1 /* 2 * f2fs extent cache support 3 * 4 * Copyright (c) 2015 Motorola Mobility 5 * Copyright (c) 2015 Samsung Electronics 6 * Authors: Jaegeuk Kim <jaegeuk@kernel.org> 7 * Chao Yu <chao2.yu@samsung.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/f2fs_fs.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include <trace/events/f2fs.h> 20 21 static struct kmem_cache *extent_tree_slab; 22 static struct kmem_cache *extent_node_slab; 23 24 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, 25 struct extent_tree *et, struct extent_info *ei, 26 struct rb_node *parent, struct rb_node **p) 27 { 28 struct extent_node *en; 29 30 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC); 31 if (!en) 32 return NULL; 33 34 en->ei = *ei; 35 INIT_LIST_HEAD(&en->list); 36 37 rb_link_node(&en->rb_node, parent, p); 38 rb_insert_color(&en->rb_node, &et->root); 39 et->count++; 40 atomic_inc(&sbi->total_ext_node); 41 return en; 42 } 43 44 static void __detach_extent_node(struct f2fs_sb_info *sbi, 45 struct extent_tree *et, struct extent_node *en) 46 { 47 rb_erase(&en->rb_node, &et->root); 48 et->count--; 49 atomic_dec(&sbi->total_ext_node); 50 51 if (et->cached_en == en) 52 et->cached_en = NULL; 53 } 54 55 static struct extent_tree *__grab_extent_tree(struct inode *inode) 56 { 57 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 58 struct extent_tree *et; 59 nid_t ino = inode->i_ino; 60 61 down_write(&sbi->extent_tree_lock); 62 et = radix_tree_lookup(&sbi->extent_tree_root, ino); 63 if (!et) { 64 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS); 65 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et); 66 memset(et, 0, sizeof(struct extent_tree)); 67 et->ino = ino; 68 et->root = RB_ROOT; 69 et->cached_en = NULL; 70 rwlock_init(&et->lock); 71 atomic_set(&et->refcount, 0); 72 et->count = 0; 73 sbi->total_ext_tree++; 74 } 75 atomic_inc(&et->refcount); 76 up_write(&sbi->extent_tree_lock); 77 78 /* never died until evict_inode */ 79 F2FS_I(inode)->extent_tree = et; 80 81 return et; 82 } 83 84 static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi, 85 struct extent_tree *et, unsigned int fofs) 86 { 87 struct rb_node *node = et->root.rb_node; 88 struct extent_node *en = et->cached_en; 89 90 if (en) { 91 struct extent_info *cei = &en->ei; 92 93 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) { 94 stat_inc_cached_node_hit(sbi); 95 return en; 96 } 97 } 98 99 while (node) { 100 en = rb_entry(node, struct extent_node, rb_node); 101 102 if (fofs < en->ei.fofs) { 103 node = node->rb_left; 104 } else if (fofs >= en->ei.fofs + en->ei.len) { 105 node = node->rb_right; 106 } else { 107 stat_inc_rbtree_node_hit(sbi); 108 return en; 109 } 110 } 111 return NULL; 112 } 113 114 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi, 115 struct extent_tree *et, struct extent_info *ei) 116 { 117 struct rb_node **p = &et->root.rb_node; 118 struct extent_node *en; 119 120 en = __attach_extent_node(sbi, et, ei, NULL, p); 121 if (!en) 122 return NULL; 123 124 et->largest = en->ei; 125 et->cached_en = en; 126 return en; 127 } 128 129 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, 130 struct extent_tree *et, bool free_all) 131 { 132 struct rb_node *node, *next; 133 struct extent_node *en; 134 unsigned int count = et->count; 135 136 node = rb_first(&et->root); 137 while (node) { 138 next = rb_next(node); 139 en = rb_entry(node, struct extent_node, rb_node); 140 141 if (free_all) { 142 spin_lock(&sbi->extent_lock); 143 if (!list_empty(&en->list)) 144 list_del_init(&en->list); 145 spin_unlock(&sbi->extent_lock); 146 } 147 148 if (free_all || list_empty(&en->list)) { 149 __detach_extent_node(sbi, et, en); 150 kmem_cache_free(extent_node_slab, en); 151 } 152 node = next; 153 } 154 155 return count - et->count; 156 } 157 158 static void __drop_largest_extent(struct inode *inode, pgoff_t fofs) 159 { 160 struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest; 161 162 if (largest->fofs <= fofs && largest->fofs + largest->len > fofs) 163 largest->len = 0; 164 } 165 166 void f2fs_drop_largest_extent(struct inode *inode, pgoff_t fofs) 167 { 168 if (!f2fs_may_extent_tree(inode)) 169 return; 170 171 __drop_largest_extent(inode, fofs); 172 } 173 174 void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext) 175 { 176 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 177 struct extent_tree *et; 178 struct extent_node *en; 179 struct extent_info ei; 180 181 if (!f2fs_may_extent_tree(inode)) 182 return; 183 184 et = __grab_extent_tree(inode); 185 186 if (!i_ext || le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN) 187 return; 188 189 set_extent_info(&ei, le32_to_cpu(i_ext->fofs), 190 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len)); 191 192 write_lock(&et->lock); 193 if (et->count) 194 goto out; 195 196 en = __init_extent_tree(sbi, et, &ei); 197 if (en) { 198 spin_lock(&sbi->extent_lock); 199 list_add_tail(&en->list, &sbi->extent_list); 200 spin_unlock(&sbi->extent_lock); 201 } 202 out: 203 write_unlock(&et->lock); 204 } 205 206 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs, 207 struct extent_info *ei) 208 { 209 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 210 struct extent_tree *et = F2FS_I(inode)->extent_tree; 211 struct extent_node *en; 212 bool ret = false; 213 214 f2fs_bug_on(sbi, !et); 215 216 trace_f2fs_lookup_extent_tree_start(inode, pgofs); 217 218 read_lock(&et->lock); 219 220 if (et->largest.fofs <= pgofs && 221 et->largest.fofs + et->largest.len > pgofs) { 222 *ei = et->largest; 223 ret = true; 224 stat_inc_largest_node_hit(sbi); 225 goto out; 226 } 227 228 en = __lookup_extent_tree(sbi, et, pgofs); 229 if (en) { 230 *ei = en->ei; 231 spin_lock(&sbi->extent_lock); 232 if (!list_empty(&en->list)) 233 list_move_tail(&en->list, &sbi->extent_list); 234 et->cached_en = en; 235 spin_unlock(&sbi->extent_lock); 236 ret = true; 237 } 238 out: 239 stat_inc_total_hit(sbi); 240 read_unlock(&et->lock); 241 242 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei); 243 return ret; 244 } 245 246 247 /* 248 * lookup extent at @fofs, if hit, return the extent 249 * if not, return NULL and 250 * @prev_ex: extent before fofs 251 * @next_ex: extent after fofs 252 * @insert_p: insert point for new extent at fofs 253 * in order to simpfy the insertion after. 254 * tree must stay unchanged between lookup and insertion. 255 */ 256 static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et, 257 unsigned int fofs, 258 struct extent_node **prev_ex, 259 struct extent_node **next_ex, 260 struct rb_node ***insert_p, 261 struct rb_node **insert_parent) 262 { 263 struct rb_node **pnode = &et->root.rb_node; 264 struct rb_node *parent = NULL, *tmp_node; 265 struct extent_node *en = et->cached_en; 266 267 *insert_p = NULL; 268 *insert_parent = NULL; 269 *prev_ex = NULL; 270 *next_ex = NULL; 271 272 if (RB_EMPTY_ROOT(&et->root)) 273 return NULL; 274 275 if (en) { 276 struct extent_info *cei = &en->ei; 277 278 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) 279 goto lookup_neighbors; 280 } 281 282 while (*pnode) { 283 parent = *pnode; 284 en = rb_entry(*pnode, struct extent_node, rb_node); 285 286 if (fofs < en->ei.fofs) 287 pnode = &(*pnode)->rb_left; 288 else if (fofs >= en->ei.fofs + en->ei.len) 289 pnode = &(*pnode)->rb_right; 290 else 291 goto lookup_neighbors; 292 } 293 294 *insert_p = pnode; 295 *insert_parent = parent; 296 297 en = rb_entry(parent, struct extent_node, rb_node); 298 tmp_node = parent; 299 if (parent && fofs > en->ei.fofs) 300 tmp_node = rb_next(parent); 301 *next_ex = tmp_node ? 302 rb_entry(tmp_node, struct extent_node, rb_node) : NULL; 303 304 tmp_node = parent; 305 if (parent && fofs < en->ei.fofs) 306 tmp_node = rb_prev(parent); 307 *prev_ex = tmp_node ? 308 rb_entry(tmp_node, struct extent_node, rb_node) : NULL; 309 return NULL; 310 311 lookup_neighbors: 312 if (fofs == en->ei.fofs) { 313 /* lookup prev node for merging backward later */ 314 tmp_node = rb_prev(&en->rb_node); 315 *prev_ex = tmp_node ? 316 rb_entry(tmp_node, struct extent_node, rb_node) : NULL; 317 } 318 if (fofs == en->ei.fofs + en->ei.len - 1) { 319 /* lookup next node for merging frontward later */ 320 tmp_node = rb_next(&en->rb_node); 321 *next_ex = tmp_node ? 322 rb_entry(tmp_node, struct extent_node, rb_node) : NULL; 323 } 324 return en; 325 } 326 327 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi, 328 struct extent_tree *et, struct extent_info *ei, 329 struct extent_node **den, 330 struct extent_node *prev_ex, 331 struct extent_node *next_ex) 332 { 333 struct extent_node *en = NULL; 334 335 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) { 336 prev_ex->ei.len += ei->len; 337 ei = &prev_ex->ei; 338 en = prev_ex; 339 } 340 341 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) { 342 if (en) { 343 __detach_extent_node(sbi, et, prev_ex); 344 *den = prev_ex; 345 } 346 next_ex->ei.fofs = ei->fofs; 347 next_ex->ei.blk = ei->blk; 348 next_ex->ei.len += ei->len; 349 en = next_ex; 350 } 351 352 if (en) { 353 if (en->ei.len > et->largest.len) 354 et->largest = en->ei; 355 et->cached_en = en; 356 } 357 return en; 358 } 359 360 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi, 361 struct extent_tree *et, struct extent_info *ei, 362 struct rb_node **insert_p, 363 struct rb_node *insert_parent) 364 { 365 struct rb_node **p = &et->root.rb_node; 366 struct rb_node *parent = NULL; 367 struct extent_node *en = NULL; 368 369 if (insert_p && insert_parent) { 370 parent = insert_parent; 371 p = insert_p; 372 goto do_insert; 373 } 374 375 while (*p) { 376 parent = *p; 377 en = rb_entry(parent, struct extent_node, rb_node); 378 379 if (ei->fofs < en->ei.fofs) 380 p = &(*p)->rb_left; 381 else if (ei->fofs >= en->ei.fofs + en->ei.len) 382 p = &(*p)->rb_right; 383 else 384 f2fs_bug_on(sbi, 1); 385 } 386 do_insert: 387 en = __attach_extent_node(sbi, et, ei, parent, p); 388 if (!en) 389 return NULL; 390 391 if (en->ei.len > et->largest.len) 392 et->largest = en->ei; 393 et->cached_en = en; 394 return en; 395 } 396 397 unsigned int f2fs_update_extent_tree_range(struct inode *inode, 398 pgoff_t fofs, block_t blkaddr, unsigned int len) 399 { 400 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 401 struct extent_tree *et = F2FS_I(inode)->extent_tree; 402 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL; 403 struct extent_node *prev_en = NULL, *next_en = NULL; 404 struct extent_info ei, dei, prev; 405 struct rb_node **insert_p = NULL, *insert_parent = NULL; 406 unsigned int end = fofs + len; 407 unsigned int pos = (unsigned int)fofs; 408 409 if (!et) 410 return false; 411 412 write_lock(&et->lock); 413 414 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) { 415 write_unlock(&et->lock); 416 return false; 417 } 418 419 prev = et->largest; 420 dei.len = 0; 421 422 /* we do not guarantee that the largest extent is cached all the time */ 423 __drop_largest_extent(inode, fofs); 424 425 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */ 426 en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en, 427 &insert_p, &insert_parent); 428 if (!en) { 429 if (next_en) { 430 en = next_en; 431 f2fs_bug_on(sbi, en->ei.fofs <= pos); 432 pos = en->ei.fofs; 433 } else { 434 /* 435 * skip searching in the tree since there is no 436 * larger extent node in the cache. 437 */ 438 goto update_extent; 439 } 440 } 441 442 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */ 443 while (en) { 444 struct rb_node *node; 445 446 if (pos >= end) 447 break; 448 449 dei = en->ei; 450 en1 = en2 = NULL; 451 452 node = rb_next(&en->rb_node); 453 454 /* 455 * 2.1 there are four cases when we invalidate blkaddr in extent 456 * node, |V: valid address, X: will be invalidated| 457 */ 458 /* case#1, invalidate right part of extent node |VVVVVXXXXX| */ 459 if (pos > dei.fofs && end >= dei.fofs + dei.len) { 460 en->ei.len = pos - dei.fofs; 461 462 if (en->ei.len < F2FS_MIN_EXTENT_LEN) { 463 __detach_extent_node(sbi, et, en); 464 insert_p = NULL; 465 insert_parent = NULL; 466 goto update; 467 } 468 469 if (__is_extent_same(&dei, &et->largest)) 470 et->largest = en->ei; 471 goto next; 472 } 473 474 /* case#2, invalidate left part of extent node |XXXXXVVVVV| */ 475 if (pos <= dei.fofs && end < dei.fofs + dei.len) { 476 en->ei.fofs = end; 477 en->ei.blk += end - dei.fofs; 478 en->ei.len -= end - dei.fofs; 479 480 if (en->ei.len < F2FS_MIN_EXTENT_LEN) { 481 __detach_extent_node(sbi, et, en); 482 insert_p = NULL; 483 insert_parent = NULL; 484 goto update; 485 } 486 487 if (__is_extent_same(&dei, &et->largest)) 488 et->largest = en->ei; 489 goto next; 490 } 491 492 __detach_extent_node(sbi, et, en); 493 494 /* 495 * if we remove node in rb-tree, our parent node pointer may 496 * point the wrong place, discard them. 497 */ 498 insert_p = NULL; 499 insert_parent = NULL; 500 501 /* case#3, invalidate entire extent node |XXXXXXXXXX| */ 502 if (pos <= dei.fofs && end >= dei.fofs + dei.len) { 503 if (__is_extent_same(&dei, &et->largest)) 504 et->largest.len = 0; 505 goto update; 506 } 507 508 /* 509 * case#4, invalidate data in the middle of extent node 510 * |VVVXXXXVVV| 511 */ 512 if (dei.len > F2FS_MIN_EXTENT_LEN) { 513 unsigned int endofs; 514 515 /* insert left part of split extent into cache */ 516 if (pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) { 517 set_extent_info(&ei, dei.fofs, dei.blk, 518 pos - dei.fofs); 519 en1 = __insert_extent_tree(sbi, et, &ei, 520 NULL, NULL); 521 } 522 523 /* insert right part of split extent into cache */ 524 endofs = dei.fofs + dei.len; 525 if (endofs - end >= F2FS_MIN_EXTENT_LEN) { 526 set_extent_info(&ei, end, 527 end - dei.fofs + dei.blk, 528 endofs - end); 529 en2 = __insert_extent_tree(sbi, et, &ei, 530 NULL, NULL); 531 } 532 } 533 update: 534 /* 2.2 update in global extent list */ 535 spin_lock(&sbi->extent_lock); 536 if (en && !list_empty(&en->list)) 537 list_del(&en->list); 538 if (en1) 539 list_add_tail(&en1->list, &sbi->extent_list); 540 if (en2) 541 list_add_tail(&en2->list, &sbi->extent_list); 542 spin_unlock(&sbi->extent_lock); 543 544 /* 2.3 release extent node */ 545 if (en) 546 kmem_cache_free(extent_node_slab, en); 547 next: 548 en = node ? rb_entry(node, struct extent_node, rb_node) : NULL; 549 next_en = en; 550 if (en) 551 pos = en->ei.fofs; 552 } 553 554 update_extent: 555 /* 3. update extent in extent cache */ 556 if (blkaddr) { 557 struct extent_node *den = NULL; 558 559 set_extent_info(&ei, fofs, blkaddr, len); 560 en3 = __try_merge_extent_node(sbi, et, &ei, &den, 561 prev_en, next_en); 562 if (!en3) 563 en3 = __insert_extent_tree(sbi, et, &ei, 564 insert_p, insert_parent); 565 566 /* give up extent_cache, if split and small updates happen */ 567 if (dei.len >= 1 && 568 prev.len < F2FS_MIN_EXTENT_LEN && 569 et->largest.len < F2FS_MIN_EXTENT_LEN) { 570 et->largest.len = 0; 571 set_inode_flag(F2FS_I(inode), FI_NO_EXTENT); 572 } 573 574 spin_lock(&sbi->extent_lock); 575 if (en3) { 576 if (list_empty(&en3->list)) 577 list_add_tail(&en3->list, &sbi->extent_list); 578 else 579 list_move_tail(&en3->list, &sbi->extent_list); 580 } 581 if (den && !list_empty(&den->list)) 582 list_del(&den->list); 583 spin_unlock(&sbi->extent_lock); 584 585 if (den) 586 kmem_cache_free(extent_node_slab, den); 587 } 588 589 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) 590 __free_extent_tree(sbi, et, true); 591 592 write_unlock(&et->lock); 593 594 return !__is_extent_same(&prev, &et->largest); 595 } 596 597 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) 598 { 599 struct extent_tree *treevec[EXT_TREE_VEC_SIZE]; 600 struct extent_node *en, *tmp; 601 unsigned long ino = F2FS_ROOT_INO(sbi); 602 struct radix_tree_root *root = &sbi->extent_tree_root; 603 unsigned int found; 604 unsigned int node_cnt = 0, tree_cnt = 0; 605 int remained; 606 607 if (!test_opt(sbi, EXTENT_CACHE)) 608 return 0; 609 610 if (!down_write_trylock(&sbi->extent_tree_lock)) 611 goto out; 612 613 /* 1. remove unreferenced extent tree */ 614 while ((found = radix_tree_gang_lookup(root, 615 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) { 616 unsigned i; 617 618 ino = treevec[found - 1]->ino + 1; 619 for (i = 0; i < found; i++) { 620 struct extent_tree *et = treevec[i]; 621 622 if (!atomic_read(&et->refcount)) { 623 write_lock(&et->lock); 624 node_cnt += __free_extent_tree(sbi, et, true); 625 write_unlock(&et->lock); 626 627 radix_tree_delete(root, et->ino); 628 kmem_cache_free(extent_tree_slab, et); 629 sbi->total_ext_tree--; 630 tree_cnt++; 631 632 if (node_cnt + tree_cnt >= nr_shrink) 633 goto unlock_out; 634 } 635 } 636 } 637 up_write(&sbi->extent_tree_lock); 638 639 /* 2. remove LRU extent entries */ 640 if (!down_write_trylock(&sbi->extent_tree_lock)) 641 goto out; 642 643 remained = nr_shrink - (node_cnt + tree_cnt); 644 645 spin_lock(&sbi->extent_lock); 646 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) { 647 if (!remained--) 648 break; 649 list_del_init(&en->list); 650 } 651 spin_unlock(&sbi->extent_lock); 652 653 while ((found = radix_tree_gang_lookup(root, 654 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) { 655 unsigned i; 656 657 ino = treevec[found - 1]->ino + 1; 658 for (i = 0; i < found; i++) { 659 struct extent_tree *et = treevec[i]; 660 661 write_lock(&et->lock); 662 node_cnt += __free_extent_tree(sbi, et, false); 663 write_unlock(&et->lock); 664 665 if (node_cnt + tree_cnt >= nr_shrink) 666 break; 667 } 668 } 669 unlock_out: 670 up_write(&sbi->extent_tree_lock); 671 out: 672 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt); 673 674 return node_cnt + tree_cnt; 675 } 676 677 unsigned int f2fs_destroy_extent_node(struct inode *inode) 678 { 679 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 680 struct extent_tree *et = F2FS_I(inode)->extent_tree; 681 unsigned int node_cnt = 0; 682 683 if (!et) 684 return 0; 685 686 write_lock(&et->lock); 687 node_cnt = __free_extent_tree(sbi, et, true); 688 write_unlock(&et->lock); 689 690 return node_cnt; 691 } 692 693 void f2fs_destroy_extent_tree(struct inode *inode) 694 { 695 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 696 struct extent_tree *et = F2FS_I(inode)->extent_tree; 697 unsigned int node_cnt = 0; 698 699 if (!et) 700 return; 701 702 if (inode->i_nlink && !is_bad_inode(inode) && et->count) { 703 atomic_dec(&et->refcount); 704 return; 705 } 706 707 /* free all extent info belong to this extent tree */ 708 node_cnt = f2fs_destroy_extent_node(inode); 709 710 /* delete extent tree entry in radix tree */ 711 down_write(&sbi->extent_tree_lock); 712 atomic_dec(&et->refcount); 713 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count); 714 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino); 715 kmem_cache_free(extent_tree_slab, et); 716 sbi->total_ext_tree--; 717 up_write(&sbi->extent_tree_lock); 718 719 F2FS_I(inode)->extent_tree = NULL; 720 721 trace_f2fs_destroy_extent_tree(inode, node_cnt); 722 } 723 724 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 725 struct extent_info *ei) 726 { 727 if (!f2fs_may_extent_tree(inode)) 728 return false; 729 730 return f2fs_lookup_extent_tree(inode, pgofs, ei); 731 } 732 733 void f2fs_update_extent_cache(struct dnode_of_data *dn) 734 { 735 struct f2fs_inode_info *fi = F2FS_I(dn->inode); 736 pgoff_t fofs; 737 738 if (!f2fs_may_extent_tree(dn->inode)) 739 return; 740 741 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR); 742 743 744 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) + 745 dn->ofs_in_node; 746 747 if (f2fs_update_extent_tree_range(dn->inode, fofs, dn->data_blkaddr, 1)) 748 sync_inode_page(dn); 749 } 750 751 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 752 pgoff_t fofs, block_t blkaddr, unsigned int len) 753 754 { 755 if (!f2fs_may_extent_tree(dn->inode)) 756 return; 757 758 if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len)) 759 sync_inode_page(dn); 760 } 761 762 void init_extent_cache_info(struct f2fs_sb_info *sbi) 763 { 764 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO); 765 init_rwsem(&sbi->extent_tree_lock); 766 INIT_LIST_HEAD(&sbi->extent_list); 767 spin_lock_init(&sbi->extent_lock); 768 sbi->total_ext_tree = 0; 769 atomic_set(&sbi->total_ext_node, 0); 770 } 771 772 int __init create_extent_cache(void) 773 { 774 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", 775 sizeof(struct extent_tree)); 776 if (!extent_tree_slab) 777 return -ENOMEM; 778 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", 779 sizeof(struct extent_node)); 780 if (!extent_node_slab) { 781 kmem_cache_destroy(extent_tree_slab); 782 return -ENOMEM; 783 } 784 return 0; 785 } 786 787 void destroy_extent_cache(void) 788 { 789 kmem_cache_destroy(extent_node_slab); 790 kmem_cache_destroy(extent_tree_slab); 791 } 792