xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 263df781)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
78 
79 /* maximum retry count for injected failure */
80 #define DEFAULT_FAILURE_RETRY_COUNT		8
81 #else
82 #define DEFAULT_FAILURE_RETRY_COUNT		1
83 #endif
84 
85 /*
86  * For mount options
87  */
88 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
89 #define F2FS_MOUNT_DISCARD		0x00000002
90 #define F2FS_MOUNT_NOHEAP		0x00000004
91 #define F2FS_MOUNT_XATTR_USER		0x00000008
92 #define F2FS_MOUNT_POSIX_ACL		0x00000010
93 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
94 #define F2FS_MOUNT_INLINE_XATTR		0x00000040
95 #define F2FS_MOUNT_INLINE_DATA		0x00000080
96 #define F2FS_MOUNT_INLINE_DENTRY	0x00000100
97 #define F2FS_MOUNT_FLUSH_MERGE		0x00000200
98 #define F2FS_MOUNT_NOBARRIER		0x00000400
99 #define F2FS_MOUNT_FASTBOOT		0x00000800
100 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
101 #define F2FS_MOUNT_DATA_FLUSH		0x00002000
102 #define F2FS_MOUNT_FAULT_INJECTION	0x00004000
103 #define F2FS_MOUNT_USRQUOTA		0x00008000
104 #define F2FS_MOUNT_GRPQUOTA		0x00010000
105 #define F2FS_MOUNT_PRJQUOTA		0x00020000
106 #define F2FS_MOUNT_QUOTA		0x00040000
107 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
108 #define F2FS_MOUNT_RESERVE_ROOT		0x00100000
109 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
110 #define F2FS_MOUNT_NORECOVERY		0x00400000
111 #define F2FS_MOUNT_ATGC			0x00800000
112 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
113 #define	F2FS_MOUNT_GC_MERGE		0x02000000
114 #define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
115 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
116 
117 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
118 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
119 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
120 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
121 
122 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
123 		typecheck(unsigned long long, b) &&			\
124 		((long long)((a) - (b)) > 0))
125 
126 typedef u32 block_t;	/*
127 			 * should not change u32, since it is the on-disk block
128 			 * address format, __le32.
129 			 */
130 typedef u32 nid_t;
131 
132 #define COMPRESS_EXT_NUM		16
133 
134 /*
135  * An implementation of an rwsem that is explicitly unfair to readers. This
136  * prevents priority inversion when a low-priority reader acquires the read lock
137  * while sleeping on the write lock but the write lock is needed by
138  * higher-priority clients.
139  */
140 
141 struct f2fs_rwsem {
142         struct rw_semaphore internal_rwsem;
143 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
144         wait_queue_head_t read_waiters;
145 #endif
146 };
147 
148 struct f2fs_mount_info {
149 	unsigned int opt;
150 	block_t root_reserved_blocks;	/* root reserved blocks */
151 	kuid_t s_resuid;		/* reserved blocks for uid */
152 	kgid_t s_resgid;		/* reserved blocks for gid */
153 	int active_logs;		/* # of active logs */
154 	int inline_xattr_size;		/* inline xattr size */
155 #ifdef CONFIG_F2FS_FAULT_INJECTION
156 	struct f2fs_fault_info fault_info;	/* For fault injection */
157 #endif
158 #ifdef CONFIG_QUOTA
159 	/* Names of quota files with journalled quota */
160 	char *s_qf_names[MAXQUOTAS];
161 	int s_jquota_fmt;			/* Format of quota to use */
162 #endif
163 	/* For which write hints are passed down to block layer */
164 	int alloc_mode;			/* segment allocation policy */
165 	int fsync_mode;			/* fsync policy */
166 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
167 	int bggc_mode;			/* bggc mode: off, on or sync */
168 	int memory_mode;		/* memory mode */
169 	int errors;			/* errors parameter */
170 	int discard_unit;		/*
171 					 * discard command's offset/size should
172 					 * be aligned to this unit: block,
173 					 * segment or section
174 					 */
175 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
176 	block_t unusable_cap_perc;	/* percentage for cap */
177 	block_t unusable_cap;		/* Amount of space allowed to be
178 					 * unusable when disabling checkpoint
179 					 */
180 
181 	/* For compression */
182 	unsigned char compress_algorithm;	/* algorithm type */
183 	unsigned char compress_log_size;	/* cluster log size */
184 	unsigned char compress_level;		/* compress level */
185 	bool compress_chksum;			/* compressed data chksum */
186 	unsigned char compress_ext_cnt;		/* extension count */
187 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
188 	int compress_mode;			/* compression mode */
189 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
190 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
191 };
192 
193 #define F2FS_FEATURE_ENCRYPT			0x00000001
194 #define F2FS_FEATURE_BLKZONED			0x00000002
195 #define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
196 #define F2FS_FEATURE_EXTRA_ATTR			0x00000008
197 #define F2FS_FEATURE_PRJQUOTA			0x00000010
198 #define F2FS_FEATURE_INODE_CHKSUM		0x00000020
199 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
200 #define F2FS_FEATURE_QUOTA_INO			0x00000080
201 #define F2FS_FEATURE_INODE_CRTIME		0x00000100
202 #define F2FS_FEATURE_LOST_FOUND			0x00000200
203 #define F2FS_FEATURE_VERITY			0x00000400
204 #define F2FS_FEATURE_SB_CHKSUM			0x00000800
205 #define F2FS_FEATURE_CASEFOLD			0x00001000
206 #define F2FS_FEATURE_COMPRESSION		0x00002000
207 #define F2FS_FEATURE_RO				0x00004000
208 
209 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
210 	((raw_super->feature & cpu_to_le32(mask)) != 0)
211 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
212 
213 /*
214  * Default values for user and/or group using reserved blocks
215  */
216 #define	F2FS_DEF_RESUID		0
217 #define	F2FS_DEF_RESGID		0
218 
219 /*
220  * For checkpoint manager
221  */
222 enum {
223 	NAT_BITMAP,
224 	SIT_BITMAP
225 };
226 
227 #define	CP_UMOUNT	0x00000001
228 #define	CP_FASTBOOT	0x00000002
229 #define	CP_SYNC		0x00000004
230 #define	CP_RECOVERY	0x00000008
231 #define	CP_DISCARD	0x00000010
232 #define CP_TRIMMED	0x00000020
233 #define CP_PAUSE	0x00000040
234 #define CP_RESIZE 	0x00000080
235 
236 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
237 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
238 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
239 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
240 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
241 #define DEF_CP_INTERVAL			60	/* 60 secs */
242 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
243 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
244 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
245 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
246 
247 struct cp_control {
248 	int reason;
249 	__u64 trim_start;
250 	__u64 trim_end;
251 	__u64 trim_minlen;
252 };
253 
254 /*
255  * indicate meta/data type
256  */
257 enum {
258 	META_CP,
259 	META_NAT,
260 	META_SIT,
261 	META_SSA,
262 	META_MAX,
263 	META_POR,
264 	DATA_GENERIC,		/* check range only */
265 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
266 	DATA_GENERIC_ENHANCE_READ,	/*
267 					 * strong check on range and segment
268 					 * bitmap but no warning due to race
269 					 * condition of read on truncated area
270 					 * by extent_cache
271 					 */
272 	DATA_GENERIC_ENHANCE_UPDATE,	/*
273 					 * strong check on range and segment
274 					 * bitmap for update case
275 					 */
276 	META_GENERIC,
277 };
278 
279 /* for the list of ino */
280 enum {
281 	ORPHAN_INO,		/* for orphan ino list */
282 	APPEND_INO,		/* for append ino list */
283 	UPDATE_INO,		/* for update ino list */
284 	TRANS_DIR_INO,		/* for transactions dir ino list */
285 	FLUSH_INO,		/* for multiple device flushing */
286 	MAX_INO_ENTRY,		/* max. list */
287 };
288 
289 struct ino_entry {
290 	struct list_head list;		/* list head */
291 	nid_t ino;			/* inode number */
292 	unsigned int dirty_device;	/* dirty device bitmap */
293 };
294 
295 /* for the list of inodes to be GCed */
296 struct inode_entry {
297 	struct list_head list;	/* list head */
298 	struct inode *inode;	/* vfs inode pointer */
299 };
300 
301 struct fsync_node_entry {
302 	struct list_head list;	/* list head */
303 	struct page *page;	/* warm node page pointer */
304 	unsigned int seq_id;	/* sequence id */
305 };
306 
307 struct ckpt_req {
308 	struct completion wait;		/* completion for checkpoint done */
309 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
310 	int ret;			/* return code of checkpoint */
311 	ktime_t queue_time;		/* request queued time */
312 };
313 
314 struct ckpt_req_control {
315 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
316 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
317 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
318 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
319 	atomic_t total_ckpt;		/* # of total ckpts */
320 	atomic_t queued_ckpt;		/* # of queued ckpts */
321 	struct llist_head issue_list;	/* list for command issue */
322 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
323 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
324 	unsigned int peak_time;		/* peak wait time in msec until now */
325 };
326 
327 /* for the bitmap indicate blocks to be discarded */
328 struct discard_entry {
329 	struct list_head list;	/* list head */
330 	block_t start_blkaddr;	/* start blockaddr of current segment */
331 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
332 };
333 
334 /* minimum discard granularity, unit: block count */
335 #define MIN_DISCARD_GRANULARITY		1
336 /* default discard granularity of inner discard thread, unit: block count */
337 #define DEFAULT_DISCARD_GRANULARITY		16
338 /* default maximum discard granularity of ordered discard, unit: block count */
339 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
340 
341 /* max discard pend list number */
342 #define MAX_PLIST_NUM		512
343 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
344 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
345 
346 enum {
347 	D_PREP,			/* initial */
348 	D_PARTIAL,		/* partially submitted */
349 	D_SUBMIT,		/* all submitted */
350 	D_DONE,			/* finished */
351 };
352 
353 struct discard_info {
354 	block_t lstart;			/* logical start address */
355 	block_t len;			/* length */
356 	block_t start;			/* actual start address in dev */
357 };
358 
359 struct discard_cmd {
360 	struct rb_node rb_node;		/* rb node located in rb-tree */
361 	struct discard_info di;		/* discard info */
362 	struct list_head list;		/* command list */
363 	struct completion wait;		/* compleation */
364 	struct block_device *bdev;	/* bdev */
365 	unsigned short ref;		/* reference count */
366 	unsigned char state;		/* state */
367 	unsigned char queued;		/* queued discard */
368 	int error;			/* bio error */
369 	spinlock_t lock;		/* for state/bio_ref updating */
370 	unsigned short bio_ref;		/* bio reference count */
371 };
372 
373 enum {
374 	DPOLICY_BG,
375 	DPOLICY_FORCE,
376 	DPOLICY_FSTRIM,
377 	DPOLICY_UMOUNT,
378 	MAX_DPOLICY,
379 };
380 
381 struct discard_policy {
382 	int type;			/* type of discard */
383 	unsigned int min_interval;	/* used for candidates exist */
384 	unsigned int mid_interval;	/* used for device busy */
385 	unsigned int max_interval;	/* used for candidates not exist */
386 	unsigned int max_requests;	/* # of discards issued per round */
387 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
388 	bool io_aware;			/* issue discard in idle time */
389 	bool sync;			/* submit discard with REQ_SYNC flag */
390 	bool ordered;			/* issue discard by lba order */
391 	bool timeout;			/* discard timeout for put_super */
392 	unsigned int granularity;	/* discard granularity */
393 };
394 
395 struct discard_cmd_control {
396 	struct task_struct *f2fs_issue_discard;	/* discard thread */
397 	struct list_head entry_list;		/* 4KB discard entry list */
398 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
399 	struct list_head wait_list;		/* store on-flushing entries */
400 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
401 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
402 	struct mutex cmd_lock;
403 	unsigned int nr_discards;		/* # of discards in the list */
404 	unsigned int max_discards;		/* max. discards to be issued */
405 	unsigned int max_discard_request;	/* max. discard request per round */
406 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
407 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
408 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
409 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
410 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
411 	unsigned int discard_granularity;	/* discard granularity */
412 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
413 	unsigned int undiscard_blks;		/* # of undiscard blocks */
414 	unsigned int next_pos;			/* next discard position */
415 	atomic_t issued_discard;		/* # of issued discard */
416 	atomic_t queued_discard;		/* # of queued discard */
417 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
418 	struct rb_root_cached root;		/* root of discard rb-tree */
419 	bool rbtree_check;			/* config for consistence check */
420 	bool discard_wake;			/* to wake up discard thread */
421 };
422 
423 /* for the list of fsync inodes, used only during recovery */
424 struct fsync_inode_entry {
425 	struct list_head list;	/* list head */
426 	struct inode *inode;	/* vfs inode pointer */
427 	block_t blkaddr;	/* block address locating the last fsync */
428 	block_t last_dentry;	/* block address locating the last dentry */
429 };
430 
431 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
432 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
433 
434 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
435 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
436 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
437 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
438 
439 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
440 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
441 
442 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
443 {
444 	int before = nats_in_cursum(journal);
445 
446 	journal->n_nats = cpu_to_le16(before + i);
447 	return before;
448 }
449 
450 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
451 {
452 	int before = sits_in_cursum(journal);
453 
454 	journal->n_sits = cpu_to_le16(before + i);
455 	return before;
456 }
457 
458 static inline bool __has_cursum_space(struct f2fs_journal *journal,
459 							int size, int type)
460 {
461 	if (type == NAT_JOURNAL)
462 		return size <= MAX_NAT_JENTRIES(journal);
463 	return size <= MAX_SIT_JENTRIES(journal);
464 }
465 
466 /* for inline stuff */
467 #define DEF_INLINE_RESERVED_SIZE	1
468 static inline int get_extra_isize(struct inode *inode);
469 static inline int get_inline_xattr_addrs(struct inode *inode);
470 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
471 				(CUR_ADDRS_PER_INODE(inode) -		\
472 				get_inline_xattr_addrs(inode) -	\
473 				DEF_INLINE_RESERVED_SIZE))
474 
475 /* for inline dir */
476 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
477 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
478 				BITS_PER_BYTE + 1))
479 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
480 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
481 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
482 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
483 				NR_INLINE_DENTRY(inode) + \
484 				INLINE_DENTRY_BITMAP_SIZE(inode)))
485 
486 /*
487  * For INODE and NODE manager
488  */
489 /* for directory operations */
490 
491 struct f2fs_filename {
492 	/*
493 	 * The filename the user specified.  This is NULL for some
494 	 * filesystem-internal operations, e.g. converting an inline directory
495 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
496 	 */
497 	const struct qstr *usr_fname;
498 
499 	/*
500 	 * The on-disk filename.  For encrypted directories, this is encrypted.
501 	 * This may be NULL for lookups in an encrypted dir without the key.
502 	 */
503 	struct fscrypt_str disk_name;
504 
505 	/* The dirhash of this filename */
506 	f2fs_hash_t hash;
507 
508 #ifdef CONFIG_FS_ENCRYPTION
509 	/*
510 	 * For lookups in encrypted directories: either the buffer backing
511 	 * disk_name, or a buffer that holds the decoded no-key name.
512 	 */
513 	struct fscrypt_str crypto_buf;
514 #endif
515 #if IS_ENABLED(CONFIG_UNICODE)
516 	/*
517 	 * For casefolded directories: the casefolded name, but it's left NULL
518 	 * if the original name is not valid Unicode, if the original name is
519 	 * "." or "..", if the directory is both casefolded and encrypted and
520 	 * its encryption key is unavailable, or if the filesystem is doing an
521 	 * internal operation where usr_fname is also NULL.  In all these cases
522 	 * we fall back to treating the name as an opaque byte sequence.
523 	 */
524 	struct fscrypt_str cf_name;
525 #endif
526 };
527 
528 struct f2fs_dentry_ptr {
529 	struct inode *inode;
530 	void *bitmap;
531 	struct f2fs_dir_entry *dentry;
532 	__u8 (*filename)[F2FS_SLOT_LEN];
533 	int max;
534 	int nr_bitmap;
535 };
536 
537 static inline void make_dentry_ptr_block(struct inode *inode,
538 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
539 {
540 	d->inode = inode;
541 	d->max = NR_DENTRY_IN_BLOCK;
542 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
543 	d->bitmap = t->dentry_bitmap;
544 	d->dentry = t->dentry;
545 	d->filename = t->filename;
546 }
547 
548 static inline void make_dentry_ptr_inline(struct inode *inode,
549 					struct f2fs_dentry_ptr *d, void *t)
550 {
551 	int entry_cnt = NR_INLINE_DENTRY(inode);
552 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
553 	int reserved_size = INLINE_RESERVED_SIZE(inode);
554 
555 	d->inode = inode;
556 	d->max = entry_cnt;
557 	d->nr_bitmap = bitmap_size;
558 	d->bitmap = t;
559 	d->dentry = t + bitmap_size + reserved_size;
560 	d->filename = t + bitmap_size + reserved_size +
561 					SIZE_OF_DIR_ENTRY * entry_cnt;
562 }
563 
564 /*
565  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
566  * as its node offset to distinguish from index node blocks.
567  * But some bits are used to mark the node block.
568  */
569 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
570 				>> OFFSET_BIT_SHIFT)
571 enum {
572 	ALLOC_NODE,			/* allocate a new node page if needed */
573 	LOOKUP_NODE,			/* look up a node without readahead */
574 	LOOKUP_NODE_RA,			/*
575 					 * look up a node with readahead called
576 					 * by get_data_block.
577 					 */
578 };
579 
580 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
581 
582 /* congestion wait timeout value, default: 20ms */
583 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
584 
585 /* maximum retry quota flush count */
586 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
587 
588 /* maximum retry of EIO'ed page */
589 #define MAX_RETRY_PAGE_EIO			100
590 
591 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
592 
593 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
594 
595 /* dirty segments threshold for triggering CP */
596 #define DEFAULT_DIRTY_THRESHOLD		4
597 
598 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
599 #define RECOVERY_MIN_RA_BLOCKS		1
600 
601 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
602 
603 /* for in-memory extent cache entry */
604 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
605 
606 /* number of extent info in extent cache we try to shrink */
607 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
608 
609 /* number of age extent info in extent cache we try to shrink */
610 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
611 #define LAST_AGE_WEIGHT			30
612 #define SAME_AGE_REGION			1024
613 
614 /*
615  * Define data block with age less than 1GB as hot data
616  * define data block with age less than 10GB but more than 1GB as warm data
617  */
618 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
619 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
620 
621 /* extent cache type */
622 enum extent_type {
623 	EX_READ,
624 	EX_BLOCK_AGE,
625 	NR_EXTENT_CACHES,
626 };
627 
628 struct extent_info {
629 	unsigned int fofs;		/* start offset in a file */
630 	unsigned int len;		/* length of the extent */
631 	union {
632 		/* read extent_cache */
633 		struct {
634 			/* start block address of the extent */
635 			block_t blk;
636 #ifdef CONFIG_F2FS_FS_COMPRESSION
637 			/* physical extent length of compressed blocks */
638 			unsigned int c_len;
639 #endif
640 		};
641 		/* block age extent_cache */
642 		struct {
643 			/* block age of the extent */
644 			unsigned long long age;
645 			/* last total blocks allocated */
646 			unsigned long long last_blocks;
647 		};
648 	};
649 };
650 
651 struct extent_node {
652 	struct rb_node rb_node;		/* rb node located in rb-tree */
653 	struct extent_info ei;		/* extent info */
654 	struct list_head list;		/* node in global extent list of sbi */
655 	struct extent_tree *et;		/* extent tree pointer */
656 };
657 
658 struct extent_tree {
659 	nid_t ino;			/* inode number */
660 	enum extent_type type;		/* keep the extent tree type */
661 	struct rb_root_cached root;	/* root of extent info rb-tree */
662 	struct extent_node *cached_en;	/* recently accessed extent node */
663 	struct list_head list;		/* to be used by sbi->zombie_list */
664 	rwlock_t lock;			/* protect extent info rb-tree */
665 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
666 	bool largest_updated;		/* largest extent updated */
667 	struct extent_info largest;	/* largest cached extent for EX_READ */
668 };
669 
670 struct extent_tree_info {
671 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
672 	struct mutex extent_tree_lock;	/* locking extent radix tree */
673 	struct list_head extent_list;		/* lru list for shrinker */
674 	spinlock_t extent_lock;			/* locking extent lru list */
675 	atomic_t total_ext_tree;		/* extent tree count */
676 	struct list_head zombie_list;		/* extent zombie tree list */
677 	atomic_t total_zombie_tree;		/* extent zombie tree count */
678 	atomic_t total_ext_node;		/* extent info count */
679 };
680 
681 /*
682  * State of block returned by f2fs_map_blocks.
683  */
684 #define F2FS_MAP_NEW		(1U << 0)
685 #define F2FS_MAP_MAPPED		(1U << 1)
686 #define F2FS_MAP_DELALLOC	(1U << 2)
687 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
688 				F2FS_MAP_DELALLOC)
689 
690 struct f2fs_map_blocks {
691 	struct block_device *m_bdev;	/* for multi-device dio */
692 	block_t m_pblk;
693 	block_t m_lblk;
694 	unsigned int m_len;
695 	unsigned int m_flags;
696 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
697 	pgoff_t *m_next_extent;		/* point to next possible extent */
698 	int m_seg_type;
699 	bool m_may_create;		/* indicate it is from write path */
700 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
701 };
702 
703 /* for flag in get_data_block */
704 enum {
705 	F2FS_GET_BLOCK_DEFAULT,
706 	F2FS_GET_BLOCK_FIEMAP,
707 	F2FS_GET_BLOCK_BMAP,
708 	F2FS_GET_BLOCK_DIO,
709 	F2FS_GET_BLOCK_PRE_DIO,
710 	F2FS_GET_BLOCK_PRE_AIO,
711 	F2FS_GET_BLOCK_PRECACHE,
712 };
713 
714 /*
715  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
716  */
717 #define FADVISE_COLD_BIT	0x01
718 #define FADVISE_LOST_PINO_BIT	0x02
719 #define FADVISE_ENCRYPT_BIT	0x04
720 #define FADVISE_ENC_NAME_BIT	0x08
721 #define FADVISE_KEEP_SIZE_BIT	0x10
722 #define FADVISE_HOT_BIT		0x20
723 #define FADVISE_VERITY_BIT	0x40
724 #define FADVISE_TRUNC_BIT	0x80
725 
726 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
727 
728 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
729 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
730 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
731 
732 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
733 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
734 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
735 
736 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
737 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
738 
739 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
740 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
741 
742 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
743 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
744 
745 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
746 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
747 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
748 
749 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
750 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
751 
752 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
753 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
754 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
755 
756 #define DEF_DIR_LEVEL		0
757 
758 enum {
759 	GC_FAILURE_PIN,
760 	MAX_GC_FAILURE
761 };
762 
763 /* used for f2fs_inode_info->flags */
764 enum {
765 	FI_NEW_INODE,		/* indicate newly allocated inode */
766 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
767 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
768 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
769 	FI_INC_LINK,		/* need to increment i_nlink */
770 	FI_ACL_MODE,		/* indicate acl mode */
771 	FI_NO_ALLOC,		/* should not allocate any blocks */
772 	FI_FREE_NID,		/* free allocated nide */
773 	FI_NO_EXTENT,		/* not to use the extent cache */
774 	FI_INLINE_XATTR,	/* used for inline xattr */
775 	FI_INLINE_DATA,		/* used for inline data*/
776 	FI_INLINE_DENTRY,	/* used for inline dentry */
777 	FI_APPEND_WRITE,	/* inode has appended data */
778 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
779 	FI_NEED_IPU,		/* used for ipu per file */
780 	FI_ATOMIC_FILE,		/* indicate atomic file */
781 	FI_DATA_EXIST,		/* indicate data exists */
782 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
783 	FI_SKIP_WRITES,		/* should skip data page writeback */
784 	FI_OPU_WRITE,		/* used for opu per file */
785 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
786 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
787 	FI_HOT_DATA,		/* indicate file is hot */
788 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
789 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
790 	FI_PIN_FILE,		/* indicate file should not be gced */
791 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
792 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
793 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
794 	FI_MMAP_FILE,		/* indicate file was mmapped */
795 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
796 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
797 	FI_ALIGNED_WRITE,	/* enable aligned write */
798 	FI_COW_FILE,		/* indicate COW file */
799 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
800 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
801 	FI_OPENED_FILE,		/* indicate file has been opened */
802 	FI_MAX,			/* max flag, never be used */
803 };
804 
805 struct f2fs_inode_info {
806 	struct inode vfs_inode;		/* serve a vfs inode */
807 	unsigned long i_flags;		/* keep an inode flags for ioctl */
808 	unsigned char i_advise;		/* use to give file attribute hints */
809 	unsigned char i_dir_level;	/* use for dentry level for large dir */
810 	unsigned int i_current_depth;	/* only for directory depth */
811 	/* for gc failure statistic */
812 	unsigned int i_gc_failures[MAX_GC_FAILURE];
813 	unsigned int i_pino;		/* parent inode number */
814 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
815 
816 	/* Use below internally in f2fs*/
817 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
818 	struct f2fs_rwsem i_sem;	/* protect fi info */
819 	atomic_t dirty_pages;		/* # of dirty pages */
820 	f2fs_hash_t chash;		/* hash value of given file name */
821 	unsigned int clevel;		/* maximum level of given file name */
822 	struct task_struct *task;	/* lookup and create consistency */
823 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
824 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
825 	nid_t i_xattr_nid;		/* node id that contains xattrs */
826 	loff_t	last_disk_size;		/* lastly written file size */
827 	spinlock_t i_size_lock;		/* protect last_disk_size */
828 
829 #ifdef CONFIG_QUOTA
830 	struct dquot __rcu *i_dquot[MAXQUOTAS];
831 
832 	/* quota space reservation, managed internally by quota code */
833 	qsize_t i_reserved_quota;
834 #endif
835 	struct list_head dirty_list;	/* dirty list for dirs and files */
836 	struct list_head gdirty_list;	/* linked in global dirty list */
837 	struct task_struct *atomic_write_task;	/* store atomic write task */
838 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
839 					/* cached extent_tree entry */
840 	union {
841 		struct inode *cow_inode;	/* copy-on-write inode for atomic write */
842 		struct inode *atomic_inode;
843 					/* point to atomic_inode, available only for cow_inode */
844 	};
845 
846 	/* avoid racing between foreground op and gc */
847 	struct f2fs_rwsem i_gc_rwsem[2];
848 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
849 
850 	int i_extra_isize;		/* size of extra space located in i_addr */
851 	kprojid_t i_projid;		/* id for project quota */
852 	int i_inline_xattr_size;	/* inline xattr size */
853 	struct timespec64 i_crtime;	/* inode creation time */
854 	struct timespec64 i_disk_time[3];/* inode disk times */
855 
856 	/* for file compress */
857 	atomic_t i_compr_blocks;		/* # of compressed blocks */
858 	unsigned char i_compress_algorithm;	/* algorithm type */
859 	unsigned char i_log_cluster_size;	/* log of cluster size */
860 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
861 	unsigned char i_compress_flag;		/* compress flag */
862 	unsigned int i_cluster_size;		/* cluster size */
863 
864 	unsigned int atomic_write_cnt;
865 	loff_t original_i_size;		/* original i_size before atomic write */
866 };
867 
868 static inline void get_read_extent_info(struct extent_info *ext,
869 					struct f2fs_extent *i_ext)
870 {
871 	ext->fofs = le32_to_cpu(i_ext->fofs);
872 	ext->blk = le32_to_cpu(i_ext->blk);
873 	ext->len = le32_to_cpu(i_ext->len);
874 }
875 
876 static inline void set_raw_read_extent(struct extent_info *ext,
877 					struct f2fs_extent *i_ext)
878 {
879 	i_ext->fofs = cpu_to_le32(ext->fofs);
880 	i_ext->blk = cpu_to_le32(ext->blk);
881 	i_ext->len = cpu_to_le32(ext->len);
882 }
883 
884 static inline bool __is_discard_mergeable(struct discard_info *back,
885 			struct discard_info *front, unsigned int max_len)
886 {
887 	return (back->lstart + back->len == front->lstart) &&
888 		(back->len + front->len <= max_len);
889 }
890 
891 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
892 			struct discard_info *back, unsigned int max_len)
893 {
894 	return __is_discard_mergeable(back, cur, max_len);
895 }
896 
897 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
898 			struct discard_info *front, unsigned int max_len)
899 {
900 	return __is_discard_mergeable(cur, front, max_len);
901 }
902 
903 /*
904  * For free nid management
905  */
906 enum nid_state {
907 	FREE_NID,		/* newly added to free nid list */
908 	PREALLOC_NID,		/* it is preallocated */
909 	MAX_NID_STATE,
910 };
911 
912 enum nat_state {
913 	TOTAL_NAT,
914 	DIRTY_NAT,
915 	RECLAIMABLE_NAT,
916 	MAX_NAT_STATE,
917 };
918 
919 struct f2fs_nm_info {
920 	block_t nat_blkaddr;		/* base disk address of NAT */
921 	nid_t max_nid;			/* maximum possible node ids */
922 	nid_t available_nids;		/* # of available node ids */
923 	nid_t next_scan_nid;		/* the next nid to be scanned */
924 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
925 	unsigned int ram_thresh;	/* control the memory footprint */
926 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
927 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
928 
929 	/* NAT cache management */
930 	struct radix_tree_root nat_root;/* root of the nat entry cache */
931 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
932 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
933 	struct list_head nat_entries;	/* cached nat entry list (clean) */
934 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
935 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
936 	unsigned int nat_blocks;	/* # of nat blocks */
937 
938 	/* free node ids management */
939 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
940 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
941 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
942 	spinlock_t nid_list_lock;	/* protect nid lists ops */
943 	struct mutex build_lock;	/* lock for build free nids */
944 	unsigned char **free_nid_bitmap;
945 	unsigned char *nat_block_bitmap;
946 	unsigned short *free_nid_count;	/* free nid count of NAT block */
947 
948 	/* for checkpoint */
949 	char *nat_bitmap;		/* NAT bitmap pointer */
950 
951 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
952 	unsigned char *nat_bits;	/* NAT bits blocks */
953 	unsigned char *full_nat_bits;	/* full NAT pages */
954 	unsigned char *empty_nat_bits;	/* empty NAT pages */
955 #ifdef CONFIG_F2FS_CHECK_FS
956 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
957 #endif
958 	int bitmap_size;		/* bitmap size */
959 };
960 
961 /*
962  * this structure is used as one of function parameters.
963  * all the information are dedicated to a given direct node block determined
964  * by the data offset in a file.
965  */
966 struct dnode_of_data {
967 	struct inode *inode;		/* vfs inode pointer */
968 	struct page *inode_page;	/* its inode page, NULL is possible */
969 	struct page *node_page;		/* cached direct node page */
970 	nid_t nid;			/* node id of the direct node block */
971 	unsigned int ofs_in_node;	/* data offset in the node page */
972 	bool inode_page_locked;		/* inode page is locked or not */
973 	bool node_changed;		/* is node block changed */
974 	char cur_level;			/* level of hole node page */
975 	char max_level;			/* level of current page located */
976 	block_t	data_blkaddr;		/* block address of the node block */
977 };
978 
979 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
980 		struct page *ipage, struct page *npage, nid_t nid)
981 {
982 	memset(dn, 0, sizeof(*dn));
983 	dn->inode = inode;
984 	dn->inode_page = ipage;
985 	dn->node_page = npage;
986 	dn->nid = nid;
987 }
988 
989 /*
990  * For SIT manager
991  *
992  * By default, there are 6 active log areas across the whole main area.
993  * When considering hot and cold data separation to reduce cleaning overhead,
994  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
995  * respectively.
996  * In the current design, you should not change the numbers intentionally.
997  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
998  * logs individually according to the underlying devices. (default: 6)
999  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1000  * data and 8 for node logs.
1001  */
1002 #define	NR_CURSEG_DATA_TYPE	(3)
1003 #define NR_CURSEG_NODE_TYPE	(3)
1004 #define NR_CURSEG_INMEM_TYPE	(2)
1005 #define NR_CURSEG_RO_TYPE	(2)
1006 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1007 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1008 
1009 enum {
1010 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1011 	CURSEG_WARM_DATA,	/* data blocks */
1012 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1013 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1014 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1015 	CURSEG_COLD_NODE,	/* indirect node blocks */
1016 	NR_PERSISTENT_LOG,	/* number of persistent log */
1017 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1018 				/* pinned file that needs consecutive block address */
1019 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1020 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1021 };
1022 
1023 struct flush_cmd {
1024 	struct completion wait;
1025 	struct llist_node llnode;
1026 	nid_t ino;
1027 	int ret;
1028 };
1029 
1030 struct flush_cmd_control {
1031 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1032 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1033 	atomic_t issued_flush;			/* # of issued flushes */
1034 	atomic_t queued_flush;			/* # of queued flushes */
1035 	struct llist_head issue_list;		/* list for command issue */
1036 	struct llist_node *dispatch_list;	/* list for command dispatch */
1037 };
1038 
1039 struct f2fs_sm_info {
1040 	struct sit_info *sit_info;		/* whole segment information */
1041 	struct free_segmap_info *free_info;	/* free segment information */
1042 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1043 	struct curseg_info *curseg_array;	/* active segment information */
1044 
1045 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1046 
1047 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1048 	block_t main_blkaddr;		/* start block address of main area */
1049 	block_t ssa_blkaddr;		/* start block address of SSA area */
1050 
1051 	unsigned int segment_count;	/* total # of segments */
1052 	unsigned int main_segments;	/* # of segments in main area */
1053 	unsigned int reserved_segments;	/* # of reserved segments */
1054 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1055 	unsigned int ovp_segments;	/* # of overprovision segments */
1056 
1057 	/* a threshold to reclaim prefree segments */
1058 	unsigned int rec_prefree_segments;
1059 
1060 	struct list_head sit_entry_set;	/* sit entry set list */
1061 
1062 	unsigned int ipu_policy;	/* in-place-update policy */
1063 	unsigned int min_ipu_util;	/* in-place-update threshold */
1064 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1065 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1066 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1067 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1068 
1069 	/* for flush command control */
1070 	struct flush_cmd_control *fcc_info;
1071 
1072 	/* for discard command control */
1073 	struct discard_cmd_control *dcc_info;
1074 };
1075 
1076 /*
1077  * For superblock
1078  */
1079 /*
1080  * COUNT_TYPE for monitoring
1081  *
1082  * f2fs monitors the number of several block types such as on-writeback,
1083  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1084  */
1085 #define WB_DATA_TYPE(p, f)			\
1086 	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1087 enum count_type {
1088 	F2FS_DIRTY_DENTS,
1089 	F2FS_DIRTY_DATA,
1090 	F2FS_DIRTY_QDATA,
1091 	F2FS_DIRTY_NODES,
1092 	F2FS_DIRTY_META,
1093 	F2FS_DIRTY_IMETA,
1094 	F2FS_WB_CP_DATA,
1095 	F2FS_WB_DATA,
1096 	F2FS_RD_DATA,
1097 	F2FS_RD_NODE,
1098 	F2FS_RD_META,
1099 	F2FS_DIO_WRITE,
1100 	F2FS_DIO_READ,
1101 	NR_COUNT_TYPE,
1102 };
1103 
1104 /*
1105  * The below are the page types of bios used in submit_bio().
1106  * The available types are:
1107  * DATA			User data pages. It operates as async mode.
1108  * NODE			Node pages. It operates as async mode.
1109  * META			FS metadata pages such as SIT, NAT, CP.
1110  * NR_PAGE_TYPE		The number of page types.
1111  * META_FLUSH		Make sure the previous pages are written
1112  *			with waiting the bio's completion
1113  * ...			Only can be used with META.
1114  */
1115 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1116 #define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1117 enum page_type {
1118 	DATA = 0,
1119 	NODE = 1,	/* should not change this */
1120 	META,
1121 	NR_PAGE_TYPE,
1122 	META_FLUSH,
1123 	IPU,		/* the below types are used by tracepoints only. */
1124 	OPU,
1125 };
1126 
1127 enum temp_type {
1128 	HOT = 0,	/* must be zero for meta bio */
1129 	WARM,
1130 	COLD,
1131 	NR_TEMP_TYPE,
1132 };
1133 
1134 enum need_lock_type {
1135 	LOCK_REQ = 0,
1136 	LOCK_DONE,
1137 	LOCK_RETRY,
1138 };
1139 
1140 enum cp_reason_type {
1141 	CP_NO_NEEDED,
1142 	CP_NON_REGULAR,
1143 	CP_COMPRESSED,
1144 	CP_HARDLINK,
1145 	CP_SB_NEED_CP,
1146 	CP_WRONG_PINO,
1147 	CP_NO_SPC_ROLL,
1148 	CP_NODE_NEED_CP,
1149 	CP_FASTBOOT_MODE,
1150 	CP_SPEC_LOG_NUM,
1151 	CP_RECOVER_DIR,
1152 };
1153 
1154 enum iostat_type {
1155 	/* WRITE IO */
1156 	APP_DIRECT_IO,			/* app direct write IOs */
1157 	APP_BUFFERED_IO,		/* app buffered write IOs */
1158 	APP_WRITE_IO,			/* app write IOs */
1159 	APP_MAPPED_IO,			/* app mapped IOs */
1160 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1161 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1162 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1163 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1164 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1165 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1166 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1167 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1168 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1169 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1170 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1171 
1172 	/* READ IO */
1173 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1174 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1175 	APP_READ_IO,			/* app read IOs */
1176 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1177 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1178 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1179 	FS_DATA_READ_IO,		/* data read IOs */
1180 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1181 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1182 	FS_NODE_READ_IO,		/* node read IOs */
1183 	FS_META_READ_IO,		/* meta read IOs */
1184 
1185 	/* other */
1186 	FS_DISCARD_IO,			/* discard */
1187 	FS_FLUSH_IO,			/* flush */
1188 	FS_ZONE_RESET_IO,		/* zone reset */
1189 	NR_IO_TYPE,
1190 };
1191 
1192 struct f2fs_io_info {
1193 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1194 	nid_t ino;		/* inode number */
1195 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1196 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1197 	enum req_op op;		/* contains REQ_OP_ */
1198 	blk_opf_t op_flags;	/* req_flag_bits */
1199 	block_t new_blkaddr;	/* new block address to be written */
1200 	block_t old_blkaddr;	/* old block address before Cow */
1201 	struct page *page;	/* page to be written */
1202 	struct page *encrypted_page;	/* encrypted page */
1203 	struct page *compressed_page;	/* compressed page */
1204 	struct list_head list;		/* serialize IOs */
1205 	unsigned int compr_blocks;	/* # of compressed block addresses */
1206 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1207 	unsigned int version:8;		/* version of the node */
1208 	unsigned int submitted:1;	/* indicate IO submission */
1209 	unsigned int in_list:1;		/* indicate fio is in io_list */
1210 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1211 	unsigned int encrypted:1;	/* indicate file is encrypted */
1212 	unsigned int meta_gc:1;		/* require meta inode GC */
1213 	enum iostat_type io_type;	/* io type */
1214 	struct writeback_control *io_wbc; /* writeback control */
1215 	struct bio **bio;		/* bio for ipu */
1216 	sector_t *last_block;		/* last block number in bio */
1217 };
1218 
1219 struct bio_entry {
1220 	struct bio *bio;
1221 	struct list_head list;
1222 };
1223 
1224 #define is_read_io(rw) ((rw) == READ)
1225 struct f2fs_bio_info {
1226 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1227 	struct bio *bio;		/* bios to merge */
1228 	sector_t last_block_in_bio;	/* last block number */
1229 	struct f2fs_io_info fio;	/* store buffered io info. */
1230 #ifdef CONFIG_BLK_DEV_ZONED
1231 	struct completion zone_wait;	/* condition value for the previous open zone to close */
1232 	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1233 	void *bi_private;		/* previous bi_private for pending bio */
1234 #endif
1235 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1236 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1237 	struct list_head io_list;	/* track fios */
1238 	struct list_head bio_list;	/* bio entry list head */
1239 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1240 };
1241 
1242 #define FDEV(i)				(sbi->devs[i])
1243 #define RDEV(i)				(raw_super->devs[i])
1244 struct f2fs_dev_info {
1245 	struct block_device *bdev;
1246 	char path[MAX_PATH_LEN];
1247 	unsigned int total_segments;
1248 	block_t start_blk;
1249 	block_t end_blk;
1250 #ifdef CONFIG_BLK_DEV_ZONED
1251 	unsigned int nr_blkz;		/* Total number of zones */
1252 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1253 #endif
1254 };
1255 
1256 enum inode_type {
1257 	DIR_INODE,			/* for dirty dir inode */
1258 	FILE_INODE,			/* for dirty regular/symlink inode */
1259 	DIRTY_META,			/* for all dirtied inode metadata */
1260 	NR_INODE_TYPE,
1261 };
1262 
1263 /* for inner inode cache management */
1264 struct inode_management {
1265 	struct radix_tree_root ino_root;	/* ino entry array */
1266 	spinlock_t ino_lock;			/* for ino entry lock */
1267 	struct list_head ino_list;		/* inode list head */
1268 	unsigned long ino_num;			/* number of entries */
1269 };
1270 
1271 /* for GC_AT */
1272 struct atgc_management {
1273 	bool atgc_enabled;			/* ATGC is enabled or not */
1274 	struct rb_root_cached root;		/* root of victim rb-tree */
1275 	struct list_head victim_list;		/* linked with all victim entries */
1276 	unsigned int victim_count;		/* victim count in rb-tree */
1277 	unsigned int candidate_ratio;		/* candidate ratio */
1278 	unsigned int max_candidate_count;	/* max candidate count */
1279 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1280 	unsigned long long age_threshold;	/* age threshold */
1281 };
1282 
1283 struct f2fs_gc_control {
1284 	unsigned int victim_segno;	/* target victim segment number */
1285 	int init_gc_type;		/* FG_GC or BG_GC */
1286 	bool no_bg_gc;			/* check the space and stop bg_gc */
1287 	bool should_migrate_blocks;	/* should migrate blocks */
1288 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1289 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1290 };
1291 
1292 /*
1293  * For s_flag in struct f2fs_sb_info
1294  * Modification on enum should be synchronized with s_flag array
1295  */
1296 enum {
1297 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1298 	SBI_IS_CLOSE,				/* specify unmounting */
1299 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1300 	SBI_POR_DOING,				/* recovery is doing or not */
1301 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1302 	SBI_NEED_CP,				/* need to checkpoint */
1303 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1304 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1305 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1306 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1307 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1308 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1309 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1310 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1311 	SBI_IS_FREEZING,			/* freezefs is in process */
1312 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1313 	MAX_SBI_FLAG,
1314 };
1315 
1316 enum {
1317 	CP_TIME,
1318 	REQ_TIME,
1319 	DISCARD_TIME,
1320 	GC_TIME,
1321 	DISABLE_TIME,
1322 	UMOUNT_DISCARD_TIMEOUT,
1323 	MAX_TIME,
1324 };
1325 
1326 /* Note that you need to keep synchronization with this gc_mode_names array */
1327 enum {
1328 	GC_NORMAL,
1329 	GC_IDLE_CB,
1330 	GC_IDLE_GREEDY,
1331 	GC_IDLE_AT,
1332 	GC_URGENT_HIGH,
1333 	GC_URGENT_LOW,
1334 	GC_URGENT_MID,
1335 	MAX_GC_MODE,
1336 };
1337 
1338 enum {
1339 	BGGC_MODE_ON,		/* background gc is on */
1340 	BGGC_MODE_OFF,		/* background gc is off */
1341 	BGGC_MODE_SYNC,		/*
1342 				 * background gc is on, migrating blocks
1343 				 * like foreground gc
1344 				 */
1345 };
1346 
1347 enum {
1348 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1349 	FS_MODE_LFS,			/* use lfs allocation only */
1350 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1351 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1352 };
1353 
1354 enum {
1355 	ALLOC_MODE_DEFAULT,	/* stay default */
1356 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1357 };
1358 
1359 enum fsync_mode {
1360 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1361 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1362 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1363 };
1364 
1365 enum {
1366 	COMPR_MODE_FS,		/*
1367 				 * automatically compress compression
1368 				 * enabled files
1369 				 */
1370 	COMPR_MODE_USER,	/*
1371 				 * automatical compression is disabled.
1372 				 * user can control the file compression
1373 				 * using ioctls
1374 				 */
1375 };
1376 
1377 enum {
1378 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1379 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1380 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1381 };
1382 
1383 enum {
1384 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1385 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1386 };
1387 
1388 enum errors_option {
1389 	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1390 	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1391 	MOUNT_ERRORS_PANIC,	/* panic on errors */
1392 };
1393 
1394 enum {
1395 	BACKGROUND,
1396 	FOREGROUND,
1397 	MAX_CALL_TYPE,
1398 	TOTAL_CALL = FOREGROUND,
1399 };
1400 
1401 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1402 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1403 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1404 
1405 /*
1406  * Layout of f2fs page.private:
1407  *
1408  * Layout A: lowest bit should be 1
1409  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1410  * bit 0	PAGE_PRIVATE_NOT_POINTER
1411  * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1412  * bit 2	PAGE_PRIVATE_INLINE_INODE
1413  * bit 3	PAGE_PRIVATE_REF_RESOURCE
1414  * bit 4-	f2fs private data
1415  *
1416  * Layout B: lowest bit should be 0
1417  * page.private is a wrapped pointer.
1418  */
1419 enum {
1420 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1421 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1422 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1423 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1424 	PAGE_PRIVATE_MAX
1425 };
1426 
1427 /* For compression */
1428 enum compress_algorithm_type {
1429 	COMPRESS_LZO,
1430 	COMPRESS_LZ4,
1431 	COMPRESS_ZSTD,
1432 	COMPRESS_LZORLE,
1433 	COMPRESS_MAX,
1434 };
1435 
1436 enum compress_flag {
1437 	COMPRESS_CHKSUM,
1438 	COMPRESS_MAX_FLAG,
1439 };
1440 
1441 #define	COMPRESS_WATERMARK			20
1442 #define	COMPRESS_PERCENT			20
1443 
1444 #define COMPRESS_DATA_RESERVED_SIZE		4
1445 struct compress_data {
1446 	__le32 clen;			/* compressed data size */
1447 	__le32 chksum;			/* compressed data chksum */
1448 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1449 	u8 cdata[];			/* compressed data */
1450 };
1451 
1452 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1453 
1454 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1455 
1456 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1457 
1458 #define	COMPRESS_LEVEL_OFFSET	8
1459 
1460 /* compress context */
1461 struct compress_ctx {
1462 	struct inode *inode;		/* inode the context belong to */
1463 	pgoff_t cluster_idx;		/* cluster index number */
1464 	unsigned int cluster_size;	/* page count in cluster */
1465 	unsigned int log_cluster_size;	/* log of cluster size */
1466 	struct page **rpages;		/* pages store raw data in cluster */
1467 	unsigned int nr_rpages;		/* total page number in rpages */
1468 	struct page **cpages;		/* pages store compressed data in cluster */
1469 	unsigned int nr_cpages;		/* total page number in cpages */
1470 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1471 	void *rbuf;			/* virtual mapped address on rpages */
1472 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1473 	size_t rlen;			/* valid data length in rbuf */
1474 	size_t clen;			/* valid data length in cbuf */
1475 	void *private;			/* payload buffer for specified compression algorithm */
1476 	void *private2;			/* extra payload buffer */
1477 };
1478 
1479 /* compress context for write IO path */
1480 struct compress_io_ctx {
1481 	u32 magic;			/* magic number to indicate page is compressed */
1482 	struct inode *inode;		/* inode the context belong to */
1483 	struct page **rpages;		/* pages store raw data in cluster */
1484 	unsigned int nr_rpages;		/* total page number in rpages */
1485 	atomic_t pending_pages;		/* in-flight compressed page count */
1486 };
1487 
1488 /* Context for decompressing one cluster on the read IO path */
1489 struct decompress_io_ctx {
1490 	u32 magic;			/* magic number to indicate page is compressed */
1491 	struct inode *inode;		/* inode the context belong to */
1492 	pgoff_t cluster_idx;		/* cluster index number */
1493 	unsigned int cluster_size;	/* page count in cluster */
1494 	unsigned int log_cluster_size;	/* log of cluster size */
1495 	struct page **rpages;		/* pages store raw data in cluster */
1496 	unsigned int nr_rpages;		/* total page number in rpages */
1497 	struct page **cpages;		/* pages store compressed data in cluster */
1498 	unsigned int nr_cpages;		/* total page number in cpages */
1499 	struct page **tpages;		/* temp pages to pad holes in cluster */
1500 	void *rbuf;			/* virtual mapped address on rpages */
1501 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1502 	size_t rlen;			/* valid data length in rbuf */
1503 	size_t clen;			/* valid data length in cbuf */
1504 
1505 	/*
1506 	 * The number of compressed pages remaining to be read in this cluster.
1507 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1508 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1509 	 * is decompressed (or an error is reported).
1510 	 *
1511 	 * If an error occurs before all the pages have been submitted for I/O,
1512 	 * then this will never reach 0.  In this case the I/O submitter is
1513 	 * responsible for calling f2fs_decompress_end_io() instead.
1514 	 */
1515 	atomic_t remaining_pages;
1516 
1517 	/*
1518 	 * Number of references to this decompress_io_ctx.
1519 	 *
1520 	 * One reference is held for I/O completion.  This reference is dropped
1521 	 * after the pagecache pages are updated and unlocked -- either after
1522 	 * decompression (and verity if enabled), or after an error.
1523 	 *
1524 	 * In addition, each compressed page holds a reference while it is in a
1525 	 * bio.  These references are necessary prevent compressed pages from
1526 	 * being freed while they are still in a bio.
1527 	 */
1528 	refcount_t refcnt;
1529 
1530 	bool failed;			/* IO error occurred before decompression? */
1531 	bool need_verity;		/* need fs-verity verification after decompression? */
1532 	void *private;			/* payload buffer for specified decompression algorithm */
1533 	void *private2;			/* extra payload buffer */
1534 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1535 	struct work_struct free_work;	/* work for late free this structure itself */
1536 };
1537 
1538 #define NULL_CLUSTER			((unsigned int)(~0))
1539 #define MIN_COMPRESS_LOG_SIZE		2
1540 #define MAX_COMPRESS_LOG_SIZE		8
1541 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1542 
1543 struct f2fs_sb_info {
1544 	struct super_block *sb;			/* pointer to VFS super block */
1545 	struct proc_dir_entry *s_proc;		/* proc entry */
1546 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1547 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1548 	int valid_super_block;			/* valid super block no */
1549 	unsigned long s_flag;				/* flags for sbi */
1550 	struct mutex writepages;		/* mutex for writepages() */
1551 
1552 #ifdef CONFIG_BLK_DEV_ZONED
1553 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1554 #endif
1555 
1556 	/* for node-related operations */
1557 	struct f2fs_nm_info *nm_info;		/* node manager */
1558 	struct inode *node_inode;		/* cache node blocks */
1559 
1560 	/* for segment-related operations */
1561 	struct f2fs_sm_info *sm_info;		/* segment manager */
1562 
1563 	/* for bio operations */
1564 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1565 	/* keep migration IO order for LFS mode */
1566 	struct f2fs_rwsem io_order_lock;
1567 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1568 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1569 
1570 	/* for checkpoint */
1571 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1572 	int cur_cp_pack;			/* remain current cp pack */
1573 	spinlock_t cp_lock;			/* for flag in ckpt */
1574 	struct inode *meta_inode;		/* cache meta blocks */
1575 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1576 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1577 	struct f2fs_rwsem node_write;		/* locking node writes */
1578 	struct f2fs_rwsem node_change;	/* locking node change */
1579 	wait_queue_head_t cp_wait;
1580 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1581 	long interval_time[MAX_TIME];		/* to store thresholds */
1582 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1583 
1584 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1585 
1586 	spinlock_t fsync_node_lock;		/* for node entry lock */
1587 	struct list_head fsync_node_list;	/* node list head */
1588 	unsigned int fsync_seg_id;		/* sequence id */
1589 	unsigned int fsync_node_num;		/* number of node entries */
1590 
1591 	/* for orphan inode, use 0'th array */
1592 	unsigned int max_orphans;		/* max orphan inodes */
1593 
1594 	/* for inode management */
1595 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1596 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1597 	struct mutex flush_lock;		/* for flush exclusion */
1598 
1599 	/* for extent tree cache */
1600 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1601 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1602 
1603 	/* The threshold used for hot and warm data seperation*/
1604 	unsigned int hot_data_age_threshold;
1605 	unsigned int warm_data_age_threshold;
1606 	unsigned int last_age_weight;
1607 
1608 	/* basic filesystem units */
1609 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1610 	unsigned int log_blocksize;		/* log2 block size */
1611 	unsigned int blocksize;			/* block size */
1612 	unsigned int root_ino_num;		/* root inode number*/
1613 	unsigned int node_ino_num;		/* node inode number*/
1614 	unsigned int meta_ino_num;		/* meta inode number*/
1615 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1616 	unsigned int blocks_per_seg;		/* blocks per segment */
1617 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1618 	unsigned int segs_per_sec;		/* segments per section */
1619 	unsigned int secs_per_zone;		/* sections per zone */
1620 	unsigned int total_sections;		/* total section count */
1621 	unsigned int total_node_count;		/* total node block count */
1622 	unsigned int total_valid_node_count;	/* valid node block count */
1623 	int dir_level;				/* directory level */
1624 	bool readdir_ra;			/* readahead inode in readdir */
1625 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1626 
1627 	block_t user_block_count;		/* # of user blocks */
1628 	block_t total_valid_block_count;	/* # of valid blocks */
1629 	block_t discard_blks;			/* discard command candidats */
1630 	block_t last_valid_block_count;		/* for recovery */
1631 	block_t reserved_blocks;		/* configurable reserved blocks */
1632 	block_t current_reserved_blocks;	/* current reserved blocks */
1633 
1634 	/* Additional tracking for no checkpoint mode */
1635 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1636 
1637 	unsigned int nquota_files;		/* # of quota sysfile */
1638 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1639 
1640 	/* # of pages, see count_type */
1641 	atomic_t nr_pages[NR_COUNT_TYPE];
1642 	/* # of allocated blocks */
1643 	struct percpu_counter alloc_valid_block_count;
1644 	/* # of node block writes as roll forward recovery */
1645 	struct percpu_counter rf_node_block_count;
1646 
1647 	/* writeback control */
1648 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1649 
1650 	/* valid inode count */
1651 	struct percpu_counter total_valid_inode_count;
1652 
1653 	struct f2fs_mount_info mount_opt;	/* mount options */
1654 
1655 	/* for cleaning operations */
1656 	struct f2fs_rwsem gc_lock;		/*
1657 						 * semaphore for GC, avoid
1658 						 * race between GC and GC or CP
1659 						 */
1660 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1661 	struct atgc_management am;		/* atgc management */
1662 	unsigned int cur_victim_sec;		/* current victim section num */
1663 	unsigned int gc_mode;			/* current GC state */
1664 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1665 	spinlock_t gc_remaining_trials_lock;
1666 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1667 	unsigned int gc_remaining_trials;
1668 
1669 	/* for skip statistic */
1670 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1671 
1672 	/* threshold for gc trials on pinned files */
1673 	u64 gc_pin_file_threshold;
1674 	struct f2fs_rwsem pin_sem;
1675 
1676 	/* maximum # of trials to find a victim segment for SSR and GC */
1677 	unsigned int max_victim_search;
1678 	/* migration granularity of garbage collection, unit: segment */
1679 	unsigned int migration_granularity;
1680 
1681 	/*
1682 	 * for stat information.
1683 	 * one is for the LFS mode, and the other is for the SSR mode.
1684 	 */
1685 #ifdef CONFIG_F2FS_STAT_FS
1686 	struct f2fs_stat_info *stat_info;	/* FS status information */
1687 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1688 	unsigned int segment_count[2];		/* # of allocated segments */
1689 	unsigned int block_count[2];		/* # of allocated blocks */
1690 	atomic_t inplace_count;		/* # of inplace update */
1691 	/* # of lookup extent cache */
1692 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1693 	/* # of hit rbtree extent node */
1694 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1695 	/* # of hit cached extent node */
1696 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1697 	/* # of hit largest extent node in read extent cache */
1698 	atomic64_t read_hit_largest;
1699 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1700 	atomic_t inline_inode;			/* # of inline_data inodes */
1701 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1702 	atomic_t compr_inode;			/* # of compressed inodes */
1703 	atomic64_t compr_blocks;		/* # of compressed blocks */
1704 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1705 	atomic_t atomic_files;			/* # of opened atomic file */
1706 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1707 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1708 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1709 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1710 	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1711 #endif
1712 	spinlock_t stat_lock;			/* lock for stat operations */
1713 
1714 	/* to attach REQ_META|REQ_FUA flags */
1715 	unsigned int data_io_flag;
1716 	unsigned int node_io_flag;
1717 
1718 	/* For sysfs support */
1719 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1720 	struct completion s_kobj_unregister;
1721 
1722 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1723 	struct completion s_stat_kobj_unregister;
1724 
1725 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1726 	struct completion s_feature_list_kobj_unregister;
1727 
1728 	/* For shrinker support */
1729 	struct list_head s_list;
1730 	struct mutex umount_mutex;
1731 	unsigned int shrinker_run_no;
1732 
1733 	/* For multi devices */
1734 	int s_ndevs;				/* number of devices */
1735 	struct f2fs_dev_info *devs;		/* for device list */
1736 	unsigned int dirty_device;		/* for checkpoint data flush */
1737 	spinlock_t dev_lock;			/* protect dirty_device */
1738 	bool aligned_blksize;			/* all devices has the same logical blksize */
1739 
1740 	/* For write statistics */
1741 	u64 sectors_written_start;
1742 	u64 kbytes_written;
1743 
1744 	/* Reference to checksum algorithm driver via cryptoapi */
1745 	struct crypto_shash *s_chksum_driver;
1746 
1747 	/* Precomputed FS UUID checksum for seeding other checksums */
1748 	__u32 s_chksum_seed;
1749 
1750 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1751 
1752 	/*
1753 	 * If we are in irq context, let's update error information into
1754 	 * on-disk superblock in the work.
1755 	 */
1756 	struct work_struct s_error_work;
1757 	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1758 	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1759 	spinlock_t error_lock;			/* protect errors/stop_reason array */
1760 	bool error_dirty;			/* errors of sb is dirty */
1761 
1762 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1763 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1764 
1765 	/* For reclaimed segs statistics per each GC mode */
1766 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1767 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1768 
1769 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1770 
1771 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1772 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1773 
1774 	/* For atomic write statistics */
1775 	atomic64_t current_atomic_write;
1776 	s64 peak_atomic_write;
1777 	u64 committed_atomic_block;
1778 	u64 revoked_atomic_block;
1779 
1780 #ifdef CONFIG_F2FS_FS_COMPRESSION
1781 	struct kmem_cache *page_array_slab;	/* page array entry */
1782 	unsigned int page_array_slab_size;	/* default page array slab size */
1783 
1784 	/* For runtime compression statistics */
1785 	u64 compr_written_block;
1786 	u64 compr_saved_block;
1787 	u32 compr_new_inode;
1788 
1789 	/* For compressed block cache */
1790 	struct inode *compress_inode;		/* cache compressed blocks */
1791 	unsigned int compress_percent;		/* cache page percentage */
1792 	unsigned int compress_watermark;	/* cache page watermark */
1793 	atomic_t compress_page_hit;		/* cache hit count */
1794 #endif
1795 
1796 #ifdef CONFIG_F2FS_IOSTAT
1797 	/* For app/fs IO statistics */
1798 	spinlock_t iostat_lock;
1799 	unsigned long long iostat_count[NR_IO_TYPE];
1800 	unsigned long long iostat_bytes[NR_IO_TYPE];
1801 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1802 	bool iostat_enable;
1803 	unsigned long iostat_next_period;
1804 	unsigned int iostat_period_ms;
1805 
1806 	/* For io latency related statistics info in one iostat period */
1807 	spinlock_t iostat_lat_lock;
1808 	struct iostat_lat_info *iostat_io_lat;
1809 #endif
1810 };
1811 
1812 /* Definitions to access f2fs_sb_info */
1813 #define BLKS_PER_SEG(sbi)					\
1814 	((sbi)->blocks_per_seg)
1815 #define BLKS_PER_SEC(sbi)					\
1816 	((sbi)->segs_per_sec << (sbi)->log_blocks_per_seg)
1817 #define SEGS_PER_SEC(sbi)					\
1818 	((sbi)->segs_per_sec)
1819 
1820 __printf(3, 4)
1821 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1822 
1823 #define f2fs_err(sbi, fmt, ...)						\
1824 	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1825 #define f2fs_warn(sbi, fmt, ...)					\
1826 	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1827 #define f2fs_notice(sbi, fmt, ...)					\
1828 	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1829 #define f2fs_info(sbi, fmt, ...)					\
1830 	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1831 #define f2fs_debug(sbi, fmt, ...)					\
1832 	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1833 
1834 #define f2fs_err_ratelimited(sbi, fmt, ...)				\
1835 	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1836 #define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1837 	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1838 #define f2fs_info_ratelimited(sbi, fmt, ...)				\
1839 	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1840 
1841 #ifdef CONFIG_F2FS_FAULT_INJECTION
1842 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1843 									__builtin_return_address(0))
1844 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1845 				const char *func, const char *parent_func)
1846 {
1847 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1848 
1849 	if (!ffi->inject_rate)
1850 		return false;
1851 
1852 	if (!IS_FAULT_SET(ffi, type))
1853 		return false;
1854 
1855 	atomic_inc(&ffi->inject_ops);
1856 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1857 		atomic_set(&ffi->inject_ops, 0);
1858 		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1859 				f2fs_fault_name[type], func, parent_func);
1860 		return true;
1861 	}
1862 	return false;
1863 }
1864 #else
1865 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1866 {
1867 	return false;
1868 }
1869 #endif
1870 
1871 /*
1872  * Test if the mounted volume is a multi-device volume.
1873  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1874  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1875  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1876  */
1877 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1878 {
1879 	return sbi->s_ndevs > 1;
1880 }
1881 
1882 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1883 {
1884 	unsigned long now = jiffies;
1885 
1886 	sbi->last_time[type] = now;
1887 
1888 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1889 	if (type == REQ_TIME) {
1890 		sbi->last_time[DISCARD_TIME] = now;
1891 		sbi->last_time[GC_TIME] = now;
1892 	}
1893 }
1894 
1895 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1896 {
1897 	unsigned long interval = sbi->interval_time[type] * HZ;
1898 
1899 	return time_after(jiffies, sbi->last_time[type] + interval);
1900 }
1901 
1902 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1903 						int type)
1904 {
1905 	unsigned long interval = sbi->interval_time[type] * HZ;
1906 	unsigned int wait_ms = 0;
1907 	long delta;
1908 
1909 	delta = (sbi->last_time[type] + interval) - jiffies;
1910 	if (delta > 0)
1911 		wait_ms = jiffies_to_msecs(delta);
1912 
1913 	return wait_ms;
1914 }
1915 
1916 /*
1917  * Inline functions
1918  */
1919 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1920 			      const void *address, unsigned int length)
1921 {
1922 	struct {
1923 		struct shash_desc shash;
1924 		char ctx[4];
1925 	} desc;
1926 	int err;
1927 
1928 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1929 
1930 	desc.shash.tfm = sbi->s_chksum_driver;
1931 	*(u32 *)desc.ctx = crc;
1932 
1933 	err = crypto_shash_update(&desc.shash, address, length);
1934 	BUG_ON(err);
1935 
1936 	return *(u32 *)desc.ctx;
1937 }
1938 
1939 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1940 			   unsigned int length)
1941 {
1942 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1943 }
1944 
1945 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1946 				  void *buf, size_t buf_size)
1947 {
1948 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1949 }
1950 
1951 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1952 			      const void *address, unsigned int length)
1953 {
1954 	return __f2fs_crc32(sbi, crc, address, length);
1955 }
1956 
1957 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1958 {
1959 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1960 }
1961 
1962 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1963 {
1964 	return sb->s_fs_info;
1965 }
1966 
1967 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1968 {
1969 	return F2FS_SB(inode->i_sb);
1970 }
1971 
1972 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1973 {
1974 	return F2FS_I_SB(mapping->host);
1975 }
1976 
1977 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1978 {
1979 	return F2FS_M_SB(page_file_mapping(page));
1980 }
1981 
1982 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1983 {
1984 	return (struct f2fs_super_block *)(sbi->raw_super);
1985 }
1986 
1987 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1988 {
1989 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1990 }
1991 
1992 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1993 {
1994 	return (struct f2fs_node *)page_address(page);
1995 }
1996 
1997 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1998 {
1999 	return &((struct f2fs_node *)page_address(page))->i;
2000 }
2001 
2002 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2003 {
2004 	return (struct f2fs_nm_info *)(sbi->nm_info);
2005 }
2006 
2007 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2008 {
2009 	return (struct f2fs_sm_info *)(sbi->sm_info);
2010 }
2011 
2012 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2013 {
2014 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2015 }
2016 
2017 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2018 {
2019 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2020 }
2021 
2022 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2023 {
2024 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2025 }
2026 
2027 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2028 {
2029 	return sbi->meta_inode->i_mapping;
2030 }
2031 
2032 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2033 {
2034 	return sbi->node_inode->i_mapping;
2035 }
2036 
2037 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2038 {
2039 	return test_bit(type, &sbi->s_flag);
2040 }
2041 
2042 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2043 {
2044 	set_bit(type, &sbi->s_flag);
2045 }
2046 
2047 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2048 {
2049 	clear_bit(type, &sbi->s_flag);
2050 }
2051 
2052 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2053 {
2054 	return le64_to_cpu(cp->checkpoint_ver);
2055 }
2056 
2057 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2058 {
2059 	if (type < F2FS_MAX_QUOTAS)
2060 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2061 	return 0;
2062 }
2063 
2064 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2065 {
2066 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2067 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2068 }
2069 
2070 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2071 {
2072 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2073 
2074 	return ckpt_flags & f;
2075 }
2076 
2077 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2078 {
2079 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2080 }
2081 
2082 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2083 {
2084 	unsigned int ckpt_flags;
2085 
2086 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2087 	ckpt_flags |= f;
2088 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2089 }
2090 
2091 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2092 {
2093 	unsigned long flags;
2094 
2095 	spin_lock_irqsave(&sbi->cp_lock, flags);
2096 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2097 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2098 }
2099 
2100 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2101 {
2102 	unsigned int ckpt_flags;
2103 
2104 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2105 	ckpt_flags &= (~f);
2106 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2107 }
2108 
2109 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2110 {
2111 	unsigned long flags;
2112 
2113 	spin_lock_irqsave(&sbi->cp_lock, flags);
2114 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2115 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2116 }
2117 
2118 #define init_f2fs_rwsem(sem)					\
2119 do {								\
2120 	static struct lock_class_key __key;			\
2121 								\
2122 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2123 } while (0)
2124 
2125 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2126 		const char *sem_name, struct lock_class_key *key)
2127 {
2128 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2129 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2130 	init_waitqueue_head(&sem->read_waiters);
2131 #endif
2132 }
2133 
2134 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2135 {
2136 	return rwsem_is_locked(&sem->internal_rwsem);
2137 }
2138 
2139 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2140 {
2141 	return rwsem_is_contended(&sem->internal_rwsem);
2142 }
2143 
2144 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2145 {
2146 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2147 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2148 #else
2149 	down_read(&sem->internal_rwsem);
2150 #endif
2151 }
2152 
2153 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2154 {
2155 	return down_read_trylock(&sem->internal_rwsem);
2156 }
2157 
2158 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2159 {
2160 	up_read(&sem->internal_rwsem);
2161 }
2162 
2163 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2164 {
2165 	down_write(&sem->internal_rwsem);
2166 }
2167 
2168 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2169 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2170 {
2171 	down_read_nested(&sem->internal_rwsem, subclass);
2172 }
2173 
2174 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2175 {
2176 	down_write_nested(&sem->internal_rwsem, subclass);
2177 }
2178 #else
2179 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2180 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2181 #endif
2182 
2183 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2184 {
2185 	return down_write_trylock(&sem->internal_rwsem);
2186 }
2187 
2188 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2189 {
2190 	up_write(&sem->internal_rwsem);
2191 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2192 	wake_up_all(&sem->read_waiters);
2193 #endif
2194 }
2195 
2196 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2197 {
2198 	f2fs_down_read(&sbi->cp_rwsem);
2199 }
2200 
2201 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2202 {
2203 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2204 		return 0;
2205 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2206 }
2207 
2208 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2209 {
2210 	f2fs_up_read(&sbi->cp_rwsem);
2211 }
2212 
2213 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2214 {
2215 	f2fs_down_write(&sbi->cp_rwsem);
2216 }
2217 
2218 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2219 {
2220 	f2fs_up_write(&sbi->cp_rwsem);
2221 }
2222 
2223 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2224 {
2225 	int reason = CP_SYNC;
2226 
2227 	if (test_opt(sbi, FASTBOOT))
2228 		reason = CP_FASTBOOT;
2229 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2230 		reason = CP_UMOUNT;
2231 	return reason;
2232 }
2233 
2234 static inline bool __remain_node_summaries(int reason)
2235 {
2236 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2237 }
2238 
2239 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2240 {
2241 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2242 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2243 }
2244 
2245 /*
2246  * Check whether the inode has blocks or not
2247  */
2248 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2249 {
2250 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2251 
2252 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2253 }
2254 
2255 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2256 {
2257 	return ofs == XATTR_NODE_OFFSET;
2258 }
2259 
2260 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2261 					struct inode *inode, bool cap)
2262 {
2263 	if (!inode)
2264 		return true;
2265 	if (!test_opt(sbi, RESERVE_ROOT))
2266 		return false;
2267 	if (IS_NOQUOTA(inode))
2268 		return true;
2269 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2270 		return true;
2271 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2272 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2273 		return true;
2274 	if (cap && capable(CAP_SYS_RESOURCE))
2275 		return true;
2276 	return false;
2277 }
2278 
2279 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2280 						struct inode *inode, bool cap)
2281 {
2282 	block_t avail_user_block_count;
2283 
2284 	avail_user_block_count = sbi->user_block_count -
2285 					sbi->current_reserved_blocks;
2286 
2287 	if (!__allow_reserved_blocks(sbi, inode, cap))
2288 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2289 
2290 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2291 		if (avail_user_block_count > sbi->unusable_block_count)
2292 			avail_user_block_count -= sbi->unusable_block_count;
2293 		else
2294 			avail_user_block_count = 0;
2295 	}
2296 
2297 	return avail_user_block_count;
2298 }
2299 
2300 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2301 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2302 				 struct inode *inode, blkcnt_t *count, bool partial)
2303 {
2304 	long long diff = 0, release = 0;
2305 	block_t avail_user_block_count;
2306 	int ret;
2307 
2308 	ret = dquot_reserve_block(inode, *count);
2309 	if (ret)
2310 		return ret;
2311 
2312 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2313 		release = *count;
2314 		goto release_quota;
2315 	}
2316 
2317 	/*
2318 	 * let's increase this in prior to actual block count change in order
2319 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2320 	 */
2321 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2322 
2323 	spin_lock(&sbi->stat_lock);
2324 
2325 	avail_user_block_count = get_available_block_count(sbi, inode, true);
2326 	diff = (long long)sbi->total_valid_block_count + *count -
2327 						avail_user_block_count;
2328 	if (unlikely(diff > 0)) {
2329 		if (!partial) {
2330 			spin_unlock(&sbi->stat_lock);
2331 			release = *count;
2332 			goto enospc;
2333 		}
2334 		if (diff > *count)
2335 			diff = *count;
2336 		*count -= diff;
2337 		release = diff;
2338 		if (!*count) {
2339 			spin_unlock(&sbi->stat_lock);
2340 			goto enospc;
2341 		}
2342 	}
2343 	sbi->total_valid_block_count += (block_t)(*count);
2344 
2345 	spin_unlock(&sbi->stat_lock);
2346 
2347 	if (unlikely(release)) {
2348 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2349 		dquot_release_reservation_block(inode, release);
2350 	}
2351 	f2fs_i_blocks_write(inode, *count, true, true);
2352 	return 0;
2353 
2354 enospc:
2355 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2356 release_quota:
2357 	dquot_release_reservation_block(inode, release);
2358 	return -ENOSPC;
2359 }
2360 
2361 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2362 static inline bool page_private_##name(struct page *page) \
2363 { \
2364 	return PagePrivate(page) && \
2365 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2366 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2367 }
2368 
2369 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2370 static inline void set_page_private_##name(struct page *page) \
2371 { \
2372 	if (!PagePrivate(page)) \
2373 		attach_page_private(page, (void *)0); \
2374 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2375 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2376 }
2377 
2378 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2379 static inline void clear_page_private_##name(struct page *page) \
2380 { \
2381 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2382 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2383 		detach_page_private(page); \
2384 }
2385 
2386 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2387 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2388 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2389 
2390 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2391 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2392 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2393 
2394 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2395 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2396 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2397 
2398 static inline unsigned long get_page_private_data(struct page *page)
2399 {
2400 	unsigned long data = page_private(page);
2401 
2402 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2403 		return 0;
2404 	return data >> PAGE_PRIVATE_MAX;
2405 }
2406 
2407 static inline void set_page_private_data(struct page *page, unsigned long data)
2408 {
2409 	if (!PagePrivate(page))
2410 		attach_page_private(page, (void *)0);
2411 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2412 	page_private(page) |= data << PAGE_PRIVATE_MAX;
2413 }
2414 
2415 static inline void clear_page_private_data(struct page *page)
2416 {
2417 	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2418 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2419 		detach_page_private(page);
2420 }
2421 
2422 static inline void clear_page_private_all(struct page *page)
2423 {
2424 	clear_page_private_data(page);
2425 	clear_page_private_reference(page);
2426 	clear_page_private_gcing(page);
2427 	clear_page_private_inline(page);
2428 
2429 	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2430 }
2431 
2432 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2433 						struct inode *inode,
2434 						block_t count)
2435 {
2436 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2437 
2438 	spin_lock(&sbi->stat_lock);
2439 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2440 	sbi->total_valid_block_count -= (block_t)count;
2441 	if (sbi->reserved_blocks &&
2442 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2443 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2444 					sbi->current_reserved_blocks + count);
2445 	spin_unlock(&sbi->stat_lock);
2446 	if (unlikely(inode->i_blocks < sectors)) {
2447 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2448 			  inode->i_ino,
2449 			  (unsigned long long)inode->i_blocks,
2450 			  (unsigned long long)sectors);
2451 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2452 		return;
2453 	}
2454 	f2fs_i_blocks_write(inode, count, false, true);
2455 }
2456 
2457 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2458 {
2459 	atomic_inc(&sbi->nr_pages[count_type]);
2460 
2461 	if (count_type == F2FS_DIRTY_DENTS ||
2462 			count_type == F2FS_DIRTY_NODES ||
2463 			count_type == F2FS_DIRTY_META ||
2464 			count_type == F2FS_DIRTY_QDATA ||
2465 			count_type == F2FS_DIRTY_IMETA)
2466 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2467 }
2468 
2469 static inline void inode_inc_dirty_pages(struct inode *inode)
2470 {
2471 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2472 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2473 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2474 	if (IS_NOQUOTA(inode))
2475 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2476 }
2477 
2478 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2479 {
2480 	atomic_dec(&sbi->nr_pages[count_type]);
2481 }
2482 
2483 static inline void inode_dec_dirty_pages(struct inode *inode)
2484 {
2485 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2486 			!S_ISLNK(inode->i_mode))
2487 		return;
2488 
2489 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2490 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2491 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2492 	if (IS_NOQUOTA(inode))
2493 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2494 }
2495 
2496 static inline void inc_atomic_write_cnt(struct inode *inode)
2497 {
2498 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2499 	struct f2fs_inode_info *fi = F2FS_I(inode);
2500 	u64 current_write;
2501 
2502 	fi->atomic_write_cnt++;
2503 	atomic64_inc(&sbi->current_atomic_write);
2504 	current_write = atomic64_read(&sbi->current_atomic_write);
2505 	if (current_write > sbi->peak_atomic_write)
2506 		sbi->peak_atomic_write = current_write;
2507 }
2508 
2509 static inline void release_atomic_write_cnt(struct inode *inode)
2510 {
2511 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2512 	struct f2fs_inode_info *fi = F2FS_I(inode);
2513 
2514 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2515 	fi->atomic_write_cnt = 0;
2516 }
2517 
2518 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2519 {
2520 	return atomic_read(&sbi->nr_pages[count_type]);
2521 }
2522 
2523 static inline int get_dirty_pages(struct inode *inode)
2524 {
2525 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2526 }
2527 
2528 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2529 {
2530 	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2531 							BLKS_PER_SEC(sbi));
2532 }
2533 
2534 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2535 {
2536 	return sbi->total_valid_block_count;
2537 }
2538 
2539 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2540 {
2541 	return sbi->discard_blks;
2542 }
2543 
2544 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2545 {
2546 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2547 
2548 	/* return NAT or SIT bitmap */
2549 	if (flag == NAT_BITMAP)
2550 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2551 	else if (flag == SIT_BITMAP)
2552 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2553 
2554 	return 0;
2555 }
2556 
2557 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2558 {
2559 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2560 }
2561 
2562 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2563 {
2564 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2565 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2566 	int offset;
2567 
2568 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2569 		offset = (flag == SIT_BITMAP) ?
2570 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2571 		/*
2572 		 * if large_nat_bitmap feature is enabled, leave checksum
2573 		 * protection for all nat/sit bitmaps.
2574 		 */
2575 		return tmp_ptr + offset + sizeof(__le32);
2576 	}
2577 
2578 	if (__cp_payload(sbi) > 0) {
2579 		if (flag == NAT_BITMAP)
2580 			return tmp_ptr;
2581 		else
2582 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2583 	} else {
2584 		offset = (flag == NAT_BITMAP) ?
2585 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2586 		return tmp_ptr + offset;
2587 	}
2588 }
2589 
2590 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2591 {
2592 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2593 
2594 	if (sbi->cur_cp_pack == 2)
2595 		start_addr += BLKS_PER_SEG(sbi);
2596 	return start_addr;
2597 }
2598 
2599 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2600 {
2601 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2602 
2603 	if (sbi->cur_cp_pack == 1)
2604 		start_addr += BLKS_PER_SEG(sbi);
2605 	return start_addr;
2606 }
2607 
2608 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2609 {
2610 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2611 }
2612 
2613 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2614 {
2615 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2616 }
2617 
2618 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2619 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2620 					struct inode *inode, bool is_inode)
2621 {
2622 	block_t	valid_block_count;
2623 	unsigned int valid_node_count;
2624 	unsigned int avail_user_block_count;
2625 	int err;
2626 
2627 	if (is_inode) {
2628 		if (inode) {
2629 			err = dquot_alloc_inode(inode);
2630 			if (err)
2631 				return err;
2632 		}
2633 	} else {
2634 		err = dquot_reserve_block(inode, 1);
2635 		if (err)
2636 			return err;
2637 	}
2638 
2639 	if (time_to_inject(sbi, FAULT_BLOCK))
2640 		goto enospc;
2641 
2642 	spin_lock(&sbi->stat_lock);
2643 
2644 	valid_block_count = sbi->total_valid_block_count + 1;
2645 	avail_user_block_count = get_available_block_count(sbi, inode, false);
2646 
2647 	if (unlikely(valid_block_count > avail_user_block_count)) {
2648 		spin_unlock(&sbi->stat_lock);
2649 		goto enospc;
2650 	}
2651 
2652 	valid_node_count = sbi->total_valid_node_count + 1;
2653 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2654 		spin_unlock(&sbi->stat_lock);
2655 		goto enospc;
2656 	}
2657 
2658 	sbi->total_valid_node_count++;
2659 	sbi->total_valid_block_count++;
2660 	spin_unlock(&sbi->stat_lock);
2661 
2662 	if (inode) {
2663 		if (is_inode)
2664 			f2fs_mark_inode_dirty_sync(inode, true);
2665 		else
2666 			f2fs_i_blocks_write(inode, 1, true, true);
2667 	}
2668 
2669 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2670 	return 0;
2671 
2672 enospc:
2673 	if (is_inode) {
2674 		if (inode)
2675 			dquot_free_inode(inode);
2676 	} else {
2677 		dquot_release_reservation_block(inode, 1);
2678 	}
2679 	return -ENOSPC;
2680 }
2681 
2682 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2683 					struct inode *inode, bool is_inode)
2684 {
2685 	spin_lock(&sbi->stat_lock);
2686 
2687 	if (unlikely(!sbi->total_valid_block_count ||
2688 			!sbi->total_valid_node_count)) {
2689 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2690 			  sbi->total_valid_block_count,
2691 			  sbi->total_valid_node_count);
2692 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2693 	} else {
2694 		sbi->total_valid_block_count--;
2695 		sbi->total_valid_node_count--;
2696 	}
2697 
2698 	if (sbi->reserved_blocks &&
2699 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2700 		sbi->current_reserved_blocks++;
2701 
2702 	spin_unlock(&sbi->stat_lock);
2703 
2704 	if (is_inode) {
2705 		dquot_free_inode(inode);
2706 	} else {
2707 		if (unlikely(inode->i_blocks == 0)) {
2708 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2709 				  inode->i_ino,
2710 				  (unsigned long long)inode->i_blocks);
2711 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2712 			return;
2713 		}
2714 		f2fs_i_blocks_write(inode, 1, false, true);
2715 	}
2716 }
2717 
2718 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2719 {
2720 	return sbi->total_valid_node_count;
2721 }
2722 
2723 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2724 {
2725 	percpu_counter_inc(&sbi->total_valid_inode_count);
2726 }
2727 
2728 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2729 {
2730 	percpu_counter_dec(&sbi->total_valid_inode_count);
2731 }
2732 
2733 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2734 {
2735 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2736 }
2737 
2738 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2739 						pgoff_t index, bool for_write)
2740 {
2741 	struct page *page;
2742 	unsigned int flags;
2743 
2744 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2745 		if (!for_write)
2746 			page = find_get_page_flags(mapping, index,
2747 							FGP_LOCK | FGP_ACCESSED);
2748 		else
2749 			page = find_lock_page(mapping, index);
2750 		if (page)
2751 			return page;
2752 
2753 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2754 			return NULL;
2755 	}
2756 
2757 	if (!for_write)
2758 		return grab_cache_page(mapping, index);
2759 
2760 	flags = memalloc_nofs_save();
2761 	page = grab_cache_page_write_begin(mapping, index);
2762 	memalloc_nofs_restore(flags);
2763 
2764 	return page;
2765 }
2766 
2767 static inline struct page *f2fs_pagecache_get_page(
2768 				struct address_space *mapping, pgoff_t index,
2769 				fgf_t fgp_flags, gfp_t gfp_mask)
2770 {
2771 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2772 		return NULL;
2773 
2774 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2775 }
2776 
2777 static inline void f2fs_put_page(struct page *page, int unlock)
2778 {
2779 	if (!page)
2780 		return;
2781 
2782 	if (unlock) {
2783 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2784 		unlock_page(page);
2785 	}
2786 	put_page(page);
2787 }
2788 
2789 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2790 {
2791 	if (dn->node_page)
2792 		f2fs_put_page(dn->node_page, 1);
2793 	if (dn->inode_page && dn->node_page != dn->inode_page)
2794 		f2fs_put_page(dn->inode_page, 0);
2795 	dn->node_page = NULL;
2796 	dn->inode_page = NULL;
2797 }
2798 
2799 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2800 					size_t size)
2801 {
2802 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2803 }
2804 
2805 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2806 						gfp_t flags)
2807 {
2808 	void *entry;
2809 
2810 	entry = kmem_cache_alloc(cachep, flags);
2811 	if (!entry)
2812 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2813 	return entry;
2814 }
2815 
2816 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2817 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2818 {
2819 	if (nofail)
2820 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2821 
2822 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2823 		return NULL;
2824 
2825 	return kmem_cache_alloc(cachep, flags);
2826 }
2827 
2828 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2829 {
2830 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2831 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2832 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2833 		get_pages(sbi, F2FS_DIO_READ) ||
2834 		get_pages(sbi, F2FS_DIO_WRITE))
2835 		return true;
2836 
2837 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2838 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2839 		return true;
2840 
2841 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2842 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2843 		return true;
2844 	return false;
2845 }
2846 
2847 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2848 {
2849 	if (sbi->gc_mode == GC_URGENT_HIGH)
2850 		return true;
2851 
2852 	if (is_inflight_io(sbi, type))
2853 		return false;
2854 
2855 	if (sbi->gc_mode == GC_URGENT_MID)
2856 		return true;
2857 
2858 	if (sbi->gc_mode == GC_URGENT_LOW &&
2859 			(type == DISCARD_TIME || type == GC_TIME))
2860 		return true;
2861 
2862 	return f2fs_time_over(sbi, type);
2863 }
2864 
2865 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2866 				unsigned long index, void *item)
2867 {
2868 	while (radix_tree_insert(root, index, item))
2869 		cond_resched();
2870 }
2871 
2872 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2873 
2874 static inline bool IS_INODE(struct page *page)
2875 {
2876 	struct f2fs_node *p = F2FS_NODE(page);
2877 
2878 	return RAW_IS_INODE(p);
2879 }
2880 
2881 static inline int offset_in_addr(struct f2fs_inode *i)
2882 {
2883 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2884 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2885 }
2886 
2887 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2888 {
2889 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2890 }
2891 
2892 static inline int f2fs_has_extra_attr(struct inode *inode);
2893 static inline block_t data_blkaddr(struct inode *inode,
2894 			struct page *node_page, unsigned int offset)
2895 {
2896 	struct f2fs_node *raw_node;
2897 	__le32 *addr_array;
2898 	int base = 0;
2899 	bool is_inode = IS_INODE(node_page);
2900 
2901 	raw_node = F2FS_NODE(node_page);
2902 
2903 	if (is_inode) {
2904 		if (!inode)
2905 			/* from GC path only */
2906 			base = offset_in_addr(&raw_node->i);
2907 		else if (f2fs_has_extra_attr(inode))
2908 			base = get_extra_isize(inode);
2909 	}
2910 
2911 	addr_array = blkaddr_in_node(raw_node);
2912 	return le32_to_cpu(addr_array[base + offset]);
2913 }
2914 
2915 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2916 {
2917 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2918 }
2919 
2920 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2921 {
2922 	int mask;
2923 
2924 	addr += (nr >> 3);
2925 	mask = BIT(7 - (nr & 0x07));
2926 	return mask & *addr;
2927 }
2928 
2929 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2930 {
2931 	int mask;
2932 
2933 	addr += (nr >> 3);
2934 	mask = BIT(7 - (nr & 0x07));
2935 	*addr |= mask;
2936 }
2937 
2938 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2939 {
2940 	int mask;
2941 
2942 	addr += (nr >> 3);
2943 	mask = BIT(7 - (nr & 0x07));
2944 	*addr &= ~mask;
2945 }
2946 
2947 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2948 {
2949 	int mask;
2950 	int ret;
2951 
2952 	addr += (nr >> 3);
2953 	mask = BIT(7 - (nr & 0x07));
2954 	ret = mask & *addr;
2955 	*addr |= mask;
2956 	return ret;
2957 }
2958 
2959 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2960 {
2961 	int mask;
2962 	int ret;
2963 
2964 	addr += (nr >> 3);
2965 	mask = BIT(7 - (nr & 0x07));
2966 	ret = mask & *addr;
2967 	*addr &= ~mask;
2968 	return ret;
2969 }
2970 
2971 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2972 {
2973 	int mask;
2974 
2975 	addr += (nr >> 3);
2976 	mask = BIT(7 - (nr & 0x07));
2977 	*addr ^= mask;
2978 }
2979 
2980 /*
2981  * On-disk inode flags (f2fs_inode::i_flags)
2982  */
2983 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2984 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2985 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2986 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2987 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2988 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2989 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2990 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2991 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2992 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2993 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2994 
2995 #define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
2996 
2997 /* Flags that should be inherited by new inodes from their parent. */
2998 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2999 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3000 			   F2FS_CASEFOLD_FL)
3001 
3002 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3003 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3004 				F2FS_CASEFOLD_FL))
3005 
3006 /* Flags that are appropriate for non-directories/regular files. */
3007 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3008 
3009 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3010 {
3011 	if (S_ISDIR(mode))
3012 		return flags;
3013 	else if (S_ISREG(mode))
3014 		return flags & F2FS_REG_FLMASK;
3015 	else
3016 		return flags & F2FS_OTHER_FLMASK;
3017 }
3018 
3019 static inline void __mark_inode_dirty_flag(struct inode *inode,
3020 						int flag, bool set)
3021 {
3022 	switch (flag) {
3023 	case FI_INLINE_XATTR:
3024 	case FI_INLINE_DATA:
3025 	case FI_INLINE_DENTRY:
3026 	case FI_NEW_INODE:
3027 		if (set)
3028 			return;
3029 		fallthrough;
3030 	case FI_DATA_EXIST:
3031 	case FI_INLINE_DOTS:
3032 	case FI_PIN_FILE:
3033 	case FI_COMPRESS_RELEASED:
3034 	case FI_ATOMIC_COMMITTED:
3035 		f2fs_mark_inode_dirty_sync(inode, true);
3036 	}
3037 }
3038 
3039 static inline void set_inode_flag(struct inode *inode, int flag)
3040 {
3041 	set_bit(flag, F2FS_I(inode)->flags);
3042 	__mark_inode_dirty_flag(inode, flag, true);
3043 }
3044 
3045 static inline int is_inode_flag_set(struct inode *inode, int flag)
3046 {
3047 	return test_bit(flag, F2FS_I(inode)->flags);
3048 }
3049 
3050 static inline void clear_inode_flag(struct inode *inode, int flag)
3051 {
3052 	clear_bit(flag, F2FS_I(inode)->flags);
3053 	__mark_inode_dirty_flag(inode, flag, false);
3054 }
3055 
3056 static inline bool f2fs_verity_in_progress(struct inode *inode)
3057 {
3058 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3059 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3060 }
3061 
3062 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3063 {
3064 	F2FS_I(inode)->i_acl_mode = mode;
3065 	set_inode_flag(inode, FI_ACL_MODE);
3066 	f2fs_mark_inode_dirty_sync(inode, false);
3067 }
3068 
3069 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3070 {
3071 	if (inc)
3072 		inc_nlink(inode);
3073 	else
3074 		drop_nlink(inode);
3075 	f2fs_mark_inode_dirty_sync(inode, true);
3076 }
3077 
3078 static inline void f2fs_i_blocks_write(struct inode *inode,
3079 					block_t diff, bool add, bool claim)
3080 {
3081 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3082 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3083 
3084 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3085 	if (add) {
3086 		if (claim)
3087 			dquot_claim_block(inode, diff);
3088 		else
3089 			dquot_alloc_block_nofail(inode, diff);
3090 	} else {
3091 		dquot_free_block(inode, diff);
3092 	}
3093 
3094 	f2fs_mark_inode_dirty_sync(inode, true);
3095 	if (clean || recover)
3096 		set_inode_flag(inode, FI_AUTO_RECOVER);
3097 }
3098 
3099 static inline bool f2fs_is_atomic_file(struct inode *inode);
3100 
3101 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3102 {
3103 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3104 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3105 
3106 	if (i_size_read(inode) == i_size)
3107 		return;
3108 
3109 	i_size_write(inode, i_size);
3110 
3111 	if (f2fs_is_atomic_file(inode))
3112 		return;
3113 
3114 	f2fs_mark_inode_dirty_sync(inode, true);
3115 	if (clean || recover)
3116 		set_inode_flag(inode, FI_AUTO_RECOVER);
3117 }
3118 
3119 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3120 {
3121 	F2FS_I(inode)->i_current_depth = depth;
3122 	f2fs_mark_inode_dirty_sync(inode, true);
3123 }
3124 
3125 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3126 					unsigned int count)
3127 {
3128 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3129 	f2fs_mark_inode_dirty_sync(inode, true);
3130 }
3131 
3132 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3133 {
3134 	F2FS_I(inode)->i_xattr_nid = xnid;
3135 	f2fs_mark_inode_dirty_sync(inode, true);
3136 }
3137 
3138 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3139 {
3140 	F2FS_I(inode)->i_pino = pino;
3141 	f2fs_mark_inode_dirty_sync(inode, true);
3142 }
3143 
3144 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3145 {
3146 	struct f2fs_inode_info *fi = F2FS_I(inode);
3147 
3148 	if (ri->i_inline & F2FS_INLINE_XATTR)
3149 		set_bit(FI_INLINE_XATTR, fi->flags);
3150 	if (ri->i_inline & F2FS_INLINE_DATA)
3151 		set_bit(FI_INLINE_DATA, fi->flags);
3152 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3153 		set_bit(FI_INLINE_DENTRY, fi->flags);
3154 	if (ri->i_inline & F2FS_DATA_EXIST)
3155 		set_bit(FI_DATA_EXIST, fi->flags);
3156 	if (ri->i_inline & F2FS_INLINE_DOTS)
3157 		set_bit(FI_INLINE_DOTS, fi->flags);
3158 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3159 		set_bit(FI_EXTRA_ATTR, fi->flags);
3160 	if (ri->i_inline & F2FS_PIN_FILE)
3161 		set_bit(FI_PIN_FILE, fi->flags);
3162 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3163 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3164 }
3165 
3166 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3167 {
3168 	ri->i_inline = 0;
3169 
3170 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3171 		ri->i_inline |= F2FS_INLINE_XATTR;
3172 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3173 		ri->i_inline |= F2FS_INLINE_DATA;
3174 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3175 		ri->i_inline |= F2FS_INLINE_DENTRY;
3176 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3177 		ri->i_inline |= F2FS_DATA_EXIST;
3178 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3179 		ri->i_inline |= F2FS_INLINE_DOTS;
3180 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3181 		ri->i_inline |= F2FS_EXTRA_ATTR;
3182 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3183 		ri->i_inline |= F2FS_PIN_FILE;
3184 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3185 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3186 }
3187 
3188 static inline int f2fs_has_extra_attr(struct inode *inode)
3189 {
3190 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3191 }
3192 
3193 static inline int f2fs_has_inline_xattr(struct inode *inode)
3194 {
3195 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3196 }
3197 
3198 static inline int f2fs_compressed_file(struct inode *inode)
3199 {
3200 	return S_ISREG(inode->i_mode) &&
3201 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3202 }
3203 
3204 static inline bool f2fs_need_compress_data(struct inode *inode)
3205 {
3206 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3207 
3208 	if (!f2fs_compressed_file(inode))
3209 		return false;
3210 
3211 	if (compress_mode == COMPR_MODE_FS)
3212 		return true;
3213 	else if (compress_mode == COMPR_MODE_USER &&
3214 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3215 		return true;
3216 
3217 	return false;
3218 }
3219 
3220 static inline unsigned int addrs_per_inode(struct inode *inode)
3221 {
3222 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3223 				get_inline_xattr_addrs(inode);
3224 
3225 	if (!f2fs_compressed_file(inode))
3226 		return addrs;
3227 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3228 }
3229 
3230 static inline unsigned int addrs_per_block(struct inode *inode)
3231 {
3232 	if (!f2fs_compressed_file(inode))
3233 		return DEF_ADDRS_PER_BLOCK;
3234 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3235 }
3236 
3237 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3238 {
3239 	struct f2fs_inode *ri = F2FS_INODE(page);
3240 
3241 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3242 					get_inline_xattr_addrs(inode)]);
3243 }
3244 
3245 static inline int inline_xattr_size(struct inode *inode)
3246 {
3247 	if (f2fs_has_inline_xattr(inode))
3248 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3249 	return 0;
3250 }
3251 
3252 /*
3253  * Notice: check inline_data flag without inode page lock is unsafe.
3254  * It could change at any time by f2fs_convert_inline_page().
3255  */
3256 static inline int f2fs_has_inline_data(struct inode *inode)
3257 {
3258 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3259 }
3260 
3261 static inline int f2fs_exist_data(struct inode *inode)
3262 {
3263 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3264 }
3265 
3266 static inline int f2fs_has_inline_dots(struct inode *inode)
3267 {
3268 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3269 }
3270 
3271 static inline int f2fs_is_mmap_file(struct inode *inode)
3272 {
3273 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3274 }
3275 
3276 static inline bool f2fs_is_pinned_file(struct inode *inode)
3277 {
3278 	return is_inode_flag_set(inode, FI_PIN_FILE);
3279 }
3280 
3281 static inline bool f2fs_is_atomic_file(struct inode *inode)
3282 {
3283 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3284 }
3285 
3286 static inline bool f2fs_is_cow_file(struct inode *inode)
3287 {
3288 	return is_inode_flag_set(inode, FI_COW_FILE);
3289 }
3290 
3291 static inline __le32 *get_dnode_addr(struct inode *inode,
3292 					struct page *node_page);
3293 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3294 {
3295 	__le32 *addr = get_dnode_addr(inode, page);
3296 
3297 	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3298 }
3299 
3300 static inline int f2fs_has_inline_dentry(struct inode *inode)
3301 {
3302 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3303 }
3304 
3305 static inline int is_file(struct inode *inode, int type)
3306 {
3307 	return F2FS_I(inode)->i_advise & type;
3308 }
3309 
3310 static inline void set_file(struct inode *inode, int type)
3311 {
3312 	if (is_file(inode, type))
3313 		return;
3314 	F2FS_I(inode)->i_advise |= type;
3315 	f2fs_mark_inode_dirty_sync(inode, true);
3316 }
3317 
3318 static inline void clear_file(struct inode *inode, int type)
3319 {
3320 	if (!is_file(inode, type))
3321 		return;
3322 	F2FS_I(inode)->i_advise &= ~type;
3323 	f2fs_mark_inode_dirty_sync(inode, true);
3324 }
3325 
3326 static inline bool f2fs_is_time_consistent(struct inode *inode)
3327 {
3328 	struct timespec64 ctime = inode_get_ctime(inode);
3329 
3330 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3331 		return false;
3332 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ctime))
3333 		return false;
3334 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3335 		return false;
3336 	return true;
3337 }
3338 
3339 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3340 {
3341 	bool ret;
3342 
3343 	if (dsync) {
3344 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3345 
3346 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3347 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3348 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3349 		return ret;
3350 	}
3351 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3352 			file_keep_isize(inode) ||
3353 			i_size_read(inode) & ~PAGE_MASK)
3354 		return false;
3355 
3356 	if (!f2fs_is_time_consistent(inode))
3357 		return false;
3358 
3359 	spin_lock(&F2FS_I(inode)->i_size_lock);
3360 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3361 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3362 
3363 	return ret;
3364 }
3365 
3366 static inline bool f2fs_readonly(struct super_block *sb)
3367 {
3368 	return sb_rdonly(sb);
3369 }
3370 
3371 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3372 {
3373 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3374 }
3375 
3376 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3377 {
3378 	if (len == 1 && name[0] == '.')
3379 		return true;
3380 
3381 	if (len == 2 && name[0] == '.' && name[1] == '.')
3382 		return true;
3383 
3384 	return false;
3385 }
3386 
3387 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3388 					size_t size, gfp_t flags)
3389 {
3390 	if (time_to_inject(sbi, FAULT_KMALLOC))
3391 		return NULL;
3392 
3393 	return kmalloc(size, flags);
3394 }
3395 
3396 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3397 {
3398 	if (time_to_inject(sbi, FAULT_KMALLOC))
3399 		return NULL;
3400 
3401 	return __getname();
3402 }
3403 
3404 static inline void f2fs_putname(char *buf)
3405 {
3406 	__putname(buf);
3407 }
3408 
3409 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3410 					size_t size, gfp_t flags)
3411 {
3412 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3413 }
3414 
3415 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3416 					size_t size, gfp_t flags)
3417 {
3418 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3419 		return NULL;
3420 
3421 	return kvmalloc(size, flags);
3422 }
3423 
3424 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3425 					size_t size, gfp_t flags)
3426 {
3427 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3428 }
3429 
3430 static inline int get_extra_isize(struct inode *inode)
3431 {
3432 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3433 }
3434 
3435 static inline int get_inline_xattr_addrs(struct inode *inode)
3436 {
3437 	return F2FS_I(inode)->i_inline_xattr_size;
3438 }
3439 
3440 static inline __le32 *get_dnode_addr(struct inode *inode,
3441 					struct page *node_page)
3442 {
3443 	int base = 0;
3444 
3445 	if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3446 		base = get_extra_isize(inode);
3447 
3448 	return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3449 }
3450 
3451 #define f2fs_get_inode_mode(i) \
3452 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3453 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3454 
3455 #define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3456 
3457 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3458 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3459 	offsetof(struct f2fs_inode, i_extra_isize))	\
3460 
3461 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3462 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3463 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3464 		sizeof((f2fs_inode)->field))			\
3465 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3466 
3467 #define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3468 
3469 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3470 
3471 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3472 					block_t blkaddr, int type);
3473 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3474 					block_t blkaddr, int type)
3475 {
3476 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3477 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3478 			 blkaddr, type);
3479 }
3480 
3481 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3482 {
3483 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3484 			blkaddr == COMPRESS_ADDR)
3485 		return false;
3486 	return true;
3487 }
3488 
3489 /*
3490  * file.c
3491  */
3492 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3493 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3494 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3495 int f2fs_truncate(struct inode *inode);
3496 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3497 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3498 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3499 		 struct iattr *attr);
3500 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3501 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3502 int f2fs_precache_extents(struct inode *inode);
3503 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3504 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3505 		      struct dentry *dentry, struct fileattr *fa);
3506 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3507 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3508 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3509 int f2fs_pin_file_control(struct inode *inode, bool inc);
3510 
3511 /*
3512  * inode.c
3513  */
3514 void f2fs_set_inode_flags(struct inode *inode);
3515 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3516 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3517 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3518 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3519 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3520 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3521 void f2fs_update_inode_page(struct inode *inode);
3522 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3523 void f2fs_evict_inode(struct inode *inode);
3524 void f2fs_handle_failed_inode(struct inode *inode);
3525 
3526 /*
3527  * namei.c
3528  */
3529 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3530 							bool hot, bool set);
3531 struct dentry *f2fs_get_parent(struct dentry *child);
3532 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3533 		     struct inode **new_inode);
3534 
3535 /*
3536  * dir.c
3537  */
3538 int f2fs_init_casefolded_name(const struct inode *dir,
3539 			      struct f2fs_filename *fname);
3540 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3541 			int lookup, struct f2fs_filename *fname);
3542 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3543 			struct f2fs_filename *fname);
3544 void f2fs_free_filename(struct f2fs_filename *fname);
3545 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3546 			const struct f2fs_filename *fname, int *max_slots);
3547 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3548 			unsigned int start_pos, struct fscrypt_str *fstr);
3549 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3550 			struct f2fs_dentry_ptr *d);
3551 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3552 			const struct f2fs_filename *fname, struct page *dpage);
3553 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3554 			unsigned int current_depth);
3555 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3556 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3557 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3558 					 const struct f2fs_filename *fname,
3559 					 struct page **res_page);
3560 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3561 			const struct qstr *child, struct page **res_page);
3562 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3563 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3564 			struct page **page);
3565 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3566 			struct page *page, struct inode *inode);
3567 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3568 			  const struct f2fs_filename *fname);
3569 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3570 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3571 			unsigned int bit_pos);
3572 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3573 			struct inode *inode, nid_t ino, umode_t mode);
3574 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3575 			struct inode *inode, nid_t ino, umode_t mode);
3576 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3577 			struct inode *inode, nid_t ino, umode_t mode);
3578 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3579 			struct inode *dir, struct inode *inode);
3580 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3581 					struct f2fs_filename *fname);
3582 bool f2fs_empty_dir(struct inode *dir);
3583 
3584 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3585 {
3586 	if (fscrypt_is_nokey_name(dentry))
3587 		return -ENOKEY;
3588 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3589 				inode, inode->i_ino, inode->i_mode);
3590 }
3591 
3592 /*
3593  * super.c
3594  */
3595 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3596 void f2fs_inode_synced(struct inode *inode);
3597 int f2fs_dquot_initialize(struct inode *inode);
3598 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3599 int f2fs_quota_sync(struct super_block *sb, int type);
3600 loff_t max_file_blocks(struct inode *inode);
3601 void f2fs_quota_off_umount(struct super_block *sb);
3602 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3603 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3604 							bool irq_context);
3605 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3606 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3607 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3608 int f2fs_sync_fs(struct super_block *sb, int sync);
3609 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3610 
3611 /*
3612  * hash.c
3613  */
3614 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3615 
3616 /*
3617  * node.c
3618  */
3619 struct node_info;
3620 
3621 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3622 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3623 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3624 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3625 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3626 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3627 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3628 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3629 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3630 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3631 				struct node_info *ni, bool checkpoint_context);
3632 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3633 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3634 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3635 int f2fs_truncate_xattr_node(struct inode *inode);
3636 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3637 					unsigned int seq_id);
3638 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3639 int f2fs_remove_inode_page(struct inode *inode);
3640 struct page *f2fs_new_inode_page(struct inode *inode);
3641 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3642 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3643 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3644 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3645 int f2fs_move_node_page(struct page *node_page, int gc_type);
3646 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3647 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3648 			struct writeback_control *wbc, bool atomic,
3649 			unsigned int *seq_id);
3650 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3651 			struct writeback_control *wbc,
3652 			bool do_balance, enum iostat_type io_type);
3653 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3654 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3655 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3656 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3657 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3658 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3659 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3660 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3661 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3662 			unsigned int segno, struct f2fs_summary_block *sum);
3663 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3664 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3665 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3666 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3667 int __init f2fs_create_node_manager_caches(void);
3668 void f2fs_destroy_node_manager_caches(void);
3669 
3670 /*
3671  * segment.c
3672  */
3673 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3674 int f2fs_commit_atomic_write(struct inode *inode);
3675 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3676 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3677 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3678 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3679 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3680 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3681 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3682 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3683 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3684 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3685 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3686 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3687 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3688 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3689 					struct cp_control *cpc);
3690 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3691 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3692 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3693 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3694 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3695 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3696 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3697 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3698 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3699 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3700 			unsigned int *newseg, bool new_sec, int dir);
3701 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3702 					unsigned int start, unsigned int end);
3703 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3704 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3705 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3706 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3707 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3708 					struct cp_control *cpc);
3709 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3710 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3711 					block_t blk_addr);
3712 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3713 						enum iostat_type io_type);
3714 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3715 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3716 			struct f2fs_io_info *fio);
3717 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3718 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3719 			block_t old_blkaddr, block_t new_blkaddr,
3720 			bool recover_curseg, bool recover_newaddr,
3721 			bool from_gc);
3722 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3723 			block_t old_addr, block_t new_addr,
3724 			unsigned char version, bool recover_curseg,
3725 			bool recover_newaddr);
3726 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3727 			block_t old_blkaddr, block_t *new_blkaddr,
3728 			struct f2fs_summary *sum, int type,
3729 			struct f2fs_io_info *fio);
3730 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3731 					block_t blkaddr, unsigned int blkcnt);
3732 void f2fs_wait_on_page_writeback(struct page *page,
3733 			enum page_type type, bool ordered, bool locked);
3734 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3735 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3736 								block_t len);
3737 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3738 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3739 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3740 			unsigned int val, int alloc);
3741 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3742 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3743 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3744 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3745 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3746 int __init f2fs_create_segment_manager_caches(void);
3747 void f2fs_destroy_segment_manager_caches(void);
3748 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3749 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3750 			unsigned int segno);
3751 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3752 			unsigned int segno);
3753 
3754 #define DEF_FRAGMENT_SIZE	4
3755 #define MIN_FRAGMENT_SIZE	1
3756 #define MAX_FRAGMENT_SIZE	512
3757 
3758 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3759 {
3760 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3761 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3762 }
3763 
3764 /*
3765  * checkpoint.c
3766  */
3767 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3768 							unsigned char reason);
3769 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3770 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3771 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3772 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3773 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3774 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3775 					block_t blkaddr, int type);
3776 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3777 			int type, bool sync);
3778 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3779 							unsigned int ra_blocks);
3780 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3781 			long nr_to_write, enum iostat_type io_type);
3782 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3783 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3784 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3785 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3786 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3787 					unsigned int devidx, int type);
3788 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3789 					unsigned int devidx, int type);
3790 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3791 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3792 void f2fs_add_orphan_inode(struct inode *inode);
3793 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3794 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3795 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3796 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3797 void f2fs_remove_dirty_inode(struct inode *inode);
3798 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3799 								bool from_cp);
3800 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3801 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3802 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3803 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3804 int __init f2fs_create_checkpoint_caches(void);
3805 void f2fs_destroy_checkpoint_caches(void);
3806 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3807 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3808 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3809 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3810 
3811 /*
3812  * data.c
3813  */
3814 int __init f2fs_init_bioset(void);
3815 void f2fs_destroy_bioset(void);
3816 bool f2fs_is_cp_guaranteed(struct page *page);
3817 int f2fs_init_bio_entry_cache(void);
3818 void f2fs_destroy_bio_entry_cache(void);
3819 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3820 			  enum page_type type);
3821 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3822 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3823 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3824 				struct inode *inode, struct page *page,
3825 				nid_t ino, enum page_type type);
3826 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3827 					struct bio **bio, struct page *page);
3828 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3829 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3830 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3831 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3832 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3833 		block_t blk_addr, sector_t *sector);
3834 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3835 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3836 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3837 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3838 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3839 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3840 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3841 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3842 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3843 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3844 							pgoff_t *next_pgofs);
3845 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3846 			bool for_write);
3847 struct page *f2fs_get_new_data_page(struct inode *inode,
3848 			struct page *ipage, pgoff_t index, bool new_i_size);
3849 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3850 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3851 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3852 			u64 start, u64 len);
3853 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3854 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3855 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3856 int f2fs_write_single_data_page(struct page *page, int *submitted,
3857 				struct bio **bio, sector_t *last_block,
3858 				struct writeback_control *wbc,
3859 				enum iostat_type io_type,
3860 				int compr_blocks, bool allow_balance);
3861 void f2fs_write_failed(struct inode *inode, loff_t to);
3862 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3863 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3864 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3865 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3866 int f2fs_init_post_read_processing(void);
3867 void f2fs_destroy_post_read_processing(void);
3868 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3869 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3870 extern const struct iomap_ops f2fs_iomap_ops;
3871 
3872 /*
3873  * gc.c
3874  */
3875 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3876 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3877 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3878 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3879 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3880 int f2fs_gc_range(struct f2fs_sb_info *sbi,
3881 		unsigned int start_seg, unsigned int end_seg,
3882 		bool dry_run, unsigned int dry_run_sections);
3883 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3884 int __init f2fs_create_garbage_collection_cache(void);
3885 void f2fs_destroy_garbage_collection_cache(void);
3886 /* victim selection function for cleaning and SSR */
3887 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3888 			int gc_type, int type, char alloc_mode,
3889 			unsigned long long age);
3890 
3891 /*
3892  * recovery.c
3893  */
3894 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3895 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3896 int __init f2fs_create_recovery_cache(void);
3897 void f2fs_destroy_recovery_cache(void);
3898 
3899 /*
3900  * debug.c
3901  */
3902 #ifdef CONFIG_F2FS_STAT_FS
3903 struct f2fs_stat_info {
3904 	struct list_head stat_list;
3905 	struct f2fs_sb_info *sbi;
3906 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3907 	int main_area_segs, main_area_sections, main_area_zones;
3908 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3909 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3910 	unsigned long long total_ext[NR_EXTENT_CACHES];
3911 	unsigned long long hit_total[NR_EXTENT_CACHES];
3912 	int ext_tree[NR_EXTENT_CACHES];
3913 	int zombie_tree[NR_EXTENT_CACHES];
3914 	int ext_node[NR_EXTENT_CACHES];
3915 	/* to count memory footprint */
3916 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3917 	/* for read extent cache */
3918 	unsigned long long hit_largest;
3919 	/* for block age extent cache */
3920 	unsigned long long allocated_data_blocks;
3921 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3922 	int ndirty_data, ndirty_qdata;
3923 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3924 	int nats, dirty_nats, sits, dirty_sits;
3925 	int free_nids, avail_nids, alloc_nids;
3926 	int total_count, utilization;
3927 	int nr_wb_cp_data, nr_wb_data;
3928 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3929 	int nr_dio_read, nr_dio_write;
3930 	unsigned int io_skip_bggc, other_skip_bggc;
3931 	int nr_flushing, nr_flushed, flush_list_empty;
3932 	int nr_discarding, nr_discarded;
3933 	int nr_discard_cmd;
3934 	unsigned int undiscard_blks;
3935 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3936 	unsigned int cur_ckpt_time, peak_ckpt_time;
3937 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3938 	int compr_inode, swapfile_inode;
3939 	unsigned long long compr_blocks;
3940 	int aw_cnt, max_aw_cnt;
3941 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3942 	unsigned int bimodal, avg_vblocks;
3943 	int util_free, util_valid, util_invalid;
3944 	int rsvd_segs, overp_segs;
3945 	int dirty_count, node_pages, meta_pages, compress_pages;
3946 	int compress_page_hit;
3947 	int prefree_count, free_segs, free_secs;
3948 	int cp_call_count[MAX_CALL_TYPE], cp_count;
3949 	int gc_call_count[MAX_CALL_TYPE];
3950 	int gc_segs[2][2];
3951 	int gc_secs[2][2];
3952 	int tot_blks, data_blks, node_blks;
3953 	int bg_data_blks, bg_node_blks;
3954 	int curseg[NR_CURSEG_TYPE];
3955 	int cursec[NR_CURSEG_TYPE];
3956 	int curzone[NR_CURSEG_TYPE];
3957 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3958 	unsigned int full_seg[NR_CURSEG_TYPE];
3959 	unsigned int valid_blks[NR_CURSEG_TYPE];
3960 
3961 	unsigned int meta_count[META_MAX];
3962 	unsigned int segment_count[2];
3963 	unsigned int block_count[2];
3964 	unsigned int inplace_count;
3965 	unsigned long long base_mem, cache_mem, page_mem;
3966 };
3967 
3968 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3969 {
3970 	return (struct f2fs_stat_info *)sbi->stat_info;
3971 }
3972 
3973 #define stat_inc_cp_call_count(sbi, foreground)				\
3974 		atomic_inc(&sbi->cp_call_count[(foreground)])
3975 #define stat_inc_cp_count(si)		(F2FS_STAT(sbi)->cp_count++)
3976 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3977 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3978 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3979 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3980 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3981 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3982 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3983 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3984 #define stat_inc_inline_xattr(inode)					\
3985 	do {								\
3986 		if (f2fs_has_inline_xattr(inode))			\
3987 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3988 	} while (0)
3989 #define stat_dec_inline_xattr(inode)					\
3990 	do {								\
3991 		if (f2fs_has_inline_xattr(inode))			\
3992 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3993 	} while (0)
3994 #define stat_inc_inline_inode(inode)					\
3995 	do {								\
3996 		if (f2fs_has_inline_data(inode))			\
3997 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3998 	} while (0)
3999 #define stat_dec_inline_inode(inode)					\
4000 	do {								\
4001 		if (f2fs_has_inline_data(inode))			\
4002 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
4003 	} while (0)
4004 #define stat_inc_inline_dir(inode)					\
4005 	do {								\
4006 		if (f2fs_has_inline_dentry(inode))			\
4007 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
4008 	} while (0)
4009 #define stat_dec_inline_dir(inode)					\
4010 	do {								\
4011 		if (f2fs_has_inline_dentry(inode))			\
4012 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4013 	} while (0)
4014 #define stat_inc_compr_inode(inode)					\
4015 	do {								\
4016 		if (f2fs_compressed_file(inode))			\
4017 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4018 	} while (0)
4019 #define stat_dec_compr_inode(inode)					\
4020 	do {								\
4021 		if (f2fs_compressed_file(inode))			\
4022 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4023 	} while (0)
4024 #define stat_add_compr_blocks(inode, blocks)				\
4025 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4026 #define stat_sub_compr_blocks(inode, blocks)				\
4027 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4028 #define stat_inc_swapfile_inode(inode)					\
4029 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4030 #define stat_dec_swapfile_inode(inode)					\
4031 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4032 #define stat_inc_atomic_inode(inode)					\
4033 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4034 #define stat_dec_atomic_inode(inode)					\
4035 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4036 #define stat_inc_meta_count(sbi, blkaddr)				\
4037 	do {								\
4038 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4039 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4040 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4041 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4042 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4043 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4044 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4045 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4046 	} while (0)
4047 #define stat_inc_seg_type(sbi, curseg)					\
4048 		((sbi)->segment_count[(curseg)->alloc_type]++)
4049 #define stat_inc_block_count(sbi, curseg)				\
4050 		((sbi)->block_count[(curseg)->alloc_type]++)
4051 #define stat_inc_inplace_blocks(sbi)					\
4052 		(atomic_inc(&(sbi)->inplace_count))
4053 #define stat_update_max_atomic_write(inode)				\
4054 	do {								\
4055 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4056 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4057 		if (cur > max)						\
4058 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4059 	} while (0)
4060 #define stat_inc_gc_call_count(sbi, foreground)				\
4061 		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4062 #define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4063 		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4064 #define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4065 		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4066 
4067 #define stat_inc_tot_blk_count(si, blks)				\
4068 	((si)->tot_blks += (blks))
4069 
4070 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4071 	do {								\
4072 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4073 		stat_inc_tot_blk_count(si, blks);			\
4074 		si->data_blks += (blks);				\
4075 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4076 	} while (0)
4077 
4078 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4079 	do {								\
4080 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4081 		stat_inc_tot_blk_count(si, blks);			\
4082 		si->node_blks += (blks);				\
4083 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4084 	} while (0)
4085 
4086 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4087 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4088 void __init f2fs_create_root_stats(void);
4089 void f2fs_destroy_root_stats(void);
4090 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4091 #else
4092 #define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4093 #define stat_inc_cp_count(sbi)				do { } while (0)
4094 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4095 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4096 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4097 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4098 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4099 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4100 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4101 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4102 #define stat_inc_inline_xattr(inode)			do { } while (0)
4103 #define stat_dec_inline_xattr(inode)			do { } while (0)
4104 #define stat_inc_inline_inode(inode)			do { } while (0)
4105 #define stat_dec_inline_inode(inode)			do { } while (0)
4106 #define stat_inc_inline_dir(inode)			do { } while (0)
4107 #define stat_dec_inline_dir(inode)			do { } while (0)
4108 #define stat_inc_compr_inode(inode)			do { } while (0)
4109 #define stat_dec_compr_inode(inode)			do { } while (0)
4110 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4111 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4112 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4113 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4114 #define stat_inc_atomic_inode(inode)			do { } while (0)
4115 #define stat_dec_atomic_inode(inode)			do { } while (0)
4116 #define stat_update_max_atomic_write(inode)		do { } while (0)
4117 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4118 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4119 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4120 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4121 #define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4122 #define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4123 #define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4124 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4125 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4126 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4127 
4128 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4129 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4130 static inline void __init f2fs_create_root_stats(void) { }
4131 static inline void f2fs_destroy_root_stats(void) { }
4132 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4133 #endif
4134 
4135 extern const struct file_operations f2fs_dir_operations;
4136 extern const struct file_operations f2fs_file_operations;
4137 extern const struct inode_operations f2fs_file_inode_operations;
4138 extern const struct address_space_operations f2fs_dblock_aops;
4139 extern const struct address_space_operations f2fs_node_aops;
4140 extern const struct address_space_operations f2fs_meta_aops;
4141 extern const struct inode_operations f2fs_dir_inode_operations;
4142 extern const struct inode_operations f2fs_symlink_inode_operations;
4143 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4144 extern const struct inode_operations f2fs_special_inode_operations;
4145 extern struct kmem_cache *f2fs_inode_entry_slab;
4146 
4147 /*
4148  * inline.c
4149  */
4150 bool f2fs_may_inline_data(struct inode *inode);
4151 bool f2fs_sanity_check_inline_data(struct inode *inode);
4152 bool f2fs_may_inline_dentry(struct inode *inode);
4153 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4154 void f2fs_truncate_inline_inode(struct inode *inode,
4155 						struct page *ipage, u64 from);
4156 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4157 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4158 int f2fs_convert_inline_inode(struct inode *inode);
4159 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4160 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4161 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4162 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4163 					const struct f2fs_filename *fname,
4164 					struct page **res_page);
4165 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4166 			struct page *ipage);
4167 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4168 			struct inode *inode, nid_t ino, umode_t mode);
4169 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4170 				struct page *page, struct inode *dir,
4171 				struct inode *inode);
4172 bool f2fs_empty_inline_dir(struct inode *dir);
4173 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4174 			struct fscrypt_str *fstr);
4175 int f2fs_inline_data_fiemap(struct inode *inode,
4176 			struct fiemap_extent_info *fieinfo,
4177 			__u64 start, __u64 len);
4178 
4179 /*
4180  * shrinker.c
4181  */
4182 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4183 			struct shrink_control *sc);
4184 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4185 			struct shrink_control *sc);
4186 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4187 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4188 
4189 /*
4190  * extent_cache.c
4191  */
4192 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4193 void f2fs_init_extent_tree(struct inode *inode);
4194 void f2fs_drop_extent_tree(struct inode *inode);
4195 void f2fs_destroy_extent_node(struct inode *inode);
4196 void f2fs_destroy_extent_tree(struct inode *inode);
4197 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4198 int __init f2fs_create_extent_cache(void);
4199 void f2fs_destroy_extent_cache(void);
4200 
4201 /* read extent cache ops */
4202 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4203 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4204 			struct extent_info *ei);
4205 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4206 			block_t *blkaddr);
4207 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4208 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4209 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4210 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4211 			int nr_shrink);
4212 
4213 /* block age extent cache ops */
4214 void f2fs_init_age_extent_tree(struct inode *inode);
4215 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4216 			struct extent_info *ei);
4217 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4218 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4219 			pgoff_t fofs, unsigned int len);
4220 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4221 			int nr_shrink);
4222 
4223 /*
4224  * sysfs.c
4225  */
4226 #define MIN_RA_MUL	2
4227 #define MAX_RA_MUL	256
4228 
4229 int __init f2fs_init_sysfs(void);
4230 void f2fs_exit_sysfs(void);
4231 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4232 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4233 
4234 /* verity.c */
4235 extern const struct fsverity_operations f2fs_verityops;
4236 
4237 /*
4238  * crypto support
4239  */
4240 static inline bool f2fs_encrypted_file(struct inode *inode)
4241 {
4242 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4243 }
4244 
4245 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4246 {
4247 #ifdef CONFIG_FS_ENCRYPTION
4248 	file_set_encrypt(inode);
4249 	f2fs_set_inode_flags(inode);
4250 #endif
4251 }
4252 
4253 /*
4254  * Returns true if the reads of the inode's data need to undergo some
4255  * postprocessing step, like decryption or authenticity verification.
4256  */
4257 static inline bool f2fs_post_read_required(struct inode *inode)
4258 {
4259 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4260 		f2fs_compressed_file(inode);
4261 }
4262 
4263 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4264 {
4265 	return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4266 }
4267 
4268 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4269 {
4270 	return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4271 }
4272 
4273 /*
4274  * compress.c
4275  */
4276 #ifdef CONFIG_F2FS_FS_COMPRESSION
4277 bool f2fs_is_compressed_page(struct page *page);
4278 struct page *f2fs_compress_control_page(struct page *page);
4279 int f2fs_prepare_compress_overwrite(struct inode *inode,
4280 			struct page **pagep, pgoff_t index, void **fsdata);
4281 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4282 					pgoff_t index, unsigned copied);
4283 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4284 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4285 bool f2fs_is_compress_backend_ready(struct inode *inode);
4286 bool f2fs_is_compress_level_valid(int alg, int lvl);
4287 int __init f2fs_init_compress_mempool(void);
4288 void f2fs_destroy_compress_mempool(void);
4289 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4290 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4291 				block_t blkaddr, bool in_task);
4292 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4293 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4294 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4295 				int index, int nr_pages, bool uptodate);
4296 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4297 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4298 int f2fs_write_multi_pages(struct compress_ctx *cc,
4299 						int *submitted,
4300 						struct writeback_control *wbc,
4301 						enum iostat_type io_type);
4302 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4303 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4304 				pgoff_t fofs, block_t blkaddr,
4305 				unsigned int llen, unsigned int c_len);
4306 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4307 				unsigned nr_pages, sector_t *last_block_in_bio,
4308 				bool is_readahead, bool for_write);
4309 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4310 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4311 				bool in_task);
4312 void f2fs_put_page_dic(struct page *page, bool in_task);
4313 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4314 						unsigned int ofs_in_node);
4315 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4316 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4317 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4318 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4319 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4320 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4321 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4322 int __init f2fs_init_compress_cache(void);
4323 void f2fs_destroy_compress_cache(void);
4324 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4325 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4326 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4327 						nid_t ino, block_t blkaddr);
4328 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4329 								block_t blkaddr);
4330 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4331 #define inc_compr_inode_stat(inode)					\
4332 	do {								\
4333 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4334 		sbi->compr_new_inode++;					\
4335 	} while (0)
4336 #define add_compr_block_stat(inode, blocks)				\
4337 	do {								\
4338 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4339 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4340 		sbi->compr_written_block += blocks;			\
4341 		sbi->compr_saved_block += diff;				\
4342 	} while (0)
4343 #else
4344 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4345 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4346 {
4347 	if (!f2fs_compressed_file(inode))
4348 		return true;
4349 	/* not support compression */
4350 	return false;
4351 }
4352 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
4353 static inline struct page *f2fs_compress_control_page(struct page *page)
4354 {
4355 	WARN_ON_ONCE(1);
4356 	return ERR_PTR(-EINVAL);
4357 }
4358 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4359 static inline void f2fs_destroy_compress_mempool(void) { }
4360 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4361 				bool in_task) { }
4362 static inline void f2fs_end_read_compressed_page(struct page *page,
4363 				bool failed, block_t blkaddr, bool in_task)
4364 {
4365 	WARN_ON_ONCE(1);
4366 }
4367 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4368 {
4369 	WARN_ON_ONCE(1);
4370 }
4371 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4372 			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
4373 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4374 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4375 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4376 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4377 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4378 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4379 static inline void f2fs_destroy_compress_cache(void) { }
4380 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4381 				block_t blkaddr) { }
4382 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4383 				struct page *page, nid_t ino, block_t blkaddr) { }
4384 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4385 				struct page *page, block_t blkaddr) { return false; }
4386 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4387 							nid_t ino) { }
4388 #define inc_compr_inode_stat(inode)		do { } while (0)
4389 static inline void f2fs_update_read_extent_tree_range_compressed(
4390 				struct inode *inode,
4391 				pgoff_t fofs, block_t blkaddr,
4392 				unsigned int llen, unsigned int c_len) { }
4393 #endif
4394 
4395 static inline int set_compress_context(struct inode *inode)
4396 {
4397 #ifdef CONFIG_F2FS_FS_COMPRESSION
4398 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4399 
4400 	F2FS_I(inode)->i_compress_algorithm =
4401 			F2FS_OPTION(sbi).compress_algorithm;
4402 	F2FS_I(inode)->i_log_cluster_size =
4403 			F2FS_OPTION(sbi).compress_log_size;
4404 	F2FS_I(inode)->i_compress_flag =
4405 			F2FS_OPTION(sbi).compress_chksum ?
4406 				BIT(COMPRESS_CHKSUM) : 0;
4407 	F2FS_I(inode)->i_cluster_size =
4408 			BIT(F2FS_I(inode)->i_log_cluster_size);
4409 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4410 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4411 			F2FS_OPTION(sbi).compress_level)
4412 		F2FS_I(inode)->i_compress_level =
4413 				F2FS_OPTION(sbi).compress_level;
4414 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4415 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4416 	stat_inc_compr_inode(inode);
4417 	inc_compr_inode_stat(inode);
4418 	f2fs_mark_inode_dirty_sync(inode, true);
4419 	return 0;
4420 #else
4421 	return -EOPNOTSUPP;
4422 #endif
4423 }
4424 
4425 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4426 {
4427 	struct f2fs_inode_info *fi = F2FS_I(inode);
4428 
4429 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4430 
4431 	if (!f2fs_compressed_file(inode)) {
4432 		f2fs_up_write(&F2FS_I(inode)->i_sem);
4433 		return true;
4434 	}
4435 	if (f2fs_is_mmap_file(inode) ||
4436 		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4437 		f2fs_up_write(&F2FS_I(inode)->i_sem);
4438 		return false;
4439 	}
4440 
4441 	fi->i_flags &= ~F2FS_COMPR_FL;
4442 	stat_dec_compr_inode(inode);
4443 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4444 	f2fs_mark_inode_dirty_sync(inode, true);
4445 
4446 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4447 	return true;
4448 }
4449 
4450 #define F2FS_FEATURE_FUNCS(name, flagname) \
4451 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4452 { \
4453 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4454 }
4455 
4456 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4457 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4458 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4459 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4460 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4461 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4462 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4463 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4464 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4465 F2FS_FEATURE_FUNCS(verity, VERITY);
4466 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4467 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4468 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4469 F2FS_FEATURE_FUNCS(readonly, RO);
4470 
4471 #ifdef CONFIG_BLK_DEV_ZONED
4472 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4473 				    block_t blkaddr)
4474 {
4475 	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4476 
4477 	return test_bit(zno, FDEV(devi).blkz_seq);
4478 }
4479 #endif
4480 
4481 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4482 				  struct block_device *bdev)
4483 {
4484 	int i;
4485 
4486 	if (!f2fs_is_multi_device(sbi))
4487 		return 0;
4488 
4489 	for (i = 0; i < sbi->s_ndevs; i++)
4490 		if (FDEV(i).bdev == bdev)
4491 			return i;
4492 
4493 	WARN_ON(1);
4494 	return -1;
4495 }
4496 
4497 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4498 {
4499 	return f2fs_sb_has_blkzoned(sbi);
4500 }
4501 
4502 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4503 {
4504 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4505 }
4506 
4507 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4508 {
4509 	int i;
4510 
4511 	if (!f2fs_is_multi_device(sbi))
4512 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4513 
4514 	for (i = 0; i < sbi->s_ndevs; i++)
4515 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4516 			return true;
4517 	return false;
4518 }
4519 
4520 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4521 {
4522 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4523 					f2fs_hw_should_discard(sbi);
4524 }
4525 
4526 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4527 {
4528 	int i;
4529 
4530 	if (!f2fs_is_multi_device(sbi))
4531 		return bdev_read_only(sbi->sb->s_bdev);
4532 
4533 	for (i = 0; i < sbi->s_ndevs; i++)
4534 		if (bdev_read_only(FDEV(i).bdev))
4535 			return true;
4536 	return false;
4537 }
4538 
4539 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4540 {
4541 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4542 }
4543 
4544 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4545 {
4546 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4547 }
4548 
4549 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4550 					  block_t blkaddr)
4551 {
4552 	if (f2fs_sb_has_blkzoned(sbi)) {
4553 		int devi = f2fs_target_device_index(sbi, blkaddr);
4554 
4555 		return !bdev_is_zoned(FDEV(devi).bdev);
4556 	}
4557 	return true;
4558 }
4559 
4560 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4561 {
4562 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4563 }
4564 
4565 static inline bool f2fs_may_compress(struct inode *inode)
4566 {
4567 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4568 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4569 		f2fs_is_mmap_file(inode))
4570 		return false;
4571 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4572 }
4573 
4574 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4575 						u64 blocks, bool add)
4576 {
4577 	struct f2fs_inode_info *fi = F2FS_I(inode);
4578 	int diff = fi->i_cluster_size - blocks;
4579 
4580 	/* don't update i_compr_blocks if saved blocks were released */
4581 	if (!add && !atomic_read(&fi->i_compr_blocks))
4582 		return;
4583 
4584 	if (add) {
4585 		atomic_add(diff, &fi->i_compr_blocks);
4586 		stat_add_compr_blocks(inode, diff);
4587 	} else {
4588 		atomic_sub(diff, &fi->i_compr_blocks);
4589 		stat_sub_compr_blocks(inode, diff);
4590 	}
4591 	f2fs_mark_inode_dirty_sync(inode, true);
4592 }
4593 
4594 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4595 								int flag)
4596 {
4597 	if (!f2fs_is_multi_device(sbi))
4598 		return false;
4599 	if (flag != F2FS_GET_BLOCK_DIO)
4600 		return false;
4601 	return sbi->aligned_blksize;
4602 }
4603 
4604 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4605 {
4606 	return fsverity_active(inode) &&
4607 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4608 }
4609 
4610 #ifdef CONFIG_F2FS_FAULT_INJECTION
4611 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4612 							unsigned long type);
4613 #else
4614 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4615 					unsigned long rate, unsigned long type)
4616 {
4617 	return 0;
4618 }
4619 #endif
4620 
4621 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4622 {
4623 #ifdef CONFIG_QUOTA
4624 	if (f2fs_sb_has_quota_ino(sbi))
4625 		return true;
4626 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4627 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4628 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4629 		return true;
4630 #endif
4631 	return false;
4632 }
4633 
4634 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4635 {
4636 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4637 }
4638 
4639 static inline void f2fs_io_schedule_timeout(long timeout)
4640 {
4641 	set_current_state(TASK_UNINTERRUPTIBLE);
4642 	io_schedule_timeout(timeout);
4643 }
4644 
4645 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4646 					enum page_type type)
4647 {
4648 	if (unlikely(f2fs_cp_error(sbi)))
4649 		return;
4650 
4651 	if (ofs == sbi->page_eio_ofs[type]) {
4652 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4653 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4654 	} else {
4655 		sbi->page_eio_ofs[type] = ofs;
4656 		sbi->page_eio_cnt[type] = 0;
4657 	}
4658 }
4659 
4660 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4661 {
4662 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4663 }
4664 
4665 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4666 					block_t blkaddr, unsigned int cnt)
4667 {
4668 	bool need_submit = false;
4669 	int i = 0;
4670 
4671 	do {
4672 		struct page *page;
4673 
4674 		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4675 		if (page) {
4676 			if (PageWriteback(page))
4677 				need_submit = true;
4678 			f2fs_put_page(page, 0);
4679 		}
4680 	} while (++i < cnt && !need_submit);
4681 
4682 	if (need_submit)
4683 		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4684 							NULL, 0, DATA);
4685 
4686 	truncate_inode_pages_range(META_MAPPING(sbi),
4687 			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4688 			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4689 }
4690 
4691 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4692 								block_t blkaddr)
4693 {
4694 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4695 	f2fs_invalidate_compress_page(sbi, blkaddr);
4696 }
4697 
4698 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4699 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4700 
4701 #endif /* _LINUX_F2FS_H */
4702