xref: /openbmc/linux/fs/f2fs/extent_cache.c (revision 23c2b932)
1 /*
2  * f2fs extent cache support
3  *
4  * Copyright (c) 2015 Motorola Mobility
5  * Copyright (c) 2015 Samsung Electronics
6  * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
7  *          Chao Yu <chao2.yu@samsung.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/f2fs_fs.h>
16 
17 #include "f2fs.h"
18 #include "node.h"
19 #include <trace/events/f2fs.h>
20 
21 static struct kmem_cache *extent_tree_slab;
22 static struct kmem_cache *extent_node_slab;
23 
24 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
25 				struct extent_tree *et, struct extent_info *ei,
26 				struct rb_node *parent, struct rb_node **p)
27 {
28 	struct extent_node *en;
29 
30 	en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
31 	if (!en)
32 		return NULL;
33 
34 	en->ei = *ei;
35 	INIT_LIST_HEAD(&en->list);
36 	en->et = et;
37 
38 	rb_link_node(&en->rb_node, parent, p);
39 	rb_insert_color(&en->rb_node, &et->root);
40 	atomic_inc(&et->node_cnt);
41 	atomic_inc(&sbi->total_ext_node);
42 	return en;
43 }
44 
45 static void __detach_extent_node(struct f2fs_sb_info *sbi,
46 				struct extent_tree *et, struct extent_node *en)
47 {
48 	rb_erase(&en->rb_node, &et->root);
49 	atomic_dec(&et->node_cnt);
50 	atomic_dec(&sbi->total_ext_node);
51 
52 	if (et->cached_en == en)
53 		et->cached_en = NULL;
54 	kmem_cache_free(extent_node_slab, en);
55 }
56 
57 /*
58  * Flow to release an extent_node:
59  * 1. list_del_init
60  * 2. __detach_extent_node
61  * 3. kmem_cache_free.
62  */
63 static void __release_extent_node(struct f2fs_sb_info *sbi,
64 			struct extent_tree *et, struct extent_node *en)
65 {
66 	spin_lock(&sbi->extent_lock);
67 	f2fs_bug_on(sbi, list_empty(&en->list));
68 	list_del_init(&en->list);
69 	spin_unlock(&sbi->extent_lock);
70 
71 	__detach_extent_node(sbi, et, en);
72 }
73 
74 static struct extent_tree *__grab_extent_tree(struct inode *inode)
75 {
76 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
77 	struct extent_tree *et;
78 	nid_t ino = inode->i_ino;
79 
80 	down_write(&sbi->extent_tree_lock);
81 	et = radix_tree_lookup(&sbi->extent_tree_root, ino);
82 	if (!et) {
83 		et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
84 		f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
85 		memset(et, 0, sizeof(struct extent_tree));
86 		et->ino = ino;
87 		et->root = RB_ROOT;
88 		et->cached_en = NULL;
89 		rwlock_init(&et->lock);
90 		INIT_LIST_HEAD(&et->list);
91 		atomic_set(&et->node_cnt, 0);
92 		atomic_inc(&sbi->total_ext_tree);
93 	} else {
94 		atomic_dec(&sbi->total_zombie_tree);
95 		list_del_init(&et->list);
96 	}
97 	up_write(&sbi->extent_tree_lock);
98 
99 	/* never died until evict_inode */
100 	F2FS_I(inode)->extent_tree = et;
101 
102 	return et;
103 }
104 
105 static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
106 				struct extent_tree *et, unsigned int fofs)
107 {
108 	struct rb_node *node = et->root.rb_node;
109 	struct extent_node *en = et->cached_en;
110 
111 	if (en) {
112 		struct extent_info *cei = &en->ei;
113 
114 		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
115 			stat_inc_cached_node_hit(sbi);
116 			return en;
117 		}
118 	}
119 
120 	while (node) {
121 		en = rb_entry(node, struct extent_node, rb_node);
122 
123 		if (fofs < en->ei.fofs) {
124 			node = node->rb_left;
125 		} else if (fofs >= en->ei.fofs + en->ei.len) {
126 			node = node->rb_right;
127 		} else {
128 			stat_inc_rbtree_node_hit(sbi);
129 			return en;
130 		}
131 	}
132 	return NULL;
133 }
134 
135 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
136 				struct extent_tree *et, struct extent_info *ei)
137 {
138 	struct rb_node **p = &et->root.rb_node;
139 	struct extent_node *en;
140 
141 	en = __attach_extent_node(sbi, et, ei, NULL, p);
142 	if (!en)
143 		return NULL;
144 
145 	et->largest = en->ei;
146 	et->cached_en = en;
147 	return en;
148 }
149 
150 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
151 					struct extent_tree *et)
152 {
153 	struct rb_node *node, *next;
154 	struct extent_node *en;
155 	unsigned int count = atomic_read(&et->node_cnt);
156 
157 	node = rb_first(&et->root);
158 	while (node) {
159 		next = rb_next(node);
160 		en = rb_entry(node, struct extent_node, rb_node);
161 		__release_extent_node(sbi, et, en);
162 		node = next;
163 	}
164 
165 	return count - atomic_read(&et->node_cnt);
166 }
167 
168 static void __drop_largest_extent(struct inode *inode,
169 					pgoff_t fofs, unsigned int len)
170 {
171 	struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
172 
173 	if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs)
174 		largest->len = 0;
175 }
176 
177 /* return true, if inode page is changed */
178 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
179 {
180 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
181 	struct extent_tree *et;
182 	struct extent_node *en;
183 	struct extent_info ei;
184 
185 	if (!f2fs_may_extent_tree(inode)) {
186 		/* drop largest extent */
187 		if (i_ext && i_ext->len) {
188 			i_ext->len = 0;
189 			return true;
190 		}
191 		return false;
192 	}
193 
194 	et = __grab_extent_tree(inode);
195 
196 	if (!i_ext || !i_ext->len)
197 		return false;
198 
199 	get_extent_info(&ei, i_ext);
200 
201 	write_lock(&et->lock);
202 	if (atomic_read(&et->node_cnt))
203 		goto out;
204 
205 	en = __init_extent_tree(sbi, et, &ei);
206 	if (en) {
207 		spin_lock(&sbi->extent_lock);
208 		list_add_tail(&en->list, &sbi->extent_list);
209 		spin_unlock(&sbi->extent_lock);
210 	}
211 out:
212 	write_unlock(&et->lock);
213 	return false;
214 }
215 
216 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
217 							struct extent_info *ei)
218 {
219 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
220 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
221 	struct extent_node *en;
222 	bool ret = false;
223 
224 	f2fs_bug_on(sbi, !et);
225 
226 	trace_f2fs_lookup_extent_tree_start(inode, pgofs);
227 
228 	read_lock(&et->lock);
229 
230 	if (et->largest.fofs <= pgofs &&
231 			et->largest.fofs + et->largest.len > pgofs) {
232 		*ei = et->largest;
233 		ret = true;
234 		stat_inc_largest_node_hit(sbi);
235 		goto out;
236 	}
237 
238 	en = __lookup_extent_tree(sbi, et, pgofs);
239 	if (en) {
240 		*ei = en->ei;
241 		spin_lock(&sbi->extent_lock);
242 		if (!list_empty(&en->list)) {
243 			list_move_tail(&en->list, &sbi->extent_list);
244 			et->cached_en = en;
245 		}
246 		spin_unlock(&sbi->extent_lock);
247 		ret = true;
248 	}
249 out:
250 	stat_inc_total_hit(sbi);
251 	read_unlock(&et->lock);
252 
253 	trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
254 	return ret;
255 }
256 
257 
258 /*
259  * lookup extent at @fofs, if hit, return the extent
260  * if not, return NULL and
261  * @prev_ex: extent before fofs
262  * @next_ex: extent after fofs
263  * @insert_p: insert point for new extent at fofs
264  * in order to simpfy the insertion after.
265  * tree must stay unchanged between lookup and insertion.
266  */
267 static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
268 				unsigned int fofs,
269 				struct extent_node **prev_ex,
270 				struct extent_node **next_ex,
271 				struct rb_node ***insert_p,
272 				struct rb_node **insert_parent)
273 {
274 	struct rb_node **pnode = &et->root.rb_node;
275 	struct rb_node *parent = NULL, *tmp_node;
276 	struct extent_node *en = et->cached_en;
277 
278 	*insert_p = NULL;
279 	*insert_parent = NULL;
280 	*prev_ex = NULL;
281 	*next_ex = NULL;
282 
283 	if (RB_EMPTY_ROOT(&et->root))
284 		return NULL;
285 
286 	if (en) {
287 		struct extent_info *cei = &en->ei;
288 
289 		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
290 			goto lookup_neighbors;
291 	}
292 
293 	while (*pnode) {
294 		parent = *pnode;
295 		en = rb_entry(*pnode, struct extent_node, rb_node);
296 
297 		if (fofs < en->ei.fofs)
298 			pnode = &(*pnode)->rb_left;
299 		else if (fofs >= en->ei.fofs + en->ei.len)
300 			pnode = &(*pnode)->rb_right;
301 		else
302 			goto lookup_neighbors;
303 	}
304 
305 	*insert_p = pnode;
306 	*insert_parent = parent;
307 
308 	en = rb_entry(parent, struct extent_node, rb_node);
309 	tmp_node = parent;
310 	if (parent && fofs > en->ei.fofs)
311 		tmp_node = rb_next(parent);
312 	*next_ex = tmp_node ?
313 		rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
314 
315 	tmp_node = parent;
316 	if (parent && fofs < en->ei.fofs)
317 		tmp_node = rb_prev(parent);
318 	*prev_ex = tmp_node ?
319 		rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
320 	return NULL;
321 
322 lookup_neighbors:
323 	if (fofs == en->ei.fofs) {
324 		/* lookup prev node for merging backward later */
325 		tmp_node = rb_prev(&en->rb_node);
326 		*prev_ex = tmp_node ?
327 			rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
328 	}
329 	if (fofs == en->ei.fofs + en->ei.len - 1) {
330 		/* lookup next node for merging frontward later */
331 		tmp_node = rb_next(&en->rb_node);
332 		*next_ex = tmp_node ?
333 			rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
334 	}
335 	return en;
336 }
337 
338 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
339 				struct extent_tree *et, struct extent_info *ei,
340 				struct extent_node *prev_ex,
341 				struct extent_node *next_ex)
342 {
343 	struct extent_node *en = NULL;
344 
345 	if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
346 		prev_ex->ei.len += ei->len;
347 		ei = &prev_ex->ei;
348 		en = prev_ex;
349 	}
350 
351 	if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
352 		if (en)
353 			__release_extent_node(sbi, et, prev_ex);
354 		next_ex->ei.fofs = ei->fofs;
355 		next_ex->ei.blk = ei->blk;
356 		next_ex->ei.len += ei->len;
357 		en = next_ex;
358 	}
359 
360 	if (!en)
361 		return NULL;
362 
363 	__try_update_largest_extent(et, en);
364 
365 	spin_lock(&sbi->extent_lock);
366 	if (!list_empty(&en->list)) {
367 		list_move_tail(&en->list, &sbi->extent_list);
368 		et->cached_en = en;
369 	}
370 	spin_unlock(&sbi->extent_lock);
371 	return en;
372 }
373 
374 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
375 				struct extent_tree *et, struct extent_info *ei,
376 				struct rb_node **insert_p,
377 				struct rb_node *insert_parent)
378 {
379 	struct rb_node **p = &et->root.rb_node;
380 	struct rb_node *parent = NULL;
381 	struct extent_node *en = NULL;
382 
383 	if (insert_p && insert_parent) {
384 		parent = insert_parent;
385 		p = insert_p;
386 		goto do_insert;
387 	}
388 
389 	while (*p) {
390 		parent = *p;
391 		en = rb_entry(parent, struct extent_node, rb_node);
392 
393 		if (ei->fofs < en->ei.fofs)
394 			p = &(*p)->rb_left;
395 		else if (ei->fofs >= en->ei.fofs + en->ei.len)
396 			p = &(*p)->rb_right;
397 		else
398 			f2fs_bug_on(sbi, 1);
399 	}
400 do_insert:
401 	en = __attach_extent_node(sbi, et, ei, parent, p);
402 	if (!en)
403 		return NULL;
404 
405 	__try_update_largest_extent(et, en);
406 
407 	/* update in global extent list */
408 	spin_lock(&sbi->extent_lock);
409 	list_add_tail(&en->list, &sbi->extent_list);
410 	et->cached_en = en;
411 	spin_unlock(&sbi->extent_lock);
412 	return en;
413 }
414 
415 static unsigned int f2fs_update_extent_tree_range(struct inode *inode,
416 				pgoff_t fofs, block_t blkaddr, unsigned int len)
417 {
418 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
419 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
420 	struct extent_node *en = NULL, *en1 = NULL;
421 	struct extent_node *prev_en = NULL, *next_en = NULL;
422 	struct extent_info ei, dei, prev;
423 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
424 	unsigned int end = fofs + len;
425 	unsigned int pos = (unsigned int)fofs;
426 
427 	if (!et)
428 		return false;
429 
430 	trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
431 
432 	write_lock(&et->lock);
433 
434 	if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
435 		write_unlock(&et->lock);
436 		return false;
437 	}
438 
439 	prev = et->largest;
440 	dei.len = 0;
441 
442 	/*
443 	 * drop largest extent before lookup, in case it's already
444 	 * been shrunk from extent tree
445 	 */
446 	__drop_largest_extent(inode, fofs, len);
447 
448 	/* 1. lookup first extent node in range [fofs, fofs + len - 1] */
449 	en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
450 					&insert_p, &insert_parent);
451 	if (!en)
452 		en = next_en;
453 
454 	/* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
455 	while (en && en->ei.fofs < end) {
456 		unsigned int org_end;
457 		int parts = 0;	/* # of parts current extent split into */
458 
459 		next_en = en1 = NULL;
460 
461 		dei = en->ei;
462 		org_end = dei.fofs + dei.len;
463 		f2fs_bug_on(sbi, pos >= org_end);
464 
465 		if (pos > dei.fofs &&	pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
466 			en->ei.len = pos - en->ei.fofs;
467 			prev_en = en;
468 			parts = 1;
469 		}
470 
471 		if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
472 			if (parts) {
473 				set_extent_info(&ei, end,
474 						end - dei.fofs + dei.blk,
475 						org_end - end);
476 				en1 = __insert_extent_tree(sbi, et, &ei,
477 							NULL, NULL);
478 				next_en = en1;
479 			} else {
480 				en->ei.fofs = end;
481 				en->ei.blk += end - dei.fofs;
482 				en->ei.len -= end - dei.fofs;
483 				next_en = en;
484 			}
485 			parts++;
486 		}
487 
488 		if (!next_en) {
489 			struct rb_node *node = rb_next(&en->rb_node);
490 
491 			next_en = node ?
492 				rb_entry(node, struct extent_node, rb_node)
493 				: NULL;
494 		}
495 
496 		if (parts)
497 			__try_update_largest_extent(et, en);
498 		else
499 			__release_extent_node(sbi, et, en);
500 
501 		/*
502 		 * if original extent is split into zero or two parts, extent
503 		 * tree has been altered by deletion or insertion, therefore
504 		 * invalidate pointers regard to tree.
505 		 */
506 		if (parts != 1) {
507 			insert_p = NULL;
508 			insert_parent = NULL;
509 		}
510 		en = next_en;
511 	}
512 
513 	/* 3. update extent in extent cache */
514 	if (blkaddr) {
515 
516 		set_extent_info(&ei, fofs, blkaddr, len);
517 		if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
518 			__insert_extent_tree(sbi, et, &ei,
519 						insert_p, insert_parent);
520 
521 		/* give up extent_cache, if split and small updates happen */
522 		if (dei.len >= 1 &&
523 				prev.len < F2FS_MIN_EXTENT_LEN &&
524 				et->largest.len < F2FS_MIN_EXTENT_LEN) {
525 			et->largest.len = 0;
526 			set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
527 		}
528 	}
529 
530 	if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
531 		__free_extent_tree(sbi, et);
532 
533 	write_unlock(&et->lock);
534 
535 	return !__is_extent_same(&prev, &et->largest);
536 }
537 
538 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
539 {
540 	struct extent_tree *et, *next;
541 	struct extent_node *en;
542 	unsigned int node_cnt = 0, tree_cnt = 0;
543 	int remained;
544 
545 	if (!test_opt(sbi, EXTENT_CACHE))
546 		return 0;
547 
548 	if (!atomic_read(&sbi->total_zombie_tree))
549 		goto free_node;
550 
551 	if (!down_write_trylock(&sbi->extent_tree_lock))
552 		goto out;
553 
554 	/* 1. remove unreferenced extent tree */
555 	list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
556 		if (atomic_read(&et->node_cnt)) {
557 			write_lock(&et->lock);
558 			node_cnt += __free_extent_tree(sbi, et);
559 			write_unlock(&et->lock);
560 		}
561 		f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
562 		list_del_init(&et->list);
563 		radix_tree_delete(&sbi->extent_tree_root, et->ino);
564 		kmem_cache_free(extent_tree_slab, et);
565 		atomic_dec(&sbi->total_ext_tree);
566 		atomic_dec(&sbi->total_zombie_tree);
567 		tree_cnt++;
568 
569 		if (node_cnt + tree_cnt >= nr_shrink)
570 			goto unlock_out;
571 		cond_resched();
572 	}
573 	up_write(&sbi->extent_tree_lock);
574 
575 free_node:
576 	/* 2. remove LRU extent entries */
577 	if (!down_write_trylock(&sbi->extent_tree_lock))
578 		goto out;
579 
580 	remained = nr_shrink - (node_cnt + tree_cnt);
581 
582 	spin_lock(&sbi->extent_lock);
583 	for (; remained > 0; remained--) {
584 		if (list_empty(&sbi->extent_list))
585 			break;
586 		en = list_first_entry(&sbi->extent_list,
587 					struct extent_node, list);
588 		et = en->et;
589 		if (!write_trylock(&et->lock)) {
590 			/* refresh this extent node's position in extent list */
591 			list_move_tail(&en->list, &sbi->extent_list);
592 			continue;
593 		}
594 
595 		list_del_init(&en->list);
596 		spin_unlock(&sbi->extent_lock);
597 
598 		__detach_extent_node(sbi, et, en);
599 
600 		write_unlock(&et->lock);
601 		node_cnt++;
602 		spin_lock(&sbi->extent_lock);
603 	}
604 	spin_unlock(&sbi->extent_lock);
605 
606 unlock_out:
607 	up_write(&sbi->extent_tree_lock);
608 out:
609 	trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
610 
611 	return node_cnt + tree_cnt;
612 }
613 
614 unsigned int f2fs_destroy_extent_node(struct inode *inode)
615 {
616 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
617 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
618 	unsigned int node_cnt = 0;
619 
620 	if (!et || !atomic_read(&et->node_cnt))
621 		return 0;
622 
623 	write_lock(&et->lock);
624 	node_cnt = __free_extent_tree(sbi, et);
625 	write_unlock(&et->lock);
626 
627 	return node_cnt;
628 }
629 
630 void f2fs_destroy_extent_tree(struct inode *inode)
631 {
632 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
633 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
634 	unsigned int node_cnt = 0;
635 
636 	if (!et)
637 		return;
638 
639 	if (inode->i_nlink && !is_bad_inode(inode) &&
640 					atomic_read(&et->node_cnt)) {
641 		down_write(&sbi->extent_tree_lock);
642 		list_add_tail(&et->list, &sbi->zombie_list);
643 		atomic_inc(&sbi->total_zombie_tree);
644 		up_write(&sbi->extent_tree_lock);
645 		return;
646 	}
647 
648 	/* free all extent info belong to this extent tree */
649 	node_cnt = f2fs_destroy_extent_node(inode);
650 
651 	/* delete extent tree entry in radix tree */
652 	down_write(&sbi->extent_tree_lock);
653 	f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
654 	radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
655 	kmem_cache_free(extent_tree_slab, et);
656 	atomic_dec(&sbi->total_ext_tree);
657 	up_write(&sbi->extent_tree_lock);
658 
659 	F2FS_I(inode)->extent_tree = NULL;
660 
661 	trace_f2fs_destroy_extent_tree(inode, node_cnt);
662 }
663 
664 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
665 					struct extent_info *ei)
666 {
667 	if (!f2fs_may_extent_tree(inode))
668 		return false;
669 
670 	return f2fs_lookup_extent_tree(inode, pgofs, ei);
671 }
672 
673 void f2fs_update_extent_cache(struct dnode_of_data *dn)
674 {
675 	pgoff_t fofs;
676 	block_t blkaddr;
677 
678 	if (!f2fs_may_extent_tree(dn->inode))
679 		return;
680 
681 	if (dn->data_blkaddr == NEW_ADDR)
682 		blkaddr = NULL_ADDR;
683 	else
684 		blkaddr = dn->data_blkaddr;
685 
686 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
687 								dn->ofs_in_node;
688 
689 	if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1))
690 		sync_inode_page(dn);
691 }
692 
693 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
694 				pgoff_t fofs, block_t blkaddr, unsigned int len)
695 
696 {
697 	if (!f2fs_may_extent_tree(dn->inode))
698 		return;
699 
700 	if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len))
701 		sync_inode_page(dn);
702 }
703 
704 void init_extent_cache_info(struct f2fs_sb_info *sbi)
705 {
706 	INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
707 	init_rwsem(&sbi->extent_tree_lock);
708 	INIT_LIST_HEAD(&sbi->extent_list);
709 	spin_lock_init(&sbi->extent_lock);
710 	atomic_set(&sbi->total_ext_tree, 0);
711 	INIT_LIST_HEAD(&sbi->zombie_list);
712 	atomic_set(&sbi->total_zombie_tree, 0);
713 	atomic_set(&sbi->total_ext_node, 0);
714 }
715 
716 int __init create_extent_cache(void)
717 {
718 	extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
719 			sizeof(struct extent_tree));
720 	if (!extent_tree_slab)
721 		return -ENOMEM;
722 	extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
723 			sizeof(struct extent_node));
724 	if (!extent_node_slab) {
725 		kmem_cache_destroy(extent_tree_slab);
726 		return -ENOMEM;
727 	}
728 	return 0;
729 }
730 
731 void destroy_extent_cache(void)
732 {
733 	kmem_cache_destroy(extent_node_slab);
734 	kmem_cache_destroy(extent_tree_slab);
735 }
736