xref: /openbmc/linux/fs/f2fs/extent_cache.c (revision c0c74acb)
1 /*
2  * f2fs extent cache support
3  *
4  * Copyright (c) 2015 Motorola Mobility
5  * Copyright (c) 2015 Samsung Electronics
6  * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
7  *          Chao Yu <chao2.yu@samsung.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/f2fs_fs.h>
16 
17 #include "f2fs.h"
18 #include "node.h"
19 #include <trace/events/f2fs.h>
20 
21 static struct kmem_cache *extent_tree_slab;
22 static struct kmem_cache *extent_node_slab;
23 
24 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
25 				struct extent_tree *et, struct extent_info *ei,
26 				struct rb_node *parent, struct rb_node **p)
27 {
28 	struct extent_node *en;
29 
30 	en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
31 	if (!en)
32 		return NULL;
33 
34 	en->ei = *ei;
35 	INIT_LIST_HEAD(&en->list);
36 	en->et = et;
37 
38 	rb_link_node(&en->rb_node, parent, p);
39 	rb_insert_color(&en->rb_node, &et->root);
40 	atomic_inc(&et->node_cnt);
41 	atomic_inc(&sbi->total_ext_node);
42 	return en;
43 }
44 
45 static void __detach_extent_node(struct f2fs_sb_info *sbi,
46 				struct extent_tree *et, struct extent_node *en)
47 {
48 	rb_erase(&en->rb_node, &et->root);
49 	atomic_dec(&et->node_cnt);
50 	atomic_dec(&sbi->total_ext_node);
51 
52 	if (et->cached_en == en)
53 		et->cached_en = NULL;
54 	kmem_cache_free(extent_node_slab, en);
55 }
56 
57 /*
58  * Flow to release an extent_node:
59  * 1. list_del_init
60  * 2. __detach_extent_node
61  * 3. kmem_cache_free.
62  */
63 static void __release_extent_node(struct f2fs_sb_info *sbi,
64 			struct extent_tree *et, struct extent_node *en)
65 {
66 	spin_lock(&sbi->extent_lock);
67 	f2fs_bug_on(sbi, list_empty(&en->list));
68 	list_del_init(&en->list);
69 	spin_unlock(&sbi->extent_lock);
70 
71 	__detach_extent_node(sbi, et, en);
72 }
73 
74 static struct extent_tree *__grab_extent_tree(struct inode *inode)
75 {
76 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
77 	struct extent_tree *et;
78 	nid_t ino = inode->i_ino;
79 
80 	mutex_lock(&sbi->extent_tree_lock);
81 	et = radix_tree_lookup(&sbi->extent_tree_root, ino);
82 	if (!et) {
83 		et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
84 		f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
85 		memset(et, 0, sizeof(struct extent_tree));
86 		et->ino = ino;
87 		et->root = RB_ROOT;
88 		et->cached_en = NULL;
89 		rwlock_init(&et->lock);
90 		INIT_LIST_HEAD(&et->list);
91 		atomic_set(&et->node_cnt, 0);
92 		atomic_inc(&sbi->total_ext_tree);
93 	} else {
94 		atomic_dec(&sbi->total_zombie_tree);
95 		list_del_init(&et->list);
96 	}
97 	mutex_unlock(&sbi->extent_tree_lock);
98 
99 	/* never died until evict_inode */
100 	F2FS_I(inode)->extent_tree = et;
101 
102 	return et;
103 }
104 
105 static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
106 				struct extent_tree *et, unsigned int fofs)
107 {
108 	struct rb_node *node = et->root.rb_node;
109 	struct extent_node *en = et->cached_en;
110 
111 	if (en) {
112 		struct extent_info *cei = &en->ei;
113 
114 		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
115 			stat_inc_cached_node_hit(sbi);
116 			return en;
117 		}
118 	}
119 
120 	while (node) {
121 		en = rb_entry(node, struct extent_node, rb_node);
122 
123 		if (fofs < en->ei.fofs) {
124 			node = node->rb_left;
125 		} else if (fofs >= en->ei.fofs + en->ei.len) {
126 			node = node->rb_right;
127 		} else {
128 			stat_inc_rbtree_node_hit(sbi);
129 			return en;
130 		}
131 	}
132 	return NULL;
133 }
134 
135 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
136 				struct extent_tree *et, struct extent_info *ei)
137 {
138 	struct rb_node **p = &et->root.rb_node;
139 	struct extent_node *en;
140 
141 	en = __attach_extent_node(sbi, et, ei, NULL, p);
142 	if (!en)
143 		return NULL;
144 
145 	et->largest = en->ei;
146 	et->cached_en = en;
147 	return en;
148 }
149 
150 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
151 					struct extent_tree *et)
152 {
153 	struct rb_node *node, *next;
154 	struct extent_node *en;
155 	unsigned int count = atomic_read(&et->node_cnt);
156 
157 	node = rb_first(&et->root);
158 	while (node) {
159 		next = rb_next(node);
160 		en = rb_entry(node, struct extent_node, rb_node);
161 		__release_extent_node(sbi, et, en);
162 		node = next;
163 	}
164 
165 	return count - atomic_read(&et->node_cnt);
166 }
167 
168 static void __drop_largest_extent(struct inode *inode,
169 					pgoff_t fofs, unsigned int len)
170 {
171 	struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
172 
173 	if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs) {
174 		largest->len = 0;
175 		f2fs_mark_inode_dirty_sync(inode, true);
176 	}
177 }
178 
179 /* return true, if inode page is changed */
180 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
181 {
182 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
183 	struct extent_tree *et;
184 	struct extent_node *en;
185 	struct extent_info ei;
186 
187 	if (!f2fs_may_extent_tree(inode)) {
188 		/* drop largest extent */
189 		if (i_ext && i_ext->len) {
190 			i_ext->len = 0;
191 			return true;
192 		}
193 		return false;
194 	}
195 
196 	et = __grab_extent_tree(inode);
197 
198 	if (!i_ext || !i_ext->len)
199 		return false;
200 
201 	get_extent_info(&ei, i_ext);
202 
203 	write_lock(&et->lock);
204 	if (atomic_read(&et->node_cnt))
205 		goto out;
206 
207 	en = __init_extent_tree(sbi, et, &ei);
208 	if (en) {
209 		spin_lock(&sbi->extent_lock);
210 		list_add_tail(&en->list, &sbi->extent_list);
211 		spin_unlock(&sbi->extent_lock);
212 	}
213 out:
214 	write_unlock(&et->lock);
215 	return false;
216 }
217 
218 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
219 							struct extent_info *ei)
220 {
221 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
223 	struct extent_node *en;
224 	bool ret = false;
225 
226 	f2fs_bug_on(sbi, !et);
227 
228 	trace_f2fs_lookup_extent_tree_start(inode, pgofs);
229 
230 	read_lock(&et->lock);
231 
232 	if (et->largest.fofs <= pgofs &&
233 			et->largest.fofs + et->largest.len > pgofs) {
234 		*ei = et->largest;
235 		ret = true;
236 		stat_inc_largest_node_hit(sbi);
237 		goto out;
238 	}
239 
240 	en = __lookup_extent_tree(sbi, et, pgofs);
241 	if (en) {
242 		*ei = en->ei;
243 		spin_lock(&sbi->extent_lock);
244 		if (!list_empty(&en->list)) {
245 			list_move_tail(&en->list, &sbi->extent_list);
246 			et->cached_en = en;
247 		}
248 		spin_unlock(&sbi->extent_lock);
249 		ret = true;
250 	}
251 out:
252 	stat_inc_total_hit(sbi);
253 	read_unlock(&et->lock);
254 
255 	trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
256 	return ret;
257 }
258 
259 
260 /*
261  * lookup extent at @fofs, if hit, return the extent
262  * if not, return NULL and
263  * @prev_ex: extent before fofs
264  * @next_ex: extent after fofs
265  * @insert_p: insert point for new extent at fofs
266  * in order to simpfy the insertion after.
267  * tree must stay unchanged between lookup and insertion.
268  */
269 static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
270 				unsigned int fofs,
271 				struct extent_node **prev_ex,
272 				struct extent_node **next_ex,
273 				struct rb_node ***insert_p,
274 				struct rb_node **insert_parent)
275 {
276 	struct rb_node **pnode = &et->root.rb_node;
277 	struct rb_node *parent = NULL, *tmp_node;
278 	struct extent_node *en = et->cached_en;
279 
280 	*insert_p = NULL;
281 	*insert_parent = NULL;
282 	*prev_ex = NULL;
283 	*next_ex = NULL;
284 
285 	if (RB_EMPTY_ROOT(&et->root))
286 		return NULL;
287 
288 	if (en) {
289 		struct extent_info *cei = &en->ei;
290 
291 		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
292 			goto lookup_neighbors;
293 	}
294 
295 	while (*pnode) {
296 		parent = *pnode;
297 		en = rb_entry(*pnode, struct extent_node, rb_node);
298 
299 		if (fofs < en->ei.fofs)
300 			pnode = &(*pnode)->rb_left;
301 		else if (fofs >= en->ei.fofs + en->ei.len)
302 			pnode = &(*pnode)->rb_right;
303 		else
304 			goto lookup_neighbors;
305 	}
306 
307 	*insert_p = pnode;
308 	*insert_parent = parent;
309 
310 	en = rb_entry(parent, struct extent_node, rb_node);
311 	tmp_node = parent;
312 	if (parent && fofs > en->ei.fofs)
313 		tmp_node = rb_next(parent);
314 	*next_ex = rb_entry_safe(tmp_node, struct extent_node, rb_node);
315 
316 	tmp_node = parent;
317 	if (parent && fofs < en->ei.fofs)
318 		tmp_node = rb_prev(parent);
319 	*prev_ex = rb_entry_safe(tmp_node, struct extent_node, rb_node);
320 	return NULL;
321 
322 lookup_neighbors:
323 	if (fofs == en->ei.fofs) {
324 		/* lookup prev node for merging backward later */
325 		tmp_node = rb_prev(&en->rb_node);
326 		*prev_ex = rb_entry_safe(tmp_node, struct extent_node, rb_node);
327 	}
328 	if (fofs == en->ei.fofs + en->ei.len - 1) {
329 		/* lookup next node for merging frontward later */
330 		tmp_node = rb_next(&en->rb_node);
331 		*next_ex = rb_entry_safe(tmp_node, struct extent_node, rb_node);
332 	}
333 	return en;
334 }
335 
336 static struct extent_node *__try_merge_extent_node(struct inode *inode,
337 				struct extent_tree *et, struct extent_info *ei,
338 				struct extent_node *prev_ex,
339 				struct extent_node *next_ex)
340 {
341 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
342 	struct extent_node *en = NULL;
343 
344 	if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
345 		prev_ex->ei.len += ei->len;
346 		ei = &prev_ex->ei;
347 		en = prev_ex;
348 	}
349 
350 	if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
351 		next_ex->ei.fofs = ei->fofs;
352 		next_ex->ei.blk = ei->blk;
353 		next_ex->ei.len += ei->len;
354 		if (en)
355 			__release_extent_node(sbi, et, prev_ex);
356 
357 		en = next_ex;
358 	}
359 
360 	if (!en)
361 		return NULL;
362 
363 	__try_update_largest_extent(inode, et, en);
364 
365 	spin_lock(&sbi->extent_lock);
366 	if (!list_empty(&en->list)) {
367 		list_move_tail(&en->list, &sbi->extent_list);
368 		et->cached_en = en;
369 	}
370 	spin_unlock(&sbi->extent_lock);
371 	return en;
372 }
373 
374 static struct extent_node *__insert_extent_tree(struct inode *inode,
375 				struct extent_tree *et, struct extent_info *ei,
376 				struct rb_node **insert_p,
377 				struct rb_node *insert_parent)
378 {
379 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
380 	struct rb_node **p = &et->root.rb_node;
381 	struct rb_node *parent = NULL;
382 	struct extent_node *en = NULL;
383 
384 	if (insert_p && insert_parent) {
385 		parent = insert_parent;
386 		p = insert_p;
387 		goto do_insert;
388 	}
389 
390 	while (*p) {
391 		parent = *p;
392 		en = rb_entry(parent, struct extent_node, rb_node);
393 
394 		if (ei->fofs < en->ei.fofs)
395 			p = &(*p)->rb_left;
396 		else if (ei->fofs >= en->ei.fofs + en->ei.len)
397 			p = &(*p)->rb_right;
398 		else
399 			f2fs_bug_on(sbi, 1);
400 	}
401 do_insert:
402 	en = __attach_extent_node(sbi, et, ei, parent, p);
403 	if (!en)
404 		return NULL;
405 
406 	__try_update_largest_extent(inode, et, en);
407 
408 	/* update in global extent list */
409 	spin_lock(&sbi->extent_lock);
410 	list_add_tail(&en->list, &sbi->extent_list);
411 	et->cached_en = en;
412 	spin_unlock(&sbi->extent_lock);
413 	return en;
414 }
415 
416 static void f2fs_update_extent_tree_range(struct inode *inode,
417 				pgoff_t fofs, block_t blkaddr, unsigned int len)
418 {
419 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
420 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
421 	struct extent_node *en = NULL, *en1 = NULL;
422 	struct extent_node *prev_en = NULL, *next_en = NULL;
423 	struct extent_info ei, dei, prev;
424 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
425 	unsigned int end = fofs + len;
426 	unsigned int pos = (unsigned int)fofs;
427 
428 	if (!et)
429 		return;
430 
431 	trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
432 
433 	write_lock(&et->lock);
434 
435 	if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
436 		write_unlock(&et->lock);
437 		return;
438 	}
439 
440 	prev = et->largest;
441 	dei.len = 0;
442 
443 	/*
444 	 * drop largest extent before lookup, in case it's already
445 	 * been shrunk from extent tree
446 	 */
447 	__drop_largest_extent(inode, fofs, len);
448 
449 	/* 1. lookup first extent node in range [fofs, fofs + len - 1] */
450 	en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
451 					&insert_p, &insert_parent);
452 	if (!en)
453 		en = next_en;
454 
455 	/* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
456 	while (en && en->ei.fofs < end) {
457 		unsigned int org_end;
458 		int parts = 0;	/* # of parts current extent split into */
459 
460 		next_en = en1 = NULL;
461 
462 		dei = en->ei;
463 		org_end = dei.fofs + dei.len;
464 		f2fs_bug_on(sbi, pos >= org_end);
465 
466 		if (pos > dei.fofs &&	pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
467 			en->ei.len = pos - en->ei.fofs;
468 			prev_en = en;
469 			parts = 1;
470 		}
471 
472 		if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
473 			if (parts) {
474 				set_extent_info(&ei, end,
475 						end - dei.fofs + dei.blk,
476 						org_end - end);
477 				en1 = __insert_extent_tree(inode, et, &ei,
478 							NULL, NULL);
479 				next_en = en1;
480 			} else {
481 				en->ei.fofs = end;
482 				en->ei.blk += end - dei.fofs;
483 				en->ei.len -= end - dei.fofs;
484 				next_en = en;
485 			}
486 			parts++;
487 		}
488 
489 		if (!next_en) {
490 			struct rb_node *node = rb_next(&en->rb_node);
491 
492 			next_en = rb_entry_safe(node, struct extent_node,
493 						rb_node);
494 		}
495 
496 		if (parts)
497 			__try_update_largest_extent(inode, et, en);
498 		else
499 			__release_extent_node(sbi, et, en);
500 
501 		/*
502 		 * if original extent is split into zero or two parts, extent
503 		 * tree has been altered by deletion or insertion, therefore
504 		 * invalidate pointers regard to tree.
505 		 */
506 		if (parts != 1) {
507 			insert_p = NULL;
508 			insert_parent = NULL;
509 		}
510 		en = next_en;
511 	}
512 
513 	/* 3. update extent in extent cache */
514 	if (blkaddr) {
515 
516 		set_extent_info(&ei, fofs, blkaddr, len);
517 		if (!__try_merge_extent_node(inode, et, &ei, prev_en, next_en))
518 			__insert_extent_tree(inode, et, &ei,
519 						insert_p, insert_parent);
520 
521 		/* give up extent_cache, if split and small updates happen */
522 		if (dei.len >= 1 &&
523 				prev.len < F2FS_MIN_EXTENT_LEN &&
524 				et->largest.len < F2FS_MIN_EXTENT_LEN) {
525 			__drop_largest_extent(inode, 0, UINT_MAX);
526 			set_inode_flag(inode, FI_NO_EXTENT);
527 		}
528 	}
529 
530 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
531 		__free_extent_tree(sbi, et);
532 
533 	write_unlock(&et->lock);
534 }
535 
536 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
537 {
538 	struct extent_tree *et, *next;
539 	struct extent_node *en;
540 	unsigned int node_cnt = 0, tree_cnt = 0;
541 	int remained;
542 
543 	if (!test_opt(sbi, EXTENT_CACHE))
544 		return 0;
545 
546 	if (!atomic_read(&sbi->total_zombie_tree))
547 		goto free_node;
548 
549 	if (!mutex_trylock(&sbi->extent_tree_lock))
550 		goto out;
551 
552 	/* 1. remove unreferenced extent tree */
553 	list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
554 		if (atomic_read(&et->node_cnt)) {
555 			write_lock(&et->lock);
556 			node_cnt += __free_extent_tree(sbi, et);
557 			write_unlock(&et->lock);
558 		}
559 		f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
560 		list_del_init(&et->list);
561 		radix_tree_delete(&sbi->extent_tree_root, et->ino);
562 		kmem_cache_free(extent_tree_slab, et);
563 		atomic_dec(&sbi->total_ext_tree);
564 		atomic_dec(&sbi->total_zombie_tree);
565 		tree_cnt++;
566 
567 		if (node_cnt + tree_cnt >= nr_shrink)
568 			goto unlock_out;
569 		cond_resched();
570 	}
571 	mutex_unlock(&sbi->extent_tree_lock);
572 
573 free_node:
574 	/* 2. remove LRU extent entries */
575 	if (!mutex_trylock(&sbi->extent_tree_lock))
576 		goto out;
577 
578 	remained = nr_shrink - (node_cnt + tree_cnt);
579 
580 	spin_lock(&sbi->extent_lock);
581 	for (; remained > 0; remained--) {
582 		if (list_empty(&sbi->extent_list))
583 			break;
584 		en = list_first_entry(&sbi->extent_list,
585 					struct extent_node, list);
586 		et = en->et;
587 		if (!write_trylock(&et->lock)) {
588 			/* refresh this extent node's position in extent list */
589 			list_move_tail(&en->list, &sbi->extent_list);
590 			continue;
591 		}
592 
593 		list_del_init(&en->list);
594 		spin_unlock(&sbi->extent_lock);
595 
596 		__detach_extent_node(sbi, et, en);
597 
598 		write_unlock(&et->lock);
599 		node_cnt++;
600 		spin_lock(&sbi->extent_lock);
601 	}
602 	spin_unlock(&sbi->extent_lock);
603 
604 unlock_out:
605 	mutex_unlock(&sbi->extent_tree_lock);
606 out:
607 	trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
608 
609 	return node_cnt + tree_cnt;
610 }
611 
612 unsigned int f2fs_destroy_extent_node(struct inode *inode)
613 {
614 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
615 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
616 	unsigned int node_cnt = 0;
617 
618 	if (!et || !atomic_read(&et->node_cnt))
619 		return 0;
620 
621 	write_lock(&et->lock);
622 	node_cnt = __free_extent_tree(sbi, et);
623 	write_unlock(&et->lock);
624 
625 	return node_cnt;
626 }
627 
628 void f2fs_drop_extent_tree(struct inode *inode)
629 {
630 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
631 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
632 
633 	set_inode_flag(inode, FI_NO_EXTENT);
634 
635 	write_lock(&et->lock);
636 	__free_extent_tree(sbi, et);
637 	__drop_largest_extent(inode, 0, UINT_MAX);
638 	write_unlock(&et->lock);
639 }
640 
641 void f2fs_destroy_extent_tree(struct inode *inode)
642 {
643 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
644 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
645 	unsigned int node_cnt = 0;
646 
647 	if (!et)
648 		return;
649 
650 	if (inode->i_nlink && !is_bad_inode(inode) &&
651 					atomic_read(&et->node_cnt)) {
652 		mutex_lock(&sbi->extent_tree_lock);
653 		list_add_tail(&et->list, &sbi->zombie_list);
654 		atomic_inc(&sbi->total_zombie_tree);
655 		mutex_unlock(&sbi->extent_tree_lock);
656 		return;
657 	}
658 
659 	/* free all extent info belong to this extent tree */
660 	node_cnt = f2fs_destroy_extent_node(inode);
661 
662 	/* delete extent tree entry in radix tree */
663 	mutex_lock(&sbi->extent_tree_lock);
664 	f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
665 	radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
666 	kmem_cache_free(extent_tree_slab, et);
667 	atomic_dec(&sbi->total_ext_tree);
668 	mutex_unlock(&sbi->extent_tree_lock);
669 
670 	F2FS_I(inode)->extent_tree = NULL;
671 
672 	trace_f2fs_destroy_extent_tree(inode, node_cnt);
673 }
674 
675 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
676 					struct extent_info *ei)
677 {
678 	if (!f2fs_may_extent_tree(inode))
679 		return false;
680 
681 	return f2fs_lookup_extent_tree(inode, pgofs, ei);
682 }
683 
684 void f2fs_update_extent_cache(struct dnode_of_data *dn)
685 {
686 	pgoff_t fofs;
687 	block_t blkaddr;
688 
689 	if (!f2fs_may_extent_tree(dn->inode))
690 		return;
691 
692 	if (dn->data_blkaddr == NEW_ADDR)
693 		blkaddr = NULL_ADDR;
694 	else
695 		blkaddr = dn->data_blkaddr;
696 
697 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
698 								dn->ofs_in_node;
699 	f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1);
700 }
701 
702 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
703 				pgoff_t fofs, block_t blkaddr, unsigned int len)
704 
705 {
706 	if (!f2fs_may_extent_tree(dn->inode))
707 		return;
708 
709 	f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len);
710 }
711 
712 void init_extent_cache_info(struct f2fs_sb_info *sbi)
713 {
714 	INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
715 	mutex_init(&sbi->extent_tree_lock);
716 	INIT_LIST_HEAD(&sbi->extent_list);
717 	spin_lock_init(&sbi->extent_lock);
718 	atomic_set(&sbi->total_ext_tree, 0);
719 	INIT_LIST_HEAD(&sbi->zombie_list);
720 	atomic_set(&sbi->total_zombie_tree, 0);
721 	atomic_set(&sbi->total_ext_node, 0);
722 }
723 
724 int __init create_extent_cache(void)
725 {
726 	extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
727 			sizeof(struct extent_tree));
728 	if (!extent_tree_slab)
729 		return -ENOMEM;
730 	extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
731 			sizeof(struct extent_node));
732 	if (!extent_node_slab) {
733 		kmem_cache_destroy(extent_tree_slab);
734 		return -ENOMEM;
735 	}
736 	return 0;
737 }
738 
739 void destroy_extent_cache(void)
740 {
741 	kmem_cache_destroy(extent_node_slab);
742 	kmem_cache_destroy(extent_tree_slab);
743 }
744