xref: /openbmc/linux/fs/f2fs/extent_cache.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * f2fs extent cache support
3  *
4  * Copyright (c) 2015 Motorola Mobility
5  * Copyright (c) 2015 Samsung Electronics
6  * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
7  *          Chao Yu <chao2.yu@samsung.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/f2fs_fs.h>
16 
17 #include "f2fs.h"
18 #include "node.h"
19 #include <trace/events/f2fs.h>
20 
21 static struct kmem_cache *extent_tree_slab;
22 static struct kmem_cache *extent_node_slab;
23 
24 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
25 				struct extent_tree *et, struct extent_info *ei,
26 				struct rb_node *parent, struct rb_node **p)
27 {
28 	struct extent_node *en;
29 
30 	en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
31 	if (!en)
32 		return NULL;
33 
34 	en->ei = *ei;
35 	INIT_LIST_HEAD(&en->list);
36 
37 	rb_link_node(&en->rb_node, parent, p);
38 	rb_insert_color(&en->rb_node, &et->root);
39 	et->count++;
40 	atomic_inc(&sbi->total_ext_node);
41 	return en;
42 }
43 
44 static void __detach_extent_node(struct f2fs_sb_info *sbi,
45 				struct extent_tree *et, struct extent_node *en)
46 {
47 	rb_erase(&en->rb_node, &et->root);
48 	et->count--;
49 	atomic_dec(&sbi->total_ext_node);
50 
51 	if (et->cached_en == en)
52 		et->cached_en = NULL;
53 }
54 
55 static struct extent_tree *__grab_extent_tree(struct inode *inode)
56 {
57 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
58 	struct extent_tree *et;
59 	nid_t ino = inode->i_ino;
60 
61 	down_write(&sbi->extent_tree_lock);
62 	et = radix_tree_lookup(&sbi->extent_tree_root, ino);
63 	if (!et) {
64 		et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
65 		f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
66 		memset(et, 0, sizeof(struct extent_tree));
67 		et->ino = ino;
68 		et->root = RB_ROOT;
69 		et->cached_en = NULL;
70 		rwlock_init(&et->lock);
71 		atomic_set(&et->refcount, 0);
72 		et->count = 0;
73 		sbi->total_ext_tree++;
74 	}
75 	atomic_inc(&et->refcount);
76 	up_write(&sbi->extent_tree_lock);
77 
78 	/* never died until evict_inode */
79 	F2FS_I(inode)->extent_tree = et;
80 
81 	return et;
82 }
83 
84 static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
85 				struct extent_tree *et, unsigned int fofs)
86 {
87 	struct rb_node *node = et->root.rb_node;
88 	struct extent_node *en = et->cached_en;
89 
90 	if (en) {
91 		struct extent_info *cei = &en->ei;
92 
93 		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
94 			stat_inc_cached_node_hit(sbi);
95 			return en;
96 		}
97 	}
98 
99 	while (node) {
100 		en = rb_entry(node, struct extent_node, rb_node);
101 
102 		if (fofs < en->ei.fofs) {
103 			node = node->rb_left;
104 		} else if (fofs >= en->ei.fofs + en->ei.len) {
105 			node = node->rb_right;
106 		} else {
107 			stat_inc_rbtree_node_hit(sbi);
108 			return en;
109 		}
110 	}
111 	return NULL;
112 }
113 
114 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
115 				struct extent_tree *et, struct extent_info *ei)
116 {
117 	struct rb_node **p = &et->root.rb_node;
118 	struct extent_node *en;
119 
120 	en = __attach_extent_node(sbi, et, ei, NULL, p);
121 	if (!en)
122 		return NULL;
123 
124 	et->largest = en->ei;
125 	et->cached_en = en;
126 	return en;
127 }
128 
129 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
130 					struct extent_tree *et, bool free_all)
131 {
132 	struct rb_node *node, *next;
133 	struct extent_node *en;
134 	unsigned int count = et->count;
135 
136 	node = rb_first(&et->root);
137 	while (node) {
138 		next = rb_next(node);
139 		en = rb_entry(node, struct extent_node, rb_node);
140 
141 		if (free_all) {
142 			spin_lock(&sbi->extent_lock);
143 			if (!list_empty(&en->list))
144 				list_del_init(&en->list);
145 			spin_unlock(&sbi->extent_lock);
146 		}
147 
148 		if (free_all || list_empty(&en->list)) {
149 			__detach_extent_node(sbi, et, en);
150 			kmem_cache_free(extent_node_slab, en);
151 		}
152 		node = next;
153 	}
154 
155 	return count - et->count;
156 }
157 
158 static void __drop_largest_extent(struct inode *inode, pgoff_t fofs)
159 {
160 	struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
161 
162 	if (largest->fofs <= fofs && largest->fofs + largest->len > fofs)
163 		largest->len = 0;
164 }
165 
166 void f2fs_drop_largest_extent(struct inode *inode, pgoff_t fofs)
167 {
168 	if (!f2fs_may_extent_tree(inode))
169 		return;
170 
171 	__drop_largest_extent(inode, fofs);
172 }
173 
174 void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
175 {
176 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
177 	struct extent_tree *et;
178 	struct extent_node *en;
179 	struct extent_info ei;
180 
181 	if (!f2fs_may_extent_tree(inode))
182 		return;
183 
184 	et = __grab_extent_tree(inode);
185 
186 	if (!i_ext || le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
187 		return;
188 
189 	set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
190 		le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
191 
192 	write_lock(&et->lock);
193 	if (et->count)
194 		goto out;
195 
196 	en = __init_extent_tree(sbi, et, &ei);
197 	if (en) {
198 		spin_lock(&sbi->extent_lock);
199 		list_add_tail(&en->list, &sbi->extent_list);
200 		spin_unlock(&sbi->extent_lock);
201 	}
202 out:
203 	write_unlock(&et->lock);
204 }
205 
206 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
207 							struct extent_info *ei)
208 {
209 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
210 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
211 	struct extent_node *en;
212 	bool ret = false;
213 
214 	f2fs_bug_on(sbi, !et);
215 
216 	trace_f2fs_lookup_extent_tree_start(inode, pgofs);
217 
218 	read_lock(&et->lock);
219 
220 	if (et->largest.fofs <= pgofs &&
221 			et->largest.fofs + et->largest.len > pgofs) {
222 		*ei = et->largest;
223 		ret = true;
224 		stat_inc_largest_node_hit(sbi);
225 		goto out;
226 	}
227 
228 	en = __lookup_extent_tree(sbi, et, pgofs);
229 	if (en) {
230 		*ei = en->ei;
231 		spin_lock(&sbi->extent_lock);
232 		if (!list_empty(&en->list))
233 			list_move_tail(&en->list, &sbi->extent_list);
234 		et->cached_en = en;
235 		spin_unlock(&sbi->extent_lock);
236 		ret = true;
237 	}
238 out:
239 	stat_inc_total_hit(sbi);
240 	read_unlock(&et->lock);
241 
242 	trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
243 	return ret;
244 }
245 
246 
247 /*
248  * lookup extent at @fofs, if hit, return the extent
249  * if not, return NULL and
250  * @prev_ex: extent before fofs
251  * @next_ex: extent after fofs
252  * @insert_p: insert point for new extent at fofs
253  * in order to simpfy the insertion after.
254  * tree must stay unchanged between lookup and insertion.
255  */
256 static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
257 				unsigned int fofs,
258 				struct extent_node **prev_ex,
259 				struct extent_node **next_ex,
260 				struct rb_node ***insert_p,
261 				struct rb_node **insert_parent)
262 {
263 	struct rb_node **pnode = &et->root.rb_node;
264 	struct rb_node *parent = NULL, *tmp_node;
265 	struct extent_node *en = et->cached_en;
266 
267 	*insert_p = NULL;
268 	*insert_parent = NULL;
269 	*prev_ex = NULL;
270 	*next_ex = NULL;
271 
272 	if (RB_EMPTY_ROOT(&et->root))
273 		return NULL;
274 
275 	if (en) {
276 		struct extent_info *cei = &en->ei;
277 
278 		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
279 			goto lookup_neighbors;
280 	}
281 
282 	while (*pnode) {
283 		parent = *pnode;
284 		en = rb_entry(*pnode, struct extent_node, rb_node);
285 
286 		if (fofs < en->ei.fofs)
287 			pnode = &(*pnode)->rb_left;
288 		else if (fofs >= en->ei.fofs + en->ei.len)
289 			pnode = &(*pnode)->rb_right;
290 		else
291 			goto lookup_neighbors;
292 	}
293 
294 	*insert_p = pnode;
295 	*insert_parent = parent;
296 
297 	en = rb_entry(parent, struct extent_node, rb_node);
298 	tmp_node = parent;
299 	if (parent && fofs > en->ei.fofs)
300 		tmp_node = rb_next(parent);
301 	*next_ex = tmp_node ?
302 		rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
303 
304 	tmp_node = parent;
305 	if (parent && fofs < en->ei.fofs)
306 		tmp_node = rb_prev(parent);
307 	*prev_ex = tmp_node ?
308 		rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
309 	return NULL;
310 
311 lookup_neighbors:
312 	if (fofs == en->ei.fofs) {
313 		/* lookup prev node for merging backward later */
314 		tmp_node = rb_prev(&en->rb_node);
315 		*prev_ex = tmp_node ?
316 			rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
317 	}
318 	if (fofs == en->ei.fofs + en->ei.len - 1) {
319 		/* lookup next node for merging frontward later */
320 		tmp_node = rb_next(&en->rb_node);
321 		*next_ex = tmp_node ?
322 			rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
323 	}
324 	return en;
325 }
326 
327 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
328 				struct extent_tree *et, struct extent_info *ei,
329 				struct extent_node **den,
330 				struct extent_node *prev_ex,
331 				struct extent_node *next_ex)
332 {
333 	struct extent_node *en = NULL;
334 
335 	if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
336 		prev_ex->ei.len += ei->len;
337 		ei = &prev_ex->ei;
338 		en = prev_ex;
339 	}
340 
341 	if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
342 		if (en) {
343 			__detach_extent_node(sbi, et, prev_ex);
344 			*den = prev_ex;
345 		}
346 		next_ex->ei.fofs = ei->fofs;
347 		next_ex->ei.blk = ei->blk;
348 		next_ex->ei.len += ei->len;
349 		en = next_ex;
350 	}
351 
352 	if (en) {
353 		if (en->ei.len > et->largest.len)
354 			et->largest = en->ei;
355 		et->cached_en = en;
356 	}
357 	return en;
358 }
359 
360 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
361 				struct extent_tree *et, struct extent_info *ei,
362 				struct rb_node **insert_p,
363 				struct rb_node *insert_parent)
364 {
365 	struct rb_node **p = &et->root.rb_node;
366 	struct rb_node *parent = NULL;
367 	struct extent_node *en = NULL;
368 
369 	if (insert_p && insert_parent) {
370 		parent = insert_parent;
371 		p = insert_p;
372 		goto do_insert;
373 	}
374 
375 	while (*p) {
376 		parent = *p;
377 		en = rb_entry(parent, struct extent_node, rb_node);
378 
379 		if (ei->fofs < en->ei.fofs)
380 			p = &(*p)->rb_left;
381 		else if (ei->fofs >= en->ei.fofs + en->ei.len)
382 			p = &(*p)->rb_right;
383 		else
384 			f2fs_bug_on(sbi, 1);
385 	}
386 do_insert:
387 	en = __attach_extent_node(sbi, et, ei, parent, p);
388 	if (!en)
389 		return NULL;
390 
391 	if (en->ei.len > et->largest.len)
392 		et->largest = en->ei;
393 	et->cached_en = en;
394 	return en;
395 }
396 
397 unsigned int f2fs_update_extent_tree_range(struct inode *inode,
398 				pgoff_t fofs, block_t blkaddr, unsigned int len)
399 {
400 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
401 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
402 	struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
403 	struct extent_node *prev_en = NULL, *next_en = NULL;
404 	struct extent_info ei, dei, prev;
405 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
406 	unsigned int end = fofs + len;
407 	unsigned int pos = (unsigned int)fofs;
408 
409 	if (!et)
410 		return false;
411 
412 	write_lock(&et->lock);
413 
414 	if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
415 		write_unlock(&et->lock);
416 		return false;
417 	}
418 
419 	prev = et->largest;
420 	dei.len = 0;
421 
422 	/* we do not guarantee that the largest extent is cached all the time */
423 	__drop_largest_extent(inode, fofs);
424 
425 	/* 1. lookup first extent node in range [fofs, fofs + len - 1] */
426 	en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
427 					&insert_p, &insert_parent);
428 	if (!en) {
429 		if (next_en) {
430 			en = next_en;
431 			f2fs_bug_on(sbi, en->ei.fofs <= pos);
432 			pos = en->ei.fofs;
433 		} else {
434 			/*
435 			 * skip searching in the tree since there is no
436 			 * larger extent node in the cache.
437 			 */
438 			goto update_extent;
439 		}
440 	}
441 
442 	/* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
443 	while (en) {
444 		struct rb_node *node;
445 
446 		if (pos >= end)
447 			break;
448 
449 		dei = en->ei;
450 		en1 = en2 = NULL;
451 
452 		node = rb_next(&en->rb_node);
453 
454 		/*
455 		 * 2.1 there are four cases when we invalidate blkaddr in extent
456 		 * node, |V: valid address, X: will be invalidated|
457 		 */
458 		/* case#1, invalidate right part of extent node |VVVVVXXXXX| */
459 		if (pos > dei.fofs && end >= dei.fofs + dei.len) {
460 			en->ei.len = pos - dei.fofs;
461 
462 			if (en->ei.len < F2FS_MIN_EXTENT_LEN) {
463 				__detach_extent_node(sbi, et, en);
464 				insert_p = NULL;
465 				insert_parent = NULL;
466 				goto update;
467 			}
468 
469 			if (__is_extent_same(&dei, &et->largest))
470 				et->largest = en->ei;
471 			goto next;
472 		}
473 
474 		/* case#2, invalidate left part of extent node |XXXXXVVVVV| */
475 		if (pos <= dei.fofs && end < dei.fofs + dei.len) {
476 			en->ei.fofs = end;
477 			en->ei.blk += end - dei.fofs;
478 			en->ei.len -= end - dei.fofs;
479 
480 			if (en->ei.len < F2FS_MIN_EXTENT_LEN) {
481 				__detach_extent_node(sbi, et, en);
482 				insert_p = NULL;
483 				insert_parent = NULL;
484 				goto update;
485 			}
486 
487 			if (__is_extent_same(&dei, &et->largest))
488 				et->largest = en->ei;
489 			goto next;
490 		}
491 
492 		__detach_extent_node(sbi, et, en);
493 
494 		/*
495 		 * if we remove node in rb-tree, our parent node pointer may
496 		 * point the wrong place, discard them.
497 		 */
498 		insert_p = NULL;
499 		insert_parent = NULL;
500 
501 		/* case#3, invalidate entire extent node |XXXXXXXXXX| */
502 		if (pos <= dei.fofs && end >= dei.fofs + dei.len) {
503 			if (__is_extent_same(&dei, &et->largest))
504 				et->largest.len = 0;
505 			goto update;
506 		}
507 
508 		/*
509 		 * case#4, invalidate data in the middle of extent node
510 		 * |VVVXXXXVVV|
511 		 */
512 		if (dei.len > F2FS_MIN_EXTENT_LEN) {
513 			unsigned int endofs;
514 
515 			/*  insert left part of split extent into cache */
516 			if (pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
517 				set_extent_info(&ei, dei.fofs, dei.blk,
518 							pos - dei.fofs);
519 				en1 = __insert_extent_tree(sbi, et, &ei,
520 								NULL, NULL);
521 			}
522 
523 			/* insert right part of split extent into cache */
524 			endofs = dei.fofs + dei.len;
525 			if (endofs - end >= F2FS_MIN_EXTENT_LEN) {
526 				set_extent_info(&ei, end,
527 						end - dei.fofs + dei.blk,
528 						endofs - end);
529 				en2 = __insert_extent_tree(sbi, et, &ei,
530 								NULL, NULL);
531 			}
532 		}
533 update:
534 		/* 2.2 update in global extent list */
535 		spin_lock(&sbi->extent_lock);
536 		if (en && !list_empty(&en->list))
537 			list_del(&en->list);
538 		if (en1)
539 			list_add_tail(&en1->list, &sbi->extent_list);
540 		if (en2)
541 			list_add_tail(&en2->list, &sbi->extent_list);
542 		spin_unlock(&sbi->extent_lock);
543 
544 		/* 2.3 release extent node */
545 		if (en)
546 			kmem_cache_free(extent_node_slab, en);
547 next:
548 		en = node ? rb_entry(node, struct extent_node, rb_node) : NULL;
549 		next_en = en;
550 		if (en)
551 			pos = en->ei.fofs;
552 	}
553 
554 update_extent:
555 	/* 3. update extent in extent cache */
556 	if (blkaddr) {
557 		struct extent_node *den = NULL;
558 
559 		set_extent_info(&ei, fofs, blkaddr, len);
560 		en3 = __try_merge_extent_node(sbi, et, &ei, &den,
561 							prev_en, next_en);
562 		if (!en3)
563 			en3 = __insert_extent_tree(sbi, et, &ei,
564 						insert_p, insert_parent);
565 
566 		/* give up extent_cache, if split and small updates happen */
567 		if (dei.len >= 1 &&
568 				prev.len < F2FS_MIN_EXTENT_LEN &&
569 				et->largest.len < F2FS_MIN_EXTENT_LEN) {
570 			et->largest.len = 0;
571 			set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
572 		}
573 
574 		spin_lock(&sbi->extent_lock);
575 		if (en3) {
576 			if (list_empty(&en3->list))
577 				list_add_tail(&en3->list, &sbi->extent_list);
578 			else
579 				list_move_tail(&en3->list, &sbi->extent_list);
580 		}
581 		if (den && !list_empty(&den->list))
582 			list_del(&den->list);
583 		spin_unlock(&sbi->extent_lock);
584 
585 		if (den)
586 			kmem_cache_free(extent_node_slab, den);
587 	}
588 
589 	if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
590 		__free_extent_tree(sbi, et, true);
591 
592 	write_unlock(&et->lock);
593 
594 	return !__is_extent_same(&prev, &et->largest);
595 }
596 
597 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
598 {
599 	struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
600 	struct extent_node *en, *tmp;
601 	unsigned long ino = F2FS_ROOT_INO(sbi);
602 	struct radix_tree_root *root = &sbi->extent_tree_root;
603 	unsigned int found;
604 	unsigned int node_cnt = 0, tree_cnt = 0;
605 	int remained;
606 
607 	if (!test_opt(sbi, EXTENT_CACHE))
608 		return 0;
609 
610 	if (!down_write_trylock(&sbi->extent_tree_lock))
611 		goto out;
612 
613 	/* 1. remove unreferenced extent tree */
614 	while ((found = radix_tree_gang_lookup(root,
615 				(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
616 		unsigned i;
617 
618 		ino = treevec[found - 1]->ino + 1;
619 		for (i = 0; i < found; i++) {
620 			struct extent_tree *et = treevec[i];
621 
622 			if (!atomic_read(&et->refcount)) {
623 				write_lock(&et->lock);
624 				node_cnt += __free_extent_tree(sbi, et, true);
625 				write_unlock(&et->lock);
626 
627 				radix_tree_delete(root, et->ino);
628 				kmem_cache_free(extent_tree_slab, et);
629 				sbi->total_ext_tree--;
630 				tree_cnt++;
631 
632 				if (node_cnt + tree_cnt >= nr_shrink)
633 					goto unlock_out;
634 			}
635 		}
636 	}
637 	up_write(&sbi->extent_tree_lock);
638 
639 	/* 2. remove LRU extent entries */
640 	if (!down_write_trylock(&sbi->extent_tree_lock))
641 		goto out;
642 
643 	remained = nr_shrink - (node_cnt + tree_cnt);
644 
645 	spin_lock(&sbi->extent_lock);
646 	list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
647 		if (!remained--)
648 			break;
649 		list_del_init(&en->list);
650 	}
651 	spin_unlock(&sbi->extent_lock);
652 
653 	while ((found = radix_tree_gang_lookup(root,
654 				(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
655 		unsigned i;
656 
657 		ino = treevec[found - 1]->ino + 1;
658 		for (i = 0; i < found; i++) {
659 			struct extent_tree *et = treevec[i];
660 
661 			write_lock(&et->lock);
662 			node_cnt += __free_extent_tree(sbi, et, false);
663 			write_unlock(&et->lock);
664 
665 			if (node_cnt + tree_cnt >= nr_shrink)
666 				break;
667 		}
668 	}
669 unlock_out:
670 	up_write(&sbi->extent_tree_lock);
671 out:
672 	trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
673 
674 	return node_cnt + tree_cnt;
675 }
676 
677 unsigned int f2fs_destroy_extent_node(struct inode *inode)
678 {
679 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
680 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
681 	unsigned int node_cnt = 0;
682 
683 	if (!et)
684 		return 0;
685 
686 	write_lock(&et->lock);
687 	node_cnt = __free_extent_tree(sbi, et, true);
688 	write_unlock(&et->lock);
689 
690 	return node_cnt;
691 }
692 
693 void f2fs_destroy_extent_tree(struct inode *inode)
694 {
695 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
696 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
697 	unsigned int node_cnt = 0;
698 
699 	if (!et)
700 		return;
701 
702 	if (inode->i_nlink && !is_bad_inode(inode) && et->count) {
703 		atomic_dec(&et->refcount);
704 		return;
705 	}
706 
707 	/* free all extent info belong to this extent tree */
708 	node_cnt = f2fs_destroy_extent_node(inode);
709 
710 	/* delete extent tree entry in radix tree */
711 	down_write(&sbi->extent_tree_lock);
712 	atomic_dec(&et->refcount);
713 	f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
714 	radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
715 	kmem_cache_free(extent_tree_slab, et);
716 	sbi->total_ext_tree--;
717 	up_write(&sbi->extent_tree_lock);
718 
719 	F2FS_I(inode)->extent_tree = NULL;
720 
721 	trace_f2fs_destroy_extent_tree(inode, node_cnt);
722 }
723 
724 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
725 					struct extent_info *ei)
726 {
727 	if (!f2fs_may_extent_tree(inode))
728 		return false;
729 
730 	return f2fs_lookup_extent_tree(inode, pgofs, ei);
731 }
732 
733 void f2fs_update_extent_cache(struct dnode_of_data *dn)
734 {
735 	struct f2fs_inode_info *fi = F2FS_I(dn->inode);
736 	pgoff_t fofs;
737 
738 	if (!f2fs_may_extent_tree(dn->inode))
739 		return;
740 
741 	f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
742 
743 
744 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
745 							dn->ofs_in_node;
746 
747 	if (f2fs_update_extent_tree_range(dn->inode, fofs, dn->data_blkaddr, 1))
748 		sync_inode_page(dn);
749 }
750 
751 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
752 				pgoff_t fofs, block_t blkaddr, unsigned int len)
753 
754 {
755 	if (!f2fs_may_extent_tree(dn->inode))
756 		return;
757 
758 	if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len))
759 		sync_inode_page(dn);
760 }
761 
762 void init_extent_cache_info(struct f2fs_sb_info *sbi)
763 {
764 	INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
765 	init_rwsem(&sbi->extent_tree_lock);
766 	INIT_LIST_HEAD(&sbi->extent_list);
767 	spin_lock_init(&sbi->extent_lock);
768 	sbi->total_ext_tree = 0;
769 	atomic_set(&sbi->total_ext_node, 0);
770 }
771 
772 int __init create_extent_cache(void)
773 {
774 	extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
775 			sizeof(struct extent_tree));
776 	if (!extent_tree_slab)
777 		return -ENOMEM;
778 	extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
779 			sizeof(struct extent_node));
780 	if (!extent_node_slab) {
781 		kmem_cache_destroy(extent_tree_slab);
782 		return -ENOMEM;
783 	}
784 	return 0;
785 }
786 
787 void destroy_extent_cache(void)
788 {
789 	kmem_cache_destroy(extent_node_slab);
790 	kmem_cache_destroy(extent_tree_slab);
791 }
792