xref: /openbmc/linux/fs/f2fs/data.c (revision fcc8487d)
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32 
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 	struct address_space *mapping = page->mapping;
36 	struct inode *inode;
37 	struct f2fs_sb_info *sbi;
38 
39 	if (!mapping)
40 		return false;
41 
42 	inode = mapping->host;
43 	sbi = F2FS_I_SB(inode);
44 
45 	if (inode->i_ino == F2FS_META_INO(sbi) ||
46 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
47 			S_ISDIR(inode->i_mode) ||
48 			is_cold_data(page))
49 		return true;
50 	return false;
51 }
52 
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55 	struct bio_vec *bvec;
56 	int i;
57 
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59 	if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
60 		f2fs_show_injection_info(FAULT_IO);
61 		bio->bi_error = -EIO;
62 	}
63 #endif
64 
65 	if (f2fs_bio_encrypted(bio)) {
66 		if (bio->bi_error) {
67 			fscrypt_release_ctx(bio->bi_private);
68 		} else {
69 			fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70 			return;
71 		}
72 	}
73 
74 	bio_for_each_segment_all(bvec, bio, i) {
75 		struct page *page = bvec->bv_page;
76 
77 		if (!bio->bi_error) {
78 			if (!PageUptodate(page))
79 				SetPageUptodate(page);
80 		} else {
81 			ClearPageUptodate(page);
82 			SetPageError(page);
83 		}
84 		unlock_page(page);
85 	}
86 	bio_put(bio);
87 }
88 
89 static void f2fs_write_end_io(struct bio *bio)
90 {
91 	struct f2fs_sb_info *sbi = bio->bi_private;
92 	struct bio_vec *bvec;
93 	int i;
94 
95 	bio_for_each_segment_all(bvec, bio, i) {
96 		struct page *page = bvec->bv_page;
97 		enum count_type type = WB_DATA_TYPE(page);
98 
99 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
100 			set_page_private(page, (unsigned long)NULL);
101 			ClearPagePrivate(page);
102 			unlock_page(page);
103 			mempool_free(page, sbi->write_io_dummy);
104 
105 			if (unlikely(bio->bi_error))
106 				f2fs_stop_checkpoint(sbi, true);
107 			continue;
108 		}
109 
110 		fscrypt_pullback_bio_page(&page, true);
111 
112 		if (unlikely(bio->bi_error)) {
113 			mapping_set_error(page->mapping, -EIO);
114 			f2fs_stop_checkpoint(sbi, true);
115 		}
116 		dec_page_count(sbi, type);
117 		clear_cold_data(page);
118 		end_page_writeback(page);
119 	}
120 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
121 				wq_has_sleeper(&sbi->cp_wait))
122 		wake_up(&sbi->cp_wait);
123 
124 	bio_put(bio);
125 }
126 
127 /*
128  * Return true, if pre_bio's bdev is same as its target device.
129  */
130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
131 				block_t blk_addr, struct bio *bio)
132 {
133 	struct block_device *bdev = sbi->sb->s_bdev;
134 	int i;
135 
136 	for (i = 0; i < sbi->s_ndevs; i++) {
137 		if (FDEV(i).start_blk <= blk_addr &&
138 					FDEV(i).end_blk >= blk_addr) {
139 			blk_addr -= FDEV(i).start_blk;
140 			bdev = FDEV(i).bdev;
141 			break;
142 		}
143 	}
144 	if (bio) {
145 		bio->bi_bdev = bdev;
146 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
147 	}
148 	return bdev;
149 }
150 
151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
152 {
153 	int i;
154 
155 	for (i = 0; i < sbi->s_ndevs; i++)
156 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
157 			return i;
158 	return 0;
159 }
160 
161 static bool __same_bdev(struct f2fs_sb_info *sbi,
162 				block_t blk_addr, struct bio *bio)
163 {
164 	return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
165 }
166 
167 /*
168  * Low-level block read/write IO operations.
169  */
170 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
171 				int npages, bool is_read)
172 {
173 	struct bio *bio;
174 
175 	bio = f2fs_bio_alloc(npages);
176 
177 	f2fs_target_device(sbi, blk_addr, bio);
178 	bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
179 	bio->bi_private = is_read ? NULL : sbi;
180 
181 	return bio;
182 }
183 
184 static inline void __submit_bio(struct f2fs_sb_info *sbi,
185 				struct bio *bio, enum page_type type)
186 {
187 	if (!is_read_io(bio_op(bio))) {
188 		unsigned int start;
189 
190 		if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
191 			current->plug && (type == DATA || type == NODE))
192 			blk_finish_plug(current->plug);
193 
194 		if (type != DATA && type != NODE)
195 			goto submit_io;
196 
197 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
198 		start %= F2FS_IO_SIZE(sbi);
199 
200 		if (start == 0)
201 			goto submit_io;
202 
203 		/* fill dummy pages */
204 		for (; start < F2FS_IO_SIZE(sbi); start++) {
205 			struct page *page =
206 				mempool_alloc(sbi->write_io_dummy,
207 					GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
208 			f2fs_bug_on(sbi, !page);
209 
210 			SetPagePrivate(page);
211 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
212 			lock_page(page);
213 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
214 				f2fs_bug_on(sbi, 1);
215 		}
216 		/*
217 		 * In the NODE case, we lose next block address chain. So, we
218 		 * need to do checkpoint in f2fs_sync_file.
219 		 */
220 		if (type == NODE)
221 			set_sbi_flag(sbi, SBI_NEED_CP);
222 	}
223 submit_io:
224 	if (is_read_io(bio_op(bio)))
225 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
226 	else
227 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
228 	submit_bio(bio);
229 }
230 
231 static void __submit_merged_bio(struct f2fs_bio_info *io)
232 {
233 	struct f2fs_io_info *fio = &io->fio;
234 
235 	if (!io->bio)
236 		return;
237 
238 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
239 
240 	if (is_read_io(fio->op))
241 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
242 	else
243 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
244 
245 	__submit_bio(io->sbi, io->bio, fio->type);
246 	io->bio = NULL;
247 }
248 
249 static bool __has_merged_page(struct f2fs_bio_info *io,
250 				struct inode *inode, nid_t ino, pgoff_t idx)
251 {
252 	struct bio_vec *bvec;
253 	struct page *target;
254 	int i;
255 
256 	if (!io->bio)
257 		return false;
258 
259 	if (!inode && !ino)
260 		return true;
261 
262 	bio_for_each_segment_all(bvec, io->bio, i) {
263 
264 		if (bvec->bv_page->mapping)
265 			target = bvec->bv_page;
266 		else
267 			target = fscrypt_control_page(bvec->bv_page);
268 
269 		if (idx != target->index)
270 			continue;
271 
272 		if (inode && inode == target->mapping->host)
273 			return true;
274 		if (ino && ino == ino_of_node(target))
275 			return true;
276 	}
277 
278 	return false;
279 }
280 
281 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
282 				nid_t ino, pgoff_t idx, enum page_type type)
283 {
284 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
285 	struct f2fs_bio_info *io = &sbi->write_io[btype];
286 	bool ret;
287 
288 	down_read(&io->io_rwsem);
289 	ret = __has_merged_page(io, inode, ino, idx);
290 	up_read(&io->io_rwsem);
291 	return ret;
292 }
293 
294 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
295 				struct inode *inode, nid_t ino, pgoff_t idx,
296 				enum page_type type, int rw)
297 {
298 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
299 	struct f2fs_bio_info *io;
300 
301 	io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
302 
303 	down_write(&io->io_rwsem);
304 
305 	if (!__has_merged_page(io, inode, ino, idx))
306 		goto out;
307 
308 	/* change META to META_FLUSH in the checkpoint procedure */
309 	if (type >= META_FLUSH) {
310 		io->fio.type = META_FLUSH;
311 		io->fio.op = REQ_OP_WRITE;
312 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
313 		if (!test_opt(sbi, NOBARRIER))
314 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
315 	}
316 	__submit_merged_bio(io);
317 out:
318 	up_write(&io->io_rwsem);
319 }
320 
321 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
322 									int rw)
323 {
324 	__f2fs_submit_merged_bio(sbi, NULL, 0, 0, type, rw);
325 }
326 
327 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
328 				struct inode *inode, nid_t ino, pgoff_t idx,
329 				enum page_type type, int rw)
330 {
331 	if (has_merged_page(sbi, inode, ino, idx, type))
332 		__f2fs_submit_merged_bio(sbi, inode, ino, idx, type, rw);
333 }
334 
335 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
336 {
337 	f2fs_submit_merged_bio(sbi, DATA, WRITE);
338 	f2fs_submit_merged_bio(sbi, NODE, WRITE);
339 	f2fs_submit_merged_bio(sbi, META, WRITE);
340 }
341 
342 /*
343  * Fill the locked page with data located in the block address.
344  * A caller needs to unlock the page on failure.
345  */
346 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
347 {
348 	struct bio *bio;
349 	struct page *page = fio->encrypted_page ?
350 			fio->encrypted_page : fio->page;
351 
352 	trace_f2fs_submit_page_bio(page, fio);
353 	f2fs_trace_ios(fio, 0);
354 
355 	/* Allocate a new bio */
356 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
357 
358 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
359 		bio_put(bio);
360 		return -EFAULT;
361 	}
362 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
363 
364 	__submit_bio(fio->sbi, bio, fio->type);
365 
366 	if (!is_read_io(fio->op))
367 		inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
368 	return 0;
369 }
370 
371 int f2fs_submit_page_mbio(struct f2fs_io_info *fio)
372 {
373 	struct f2fs_sb_info *sbi = fio->sbi;
374 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
375 	struct f2fs_bio_info *io;
376 	bool is_read = is_read_io(fio->op);
377 	struct page *bio_page;
378 	int err = 0;
379 
380 	io = is_read ? &sbi->read_io : &sbi->write_io[btype];
381 
382 	if (fio->old_blkaddr != NEW_ADDR)
383 		verify_block_addr(sbi, fio->old_blkaddr);
384 	verify_block_addr(sbi, fio->new_blkaddr);
385 
386 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
387 
388 	/* set submitted = 1 as a return value */
389 	fio->submitted = 1;
390 
391 	if (!is_read)
392 		inc_page_count(sbi, WB_DATA_TYPE(bio_page));
393 
394 	down_write(&io->io_rwsem);
395 
396 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
397 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
398 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
399 		__submit_merged_bio(io);
400 alloc_new:
401 	if (io->bio == NULL) {
402 		if ((fio->type == DATA || fio->type == NODE) &&
403 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
404 			err = -EAGAIN;
405 			if (!is_read)
406 				dec_page_count(sbi, WB_DATA_TYPE(bio_page));
407 			goto out_fail;
408 		}
409 		io->bio = __bio_alloc(sbi, fio->new_blkaddr,
410 						BIO_MAX_PAGES, is_read);
411 		io->fio = *fio;
412 	}
413 
414 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
415 							PAGE_SIZE) {
416 		__submit_merged_bio(io);
417 		goto alloc_new;
418 	}
419 
420 	io->last_block_in_bio = fio->new_blkaddr;
421 	f2fs_trace_ios(fio, 0);
422 out_fail:
423 	up_write(&io->io_rwsem);
424 	trace_f2fs_submit_page_mbio(fio->page, fio);
425 	return err;
426 }
427 
428 static void __set_data_blkaddr(struct dnode_of_data *dn)
429 {
430 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
431 	__le32 *addr_array;
432 
433 	/* Get physical address of data block */
434 	addr_array = blkaddr_in_node(rn);
435 	addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
436 }
437 
438 /*
439  * Lock ordering for the change of data block address:
440  * ->data_page
441  *  ->node_page
442  *    update block addresses in the node page
443  */
444 void set_data_blkaddr(struct dnode_of_data *dn)
445 {
446 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
447 	__set_data_blkaddr(dn);
448 	if (set_page_dirty(dn->node_page))
449 		dn->node_changed = true;
450 }
451 
452 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
453 {
454 	dn->data_blkaddr = blkaddr;
455 	set_data_blkaddr(dn);
456 	f2fs_update_extent_cache(dn);
457 }
458 
459 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
460 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
461 {
462 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
463 
464 	if (!count)
465 		return 0;
466 
467 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
468 		return -EPERM;
469 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
470 		return -ENOSPC;
471 
472 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
473 						dn->ofs_in_node, count);
474 
475 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
476 
477 	for (; count > 0; dn->ofs_in_node++) {
478 		block_t blkaddr =
479 			datablock_addr(dn->node_page, dn->ofs_in_node);
480 		if (blkaddr == NULL_ADDR) {
481 			dn->data_blkaddr = NEW_ADDR;
482 			__set_data_blkaddr(dn);
483 			count--;
484 		}
485 	}
486 
487 	if (set_page_dirty(dn->node_page))
488 		dn->node_changed = true;
489 	return 0;
490 }
491 
492 /* Should keep dn->ofs_in_node unchanged */
493 int reserve_new_block(struct dnode_of_data *dn)
494 {
495 	unsigned int ofs_in_node = dn->ofs_in_node;
496 	int ret;
497 
498 	ret = reserve_new_blocks(dn, 1);
499 	dn->ofs_in_node = ofs_in_node;
500 	return ret;
501 }
502 
503 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
504 {
505 	bool need_put = dn->inode_page ? false : true;
506 	int err;
507 
508 	err = get_dnode_of_data(dn, index, ALLOC_NODE);
509 	if (err)
510 		return err;
511 
512 	if (dn->data_blkaddr == NULL_ADDR)
513 		err = reserve_new_block(dn);
514 	if (err || need_put)
515 		f2fs_put_dnode(dn);
516 	return err;
517 }
518 
519 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
520 {
521 	struct extent_info ei  = {0,0,0};
522 	struct inode *inode = dn->inode;
523 
524 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
525 		dn->data_blkaddr = ei.blk + index - ei.fofs;
526 		return 0;
527 	}
528 
529 	return f2fs_reserve_block(dn, index);
530 }
531 
532 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
533 						int op_flags, bool for_write)
534 {
535 	struct address_space *mapping = inode->i_mapping;
536 	struct dnode_of_data dn;
537 	struct page *page;
538 	struct extent_info ei = {0,0,0};
539 	int err;
540 	struct f2fs_io_info fio = {
541 		.sbi = F2FS_I_SB(inode),
542 		.type = DATA,
543 		.op = REQ_OP_READ,
544 		.op_flags = op_flags,
545 		.encrypted_page = NULL,
546 	};
547 
548 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
549 		return read_mapping_page(mapping, index, NULL);
550 
551 	page = f2fs_grab_cache_page(mapping, index, for_write);
552 	if (!page)
553 		return ERR_PTR(-ENOMEM);
554 
555 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
556 		dn.data_blkaddr = ei.blk + index - ei.fofs;
557 		goto got_it;
558 	}
559 
560 	set_new_dnode(&dn, inode, NULL, NULL, 0);
561 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
562 	if (err)
563 		goto put_err;
564 	f2fs_put_dnode(&dn);
565 
566 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
567 		err = -ENOENT;
568 		goto put_err;
569 	}
570 got_it:
571 	if (PageUptodate(page)) {
572 		unlock_page(page);
573 		return page;
574 	}
575 
576 	/*
577 	 * A new dentry page is allocated but not able to be written, since its
578 	 * new inode page couldn't be allocated due to -ENOSPC.
579 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
580 	 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
581 	 */
582 	if (dn.data_blkaddr == NEW_ADDR) {
583 		zero_user_segment(page, 0, PAGE_SIZE);
584 		if (!PageUptodate(page))
585 			SetPageUptodate(page);
586 		unlock_page(page);
587 		return page;
588 	}
589 
590 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
591 	fio.page = page;
592 	err = f2fs_submit_page_bio(&fio);
593 	if (err)
594 		goto put_err;
595 	return page;
596 
597 put_err:
598 	f2fs_put_page(page, 1);
599 	return ERR_PTR(err);
600 }
601 
602 struct page *find_data_page(struct inode *inode, pgoff_t index)
603 {
604 	struct address_space *mapping = inode->i_mapping;
605 	struct page *page;
606 
607 	page = find_get_page(mapping, index);
608 	if (page && PageUptodate(page))
609 		return page;
610 	f2fs_put_page(page, 0);
611 
612 	page = get_read_data_page(inode, index, 0, false);
613 	if (IS_ERR(page))
614 		return page;
615 
616 	if (PageUptodate(page))
617 		return page;
618 
619 	wait_on_page_locked(page);
620 	if (unlikely(!PageUptodate(page))) {
621 		f2fs_put_page(page, 0);
622 		return ERR_PTR(-EIO);
623 	}
624 	return page;
625 }
626 
627 /*
628  * If it tries to access a hole, return an error.
629  * Because, the callers, functions in dir.c and GC, should be able to know
630  * whether this page exists or not.
631  */
632 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
633 							bool for_write)
634 {
635 	struct address_space *mapping = inode->i_mapping;
636 	struct page *page;
637 repeat:
638 	page = get_read_data_page(inode, index, 0, for_write);
639 	if (IS_ERR(page))
640 		return page;
641 
642 	/* wait for read completion */
643 	lock_page(page);
644 	if (unlikely(page->mapping != mapping)) {
645 		f2fs_put_page(page, 1);
646 		goto repeat;
647 	}
648 	if (unlikely(!PageUptodate(page))) {
649 		f2fs_put_page(page, 1);
650 		return ERR_PTR(-EIO);
651 	}
652 	return page;
653 }
654 
655 /*
656  * Caller ensures that this data page is never allocated.
657  * A new zero-filled data page is allocated in the page cache.
658  *
659  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
660  * f2fs_unlock_op().
661  * Note that, ipage is set only by make_empty_dir, and if any error occur,
662  * ipage should be released by this function.
663  */
664 struct page *get_new_data_page(struct inode *inode,
665 		struct page *ipage, pgoff_t index, bool new_i_size)
666 {
667 	struct address_space *mapping = inode->i_mapping;
668 	struct page *page;
669 	struct dnode_of_data dn;
670 	int err;
671 
672 	page = f2fs_grab_cache_page(mapping, index, true);
673 	if (!page) {
674 		/*
675 		 * before exiting, we should make sure ipage will be released
676 		 * if any error occur.
677 		 */
678 		f2fs_put_page(ipage, 1);
679 		return ERR_PTR(-ENOMEM);
680 	}
681 
682 	set_new_dnode(&dn, inode, ipage, NULL, 0);
683 	err = f2fs_reserve_block(&dn, index);
684 	if (err) {
685 		f2fs_put_page(page, 1);
686 		return ERR_PTR(err);
687 	}
688 	if (!ipage)
689 		f2fs_put_dnode(&dn);
690 
691 	if (PageUptodate(page))
692 		goto got_it;
693 
694 	if (dn.data_blkaddr == NEW_ADDR) {
695 		zero_user_segment(page, 0, PAGE_SIZE);
696 		if (!PageUptodate(page))
697 			SetPageUptodate(page);
698 	} else {
699 		f2fs_put_page(page, 1);
700 
701 		/* if ipage exists, blkaddr should be NEW_ADDR */
702 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
703 		page = get_lock_data_page(inode, index, true);
704 		if (IS_ERR(page))
705 			return page;
706 	}
707 got_it:
708 	if (new_i_size && i_size_read(inode) <
709 				((loff_t)(index + 1) << PAGE_SHIFT))
710 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
711 	return page;
712 }
713 
714 static int __allocate_data_block(struct dnode_of_data *dn)
715 {
716 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
717 	struct f2fs_summary sum;
718 	struct node_info ni;
719 	pgoff_t fofs;
720 	blkcnt_t count = 1;
721 
722 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
723 		return -EPERM;
724 
725 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
726 	if (dn->data_blkaddr == NEW_ADDR)
727 		goto alloc;
728 
729 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
730 		return -ENOSPC;
731 
732 alloc:
733 	get_node_info(sbi, dn->nid, &ni);
734 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
735 
736 	allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
737 						&sum, CURSEG_WARM_DATA);
738 	set_data_blkaddr(dn);
739 
740 	/* update i_size */
741 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
742 							dn->ofs_in_node;
743 	if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
744 		f2fs_i_size_write(dn->inode,
745 				((loff_t)(fofs + 1) << PAGE_SHIFT));
746 	return 0;
747 }
748 
749 static inline bool __force_buffered_io(struct inode *inode, int rw)
750 {
751 	return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
752 			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
753 			F2FS_I_SB(inode)->s_ndevs);
754 }
755 
756 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
757 {
758 	struct inode *inode = file_inode(iocb->ki_filp);
759 	struct f2fs_map_blocks map;
760 	int err = 0;
761 
762 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
763 		return 0;
764 
765 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
766 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
767 	if (map.m_len > map.m_lblk)
768 		map.m_len -= map.m_lblk;
769 	else
770 		map.m_len = 0;
771 
772 	map.m_next_pgofs = NULL;
773 
774 	if (iocb->ki_flags & IOCB_DIRECT) {
775 		err = f2fs_convert_inline_inode(inode);
776 		if (err)
777 			return err;
778 		return f2fs_map_blocks(inode, &map, 1,
779 			__force_buffered_io(inode, WRITE) ?
780 				F2FS_GET_BLOCK_PRE_AIO :
781 				F2FS_GET_BLOCK_PRE_DIO);
782 	}
783 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
784 		err = f2fs_convert_inline_inode(inode);
785 		if (err)
786 			return err;
787 	}
788 	if (!f2fs_has_inline_data(inode))
789 		return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
790 	return err;
791 }
792 
793 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
794 {
795 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
796 		if (lock)
797 			down_read(&sbi->node_change);
798 		else
799 			up_read(&sbi->node_change);
800 	} else {
801 		if (lock)
802 			f2fs_lock_op(sbi);
803 		else
804 			f2fs_unlock_op(sbi);
805 	}
806 }
807 
808 /*
809  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
810  * f2fs_map_blocks structure.
811  * If original data blocks are allocated, then give them to blockdev.
812  * Otherwise,
813  *     a. preallocate requested block addresses
814  *     b. do not use extent cache for better performance
815  *     c. give the block addresses to blockdev
816  */
817 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
818 						int create, int flag)
819 {
820 	unsigned int maxblocks = map->m_len;
821 	struct dnode_of_data dn;
822 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
823 	int mode = create ? ALLOC_NODE : LOOKUP_NODE;
824 	pgoff_t pgofs, end_offset, end;
825 	int err = 0, ofs = 1;
826 	unsigned int ofs_in_node, last_ofs_in_node;
827 	blkcnt_t prealloc;
828 	struct extent_info ei = {0,0,0};
829 	block_t blkaddr;
830 
831 	if (!maxblocks)
832 		return 0;
833 
834 	map->m_len = 0;
835 	map->m_flags = 0;
836 
837 	/* it only supports block size == page size */
838 	pgofs =	(pgoff_t)map->m_lblk;
839 	end = pgofs + maxblocks;
840 
841 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
842 		map->m_pblk = ei.blk + pgofs - ei.fofs;
843 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
844 		map->m_flags = F2FS_MAP_MAPPED;
845 		goto out;
846 	}
847 
848 next_dnode:
849 	if (create)
850 		__do_map_lock(sbi, flag, true);
851 
852 	/* When reading holes, we need its node page */
853 	set_new_dnode(&dn, inode, NULL, NULL, 0);
854 	err = get_dnode_of_data(&dn, pgofs, mode);
855 	if (err) {
856 		if (flag == F2FS_GET_BLOCK_BMAP)
857 			map->m_pblk = 0;
858 		if (err == -ENOENT) {
859 			err = 0;
860 			if (map->m_next_pgofs)
861 				*map->m_next_pgofs =
862 					get_next_page_offset(&dn, pgofs);
863 		}
864 		goto unlock_out;
865 	}
866 
867 	prealloc = 0;
868 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
869 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
870 
871 next_block:
872 	blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
873 
874 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
875 		if (create) {
876 			if (unlikely(f2fs_cp_error(sbi))) {
877 				err = -EIO;
878 				goto sync_out;
879 			}
880 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
881 				if (blkaddr == NULL_ADDR) {
882 					prealloc++;
883 					last_ofs_in_node = dn.ofs_in_node;
884 				}
885 			} else {
886 				err = __allocate_data_block(&dn);
887 				if (!err)
888 					set_inode_flag(inode, FI_APPEND_WRITE);
889 			}
890 			if (err)
891 				goto sync_out;
892 			map->m_flags |= F2FS_MAP_NEW;
893 			blkaddr = dn.data_blkaddr;
894 		} else {
895 			if (flag == F2FS_GET_BLOCK_BMAP) {
896 				map->m_pblk = 0;
897 				goto sync_out;
898 			}
899 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
900 						blkaddr == NULL_ADDR) {
901 				if (map->m_next_pgofs)
902 					*map->m_next_pgofs = pgofs + 1;
903 			}
904 			if (flag != F2FS_GET_BLOCK_FIEMAP ||
905 						blkaddr != NEW_ADDR)
906 				goto sync_out;
907 		}
908 	}
909 
910 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
911 		goto skip;
912 
913 	if (map->m_len == 0) {
914 		/* preallocated unwritten block should be mapped for fiemap. */
915 		if (blkaddr == NEW_ADDR)
916 			map->m_flags |= F2FS_MAP_UNWRITTEN;
917 		map->m_flags |= F2FS_MAP_MAPPED;
918 
919 		map->m_pblk = blkaddr;
920 		map->m_len = 1;
921 	} else if ((map->m_pblk != NEW_ADDR &&
922 			blkaddr == (map->m_pblk + ofs)) ||
923 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
924 			flag == F2FS_GET_BLOCK_PRE_DIO) {
925 		ofs++;
926 		map->m_len++;
927 	} else {
928 		goto sync_out;
929 	}
930 
931 skip:
932 	dn.ofs_in_node++;
933 	pgofs++;
934 
935 	/* preallocate blocks in batch for one dnode page */
936 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
937 			(pgofs == end || dn.ofs_in_node == end_offset)) {
938 
939 		dn.ofs_in_node = ofs_in_node;
940 		err = reserve_new_blocks(&dn, prealloc);
941 		if (err)
942 			goto sync_out;
943 
944 		map->m_len += dn.ofs_in_node - ofs_in_node;
945 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
946 			err = -ENOSPC;
947 			goto sync_out;
948 		}
949 		dn.ofs_in_node = end_offset;
950 	}
951 
952 	if (pgofs >= end)
953 		goto sync_out;
954 	else if (dn.ofs_in_node < end_offset)
955 		goto next_block;
956 
957 	f2fs_put_dnode(&dn);
958 
959 	if (create) {
960 		__do_map_lock(sbi, flag, false);
961 		f2fs_balance_fs(sbi, dn.node_changed);
962 	}
963 	goto next_dnode;
964 
965 sync_out:
966 	f2fs_put_dnode(&dn);
967 unlock_out:
968 	if (create) {
969 		__do_map_lock(sbi, flag, false);
970 		f2fs_balance_fs(sbi, dn.node_changed);
971 	}
972 out:
973 	trace_f2fs_map_blocks(inode, map, err);
974 	return err;
975 }
976 
977 static int __get_data_block(struct inode *inode, sector_t iblock,
978 			struct buffer_head *bh, int create, int flag,
979 			pgoff_t *next_pgofs)
980 {
981 	struct f2fs_map_blocks map;
982 	int err;
983 
984 	map.m_lblk = iblock;
985 	map.m_len = bh->b_size >> inode->i_blkbits;
986 	map.m_next_pgofs = next_pgofs;
987 
988 	err = f2fs_map_blocks(inode, &map, create, flag);
989 	if (!err) {
990 		map_bh(bh, inode->i_sb, map.m_pblk);
991 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
992 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
993 	}
994 	return err;
995 }
996 
997 static int get_data_block(struct inode *inode, sector_t iblock,
998 			struct buffer_head *bh_result, int create, int flag,
999 			pgoff_t *next_pgofs)
1000 {
1001 	return __get_data_block(inode, iblock, bh_result, create,
1002 							flag, next_pgofs);
1003 }
1004 
1005 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1006 			struct buffer_head *bh_result, int create)
1007 {
1008 	return __get_data_block(inode, iblock, bh_result, create,
1009 						F2FS_GET_BLOCK_DIO, NULL);
1010 }
1011 
1012 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1013 			struct buffer_head *bh_result, int create)
1014 {
1015 	/* Block number less than F2FS MAX BLOCKS */
1016 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1017 		return -EFBIG;
1018 
1019 	return __get_data_block(inode, iblock, bh_result, create,
1020 						F2FS_GET_BLOCK_BMAP, NULL);
1021 }
1022 
1023 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1024 {
1025 	return (offset >> inode->i_blkbits);
1026 }
1027 
1028 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1029 {
1030 	return (blk << inode->i_blkbits);
1031 }
1032 
1033 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1034 		u64 start, u64 len)
1035 {
1036 	struct buffer_head map_bh;
1037 	sector_t start_blk, last_blk;
1038 	pgoff_t next_pgofs;
1039 	u64 logical = 0, phys = 0, size = 0;
1040 	u32 flags = 0;
1041 	int ret = 0;
1042 
1043 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1044 	if (ret)
1045 		return ret;
1046 
1047 	if (f2fs_has_inline_data(inode)) {
1048 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1049 		if (ret != -EAGAIN)
1050 			return ret;
1051 	}
1052 
1053 	inode_lock(inode);
1054 
1055 	if (logical_to_blk(inode, len) == 0)
1056 		len = blk_to_logical(inode, 1);
1057 
1058 	start_blk = logical_to_blk(inode, start);
1059 	last_blk = logical_to_blk(inode, start + len - 1);
1060 
1061 next:
1062 	memset(&map_bh, 0, sizeof(struct buffer_head));
1063 	map_bh.b_size = len;
1064 
1065 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1066 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1067 	if (ret)
1068 		goto out;
1069 
1070 	/* HOLE */
1071 	if (!buffer_mapped(&map_bh)) {
1072 		start_blk = next_pgofs;
1073 
1074 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1075 					F2FS_I_SB(inode)->max_file_blocks))
1076 			goto prep_next;
1077 
1078 		flags |= FIEMAP_EXTENT_LAST;
1079 	}
1080 
1081 	if (size) {
1082 		if (f2fs_encrypted_inode(inode))
1083 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1084 
1085 		ret = fiemap_fill_next_extent(fieinfo, logical,
1086 				phys, size, flags);
1087 	}
1088 
1089 	if (start_blk > last_blk || ret)
1090 		goto out;
1091 
1092 	logical = blk_to_logical(inode, start_blk);
1093 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1094 	size = map_bh.b_size;
1095 	flags = 0;
1096 	if (buffer_unwritten(&map_bh))
1097 		flags = FIEMAP_EXTENT_UNWRITTEN;
1098 
1099 	start_blk += logical_to_blk(inode, size);
1100 
1101 prep_next:
1102 	cond_resched();
1103 	if (fatal_signal_pending(current))
1104 		ret = -EINTR;
1105 	else
1106 		goto next;
1107 out:
1108 	if (ret == 1)
1109 		ret = 0;
1110 
1111 	inode_unlock(inode);
1112 	return ret;
1113 }
1114 
1115 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1116 				 unsigned nr_pages)
1117 {
1118 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1119 	struct fscrypt_ctx *ctx = NULL;
1120 	struct bio *bio;
1121 
1122 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1123 		ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1124 		if (IS_ERR(ctx))
1125 			return ERR_CAST(ctx);
1126 
1127 		/* wait the page to be moved by cleaning */
1128 		f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1129 	}
1130 
1131 	bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1132 	if (!bio) {
1133 		if (ctx)
1134 			fscrypt_release_ctx(ctx);
1135 		return ERR_PTR(-ENOMEM);
1136 	}
1137 	f2fs_target_device(sbi, blkaddr, bio);
1138 	bio->bi_end_io = f2fs_read_end_io;
1139 	bio->bi_private = ctx;
1140 
1141 	return bio;
1142 }
1143 
1144 /*
1145  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1146  * Major change was from block_size == page_size in f2fs by default.
1147  */
1148 static int f2fs_mpage_readpages(struct address_space *mapping,
1149 			struct list_head *pages, struct page *page,
1150 			unsigned nr_pages)
1151 {
1152 	struct bio *bio = NULL;
1153 	unsigned page_idx;
1154 	sector_t last_block_in_bio = 0;
1155 	struct inode *inode = mapping->host;
1156 	const unsigned blkbits = inode->i_blkbits;
1157 	const unsigned blocksize = 1 << blkbits;
1158 	sector_t block_in_file;
1159 	sector_t last_block;
1160 	sector_t last_block_in_file;
1161 	sector_t block_nr;
1162 	struct f2fs_map_blocks map;
1163 
1164 	map.m_pblk = 0;
1165 	map.m_lblk = 0;
1166 	map.m_len = 0;
1167 	map.m_flags = 0;
1168 	map.m_next_pgofs = NULL;
1169 
1170 	for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1171 
1172 		if (pages) {
1173 			page = list_last_entry(pages, struct page, lru);
1174 
1175 			prefetchw(&page->flags);
1176 			list_del(&page->lru);
1177 			if (add_to_page_cache_lru(page, mapping,
1178 						  page->index,
1179 						  readahead_gfp_mask(mapping)))
1180 				goto next_page;
1181 		}
1182 
1183 		block_in_file = (sector_t)page->index;
1184 		last_block = block_in_file + nr_pages;
1185 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1186 								blkbits;
1187 		if (last_block > last_block_in_file)
1188 			last_block = last_block_in_file;
1189 
1190 		/*
1191 		 * Map blocks using the previous result first.
1192 		 */
1193 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1194 				block_in_file > map.m_lblk &&
1195 				block_in_file < (map.m_lblk + map.m_len))
1196 			goto got_it;
1197 
1198 		/*
1199 		 * Then do more f2fs_map_blocks() calls until we are
1200 		 * done with this page.
1201 		 */
1202 		map.m_flags = 0;
1203 
1204 		if (block_in_file < last_block) {
1205 			map.m_lblk = block_in_file;
1206 			map.m_len = last_block - block_in_file;
1207 
1208 			if (f2fs_map_blocks(inode, &map, 0,
1209 						F2FS_GET_BLOCK_READ))
1210 				goto set_error_page;
1211 		}
1212 got_it:
1213 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1214 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1215 			SetPageMappedToDisk(page);
1216 
1217 			if (!PageUptodate(page) && !cleancache_get_page(page)) {
1218 				SetPageUptodate(page);
1219 				goto confused;
1220 			}
1221 		} else {
1222 			zero_user_segment(page, 0, PAGE_SIZE);
1223 			if (!PageUptodate(page))
1224 				SetPageUptodate(page);
1225 			unlock_page(page);
1226 			goto next_page;
1227 		}
1228 
1229 		/*
1230 		 * This page will go to BIO.  Do we need to send this
1231 		 * BIO off first?
1232 		 */
1233 		if (bio && (last_block_in_bio != block_nr - 1 ||
1234 			!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1235 submit_and_realloc:
1236 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1237 			bio = NULL;
1238 		}
1239 		if (bio == NULL) {
1240 			bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1241 			if (IS_ERR(bio)) {
1242 				bio = NULL;
1243 				goto set_error_page;
1244 			}
1245 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1246 		}
1247 
1248 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1249 			goto submit_and_realloc;
1250 
1251 		last_block_in_bio = block_nr;
1252 		goto next_page;
1253 set_error_page:
1254 		SetPageError(page);
1255 		zero_user_segment(page, 0, PAGE_SIZE);
1256 		unlock_page(page);
1257 		goto next_page;
1258 confused:
1259 		if (bio) {
1260 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1261 			bio = NULL;
1262 		}
1263 		unlock_page(page);
1264 next_page:
1265 		if (pages)
1266 			put_page(page);
1267 	}
1268 	BUG_ON(pages && !list_empty(pages));
1269 	if (bio)
1270 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1271 	return 0;
1272 }
1273 
1274 static int f2fs_read_data_page(struct file *file, struct page *page)
1275 {
1276 	struct inode *inode = page->mapping->host;
1277 	int ret = -EAGAIN;
1278 
1279 	trace_f2fs_readpage(page, DATA);
1280 
1281 	/* If the file has inline data, try to read it directly */
1282 	if (f2fs_has_inline_data(inode))
1283 		ret = f2fs_read_inline_data(inode, page);
1284 	if (ret == -EAGAIN)
1285 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1286 	return ret;
1287 }
1288 
1289 static int f2fs_read_data_pages(struct file *file,
1290 			struct address_space *mapping,
1291 			struct list_head *pages, unsigned nr_pages)
1292 {
1293 	struct inode *inode = file->f_mapping->host;
1294 	struct page *page = list_last_entry(pages, struct page, lru);
1295 
1296 	trace_f2fs_readpages(inode, page, nr_pages);
1297 
1298 	/* If the file has inline data, skip readpages */
1299 	if (f2fs_has_inline_data(inode))
1300 		return 0;
1301 
1302 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1303 }
1304 
1305 static int encrypt_one_page(struct f2fs_io_info *fio)
1306 {
1307 	struct inode *inode = fio->page->mapping->host;
1308 	gfp_t gfp_flags = GFP_NOFS;
1309 
1310 	if (!f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
1311 		return 0;
1312 
1313 	/* wait for GCed encrypted page writeback */
1314 	f2fs_wait_on_encrypted_page_writeback(fio->sbi, fio->old_blkaddr);
1315 
1316 retry_encrypt:
1317 	fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1318 			PAGE_SIZE, 0, fio->page->index, gfp_flags);
1319 	if (!IS_ERR(fio->encrypted_page))
1320 		return 0;
1321 
1322 	/* flush pending IOs and wait for a while in the ENOMEM case */
1323 	if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1324 		f2fs_flush_merged_bios(fio->sbi);
1325 		congestion_wait(BLK_RW_ASYNC, HZ/50);
1326 		gfp_flags |= __GFP_NOFAIL;
1327 		goto retry_encrypt;
1328 	}
1329 	return PTR_ERR(fio->encrypted_page);
1330 }
1331 
1332 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1333 {
1334 	struct inode *inode = fio->page->mapping->host;
1335 
1336 	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
1337 		return false;
1338 	if (is_cold_data(fio->page))
1339 		return false;
1340 	if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1341 		return false;
1342 
1343 	return need_inplace_update_policy(inode, fio);
1344 }
1345 
1346 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
1347 {
1348 	if (fio->old_blkaddr == NEW_ADDR)
1349 		return false;
1350 	if (fio->old_blkaddr == NULL_ADDR)
1351 		return false;
1352 	return true;
1353 }
1354 
1355 int do_write_data_page(struct f2fs_io_info *fio)
1356 {
1357 	struct page *page = fio->page;
1358 	struct inode *inode = page->mapping->host;
1359 	struct dnode_of_data dn;
1360 	struct extent_info ei = {0,0,0};
1361 	bool ipu_force = false;
1362 	int err = 0;
1363 
1364 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1365 	if (need_inplace_update(fio) &&
1366 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1367 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1368 
1369 		if (valid_ipu_blkaddr(fio)) {
1370 			ipu_force = true;
1371 			fio->need_lock = false;
1372 			goto got_it;
1373 		}
1374 	}
1375 
1376 	if (fio->need_lock)
1377 		f2fs_lock_op(fio->sbi);
1378 
1379 	err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1380 	if (err)
1381 		goto out;
1382 
1383 	fio->old_blkaddr = dn.data_blkaddr;
1384 
1385 	/* This page is already truncated */
1386 	if (fio->old_blkaddr == NULL_ADDR) {
1387 		ClearPageUptodate(page);
1388 		goto out_writepage;
1389 	}
1390 got_it:
1391 	err = encrypt_one_page(fio);
1392 	if (err)
1393 		goto out_writepage;
1394 
1395 	set_page_writeback(page);
1396 
1397 	/*
1398 	 * If current allocation needs SSR,
1399 	 * it had better in-place writes for updated data.
1400 	 */
1401 	if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
1402 		f2fs_put_dnode(&dn);
1403 		if (fio->need_lock)
1404 			f2fs_unlock_op(fio->sbi);
1405 		err = rewrite_data_page(fio);
1406 		trace_f2fs_do_write_data_page(fio->page, IPU);
1407 		set_inode_flag(inode, FI_UPDATE_WRITE);
1408 		return err;
1409 	}
1410 
1411 	/* LFS mode write path */
1412 	write_data_page(&dn, fio);
1413 	trace_f2fs_do_write_data_page(page, OPU);
1414 	set_inode_flag(inode, FI_APPEND_WRITE);
1415 	if (page->index == 0)
1416 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1417 out_writepage:
1418 	f2fs_put_dnode(&dn);
1419 out:
1420 	if (fio->need_lock)
1421 		f2fs_unlock_op(fio->sbi);
1422 	return err;
1423 }
1424 
1425 static int __write_data_page(struct page *page, bool *submitted,
1426 				struct writeback_control *wbc)
1427 {
1428 	struct inode *inode = page->mapping->host;
1429 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1430 	loff_t i_size = i_size_read(inode);
1431 	const pgoff_t end_index = ((unsigned long long) i_size)
1432 							>> PAGE_SHIFT;
1433 	loff_t psize = (page->index + 1) << PAGE_SHIFT;
1434 	unsigned offset = 0;
1435 	bool need_balance_fs = false;
1436 	int err = 0;
1437 	struct f2fs_io_info fio = {
1438 		.sbi = sbi,
1439 		.type = DATA,
1440 		.op = REQ_OP_WRITE,
1441 		.op_flags = wbc_to_write_flags(wbc),
1442 		.old_blkaddr = NULL_ADDR,
1443 		.page = page,
1444 		.encrypted_page = NULL,
1445 		.submitted = false,
1446 		.need_lock = true,
1447 	};
1448 
1449 	trace_f2fs_writepage(page, DATA);
1450 
1451 	if (page->index < end_index)
1452 		goto write;
1453 
1454 	/*
1455 	 * If the offset is out-of-range of file size,
1456 	 * this page does not have to be written to disk.
1457 	 */
1458 	offset = i_size & (PAGE_SIZE - 1);
1459 	if ((page->index >= end_index + 1) || !offset)
1460 		goto out;
1461 
1462 	zero_user_segment(page, offset, PAGE_SIZE);
1463 write:
1464 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1465 		goto redirty_out;
1466 	if (f2fs_is_drop_cache(inode))
1467 		goto out;
1468 	/* we should not write 0'th page having journal header */
1469 	if (f2fs_is_volatile_file(inode) && (!page->index ||
1470 			(!wbc->for_reclaim &&
1471 			available_free_memory(sbi, BASE_CHECK))))
1472 		goto redirty_out;
1473 
1474 	/* we should bypass data pages to proceed the kworkder jobs */
1475 	if (unlikely(f2fs_cp_error(sbi))) {
1476 		mapping_set_error(page->mapping, -EIO);
1477 		goto out;
1478 	}
1479 
1480 	/* Dentry blocks are controlled by checkpoint */
1481 	if (S_ISDIR(inode->i_mode)) {
1482 		fio.need_lock = false;
1483 		err = do_write_data_page(&fio);
1484 		goto done;
1485 	}
1486 
1487 	if (!wbc->for_reclaim)
1488 		need_balance_fs = true;
1489 	else if (has_not_enough_free_secs(sbi, 0, 0))
1490 		goto redirty_out;
1491 	else
1492 		set_inode_flag(inode, FI_HOT_DATA);
1493 
1494 	err = -EAGAIN;
1495 	if (f2fs_has_inline_data(inode)) {
1496 		err = f2fs_write_inline_data(inode, page);
1497 		if (!err)
1498 			goto out;
1499 	}
1500 
1501 	if (err == -EAGAIN)
1502 		err = do_write_data_page(&fio);
1503 	if (F2FS_I(inode)->last_disk_size < psize)
1504 		F2FS_I(inode)->last_disk_size = psize;
1505 
1506 done:
1507 	if (err && err != -ENOENT)
1508 		goto redirty_out;
1509 
1510 out:
1511 	inode_dec_dirty_pages(inode);
1512 	if (err)
1513 		ClearPageUptodate(page);
1514 
1515 	if (wbc->for_reclaim) {
1516 		f2fs_submit_merged_bio_cond(sbi, inode, 0, page->index,
1517 						DATA, WRITE);
1518 		clear_inode_flag(inode, FI_HOT_DATA);
1519 		remove_dirty_inode(inode);
1520 		submitted = NULL;
1521 	}
1522 
1523 	unlock_page(page);
1524 	if (!S_ISDIR(inode->i_mode))
1525 		f2fs_balance_fs(sbi, need_balance_fs);
1526 
1527 	if (unlikely(f2fs_cp_error(sbi))) {
1528 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
1529 		submitted = NULL;
1530 	}
1531 
1532 	if (submitted)
1533 		*submitted = fio.submitted;
1534 
1535 	return 0;
1536 
1537 redirty_out:
1538 	redirty_page_for_writepage(wbc, page);
1539 	if (!err)
1540 		return AOP_WRITEPAGE_ACTIVATE;
1541 	unlock_page(page);
1542 	return err;
1543 }
1544 
1545 static int f2fs_write_data_page(struct page *page,
1546 					struct writeback_control *wbc)
1547 {
1548 	return __write_data_page(page, NULL, wbc);
1549 }
1550 
1551 /*
1552  * This function was copied from write_cche_pages from mm/page-writeback.c.
1553  * The major change is making write step of cold data page separately from
1554  * warm/hot data page.
1555  */
1556 static int f2fs_write_cache_pages(struct address_space *mapping,
1557 					struct writeback_control *wbc)
1558 {
1559 	int ret = 0;
1560 	int done = 0;
1561 	struct pagevec pvec;
1562 	int nr_pages;
1563 	pgoff_t uninitialized_var(writeback_index);
1564 	pgoff_t index;
1565 	pgoff_t end;		/* Inclusive */
1566 	pgoff_t done_index;
1567 	pgoff_t last_idx = ULONG_MAX;
1568 	int cycled;
1569 	int range_whole = 0;
1570 	int tag;
1571 
1572 	pagevec_init(&pvec, 0);
1573 
1574 	if (get_dirty_pages(mapping->host) <=
1575 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1576 		set_inode_flag(mapping->host, FI_HOT_DATA);
1577 	else
1578 		clear_inode_flag(mapping->host, FI_HOT_DATA);
1579 
1580 	if (wbc->range_cyclic) {
1581 		writeback_index = mapping->writeback_index; /* prev offset */
1582 		index = writeback_index;
1583 		if (index == 0)
1584 			cycled = 1;
1585 		else
1586 			cycled = 0;
1587 		end = -1;
1588 	} else {
1589 		index = wbc->range_start >> PAGE_SHIFT;
1590 		end = wbc->range_end >> PAGE_SHIFT;
1591 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1592 			range_whole = 1;
1593 		cycled = 1; /* ignore range_cyclic tests */
1594 	}
1595 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1596 		tag = PAGECACHE_TAG_TOWRITE;
1597 	else
1598 		tag = PAGECACHE_TAG_DIRTY;
1599 retry:
1600 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1601 		tag_pages_for_writeback(mapping, index, end);
1602 	done_index = index;
1603 	while (!done && (index <= end)) {
1604 		int i;
1605 
1606 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1607 			      min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1608 		if (nr_pages == 0)
1609 			break;
1610 
1611 		for (i = 0; i < nr_pages; i++) {
1612 			struct page *page = pvec.pages[i];
1613 			bool submitted = false;
1614 
1615 			if (page->index > end) {
1616 				done = 1;
1617 				break;
1618 			}
1619 
1620 			done_index = page->index;
1621 
1622 			lock_page(page);
1623 
1624 			if (unlikely(page->mapping != mapping)) {
1625 continue_unlock:
1626 				unlock_page(page);
1627 				continue;
1628 			}
1629 
1630 			if (!PageDirty(page)) {
1631 				/* someone wrote it for us */
1632 				goto continue_unlock;
1633 			}
1634 
1635 			if (PageWriteback(page)) {
1636 				if (wbc->sync_mode != WB_SYNC_NONE)
1637 					f2fs_wait_on_page_writeback(page,
1638 								DATA, true);
1639 				else
1640 					goto continue_unlock;
1641 			}
1642 
1643 			BUG_ON(PageWriteback(page));
1644 			if (!clear_page_dirty_for_io(page))
1645 				goto continue_unlock;
1646 
1647 			ret = __write_data_page(page, &submitted, wbc);
1648 			if (unlikely(ret)) {
1649 				/*
1650 				 * keep nr_to_write, since vfs uses this to
1651 				 * get # of written pages.
1652 				 */
1653 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1654 					unlock_page(page);
1655 					ret = 0;
1656 					continue;
1657 				}
1658 				done_index = page->index + 1;
1659 				done = 1;
1660 				break;
1661 			} else if (submitted) {
1662 				last_idx = page->index;
1663 			}
1664 
1665 			/* give a priority to WB_SYNC threads */
1666 			if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
1667 					--wbc->nr_to_write <= 0) &&
1668 					wbc->sync_mode == WB_SYNC_NONE) {
1669 				done = 1;
1670 				break;
1671 			}
1672 		}
1673 		pagevec_release(&pvec);
1674 		cond_resched();
1675 	}
1676 
1677 	if (!cycled && !done) {
1678 		cycled = 1;
1679 		index = 0;
1680 		end = writeback_index - 1;
1681 		goto retry;
1682 	}
1683 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1684 		mapping->writeback_index = done_index;
1685 
1686 	if (last_idx != ULONG_MAX)
1687 		f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1688 						0, last_idx, DATA, WRITE);
1689 
1690 	return ret;
1691 }
1692 
1693 static int f2fs_write_data_pages(struct address_space *mapping,
1694 			    struct writeback_control *wbc)
1695 {
1696 	struct inode *inode = mapping->host;
1697 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1698 	struct blk_plug plug;
1699 	int ret;
1700 
1701 	/* deal with chardevs and other special file */
1702 	if (!mapping->a_ops->writepage)
1703 		return 0;
1704 
1705 	/* skip writing if there is no dirty page in this inode */
1706 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1707 		return 0;
1708 
1709 	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1710 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1711 			available_free_memory(sbi, DIRTY_DENTS))
1712 		goto skip_write;
1713 
1714 	/* skip writing during file defragment */
1715 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1716 		goto skip_write;
1717 
1718 	/* during POR, we don't need to trigger writepage at all. */
1719 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1720 		goto skip_write;
1721 
1722 	trace_f2fs_writepages(mapping->host, wbc, DATA);
1723 
1724 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
1725 	if (wbc->sync_mode == WB_SYNC_ALL)
1726 		atomic_inc(&sbi->wb_sync_req);
1727 	else if (atomic_read(&sbi->wb_sync_req))
1728 		goto skip_write;
1729 
1730 	blk_start_plug(&plug);
1731 	ret = f2fs_write_cache_pages(mapping, wbc);
1732 	blk_finish_plug(&plug);
1733 
1734 	if (wbc->sync_mode == WB_SYNC_ALL)
1735 		atomic_dec(&sbi->wb_sync_req);
1736 	/*
1737 	 * if some pages were truncated, we cannot guarantee its mapping->host
1738 	 * to detect pending bios.
1739 	 */
1740 
1741 	remove_dirty_inode(inode);
1742 	return ret;
1743 
1744 skip_write:
1745 	wbc->pages_skipped += get_dirty_pages(inode);
1746 	trace_f2fs_writepages(mapping->host, wbc, DATA);
1747 	return 0;
1748 }
1749 
1750 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1751 {
1752 	struct inode *inode = mapping->host;
1753 	loff_t i_size = i_size_read(inode);
1754 
1755 	if (to > i_size) {
1756 		truncate_pagecache(inode, i_size);
1757 		truncate_blocks(inode, i_size, true);
1758 	}
1759 }
1760 
1761 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1762 			struct page *page, loff_t pos, unsigned len,
1763 			block_t *blk_addr, bool *node_changed)
1764 {
1765 	struct inode *inode = page->mapping->host;
1766 	pgoff_t index = page->index;
1767 	struct dnode_of_data dn;
1768 	struct page *ipage;
1769 	bool locked = false;
1770 	struct extent_info ei = {0,0,0};
1771 	int err = 0;
1772 
1773 	/*
1774 	 * we already allocated all the blocks, so we don't need to get
1775 	 * the block addresses when there is no need to fill the page.
1776 	 */
1777 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
1778 			!is_inode_flag_set(inode, FI_NO_PREALLOC))
1779 		return 0;
1780 
1781 	if (f2fs_has_inline_data(inode) ||
1782 			(pos & PAGE_MASK) >= i_size_read(inode)) {
1783 		__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
1784 		locked = true;
1785 	}
1786 restart:
1787 	/* check inline_data */
1788 	ipage = get_node_page(sbi, inode->i_ino);
1789 	if (IS_ERR(ipage)) {
1790 		err = PTR_ERR(ipage);
1791 		goto unlock_out;
1792 	}
1793 
1794 	set_new_dnode(&dn, inode, ipage, ipage, 0);
1795 
1796 	if (f2fs_has_inline_data(inode)) {
1797 		if (pos + len <= MAX_INLINE_DATA) {
1798 			read_inline_data(page, ipage);
1799 			set_inode_flag(inode, FI_DATA_EXIST);
1800 			if (inode->i_nlink)
1801 				set_inline_node(ipage);
1802 		} else {
1803 			err = f2fs_convert_inline_page(&dn, page);
1804 			if (err)
1805 				goto out;
1806 			if (dn.data_blkaddr == NULL_ADDR)
1807 				err = f2fs_get_block(&dn, index);
1808 		}
1809 	} else if (locked) {
1810 		err = f2fs_get_block(&dn, index);
1811 	} else {
1812 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1813 			dn.data_blkaddr = ei.blk + index - ei.fofs;
1814 		} else {
1815 			/* hole case */
1816 			err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1817 			if (err || dn.data_blkaddr == NULL_ADDR) {
1818 				f2fs_put_dnode(&dn);
1819 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
1820 								true);
1821 				locked = true;
1822 				goto restart;
1823 			}
1824 		}
1825 	}
1826 
1827 	/* convert_inline_page can make node_changed */
1828 	*blk_addr = dn.data_blkaddr;
1829 	*node_changed = dn.node_changed;
1830 out:
1831 	f2fs_put_dnode(&dn);
1832 unlock_out:
1833 	if (locked)
1834 		__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
1835 	return err;
1836 }
1837 
1838 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1839 		loff_t pos, unsigned len, unsigned flags,
1840 		struct page **pagep, void **fsdata)
1841 {
1842 	struct inode *inode = mapping->host;
1843 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1844 	struct page *page = NULL;
1845 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1846 	bool need_balance = false;
1847 	block_t blkaddr = NULL_ADDR;
1848 	int err = 0;
1849 
1850 	trace_f2fs_write_begin(inode, pos, len, flags);
1851 
1852 	/*
1853 	 * We should check this at this moment to avoid deadlock on inode page
1854 	 * and #0 page. The locking rule for inline_data conversion should be:
1855 	 * lock_page(page #0) -> lock_page(inode_page)
1856 	 */
1857 	if (index != 0) {
1858 		err = f2fs_convert_inline_inode(inode);
1859 		if (err)
1860 			goto fail;
1861 	}
1862 repeat:
1863 	/*
1864 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1865 	 * wait_for_stable_page. Will wait that below with our IO control.
1866 	 */
1867 	page = pagecache_get_page(mapping, index,
1868 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1869 	if (!page) {
1870 		err = -ENOMEM;
1871 		goto fail;
1872 	}
1873 
1874 	*pagep = page;
1875 
1876 	err = prepare_write_begin(sbi, page, pos, len,
1877 					&blkaddr, &need_balance);
1878 	if (err)
1879 		goto fail;
1880 
1881 	if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1882 		unlock_page(page);
1883 		f2fs_balance_fs(sbi, true);
1884 		lock_page(page);
1885 		if (page->mapping != mapping) {
1886 			/* The page got truncated from under us */
1887 			f2fs_put_page(page, 1);
1888 			goto repeat;
1889 		}
1890 	}
1891 
1892 	f2fs_wait_on_page_writeback(page, DATA, false);
1893 
1894 	/* wait for GCed encrypted page writeback */
1895 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1896 		f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1897 
1898 	if (len == PAGE_SIZE || PageUptodate(page))
1899 		return 0;
1900 
1901 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
1902 		zero_user_segment(page, len, PAGE_SIZE);
1903 		return 0;
1904 	}
1905 
1906 	if (blkaddr == NEW_ADDR) {
1907 		zero_user_segment(page, 0, PAGE_SIZE);
1908 		SetPageUptodate(page);
1909 	} else {
1910 		struct bio *bio;
1911 
1912 		bio = f2fs_grab_bio(inode, blkaddr, 1);
1913 		if (IS_ERR(bio)) {
1914 			err = PTR_ERR(bio);
1915 			goto fail;
1916 		}
1917 		bio->bi_opf = REQ_OP_READ;
1918 		if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1919 			bio_put(bio);
1920 			err = -EFAULT;
1921 			goto fail;
1922 		}
1923 
1924 		__submit_bio(sbi, bio, DATA);
1925 
1926 		lock_page(page);
1927 		if (unlikely(page->mapping != mapping)) {
1928 			f2fs_put_page(page, 1);
1929 			goto repeat;
1930 		}
1931 		if (unlikely(!PageUptodate(page))) {
1932 			err = -EIO;
1933 			goto fail;
1934 		}
1935 	}
1936 	return 0;
1937 
1938 fail:
1939 	f2fs_put_page(page, 1);
1940 	f2fs_write_failed(mapping, pos + len);
1941 	return err;
1942 }
1943 
1944 static int f2fs_write_end(struct file *file,
1945 			struct address_space *mapping,
1946 			loff_t pos, unsigned len, unsigned copied,
1947 			struct page *page, void *fsdata)
1948 {
1949 	struct inode *inode = page->mapping->host;
1950 
1951 	trace_f2fs_write_end(inode, pos, len, copied);
1952 
1953 	/*
1954 	 * This should be come from len == PAGE_SIZE, and we expect copied
1955 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1956 	 * let generic_perform_write() try to copy data again through copied=0.
1957 	 */
1958 	if (!PageUptodate(page)) {
1959 		if (unlikely(copied != len))
1960 			copied = 0;
1961 		else
1962 			SetPageUptodate(page);
1963 	}
1964 	if (!copied)
1965 		goto unlock_out;
1966 
1967 	set_page_dirty(page);
1968 
1969 	if (pos + copied > i_size_read(inode))
1970 		f2fs_i_size_write(inode, pos + copied);
1971 unlock_out:
1972 	f2fs_put_page(page, 1);
1973 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1974 	return copied;
1975 }
1976 
1977 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1978 			   loff_t offset)
1979 {
1980 	unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1981 
1982 	if (offset & blocksize_mask)
1983 		return -EINVAL;
1984 
1985 	if (iov_iter_alignment(iter) & blocksize_mask)
1986 		return -EINVAL;
1987 
1988 	return 0;
1989 }
1990 
1991 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1992 {
1993 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1994 	struct inode *inode = mapping->host;
1995 	size_t count = iov_iter_count(iter);
1996 	loff_t offset = iocb->ki_pos;
1997 	int rw = iov_iter_rw(iter);
1998 	int err;
1999 
2000 	err = check_direct_IO(inode, iter, offset);
2001 	if (err)
2002 		return err;
2003 
2004 	if (__force_buffered_io(inode, rw))
2005 		return 0;
2006 
2007 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2008 
2009 	down_read(&F2FS_I(inode)->dio_rwsem[rw]);
2010 	err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2011 	up_read(&F2FS_I(inode)->dio_rwsem[rw]);
2012 
2013 	if (rw == WRITE) {
2014 		if (err > 0)
2015 			set_inode_flag(inode, FI_UPDATE_WRITE);
2016 		else if (err < 0)
2017 			f2fs_write_failed(mapping, offset + count);
2018 	}
2019 
2020 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2021 
2022 	return err;
2023 }
2024 
2025 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2026 							unsigned int length)
2027 {
2028 	struct inode *inode = page->mapping->host;
2029 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2030 
2031 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2032 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2033 		return;
2034 
2035 	if (PageDirty(page)) {
2036 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2037 			dec_page_count(sbi, F2FS_DIRTY_META);
2038 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2039 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2040 		} else {
2041 			inode_dec_dirty_pages(inode);
2042 			remove_dirty_inode(inode);
2043 		}
2044 	}
2045 
2046 	/* This is atomic written page, keep Private */
2047 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2048 		return drop_inmem_page(inode, page);
2049 
2050 	set_page_private(page, 0);
2051 	ClearPagePrivate(page);
2052 }
2053 
2054 int f2fs_release_page(struct page *page, gfp_t wait)
2055 {
2056 	/* If this is dirty page, keep PagePrivate */
2057 	if (PageDirty(page))
2058 		return 0;
2059 
2060 	/* This is atomic written page, keep Private */
2061 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2062 		return 0;
2063 
2064 	set_page_private(page, 0);
2065 	ClearPagePrivate(page);
2066 	return 1;
2067 }
2068 
2069 /*
2070  * This was copied from __set_page_dirty_buffers which gives higher performance
2071  * in very high speed storages. (e.g., pmem)
2072  */
2073 void f2fs_set_page_dirty_nobuffers(struct page *page)
2074 {
2075 	struct address_space *mapping = page->mapping;
2076 	unsigned long flags;
2077 
2078 	if (unlikely(!mapping))
2079 		return;
2080 
2081 	spin_lock(&mapping->private_lock);
2082 	lock_page_memcg(page);
2083 	SetPageDirty(page);
2084 	spin_unlock(&mapping->private_lock);
2085 
2086 	spin_lock_irqsave(&mapping->tree_lock, flags);
2087 	WARN_ON_ONCE(!PageUptodate(page));
2088 	account_page_dirtied(page, mapping);
2089 	radix_tree_tag_set(&mapping->page_tree,
2090 			page_index(page), PAGECACHE_TAG_DIRTY);
2091 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
2092 	unlock_page_memcg(page);
2093 
2094 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2095 	return;
2096 }
2097 
2098 static int f2fs_set_data_page_dirty(struct page *page)
2099 {
2100 	struct address_space *mapping = page->mapping;
2101 	struct inode *inode = mapping->host;
2102 
2103 	trace_f2fs_set_page_dirty(page, DATA);
2104 
2105 	if (!PageUptodate(page))
2106 		SetPageUptodate(page);
2107 
2108 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2109 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2110 			register_inmem_page(inode, page);
2111 			return 1;
2112 		}
2113 		/*
2114 		 * Previously, this page has been registered, we just
2115 		 * return here.
2116 		 */
2117 		return 0;
2118 	}
2119 
2120 	if (!PageDirty(page)) {
2121 		f2fs_set_page_dirty_nobuffers(page);
2122 		update_dirty_page(inode, page);
2123 		return 1;
2124 	}
2125 	return 0;
2126 }
2127 
2128 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2129 {
2130 	struct inode *inode = mapping->host;
2131 
2132 	if (f2fs_has_inline_data(inode))
2133 		return 0;
2134 
2135 	/* make sure allocating whole blocks */
2136 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2137 		filemap_write_and_wait(mapping);
2138 
2139 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2140 }
2141 
2142 #ifdef CONFIG_MIGRATION
2143 #include <linux/migrate.h>
2144 
2145 int f2fs_migrate_page(struct address_space *mapping,
2146 		struct page *newpage, struct page *page, enum migrate_mode mode)
2147 {
2148 	int rc, extra_count;
2149 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2150 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2151 
2152 	BUG_ON(PageWriteback(page));
2153 
2154 	/* migrating an atomic written page is safe with the inmem_lock hold */
2155 	if (atomic_written && !mutex_trylock(&fi->inmem_lock))
2156 		return -EAGAIN;
2157 
2158 	/*
2159 	 * A reference is expected if PagePrivate set when move mapping,
2160 	 * however F2FS breaks this for maintaining dirty page counts when
2161 	 * truncating pages. So here adjusting the 'extra_count' make it work.
2162 	 */
2163 	extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2164 	rc = migrate_page_move_mapping(mapping, newpage,
2165 				page, NULL, mode, extra_count);
2166 	if (rc != MIGRATEPAGE_SUCCESS) {
2167 		if (atomic_written)
2168 			mutex_unlock(&fi->inmem_lock);
2169 		return rc;
2170 	}
2171 
2172 	if (atomic_written) {
2173 		struct inmem_pages *cur;
2174 		list_for_each_entry(cur, &fi->inmem_pages, list)
2175 			if (cur->page == page) {
2176 				cur->page = newpage;
2177 				break;
2178 			}
2179 		mutex_unlock(&fi->inmem_lock);
2180 		put_page(page);
2181 		get_page(newpage);
2182 	}
2183 
2184 	if (PagePrivate(page))
2185 		SetPagePrivate(newpage);
2186 	set_page_private(newpage, page_private(page));
2187 
2188 	migrate_page_copy(newpage, page);
2189 
2190 	return MIGRATEPAGE_SUCCESS;
2191 }
2192 #endif
2193 
2194 const struct address_space_operations f2fs_dblock_aops = {
2195 	.readpage	= f2fs_read_data_page,
2196 	.readpages	= f2fs_read_data_pages,
2197 	.writepage	= f2fs_write_data_page,
2198 	.writepages	= f2fs_write_data_pages,
2199 	.write_begin	= f2fs_write_begin,
2200 	.write_end	= f2fs_write_end,
2201 	.set_page_dirty	= f2fs_set_data_page_dirty,
2202 	.invalidatepage	= f2fs_invalidate_page,
2203 	.releasepage	= f2fs_release_page,
2204 	.direct_IO	= f2fs_direct_IO,
2205 	.bmap		= f2fs_bmap,
2206 #ifdef CONFIG_MIGRATION
2207 	.migratepage    = f2fs_migrate_page,
2208 #endif
2209 };
2210