1 /* 2 * f2fs extent cache support 3 * 4 * Copyright (c) 2015 Motorola Mobility 5 * Copyright (c) 2015 Samsung Electronics 6 * Authors: Jaegeuk Kim <jaegeuk@kernel.org> 7 * Chao Yu <chao2.yu@samsung.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/f2fs_fs.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include <trace/events/f2fs.h> 20 21 static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re, 22 unsigned int ofs) 23 { 24 if (cached_re) { 25 if (cached_re->ofs <= ofs && 26 cached_re->ofs + cached_re->len > ofs) { 27 return cached_re; 28 } 29 } 30 return NULL; 31 } 32 33 static struct rb_entry *__lookup_rb_tree_slow(struct rb_root *root, 34 unsigned int ofs) 35 { 36 struct rb_node *node = root->rb_node; 37 struct rb_entry *re; 38 39 while (node) { 40 re = rb_entry(node, struct rb_entry, rb_node); 41 42 if (ofs < re->ofs) 43 node = node->rb_left; 44 else if (ofs >= re->ofs + re->len) 45 node = node->rb_right; 46 else 47 return re; 48 } 49 return NULL; 50 } 51 52 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 53 struct rb_entry *cached_re, unsigned int ofs) 54 { 55 struct rb_entry *re; 56 57 re = __lookup_rb_tree_fast(cached_re, ofs); 58 if (!re) 59 return __lookup_rb_tree_slow(root, ofs); 60 61 return re; 62 } 63 64 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 65 struct rb_root *root, struct rb_node **parent, 66 unsigned int ofs) 67 { 68 struct rb_node **p = &root->rb_node; 69 struct rb_entry *re; 70 71 while (*p) { 72 *parent = *p; 73 re = rb_entry(*parent, struct rb_entry, rb_node); 74 75 if (ofs < re->ofs) 76 p = &(*p)->rb_left; 77 else if (ofs >= re->ofs + re->len) 78 p = &(*p)->rb_right; 79 else 80 f2fs_bug_on(sbi, 1); 81 } 82 83 return p; 84 } 85 86 /* 87 * lookup rb entry in position of @ofs in rb-tree, 88 * if hit, return the entry, otherwise, return NULL 89 * @prev_ex: extent before ofs 90 * @next_ex: extent after ofs 91 * @insert_p: insert point for new extent at ofs 92 * in order to simpfy the insertion after. 93 * tree must stay unchanged between lookup and insertion. 94 */ 95 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 96 struct rb_entry *cached_re, 97 unsigned int ofs, 98 struct rb_entry **prev_entry, 99 struct rb_entry **next_entry, 100 struct rb_node ***insert_p, 101 struct rb_node **insert_parent, 102 bool force) 103 { 104 struct rb_node **pnode = &root->rb_node; 105 struct rb_node *parent = NULL, *tmp_node; 106 struct rb_entry *re = cached_re; 107 108 *insert_p = NULL; 109 *insert_parent = NULL; 110 *prev_entry = NULL; 111 *next_entry = NULL; 112 113 if (RB_EMPTY_ROOT(root)) 114 return NULL; 115 116 if (re) { 117 if (re->ofs <= ofs && re->ofs + re->len > ofs) 118 goto lookup_neighbors; 119 } 120 121 while (*pnode) { 122 parent = *pnode; 123 re = rb_entry(*pnode, struct rb_entry, rb_node); 124 125 if (ofs < re->ofs) 126 pnode = &(*pnode)->rb_left; 127 else if (ofs >= re->ofs + re->len) 128 pnode = &(*pnode)->rb_right; 129 else 130 goto lookup_neighbors; 131 } 132 133 *insert_p = pnode; 134 *insert_parent = parent; 135 136 re = rb_entry(parent, struct rb_entry, rb_node); 137 tmp_node = parent; 138 if (parent && ofs > re->ofs) 139 tmp_node = rb_next(parent); 140 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 141 142 tmp_node = parent; 143 if (parent && ofs < re->ofs) 144 tmp_node = rb_prev(parent); 145 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 146 return NULL; 147 148 lookup_neighbors: 149 if (ofs == re->ofs || force) { 150 /* lookup prev node for merging backward later */ 151 tmp_node = rb_prev(&re->rb_node); 152 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 153 } 154 if (ofs == re->ofs + re->len - 1 || force) { 155 /* lookup next node for merging frontward later */ 156 tmp_node = rb_next(&re->rb_node); 157 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 158 } 159 return re; 160 } 161 162 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 163 struct rb_root *root) 164 { 165 #ifdef CONFIG_F2FS_CHECK_FS 166 struct rb_node *cur = rb_first(root), *next; 167 struct rb_entry *cur_re, *next_re; 168 169 if (!cur) 170 return true; 171 172 while (cur) { 173 next = rb_next(cur); 174 if (!next) 175 return true; 176 177 cur_re = rb_entry(cur, struct rb_entry, rb_node); 178 next_re = rb_entry(next, struct rb_entry, rb_node); 179 180 if (cur_re->ofs + cur_re->len > next_re->ofs) { 181 f2fs_msg(sbi->sb, KERN_INFO, "inconsistent rbtree, " 182 "cur(%u, %u) next(%u, %u)", 183 cur_re->ofs, cur_re->len, 184 next_re->ofs, next_re->len); 185 return false; 186 } 187 188 cur = next; 189 } 190 #endif 191 return true; 192 } 193 194 static struct kmem_cache *extent_tree_slab; 195 static struct kmem_cache *extent_node_slab; 196 197 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, 198 struct extent_tree *et, struct extent_info *ei, 199 struct rb_node *parent, struct rb_node **p) 200 { 201 struct extent_node *en; 202 203 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC); 204 if (!en) 205 return NULL; 206 207 en->ei = *ei; 208 INIT_LIST_HEAD(&en->list); 209 en->et = et; 210 211 rb_link_node(&en->rb_node, parent, p); 212 rb_insert_color(&en->rb_node, &et->root); 213 atomic_inc(&et->node_cnt); 214 atomic_inc(&sbi->total_ext_node); 215 return en; 216 } 217 218 static void __detach_extent_node(struct f2fs_sb_info *sbi, 219 struct extent_tree *et, struct extent_node *en) 220 { 221 rb_erase(&en->rb_node, &et->root); 222 atomic_dec(&et->node_cnt); 223 atomic_dec(&sbi->total_ext_node); 224 225 if (et->cached_en == en) 226 et->cached_en = NULL; 227 kmem_cache_free(extent_node_slab, en); 228 } 229 230 /* 231 * Flow to release an extent_node: 232 * 1. list_del_init 233 * 2. __detach_extent_node 234 * 3. kmem_cache_free. 235 */ 236 static void __release_extent_node(struct f2fs_sb_info *sbi, 237 struct extent_tree *et, struct extent_node *en) 238 { 239 spin_lock(&sbi->extent_lock); 240 f2fs_bug_on(sbi, list_empty(&en->list)); 241 list_del_init(&en->list); 242 spin_unlock(&sbi->extent_lock); 243 244 __detach_extent_node(sbi, et, en); 245 } 246 247 static struct extent_tree *__grab_extent_tree(struct inode *inode) 248 { 249 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 250 struct extent_tree *et; 251 nid_t ino = inode->i_ino; 252 253 mutex_lock(&sbi->extent_tree_lock); 254 et = radix_tree_lookup(&sbi->extent_tree_root, ino); 255 if (!et) { 256 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS); 257 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et); 258 memset(et, 0, sizeof(struct extent_tree)); 259 et->ino = ino; 260 et->root = RB_ROOT; 261 et->cached_en = NULL; 262 rwlock_init(&et->lock); 263 INIT_LIST_HEAD(&et->list); 264 atomic_set(&et->node_cnt, 0); 265 atomic_inc(&sbi->total_ext_tree); 266 } else { 267 atomic_dec(&sbi->total_zombie_tree); 268 list_del_init(&et->list); 269 } 270 mutex_unlock(&sbi->extent_tree_lock); 271 272 /* never died until evict_inode */ 273 F2FS_I(inode)->extent_tree = et; 274 275 return et; 276 } 277 278 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi, 279 struct extent_tree *et, struct extent_info *ei) 280 { 281 struct rb_node **p = &et->root.rb_node; 282 struct extent_node *en; 283 284 en = __attach_extent_node(sbi, et, ei, NULL, p); 285 if (!en) 286 return NULL; 287 288 et->largest = en->ei; 289 et->cached_en = en; 290 return en; 291 } 292 293 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, 294 struct extent_tree *et) 295 { 296 struct rb_node *node, *next; 297 struct extent_node *en; 298 unsigned int count = atomic_read(&et->node_cnt); 299 300 node = rb_first(&et->root); 301 while (node) { 302 next = rb_next(node); 303 en = rb_entry(node, struct extent_node, rb_node); 304 __release_extent_node(sbi, et, en); 305 node = next; 306 } 307 308 return count - atomic_read(&et->node_cnt); 309 } 310 311 static void __drop_largest_extent(struct inode *inode, 312 pgoff_t fofs, unsigned int len) 313 { 314 struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest; 315 316 if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs) { 317 largest->len = 0; 318 f2fs_mark_inode_dirty_sync(inode, true); 319 } 320 } 321 322 /* return true, if inode page is changed */ 323 static bool __f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext) 324 { 325 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 326 struct extent_tree *et; 327 struct extent_node *en; 328 struct extent_info ei; 329 330 if (!f2fs_may_extent_tree(inode)) { 331 /* drop largest extent */ 332 if (i_ext && i_ext->len) { 333 i_ext->len = 0; 334 return true; 335 } 336 return false; 337 } 338 339 et = __grab_extent_tree(inode); 340 341 if (!i_ext || !i_ext->len) 342 return false; 343 344 get_extent_info(&ei, i_ext); 345 346 write_lock(&et->lock); 347 if (atomic_read(&et->node_cnt)) 348 goto out; 349 350 en = __init_extent_tree(sbi, et, &ei); 351 if (en) { 352 spin_lock(&sbi->extent_lock); 353 list_add_tail(&en->list, &sbi->extent_list); 354 spin_unlock(&sbi->extent_lock); 355 } 356 out: 357 write_unlock(&et->lock); 358 return false; 359 } 360 361 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext) 362 { 363 bool ret = __f2fs_init_extent_tree(inode, i_ext); 364 365 if (!F2FS_I(inode)->extent_tree) 366 set_inode_flag(inode, FI_NO_EXTENT); 367 368 return ret; 369 } 370 371 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs, 372 struct extent_info *ei) 373 { 374 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 375 struct extent_tree *et = F2FS_I(inode)->extent_tree; 376 struct extent_node *en; 377 bool ret = false; 378 379 f2fs_bug_on(sbi, !et); 380 381 trace_f2fs_lookup_extent_tree_start(inode, pgofs); 382 383 read_lock(&et->lock); 384 385 if (et->largest.fofs <= pgofs && 386 et->largest.fofs + et->largest.len > pgofs) { 387 *ei = et->largest; 388 ret = true; 389 stat_inc_largest_node_hit(sbi); 390 goto out; 391 } 392 393 en = (struct extent_node *)__lookup_rb_tree(&et->root, 394 (struct rb_entry *)et->cached_en, pgofs); 395 if (!en) 396 goto out; 397 398 if (en == et->cached_en) 399 stat_inc_cached_node_hit(sbi); 400 else 401 stat_inc_rbtree_node_hit(sbi); 402 403 *ei = en->ei; 404 spin_lock(&sbi->extent_lock); 405 if (!list_empty(&en->list)) { 406 list_move_tail(&en->list, &sbi->extent_list); 407 et->cached_en = en; 408 } 409 spin_unlock(&sbi->extent_lock); 410 ret = true; 411 out: 412 stat_inc_total_hit(sbi); 413 read_unlock(&et->lock); 414 415 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei); 416 return ret; 417 } 418 419 static struct extent_node *__try_merge_extent_node(struct inode *inode, 420 struct extent_tree *et, struct extent_info *ei, 421 struct extent_node *prev_ex, 422 struct extent_node *next_ex) 423 { 424 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 425 struct extent_node *en = NULL; 426 427 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) { 428 prev_ex->ei.len += ei->len; 429 ei = &prev_ex->ei; 430 en = prev_ex; 431 } 432 433 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) { 434 next_ex->ei.fofs = ei->fofs; 435 next_ex->ei.blk = ei->blk; 436 next_ex->ei.len += ei->len; 437 if (en) 438 __release_extent_node(sbi, et, prev_ex); 439 440 en = next_ex; 441 } 442 443 if (!en) 444 return NULL; 445 446 __try_update_largest_extent(inode, et, en); 447 448 spin_lock(&sbi->extent_lock); 449 if (!list_empty(&en->list)) { 450 list_move_tail(&en->list, &sbi->extent_list); 451 et->cached_en = en; 452 } 453 spin_unlock(&sbi->extent_lock); 454 return en; 455 } 456 457 static struct extent_node *__insert_extent_tree(struct inode *inode, 458 struct extent_tree *et, struct extent_info *ei, 459 struct rb_node **insert_p, 460 struct rb_node *insert_parent) 461 { 462 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 463 struct rb_node **p = &et->root.rb_node; 464 struct rb_node *parent = NULL; 465 struct extent_node *en = NULL; 466 467 if (insert_p && insert_parent) { 468 parent = insert_parent; 469 p = insert_p; 470 goto do_insert; 471 } 472 473 p = __lookup_rb_tree_for_insert(sbi, &et->root, &parent, ei->fofs); 474 do_insert: 475 en = __attach_extent_node(sbi, et, ei, parent, p); 476 if (!en) 477 return NULL; 478 479 __try_update_largest_extent(inode, et, en); 480 481 /* update in global extent list */ 482 spin_lock(&sbi->extent_lock); 483 list_add_tail(&en->list, &sbi->extent_list); 484 et->cached_en = en; 485 spin_unlock(&sbi->extent_lock); 486 return en; 487 } 488 489 static void f2fs_update_extent_tree_range(struct inode *inode, 490 pgoff_t fofs, block_t blkaddr, unsigned int len) 491 { 492 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 493 struct extent_tree *et = F2FS_I(inode)->extent_tree; 494 struct extent_node *en = NULL, *en1 = NULL; 495 struct extent_node *prev_en = NULL, *next_en = NULL; 496 struct extent_info ei, dei, prev; 497 struct rb_node **insert_p = NULL, *insert_parent = NULL; 498 unsigned int end = fofs + len; 499 unsigned int pos = (unsigned int)fofs; 500 501 if (!et) 502 return; 503 504 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len); 505 506 write_lock(&et->lock); 507 508 if (is_inode_flag_set(inode, FI_NO_EXTENT)) { 509 write_unlock(&et->lock); 510 return; 511 } 512 513 prev = et->largest; 514 dei.len = 0; 515 516 /* 517 * drop largest extent before lookup, in case it's already 518 * been shrunk from extent tree 519 */ 520 __drop_largest_extent(inode, fofs, len); 521 522 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */ 523 en = (struct extent_node *)__lookup_rb_tree_ret(&et->root, 524 (struct rb_entry *)et->cached_en, fofs, 525 (struct rb_entry **)&prev_en, 526 (struct rb_entry **)&next_en, 527 &insert_p, &insert_parent, false); 528 if (!en) 529 en = next_en; 530 531 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */ 532 while (en && en->ei.fofs < end) { 533 unsigned int org_end; 534 int parts = 0; /* # of parts current extent split into */ 535 536 next_en = en1 = NULL; 537 538 dei = en->ei; 539 org_end = dei.fofs + dei.len; 540 f2fs_bug_on(sbi, pos >= org_end); 541 542 if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) { 543 en->ei.len = pos - en->ei.fofs; 544 prev_en = en; 545 parts = 1; 546 } 547 548 if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) { 549 if (parts) { 550 set_extent_info(&ei, end, 551 end - dei.fofs + dei.blk, 552 org_end - end); 553 en1 = __insert_extent_tree(inode, et, &ei, 554 NULL, NULL); 555 next_en = en1; 556 } else { 557 en->ei.fofs = end; 558 en->ei.blk += end - dei.fofs; 559 en->ei.len -= end - dei.fofs; 560 next_en = en; 561 } 562 parts++; 563 } 564 565 if (!next_en) { 566 struct rb_node *node = rb_next(&en->rb_node); 567 568 next_en = rb_entry_safe(node, struct extent_node, 569 rb_node); 570 } 571 572 if (parts) 573 __try_update_largest_extent(inode, et, en); 574 else 575 __release_extent_node(sbi, et, en); 576 577 /* 578 * if original extent is split into zero or two parts, extent 579 * tree has been altered by deletion or insertion, therefore 580 * invalidate pointers regard to tree. 581 */ 582 if (parts != 1) { 583 insert_p = NULL; 584 insert_parent = NULL; 585 } 586 en = next_en; 587 } 588 589 /* 3. update extent in extent cache */ 590 if (blkaddr) { 591 592 set_extent_info(&ei, fofs, blkaddr, len); 593 if (!__try_merge_extent_node(inode, et, &ei, prev_en, next_en)) 594 __insert_extent_tree(inode, et, &ei, 595 insert_p, insert_parent); 596 597 /* give up extent_cache, if split and small updates happen */ 598 if (dei.len >= 1 && 599 prev.len < F2FS_MIN_EXTENT_LEN && 600 et->largest.len < F2FS_MIN_EXTENT_LEN) { 601 __drop_largest_extent(inode, 0, UINT_MAX); 602 set_inode_flag(inode, FI_NO_EXTENT); 603 } 604 } 605 606 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 607 __free_extent_tree(sbi, et); 608 609 write_unlock(&et->lock); 610 } 611 612 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) 613 { 614 struct extent_tree *et, *next; 615 struct extent_node *en; 616 unsigned int node_cnt = 0, tree_cnt = 0; 617 int remained; 618 619 if (!test_opt(sbi, EXTENT_CACHE)) 620 return 0; 621 622 if (!atomic_read(&sbi->total_zombie_tree)) 623 goto free_node; 624 625 if (!mutex_trylock(&sbi->extent_tree_lock)) 626 goto out; 627 628 /* 1. remove unreferenced extent tree */ 629 list_for_each_entry_safe(et, next, &sbi->zombie_list, list) { 630 if (atomic_read(&et->node_cnt)) { 631 write_lock(&et->lock); 632 node_cnt += __free_extent_tree(sbi, et); 633 write_unlock(&et->lock); 634 } 635 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 636 list_del_init(&et->list); 637 radix_tree_delete(&sbi->extent_tree_root, et->ino); 638 kmem_cache_free(extent_tree_slab, et); 639 atomic_dec(&sbi->total_ext_tree); 640 atomic_dec(&sbi->total_zombie_tree); 641 tree_cnt++; 642 643 if (node_cnt + tree_cnt >= nr_shrink) 644 goto unlock_out; 645 cond_resched(); 646 } 647 mutex_unlock(&sbi->extent_tree_lock); 648 649 free_node: 650 /* 2. remove LRU extent entries */ 651 if (!mutex_trylock(&sbi->extent_tree_lock)) 652 goto out; 653 654 remained = nr_shrink - (node_cnt + tree_cnt); 655 656 spin_lock(&sbi->extent_lock); 657 for (; remained > 0; remained--) { 658 if (list_empty(&sbi->extent_list)) 659 break; 660 en = list_first_entry(&sbi->extent_list, 661 struct extent_node, list); 662 et = en->et; 663 if (!write_trylock(&et->lock)) { 664 /* refresh this extent node's position in extent list */ 665 list_move_tail(&en->list, &sbi->extent_list); 666 continue; 667 } 668 669 list_del_init(&en->list); 670 spin_unlock(&sbi->extent_lock); 671 672 __detach_extent_node(sbi, et, en); 673 674 write_unlock(&et->lock); 675 node_cnt++; 676 spin_lock(&sbi->extent_lock); 677 } 678 spin_unlock(&sbi->extent_lock); 679 680 unlock_out: 681 mutex_unlock(&sbi->extent_tree_lock); 682 out: 683 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt); 684 685 return node_cnt + tree_cnt; 686 } 687 688 unsigned int f2fs_destroy_extent_node(struct inode *inode) 689 { 690 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 691 struct extent_tree *et = F2FS_I(inode)->extent_tree; 692 unsigned int node_cnt = 0; 693 694 if (!et || !atomic_read(&et->node_cnt)) 695 return 0; 696 697 write_lock(&et->lock); 698 node_cnt = __free_extent_tree(sbi, et); 699 write_unlock(&et->lock); 700 701 return node_cnt; 702 } 703 704 void f2fs_drop_extent_tree(struct inode *inode) 705 { 706 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 707 struct extent_tree *et = F2FS_I(inode)->extent_tree; 708 709 set_inode_flag(inode, FI_NO_EXTENT); 710 711 write_lock(&et->lock); 712 __free_extent_tree(sbi, et); 713 __drop_largest_extent(inode, 0, UINT_MAX); 714 write_unlock(&et->lock); 715 } 716 717 void f2fs_destroy_extent_tree(struct inode *inode) 718 { 719 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 720 struct extent_tree *et = F2FS_I(inode)->extent_tree; 721 unsigned int node_cnt = 0; 722 723 if (!et) 724 return; 725 726 if (inode->i_nlink && !is_bad_inode(inode) && 727 atomic_read(&et->node_cnt)) { 728 mutex_lock(&sbi->extent_tree_lock); 729 list_add_tail(&et->list, &sbi->zombie_list); 730 atomic_inc(&sbi->total_zombie_tree); 731 mutex_unlock(&sbi->extent_tree_lock); 732 return; 733 } 734 735 /* free all extent info belong to this extent tree */ 736 node_cnt = f2fs_destroy_extent_node(inode); 737 738 /* delete extent tree entry in radix tree */ 739 mutex_lock(&sbi->extent_tree_lock); 740 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 741 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino); 742 kmem_cache_free(extent_tree_slab, et); 743 atomic_dec(&sbi->total_ext_tree); 744 mutex_unlock(&sbi->extent_tree_lock); 745 746 F2FS_I(inode)->extent_tree = NULL; 747 748 trace_f2fs_destroy_extent_tree(inode, node_cnt); 749 } 750 751 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 752 struct extent_info *ei) 753 { 754 if (!f2fs_may_extent_tree(inode)) 755 return false; 756 757 return f2fs_lookup_extent_tree(inode, pgofs, ei); 758 } 759 760 void f2fs_update_extent_cache(struct dnode_of_data *dn) 761 { 762 pgoff_t fofs; 763 block_t blkaddr; 764 765 if (!f2fs_may_extent_tree(dn->inode)) 766 return; 767 768 if (dn->data_blkaddr == NEW_ADDR) 769 blkaddr = NULL_ADDR; 770 else 771 blkaddr = dn->data_blkaddr; 772 773 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 774 dn->ofs_in_node; 775 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1); 776 } 777 778 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 779 pgoff_t fofs, block_t blkaddr, unsigned int len) 780 781 { 782 if (!f2fs_may_extent_tree(dn->inode)) 783 return; 784 785 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len); 786 } 787 788 void init_extent_cache_info(struct f2fs_sb_info *sbi) 789 { 790 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO); 791 mutex_init(&sbi->extent_tree_lock); 792 INIT_LIST_HEAD(&sbi->extent_list); 793 spin_lock_init(&sbi->extent_lock); 794 atomic_set(&sbi->total_ext_tree, 0); 795 INIT_LIST_HEAD(&sbi->zombie_list); 796 atomic_set(&sbi->total_zombie_tree, 0); 797 atomic_set(&sbi->total_ext_node, 0); 798 } 799 800 int __init create_extent_cache(void) 801 { 802 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", 803 sizeof(struct extent_tree)); 804 if (!extent_tree_slab) 805 return -ENOMEM; 806 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", 807 sizeof(struct extent_node)); 808 if (!extent_node_slab) { 809 kmem_cache_destroy(extent_tree_slab); 810 return -ENOMEM; 811 } 812 return 0; 813 } 814 815 void destroy_extent_cache(void) 816 { 817 kmem_cache_destroy(extent_node_slab); 818 kmem_cache_destroy(extent_tree_slab); 819 } 820