3255   * Notice: check inline_data flag without inode page lock is unsafe.
3256   * It could change at any time by f2fs_convert_inline_page().
3257   */
3258  static inline int f2fs_has_inline_data(struct inode *inode)
3259  {
3260  	return is_inode_flag_set(inode, FI_INLINE_DATA);
3261  }
3262  
3263  static inline int f2fs_exist_data(struct inode *inode)
3264  {
3265  	return is_inode_flag_set(inode, FI_DATA_EXIST);
3266  }
3267  
3268  static inline int f2fs_is_mmap_file(struct inode *inode)
3269  {
3270  	return is_inode_flag_set(inode, FI_MMAP_FILE);
3271  }
3272  
3273  static inline bool f2fs_is_pinned_file(struct inode *inode)
3274  {
3275  	return is_inode_flag_set(inode, FI_PIN_FILE);
3276  }
3277  
3278  static inline bool f2fs_is_atomic_file(struct inode *inode)
3279  {
3280  	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3281  }
3282  
3283  static inline bool f2fs_is_cow_file(struct inode *inode)
3284  {
3285  	return is_inode_flag_set(inode, FI_COW_FILE);
3286  }
3287  
3288  static inline __le32 *get_dnode_addr(struct inode *inode,
3289  					struct page *node_page);
3290  static inline void *inline_data_addr(struct inode *inode, struct page *page)
3291  {
3292  	__le32 *addr = get_dnode_addr(inode, page);
3293  
3294  	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3295  }
3296  
3297  static inline int f2fs_has_inline_dentry(struct inode *inode)
3298  {
3299  	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3300  }
3301  
3302  static inline int is_file(struct inode *inode, int type)
3303  {
3304  	return F2FS_I(inode)->i_advise & type;
3305  }
3306  
3307  static inline void set_file(struct inode *inode, int type)
3308  {
3309  	if (is_file(inode, type))
3310  		return;
3311  	F2FS_I(inode)->i_advise |= type;
3312  	f2fs_mark_inode_dirty_sync(inode, true);
3313  }
3314  
3315  static inline void clear_file(struct inode *inode, int type)
3316  {
3317  	if (!is_file(inode, type))
3318  		return;
3319  	F2FS_I(inode)->i_advise &= ~type;
3320  	f2fs_mark_inode_dirty_sync(inode, true);
3321  }
3322  
3323  static inline bool f2fs_is_time_consistent(struct inode *inode)
3324  {
3325  	struct timespec64 ctime = inode_get_ctime(inode);
3326  
3327  	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3328  		return false;
3329  	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ctime))
3330  		return false;
3331  	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3332  		return false;
3333  	return true;
3334  }
3335  
3336  static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3337  {
3338  	bool ret;
3339  
3340  	if (dsync) {
3341  		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3342  
3343  		spin_lock(&sbi->inode_lock[DIRTY_META]);
3344  		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3345  		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3346  		return ret;
3347  	}
3348  	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3349  			file_keep_isize(inode) ||
3350  			i_size_read(inode) & ~PAGE_MASK)
3351  		return false;
3352  
3353  	if (!f2fs_is_time_consistent(inode))
3354  		return false;
3355  
3356  	spin_lock(&F2FS_I(inode)->i_size_lock);
3357  	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3358  	spin_unlock(&F2FS_I(inode)->i_size_lock);
3359  
3360  	return ret;
3361  }
3362  
3363  static inline bool f2fs_readonly(struct super_block *sb)
3364  {
3365  	return sb_rdonly(sb);
3366  }
3367  
3368  static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3369  {
3370  	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3371  }
3372  
3373  static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3374  					size_t size, gfp_t flags)
3375  {
3376  	if (time_to_inject(sbi, FAULT_KMALLOC))
3377  		return NULL;
3378  
3379  	return kmalloc(size, flags);
3380  }
3381  
3382  static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3383  {
3384  	if (time_to_inject(sbi, FAULT_KMALLOC))
3385  		return NULL;
3386  
3387  	return __getname();
3388  }
3389  
3390  static inline void f2fs_putname(char *buf)
3391  {
3392  	__putname(buf);
3393  }
3394  
3395  static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3396  					size_t size, gfp_t flags)
3397  {
3398  	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3399  }
3400  
3401  static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3402  					size_t size, gfp_t flags)
3403  {
3404  	if (time_to_inject(sbi, FAULT_KVMALLOC))
3405  		return NULL;
3406  
3407  	return kvmalloc(size, flags);
3408  }
3409  
3410  static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3411  					size_t size, gfp_t flags)
3412  {
3413  	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3414  }
3415  
3416  static inline int get_extra_isize(struct inode *inode)
3417  {
3418  	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3419  }
3420  
3421  static inline int get_inline_xattr_addrs(struct inode *inode)
3422  {
3423  	return F2FS_I(inode)->i_inline_xattr_size;
3424  }
3425  
3426  static inline __le32 *get_dnode_addr(struct inode *inode,
3427  					struct page *node_page)
3428  {
3429  	int base = 0;
3430  
3431  	if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3432  		base = get_extra_isize(inode);
3433  
3434  	return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3435  }
3436  
3437  #define f2fs_get_inode_mode(i) \
3438  	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3439  	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3440  
3441  #define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3442  
3443  #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3444  	(offsetof(struct f2fs_inode, i_extra_end) -	\
3445  	offsetof(struct f2fs_inode, i_extra_isize))	\
3446  
3447  #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3448  #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3449  		((offsetof(typeof(*(f2fs_inode)), field) +	\
3450  		sizeof((f2fs_inode)->field))			\
3451  		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3452  
3453  #define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3454  
3455  #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3456  
3457  bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3458  					block_t blkaddr, int type);
3459  static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3460  					block_t blkaddr, int type)
3461  {
3462  	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3463  		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3464  			 blkaddr, type);
3465  }
3466  
3467  static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3468  {
3469  	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3470  			blkaddr == COMPRESS_ADDR)
3471  		return false;
3472  	return true;
3473  }
3474  
3475  /*
3476   * file.c
3477   */
3478  int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3479  int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3480  int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3481  int f2fs_truncate(struct inode *inode);
3482  int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3483  		 struct kstat *stat, u32 request_mask, unsigned int flags);
3484  int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3485  		 struct iattr *attr);
3486  int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3487  void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3488  int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3489  						bool readonly, bool need_lock);
3490  int f2fs_precache_extents(struct inode *inode);
3491  int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3492  int f2fs_fileattr_set(struct mnt_idmap *idmap,
3493  		      struct dentry *dentry, struct fileattr *fa);
3494  long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3495  long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3496  int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3497  int f2fs_pin_file_control(struct inode *inode, bool inc);
3498  
3499  /*
3500   * inode.c
3501   */
3502  void f2fs_set_inode_flags(struct inode *inode);
3503  bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3504  void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3505  struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3506  struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3507  int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3508  void f2fs_update_inode(struct inode *inode, struct page *node_page);
3509  void f2fs_update_inode_page(struct inode *inode);
3510  int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3511  void f2fs_evict_inode(struct inode *inode);
3512  void f2fs_handle_failed_inode(struct inode *inode);
3513  
3514  /*
3515   * namei.c
3516   */
3517  int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3518  							bool hot, bool set);
3519  struct dentry *f2fs_get_parent(struct dentry *child);
3520  int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3521  		     struct inode **new_inode);
3522  
3523  /*
3524   * dir.c
3525   */
3526  int f2fs_init_casefolded_name(const struct inode *dir,
3527  			      struct f2fs_filename *fname);
3528  int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3529  			int lookup, struct f2fs_filename *fname);
3530  int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3531  			struct f2fs_filename *fname);
3532  void f2fs_free_filename(struct f2fs_filename *fname);
3533  struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3534  			const struct f2fs_filename *fname, int *max_slots);
3535  int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3536  			unsigned int start_pos, struct fscrypt_str *fstr);
3537  void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3538  			struct f2fs_dentry_ptr *d);
3539  struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3540  			const struct f2fs_filename *fname, struct page *dpage);
3541  void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3542  			unsigned int current_depth);
3543  int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3544  void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3545  struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3546  					 const struct f2fs_filename *fname,
3547  					 struct page **res_page);
3548  struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3549  			const struct qstr *child, struct page **res_page);
3550  struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3551  ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3552  			struct page **page);
3553  void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3554  			struct page *page, struct inode *inode);
3555  bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3556  			  const struct f2fs_filename *fname);
3557  void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3558  			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3559  			unsigned int bit_pos);
3560  int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3561  			struct inode *inode, nid_t ino, umode_t mode);
3562  int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3563  			struct inode *inode, nid_t ino, umode_t mode);
3564  int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3565  			struct inode *inode, nid_t ino, umode_t mode);
3566  void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3567  			struct inode *dir, struct inode *inode);
3568  int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3569  					struct f2fs_filename *fname);
3570  bool f2fs_empty_dir(struct inode *dir);
3571  
3572  static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3573  {
3574  	if (fscrypt_is_nokey_name(dentry))
3575  		return -ENOKEY;
3576  	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3577  				inode, inode->i_ino, inode->i_mode);
3578  }
3579  
3580  /*
3581   * super.c
3582   */
3583  int f2fs_inode_dirtied(struct inode *inode, bool sync);
3584  void f2fs_inode_synced(struct inode *inode);
3585  int f2fs_dquot_initialize(struct inode *inode);
3586  int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3587  int f2fs_quota_sync(struct super_block *sb, int type);
3588  loff_t max_file_blocks(struct inode *inode);
3589  void f2fs_quota_off_umount(struct super_block *sb);
3590  void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3591  void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3592  void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3593  void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3594  int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3595  int f2fs_sync_fs(struct super_block *sb, int sync);
3596  int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3597  
3598  /*
3599   * hash.c
3600   */
3601  void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3602  
3603  /*
3604   * node.c
3605   */
3606  struct node_info;
3607  
3608  int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3609  bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3610  bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3611  void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3612  void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3613  void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3614  int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3615  bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3616  bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3617  int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3618  				struct node_info *ni, bool checkpoint_context);
3619  pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3620  int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3621  int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3622  int f2fs_truncate_xattr_node(struct inode *inode);
3623  int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3624  					unsigned int seq_id);
3625  bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3626  int f2fs_remove_inode_page(struct inode *inode);
3627  struct page *f2fs_new_inode_page(struct inode *inode);
3628  struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3629  void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3630  struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3631  struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3632  int f2fs_move_node_page(struct page *node_page, int gc_type);
3633  void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3634  int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3635  			struct writeback_control *wbc, bool atomic,
3636  			unsigned int *seq_id);
3637  int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3638  			struct writeback_control *wbc,
3639  			bool do_balance, enum iostat_type io_type);
3640  int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3641  bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3642  void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3643  void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3644  int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3645  int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3646  int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3647  int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3648  int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3649  			unsigned int segno, struct f2fs_summary_block *sum);
3650  void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3651  int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3652  int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3653  void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3654  int __init f2fs_create_node_manager_caches(void);
3655  void f2fs_destroy_node_manager_caches(void);
3656  
3657  /*
3658   * segment.c
3659   */
3660  bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3661  int f2fs_commit_atomic_write(struct inode *inode);
3662  void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3663  void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3664  void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3665  int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3666  int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3667  int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3668  void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3669  void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3670  bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3671  int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3672  void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3673  void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3674  bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3675  void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3676  					struct cp_control *cpc);
3677  void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3678  block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3679  int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3680  void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3681  int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3682  bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3683  void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3684  void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3685  void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3686  void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3687  			unsigned int *newseg, bool new_sec, int dir);
3688  void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3689  					unsigned int start, unsigned int end);
3690  int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3691  int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3692  void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3693  int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3694  bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3695  					struct cp_control *cpc);
3696  struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3697  void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3698  					block_t blk_addr);
3699  void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3700  						enum iostat_type io_type);
3701  void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3702  void f2fs_outplace_write_data(struct dnode_of_data *dn,
3703  			struct f2fs_io_info *fio);
3704  int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3705  void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3706  			block_t old_blkaddr, block_t new_blkaddr,
3707  			bool recover_curseg, bool recover_newaddr,
3708  			bool from_gc);
3709  void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3710  			block_t old_addr, block_t new_addr,
3711  			unsigned char version, bool recover_curseg,
3712  			bool recover_newaddr);
3713  void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3714  			block_t old_blkaddr, block_t *new_blkaddr,
3715  			struct f2fs_summary *sum, int type,
3716  			struct f2fs_io_info *fio);
3717  void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3718  					block_t blkaddr, unsigned int blkcnt);
3719  void f2fs_wait_on_page_writeback(struct page *page,
3720  			enum page_type type, bool ordered, bool locked);
3721  void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3722  void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3723  								block_t len);
3724  void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3725  void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3726  int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3727  			unsigned int val, int alloc);
3728  void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3729  int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3730  int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3731  int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3732  void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3733  int __init f2fs_create_segment_manager_caches(void);
3734  void f2fs_destroy_segment_manager_caches(void);
3735  int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3736  unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3737  			unsigned int segno);
3738  unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3739  			unsigned int segno);
3740  
3741  #define DEF_FRAGMENT_SIZE	4
3742  #define MIN_FRAGMENT_SIZE	1
3743  #define MAX_FRAGMENT_SIZE	512
3744  
3745  static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3746  {
3747  	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3748  		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3749  }
3750  
3751  /*
3752   * checkpoint.c
3753   */
3754  void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3755  							unsigned char reason);
3756  void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3757  struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3758  struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3759  struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3760  struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3761  bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3762  					block_t blkaddr, int type);
3763  int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3764  			int type, bool sync);
3765  void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3766  							unsigned int ra_blocks);
3767  long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3768  			long nr_to_write, enum iostat_type io_type);
3769  void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3770  void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3771  void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3772  bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3773  void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3774  					unsigned int devidx, int type);
3775  bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3776  					unsigned int devidx, int type);
3777  int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3778  void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3779  void f2fs_add_orphan_inode(struct inode *inode);
3780  void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3781  int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3782  int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3783  void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3784  void f2fs_remove_dirty_inode(struct inode *inode);
3785  int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3786  								bool from_cp);
3787  void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3788  u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3789  int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3790  void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3791  int __init f2fs_create_checkpoint_caches(void);
3792  void f2fs_destroy_checkpoint_caches(void);
3793  int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3794  int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3795  void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3796  void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3797  
3798  /*
3799   * data.c
3800   */
3801  int __init f2fs_init_bioset(void);
3802  void f2fs_destroy_bioset(void);
3803  bool f2fs_is_cp_guaranteed(struct page *page);
3804  int f2fs_init_bio_entry_cache(void);
3805  void f2fs_destroy_bio_entry_cache(void);
3806  void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3807  			  enum page_type type);
3808  int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3809  void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3810  void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3811  				struct inode *inode, struct page *page,
3812  				nid_t ino, enum page_type type);
3813  void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3814  					struct bio **bio, struct page *page);
3815  void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3816  int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3817  int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3818  void f2fs_submit_page_write(struct f2fs_io_info *fio);
3819  struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3820  		block_t blk_addr, sector_t *sector);
3821  int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3822  void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3823  void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3824  int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3825  int f2fs_reserve_new_block(struct dnode_of_data *dn);
3826  int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3827  int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3828  struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3829  			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3830  struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3831  							pgoff_t *next_pgofs);
3832  struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3833  			bool for_write);
3834  struct page *f2fs_get_new_data_page(struct inode *inode,
3835  			struct page *ipage, pgoff_t index, bool new_i_size);
3836  int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3837  int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3838  int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3839  			u64 start, u64 len);
3840  int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3841  bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3842  bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3843  int f2fs_write_single_data_page(struct page *page, int *submitted,
3844  				struct bio **bio, sector_t *last_block,
3845  				struct writeback_control *wbc,
3846  				enum iostat_type io_type,
3847  				int compr_blocks, bool allow_balance);
3848  void f2fs_write_failed(struct inode *inode, loff_t to);
3849  void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3850  bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3851  bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3852  void f2fs_clear_page_cache_dirty_tag(struct page *page);
3853  int f2fs_init_post_read_processing(void);
3854  void f2fs_destroy_post_read_processing(void);
3855  int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3856  void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3857  extern const struct iomap_ops f2fs_iomap_ops;
3858  
3859  /*
3860   * gc.c
3861   */
3862  int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3863  void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3864  block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3865  int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3866  void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3867  int f2fs_gc_range(struct f2fs_sb_info *sbi,
3868  		unsigned int start_seg, unsigned int end_seg,
3869  		bool dry_run, unsigned int dry_run_sections);
3870  int f2fs_resize_fs(struct file *filp, __u64 block_count);
3871  int __init f2fs_create_garbage_collection_cache(void);
3872  void f2fs_destroy_garbage_collection_cache(void);
3873  /* victim selection function for cleaning and SSR */
3874  int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3875  			int gc_type, int type, char alloc_mode,
3876  			unsigned long long age);
3877  
3878  /*
3879   * recovery.c
3880   */
3881  int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3882  bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3883  int __init f2fs_create_recovery_cache(void);
3884  void f2fs_destroy_recovery_cache(void);
3885  
3886  /*
3887   * debug.c
3888   */
3889  #ifdef CONFIG_F2FS_STAT_FS
3890  struct f2fs_stat_info {
3891  	struct list_head stat_list;
3892  	struct f2fs_sb_info *sbi;
3893  	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3894  	int main_area_segs, main_area_sections, main_area_zones;
3895  	unsigned long long hit_cached[NR_EXTENT_CACHES];
3896  	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3897  	unsigned long long total_ext[NR_EXTENT_CACHES];
3898  	unsigned long long hit_total[NR_EXTENT_CACHES];
3899  	int ext_tree[NR_EXTENT_CACHES];
3900  	int zombie_tree[NR_EXTENT_CACHES];
3901  	int ext_node[NR_EXTENT_CACHES];
3902  	/* to count memory footprint */
3903  	unsigned long long ext_mem[NR_EXTENT_CACHES];
3904  	/* for read extent cache */
3905  	unsigned long long hit_largest;
3906  	/* for block age extent cache */
3907  	unsigned long long allocated_data_blocks;
3908  	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3909  	int ndirty_data, ndirty_qdata;
3910  	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3911  	int nats, dirty_nats, sits, dirty_sits;
3912  	int free_nids, avail_nids, alloc_nids;
3913  	int total_count, utilization;
3914  	int nr_wb_cp_data, nr_wb_data;
3915  	int nr_rd_data, nr_rd_node, nr_rd_meta;
3916  	int nr_dio_read, nr_dio_write;
3917  	unsigned int io_skip_bggc, other_skip_bggc;
3918  	int nr_flushing, nr_flushed, flush_list_empty;
3919  	int nr_discarding, nr_discarded;
3920  	int nr_discard_cmd;
3921  	unsigned int undiscard_blks;
3922  	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3923  	unsigned int cur_ckpt_time, peak_ckpt_time;
3924  	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3925  	int compr_inode, swapfile_inode;
3926  	unsigned long long compr_blocks;
3927  	int aw_cnt, max_aw_cnt;
3928  	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3929  	unsigned int bimodal, avg_vblocks;
3930  	int util_free, util_valid, util_invalid;
3931  	int rsvd_segs, overp_segs;
3932  	int dirty_count, node_pages, meta_pages, compress_pages;
3933  	int compress_page_hit;
3934  	int prefree_count, free_segs, free_secs;
3935  	int cp_call_count[MAX_CALL_TYPE], cp_count;
3936  	int gc_call_count[MAX_CALL_TYPE];
3937  	int gc_segs[2][2];
3938  	int gc_secs[2][2];
3939  	int tot_blks, data_blks, node_blks;
3940  	int bg_data_blks, bg_node_blks;
3941  	int curseg[NR_CURSEG_TYPE];
3942  	int cursec[NR_CURSEG_TYPE];
3943  	int curzone[NR_CURSEG_TYPE];
3944  	unsigned int dirty_seg[NR_CURSEG_TYPE];
3945  	unsigned int full_seg[NR_CURSEG_TYPE];
3946  	unsigned int valid_blks[NR_CURSEG_TYPE];
3947  
3948  	unsigned int meta_count[META_MAX];
3949  	unsigned int segment_count[2];
3950  	unsigned int block_count[2];
3951  	unsigned int inplace_count;
3952  	unsigned long long base_mem, cache_mem, page_mem;
3953  };
3954  
3955  static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3956  {
3957  	return (struct f2fs_stat_info *)sbi->stat_info;
3958  }
3959  
3960  #define stat_inc_cp_call_count(sbi, foreground)				\
3961  		atomic_inc(&sbi->cp_call_count[(foreground)])
3962  #define stat_inc_cp_count(si)		(F2FS_STAT(sbi)->cp_count++)
3963  #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3964  #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3965  #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3966  #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3967  #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3968  #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3969  #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3970  #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3971  #define stat_inc_inline_xattr(inode)					\
3972  	do {								\
3973  		if (f2fs_has_inline_xattr(inode))			\
3974  			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3975  	} while (0)
3976  #define stat_dec_inline_xattr(inode)					\
3977  	do {								\
3978  		if (f2fs_has_inline_xattr(inode))			\
3979  			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3980  	} while (0)
3981  #define stat_inc_inline_inode(inode)					\
3982  	do {								\
3983  		if (f2fs_has_inline_data(inode))			\
3984  			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3985  	} while (0)
3986  #define stat_dec_inline_inode(inode)					\
3987  	do {								\
3988  		if (f2fs_has_inline_data(inode))			\
3989  			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3990  	} while (0)
3991  #define stat_inc_inline_dir(inode)					\
3992  	do {								\
3993  		if (f2fs_has_inline_dentry(inode))			\
3994  			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3995  	} while (0)
3996  #define stat_dec_inline_dir(inode)					\
3997  	do {								\
3998  		if (f2fs_has_inline_dentry(inode))			\
3999  			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4000  	} while (0)
4001  #define stat_inc_compr_inode(inode)					\
4002  	do {								\
4003  		if (f2fs_compressed_file(inode))			\
4004  			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4005  	} while (0)
4006  #define stat_dec_compr_inode(inode)					\
4007  	do {								\
4008  		if (f2fs_compressed_file(inode))			\
4009  			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4010  	} while (0)
4011  #define stat_add_compr_blocks(inode, blocks)				\
4012  		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4013  #define stat_sub_compr_blocks(inode, blocks)				\
4014  		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4015  #define stat_inc_swapfile_inode(inode)					\
4016  		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4017  #define stat_dec_swapfile_inode(inode)					\
4018  		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4019  #define stat_inc_atomic_inode(inode)					\
4020  			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4021  #define stat_dec_atomic_inode(inode)					\
4022  			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4023  #define stat_inc_meta_count(sbi, blkaddr)				\
4024  	do {								\
4025  		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4026  			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4027  		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4028  			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4029  		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4030  			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4031  		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4032  			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4033  	} while (0)
4034  #define stat_inc_seg_type(sbi, curseg)					\
4035  		((sbi)->segment_count[(curseg)->alloc_type]++)
4036  #define stat_inc_block_count(sbi, curseg)				\
4037  		((sbi)->block_count[(curseg)->alloc_type]++)
4038  #define stat_inc_inplace_blocks(sbi)					\
4039  		(atomic_inc(&(sbi)->inplace_count))
4040  #define stat_update_max_atomic_write(inode)				\
4041  	do {								\
4042  		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4043  		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4044  		if (cur > max)						\
4045  			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4046  	} while (0)
4047  #define stat_inc_gc_call_count(sbi, foreground)				\
4048  		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4049  #define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4050  		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4051  #define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4052  		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4053  
4054  #define stat_inc_tot_blk_count(si, blks)				\
4055  	((si)->tot_blks += (blks))
4056  
4057  #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4058  	do {								\
4059  		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4060  		stat_inc_tot_blk_count(si, blks);			\
4061  		si->data_blks += (blks);				\
4062  		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4063  	} while (0)
4064  
4065  #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4066  	do {								\
4067  		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4068  		stat_inc_tot_blk_count(si, blks);			\
4069  		si->node_blks += (blks);				\
4070  		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4071  	} while (0)
4072  
4073  int f2fs_build_stats(struct f2fs_sb_info *sbi);
4074  void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4075  void __init f2fs_create_root_stats(void);
4076  void f2fs_destroy_root_stats(void);
4077  void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4078  #else
4079  #define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4080  #define stat_inc_cp_count(sbi)				do { } while (0)
4081  #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4082  #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4083  #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4084  #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4085  #define stat_inc_total_hit(sbi, type)			do { } while (0)
4086  #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4087  #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4088  #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4089  #define stat_inc_inline_xattr(inode)			do { } while (0)
4090  #define stat_dec_inline_xattr(inode)			do { } while (0)
4091  #define stat_inc_inline_inode(inode)			do { } while (0)
4092  #define stat_dec_inline_inode(inode)			do { } while (0)
4093  #define stat_inc_inline_dir(inode)			do { } while (0)
4094  #define stat_dec_inline_dir(inode)			do { } while (0)
4095  #define stat_inc_compr_inode(inode)			do { } while (0)
4096  #define stat_dec_compr_inode(inode)			do { } while (0)
4097  #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4098  #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4099  #define stat_inc_swapfile_inode(inode)			do { } while (0)
4100  #define stat_dec_swapfile_inode(inode)			do { } while (0)
4101  #define stat_inc_atomic_inode(inode)			do { } while (0)
4102  #define stat_dec_atomic_inode(inode)			do { } while (0)
4103  #define stat_update_max_atomic_write(inode)		do { } while (0)
4104  #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4105  #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4106  #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4107  #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4108  #define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4109  #define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4110  #define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4111  #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4112  #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4113  #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4114  
4115  static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4116  static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4117  static inline void __init f2fs_create_root_stats(void) { }
4118  static inline void f2fs_destroy_root_stats(void) { }
4119  static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4120  #endif
4121  
4122  extern const struct file_operations f2fs_dir_operations;
4123  extern const struct file_operations f2fs_file_operations;
4124  extern const struct inode_operations f2fs_file_inode_operations;
4125  extern const struct address_space_operations f2fs_dblock_aops;
4126  extern const struct address_space_operations f2fs_node_aops;
4127  extern const struct address_space_operations f2fs_meta_aops;
4128  extern const struct inode_operations f2fs_dir_inode_operations;
4129  extern const struct inode_operations f2fs_symlink_inode_operations;
4130  extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4131  extern const struct inode_operations f2fs_special_inode_operations;
4132  extern struct kmem_cache *f2fs_inode_entry_slab;
4133  
4134  /*
4135   * inline.c
4136   */
4137  bool f2fs_may_inline_data(struct inode *inode);
4138  bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4139  bool f2fs_may_inline_dentry(struct inode *inode);
4140  void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4141  void f2fs_truncate_inline_inode(struct inode *inode,
4142  						struct page *ipage, u64 from);
4143  int f2fs_read_inline_data(struct inode *inode, struct page *page);
4144  int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4145  int f2fs_convert_inline_inode(struct inode *inode);
4146  int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4147  int f2fs_write_inline_data(struct inode *inode, struct page *page);
4148  int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4149  struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4150  					const struct f2fs_filename *fname,
4151  					struct page **res_page);
4152  int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4153  			struct page *ipage);
4154  int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4155  			struct inode *inode, nid_t ino, umode_t mode);
4156  void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4157  				struct page *page, struct inode *dir,
4158  				struct inode *inode);
4159  bool f2fs_empty_inline_dir(struct inode *dir);
4160  int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4161  			struct fscrypt_str *fstr);
4162  int f2fs_inline_data_fiemap(struct inode *inode,
4163  			struct fiemap_extent_info *fieinfo,
4164  			__u64 start, __u64 len);
4165  
4166  /*
4167   * shrinker.c
4168   */
4169  unsigned long f2fs_shrink_count(struct shrinker *shrink,
4170  			struct shrink_control *sc);
4171  unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4172  			struct shrink_control *sc);
4173  void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4174  void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4175  
4176  /*
4177   * extent_cache.c
4178   */
4179  bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4180  void f2fs_init_extent_tree(struct inode *inode);
4181  void f2fs_drop_extent_tree(struct inode *inode);
4182  void f2fs_destroy_extent_node(struct inode *inode);
4183  void f2fs_destroy_extent_tree(struct inode *inode);
4184  void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4185  int __init f2fs_create_extent_cache(void);
4186  void f2fs_destroy_extent_cache(void);
4187  
4188  /* read extent cache ops */
4189  void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4190  bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4191  			struct extent_info *ei);
4192  bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4193  			block_t *blkaddr);
4194  void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4195  void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4196  			pgoff_t fofs, block_t blkaddr, unsigned int len);
4197  unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4198  			int nr_shrink);
4199  
4200  /* block age extent cache ops */
4201  void f2fs_init_age_extent_tree(struct inode *inode);
4202  bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4203  			struct extent_info *ei);
4204  void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4205  void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4206  			pgoff_t fofs, unsigned int len);
4207  unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4208  			int nr_shrink);
4209  
4210  /*
4211   * sysfs.c
4212   */
4213  #define MIN_RA_MUL	2
4214  #define MAX_RA_MUL	256
4215  
4216  int __init f2fs_init_sysfs(void);
4217  void f2fs_exit_sysfs(void);
4218  int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4219  void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4220  
4221  /* verity.c */
4222  extern const struct fsverity_operations f2fs_verityops;
4223  
4224  /*
4225   * crypto support
4226   */
4227  static inline bool f2fs_encrypted_file(struct inode *inode)
4228  {
4229  	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4230  }
4231  
4232  static inline void f2fs_set_encrypted_inode(struct inode *inode)
4233  {
4234  #ifdef CONFIG_FS_ENCRYPTION
4235  	file_set_encrypt(inode);
4236  	f2fs_set_inode_flags(inode);
4237  #endif
4238  }
4239  
4240  /*
4241   * Returns true if the reads of the inode's data need to undergo some
4242   * postprocessing step, like decryption or authenticity verification.
4243   */
4244  static inline bool f2fs_post_read_required(struct inode *inode)
4245  {
4246  	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4247  		f2fs_compressed_file(inode);
4248  }
4249  
4250  static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4251  {
4252  	return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4253  }
4254  
4255  static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4256  {
4257  	return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4258  }
4259  
4260  /*
4261   * compress.c
4262   */
4263  #ifdef CONFIG_F2FS_FS_COMPRESSION
4264  enum cluster_check_type {
4265  	CLUSTER_IS_COMPR,   /* check only if compressed cluster */
4266  	CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4267  	CLUSTER_RAW_BLKS    /* return # of raw blocks in a cluster */
4268  };
4269  bool f2fs_is_compressed_page(struct page *page);
4270  struct page *f2fs_compress_control_page(struct page *page);
4271  int f2fs_prepare_compress_overwrite(struct inode *inode,
4272  			struct page **pagep, pgoff_t index, void **fsdata);
4273  bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4274  					pgoff_t index, unsigned copied);
4275  int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4276  void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4277  bool f2fs_is_compress_backend_ready(struct inode *inode);
4278  bool f2fs_is_compress_level_valid(int alg, int lvl);
4279  int __init f2fs_init_compress_mempool(void);
4280  void f2fs_destroy_compress_mempool(void);
4281  void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4282  void f2fs_end_read_compressed_page(struct page *page, bool failed,
4283  				block_t blkaddr, bool in_task);
4284  bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4285  bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4286  bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4287  				int index, int nr_pages, bool uptodate);
4288  bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4289  void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4290  int f2fs_write_multi_pages(struct compress_ctx *cc,
4291  						int *submitted,
4292  						struct writeback_control *wbc,
4293  						enum iostat_type io_type);
4294  int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4295  bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4296  void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4297  				pgoff_t fofs, block_t blkaddr,
4298  				unsigned int llen, unsigned int c_len);
4299  int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4300  				unsigned nr_pages, sector_t *last_block_in_bio,
4301  				bool is_readahead, bool for_write);
4302  struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4303  void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4304  				bool in_task);
4305  void f2fs_put_page_dic(struct page *page, bool in_task);
4306  unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4307  						unsigned int ofs_in_node);
4308  int f2fs_init_compress_ctx(struct compress_ctx *cc);
4309  void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4310  void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4311  int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4312  void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4313  int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4314  void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4315  int __init f2fs_init_compress_cache(void);
4316  void f2fs_destroy_compress_cache(void);
4317  struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4318  void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4319  void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4320  						nid_t ino, block_t blkaddr);
4321  bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4322  								block_t blkaddr);
4323  void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4324  #define inc_compr_inode_stat(inode)					\
4325  	do {								\
4326  		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4327  		sbi->compr_new_inode++;					\
4328  	} while (0)
4329  #define add_compr_block_stat(inode, blocks)				\
4330  	do {								\
4331  		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4332  		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4333  		sbi->compr_written_block += blocks;			\
4334  		sbi->compr_saved_block += diff;				\
4335  	} while (0)
4336  #else
4337  static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4338  static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4339  {
4340  	if (!f2fs_compressed_file(inode))
4341  		return true;
4342  	/* not support compression */
4343  	return false;
4344  }
4345  static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
4346  static inline struct page *f2fs_compress_control_page(struct page *page)
4347  {
4348  	WARN_ON_ONCE(1);
4349  	return ERR_PTR(-EINVAL);
4350  }
4351  static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4352  static inline void f2fs_destroy_compress_mempool(void) { }
4353  static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4354  				bool in_task) { }
4355  static inline void f2fs_end_read_compressed_page(struct page *page,
4356  				bool failed, block_t blkaddr, bool in_task)
4357  {
4358  	WARN_ON_ONCE(1);
4359  }
4360  static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4361  {
4362  	WARN_ON_ONCE(1);
4363  }
4364  static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4365  			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
4366  static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4367  static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4368  static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4369  static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4370  static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4371  static inline int __init f2fs_init_compress_cache(void) { return 0; }
4372  static inline void f2fs_destroy_compress_cache(void) { }
4373  static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4374  				block_t blkaddr) { }
4375  static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4376  				struct page *page, nid_t ino, block_t blkaddr) { }
4377  static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4378  				struct page *page, block_t blkaddr) { return false; }
4379  static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4380  							nid_t ino) { }
4381  #define inc_compr_inode_stat(inode)		do { } while (0)
4382  static inline int f2fs_is_compressed_cluster(
4383  				struct inode *inode,
4384  				pgoff_t index) { return 0; }
4385  static inline bool f2fs_is_sparse_cluster(
4386  				struct inode *inode,
4387  				pgoff_t index) { return true; }
4388  static inline void f2fs_update_read_extent_tree_range_compressed(
4389  				struct inode *inode,
4390  				pgoff_t fofs, block_t blkaddr,
4391  				unsigned int llen, unsigned int c_len) { }
4392  #endif
4393  
4394  static inline int set_compress_context(struct inode *inode)
4395  {
4396  #ifdef CONFIG_F2FS_FS_COMPRESSION
4397  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4398  
4399  	F2FS_I(inode)->i_compress_algorithm =
4400  			F2FS_OPTION(sbi).compress_algorithm;
4401  	F2FS_I(inode)->i_log_cluster_size =
4402  			F2FS_OPTION(sbi).compress_log_size;
4403  	F2FS_I(inode)->i_compress_flag =
4404  			F2FS_OPTION(sbi).compress_chksum ?
4405  				BIT(COMPRESS_CHKSUM) : 0;
4406  	F2FS_I(inode)->i_cluster_size =
4407  			BIT(F2FS_I(inode)->i_log_cluster_size);
4408  	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4409  		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4410  			F2FS_OPTION(sbi).compress_level)
4411  		F2FS_I(inode)->i_compress_level =
4412  				F2FS_OPTION(sbi).compress_level;
4413  	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4414  	set_inode_flag(inode, FI_COMPRESSED_FILE);
4415  	stat_inc_compr_inode(inode);
4416  	inc_compr_inode_stat(inode);
4417  	f2fs_mark_inode_dirty_sync(inode, true);
4418  	return 0;
4419  #else
4420  	return -EOPNOTSUPP;
4421  #endif
4422  }
4423  
4424  static inline bool f2fs_disable_compressed_file(struct inode *inode)
4425  {
4426  	struct f2fs_inode_info *fi = F2FS_I(inode);
4427  
4428  	f2fs_down_write(&F2FS_I(inode)->i_sem);
4429  
4430  	if (!f2fs_compressed_file(inode)) {
4431  		f2fs_up_write(&F2FS_I(inode)->i_sem);
4432  		return true;
4433  	}
4434  	if (f2fs_is_mmap_file(inode) ||
4435  		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4436  		f2fs_up_write(&F2FS_I(inode)->i_sem);
4437  		return false;
4438  	}
4439  
4440  	fi->i_flags &= ~F2FS_COMPR_FL;
4441  	stat_dec_compr_inode(inode);
4442  	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4443  	f2fs_mark_inode_dirty_sync(inode, true);
4444  
4445  	f2fs_up_write(&F2FS_I(inode)->i_sem);
4446  	return true;
4447  }
4448  
4449  #define F2FS_FEATURE_FUNCS(name, flagname) \
4450  static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4451  { \
4452  	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4453  }
4454  
4455  F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4456  F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4457  F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4458  F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4459  F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4460  F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4461  F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4462  F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4463  F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4464  F2FS_FEATURE_FUNCS(verity, VERITY);
4465  F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4466  F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4467  F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4468  F2FS_FEATURE_FUNCS(readonly, RO);
4469  
4470  #ifdef CONFIG_BLK_DEV_ZONED
4471  static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4472  				    block_t blkaddr)
4473  {
4474  	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4475  
4476  	return test_bit(zno, FDEV(devi).blkz_seq);
4477  }
4478  #endif
4479  
4480  static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4481  				  struct block_device *bdev)
4482  {
4483  	int i;
4484  
4485  	if (!f2fs_is_multi_device(sbi))
4486  		return 0;
4487  
4488  	for (i = 0; i < sbi->s_ndevs; i++)
4489  		if (FDEV(i).bdev == bdev)
4490  			return i;
4491  
4492  	WARN_ON(1);
4493  	return -1;
4494  }
4495  
4496  static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4497  {
4498  	return f2fs_sb_has_blkzoned(sbi);
4499  }
4500  
4501  static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4502  {
4503  	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4504  }
4505  
4506  static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4507  {
4508  	int i;
4509  
4510  	if (!f2fs_is_multi_device(sbi))
4511  		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4512  
4513  	for (i = 0; i < sbi->s_ndevs; i++)
4514  		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4515  			return true;
4516  	return false;
4517  }
4518  
4519  static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4520  {
4521  	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4522  					f2fs_hw_should_discard(sbi);
4523  }
4524  
4525  static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4526  {
4527  	int i;
4528  
4529  	if (!f2fs_is_multi_device(sbi))
4530  		return bdev_read_only(sbi->sb->s_bdev);
4531  
4532  	for (i = 0; i < sbi->s_ndevs; i++)
4533  		if (bdev_read_only(FDEV(i).bdev))
4534  			return true;
4535  	return false;
4536  }
4537  
4538  static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4539  {
4540  	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4541  }
4542  
4543  static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4544  {
4545  	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4546  }
4547  
4548  static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4549  					  block_t blkaddr)
4550  {
4551  	if (f2fs_sb_has_blkzoned(sbi)) {
4552  		int devi = f2fs_target_device_index(sbi, blkaddr);
4553  
4554  		return !bdev_is_zoned(FDEV(devi).bdev);
4555  	}
4556  	return true;
4557  }
4558  
4559  static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4560  {
4561  	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4562  }
4563  
4564  static inline bool f2fs_may_compress(struct inode *inode)
4565  {
4566  	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4567  		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4568  		f2fs_is_mmap_file(inode))
4569  		return false;
4570  	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4571  }
4572  
4573  static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4574  						u64 blocks, bool add)
4575  {
4576  	struct f2fs_inode_info *fi = F2FS_I(inode);
4577  	int diff = fi->i_cluster_size - blocks;
4578  
4579  	/* don't update i_compr_blocks if saved blocks were released */
4580  	if (!add && !atomic_read(&fi->i_compr_blocks))
4581  		return;
4582  
4583  	if (add) {
4584  		atomic_add(diff, &fi->i_compr_blocks);
4585  		stat_add_compr_blocks(inode, diff);
4586  	} else {
4587  		atomic_sub(diff, &fi->i_compr_blocks);
4588  		stat_sub_compr_blocks(inode, diff);
4589  	}
4590  	f2fs_mark_inode_dirty_sync(inode, true);
4591  }
4592  
4593  static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4594  								int flag)
4595  {
4596  	if (!f2fs_is_multi_device(sbi))
4597  		return false;
4598  	if (flag != F2FS_GET_BLOCK_DIO)
4599  		return false;
4600  	return sbi->aligned_blksize;
4601  }
4602  
4603  static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4604  {
4605  	return fsverity_active(inode) &&
4606  	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4607  }
4608  
4609  #ifdef CONFIG_F2FS_FAULT_INJECTION
4610  extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4611  							unsigned long type);
4612  #else
4613  static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4614  					unsigned long rate, unsigned long type)
4615  {
4616  	return 0;
4617  }
4618  #endif
4619  
4620  static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4621  {
4622  #ifdef CONFIG_QUOTA
4623  	if (f2fs_sb_has_quota_ino(sbi))
4624  		return true;
4625  	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4626  		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4627  		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4628  		return true;
4629  #endif
4630  	return false;
4631  }
4632  
4633  static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4634  {
4635  	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4636  }
4637  
4638  static inline void f2fs_io_schedule_timeout(long timeout)
4639  {
4640  	set_current_state(TASK_UNINTERRUPTIBLE);
4641  	io_schedule_timeout(timeout);
4642  }
4643  
4644  static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4645  					enum page_type type)
4646  {
4647  	if (unlikely(f2fs_cp_error(sbi)))
4648  		return;
4649  
4650  	if (ofs == sbi->page_eio_ofs[type]) {
4651  		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4652  			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4653  	} else {
4654  		sbi->page_eio_ofs[type] = ofs;
4655  		sbi->page_eio_cnt[type] = 0;
4656  	}
4657  }
4658  
4659  static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4660  {
4661  	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4662  }
4663  
4664  static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4665  					block_t blkaddr, unsigned int cnt)
4666  {
4667  	bool need_submit = false;
4668  	int i = 0;
4669  
4670  	do {
4671  		struct page *page;
4672  
4673  		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4674  		if (page) {
4675  			if (PageWriteback(page))
4676  				need_submit = true;
4677  			f2fs_put_page(page, 0);
4678  		}
4679  	} while (++i < cnt && !need_submit);
4680  
4681  	if (need_submit)
4682  		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4683  							NULL, 0, DATA);
4684  
4685  	truncate_inode_pages_range(META_MAPPING(sbi),
4686  			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4687  			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4688  }
4689  
4690  static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4691  								block_t blkaddr)
4692  {
4693  	f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4694  	f2fs_invalidate_compress_page(sbi, blkaddr);
4695  }
4696  
4697  #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4698  #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4699  
4700  #endif /* _LINUX_F2FS_H */
4701