1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs extent cache support 4 * 5 * Copyright (c) 2015 Motorola Mobility 6 * Copyright (c) 2015 Samsung Electronics 7 * Authors: Jaegeuk Kim <jaegeuk@kernel.org> 8 * Chao Yu <chao2.yu@samsung.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 14 #include "f2fs.h" 15 #include "node.h" 16 #include <trace/events/f2fs.h> 17 18 static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re, 19 unsigned int ofs) 20 { 21 if (cached_re) { 22 if (cached_re->ofs <= ofs && 23 cached_re->ofs + cached_re->len > ofs) { 24 return cached_re; 25 } 26 } 27 return NULL; 28 } 29 30 static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root, 31 unsigned int ofs) 32 { 33 struct rb_node *node = root->rb_root.rb_node; 34 struct rb_entry *re; 35 36 while (node) { 37 re = rb_entry(node, struct rb_entry, rb_node); 38 39 if (ofs < re->ofs) 40 node = node->rb_left; 41 else if (ofs >= re->ofs + re->len) 42 node = node->rb_right; 43 else 44 return re; 45 } 46 return NULL; 47 } 48 49 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 50 struct rb_entry *cached_re, unsigned int ofs) 51 { 52 struct rb_entry *re; 53 54 re = __lookup_rb_tree_fast(cached_re, ofs); 55 if (!re) 56 return __lookup_rb_tree_slow(root, ofs); 57 58 return re; 59 } 60 61 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 62 struct rb_root_cached *root, 63 struct rb_node **parent, 64 unsigned int ofs, bool *leftmost) 65 { 66 struct rb_node **p = &root->rb_root.rb_node; 67 struct rb_entry *re; 68 69 while (*p) { 70 *parent = *p; 71 re = rb_entry(*parent, struct rb_entry, rb_node); 72 73 if (ofs < re->ofs) { 74 p = &(*p)->rb_left; 75 } else if (ofs >= re->ofs + re->len) { 76 p = &(*p)->rb_right; 77 *leftmost = false; 78 } else { 79 f2fs_bug_on(sbi, 1); 80 } 81 } 82 83 return p; 84 } 85 86 /* 87 * lookup rb entry in position of @ofs in rb-tree, 88 * if hit, return the entry, otherwise, return NULL 89 * @prev_ex: extent before ofs 90 * @next_ex: extent after ofs 91 * @insert_p: insert point for new extent at ofs 92 * in order to simpfy the insertion after. 93 * tree must stay unchanged between lookup and insertion. 94 */ 95 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 96 struct rb_entry *cached_re, 97 unsigned int ofs, 98 struct rb_entry **prev_entry, 99 struct rb_entry **next_entry, 100 struct rb_node ***insert_p, 101 struct rb_node **insert_parent, 102 bool force, bool *leftmost) 103 { 104 struct rb_node **pnode = &root->rb_root.rb_node; 105 struct rb_node *parent = NULL, *tmp_node; 106 struct rb_entry *re = cached_re; 107 108 *insert_p = NULL; 109 *insert_parent = NULL; 110 *prev_entry = NULL; 111 *next_entry = NULL; 112 113 if (RB_EMPTY_ROOT(&root->rb_root)) 114 return NULL; 115 116 if (re) { 117 if (re->ofs <= ofs && re->ofs + re->len > ofs) 118 goto lookup_neighbors; 119 } 120 121 if (leftmost) 122 *leftmost = true; 123 124 while (*pnode) { 125 parent = *pnode; 126 re = rb_entry(*pnode, struct rb_entry, rb_node); 127 128 if (ofs < re->ofs) { 129 pnode = &(*pnode)->rb_left; 130 } else if (ofs >= re->ofs + re->len) { 131 pnode = &(*pnode)->rb_right; 132 if (leftmost) 133 *leftmost = false; 134 } else { 135 goto lookup_neighbors; 136 } 137 } 138 139 *insert_p = pnode; 140 *insert_parent = parent; 141 142 re = rb_entry(parent, struct rb_entry, rb_node); 143 tmp_node = parent; 144 if (parent && ofs > re->ofs) 145 tmp_node = rb_next(parent); 146 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 147 148 tmp_node = parent; 149 if (parent && ofs < re->ofs) 150 tmp_node = rb_prev(parent); 151 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 152 return NULL; 153 154 lookup_neighbors: 155 if (ofs == re->ofs || force) { 156 /* lookup prev node for merging backward later */ 157 tmp_node = rb_prev(&re->rb_node); 158 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 159 } 160 if (ofs == re->ofs + re->len - 1 || force) { 161 /* lookup next node for merging frontward later */ 162 tmp_node = rb_next(&re->rb_node); 163 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 164 } 165 return re; 166 } 167 168 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 169 struct rb_root_cached *root) 170 { 171 #ifdef CONFIG_F2FS_CHECK_FS 172 struct rb_node *cur = rb_first_cached(root), *next; 173 struct rb_entry *cur_re, *next_re; 174 175 if (!cur) 176 return true; 177 178 while (cur) { 179 next = rb_next(cur); 180 if (!next) 181 return true; 182 183 cur_re = rb_entry(cur, struct rb_entry, rb_node); 184 next_re = rb_entry(next, struct rb_entry, rb_node); 185 186 if (cur_re->ofs + cur_re->len > next_re->ofs) { 187 f2fs_info(sbi, "inconsistent rbtree, cur(%u, %u) next(%u, %u)", 188 cur_re->ofs, cur_re->len, 189 next_re->ofs, next_re->len); 190 return false; 191 } 192 193 cur = next; 194 } 195 #endif 196 return true; 197 } 198 199 static struct kmem_cache *extent_tree_slab; 200 static struct kmem_cache *extent_node_slab; 201 202 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, 203 struct extent_tree *et, struct extent_info *ei, 204 struct rb_node *parent, struct rb_node **p, 205 bool leftmost) 206 { 207 struct extent_node *en; 208 209 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC); 210 if (!en) 211 return NULL; 212 213 en->ei = *ei; 214 INIT_LIST_HEAD(&en->list); 215 en->et = et; 216 217 rb_link_node(&en->rb_node, parent, p); 218 rb_insert_color_cached(&en->rb_node, &et->root, leftmost); 219 atomic_inc(&et->node_cnt); 220 atomic_inc(&sbi->total_ext_node); 221 return en; 222 } 223 224 static void __detach_extent_node(struct f2fs_sb_info *sbi, 225 struct extent_tree *et, struct extent_node *en) 226 { 227 rb_erase_cached(&en->rb_node, &et->root); 228 atomic_dec(&et->node_cnt); 229 atomic_dec(&sbi->total_ext_node); 230 231 if (et->cached_en == en) 232 et->cached_en = NULL; 233 kmem_cache_free(extent_node_slab, en); 234 } 235 236 /* 237 * Flow to release an extent_node: 238 * 1. list_del_init 239 * 2. __detach_extent_node 240 * 3. kmem_cache_free. 241 */ 242 static void __release_extent_node(struct f2fs_sb_info *sbi, 243 struct extent_tree *et, struct extent_node *en) 244 { 245 spin_lock(&sbi->extent_lock); 246 f2fs_bug_on(sbi, list_empty(&en->list)); 247 list_del_init(&en->list); 248 spin_unlock(&sbi->extent_lock); 249 250 __detach_extent_node(sbi, et, en); 251 } 252 253 static struct extent_tree *__grab_extent_tree(struct inode *inode) 254 { 255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 256 struct extent_tree *et; 257 nid_t ino = inode->i_ino; 258 259 mutex_lock(&sbi->extent_tree_lock); 260 et = radix_tree_lookup(&sbi->extent_tree_root, ino); 261 if (!et) { 262 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS); 263 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et); 264 memset(et, 0, sizeof(struct extent_tree)); 265 et->ino = ino; 266 et->root = RB_ROOT_CACHED; 267 et->cached_en = NULL; 268 rwlock_init(&et->lock); 269 INIT_LIST_HEAD(&et->list); 270 atomic_set(&et->node_cnt, 0); 271 atomic_inc(&sbi->total_ext_tree); 272 } else { 273 atomic_dec(&sbi->total_zombie_tree); 274 list_del_init(&et->list); 275 } 276 mutex_unlock(&sbi->extent_tree_lock); 277 278 /* never died until evict_inode */ 279 F2FS_I(inode)->extent_tree = et; 280 281 return et; 282 } 283 284 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi, 285 struct extent_tree *et, struct extent_info *ei) 286 { 287 struct rb_node **p = &et->root.rb_root.rb_node; 288 struct extent_node *en; 289 290 en = __attach_extent_node(sbi, et, ei, NULL, p, true); 291 if (!en) 292 return NULL; 293 294 et->largest = en->ei; 295 et->cached_en = en; 296 return en; 297 } 298 299 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, 300 struct extent_tree *et) 301 { 302 struct rb_node *node, *next; 303 struct extent_node *en; 304 unsigned int count = atomic_read(&et->node_cnt); 305 306 node = rb_first_cached(&et->root); 307 while (node) { 308 next = rb_next(node); 309 en = rb_entry(node, struct extent_node, rb_node); 310 __release_extent_node(sbi, et, en); 311 node = next; 312 } 313 314 return count - atomic_read(&et->node_cnt); 315 } 316 317 static void __drop_largest_extent(struct extent_tree *et, 318 pgoff_t fofs, unsigned int len) 319 { 320 if (fofs < et->largest.fofs + et->largest.len && 321 fofs + len > et->largest.fofs) { 322 et->largest.len = 0; 323 et->largest_updated = true; 324 } 325 } 326 327 /* return true, if inode page is changed */ 328 static bool __f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext) 329 { 330 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 331 struct extent_tree *et; 332 struct extent_node *en; 333 struct extent_info ei; 334 335 if (!f2fs_may_extent_tree(inode)) { 336 /* drop largest extent */ 337 if (i_ext && i_ext->len) { 338 i_ext->len = 0; 339 return true; 340 } 341 return false; 342 } 343 344 et = __grab_extent_tree(inode); 345 346 if (!i_ext || !i_ext->len) 347 return false; 348 349 get_extent_info(&ei, i_ext); 350 351 write_lock(&et->lock); 352 if (atomic_read(&et->node_cnt)) 353 goto out; 354 355 en = __init_extent_tree(sbi, et, &ei); 356 if (en) { 357 spin_lock(&sbi->extent_lock); 358 list_add_tail(&en->list, &sbi->extent_list); 359 spin_unlock(&sbi->extent_lock); 360 } 361 out: 362 write_unlock(&et->lock); 363 return false; 364 } 365 366 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext) 367 { 368 bool ret = __f2fs_init_extent_tree(inode, i_ext); 369 370 if (!F2FS_I(inode)->extent_tree) 371 set_inode_flag(inode, FI_NO_EXTENT); 372 373 return ret; 374 } 375 376 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs, 377 struct extent_info *ei) 378 { 379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 380 struct extent_tree *et = F2FS_I(inode)->extent_tree; 381 struct extent_node *en; 382 bool ret = false; 383 384 f2fs_bug_on(sbi, !et); 385 386 trace_f2fs_lookup_extent_tree_start(inode, pgofs); 387 388 read_lock(&et->lock); 389 390 if (et->largest.fofs <= pgofs && 391 et->largest.fofs + et->largest.len > pgofs) { 392 *ei = et->largest; 393 ret = true; 394 stat_inc_largest_node_hit(sbi); 395 goto out; 396 } 397 398 en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root, 399 (struct rb_entry *)et->cached_en, pgofs); 400 if (!en) 401 goto out; 402 403 if (en == et->cached_en) 404 stat_inc_cached_node_hit(sbi); 405 else 406 stat_inc_rbtree_node_hit(sbi); 407 408 *ei = en->ei; 409 spin_lock(&sbi->extent_lock); 410 if (!list_empty(&en->list)) { 411 list_move_tail(&en->list, &sbi->extent_list); 412 et->cached_en = en; 413 } 414 spin_unlock(&sbi->extent_lock); 415 ret = true; 416 out: 417 stat_inc_total_hit(sbi); 418 read_unlock(&et->lock); 419 420 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei); 421 return ret; 422 } 423 424 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi, 425 struct extent_tree *et, struct extent_info *ei, 426 struct extent_node *prev_ex, 427 struct extent_node *next_ex) 428 { 429 struct extent_node *en = NULL; 430 431 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) { 432 prev_ex->ei.len += ei->len; 433 ei = &prev_ex->ei; 434 en = prev_ex; 435 } 436 437 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) { 438 next_ex->ei.fofs = ei->fofs; 439 next_ex->ei.blk = ei->blk; 440 next_ex->ei.len += ei->len; 441 if (en) 442 __release_extent_node(sbi, et, prev_ex); 443 444 en = next_ex; 445 } 446 447 if (!en) 448 return NULL; 449 450 __try_update_largest_extent(et, en); 451 452 spin_lock(&sbi->extent_lock); 453 if (!list_empty(&en->list)) { 454 list_move_tail(&en->list, &sbi->extent_list); 455 et->cached_en = en; 456 } 457 spin_unlock(&sbi->extent_lock); 458 return en; 459 } 460 461 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi, 462 struct extent_tree *et, struct extent_info *ei, 463 struct rb_node **insert_p, 464 struct rb_node *insert_parent, 465 bool leftmost) 466 { 467 struct rb_node **p; 468 struct rb_node *parent = NULL; 469 struct extent_node *en = NULL; 470 471 if (insert_p && insert_parent) { 472 parent = insert_parent; 473 p = insert_p; 474 goto do_insert; 475 } 476 477 leftmost = true; 478 479 p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent, 480 ei->fofs, &leftmost); 481 do_insert: 482 en = __attach_extent_node(sbi, et, ei, parent, p, leftmost); 483 if (!en) 484 return NULL; 485 486 __try_update_largest_extent(et, en); 487 488 /* update in global extent list */ 489 spin_lock(&sbi->extent_lock); 490 list_add_tail(&en->list, &sbi->extent_list); 491 et->cached_en = en; 492 spin_unlock(&sbi->extent_lock); 493 return en; 494 } 495 496 static void f2fs_update_extent_tree_range(struct inode *inode, 497 pgoff_t fofs, block_t blkaddr, unsigned int len) 498 { 499 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 500 struct extent_tree *et = F2FS_I(inode)->extent_tree; 501 struct extent_node *en = NULL, *en1 = NULL; 502 struct extent_node *prev_en = NULL, *next_en = NULL; 503 struct extent_info ei, dei, prev; 504 struct rb_node **insert_p = NULL, *insert_parent = NULL; 505 unsigned int end = fofs + len; 506 unsigned int pos = (unsigned int)fofs; 507 bool updated = false; 508 bool leftmost = false; 509 510 if (!et) 511 return; 512 513 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len); 514 515 write_lock(&et->lock); 516 517 if (is_inode_flag_set(inode, FI_NO_EXTENT)) { 518 write_unlock(&et->lock); 519 return; 520 } 521 522 prev = et->largest; 523 dei.len = 0; 524 525 /* 526 * drop largest extent before lookup, in case it's already 527 * been shrunk from extent tree 528 */ 529 __drop_largest_extent(et, fofs, len); 530 531 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */ 532 en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root, 533 (struct rb_entry *)et->cached_en, fofs, 534 (struct rb_entry **)&prev_en, 535 (struct rb_entry **)&next_en, 536 &insert_p, &insert_parent, false, 537 &leftmost); 538 if (!en) 539 en = next_en; 540 541 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */ 542 while (en && en->ei.fofs < end) { 543 unsigned int org_end; 544 int parts = 0; /* # of parts current extent split into */ 545 546 next_en = en1 = NULL; 547 548 dei = en->ei; 549 org_end = dei.fofs + dei.len; 550 f2fs_bug_on(sbi, pos >= org_end); 551 552 if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) { 553 en->ei.len = pos - en->ei.fofs; 554 prev_en = en; 555 parts = 1; 556 } 557 558 if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) { 559 if (parts) { 560 set_extent_info(&ei, end, 561 end - dei.fofs + dei.blk, 562 org_end - end); 563 en1 = __insert_extent_tree(sbi, et, &ei, 564 NULL, NULL, true); 565 next_en = en1; 566 } else { 567 en->ei.fofs = end; 568 en->ei.blk += end - dei.fofs; 569 en->ei.len -= end - dei.fofs; 570 next_en = en; 571 } 572 parts++; 573 } 574 575 if (!next_en) { 576 struct rb_node *node = rb_next(&en->rb_node); 577 578 next_en = rb_entry_safe(node, struct extent_node, 579 rb_node); 580 } 581 582 if (parts) 583 __try_update_largest_extent(et, en); 584 else 585 __release_extent_node(sbi, et, en); 586 587 /* 588 * if original extent is split into zero or two parts, extent 589 * tree has been altered by deletion or insertion, therefore 590 * invalidate pointers regard to tree. 591 */ 592 if (parts != 1) { 593 insert_p = NULL; 594 insert_parent = NULL; 595 } 596 en = next_en; 597 } 598 599 /* 3. update extent in extent cache */ 600 if (blkaddr) { 601 602 set_extent_info(&ei, fofs, blkaddr, len); 603 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en)) 604 __insert_extent_tree(sbi, et, &ei, 605 insert_p, insert_parent, leftmost); 606 607 /* give up extent_cache, if split and small updates happen */ 608 if (dei.len >= 1 && 609 prev.len < F2FS_MIN_EXTENT_LEN && 610 et->largest.len < F2FS_MIN_EXTENT_LEN) { 611 et->largest.len = 0; 612 et->largest_updated = true; 613 set_inode_flag(inode, FI_NO_EXTENT); 614 } 615 } 616 617 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 618 __free_extent_tree(sbi, et); 619 620 if (et->largest_updated) { 621 et->largest_updated = false; 622 updated = true; 623 } 624 625 write_unlock(&et->lock); 626 627 if (updated) 628 f2fs_mark_inode_dirty_sync(inode, true); 629 } 630 631 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) 632 { 633 struct extent_tree *et, *next; 634 struct extent_node *en; 635 unsigned int node_cnt = 0, tree_cnt = 0; 636 int remained; 637 638 if (!test_opt(sbi, EXTENT_CACHE)) 639 return 0; 640 641 if (!atomic_read(&sbi->total_zombie_tree)) 642 goto free_node; 643 644 if (!mutex_trylock(&sbi->extent_tree_lock)) 645 goto out; 646 647 /* 1. remove unreferenced extent tree */ 648 list_for_each_entry_safe(et, next, &sbi->zombie_list, list) { 649 if (atomic_read(&et->node_cnt)) { 650 write_lock(&et->lock); 651 node_cnt += __free_extent_tree(sbi, et); 652 write_unlock(&et->lock); 653 } 654 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 655 list_del_init(&et->list); 656 radix_tree_delete(&sbi->extent_tree_root, et->ino); 657 kmem_cache_free(extent_tree_slab, et); 658 atomic_dec(&sbi->total_ext_tree); 659 atomic_dec(&sbi->total_zombie_tree); 660 tree_cnt++; 661 662 if (node_cnt + tree_cnt >= nr_shrink) 663 goto unlock_out; 664 cond_resched(); 665 } 666 mutex_unlock(&sbi->extent_tree_lock); 667 668 free_node: 669 /* 2. remove LRU extent entries */ 670 if (!mutex_trylock(&sbi->extent_tree_lock)) 671 goto out; 672 673 remained = nr_shrink - (node_cnt + tree_cnt); 674 675 spin_lock(&sbi->extent_lock); 676 for (; remained > 0; remained--) { 677 if (list_empty(&sbi->extent_list)) 678 break; 679 en = list_first_entry(&sbi->extent_list, 680 struct extent_node, list); 681 et = en->et; 682 if (!write_trylock(&et->lock)) { 683 /* refresh this extent node's position in extent list */ 684 list_move_tail(&en->list, &sbi->extent_list); 685 continue; 686 } 687 688 list_del_init(&en->list); 689 spin_unlock(&sbi->extent_lock); 690 691 __detach_extent_node(sbi, et, en); 692 693 write_unlock(&et->lock); 694 node_cnt++; 695 spin_lock(&sbi->extent_lock); 696 } 697 spin_unlock(&sbi->extent_lock); 698 699 unlock_out: 700 mutex_unlock(&sbi->extent_tree_lock); 701 out: 702 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt); 703 704 return node_cnt + tree_cnt; 705 } 706 707 unsigned int f2fs_destroy_extent_node(struct inode *inode) 708 { 709 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 710 struct extent_tree *et = F2FS_I(inode)->extent_tree; 711 unsigned int node_cnt = 0; 712 713 if (!et || !atomic_read(&et->node_cnt)) 714 return 0; 715 716 write_lock(&et->lock); 717 node_cnt = __free_extent_tree(sbi, et); 718 write_unlock(&et->lock); 719 720 return node_cnt; 721 } 722 723 void f2fs_drop_extent_tree(struct inode *inode) 724 { 725 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 726 struct extent_tree *et = F2FS_I(inode)->extent_tree; 727 bool updated = false; 728 729 if (!f2fs_may_extent_tree(inode)) 730 return; 731 732 set_inode_flag(inode, FI_NO_EXTENT); 733 734 write_lock(&et->lock); 735 __free_extent_tree(sbi, et); 736 if (et->largest.len) { 737 et->largest.len = 0; 738 updated = true; 739 } 740 write_unlock(&et->lock); 741 if (updated) 742 f2fs_mark_inode_dirty_sync(inode, true); 743 } 744 745 void f2fs_destroy_extent_tree(struct inode *inode) 746 { 747 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 748 struct extent_tree *et = F2FS_I(inode)->extent_tree; 749 unsigned int node_cnt = 0; 750 751 if (!et) 752 return; 753 754 if (inode->i_nlink && !is_bad_inode(inode) && 755 atomic_read(&et->node_cnt)) { 756 mutex_lock(&sbi->extent_tree_lock); 757 list_add_tail(&et->list, &sbi->zombie_list); 758 atomic_inc(&sbi->total_zombie_tree); 759 mutex_unlock(&sbi->extent_tree_lock); 760 return; 761 } 762 763 /* free all extent info belong to this extent tree */ 764 node_cnt = f2fs_destroy_extent_node(inode); 765 766 /* delete extent tree entry in radix tree */ 767 mutex_lock(&sbi->extent_tree_lock); 768 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 769 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino); 770 kmem_cache_free(extent_tree_slab, et); 771 atomic_dec(&sbi->total_ext_tree); 772 mutex_unlock(&sbi->extent_tree_lock); 773 774 F2FS_I(inode)->extent_tree = NULL; 775 776 trace_f2fs_destroy_extent_tree(inode, node_cnt); 777 } 778 779 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 780 struct extent_info *ei) 781 { 782 if (!f2fs_may_extent_tree(inode)) 783 return false; 784 785 return f2fs_lookup_extent_tree(inode, pgofs, ei); 786 } 787 788 void f2fs_update_extent_cache(struct dnode_of_data *dn) 789 { 790 pgoff_t fofs; 791 block_t blkaddr; 792 793 if (!f2fs_may_extent_tree(dn->inode)) 794 return; 795 796 if (dn->data_blkaddr == NEW_ADDR) 797 blkaddr = NULL_ADDR; 798 else 799 blkaddr = dn->data_blkaddr; 800 801 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 802 dn->ofs_in_node; 803 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1); 804 } 805 806 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 807 pgoff_t fofs, block_t blkaddr, unsigned int len) 808 809 { 810 if (!f2fs_may_extent_tree(dn->inode)) 811 return; 812 813 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len); 814 } 815 816 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi) 817 { 818 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO); 819 mutex_init(&sbi->extent_tree_lock); 820 INIT_LIST_HEAD(&sbi->extent_list); 821 spin_lock_init(&sbi->extent_lock); 822 atomic_set(&sbi->total_ext_tree, 0); 823 INIT_LIST_HEAD(&sbi->zombie_list); 824 atomic_set(&sbi->total_zombie_tree, 0); 825 atomic_set(&sbi->total_ext_node, 0); 826 } 827 828 int __init f2fs_create_extent_cache(void) 829 { 830 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", 831 sizeof(struct extent_tree)); 832 if (!extent_tree_slab) 833 return -ENOMEM; 834 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", 835 sizeof(struct extent_node)); 836 if (!extent_node_slab) { 837 kmem_cache_destroy(extent_tree_slab); 838 return -ENOMEM; 839 } 840 return 0; 841 } 842 843 void f2fs_destroy_extent_cache(void) 844 { 845 kmem_cache_destroy(extent_node_slab); 846 kmem_cache_destroy(extent_tree_slab); 847 } 848