1 /* 2 * f2fs extent cache support 3 * 4 * Copyright (c) 2015 Motorola Mobility 5 * Copyright (c) 2015 Samsung Electronics 6 * Authors: Jaegeuk Kim <jaegeuk@kernel.org> 7 * Chao Yu <chao2.yu@samsung.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/f2fs_fs.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include <trace/events/f2fs.h> 20 21 static struct kmem_cache *extent_tree_slab; 22 static struct kmem_cache *extent_node_slab; 23 24 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, 25 struct extent_tree *et, struct extent_info *ei, 26 struct rb_node *parent, struct rb_node **p) 27 { 28 struct extent_node *en; 29 30 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC); 31 if (!en) 32 return NULL; 33 34 en->ei = *ei; 35 INIT_LIST_HEAD(&en->list); 36 en->et = et; 37 38 rb_link_node(&en->rb_node, parent, p); 39 rb_insert_color(&en->rb_node, &et->root); 40 atomic_inc(&et->node_cnt); 41 atomic_inc(&sbi->total_ext_node); 42 return en; 43 } 44 45 static void __detach_extent_node(struct f2fs_sb_info *sbi, 46 struct extent_tree *et, struct extent_node *en) 47 { 48 rb_erase(&en->rb_node, &et->root); 49 atomic_dec(&et->node_cnt); 50 atomic_dec(&sbi->total_ext_node); 51 52 if (et->cached_en == en) 53 et->cached_en = NULL; 54 kmem_cache_free(extent_node_slab, en); 55 } 56 57 /* 58 * Flow to release an extent_node: 59 * 1. list_del_init 60 * 2. __detach_extent_node 61 * 3. kmem_cache_free. 62 */ 63 static void __release_extent_node(struct f2fs_sb_info *sbi, 64 struct extent_tree *et, struct extent_node *en) 65 { 66 spin_lock(&sbi->extent_lock); 67 f2fs_bug_on(sbi, list_empty(&en->list)); 68 list_del_init(&en->list); 69 spin_unlock(&sbi->extent_lock); 70 71 __detach_extent_node(sbi, et, en); 72 } 73 74 static struct extent_tree *__grab_extent_tree(struct inode *inode) 75 { 76 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 77 struct extent_tree *et; 78 nid_t ino = inode->i_ino; 79 80 mutex_lock(&sbi->extent_tree_lock); 81 et = radix_tree_lookup(&sbi->extent_tree_root, ino); 82 if (!et) { 83 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS); 84 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et); 85 memset(et, 0, sizeof(struct extent_tree)); 86 et->ino = ino; 87 et->root = RB_ROOT; 88 et->cached_en = NULL; 89 rwlock_init(&et->lock); 90 INIT_LIST_HEAD(&et->list); 91 atomic_set(&et->node_cnt, 0); 92 atomic_inc(&sbi->total_ext_tree); 93 } else { 94 atomic_dec(&sbi->total_zombie_tree); 95 list_del_init(&et->list); 96 } 97 mutex_unlock(&sbi->extent_tree_lock); 98 99 /* never died until evict_inode */ 100 F2FS_I(inode)->extent_tree = et; 101 102 return et; 103 } 104 105 static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi, 106 struct extent_tree *et, unsigned int fofs) 107 { 108 struct rb_node *node = et->root.rb_node; 109 struct extent_node *en = et->cached_en; 110 111 if (en) { 112 struct extent_info *cei = &en->ei; 113 114 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) { 115 stat_inc_cached_node_hit(sbi); 116 return en; 117 } 118 } 119 120 while (node) { 121 en = rb_entry(node, struct extent_node, rb_node); 122 123 if (fofs < en->ei.fofs) { 124 node = node->rb_left; 125 } else if (fofs >= en->ei.fofs + en->ei.len) { 126 node = node->rb_right; 127 } else { 128 stat_inc_rbtree_node_hit(sbi); 129 return en; 130 } 131 } 132 return NULL; 133 } 134 135 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi, 136 struct extent_tree *et, struct extent_info *ei) 137 { 138 struct rb_node **p = &et->root.rb_node; 139 struct extent_node *en; 140 141 en = __attach_extent_node(sbi, et, ei, NULL, p); 142 if (!en) 143 return NULL; 144 145 et->largest = en->ei; 146 et->cached_en = en; 147 return en; 148 } 149 150 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, 151 struct extent_tree *et) 152 { 153 struct rb_node *node, *next; 154 struct extent_node *en; 155 unsigned int count = atomic_read(&et->node_cnt); 156 157 node = rb_first(&et->root); 158 while (node) { 159 next = rb_next(node); 160 en = rb_entry(node, struct extent_node, rb_node); 161 __release_extent_node(sbi, et, en); 162 node = next; 163 } 164 165 return count - atomic_read(&et->node_cnt); 166 } 167 168 static void __drop_largest_extent(struct inode *inode, 169 pgoff_t fofs, unsigned int len) 170 { 171 struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest; 172 173 if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs) { 174 largest->len = 0; 175 f2fs_mark_inode_dirty_sync(inode, true); 176 } 177 } 178 179 /* return true, if inode page is changed */ 180 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext) 181 { 182 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 183 struct extent_tree *et; 184 struct extent_node *en; 185 struct extent_info ei; 186 187 if (!f2fs_may_extent_tree(inode)) { 188 /* drop largest extent */ 189 if (i_ext && i_ext->len) { 190 i_ext->len = 0; 191 return true; 192 } 193 return false; 194 } 195 196 et = __grab_extent_tree(inode); 197 198 if (!i_ext || !i_ext->len) 199 return false; 200 201 get_extent_info(&ei, i_ext); 202 203 write_lock(&et->lock); 204 if (atomic_read(&et->node_cnt)) 205 goto out; 206 207 en = __init_extent_tree(sbi, et, &ei); 208 if (en) { 209 spin_lock(&sbi->extent_lock); 210 list_add_tail(&en->list, &sbi->extent_list); 211 spin_unlock(&sbi->extent_lock); 212 } 213 out: 214 write_unlock(&et->lock); 215 return false; 216 } 217 218 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs, 219 struct extent_info *ei) 220 { 221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 222 struct extent_tree *et = F2FS_I(inode)->extent_tree; 223 struct extent_node *en; 224 bool ret = false; 225 226 f2fs_bug_on(sbi, !et); 227 228 trace_f2fs_lookup_extent_tree_start(inode, pgofs); 229 230 read_lock(&et->lock); 231 232 if (et->largest.fofs <= pgofs && 233 et->largest.fofs + et->largest.len > pgofs) { 234 *ei = et->largest; 235 ret = true; 236 stat_inc_largest_node_hit(sbi); 237 goto out; 238 } 239 240 en = __lookup_extent_tree(sbi, et, pgofs); 241 if (en) { 242 *ei = en->ei; 243 spin_lock(&sbi->extent_lock); 244 if (!list_empty(&en->list)) { 245 list_move_tail(&en->list, &sbi->extent_list); 246 et->cached_en = en; 247 } 248 spin_unlock(&sbi->extent_lock); 249 ret = true; 250 } 251 out: 252 stat_inc_total_hit(sbi); 253 read_unlock(&et->lock); 254 255 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei); 256 return ret; 257 } 258 259 260 /* 261 * lookup extent at @fofs, if hit, return the extent 262 * if not, return NULL and 263 * @prev_ex: extent before fofs 264 * @next_ex: extent after fofs 265 * @insert_p: insert point for new extent at fofs 266 * in order to simpfy the insertion after. 267 * tree must stay unchanged between lookup and insertion. 268 */ 269 static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et, 270 unsigned int fofs, 271 struct extent_node **prev_ex, 272 struct extent_node **next_ex, 273 struct rb_node ***insert_p, 274 struct rb_node **insert_parent) 275 { 276 struct rb_node **pnode = &et->root.rb_node; 277 struct rb_node *parent = NULL, *tmp_node; 278 struct extent_node *en = et->cached_en; 279 280 *insert_p = NULL; 281 *insert_parent = NULL; 282 *prev_ex = NULL; 283 *next_ex = NULL; 284 285 if (RB_EMPTY_ROOT(&et->root)) 286 return NULL; 287 288 if (en) { 289 struct extent_info *cei = &en->ei; 290 291 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) 292 goto lookup_neighbors; 293 } 294 295 while (*pnode) { 296 parent = *pnode; 297 en = rb_entry(*pnode, struct extent_node, rb_node); 298 299 if (fofs < en->ei.fofs) 300 pnode = &(*pnode)->rb_left; 301 else if (fofs >= en->ei.fofs + en->ei.len) 302 pnode = &(*pnode)->rb_right; 303 else 304 goto lookup_neighbors; 305 } 306 307 *insert_p = pnode; 308 *insert_parent = parent; 309 310 en = rb_entry(parent, struct extent_node, rb_node); 311 tmp_node = parent; 312 if (parent && fofs > en->ei.fofs) 313 tmp_node = rb_next(parent); 314 *next_ex = rb_entry_safe(tmp_node, struct extent_node, rb_node); 315 316 tmp_node = parent; 317 if (parent && fofs < en->ei.fofs) 318 tmp_node = rb_prev(parent); 319 *prev_ex = rb_entry_safe(tmp_node, struct extent_node, rb_node); 320 return NULL; 321 322 lookup_neighbors: 323 if (fofs == en->ei.fofs) { 324 /* lookup prev node for merging backward later */ 325 tmp_node = rb_prev(&en->rb_node); 326 *prev_ex = rb_entry_safe(tmp_node, struct extent_node, rb_node); 327 } 328 if (fofs == en->ei.fofs + en->ei.len - 1) { 329 /* lookup next node for merging frontward later */ 330 tmp_node = rb_next(&en->rb_node); 331 *next_ex = rb_entry_safe(tmp_node, struct extent_node, rb_node); 332 } 333 return en; 334 } 335 336 static struct extent_node *__try_merge_extent_node(struct inode *inode, 337 struct extent_tree *et, struct extent_info *ei, 338 struct extent_node *prev_ex, 339 struct extent_node *next_ex) 340 { 341 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 342 struct extent_node *en = NULL; 343 344 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) { 345 prev_ex->ei.len += ei->len; 346 ei = &prev_ex->ei; 347 en = prev_ex; 348 } 349 350 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) { 351 next_ex->ei.fofs = ei->fofs; 352 next_ex->ei.blk = ei->blk; 353 next_ex->ei.len += ei->len; 354 if (en) 355 __release_extent_node(sbi, et, prev_ex); 356 357 en = next_ex; 358 } 359 360 if (!en) 361 return NULL; 362 363 __try_update_largest_extent(inode, et, en); 364 365 spin_lock(&sbi->extent_lock); 366 if (!list_empty(&en->list)) { 367 list_move_tail(&en->list, &sbi->extent_list); 368 et->cached_en = en; 369 } 370 spin_unlock(&sbi->extent_lock); 371 return en; 372 } 373 374 static struct extent_node *__insert_extent_tree(struct inode *inode, 375 struct extent_tree *et, struct extent_info *ei, 376 struct rb_node **insert_p, 377 struct rb_node *insert_parent) 378 { 379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 380 struct rb_node **p = &et->root.rb_node; 381 struct rb_node *parent = NULL; 382 struct extent_node *en = NULL; 383 384 if (insert_p && insert_parent) { 385 parent = insert_parent; 386 p = insert_p; 387 goto do_insert; 388 } 389 390 while (*p) { 391 parent = *p; 392 en = rb_entry(parent, struct extent_node, rb_node); 393 394 if (ei->fofs < en->ei.fofs) 395 p = &(*p)->rb_left; 396 else if (ei->fofs >= en->ei.fofs + en->ei.len) 397 p = &(*p)->rb_right; 398 else 399 f2fs_bug_on(sbi, 1); 400 } 401 do_insert: 402 en = __attach_extent_node(sbi, et, ei, parent, p); 403 if (!en) 404 return NULL; 405 406 __try_update_largest_extent(inode, et, en); 407 408 /* update in global extent list */ 409 spin_lock(&sbi->extent_lock); 410 list_add_tail(&en->list, &sbi->extent_list); 411 et->cached_en = en; 412 spin_unlock(&sbi->extent_lock); 413 return en; 414 } 415 416 static void f2fs_update_extent_tree_range(struct inode *inode, 417 pgoff_t fofs, block_t blkaddr, unsigned int len) 418 { 419 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 420 struct extent_tree *et = F2FS_I(inode)->extent_tree; 421 struct extent_node *en = NULL, *en1 = NULL; 422 struct extent_node *prev_en = NULL, *next_en = NULL; 423 struct extent_info ei, dei, prev; 424 struct rb_node **insert_p = NULL, *insert_parent = NULL; 425 unsigned int end = fofs + len; 426 unsigned int pos = (unsigned int)fofs; 427 428 if (!et) 429 return; 430 431 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len); 432 433 write_lock(&et->lock); 434 435 if (is_inode_flag_set(inode, FI_NO_EXTENT)) { 436 write_unlock(&et->lock); 437 return; 438 } 439 440 prev = et->largest; 441 dei.len = 0; 442 443 /* 444 * drop largest extent before lookup, in case it's already 445 * been shrunk from extent tree 446 */ 447 __drop_largest_extent(inode, fofs, len); 448 449 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */ 450 en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en, 451 &insert_p, &insert_parent); 452 if (!en) 453 en = next_en; 454 455 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */ 456 while (en && en->ei.fofs < end) { 457 unsigned int org_end; 458 int parts = 0; /* # of parts current extent split into */ 459 460 next_en = en1 = NULL; 461 462 dei = en->ei; 463 org_end = dei.fofs + dei.len; 464 f2fs_bug_on(sbi, pos >= org_end); 465 466 if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) { 467 en->ei.len = pos - en->ei.fofs; 468 prev_en = en; 469 parts = 1; 470 } 471 472 if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) { 473 if (parts) { 474 set_extent_info(&ei, end, 475 end - dei.fofs + dei.blk, 476 org_end - end); 477 en1 = __insert_extent_tree(inode, et, &ei, 478 NULL, NULL); 479 next_en = en1; 480 } else { 481 en->ei.fofs = end; 482 en->ei.blk += end - dei.fofs; 483 en->ei.len -= end - dei.fofs; 484 next_en = en; 485 } 486 parts++; 487 } 488 489 if (!next_en) { 490 struct rb_node *node = rb_next(&en->rb_node); 491 492 next_en = rb_entry_safe(node, struct extent_node, 493 rb_node); 494 } 495 496 if (parts) 497 __try_update_largest_extent(inode, et, en); 498 else 499 __release_extent_node(sbi, et, en); 500 501 /* 502 * if original extent is split into zero or two parts, extent 503 * tree has been altered by deletion or insertion, therefore 504 * invalidate pointers regard to tree. 505 */ 506 if (parts != 1) { 507 insert_p = NULL; 508 insert_parent = NULL; 509 } 510 en = next_en; 511 } 512 513 /* 3. update extent in extent cache */ 514 if (blkaddr) { 515 516 set_extent_info(&ei, fofs, blkaddr, len); 517 if (!__try_merge_extent_node(inode, et, &ei, prev_en, next_en)) 518 __insert_extent_tree(inode, et, &ei, 519 insert_p, insert_parent); 520 521 /* give up extent_cache, if split and small updates happen */ 522 if (dei.len >= 1 && 523 prev.len < F2FS_MIN_EXTENT_LEN && 524 et->largest.len < F2FS_MIN_EXTENT_LEN) { 525 __drop_largest_extent(inode, 0, UINT_MAX); 526 set_inode_flag(inode, FI_NO_EXTENT); 527 } 528 } 529 530 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 531 __free_extent_tree(sbi, et); 532 533 write_unlock(&et->lock); 534 } 535 536 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) 537 { 538 struct extent_tree *et, *next; 539 struct extent_node *en; 540 unsigned int node_cnt = 0, tree_cnt = 0; 541 int remained; 542 543 if (!test_opt(sbi, EXTENT_CACHE)) 544 return 0; 545 546 if (!atomic_read(&sbi->total_zombie_tree)) 547 goto free_node; 548 549 if (!mutex_trylock(&sbi->extent_tree_lock)) 550 goto out; 551 552 /* 1. remove unreferenced extent tree */ 553 list_for_each_entry_safe(et, next, &sbi->zombie_list, list) { 554 if (atomic_read(&et->node_cnt)) { 555 write_lock(&et->lock); 556 node_cnt += __free_extent_tree(sbi, et); 557 write_unlock(&et->lock); 558 } 559 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 560 list_del_init(&et->list); 561 radix_tree_delete(&sbi->extent_tree_root, et->ino); 562 kmem_cache_free(extent_tree_slab, et); 563 atomic_dec(&sbi->total_ext_tree); 564 atomic_dec(&sbi->total_zombie_tree); 565 tree_cnt++; 566 567 if (node_cnt + tree_cnt >= nr_shrink) 568 goto unlock_out; 569 cond_resched(); 570 } 571 mutex_unlock(&sbi->extent_tree_lock); 572 573 free_node: 574 /* 2. remove LRU extent entries */ 575 if (!mutex_trylock(&sbi->extent_tree_lock)) 576 goto out; 577 578 remained = nr_shrink - (node_cnt + tree_cnt); 579 580 spin_lock(&sbi->extent_lock); 581 for (; remained > 0; remained--) { 582 if (list_empty(&sbi->extent_list)) 583 break; 584 en = list_first_entry(&sbi->extent_list, 585 struct extent_node, list); 586 et = en->et; 587 if (!write_trylock(&et->lock)) { 588 /* refresh this extent node's position in extent list */ 589 list_move_tail(&en->list, &sbi->extent_list); 590 continue; 591 } 592 593 list_del_init(&en->list); 594 spin_unlock(&sbi->extent_lock); 595 596 __detach_extent_node(sbi, et, en); 597 598 write_unlock(&et->lock); 599 node_cnt++; 600 spin_lock(&sbi->extent_lock); 601 } 602 spin_unlock(&sbi->extent_lock); 603 604 unlock_out: 605 mutex_unlock(&sbi->extent_tree_lock); 606 out: 607 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt); 608 609 return node_cnt + tree_cnt; 610 } 611 612 unsigned int f2fs_destroy_extent_node(struct inode *inode) 613 { 614 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 615 struct extent_tree *et = F2FS_I(inode)->extent_tree; 616 unsigned int node_cnt = 0; 617 618 if (!et || !atomic_read(&et->node_cnt)) 619 return 0; 620 621 write_lock(&et->lock); 622 node_cnt = __free_extent_tree(sbi, et); 623 write_unlock(&et->lock); 624 625 return node_cnt; 626 } 627 628 void f2fs_drop_extent_tree(struct inode *inode) 629 { 630 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 631 struct extent_tree *et = F2FS_I(inode)->extent_tree; 632 633 set_inode_flag(inode, FI_NO_EXTENT); 634 635 write_lock(&et->lock); 636 __free_extent_tree(sbi, et); 637 __drop_largest_extent(inode, 0, UINT_MAX); 638 write_unlock(&et->lock); 639 } 640 641 void f2fs_destroy_extent_tree(struct inode *inode) 642 { 643 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 644 struct extent_tree *et = F2FS_I(inode)->extent_tree; 645 unsigned int node_cnt = 0; 646 647 if (!et) 648 return; 649 650 if (inode->i_nlink && !is_bad_inode(inode) && 651 atomic_read(&et->node_cnt)) { 652 mutex_lock(&sbi->extent_tree_lock); 653 list_add_tail(&et->list, &sbi->zombie_list); 654 atomic_inc(&sbi->total_zombie_tree); 655 mutex_unlock(&sbi->extent_tree_lock); 656 return; 657 } 658 659 /* free all extent info belong to this extent tree */ 660 node_cnt = f2fs_destroy_extent_node(inode); 661 662 /* delete extent tree entry in radix tree */ 663 mutex_lock(&sbi->extent_tree_lock); 664 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 665 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino); 666 kmem_cache_free(extent_tree_slab, et); 667 atomic_dec(&sbi->total_ext_tree); 668 mutex_unlock(&sbi->extent_tree_lock); 669 670 F2FS_I(inode)->extent_tree = NULL; 671 672 trace_f2fs_destroy_extent_tree(inode, node_cnt); 673 } 674 675 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 676 struct extent_info *ei) 677 { 678 if (!f2fs_may_extent_tree(inode)) 679 return false; 680 681 return f2fs_lookup_extent_tree(inode, pgofs, ei); 682 } 683 684 void f2fs_update_extent_cache(struct dnode_of_data *dn) 685 { 686 pgoff_t fofs; 687 block_t blkaddr; 688 689 if (!f2fs_may_extent_tree(dn->inode)) 690 return; 691 692 if (dn->data_blkaddr == NEW_ADDR) 693 blkaddr = NULL_ADDR; 694 else 695 blkaddr = dn->data_blkaddr; 696 697 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 698 dn->ofs_in_node; 699 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1); 700 } 701 702 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 703 pgoff_t fofs, block_t blkaddr, unsigned int len) 704 705 { 706 if (!f2fs_may_extent_tree(dn->inode)) 707 return; 708 709 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len); 710 } 711 712 void init_extent_cache_info(struct f2fs_sb_info *sbi) 713 { 714 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO); 715 mutex_init(&sbi->extent_tree_lock); 716 INIT_LIST_HEAD(&sbi->extent_list); 717 spin_lock_init(&sbi->extent_lock); 718 atomic_set(&sbi->total_ext_tree, 0); 719 INIT_LIST_HEAD(&sbi->zombie_list); 720 atomic_set(&sbi->total_zombie_tree, 0); 721 atomic_set(&sbi->total_ext_node, 0); 722 } 723 724 int __init create_extent_cache(void) 725 { 726 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", 727 sizeof(struct extent_tree)); 728 if (!extent_tree_slab) 729 return -ENOMEM; 730 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", 731 sizeof(struct extent_node)); 732 if (!extent_node_slab) { 733 kmem_cache_destroy(extent_tree_slab); 734 return -ENOMEM; 735 } 736 return 0; 737 } 738 739 void destroy_extent_cache(void) 740 { 741 kmem_cache_destroy(extent_node_slab); 742 kmem_cache_destroy(extent_tree_slab); 743 } 744