1 /* 2 * f2fs extent cache support 3 * 4 * Copyright (c) 2015 Motorola Mobility 5 * Copyright (c) 2015 Samsung Electronics 6 * Authors: Jaegeuk Kim <jaegeuk@kernel.org> 7 * Chao Yu <chao2.yu@samsung.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/f2fs_fs.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include <trace/events/f2fs.h> 20 21 static struct kmem_cache *extent_tree_slab; 22 static struct kmem_cache *extent_node_slab; 23 24 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, 25 struct extent_tree *et, struct extent_info *ei, 26 struct rb_node *parent, struct rb_node **p) 27 { 28 struct extent_node *en; 29 30 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC); 31 if (!en) 32 return NULL; 33 34 en->ei = *ei; 35 INIT_LIST_HEAD(&en->list); 36 37 rb_link_node(&en->rb_node, parent, p); 38 rb_insert_color(&en->rb_node, &et->root); 39 atomic_inc(&et->node_cnt); 40 atomic_inc(&sbi->total_ext_node); 41 return en; 42 } 43 44 static void __detach_extent_node(struct f2fs_sb_info *sbi, 45 struct extent_tree *et, struct extent_node *en) 46 { 47 rb_erase(&en->rb_node, &et->root); 48 atomic_dec(&et->node_cnt); 49 atomic_dec(&sbi->total_ext_node); 50 51 if (et->cached_en == en) 52 et->cached_en = NULL; 53 } 54 55 static struct extent_tree *__grab_extent_tree(struct inode *inode) 56 { 57 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 58 struct extent_tree *et; 59 nid_t ino = inode->i_ino; 60 61 down_write(&sbi->extent_tree_lock); 62 et = radix_tree_lookup(&sbi->extent_tree_root, ino); 63 if (!et) { 64 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS); 65 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et); 66 memset(et, 0, sizeof(struct extent_tree)); 67 et->ino = ino; 68 et->root = RB_ROOT; 69 et->cached_en = NULL; 70 rwlock_init(&et->lock); 71 INIT_LIST_HEAD(&et->list); 72 atomic_set(&et->node_cnt, 0); 73 atomic_inc(&sbi->total_ext_tree); 74 } else { 75 atomic_dec(&sbi->total_zombie_tree); 76 list_del_init(&et->list); 77 } 78 up_write(&sbi->extent_tree_lock); 79 80 /* never died until evict_inode */ 81 F2FS_I(inode)->extent_tree = et; 82 83 return et; 84 } 85 86 static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi, 87 struct extent_tree *et, unsigned int fofs) 88 { 89 struct rb_node *node = et->root.rb_node; 90 struct extent_node *en = et->cached_en; 91 92 if (en) { 93 struct extent_info *cei = &en->ei; 94 95 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) { 96 stat_inc_cached_node_hit(sbi); 97 return en; 98 } 99 } 100 101 while (node) { 102 en = rb_entry(node, struct extent_node, rb_node); 103 104 if (fofs < en->ei.fofs) { 105 node = node->rb_left; 106 } else if (fofs >= en->ei.fofs + en->ei.len) { 107 node = node->rb_right; 108 } else { 109 stat_inc_rbtree_node_hit(sbi); 110 return en; 111 } 112 } 113 return NULL; 114 } 115 116 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi, 117 struct extent_tree *et, struct extent_info *ei) 118 { 119 struct rb_node **p = &et->root.rb_node; 120 struct extent_node *en; 121 122 en = __attach_extent_node(sbi, et, ei, NULL, p); 123 if (!en) 124 return NULL; 125 126 et->largest = en->ei; 127 et->cached_en = en; 128 return en; 129 } 130 131 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, 132 struct extent_tree *et, bool free_all) 133 { 134 struct rb_node *node, *next; 135 struct extent_node *en; 136 unsigned int count = atomic_read(&et->node_cnt); 137 138 node = rb_first(&et->root); 139 while (node) { 140 next = rb_next(node); 141 en = rb_entry(node, struct extent_node, rb_node); 142 143 if (free_all) { 144 spin_lock(&sbi->extent_lock); 145 if (!list_empty(&en->list)) 146 list_del_init(&en->list); 147 spin_unlock(&sbi->extent_lock); 148 } 149 150 if (free_all || list_empty(&en->list)) { 151 __detach_extent_node(sbi, et, en); 152 kmem_cache_free(extent_node_slab, en); 153 } 154 node = next; 155 } 156 157 return count - atomic_read(&et->node_cnt); 158 } 159 160 static void __drop_largest_extent(struct inode *inode, 161 pgoff_t fofs, unsigned int len) 162 { 163 struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest; 164 165 if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs) 166 largest->len = 0; 167 } 168 169 /* return true, if inode page is changed */ 170 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext) 171 { 172 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 173 struct extent_tree *et; 174 struct extent_node *en; 175 struct extent_info ei; 176 177 if (!f2fs_may_extent_tree(inode)) { 178 /* drop largest extent */ 179 if (i_ext && i_ext->len) { 180 i_ext->len = 0; 181 return true; 182 } 183 return false; 184 } 185 186 et = __grab_extent_tree(inode); 187 188 if (!i_ext || !i_ext->len) 189 return false; 190 191 set_extent_info(&ei, le32_to_cpu(i_ext->fofs), 192 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len)); 193 194 write_lock(&et->lock); 195 if (atomic_read(&et->node_cnt)) 196 goto out; 197 198 en = __init_extent_tree(sbi, et, &ei); 199 if (en) { 200 spin_lock(&sbi->extent_lock); 201 list_add_tail(&en->list, &sbi->extent_list); 202 spin_unlock(&sbi->extent_lock); 203 } 204 out: 205 write_unlock(&et->lock); 206 return false; 207 } 208 209 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs, 210 struct extent_info *ei) 211 { 212 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 213 struct extent_tree *et = F2FS_I(inode)->extent_tree; 214 struct extent_node *en; 215 bool ret = false; 216 217 f2fs_bug_on(sbi, !et); 218 219 trace_f2fs_lookup_extent_tree_start(inode, pgofs); 220 221 read_lock(&et->lock); 222 223 if (et->largest.fofs <= pgofs && 224 et->largest.fofs + et->largest.len > pgofs) { 225 *ei = et->largest; 226 ret = true; 227 stat_inc_largest_node_hit(sbi); 228 goto out; 229 } 230 231 en = __lookup_extent_tree(sbi, et, pgofs); 232 if (en) { 233 *ei = en->ei; 234 spin_lock(&sbi->extent_lock); 235 if (!list_empty(&en->list)) 236 list_move_tail(&en->list, &sbi->extent_list); 237 et->cached_en = en; 238 spin_unlock(&sbi->extent_lock); 239 ret = true; 240 } 241 out: 242 stat_inc_total_hit(sbi); 243 read_unlock(&et->lock); 244 245 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei); 246 return ret; 247 } 248 249 250 /* 251 * lookup extent at @fofs, if hit, return the extent 252 * if not, return NULL and 253 * @prev_ex: extent before fofs 254 * @next_ex: extent after fofs 255 * @insert_p: insert point for new extent at fofs 256 * in order to simpfy the insertion after. 257 * tree must stay unchanged between lookup and insertion. 258 */ 259 static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et, 260 unsigned int fofs, 261 struct extent_node **prev_ex, 262 struct extent_node **next_ex, 263 struct rb_node ***insert_p, 264 struct rb_node **insert_parent) 265 { 266 struct rb_node **pnode = &et->root.rb_node; 267 struct rb_node *parent = NULL, *tmp_node; 268 struct extent_node *en = et->cached_en; 269 270 *insert_p = NULL; 271 *insert_parent = NULL; 272 *prev_ex = NULL; 273 *next_ex = NULL; 274 275 if (RB_EMPTY_ROOT(&et->root)) 276 return NULL; 277 278 if (en) { 279 struct extent_info *cei = &en->ei; 280 281 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) 282 goto lookup_neighbors; 283 } 284 285 while (*pnode) { 286 parent = *pnode; 287 en = rb_entry(*pnode, struct extent_node, rb_node); 288 289 if (fofs < en->ei.fofs) 290 pnode = &(*pnode)->rb_left; 291 else if (fofs >= en->ei.fofs + en->ei.len) 292 pnode = &(*pnode)->rb_right; 293 else 294 goto lookup_neighbors; 295 } 296 297 *insert_p = pnode; 298 *insert_parent = parent; 299 300 en = rb_entry(parent, struct extent_node, rb_node); 301 tmp_node = parent; 302 if (parent && fofs > en->ei.fofs) 303 tmp_node = rb_next(parent); 304 *next_ex = tmp_node ? 305 rb_entry(tmp_node, struct extent_node, rb_node) : NULL; 306 307 tmp_node = parent; 308 if (parent && fofs < en->ei.fofs) 309 tmp_node = rb_prev(parent); 310 *prev_ex = tmp_node ? 311 rb_entry(tmp_node, struct extent_node, rb_node) : NULL; 312 return NULL; 313 314 lookup_neighbors: 315 if (fofs == en->ei.fofs) { 316 /* lookup prev node for merging backward later */ 317 tmp_node = rb_prev(&en->rb_node); 318 *prev_ex = tmp_node ? 319 rb_entry(tmp_node, struct extent_node, rb_node) : NULL; 320 } 321 if (fofs == en->ei.fofs + en->ei.len - 1) { 322 /* lookup next node for merging frontward later */ 323 tmp_node = rb_next(&en->rb_node); 324 *next_ex = tmp_node ? 325 rb_entry(tmp_node, struct extent_node, rb_node) : NULL; 326 } 327 return en; 328 } 329 330 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi, 331 struct extent_tree *et, struct extent_info *ei, 332 struct extent_node **den, 333 struct extent_node *prev_ex, 334 struct extent_node *next_ex) 335 { 336 struct extent_node *en = NULL; 337 338 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) { 339 prev_ex->ei.len += ei->len; 340 ei = &prev_ex->ei; 341 en = prev_ex; 342 } 343 344 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) { 345 if (en) { 346 __detach_extent_node(sbi, et, prev_ex); 347 *den = prev_ex; 348 } 349 next_ex->ei.fofs = ei->fofs; 350 next_ex->ei.blk = ei->blk; 351 next_ex->ei.len += ei->len; 352 en = next_ex; 353 } 354 355 if (en) { 356 __try_update_largest_extent(et, en); 357 et->cached_en = en; 358 } 359 return en; 360 } 361 362 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi, 363 struct extent_tree *et, struct extent_info *ei, 364 struct rb_node **insert_p, 365 struct rb_node *insert_parent) 366 { 367 struct rb_node **p = &et->root.rb_node; 368 struct rb_node *parent = NULL; 369 struct extent_node *en = NULL; 370 371 if (insert_p && insert_parent) { 372 parent = insert_parent; 373 p = insert_p; 374 goto do_insert; 375 } 376 377 while (*p) { 378 parent = *p; 379 en = rb_entry(parent, struct extent_node, rb_node); 380 381 if (ei->fofs < en->ei.fofs) 382 p = &(*p)->rb_left; 383 else if (ei->fofs >= en->ei.fofs + en->ei.len) 384 p = &(*p)->rb_right; 385 else 386 f2fs_bug_on(sbi, 1); 387 } 388 do_insert: 389 en = __attach_extent_node(sbi, et, ei, parent, p); 390 if (!en) 391 return NULL; 392 393 __try_update_largest_extent(et, en); 394 et->cached_en = en; 395 return en; 396 } 397 398 static unsigned int f2fs_update_extent_tree_range(struct inode *inode, 399 pgoff_t fofs, block_t blkaddr, unsigned int len) 400 { 401 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 402 struct extent_tree *et = F2FS_I(inode)->extent_tree; 403 struct extent_node *en = NULL, *en1 = NULL; 404 struct extent_node *prev_en = NULL, *next_en = NULL; 405 struct extent_info ei, dei, prev; 406 struct rb_node **insert_p = NULL, *insert_parent = NULL; 407 unsigned int end = fofs + len; 408 unsigned int pos = (unsigned int)fofs; 409 410 if (!et) 411 return false; 412 413 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len); 414 415 write_lock(&et->lock); 416 417 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) { 418 write_unlock(&et->lock); 419 return false; 420 } 421 422 prev = et->largest; 423 dei.len = 0; 424 425 /* 426 * drop largest extent before lookup, in case it's already 427 * been shrunk from extent tree 428 */ 429 __drop_largest_extent(inode, fofs, len); 430 431 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */ 432 en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en, 433 &insert_p, &insert_parent); 434 if (!en) 435 en = next_en; 436 437 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */ 438 while (en && en->ei.fofs < end) { 439 unsigned int org_end; 440 int parts = 0; /* # of parts current extent split into */ 441 442 next_en = en1 = NULL; 443 444 dei = en->ei; 445 org_end = dei.fofs + dei.len; 446 f2fs_bug_on(sbi, pos >= org_end); 447 448 if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) { 449 en->ei.len = pos - en->ei.fofs; 450 prev_en = en; 451 parts = 1; 452 } 453 454 if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) { 455 if (parts) { 456 set_extent_info(&ei, end, 457 end - dei.fofs + dei.blk, 458 org_end - end); 459 en1 = __insert_extent_tree(sbi, et, &ei, 460 NULL, NULL); 461 next_en = en1; 462 } else { 463 en->ei.fofs = end; 464 en->ei.blk += end - dei.fofs; 465 en->ei.len -= end - dei.fofs; 466 next_en = en; 467 } 468 parts++; 469 } 470 471 if (!next_en) { 472 struct rb_node *node = rb_next(&en->rb_node); 473 474 next_en = node ? 475 rb_entry(node, struct extent_node, rb_node) 476 : NULL; 477 } 478 479 if (parts) 480 __try_update_largest_extent(et, en); 481 else 482 __detach_extent_node(sbi, et, en); 483 484 /* 485 * if original extent is split into zero or two parts, extent 486 * tree has been altered by deletion or insertion, therefore 487 * invalidate pointers regard to tree. 488 */ 489 if (parts != 1) { 490 insert_p = NULL; 491 insert_parent = NULL; 492 } 493 494 /* update in global extent list */ 495 spin_lock(&sbi->extent_lock); 496 if (!parts && !list_empty(&en->list)) 497 list_del(&en->list); 498 if (en1) 499 list_add_tail(&en1->list, &sbi->extent_list); 500 spin_unlock(&sbi->extent_lock); 501 502 /* release extent node */ 503 if (!parts) 504 kmem_cache_free(extent_node_slab, en); 505 506 en = next_en; 507 } 508 509 /* 3. update extent in extent cache */ 510 if (blkaddr) { 511 struct extent_node *den = NULL; 512 513 set_extent_info(&ei, fofs, blkaddr, len); 514 en1 = __try_merge_extent_node(sbi, et, &ei, &den, 515 prev_en, next_en); 516 if (!en1) 517 en1 = __insert_extent_tree(sbi, et, &ei, 518 insert_p, insert_parent); 519 520 /* give up extent_cache, if split and small updates happen */ 521 if (dei.len >= 1 && 522 prev.len < F2FS_MIN_EXTENT_LEN && 523 et->largest.len < F2FS_MIN_EXTENT_LEN) { 524 et->largest.len = 0; 525 set_inode_flag(F2FS_I(inode), FI_NO_EXTENT); 526 } 527 528 spin_lock(&sbi->extent_lock); 529 if (en1) { 530 if (list_empty(&en1->list)) 531 list_add_tail(&en1->list, &sbi->extent_list); 532 else 533 list_move_tail(&en1->list, &sbi->extent_list); 534 } 535 if (den && !list_empty(&den->list)) 536 list_del(&den->list); 537 spin_unlock(&sbi->extent_lock); 538 539 if (den) 540 kmem_cache_free(extent_node_slab, den); 541 } 542 543 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) 544 __free_extent_tree(sbi, et, true); 545 546 write_unlock(&et->lock); 547 548 return !__is_extent_same(&prev, &et->largest); 549 } 550 551 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) 552 { 553 struct extent_tree *treevec[EXT_TREE_VEC_SIZE]; 554 struct extent_tree *et, *next; 555 struct extent_node *en, *tmp; 556 unsigned long ino = F2FS_ROOT_INO(sbi); 557 unsigned int found; 558 unsigned int node_cnt = 0, tree_cnt = 0; 559 int remained; 560 bool do_free = false; 561 562 if (!test_opt(sbi, EXTENT_CACHE)) 563 return 0; 564 565 if (!atomic_read(&sbi->total_zombie_tree)) 566 goto free_node; 567 568 if (!down_write_trylock(&sbi->extent_tree_lock)) 569 goto out; 570 571 /* 1. remove unreferenced extent tree */ 572 list_for_each_entry_safe(et, next, &sbi->zombie_list, list) { 573 if (atomic_read(&et->node_cnt)) { 574 write_lock(&et->lock); 575 node_cnt += __free_extent_tree(sbi, et, true); 576 write_unlock(&et->lock); 577 } 578 579 list_del_init(&et->list); 580 radix_tree_delete(&sbi->extent_tree_root, et->ino); 581 kmem_cache_free(extent_tree_slab, et); 582 atomic_dec(&sbi->total_ext_tree); 583 atomic_dec(&sbi->total_zombie_tree); 584 tree_cnt++; 585 586 if (node_cnt + tree_cnt >= nr_shrink) 587 goto unlock_out; 588 } 589 up_write(&sbi->extent_tree_lock); 590 591 free_node: 592 /* 2. remove LRU extent entries */ 593 if (!down_write_trylock(&sbi->extent_tree_lock)) 594 goto out; 595 596 remained = nr_shrink - (node_cnt + tree_cnt); 597 598 spin_lock(&sbi->extent_lock); 599 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) { 600 if (!remained--) 601 break; 602 list_del_init(&en->list); 603 do_free = true; 604 } 605 spin_unlock(&sbi->extent_lock); 606 607 if (do_free == false) 608 goto unlock_out; 609 610 /* 611 * reset ino for searching victims from beginning of global extent tree. 612 */ 613 ino = F2FS_ROOT_INO(sbi); 614 615 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root, 616 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) { 617 unsigned i; 618 619 ino = treevec[found - 1]->ino + 1; 620 for (i = 0; i < found; i++) { 621 struct extent_tree *et = treevec[i]; 622 623 if (!atomic_read(&et->node_cnt)) 624 continue; 625 626 if (write_trylock(&et->lock)) { 627 node_cnt += __free_extent_tree(sbi, et, false); 628 write_unlock(&et->lock); 629 } 630 631 if (node_cnt + tree_cnt >= nr_shrink) 632 goto unlock_out; 633 } 634 } 635 unlock_out: 636 up_write(&sbi->extent_tree_lock); 637 out: 638 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt); 639 640 return node_cnt + tree_cnt; 641 } 642 643 unsigned int f2fs_destroy_extent_node(struct inode *inode) 644 { 645 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 646 struct extent_tree *et = F2FS_I(inode)->extent_tree; 647 unsigned int node_cnt = 0; 648 649 if (!et || !atomic_read(&et->node_cnt)) 650 return 0; 651 652 write_lock(&et->lock); 653 node_cnt = __free_extent_tree(sbi, et, true); 654 write_unlock(&et->lock); 655 656 return node_cnt; 657 } 658 659 void f2fs_destroy_extent_tree(struct inode *inode) 660 { 661 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 662 struct extent_tree *et = F2FS_I(inode)->extent_tree; 663 unsigned int node_cnt = 0; 664 665 if (!et) 666 return; 667 668 if (inode->i_nlink && !is_bad_inode(inode) && 669 atomic_read(&et->node_cnt)) { 670 down_write(&sbi->extent_tree_lock); 671 list_add_tail(&et->list, &sbi->zombie_list); 672 atomic_inc(&sbi->total_zombie_tree); 673 up_write(&sbi->extent_tree_lock); 674 return; 675 } 676 677 /* free all extent info belong to this extent tree */ 678 node_cnt = f2fs_destroy_extent_node(inode); 679 680 /* delete extent tree entry in radix tree */ 681 down_write(&sbi->extent_tree_lock); 682 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 683 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino); 684 kmem_cache_free(extent_tree_slab, et); 685 atomic_dec(&sbi->total_ext_tree); 686 up_write(&sbi->extent_tree_lock); 687 688 F2FS_I(inode)->extent_tree = NULL; 689 690 trace_f2fs_destroy_extent_tree(inode, node_cnt); 691 } 692 693 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 694 struct extent_info *ei) 695 { 696 if (!f2fs_may_extent_tree(inode)) 697 return false; 698 699 return f2fs_lookup_extent_tree(inode, pgofs, ei); 700 } 701 702 void f2fs_update_extent_cache(struct dnode_of_data *dn) 703 { 704 struct f2fs_inode_info *fi = F2FS_I(dn->inode); 705 pgoff_t fofs; 706 707 if (!f2fs_may_extent_tree(dn->inode)) 708 return; 709 710 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR); 711 712 713 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) + 714 dn->ofs_in_node; 715 716 if (f2fs_update_extent_tree_range(dn->inode, fofs, dn->data_blkaddr, 1)) 717 sync_inode_page(dn); 718 } 719 720 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 721 pgoff_t fofs, block_t blkaddr, unsigned int len) 722 723 { 724 if (!f2fs_may_extent_tree(dn->inode)) 725 return; 726 727 if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len)) 728 sync_inode_page(dn); 729 } 730 731 void init_extent_cache_info(struct f2fs_sb_info *sbi) 732 { 733 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO); 734 init_rwsem(&sbi->extent_tree_lock); 735 INIT_LIST_HEAD(&sbi->extent_list); 736 spin_lock_init(&sbi->extent_lock); 737 atomic_set(&sbi->total_ext_tree, 0); 738 INIT_LIST_HEAD(&sbi->zombie_list); 739 atomic_set(&sbi->total_zombie_tree, 0); 740 atomic_set(&sbi->total_ext_node, 0); 741 } 742 743 int __init create_extent_cache(void) 744 { 745 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", 746 sizeof(struct extent_tree)); 747 if (!extent_tree_slab) 748 return -ENOMEM; 749 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", 750 sizeof(struct extent_node)); 751 if (!extent_node_slab) { 752 kmem_cache_destroy(extent_tree_slab); 753 return -ENOMEM; 754 } 755 return 0; 756 } 757 758 void destroy_extent_cache(void) 759 { 760 kmem_cache_destroy(extent_node_slab); 761 kmem_cache_destroy(extent_tree_slab); 762 } 763