1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static bool __is_cp_guaranteed(struct page *page) 54 { 55 struct address_space *mapping = page->mapping; 56 struct inode *inode; 57 struct f2fs_sb_info *sbi; 58 59 if (!mapping) 60 return false; 61 62 inode = mapping->host; 63 sbi = F2FS_I_SB(inode); 64 65 if (inode->i_ino == F2FS_META_INO(sbi) || 66 inode->i_ino == F2FS_NODE_INO(sbi) || 67 S_ISDIR(inode->i_mode)) 68 return true; 69 70 if (f2fs_is_compressed_page(page)) 71 return false; 72 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 73 page_private_gcing(page)) 74 return true; 75 return false; 76 } 77 78 static enum count_type __read_io_type(struct page *page) 79 { 80 struct address_space *mapping = page_file_mapping(page); 81 82 if (mapping) { 83 struct inode *inode = mapping->host; 84 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 85 86 if (inode->i_ino == F2FS_META_INO(sbi)) 87 return F2FS_RD_META; 88 89 if (inode->i_ino == F2FS_NODE_INO(sbi)) 90 return F2FS_RD_NODE; 91 } 92 return F2FS_RD_DATA; 93 } 94 95 /* postprocessing steps for read bios */ 96 enum bio_post_read_step { 97 #ifdef CONFIG_FS_ENCRYPTION 98 STEP_DECRYPT = 1 << 0, 99 #else 100 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 101 #endif 102 #ifdef CONFIG_F2FS_FS_COMPRESSION 103 STEP_DECOMPRESS = 1 << 1, 104 #else 105 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 106 #endif 107 #ifdef CONFIG_FS_VERITY 108 STEP_VERITY = 1 << 2, 109 #else 110 STEP_VERITY = 0, /* compile out the verity-related code */ 111 #endif 112 }; 113 114 struct bio_post_read_ctx { 115 struct bio *bio; 116 struct f2fs_sb_info *sbi; 117 struct work_struct work; 118 unsigned int enabled_steps; 119 block_t fs_blkaddr; 120 }; 121 122 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 123 { 124 struct bio_vec *bv; 125 struct bvec_iter_all iter_all; 126 127 /* 128 * Update and unlock the bio's pagecache pages, and put the 129 * decompression context for any compressed pages. 130 */ 131 bio_for_each_segment_all(bv, bio, iter_all) { 132 struct page *page = bv->bv_page; 133 134 if (f2fs_is_compressed_page(page)) { 135 if (bio->bi_status) 136 f2fs_end_read_compressed_page(page, true, 0, 137 in_task); 138 f2fs_put_page_dic(page, in_task); 139 continue; 140 } 141 142 /* PG_error was set if verity failed. */ 143 if (bio->bi_status || PageError(page)) { 144 ClearPageUptodate(page); 145 /* will re-read again later */ 146 ClearPageError(page); 147 } else { 148 SetPageUptodate(page); 149 } 150 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 151 unlock_page(page); 152 } 153 154 if (bio->bi_private) 155 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 156 bio_put(bio); 157 } 158 159 static void f2fs_verify_bio(struct work_struct *work) 160 { 161 struct bio_post_read_ctx *ctx = 162 container_of(work, struct bio_post_read_ctx, work); 163 struct bio *bio = ctx->bio; 164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 165 166 /* 167 * fsverity_verify_bio() may call readahead() again, and while verity 168 * will be disabled for this, decryption and/or decompression may still 169 * be needed, resulting in another bio_post_read_ctx being allocated. 170 * So to prevent deadlocks we need to release the current ctx to the 171 * mempool first. This assumes that verity is the last post-read step. 172 */ 173 mempool_free(ctx, bio_post_read_ctx_pool); 174 bio->bi_private = NULL; 175 176 /* 177 * Verify the bio's pages with fs-verity. Exclude compressed pages, 178 * as those were handled separately by f2fs_end_read_compressed_page(). 179 */ 180 if (may_have_compressed_pages) { 181 struct bio_vec *bv; 182 struct bvec_iter_all iter_all; 183 184 bio_for_each_segment_all(bv, bio, iter_all) { 185 struct page *page = bv->bv_page; 186 187 if (!f2fs_is_compressed_page(page) && 188 !fsverity_verify_page(page)) 189 SetPageError(page); 190 } 191 } else { 192 fsverity_verify_bio(bio); 193 } 194 195 f2fs_finish_read_bio(bio, true); 196 } 197 198 /* 199 * If the bio's data needs to be verified with fs-verity, then enqueue the 200 * verity work for the bio. Otherwise finish the bio now. 201 * 202 * Note that to avoid deadlocks, the verity work can't be done on the 203 * decryption/decompression workqueue. This is because verifying the data pages 204 * can involve reading verity metadata pages from the file, and these verity 205 * metadata pages may be encrypted and/or compressed. 206 */ 207 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 208 { 209 struct bio_post_read_ctx *ctx = bio->bi_private; 210 211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 212 INIT_WORK(&ctx->work, f2fs_verify_bio); 213 fsverity_enqueue_verify_work(&ctx->work); 214 } else { 215 f2fs_finish_read_bio(bio, in_task); 216 } 217 } 218 219 /* 220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 221 * remaining page was read by @ctx->bio. 222 * 223 * Note that a bio may span clusters (even a mix of compressed and uncompressed 224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 225 * that the bio includes at least one compressed page. The actual decompression 226 * is done on a per-cluster basis, not a per-bio basis. 227 */ 228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 229 bool in_task) 230 { 231 struct bio_vec *bv; 232 struct bvec_iter_all iter_all; 233 bool all_compressed = true; 234 block_t blkaddr = ctx->fs_blkaddr; 235 236 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 237 struct page *page = bv->bv_page; 238 239 if (f2fs_is_compressed_page(page)) 240 f2fs_end_read_compressed_page(page, false, blkaddr, 241 in_task); 242 else 243 all_compressed = false; 244 245 blkaddr++; 246 } 247 248 /* 249 * Optimization: if all the bio's pages are compressed, then scheduling 250 * the per-bio verity work is unnecessary, as verity will be fully 251 * handled at the compression cluster level. 252 */ 253 if (all_compressed) 254 ctx->enabled_steps &= ~STEP_VERITY; 255 } 256 257 static void f2fs_post_read_work(struct work_struct *work) 258 { 259 struct bio_post_read_ctx *ctx = 260 container_of(work, struct bio_post_read_ctx, work); 261 struct bio *bio = ctx->bio; 262 263 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 264 f2fs_finish_read_bio(bio, true); 265 return; 266 } 267 268 if (ctx->enabled_steps & STEP_DECOMPRESS) 269 f2fs_handle_step_decompress(ctx, true); 270 271 f2fs_verify_and_finish_bio(bio, true); 272 } 273 274 static void f2fs_read_end_io(struct bio *bio) 275 { 276 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 277 struct bio_post_read_ctx *ctx; 278 bool intask = in_task(); 279 280 iostat_update_and_unbind_ctx(bio, 0); 281 ctx = bio->bi_private; 282 283 if (time_to_inject(sbi, FAULT_READ_IO)) { 284 f2fs_show_injection_info(sbi, FAULT_READ_IO); 285 bio->bi_status = BLK_STS_IOERR; 286 } 287 288 if (bio->bi_status) { 289 f2fs_finish_read_bio(bio, intask); 290 return; 291 } 292 293 if (ctx) { 294 unsigned int enabled_steps = ctx->enabled_steps & 295 (STEP_DECRYPT | STEP_DECOMPRESS); 296 297 /* 298 * If we have only decompression step between decompression and 299 * decrypt, we don't need post processing for this. 300 */ 301 if (enabled_steps == STEP_DECOMPRESS && 302 !f2fs_low_mem_mode(sbi)) { 303 f2fs_handle_step_decompress(ctx, intask); 304 } else if (enabled_steps) { 305 INIT_WORK(&ctx->work, f2fs_post_read_work); 306 queue_work(ctx->sbi->post_read_wq, &ctx->work); 307 return; 308 } 309 } 310 311 f2fs_verify_and_finish_bio(bio, intask); 312 } 313 314 static void f2fs_write_end_io(struct bio *bio) 315 { 316 struct f2fs_sb_info *sbi; 317 struct bio_vec *bvec; 318 struct bvec_iter_all iter_all; 319 320 iostat_update_and_unbind_ctx(bio, 1); 321 sbi = bio->bi_private; 322 323 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 324 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 325 bio->bi_status = BLK_STS_IOERR; 326 } 327 328 bio_for_each_segment_all(bvec, bio, iter_all) { 329 struct page *page = bvec->bv_page; 330 enum count_type type = WB_DATA_TYPE(page); 331 332 if (page_private_dummy(page)) { 333 clear_page_private_dummy(page); 334 unlock_page(page); 335 mempool_free(page, sbi->write_io_dummy); 336 337 if (unlikely(bio->bi_status)) 338 f2fs_stop_checkpoint(sbi, true); 339 continue; 340 } 341 342 fscrypt_finalize_bounce_page(&page); 343 344 #ifdef CONFIG_F2FS_FS_COMPRESSION 345 if (f2fs_is_compressed_page(page)) { 346 f2fs_compress_write_end_io(bio, page); 347 continue; 348 } 349 #endif 350 351 if (unlikely(bio->bi_status)) { 352 mapping_set_error(page->mapping, -EIO); 353 if (type == F2FS_WB_CP_DATA) 354 f2fs_stop_checkpoint(sbi, true); 355 } 356 357 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 358 page->index != nid_of_node(page)); 359 360 dec_page_count(sbi, type); 361 if (f2fs_in_warm_node_list(sbi, page)) 362 f2fs_del_fsync_node_entry(sbi, page); 363 clear_page_private_gcing(page); 364 end_page_writeback(page); 365 } 366 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 367 wq_has_sleeper(&sbi->cp_wait)) 368 wake_up(&sbi->cp_wait); 369 370 bio_put(bio); 371 } 372 373 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 374 block_t blk_addr, sector_t *sector) 375 { 376 struct block_device *bdev = sbi->sb->s_bdev; 377 int i; 378 379 if (f2fs_is_multi_device(sbi)) { 380 for (i = 0; i < sbi->s_ndevs; i++) { 381 if (FDEV(i).start_blk <= blk_addr && 382 FDEV(i).end_blk >= blk_addr) { 383 blk_addr -= FDEV(i).start_blk; 384 bdev = FDEV(i).bdev; 385 break; 386 } 387 } 388 } 389 390 if (sector) 391 *sector = SECTOR_FROM_BLOCK(blk_addr); 392 return bdev; 393 } 394 395 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 396 { 397 int i; 398 399 if (!f2fs_is_multi_device(sbi)) 400 return 0; 401 402 for (i = 0; i < sbi->s_ndevs; i++) 403 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 404 return i; 405 return 0; 406 } 407 408 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 409 { 410 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 411 unsigned int fua_flag, meta_flag, io_flag; 412 blk_opf_t op_flags = 0; 413 414 if (fio->op != REQ_OP_WRITE) 415 return 0; 416 if (fio->type == DATA) 417 io_flag = fio->sbi->data_io_flag; 418 else if (fio->type == NODE) 419 io_flag = fio->sbi->node_io_flag; 420 else 421 return 0; 422 423 fua_flag = io_flag & temp_mask; 424 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 425 426 /* 427 * data/node io flag bits per temp: 428 * REQ_META | REQ_FUA | 429 * 5 | 4 | 3 | 2 | 1 | 0 | 430 * Cold | Warm | Hot | Cold | Warm | Hot | 431 */ 432 if ((1 << fio->temp) & meta_flag) 433 op_flags |= REQ_META; 434 if ((1 << fio->temp) & fua_flag) 435 op_flags |= REQ_FUA; 436 return op_flags; 437 } 438 439 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 440 { 441 struct f2fs_sb_info *sbi = fio->sbi; 442 struct block_device *bdev; 443 sector_t sector; 444 struct bio *bio; 445 446 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 447 bio = bio_alloc_bioset(bdev, npages, 448 fio->op | fio->op_flags | f2fs_io_flags(fio), 449 GFP_NOIO, &f2fs_bioset); 450 bio->bi_iter.bi_sector = sector; 451 if (is_read_io(fio->op)) { 452 bio->bi_end_io = f2fs_read_end_io; 453 bio->bi_private = NULL; 454 } else { 455 bio->bi_end_io = f2fs_write_end_io; 456 bio->bi_private = sbi; 457 } 458 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 459 460 if (fio->io_wbc) 461 wbc_init_bio(fio->io_wbc, bio); 462 463 return bio; 464 } 465 466 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 467 pgoff_t first_idx, 468 const struct f2fs_io_info *fio, 469 gfp_t gfp_mask) 470 { 471 /* 472 * The f2fs garbage collector sets ->encrypted_page when it wants to 473 * read/write raw data without encryption. 474 */ 475 if (!fio || !fio->encrypted_page) 476 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 477 } 478 479 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 480 pgoff_t next_idx, 481 const struct f2fs_io_info *fio) 482 { 483 /* 484 * The f2fs garbage collector sets ->encrypted_page when it wants to 485 * read/write raw data without encryption. 486 */ 487 if (fio && fio->encrypted_page) 488 return !bio_has_crypt_ctx(bio); 489 490 return fscrypt_mergeable_bio(bio, inode, next_idx); 491 } 492 493 static inline void __submit_bio(struct f2fs_sb_info *sbi, 494 struct bio *bio, enum page_type type) 495 { 496 if (!is_read_io(bio_op(bio))) { 497 unsigned int start; 498 499 if (type != DATA && type != NODE) 500 goto submit_io; 501 502 if (f2fs_lfs_mode(sbi) && current->plug) 503 blk_finish_plug(current->plug); 504 505 if (!F2FS_IO_ALIGNED(sbi)) 506 goto submit_io; 507 508 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 509 start %= F2FS_IO_SIZE(sbi); 510 511 if (start == 0) 512 goto submit_io; 513 514 /* fill dummy pages */ 515 for (; start < F2FS_IO_SIZE(sbi); start++) { 516 struct page *page = 517 mempool_alloc(sbi->write_io_dummy, 518 GFP_NOIO | __GFP_NOFAIL); 519 f2fs_bug_on(sbi, !page); 520 521 lock_page(page); 522 523 zero_user_segment(page, 0, PAGE_SIZE); 524 set_page_private_dummy(page); 525 526 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 527 f2fs_bug_on(sbi, 1); 528 } 529 /* 530 * In the NODE case, we lose next block address chain. So, we 531 * need to do checkpoint in f2fs_sync_file. 532 */ 533 if (type == NODE) 534 set_sbi_flag(sbi, SBI_NEED_CP); 535 } 536 submit_io: 537 if (is_read_io(bio_op(bio))) 538 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 539 else 540 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 541 542 iostat_update_submit_ctx(bio, type); 543 submit_bio(bio); 544 } 545 546 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 547 struct bio *bio, enum page_type type) 548 { 549 __submit_bio(sbi, bio, type); 550 } 551 552 static void __submit_merged_bio(struct f2fs_bio_info *io) 553 { 554 struct f2fs_io_info *fio = &io->fio; 555 556 if (!io->bio) 557 return; 558 559 if (is_read_io(fio->op)) 560 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 561 else 562 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 563 564 __submit_bio(io->sbi, io->bio, fio->type); 565 io->bio = NULL; 566 } 567 568 static bool __has_merged_page(struct bio *bio, struct inode *inode, 569 struct page *page, nid_t ino) 570 { 571 struct bio_vec *bvec; 572 struct bvec_iter_all iter_all; 573 574 if (!bio) 575 return false; 576 577 if (!inode && !page && !ino) 578 return true; 579 580 bio_for_each_segment_all(bvec, bio, iter_all) { 581 struct page *target = bvec->bv_page; 582 583 if (fscrypt_is_bounce_page(target)) { 584 target = fscrypt_pagecache_page(target); 585 if (IS_ERR(target)) 586 continue; 587 } 588 if (f2fs_is_compressed_page(target)) { 589 target = f2fs_compress_control_page(target); 590 if (IS_ERR(target)) 591 continue; 592 } 593 594 if (inode && inode == target->mapping->host) 595 return true; 596 if (page && page == target) 597 return true; 598 if (ino && ino == ino_of_node(target)) 599 return true; 600 } 601 602 return false; 603 } 604 605 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 606 { 607 int i; 608 609 for (i = 0; i < NR_PAGE_TYPE; i++) { 610 int n = (i == META) ? 1 : NR_TEMP_TYPE; 611 int j; 612 613 sbi->write_io[i] = f2fs_kmalloc(sbi, 614 array_size(n, sizeof(struct f2fs_bio_info)), 615 GFP_KERNEL); 616 if (!sbi->write_io[i]) 617 return -ENOMEM; 618 619 for (j = HOT; j < n; j++) { 620 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem); 621 sbi->write_io[i][j].sbi = sbi; 622 sbi->write_io[i][j].bio = NULL; 623 spin_lock_init(&sbi->write_io[i][j].io_lock); 624 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 625 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 626 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock); 627 } 628 } 629 630 return 0; 631 } 632 633 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 634 enum page_type type, enum temp_type temp) 635 { 636 enum page_type btype = PAGE_TYPE_OF_BIO(type); 637 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 638 639 f2fs_down_write(&io->io_rwsem); 640 641 /* change META to META_FLUSH in the checkpoint procedure */ 642 if (type >= META_FLUSH) { 643 io->fio.type = META_FLUSH; 644 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 645 if (!test_opt(sbi, NOBARRIER)) 646 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 647 } 648 __submit_merged_bio(io); 649 f2fs_up_write(&io->io_rwsem); 650 } 651 652 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 653 struct inode *inode, struct page *page, 654 nid_t ino, enum page_type type, bool force) 655 { 656 enum temp_type temp; 657 bool ret = true; 658 659 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 660 if (!force) { 661 enum page_type btype = PAGE_TYPE_OF_BIO(type); 662 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 663 664 f2fs_down_read(&io->io_rwsem); 665 ret = __has_merged_page(io->bio, inode, page, ino); 666 f2fs_up_read(&io->io_rwsem); 667 } 668 if (ret) 669 __f2fs_submit_merged_write(sbi, type, temp); 670 671 /* TODO: use HOT temp only for meta pages now. */ 672 if (type >= META) 673 break; 674 } 675 } 676 677 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 678 { 679 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 680 } 681 682 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 683 struct inode *inode, struct page *page, 684 nid_t ino, enum page_type type) 685 { 686 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 687 } 688 689 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 690 { 691 f2fs_submit_merged_write(sbi, DATA); 692 f2fs_submit_merged_write(sbi, NODE); 693 f2fs_submit_merged_write(sbi, META); 694 } 695 696 /* 697 * Fill the locked page with data located in the block address. 698 * A caller needs to unlock the page on failure. 699 */ 700 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 701 { 702 struct bio *bio; 703 struct page *page = fio->encrypted_page ? 704 fio->encrypted_page : fio->page; 705 706 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 707 fio->is_por ? META_POR : (__is_meta_io(fio) ? 708 META_GENERIC : DATA_GENERIC_ENHANCE))) 709 return -EFSCORRUPTED; 710 711 trace_f2fs_submit_page_bio(page, fio); 712 713 /* Allocate a new bio */ 714 bio = __bio_alloc(fio, 1); 715 716 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 717 fio->page->index, fio, GFP_NOIO); 718 719 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 720 bio_put(bio); 721 return -EFAULT; 722 } 723 724 if (fio->io_wbc && !is_read_io(fio->op)) 725 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 726 727 inc_page_count(fio->sbi, is_read_io(fio->op) ? 728 __read_io_type(page): WB_DATA_TYPE(fio->page)); 729 730 __submit_bio(fio->sbi, bio, fio->type); 731 return 0; 732 } 733 734 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 735 block_t last_blkaddr, block_t cur_blkaddr) 736 { 737 if (unlikely(sbi->max_io_bytes && 738 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 739 return false; 740 if (last_blkaddr + 1 != cur_blkaddr) 741 return false; 742 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 743 } 744 745 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 746 struct f2fs_io_info *fio) 747 { 748 if (io->fio.op != fio->op) 749 return false; 750 return io->fio.op_flags == fio->op_flags; 751 } 752 753 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 754 struct f2fs_bio_info *io, 755 struct f2fs_io_info *fio, 756 block_t last_blkaddr, 757 block_t cur_blkaddr) 758 { 759 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 760 unsigned int filled_blocks = 761 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 762 unsigned int io_size = F2FS_IO_SIZE(sbi); 763 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 764 765 /* IOs in bio is aligned and left space of vectors is not enough */ 766 if (!(filled_blocks % io_size) && left_vecs < io_size) 767 return false; 768 } 769 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 770 return false; 771 return io_type_is_mergeable(io, fio); 772 } 773 774 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 775 struct page *page, enum temp_type temp) 776 { 777 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 778 struct bio_entry *be; 779 780 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 781 be->bio = bio; 782 bio_get(bio); 783 784 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 785 f2fs_bug_on(sbi, 1); 786 787 f2fs_down_write(&io->bio_list_lock); 788 list_add_tail(&be->list, &io->bio_list); 789 f2fs_up_write(&io->bio_list_lock); 790 } 791 792 static void del_bio_entry(struct bio_entry *be) 793 { 794 list_del(&be->list); 795 kmem_cache_free(bio_entry_slab, be); 796 } 797 798 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 799 struct page *page) 800 { 801 struct f2fs_sb_info *sbi = fio->sbi; 802 enum temp_type temp; 803 bool found = false; 804 int ret = -EAGAIN; 805 806 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 807 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 808 struct list_head *head = &io->bio_list; 809 struct bio_entry *be; 810 811 f2fs_down_write(&io->bio_list_lock); 812 list_for_each_entry(be, head, list) { 813 if (be->bio != *bio) 814 continue; 815 816 found = true; 817 818 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 819 *fio->last_block, 820 fio->new_blkaddr)); 821 if (f2fs_crypt_mergeable_bio(*bio, 822 fio->page->mapping->host, 823 fio->page->index, fio) && 824 bio_add_page(*bio, page, PAGE_SIZE, 0) == 825 PAGE_SIZE) { 826 ret = 0; 827 break; 828 } 829 830 /* page can't be merged into bio; submit the bio */ 831 del_bio_entry(be); 832 __submit_bio(sbi, *bio, DATA); 833 break; 834 } 835 f2fs_up_write(&io->bio_list_lock); 836 } 837 838 if (ret) { 839 bio_put(*bio); 840 *bio = NULL; 841 } 842 843 return ret; 844 } 845 846 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 847 struct bio **bio, struct page *page) 848 { 849 enum temp_type temp; 850 bool found = false; 851 struct bio *target = bio ? *bio : NULL; 852 853 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 854 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 855 struct list_head *head = &io->bio_list; 856 struct bio_entry *be; 857 858 if (list_empty(head)) 859 continue; 860 861 f2fs_down_read(&io->bio_list_lock); 862 list_for_each_entry(be, head, list) { 863 if (target) 864 found = (target == be->bio); 865 else 866 found = __has_merged_page(be->bio, NULL, 867 page, 0); 868 if (found) 869 break; 870 } 871 f2fs_up_read(&io->bio_list_lock); 872 873 if (!found) 874 continue; 875 876 found = false; 877 878 f2fs_down_write(&io->bio_list_lock); 879 list_for_each_entry(be, head, list) { 880 if (target) 881 found = (target == be->bio); 882 else 883 found = __has_merged_page(be->bio, NULL, 884 page, 0); 885 if (found) { 886 target = be->bio; 887 del_bio_entry(be); 888 break; 889 } 890 } 891 f2fs_up_write(&io->bio_list_lock); 892 } 893 894 if (found) 895 __submit_bio(sbi, target, DATA); 896 if (bio && *bio) { 897 bio_put(*bio); 898 *bio = NULL; 899 } 900 } 901 902 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 903 { 904 struct bio *bio = *fio->bio; 905 struct page *page = fio->encrypted_page ? 906 fio->encrypted_page : fio->page; 907 908 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 909 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 910 return -EFSCORRUPTED; 911 912 trace_f2fs_submit_page_bio(page, fio); 913 914 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 915 fio->new_blkaddr)) 916 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 917 alloc_new: 918 if (!bio) { 919 bio = __bio_alloc(fio, BIO_MAX_VECS); 920 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 921 fio->page->index, fio, GFP_NOIO); 922 923 add_bio_entry(fio->sbi, bio, page, fio->temp); 924 } else { 925 if (add_ipu_page(fio, &bio, page)) 926 goto alloc_new; 927 } 928 929 if (fio->io_wbc) 930 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 931 932 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 933 934 *fio->last_block = fio->new_blkaddr; 935 *fio->bio = bio; 936 937 return 0; 938 } 939 940 void f2fs_submit_page_write(struct f2fs_io_info *fio) 941 { 942 struct f2fs_sb_info *sbi = fio->sbi; 943 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 944 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 945 struct page *bio_page; 946 947 f2fs_bug_on(sbi, is_read_io(fio->op)); 948 949 f2fs_down_write(&io->io_rwsem); 950 next: 951 if (fio->in_list) { 952 spin_lock(&io->io_lock); 953 if (list_empty(&io->io_list)) { 954 spin_unlock(&io->io_lock); 955 goto out; 956 } 957 fio = list_first_entry(&io->io_list, 958 struct f2fs_io_info, list); 959 list_del(&fio->list); 960 spin_unlock(&io->io_lock); 961 } 962 963 verify_fio_blkaddr(fio); 964 965 if (fio->encrypted_page) 966 bio_page = fio->encrypted_page; 967 else if (fio->compressed_page) 968 bio_page = fio->compressed_page; 969 else 970 bio_page = fio->page; 971 972 /* set submitted = true as a return value */ 973 fio->submitted = true; 974 975 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 976 977 if (io->bio && 978 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 979 fio->new_blkaddr) || 980 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 981 bio_page->index, fio))) 982 __submit_merged_bio(io); 983 alloc_new: 984 if (io->bio == NULL) { 985 if (F2FS_IO_ALIGNED(sbi) && 986 (fio->type == DATA || fio->type == NODE) && 987 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 988 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 989 fio->retry = true; 990 goto skip; 991 } 992 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 993 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 994 bio_page->index, fio, GFP_NOIO); 995 io->fio = *fio; 996 } 997 998 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 999 __submit_merged_bio(io); 1000 goto alloc_new; 1001 } 1002 1003 if (fio->io_wbc) 1004 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 1005 1006 io->last_block_in_bio = fio->new_blkaddr; 1007 1008 trace_f2fs_submit_page_write(fio->page, fio); 1009 skip: 1010 if (fio->in_list) 1011 goto next; 1012 out: 1013 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1014 !f2fs_is_checkpoint_ready(sbi)) 1015 __submit_merged_bio(io); 1016 f2fs_up_write(&io->io_rwsem); 1017 } 1018 1019 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1020 unsigned nr_pages, blk_opf_t op_flag, 1021 pgoff_t first_idx, bool for_write) 1022 { 1023 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1024 struct bio *bio; 1025 struct bio_post_read_ctx *ctx = NULL; 1026 unsigned int post_read_steps = 0; 1027 sector_t sector; 1028 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1029 1030 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1031 REQ_OP_READ | op_flag, 1032 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1033 if (!bio) 1034 return ERR_PTR(-ENOMEM); 1035 bio->bi_iter.bi_sector = sector; 1036 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1037 bio->bi_end_io = f2fs_read_end_io; 1038 1039 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1040 post_read_steps |= STEP_DECRYPT; 1041 1042 if (f2fs_need_verity(inode, first_idx)) 1043 post_read_steps |= STEP_VERITY; 1044 1045 /* 1046 * STEP_DECOMPRESS is handled specially, since a compressed file might 1047 * contain both compressed and uncompressed clusters. We'll allocate a 1048 * bio_post_read_ctx if the file is compressed, but the caller is 1049 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1050 */ 1051 1052 if (post_read_steps || f2fs_compressed_file(inode)) { 1053 /* Due to the mempool, this never fails. */ 1054 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1055 ctx->bio = bio; 1056 ctx->sbi = sbi; 1057 ctx->enabled_steps = post_read_steps; 1058 ctx->fs_blkaddr = blkaddr; 1059 bio->bi_private = ctx; 1060 } 1061 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1062 1063 return bio; 1064 } 1065 1066 /* This can handle encryption stuffs */ 1067 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1068 block_t blkaddr, blk_opf_t op_flags, 1069 bool for_write) 1070 { 1071 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1072 struct bio *bio; 1073 1074 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1075 page->index, for_write); 1076 if (IS_ERR(bio)) 1077 return PTR_ERR(bio); 1078 1079 /* wait for GCed page writeback via META_MAPPING */ 1080 f2fs_wait_on_block_writeback(inode, blkaddr); 1081 1082 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1083 bio_put(bio); 1084 return -EFAULT; 1085 } 1086 ClearPageError(page); 1087 inc_page_count(sbi, F2FS_RD_DATA); 1088 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1089 __submit_bio(sbi, bio, DATA); 1090 return 0; 1091 } 1092 1093 static void __set_data_blkaddr(struct dnode_of_data *dn) 1094 { 1095 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1096 __le32 *addr_array; 1097 int base = 0; 1098 1099 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1100 base = get_extra_isize(dn->inode); 1101 1102 /* Get physical address of data block */ 1103 addr_array = blkaddr_in_node(rn); 1104 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1105 } 1106 1107 /* 1108 * Lock ordering for the change of data block address: 1109 * ->data_page 1110 * ->node_page 1111 * update block addresses in the node page 1112 */ 1113 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1114 { 1115 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1116 __set_data_blkaddr(dn); 1117 if (set_page_dirty(dn->node_page)) 1118 dn->node_changed = true; 1119 } 1120 1121 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1122 { 1123 dn->data_blkaddr = blkaddr; 1124 f2fs_set_data_blkaddr(dn); 1125 f2fs_update_extent_cache(dn); 1126 } 1127 1128 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1129 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1130 { 1131 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1132 int err; 1133 1134 if (!count) 1135 return 0; 1136 1137 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1138 return -EPERM; 1139 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1140 return err; 1141 1142 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1143 dn->ofs_in_node, count); 1144 1145 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1146 1147 for (; count > 0; dn->ofs_in_node++) { 1148 block_t blkaddr = f2fs_data_blkaddr(dn); 1149 1150 if (blkaddr == NULL_ADDR) { 1151 dn->data_blkaddr = NEW_ADDR; 1152 __set_data_blkaddr(dn); 1153 count--; 1154 } 1155 } 1156 1157 if (set_page_dirty(dn->node_page)) 1158 dn->node_changed = true; 1159 return 0; 1160 } 1161 1162 /* Should keep dn->ofs_in_node unchanged */ 1163 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1164 { 1165 unsigned int ofs_in_node = dn->ofs_in_node; 1166 int ret; 1167 1168 ret = f2fs_reserve_new_blocks(dn, 1); 1169 dn->ofs_in_node = ofs_in_node; 1170 return ret; 1171 } 1172 1173 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1174 { 1175 bool need_put = dn->inode_page ? false : true; 1176 int err; 1177 1178 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1179 if (err) 1180 return err; 1181 1182 if (dn->data_blkaddr == NULL_ADDR) 1183 err = f2fs_reserve_new_block(dn); 1184 if (err || need_put) 1185 f2fs_put_dnode(dn); 1186 return err; 1187 } 1188 1189 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1190 { 1191 struct extent_info ei = {0, }; 1192 struct inode *inode = dn->inode; 1193 1194 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1195 dn->data_blkaddr = ei.blk + index - ei.fofs; 1196 return 0; 1197 } 1198 1199 return f2fs_reserve_block(dn, index); 1200 } 1201 1202 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1203 blk_opf_t op_flags, bool for_write) 1204 { 1205 struct address_space *mapping = inode->i_mapping; 1206 struct dnode_of_data dn; 1207 struct page *page; 1208 struct extent_info ei = {0, }; 1209 int err; 1210 1211 page = f2fs_grab_cache_page(mapping, index, for_write); 1212 if (!page) 1213 return ERR_PTR(-ENOMEM); 1214 1215 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1216 dn.data_blkaddr = ei.blk + index - ei.fofs; 1217 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1218 DATA_GENERIC_ENHANCE_READ)) { 1219 err = -EFSCORRUPTED; 1220 goto put_err; 1221 } 1222 goto got_it; 1223 } 1224 1225 set_new_dnode(&dn, inode, NULL, NULL, 0); 1226 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1227 if (err) 1228 goto put_err; 1229 f2fs_put_dnode(&dn); 1230 1231 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1232 err = -ENOENT; 1233 goto put_err; 1234 } 1235 if (dn.data_blkaddr != NEW_ADDR && 1236 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1237 dn.data_blkaddr, 1238 DATA_GENERIC_ENHANCE)) { 1239 err = -EFSCORRUPTED; 1240 goto put_err; 1241 } 1242 got_it: 1243 if (PageUptodate(page)) { 1244 unlock_page(page); 1245 return page; 1246 } 1247 1248 /* 1249 * A new dentry page is allocated but not able to be written, since its 1250 * new inode page couldn't be allocated due to -ENOSPC. 1251 * In such the case, its blkaddr can be remained as NEW_ADDR. 1252 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1253 * f2fs_init_inode_metadata. 1254 */ 1255 if (dn.data_blkaddr == NEW_ADDR) { 1256 zero_user_segment(page, 0, PAGE_SIZE); 1257 if (!PageUptodate(page)) 1258 SetPageUptodate(page); 1259 unlock_page(page); 1260 return page; 1261 } 1262 1263 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1264 op_flags, for_write); 1265 if (err) 1266 goto put_err; 1267 return page; 1268 1269 put_err: 1270 f2fs_put_page(page, 1); 1271 return ERR_PTR(err); 1272 } 1273 1274 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1275 { 1276 struct address_space *mapping = inode->i_mapping; 1277 struct page *page; 1278 1279 page = find_get_page(mapping, index); 1280 if (page && PageUptodate(page)) 1281 return page; 1282 f2fs_put_page(page, 0); 1283 1284 page = f2fs_get_read_data_page(inode, index, 0, false); 1285 if (IS_ERR(page)) 1286 return page; 1287 1288 if (PageUptodate(page)) 1289 return page; 1290 1291 wait_on_page_locked(page); 1292 if (unlikely(!PageUptodate(page))) { 1293 f2fs_put_page(page, 0); 1294 return ERR_PTR(-EIO); 1295 } 1296 return page; 1297 } 1298 1299 /* 1300 * If it tries to access a hole, return an error. 1301 * Because, the callers, functions in dir.c and GC, should be able to know 1302 * whether this page exists or not. 1303 */ 1304 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1305 bool for_write) 1306 { 1307 struct address_space *mapping = inode->i_mapping; 1308 struct page *page; 1309 repeat: 1310 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1311 if (IS_ERR(page)) 1312 return page; 1313 1314 /* wait for read completion */ 1315 lock_page(page); 1316 if (unlikely(page->mapping != mapping)) { 1317 f2fs_put_page(page, 1); 1318 goto repeat; 1319 } 1320 if (unlikely(!PageUptodate(page))) { 1321 f2fs_put_page(page, 1); 1322 return ERR_PTR(-EIO); 1323 } 1324 return page; 1325 } 1326 1327 /* 1328 * Caller ensures that this data page is never allocated. 1329 * A new zero-filled data page is allocated in the page cache. 1330 * 1331 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1332 * f2fs_unlock_op(). 1333 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1334 * ipage should be released by this function. 1335 */ 1336 struct page *f2fs_get_new_data_page(struct inode *inode, 1337 struct page *ipage, pgoff_t index, bool new_i_size) 1338 { 1339 struct address_space *mapping = inode->i_mapping; 1340 struct page *page; 1341 struct dnode_of_data dn; 1342 int err; 1343 1344 page = f2fs_grab_cache_page(mapping, index, true); 1345 if (!page) { 1346 /* 1347 * before exiting, we should make sure ipage will be released 1348 * if any error occur. 1349 */ 1350 f2fs_put_page(ipage, 1); 1351 return ERR_PTR(-ENOMEM); 1352 } 1353 1354 set_new_dnode(&dn, inode, ipage, NULL, 0); 1355 err = f2fs_reserve_block(&dn, index); 1356 if (err) { 1357 f2fs_put_page(page, 1); 1358 return ERR_PTR(err); 1359 } 1360 if (!ipage) 1361 f2fs_put_dnode(&dn); 1362 1363 if (PageUptodate(page)) 1364 goto got_it; 1365 1366 if (dn.data_blkaddr == NEW_ADDR) { 1367 zero_user_segment(page, 0, PAGE_SIZE); 1368 if (!PageUptodate(page)) 1369 SetPageUptodate(page); 1370 } else { 1371 f2fs_put_page(page, 1); 1372 1373 /* if ipage exists, blkaddr should be NEW_ADDR */ 1374 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1375 page = f2fs_get_lock_data_page(inode, index, true); 1376 if (IS_ERR(page)) 1377 return page; 1378 } 1379 got_it: 1380 if (new_i_size && i_size_read(inode) < 1381 ((loff_t)(index + 1) << PAGE_SHIFT)) 1382 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1383 return page; 1384 } 1385 1386 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1387 { 1388 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1389 struct f2fs_summary sum; 1390 struct node_info ni; 1391 block_t old_blkaddr; 1392 blkcnt_t count = 1; 1393 int err; 1394 1395 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1396 return -EPERM; 1397 1398 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1399 if (err) 1400 return err; 1401 1402 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1403 if (dn->data_blkaddr != NULL_ADDR) 1404 goto alloc; 1405 1406 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1407 return err; 1408 1409 alloc: 1410 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1411 old_blkaddr = dn->data_blkaddr; 1412 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1413 &sum, seg_type, NULL); 1414 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1415 invalidate_mapping_pages(META_MAPPING(sbi), 1416 old_blkaddr, old_blkaddr); 1417 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1418 } 1419 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1420 return 0; 1421 } 1422 1423 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1424 { 1425 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1426 if (lock) 1427 f2fs_down_read(&sbi->node_change); 1428 else 1429 f2fs_up_read(&sbi->node_change); 1430 } else { 1431 if (lock) 1432 f2fs_lock_op(sbi); 1433 else 1434 f2fs_unlock_op(sbi); 1435 } 1436 } 1437 1438 /* 1439 * f2fs_map_blocks() tries to find or build mapping relationship which 1440 * maps continuous logical blocks to physical blocks, and return such 1441 * info via f2fs_map_blocks structure. 1442 */ 1443 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1444 int create, int flag) 1445 { 1446 unsigned int maxblocks = map->m_len; 1447 struct dnode_of_data dn; 1448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1449 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1450 pgoff_t pgofs, end_offset, end; 1451 int err = 0, ofs = 1; 1452 unsigned int ofs_in_node, last_ofs_in_node; 1453 blkcnt_t prealloc; 1454 struct extent_info ei = {0, }; 1455 block_t blkaddr; 1456 unsigned int start_pgofs; 1457 int bidx = 0; 1458 1459 if (!maxblocks) 1460 return 0; 1461 1462 map->m_bdev = inode->i_sb->s_bdev; 1463 map->m_multidev_dio = 1464 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1465 1466 map->m_len = 0; 1467 map->m_flags = 0; 1468 1469 /* it only supports block size == page size */ 1470 pgofs = (pgoff_t)map->m_lblk; 1471 end = pgofs + maxblocks; 1472 1473 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1474 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1475 map->m_may_create) 1476 goto next_dnode; 1477 1478 map->m_pblk = ei.blk + pgofs - ei.fofs; 1479 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1480 map->m_flags = F2FS_MAP_MAPPED; 1481 if (map->m_next_extent) 1482 *map->m_next_extent = pgofs + map->m_len; 1483 1484 /* for hardware encryption, but to avoid potential issue in future */ 1485 if (flag == F2FS_GET_BLOCK_DIO) 1486 f2fs_wait_on_block_writeback_range(inode, 1487 map->m_pblk, map->m_len); 1488 1489 if (map->m_multidev_dio) { 1490 block_t blk_addr = map->m_pblk; 1491 1492 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1493 1494 map->m_bdev = FDEV(bidx).bdev; 1495 map->m_pblk -= FDEV(bidx).start_blk; 1496 map->m_len = min(map->m_len, 1497 FDEV(bidx).end_blk + 1 - map->m_pblk); 1498 1499 if (map->m_may_create) 1500 f2fs_update_device_state(sbi, inode->i_ino, 1501 blk_addr, map->m_len); 1502 } 1503 goto out; 1504 } 1505 1506 next_dnode: 1507 if (map->m_may_create) 1508 f2fs_do_map_lock(sbi, flag, true); 1509 1510 /* When reading holes, we need its node page */ 1511 set_new_dnode(&dn, inode, NULL, NULL, 0); 1512 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1513 if (err) { 1514 if (flag == F2FS_GET_BLOCK_BMAP) 1515 map->m_pblk = 0; 1516 1517 if (err == -ENOENT) { 1518 /* 1519 * There is one exceptional case that read_node_page() 1520 * may return -ENOENT due to filesystem has been 1521 * shutdown or cp_error, so force to convert error 1522 * number to EIO for such case. 1523 */ 1524 if (map->m_may_create && 1525 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1526 f2fs_cp_error(sbi))) { 1527 err = -EIO; 1528 goto unlock_out; 1529 } 1530 1531 err = 0; 1532 if (map->m_next_pgofs) 1533 *map->m_next_pgofs = 1534 f2fs_get_next_page_offset(&dn, pgofs); 1535 if (map->m_next_extent) 1536 *map->m_next_extent = 1537 f2fs_get_next_page_offset(&dn, pgofs); 1538 } 1539 goto unlock_out; 1540 } 1541 1542 start_pgofs = pgofs; 1543 prealloc = 0; 1544 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1545 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1546 1547 next_block: 1548 blkaddr = f2fs_data_blkaddr(&dn); 1549 1550 if (__is_valid_data_blkaddr(blkaddr) && 1551 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1552 err = -EFSCORRUPTED; 1553 goto sync_out; 1554 } 1555 1556 if (__is_valid_data_blkaddr(blkaddr)) { 1557 /* use out-place-update for driect IO under LFS mode */ 1558 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1559 map->m_may_create) { 1560 err = __allocate_data_block(&dn, map->m_seg_type); 1561 if (err) 1562 goto sync_out; 1563 blkaddr = dn.data_blkaddr; 1564 set_inode_flag(inode, FI_APPEND_WRITE); 1565 } 1566 } else { 1567 if (create) { 1568 if (unlikely(f2fs_cp_error(sbi))) { 1569 err = -EIO; 1570 goto sync_out; 1571 } 1572 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1573 if (blkaddr == NULL_ADDR) { 1574 prealloc++; 1575 last_ofs_in_node = dn.ofs_in_node; 1576 } 1577 } else { 1578 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1579 flag != F2FS_GET_BLOCK_DIO); 1580 err = __allocate_data_block(&dn, 1581 map->m_seg_type); 1582 if (!err) { 1583 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1584 file_need_truncate(inode); 1585 set_inode_flag(inode, FI_APPEND_WRITE); 1586 } 1587 } 1588 if (err) 1589 goto sync_out; 1590 map->m_flags |= F2FS_MAP_NEW; 1591 blkaddr = dn.data_blkaddr; 1592 } else { 1593 if (f2fs_compressed_file(inode) && 1594 f2fs_sanity_check_cluster(&dn) && 1595 (flag != F2FS_GET_BLOCK_FIEMAP || 1596 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1597 err = -EFSCORRUPTED; 1598 goto sync_out; 1599 } 1600 if (flag == F2FS_GET_BLOCK_BMAP) { 1601 map->m_pblk = 0; 1602 goto sync_out; 1603 } 1604 if (flag == F2FS_GET_BLOCK_PRECACHE) 1605 goto sync_out; 1606 if (flag == F2FS_GET_BLOCK_FIEMAP && 1607 blkaddr == NULL_ADDR) { 1608 if (map->m_next_pgofs) 1609 *map->m_next_pgofs = pgofs + 1; 1610 goto sync_out; 1611 } 1612 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1613 /* for defragment case */ 1614 if (map->m_next_pgofs) 1615 *map->m_next_pgofs = pgofs + 1; 1616 goto sync_out; 1617 } 1618 } 1619 } 1620 1621 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1622 goto skip; 1623 1624 if (map->m_multidev_dio) 1625 bidx = f2fs_target_device_index(sbi, blkaddr); 1626 1627 if (map->m_len == 0) { 1628 /* preallocated unwritten block should be mapped for fiemap. */ 1629 if (blkaddr == NEW_ADDR) 1630 map->m_flags |= F2FS_MAP_UNWRITTEN; 1631 map->m_flags |= F2FS_MAP_MAPPED; 1632 1633 map->m_pblk = blkaddr; 1634 map->m_len = 1; 1635 1636 if (map->m_multidev_dio) 1637 map->m_bdev = FDEV(bidx).bdev; 1638 } else if ((map->m_pblk != NEW_ADDR && 1639 blkaddr == (map->m_pblk + ofs)) || 1640 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1641 flag == F2FS_GET_BLOCK_PRE_DIO) { 1642 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1643 goto sync_out; 1644 ofs++; 1645 map->m_len++; 1646 } else { 1647 goto sync_out; 1648 } 1649 1650 skip: 1651 dn.ofs_in_node++; 1652 pgofs++; 1653 1654 /* preallocate blocks in batch for one dnode page */ 1655 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1656 (pgofs == end || dn.ofs_in_node == end_offset)) { 1657 1658 dn.ofs_in_node = ofs_in_node; 1659 err = f2fs_reserve_new_blocks(&dn, prealloc); 1660 if (err) 1661 goto sync_out; 1662 1663 map->m_len += dn.ofs_in_node - ofs_in_node; 1664 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1665 err = -ENOSPC; 1666 goto sync_out; 1667 } 1668 dn.ofs_in_node = end_offset; 1669 } 1670 1671 if (pgofs >= end) 1672 goto sync_out; 1673 else if (dn.ofs_in_node < end_offset) 1674 goto next_block; 1675 1676 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1677 if (map->m_flags & F2FS_MAP_MAPPED) { 1678 unsigned int ofs = start_pgofs - map->m_lblk; 1679 1680 f2fs_update_extent_cache_range(&dn, 1681 start_pgofs, map->m_pblk + ofs, 1682 map->m_len - ofs); 1683 } 1684 } 1685 1686 f2fs_put_dnode(&dn); 1687 1688 if (map->m_may_create) { 1689 f2fs_do_map_lock(sbi, flag, false); 1690 f2fs_balance_fs(sbi, dn.node_changed); 1691 } 1692 goto next_dnode; 1693 1694 sync_out: 1695 1696 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1697 /* 1698 * for hardware encryption, but to avoid potential issue 1699 * in future 1700 */ 1701 f2fs_wait_on_block_writeback_range(inode, 1702 map->m_pblk, map->m_len); 1703 1704 if (map->m_multidev_dio) { 1705 block_t blk_addr = map->m_pblk; 1706 1707 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1708 1709 map->m_bdev = FDEV(bidx).bdev; 1710 map->m_pblk -= FDEV(bidx).start_blk; 1711 1712 if (map->m_may_create) 1713 f2fs_update_device_state(sbi, inode->i_ino, 1714 blk_addr, map->m_len); 1715 1716 f2fs_bug_on(sbi, blk_addr + map->m_len > 1717 FDEV(bidx).end_blk + 1); 1718 } 1719 } 1720 1721 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1722 if (map->m_flags & F2FS_MAP_MAPPED) { 1723 unsigned int ofs = start_pgofs - map->m_lblk; 1724 1725 f2fs_update_extent_cache_range(&dn, 1726 start_pgofs, map->m_pblk + ofs, 1727 map->m_len - ofs); 1728 } 1729 if (map->m_next_extent) 1730 *map->m_next_extent = pgofs + 1; 1731 } 1732 f2fs_put_dnode(&dn); 1733 unlock_out: 1734 if (map->m_may_create) { 1735 f2fs_do_map_lock(sbi, flag, false); 1736 f2fs_balance_fs(sbi, dn.node_changed); 1737 } 1738 out: 1739 trace_f2fs_map_blocks(inode, map, create, flag, err); 1740 return err; 1741 } 1742 1743 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1744 { 1745 struct f2fs_map_blocks map; 1746 block_t last_lblk; 1747 int err; 1748 1749 if (pos + len > i_size_read(inode)) 1750 return false; 1751 1752 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1753 map.m_next_pgofs = NULL; 1754 map.m_next_extent = NULL; 1755 map.m_seg_type = NO_CHECK_TYPE; 1756 map.m_may_create = false; 1757 last_lblk = F2FS_BLK_ALIGN(pos + len); 1758 1759 while (map.m_lblk < last_lblk) { 1760 map.m_len = last_lblk - map.m_lblk; 1761 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1762 if (err || map.m_len == 0) 1763 return false; 1764 map.m_lblk += map.m_len; 1765 } 1766 return true; 1767 } 1768 1769 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1770 { 1771 return (bytes >> inode->i_blkbits); 1772 } 1773 1774 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1775 { 1776 return (blks << inode->i_blkbits); 1777 } 1778 1779 static int f2fs_xattr_fiemap(struct inode *inode, 1780 struct fiemap_extent_info *fieinfo) 1781 { 1782 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1783 struct page *page; 1784 struct node_info ni; 1785 __u64 phys = 0, len; 1786 __u32 flags; 1787 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1788 int err = 0; 1789 1790 if (f2fs_has_inline_xattr(inode)) { 1791 int offset; 1792 1793 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1794 inode->i_ino, false); 1795 if (!page) 1796 return -ENOMEM; 1797 1798 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1799 if (err) { 1800 f2fs_put_page(page, 1); 1801 return err; 1802 } 1803 1804 phys = blks_to_bytes(inode, ni.blk_addr); 1805 offset = offsetof(struct f2fs_inode, i_addr) + 1806 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1807 get_inline_xattr_addrs(inode)); 1808 1809 phys += offset; 1810 len = inline_xattr_size(inode); 1811 1812 f2fs_put_page(page, 1); 1813 1814 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1815 1816 if (!xnid) 1817 flags |= FIEMAP_EXTENT_LAST; 1818 1819 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1820 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1821 if (err || err == 1) 1822 return err; 1823 } 1824 1825 if (xnid) { 1826 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1827 if (!page) 1828 return -ENOMEM; 1829 1830 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1831 if (err) { 1832 f2fs_put_page(page, 1); 1833 return err; 1834 } 1835 1836 phys = blks_to_bytes(inode, ni.blk_addr); 1837 len = inode->i_sb->s_blocksize; 1838 1839 f2fs_put_page(page, 1); 1840 1841 flags = FIEMAP_EXTENT_LAST; 1842 } 1843 1844 if (phys) { 1845 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1846 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1847 } 1848 1849 return (err < 0 ? err : 0); 1850 } 1851 1852 static loff_t max_inode_blocks(struct inode *inode) 1853 { 1854 loff_t result = ADDRS_PER_INODE(inode); 1855 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1856 1857 /* two direct node blocks */ 1858 result += (leaf_count * 2); 1859 1860 /* two indirect node blocks */ 1861 leaf_count *= NIDS_PER_BLOCK; 1862 result += (leaf_count * 2); 1863 1864 /* one double indirect node block */ 1865 leaf_count *= NIDS_PER_BLOCK; 1866 result += leaf_count; 1867 1868 return result; 1869 } 1870 1871 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1872 u64 start, u64 len) 1873 { 1874 struct f2fs_map_blocks map; 1875 sector_t start_blk, last_blk; 1876 pgoff_t next_pgofs; 1877 u64 logical = 0, phys = 0, size = 0; 1878 u32 flags = 0; 1879 int ret = 0; 1880 bool compr_cluster = false, compr_appended; 1881 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1882 unsigned int count_in_cluster = 0; 1883 loff_t maxbytes; 1884 1885 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1886 ret = f2fs_precache_extents(inode); 1887 if (ret) 1888 return ret; 1889 } 1890 1891 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1892 if (ret) 1893 return ret; 1894 1895 inode_lock(inode); 1896 1897 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1898 if (start > maxbytes) { 1899 ret = -EFBIG; 1900 goto out; 1901 } 1902 1903 if (len > maxbytes || (maxbytes - len) < start) 1904 len = maxbytes - start; 1905 1906 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1907 ret = f2fs_xattr_fiemap(inode, fieinfo); 1908 goto out; 1909 } 1910 1911 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1912 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1913 if (ret != -EAGAIN) 1914 goto out; 1915 } 1916 1917 if (bytes_to_blks(inode, len) == 0) 1918 len = blks_to_bytes(inode, 1); 1919 1920 start_blk = bytes_to_blks(inode, start); 1921 last_blk = bytes_to_blks(inode, start + len - 1); 1922 1923 next: 1924 memset(&map, 0, sizeof(map)); 1925 map.m_lblk = start_blk; 1926 map.m_len = bytes_to_blks(inode, len); 1927 map.m_next_pgofs = &next_pgofs; 1928 map.m_seg_type = NO_CHECK_TYPE; 1929 1930 if (compr_cluster) { 1931 map.m_lblk += 1; 1932 map.m_len = cluster_size - count_in_cluster; 1933 } 1934 1935 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1936 if (ret) 1937 goto out; 1938 1939 /* HOLE */ 1940 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1941 start_blk = next_pgofs; 1942 1943 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1944 max_inode_blocks(inode))) 1945 goto prep_next; 1946 1947 flags |= FIEMAP_EXTENT_LAST; 1948 } 1949 1950 compr_appended = false; 1951 /* In a case of compressed cluster, append this to the last extent */ 1952 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) || 1953 !(map.m_flags & F2FS_MAP_FLAGS))) { 1954 compr_appended = true; 1955 goto skip_fill; 1956 } 1957 1958 if (size) { 1959 flags |= FIEMAP_EXTENT_MERGED; 1960 if (IS_ENCRYPTED(inode)) 1961 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1962 1963 ret = fiemap_fill_next_extent(fieinfo, logical, 1964 phys, size, flags); 1965 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1966 if (ret) 1967 goto out; 1968 size = 0; 1969 } 1970 1971 if (start_blk > last_blk) 1972 goto out; 1973 1974 skip_fill: 1975 if (map.m_pblk == COMPRESS_ADDR) { 1976 compr_cluster = true; 1977 count_in_cluster = 1; 1978 } else if (compr_appended) { 1979 unsigned int appended_blks = cluster_size - 1980 count_in_cluster + 1; 1981 size += blks_to_bytes(inode, appended_blks); 1982 start_blk += appended_blks; 1983 compr_cluster = false; 1984 } else { 1985 logical = blks_to_bytes(inode, start_blk); 1986 phys = __is_valid_data_blkaddr(map.m_pblk) ? 1987 blks_to_bytes(inode, map.m_pblk) : 0; 1988 size = blks_to_bytes(inode, map.m_len); 1989 flags = 0; 1990 1991 if (compr_cluster) { 1992 flags = FIEMAP_EXTENT_ENCODED; 1993 count_in_cluster += map.m_len; 1994 if (count_in_cluster == cluster_size) { 1995 compr_cluster = false; 1996 size += blks_to_bytes(inode, 1); 1997 } 1998 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) { 1999 flags = FIEMAP_EXTENT_UNWRITTEN; 2000 } 2001 2002 start_blk += bytes_to_blks(inode, size); 2003 } 2004 2005 prep_next: 2006 cond_resched(); 2007 if (fatal_signal_pending(current)) 2008 ret = -EINTR; 2009 else 2010 goto next; 2011 out: 2012 if (ret == 1) 2013 ret = 0; 2014 2015 inode_unlock(inode); 2016 return ret; 2017 } 2018 2019 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2020 { 2021 if (IS_ENABLED(CONFIG_FS_VERITY) && 2022 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 2023 return inode->i_sb->s_maxbytes; 2024 2025 return i_size_read(inode); 2026 } 2027 2028 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2029 unsigned nr_pages, 2030 struct f2fs_map_blocks *map, 2031 struct bio **bio_ret, 2032 sector_t *last_block_in_bio, 2033 bool is_readahead) 2034 { 2035 struct bio *bio = *bio_ret; 2036 const unsigned blocksize = blks_to_bytes(inode, 1); 2037 sector_t block_in_file; 2038 sector_t last_block; 2039 sector_t last_block_in_file; 2040 sector_t block_nr; 2041 int ret = 0; 2042 2043 block_in_file = (sector_t)page_index(page); 2044 last_block = block_in_file + nr_pages; 2045 last_block_in_file = bytes_to_blks(inode, 2046 f2fs_readpage_limit(inode) + blocksize - 1); 2047 if (last_block > last_block_in_file) 2048 last_block = last_block_in_file; 2049 2050 /* just zeroing out page which is beyond EOF */ 2051 if (block_in_file >= last_block) 2052 goto zero_out; 2053 /* 2054 * Map blocks using the previous result first. 2055 */ 2056 if ((map->m_flags & F2FS_MAP_MAPPED) && 2057 block_in_file > map->m_lblk && 2058 block_in_file < (map->m_lblk + map->m_len)) 2059 goto got_it; 2060 2061 /* 2062 * Then do more f2fs_map_blocks() calls until we are 2063 * done with this page. 2064 */ 2065 map->m_lblk = block_in_file; 2066 map->m_len = last_block - block_in_file; 2067 2068 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2069 if (ret) 2070 goto out; 2071 got_it: 2072 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2073 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2074 SetPageMappedToDisk(page); 2075 2076 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2077 DATA_GENERIC_ENHANCE_READ)) { 2078 ret = -EFSCORRUPTED; 2079 goto out; 2080 } 2081 } else { 2082 zero_out: 2083 zero_user_segment(page, 0, PAGE_SIZE); 2084 if (f2fs_need_verity(inode, page->index) && 2085 !fsverity_verify_page(page)) { 2086 ret = -EIO; 2087 goto out; 2088 } 2089 if (!PageUptodate(page)) 2090 SetPageUptodate(page); 2091 unlock_page(page); 2092 goto out; 2093 } 2094 2095 /* 2096 * This page will go to BIO. Do we need to send this 2097 * BIO off first? 2098 */ 2099 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2100 *last_block_in_bio, block_nr) || 2101 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2102 submit_and_realloc: 2103 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2104 bio = NULL; 2105 } 2106 if (bio == NULL) { 2107 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2108 is_readahead ? REQ_RAHEAD : 0, page->index, 2109 false); 2110 if (IS_ERR(bio)) { 2111 ret = PTR_ERR(bio); 2112 bio = NULL; 2113 goto out; 2114 } 2115 } 2116 2117 /* 2118 * If the page is under writeback, we need to wait for 2119 * its completion to see the correct decrypted data. 2120 */ 2121 f2fs_wait_on_block_writeback(inode, block_nr); 2122 2123 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2124 goto submit_and_realloc; 2125 2126 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2127 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2128 ClearPageError(page); 2129 *last_block_in_bio = block_nr; 2130 goto out; 2131 out: 2132 *bio_ret = bio; 2133 return ret; 2134 } 2135 2136 #ifdef CONFIG_F2FS_FS_COMPRESSION 2137 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2138 unsigned nr_pages, sector_t *last_block_in_bio, 2139 bool is_readahead, bool for_write) 2140 { 2141 struct dnode_of_data dn; 2142 struct inode *inode = cc->inode; 2143 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2144 struct bio *bio = *bio_ret; 2145 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2146 sector_t last_block_in_file; 2147 const unsigned blocksize = blks_to_bytes(inode, 1); 2148 struct decompress_io_ctx *dic = NULL; 2149 struct extent_info ei = {0, }; 2150 bool from_dnode = true; 2151 int i; 2152 int ret = 0; 2153 2154 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2155 2156 last_block_in_file = bytes_to_blks(inode, 2157 f2fs_readpage_limit(inode) + blocksize - 1); 2158 2159 /* get rid of pages beyond EOF */ 2160 for (i = 0; i < cc->cluster_size; i++) { 2161 struct page *page = cc->rpages[i]; 2162 2163 if (!page) 2164 continue; 2165 if ((sector_t)page->index >= last_block_in_file) { 2166 zero_user_segment(page, 0, PAGE_SIZE); 2167 if (!PageUptodate(page)) 2168 SetPageUptodate(page); 2169 } else if (!PageUptodate(page)) { 2170 continue; 2171 } 2172 unlock_page(page); 2173 if (for_write) 2174 put_page(page); 2175 cc->rpages[i] = NULL; 2176 cc->nr_rpages--; 2177 } 2178 2179 /* we are done since all pages are beyond EOF */ 2180 if (f2fs_cluster_is_empty(cc)) 2181 goto out; 2182 2183 if (f2fs_lookup_extent_cache(inode, start_idx, &ei)) 2184 from_dnode = false; 2185 2186 if (!from_dnode) 2187 goto skip_reading_dnode; 2188 2189 set_new_dnode(&dn, inode, NULL, NULL, 0); 2190 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2191 if (ret) 2192 goto out; 2193 2194 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2195 2196 skip_reading_dnode: 2197 for (i = 1; i < cc->cluster_size; i++) { 2198 block_t blkaddr; 2199 2200 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2201 dn.ofs_in_node + i) : 2202 ei.blk + i - 1; 2203 2204 if (!__is_valid_data_blkaddr(blkaddr)) 2205 break; 2206 2207 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2208 ret = -EFAULT; 2209 goto out_put_dnode; 2210 } 2211 cc->nr_cpages++; 2212 2213 if (!from_dnode && i >= ei.c_len) 2214 break; 2215 } 2216 2217 /* nothing to decompress */ 2218 if (cc->nr_cpages == 0) { 2219 ret = 0; 2220 goto out_put_dnode; 2221 } 2222 2223 dic = f2fs_alloc_dic(cc); 2224 if (IS_ERR(dic)) { 2225 ret = PTR_ERR(dic); 2226 goto out_put_dnode; 2227 } 2228 2229 for (i = 0; i < cc->nr_cpages; i++) { 2230 struct page *page = dic->cpages[i]; 2231 block_t blkaddr; 2232 struct bio_post_read_ctx *ctx; 2233 2234 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2235 dn.ofs_in_node + i + 1) : 2236 ei.blk + i; 2237 2238 f2fs_wait_on_block_writeback(inode, blkaddr); 2239 2240 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2241 if (atomic_dec_and_test(&dic->remaining_pages)) 2242 f2fs_decompress_cluster(dic, true); 2243 continue; 2244 } 2245 2246 if (bio && (!page_is_mergeable(sbi, bio, 2247 *last_block_in_bio, blkaddr) || 2248 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2249 submit_and_realloc: 2250 __submit_bio(sbi, bio, DATA); 2251 bio = NULL; 2252 } 2253 2254 if (!bio) { 2255 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2256 is_readahead ? REQ_RAHEAD : 0, 2257 page->index, for_write); 2258 if (IS_ERR(bio)) { 2259 ret = PTR_ERR(bio); 2260 f2fs_decompress_end_io(dic, ret, true); 2261 f2fs_put_dnode(&dn); 2262 *bio_ret = NULL; 2263 return ret; 2264 } 2265 } 2266 2267 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2268 goto submit_and_realloc; 2269 2270 ctx = get_post_read_ctx(bio); 2271 ctx->enabled_steps |= STEP_DECOMPRESS; 2272 refcount_inc(&dic->refcnt); 2273 2274 inc_page_count(sbi, F2FS_RD_DATA); 2275 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2276 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2277 ClearPageError(page); 2278 *last_block_in_bio = blkaddr; 2279 } 2280 2281 if (from_dnode) 2282 f2fs_put_dnode(&dn); 2283 2284 *bio_ret = bio; 2285 return 0; 2286 2287 out_put_dnode: 2288 if (from_dnode) 2289 f2fs_put_dnode(&dn); 2290 out: 2291 for (i = 0; i < cc->cluster_size; i++) { 2292 if (cc->rpages[i]) { 2293 ClearPageUptodate(cc->rpages[i]); 2294 ClearPageError(cc->rpages[i]); 2295 unlock_page(cc->rpages[i]); 2296 } 2297 } 2298 *bio_ret = bio; 2299 return ret; 2300 } 2301 #endif 2302 2303 /* 2304 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2305 * Major change was from block_size == page_size in f2fs by default. 2306 */ 2307 static int f2fs_mpage_readpages(struct inode *inode, 2308 struct readahead_control *rac, struct page *page) 2309 { 2310 struct bio *bio = NULL; 2311 sector_t last_block_in_bio = 0; 2312 struct f2fs_map_blocks map; 2313 #ifdef CONFIG_F2FS_FS_COMPRESSION 2314 struct compress_ctx cc = { 2315 .inode = inode, 2316 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2317 .cluster_size = F2FS_I(inode)->i_cluster_size, 2318 .cluster_idx = NULL_CLUSTER, 2319 .rpages = NULL, 2320 .cpages = NULL, 2321 .nr_rpages = 0, 2322 .nr_cpages = 0, 2323 }; 2324 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2325 #endif 2326 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2327 unsigned max_nr_pages = nr_pages; 2328 int ret = 0; 2329 2330 map.m_pblk = 0; 2331 map.m_lblk = 0; 2332 map.m_len = 0; 2333 map.m_flags = 0; 2334 map.m_next_pgofs = NULL; 2335 map.m_next_extent = NULL; 2336 map.m_seg_type = NO_CHECK_TYPE; 2337 map.m_may_create = false; 2338 2339 for (; nr_pages; nr_pages--) { 2340 if (rac) { 2341 page = readahead_page(rac); 2342 prefetchw(&page->flags); 2343 } 2344 2345 #ifdef CONFIG_F2FS_FS_COMPRESSION 2346 if (f2fs_compressed_file(inode)) { 2347 /* there are remained comressed pages, submit them */ 2348 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2349 ret = f2fs_read_multi_pages(&cc, &bio, 2350 max_nr_pages, 2351 &last_block_in_bio, 2352 rac != NULL, false); 2353 f2fs_destroy_compress_ctx(&cc, false); 2354 if (ret) 2355 goto set_error_page; 2356 } 2357 if (cc.cluster_idx == NULL_CLUSTER) { 2358 if (nc_cluster_idx == 2359 page->index >> cc.log_cluster_size) { 2360 goto read_single_page; 2361 } 2362 2363 ret = f2fs_is_compressed_cluster(inode, page->index); 2364 if (ret < 0) 2365 goto set_error_page; 2366 else if (!ret) { 2367 nc_cluster_idx = 2368 page->index >> cc.log_cluster_size; 2369 goto read_single_page; 2370 } 2371 2372 nc_cluster_idx = NULL_CLUSTER; 2373 } 2374 ret = f2fs_init_compress_ctx(&cc); 2375 if (ret) 2376 goto set_error_page; 2377 2378 f2fs_compress_ctx_add_page(&cc, page); 2379 2380 goto next_page; 2381 } 2382 read_single_page: 2383 #endif 2384 2385 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2386 &bio, &last_block_in_bio, rac); 2387 if (ret) { 2388 #ifdef CONFIG_F2FS_FS_COMPRESSION 2389 set_error_page: 2390 #endif 2391 SetPageError(page); 2392 zero_user_segment(page, 0, PAGE_SIZE); 2393 unlock_page(page); 2394 } 2395 #ifdef CONFIG_F2FS_FS_COMPRESSION 2396 next_page: 2397 #endif 2398 if (rac) 2399 put_page(page); 2400 2401 #ifdef CONFIG_F2FS_FS_COMPRESSION 2402 if (f2fs_compressed_file(inode)) { 2403 /* last page */ 2404 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2405 ret = f2fs_read_multi_pages(&cc, &bio, 2406 max_nr_pages, 2407 &last_block_in_bio, 2408 rac != NULL, false); 2409 f2fs_destroy_compress_ctx(&cc, false); 2410 } 2411 } 2412 #endif 2413 } 2414 if (bio) 2415 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2416 return ret; 2417 } 2418 2419 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2420 { 2421 struct page *page = &folio->page; 2422 struct inode *inode = page_file_mapping(page)->host; 2423 int ret = -EAGAIN; 2424 2425 trace_f2fs_readpage(page, DATA); 2426 2427 if (!f2fs_is_compress_backend_ready(inode)) { 2428 unlock_page(page); 2429 return -EOPNOTSUPP; 2430 } 2431 2432 /* If the file has inline data, try to read it directly */ 2433 if (f2fs_has_inline_data(inode)) 2434 ret = f2fs_read_inline_data(inode, page); 2435 if (ret == -EAGAIN) 2436 ret = f2fs_mpage_readpages(inode, NULL, page); 2437 return ret; 2438 } 2439 2440 static void f2fs_readahead(struct readahead_control *rac) 2441 { 2442 struct inode *inode = rac->mapping->host; 2443 2444 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2445 2446 if (!f2fs_is_compress_backend_ready(inode)) 2447 return; 2448 2449 /* If the file has inline data, skip readahead */ 2450 if (f2fs_has_inline_data(inode)) 2451 return; 2452 2453 f2fs_mpage_readpages(inode, rac, NULL); 2454 } 2455 2456 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2457 { 2458 struct inode *inode = fio->page->mapping->host; 2459 struct page *mpage, *page; 2460 gfp_t gfp_flags = GFP_NOFS; 2461 2462 if (!f2fs_encrypted_file(inode)) 2463 return 0; 2464 2465 page = fio->compressed_page ? fio->compressed_page : fio->page; 2466 2467 /* wait for GCed page writeback via META_MAPPING */ 2468 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2469 2470 if (fscrypt_inode_uses_inline_crypto(inode)) 2471 return 0; 2472 2473 retry_encrypt: 2474 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2475 PAGE_SIZE, 0, gfp_flags); 2476 if (IS_ERR(fio->encrypted_page)) { 2477 /* flush pending IOs and wait for a while in the ENOMEM case */ 2478 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2479 f2fs_flush_merged_writes(fio->sbi); 2480 memalloc_retry_wait(GFP_NOFS); 2481 gfp_flags |= __GFP_NOFAIL; 2482 goto retry_encrypt; 2483 } 2484 return PTR_ERR(fio->encrypted_page); 2485 } 2486 2487 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2488 if (mpage) { 2489 if (PageUptodate(mpage)) 2490 memcpy(page_address(mpage), 2491 page_address(fio->encrypted_page), PAGE_SIZE); 2492 f2fs_put_page(mpage, 1); 2493 } 2494 return 0; 2495 } 2496 2497 static inline bool check_inplace_update_policy(struct inode *inode, 2498 struct f2fs_io_info *fio) 2499 { 2500 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2501 unsigned int policy = SM_I(sbi)->ipu_policy; 2502 2503 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) && 2504 is_inode_flag_set(inode, FI_OPU_WRITE)) 2505 return false; 2506 if (policy & (0x1 << F2FS_IPU_FORCE)) 2507 return true; 2508 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2509 return true; 2510 if (policy & (0x1 << F2FS_IPU_UTIL) && 2511 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2512 return true; 2513 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2514 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2515 return true; 2516 2517 /* 2518 * IPU for rewrite async pages 2519 */ 2520 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2521 fio && fio->op == REQ_OP_WRITE && 2522 !(fio->op_flags & REQ_SYNC) && 2523 !IS_ENCRYPTED(inode)) 2524 return true; 2525 2526 /* this is only set during fdatasync */ 2527 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2528 is_inode_flag_set(inode, FI_NEED_IPU)) 2529 return true; 2530 2531 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2532 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2533 return true; 2534 2535 return false; 2536 } 2537 2538 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2539 { 2540 /* swap file is migrating in aligned write mode */ 2541 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2542 return false; 2543 2544 if (f2fs_is_pinned_file(inode)) 2545 return true; 2546 2547 /* if this is cold file, we should overwrite to avoid fragmentation */ 2548 if (file_is_cold(inode)) 2549 return true; 2550 2551 return check_inplace_update_policy(inode, fio); 2552 } 2553 2554 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2555 { 2556 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2557 2558 /* The below cases were checked when setting it. */ 2559 if (f2fs_is_pinned_file(inode)) 2560 return false; 2561 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2562 return true; 2563 if (f2fs_lfs_mode(sbi)) 2564 return true; 2565 if (S_ISDIR(inode->i_mode)) 2566 return true; 2567 if (IS_NOQUOTA(inode)) 2568 return true; 2569 if (f2fs_is_atomic_file(inode)) 2570 return true; 2571 2572 /* swap file is migrating in aligned write mode */ 2573 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2574 return true; 2575 2576 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2577 return true; 2578 2579 if (fio) { 2580 if (page_private_gcing(fio->page)) 2581 return true; 2582 if (page_private_dummy(fio->page)) 2583 return true; 2584 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2585 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2586 return true; 2587 } 2588 return false; 2589 } 2590 2591 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2592 { 2593 struct inode *inode = fio->page->mapping->host; 2594 2595 if (f2fs_should_update_outplace(inode, fio)) 2596 return false; 2597 2598 return f2fs_should_update_inplace(inode, fio); 2599 } 2600 2601 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2602 { 2603 struct page *page = fio->page; 2604 struct inode *inode = page->mapping->host; 2605 struct dnode_of_data dn; 2606 struct extent_info ei = {0, }; 2607 struct node_info ni; 2608 bool ipu_force = false; 2609 int err = 0; 2610 2611 /* Use COW inode to make dnode_of_data for atomic write */ 2612 if (f2fs_is_atomic_file(inode)) 2613 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2614 else 2615 set_new_dnode(&dn, inode, NULL, NULL, 0); 2616 2617 if (need_inplace_update(fio) && 2618 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2619 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2620 2621 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2622 DATA_GENERIC_ENHANCE)) 2623 return -EFSCORRUPTED; 2624 2625 ipu_force = true; 2626 fio->need_lock = LOCK_DONE; 2627 goto got_it; 2628 } 2629 2630 /* Deadlock due to between page->lock and f2fs_lock_op */ 2631 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2632 return -EAGAIN; 2633 2634 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2635 if (err) 2636 goto out; 2637 2638 fio->old_blkaddr = dn.data_blkaddr; 2639 2640 /* This page is already truncated */ 2641 if (fio->old_blkaddr == NULL_ADDR) { 2642 ClearPageUptodate(page); 2643 clear_page_private_gcing(page); 2644 goto out_writepage; 2645 } 2646 got_it: 2647 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2648 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2649 DATA_GENERIC_ENHANCE)) { 2650 err = -EFSCORRUPTED; 2651 goto out_writepage; 2652 } 2653 2654 /* 2655 * If current allocation needs SSR, 2656 * it had better in-place writes for updated data. 2657 */ 2658 if (ipu_force || 2659 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2660 need_inplace_update(fio))) { 2661 err = f2fs_encrypt_one_page(fio); 2662 if (err) 2663 goto out_writepage; 2664 2665 set_page_writeback(page); 2666 ClearPageError(page); 2667 f2fs_put_dnode(&dn); 2668 if (fio->need_lock == LOCK_REQ) 2669 f2fs_unlock_op(fio->sbi); 2670 err = f2fs_inplace_write_data(fio); 2671 if (err) { 2672 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2673 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2674 if (PageWriteback(page)) 2675 end_page_writeback(page); 2676 } else { 2677 set_inode_flag(inode, FI_UPDATE_WRITE); 2678 } 2679 trace_f2fs_do_write_data_page(fio->page, IPU); 2680 return err; 2681 } 2682 2683 if (fio->need_lock == LOCK_RETRY) { 2684 if (!f2fs_trylock_op(fio->sbi)) { 2685 err = -EAGAIN; 2686 goto out_writepage; 2687 } 2688 fio->need_lock = LOCK_REQ; 2689 } 2690 2691 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2692 if (err) 2693 goto out_writepage; 2694 2695 fio->version = ni.version; 2696 2697 err = f2fs_encrypt_one_page(fio); 2698 if (err) 2699 goto out_writepage; 2700 2701 set_page_writeback(page); 2702 ClearPageError(page); 2703 2704 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2705 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2706 2707 /* LFS mode write path */ 2708 f2fs_outplace_write_data(&dn, fio); 2709 trace_f2fs_do_write_data_page(page, OPU); 2710 set_inode_flag(inode, FI_APPEND_WRITE); 2711 if (page->index == 0) 2712 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2713 out_writepage: 2714 f2fs_put_dnode(&dn); 2715 out: 2716 if (fio->need_lock == LOCK_REQ) 2717 f2fs_unlock_op(fio->sbi); 2718 return err; 2719 } 2720 2721 int f2fs_write_single_data_page(struct page *page, int *submitted, 2722 struct bio **bio, 2723 sector_t *last_block, 2724 struct writeback_control *wbc, 2725 enum iostat_type io_type, 2726 int compr_blocks, 2727 bool allow_balance) 2728 { 2729 struct inode *inode = page->mapping->host; 2730 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2731 loff_t i_size = i_size_read(inode); 2732 const pgoff_t end_index = ((unsigned long long)i_size) 2733 >> PAGE_SHIFT; 2734 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2735 unsigned offset = 0; 2736 bool need_balance_fs = false; 2737 int err = 0; 2738 struct f2fs_io_info fio = { 2739 .sbi = sbi, 2740 .ino = inode->i_ino, 2741 .type = DATA, 2742 .op = REQ_OP_WRITE, 2743 .op_flags = wbc_to_write_flags(wbc), 2744 .old_blkaddr = NULL_ADDR, 2745 .page = page, 2746 .encrypted_page = NULL, 2747 .submitted = false, 2748 .compr_blocks = compr_blocks, 2749 .need_lock = LOCK_RETRY, 2750 .post_read = f2fs_post_read_required(inode), 2751 .io_type = io_type, 2752 .io_wbc = wbc, 2753 .bio = bio, 2754 .last_block = last_block, 2755 }; 2756 2757 trace_f2fs_writepage(page, DATA); 2758 2759 /* we should bypass data pages to proceed the kworkder jobs */ 2760 if (unlikely(f2fs_cp_error(sbi))) { 2761 mapping_set_error(page->mapping, -EIO); 2762 /* 2763 * don't drop any dirty dentry pages for keeping lastest 2764 * directory structure. 2765 */ 2766 if (S_ISDIR(inode->i_mode)) 2767 goto redirty_out; 2768 goto out; 2769 } 2770 2771 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2772 goto redirty_out; 2773 2774 if (page->index < end_index || 2775 f2fs_verity_in_progress(inode) || 2776 compr_blocks) 2777 goto write; 2778 2779 /* 2780 * If the offset is out-of-range of file size, 2781 * this page does not have to be written to disk. 2782 */ 2783 offset = i_size & (PAGE_SIZE - 1); 2784 if ((page->index >= end_index + 1) || !offset) 2785 goto out; 2786 2787 zero_user_segment(page, offset, PAGE_SIZE); 2788 write: 2789 if (f2fs_is_drop_cache(inode)) 2790 goto out; 2791 2792 /* Dentry/quota blocks are controlled by checkpoint */ 2793 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2794 /* 2795 * We need to wait for node_write to avoid block allocation during 2796 * checkpoint. This can only happen to quota writes which can cause 2797 * the below discard race condition. 2798 */ 2799 if (IS_NOQUOTA(inode)) 2800 f2fs_down_read(&sbi->node_write); 2801 2802 fio.need_lock = LOCK_DONE; 2803 err = f2fs_do_write_data_page(&fio); 2804 2805 if (IS_NOQUOTA(inode)) 2806 f2fs_up_read(&sbi->node_write); 2807 2808 goto done; 2809 } 2810 2811 if (!wbc->for_reclaim) 2812 need_balance_fs = true; 2813 else if (has_not_enough_free_secs(sbi, 0, 0)) 2814 goto redirty_out; 2815 else 2816 set_inode_flag(inode, FI_HOT_DATA); 2817 2818 err = -EAGAIN; 2819 if (f2fs_has_inline_data(inode)) { 2820 err = f2fs_write_inline_data(inode, page); 2821 if (!err) 2822 goto out; 2823 } 2824 2825 if (err == -EAGAIN) { 2826 err = f2fs_do_write_data_page(&fio); 2827 if (err == -EAGAIN) { 2828 fio.need_lock = LOCK_REQ; 2829 err = f2fs_do_write_data_page(&fio); 2830 } 2831 } 2832 2833 if (err) { 2834 file_set_keep_isize(inode); 2835 } else { 2836 spin_lock(&F2FS_I(inode)->i_size_lock); 2837 if (F2FS_I(inode)->last_disk_size < psize) 2838 F2FS_I(inode)->last_disk_size = psize; 2839 spin_unlock(&F2FS_I(inode)->i_size_lock); 2840 } 2841 2842 done: 2843 if (err && err != -ENOENT) 2844 goto redirty_out; 2845 2846 out: 2847 inode_dec_dirty_pages(inode); 2848 if (err) { 2849 ClearPageUptodate(page); 2850 clear_page_private_gcing(page); 2851 } 2852 2853 if (wbc->for_reclaim) { 2854 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2855 clear_inode_flag(inode, FI_HOT_DATA); 2856 f2fs_remove_dirty_inode(inode); 2857 submitted = NULL; 2858 } 2859 unlock_page(page); 2860 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2861 !F2FS_I(inode)->cp_task && allow_balance) 2862 f2fs_balance_fs(sbi, need_balance_fs); 2863 2864 if (unlikely(f2fs_cp_error(sbi))) { 2865 f2fs_submit_merged_write(sbi, DATA); 2866 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2867 submitted = NULL; 2868 } 2869 2870 if (submitted) 2871 *submitted = fio.submitted ? 1 : 0; 2872 2873 return 0; 2874 2875 redirty_out: 2876 redirty_page_for_writepage(wbc, page); 2877 /* 2878 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2879 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2880 * file_write_and_wait_range() will see EIO error, which is critical 2881 * to return value of fsync() followed by atomic_write failure to user. 2882 */ 2883 if (!err || wbc->for_reclaim) 2884 return AOP_WRITEPAGE_ACTIVATE; 2885 unlock_page(page); 2886 return err; 2887 } 2888 2889 static int f2fs_write_data_page(struct page *page, 2890 struct writeback_control *wbc) 2891 { 2892 #ifdef CONFIG_F2FS_FS_COMPRESSION 2893 struct inode *inode = page->mapping->host; 2894 2895 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2896 goto out; 2897 2898 if (f2fs_compressed_file(inode)) { 2899 if (f2fs_is_compressed_cluster(inode, page->index)) { 2900 redirty_page_for_writepage(wbc, page); 2901 return AOP_WRITEPAGE_ACTIVATE; 2902 } 2903 } 2904 out: 2905 #endif 2906 2907 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2908 wbc, FS_DATA_IO, 0, true); 2909 } 2910 2911 /* 2912 * This function was copied from write_cche_pages from mm/page-writeback.c. 2913 * The major change is making write step of cold data page separately from 2914 * warm/hot data page. 2915 */ 2916 static int f2fs_write_cache_pages(struct address_space *mapping, 2917 struct writeback_control *wbc, 2918 enum iostat_type io_type) 2919 { 2920 int ret = 0; 2921 int done = 0, retry = 0; 2922 struct page *pages[F2FS_ONSTACK_PAGES]; 2923 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2924 struct bio *bio = NULL; 2925 sector_t last_block; 2926 #ifdef CONFIG_F2FS_FS_COMPRESSION 2927 struct inode *inode = mapping->host; 2928 struct compress_ctx cc = { 2929 .inode = inode, 2930 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2931 .cluster_size = F2FS_I(inode)->i_cluster_size, 2932 .cluster_idx = NULL_CLUSTER, 2933 .rpages = NULL, 2934 .nr_rpages = 0, 2935 .cpages = NULL, 2936 .valid_nr_cpages = 0, 2937 .rbuf = NULL, 2938 .cbuf = NULL, 2939 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2940 .private = NULL, 2941 }; 2942 #endif 2943 int nr_pages; 2944 pgoff_t index; 2945 pgoff_t end; /* Inclusive */ 2946 pgoff_t done_index; 2947 int range_whole = 0; 2948 xa_mark_t tag; 2949 int nwritten = 0; 2950 int submitted = 0; 2951 int i; 2952 2953 if (get_dirty_pages(mapping->host) <= 2954 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2955 set_inode_flag(mapping->host, FI_HOT_DATA); 2956 else 2957 clear_inode_flag(mapping->host, FI_HOT_DATA); 2958 2959 if (wbc->range_cyclic) { 2960 index = mapping->writeback_index; /* prev offset */ 2961 end = -1; 2962 } else { 2963 index = wbc->range_start >> PAGE_SHIFT; 2964 end = wbc->range_end >> PAGE_SHIFT; 2965 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2966 range_whole = 1; 2967 } 2968 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2969 tag = PAGECACHE_TAG_TOWRITE; 2970 else 2971 tag = PAGECACHE_TAG_DIRTY; 2972 retry: 2973 retry = 0; 2974 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2975 tag_pages_for_writeback(mapping, index, end); 2976 done_index = index; 2977 while (!done && !retry && (index <= end)) { 2978 nr_pages = find_get_pages_range_tag(mapping, &index, end, 2979 tag, F2FS_ONSTACK_PAGES, pages); 2980 if (nr_pages == 0) 2981 break; 2982 2983 for (i = 0; i < nr_pages; i++) { 2984 struct page *page = pages[i]; 2985 bool need_readd; 2986 readd: 2987 need_readd = false; 2988 #ifdef CONFIG_F2FS_FS_COMPRESSION 2989 if (f2fs_compressed_file(inode)) { 2990 void *fsdata = NULL; 2991 struct page *pagep; 2992 int ret2; 2993 2994 ret = f2fs_init_compress_ctx(&cc); 2995 if (ret) { 2996 done = 1; 2997 break; 2998 } 2999 3000 if (!f2fs_cluster_can_merge_page(&cc, 3001 page->index)) { 3002 ret = f2fs_write_multi_pages(&cc, 3003 &submitted, wbc, io_type); 3004 if (!ret) 3005 need_readd = true; 3006 goto result; 3007 } 3008 3009 if (unlikely(f2fs_cp_error(sbi))) 3010 goto lock_page; 3011 3012 if (!f2fs_cluster_is_empty(&cc)) 3013 goto lock_page; 3014 3015 if (f2fs_all_cluster_page_ready(&cc, 3016 pages, i, nr_pages, true)) 3017 goto lock_page; 3018 3019 ret2 = f2fs_prepare_compress_overwrite( 3020 inode, &pagep, 3021 page->index, &fsdata); 3022 if (ret2 < 0) { 3023 ret = ret2; 3024 done = 1; 3025 break; 3026 } else if (ret2 && 3027 (!f2fs_compress_write_end(inode, 3028 fsdata, page->index, 1) || 3029 !f2fs_all_cluster_page_ready(&cc, 3030 pages, i, nr_pages, false))) { 3031 retry = 1; 3032 break; 3033 } 3034 } 3035 #endif 3036 /* give a priority to WB_SYNC threads */ 3037 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3038 wbc->sync_mode == WB_SYNC_NONE) { 3039 done = 1; 3040 break; 3041 } 3042 #ifdef CONFIG_F2FS_FS_COMPRESSION 3043 lock_page: 3044 #endif 3045 done_index = page->index; 3046 retry_write: 3047 lock_page(page); 3048 3049 if (unlikely(page->mapping != mapping)) { 3050 continue_unlock: 3051 unlock_page(page); 3052 continue; 3053 } 3054 3055 if (!PageDirty(page)) { 3056 /* someone wrote it for us */ 3057 goto continue_unlock; 3058 } 3059 3060 if (PageWriteback(page)) { 3061 if (wbc->sync_mode != WB_SYNC_NONE) 3062 f2fs_wait_on_page_writeback(page, 3063 DATA, true, true); 3064 else 3065 goto continue_unlock; 3066 } 3067 3068 if (!clear_page_dirty_for_io(page)) 3069 goto continue_unlock; 3070 3071 #ifdef CONFIG_F2FS_FS_COMPRESSION 3072 if (f2fs_compressed_file(inode)) { 3073 get_page(page); 3074 f2fs_compress_ctx_add_page(&cc, page); 3075 continue; 3076 } 3077 #endif 3078 ret = f2fs_write_single_data_page(page, &submitted, 3079 &bio, &last_block, wbc, io_type, 3080 0, true); 3081 if (ret == AOP_WRITEPAGE_ACTIVATE) 3082 unlock_page(page); 3083 #ifdef CONFIG_F2FS_FS_COMPRESSION 3084 result: 3085 #endif 3086 nwritten += submitted; 3087 wbc->nr_to_write -= submitted; 3088 3089 if (unlikely(ret)) { 3090 /* 3091 * keep nr_to_write, since vfs uses this to 3092 * get # of written pages. 3093 */ 3094 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3095 ret = 0; 3096 goto next; 3097 } else if (ret == -EAGAIN) { 3098 ret = 0; 3099 if (wbc->sync_mode == WB_SYNC_ALL) { 3100 f2fs_io_schedule_timeout( 3101 DEFAULT_IO_TIMEOUT); 3102 goto retry_write; 3103 } 3104 goto next; 3105 } 3106 done_index = page->index + 1; 3107 done = 1; 3108 break; 3109 } 3110 3111 if (wbc->nr_to_write <= 0 && 3112 wbc->sync_mode == WB_SYNC_NONE) { 3113 done = 1; 3114 break; 3115 } 3116 next: 3117 if (need_readd) 3118 goto readd; 3119 } 3120 release_pages(pages, nr_pages); 3121 cond_resched(); 3122 } 3123 #ifdef CONFIG_F2FS_FS_COMPRESSION 3124 /* flush remained pages in compress cluster */ 3125 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3126 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3127 nwritten += submitted; 3128 wbc->nr_to_write -= submitted; 3129 if (ret) { 3130 done = 1; 3131 retry = 0; 3132 } 3133 } 3134 if (f2fs_compressed_file(inode)) 3135 f2fs_destroy_compress_ctx(&cc, false); 3136 #endif 3137 if (retry) { 3138 index = 0; 3139 end = -1; 3140 goto retry; 3141 } 3142 if (wbc->range_cyclic && !done) 3143 done_index = 0; 3144 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3145 mapping->writeback_index = done_index; 3146 3147 if (nwritten) 3148 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3149 NULL, 0, DATA); 3150 /* submit cached bio of IPU write */ 3151 if (bio) 3152 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3153 3154 return ret; 3155 } 3156 3157 static inline bool __should_serialize_io(struct inode *inode, 3158 struct writeback_control *wbc) 3159 { 3160 /* to avoid deadlock in path of data flush */ 3161 if (F2FS_I(inode)->cp_task) 3162 return false; 3163 3164 if (!S_ISREG(inode->i_mode)) 3165 return false; 3166 if (IS_NOQUOTA(inode)) 3167 return false; 3168 3169 if (f2fs_need_compress_data(inode)) 3170 return true; 3171 if (wbc->sync_mode != WB_SYNC_ALL) 3172 return true; 3173 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3174 return true; 3175 return false; 3176 } 3177 3178 static int __f2fs_write_data_pages(struct address_space *mapping, 3179 struct writeback_control *wbc, 3180 enum iostat_type io_type) 3181 { 3182 struct inode *inode = mapping->host; 3183 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3184 struct blk_plug plug; 3185 int ret; 3186 bool locked = false; 3187 3188 /* deal with chardevs and other special file */ 3189 if (!mapping->a_ops->writepage) 3190 return 0; 3191 3192 /* skip writing if there is no dirty page in this inode */ 3193 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3194 return 0; 3195 3196 /* during POR, we don't need to trigger writepage at all. */ 3197 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3198 goto skip_write; 3199 3200 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3201 wbc->sync_mode == WB_SYNC_NONE && 3202 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3203 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3204 goto skip_write; 3205 3206 /* skip writing in file defragment preparing stage */ 3207 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3208 goto skip_write; 3209 3210 trace_f2fs_writepages(mapping->host, wbc, DATA); 3211 3212 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3213 if (wbc->sync_mode == WB_SYNC_ALL) 3214 atomic_inc(&sbi->wb_sync_req[DATA]); 3215 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3216 /* to avoid potential deadlock */ 3217 if (current->plug) 3218 blk_finish_plug(current->plug); 3219 goto skip_write; 3220 } 3221 3222 if (__should_serialize_io(inode, wbc)) { 3223 mutex_lock(&sbi->writepages); 3224 locked = true; 3225 } 3226 3227 blk_start_plug(&plug); 3228 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3229 blk_finish_plug(&plug); 3230 3231 if (locked) 3232 mutex_unlock(&sbi->writepages); 3233 3234 if (wbc->sync_mode == WB_SYNC_ALL) 3235 atomic_dec(&sbi->wb_sync_req[DATA]); 3236 /* 3237 * if some pages were truncated, we cannot guarantee its mapping->host 3238 * to detect pending bios. 3239 */ 3240 3241 f2fs_remove_dirty_inode(inode); 3242 return ret; 3243 3244 skip_write: 3245 wbc->pages_skipped += get_dirty_pages(inode); 3246 trace_f2fs_writepages(mapping->host, wbc, DATA); 3247 return 0; 3248 } 3249 3250 static int f2fs_write_data_pages(struct address_space *mapping, 3251 struct writeback_control *wbc) 3252 { 3253 struct inode *inode = mapping->host; 3254 3255 return __f2fs_write_data_pages(mapping, wbc, 3256 F2FS_I(inode)->cp_task == current ? 3257 FS_CP_DATA_IO : FS_DATA_IO); 3258 } 3259 3260 void f2fs_write_failed(struct inode *inode, loff_t to) 3261 { 3262 loff_t i_size = i_size_read(inode); 3263 3264 if (IS_NOQUOTA(inode)) 3265 return; 3266 3267 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3268 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3269 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3270 filemap_invalidate_lock(inode->i_mapping); 3271 3272 truncate_pagecache(inode, i_size); 3273 f2fs_truncate_blocks(inode, i_size, true); 3274 3275 filemap_invalidate_unlock(inode->i_mapping); 3276 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3277 } 3278 } 3279 3280 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3281 struct page *page, loff_t pos, unsigned len, 3282 block_t *blk_addr, bool *node_changed) 3283 { 3284 struct inode *inode = page->mapping->host; 3285 pgoff_t index = page->index; 3286 struct dnode_of_data dn; 3287 struct page *ipage; 3288 bool locked = false; 3289 struct extent_info ei = {0, }; 3290 int err = 0; 3291 int flag; 3292 3293 /* 3294 * If a whole page is being written and we already preallocated all the 3295 * blocks, then there is no need to get a block address now. 3296 */ 3297 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3298 return 0; 3299 3300 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3301 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3302 flag = F2FS_GET_BLOCK_DEFAULT; 3303 else 3304 flag = F2FS_GET_BLOCK_PRE_AIO; 3305 3306 if (f2fs_has_inline_data(inode) || 3307 (pos & PAGE_MASK) >= i_size_read(inode)) { 3308 f2fs_do_map_lock(sbi, flag, true); 3309 locked = true; 3310 } 3311 3312 restart: 3313 /* check inline_data */ 3314 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3315 if (IS_ERR(ipage)) { 3316 err = PTR_ERR(ipage); 3317 goto unlock_out; 3318 } 3319 3320 set_new_dnode(&dn, inode, ipage, ipage, 0); 3321 3322 if (f2fs_has_inline_data(inode)) { 3323 if (pos + len <= MAX_INLINE_DATA(inode)) { 3324 f2fs_do_read_inline_data(page, ipage); 3325 set_inode_flag(inode, FI_DATA_EXIST); 3326 if (inode->i_nlink) 3327 set_page_private_inline(ipage); 3328 } else { 3329 err = f2fs_convert_inline_page(&dn, page); 3330 if (err) 3331 goto out; 3332 if (dn.data_blkaddr == NULL_ADDR) 3333 err = f2fs_get_block(&dn, index); 3334 } 3335 } else if (locked) { 3336 err = f2fs_get_block(&dn, index); 3337 } else { 3338 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3339 dn.data_blkaddr = ei.blk + index - ei.fofs; 3340 } else { 3341 /* hole case */ 3342 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3343 if (err || dn.data_blkaddr == NULL_ADDR) { 3344 f2fs_put_dnode(&dn); 3345 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3346 true); 3347 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3348 locked = true; 3349 goto restart; 3350 } 3351 } 3352 } 3353 3354 /* convert_inline_page can make node_changed */ 3355 *blk_addr = dn.data_blkaddr; 3356 *node_changed = dn.node_changed; 3357 out: 3358 f2fs_put_dnode(&dn); 3359 unlock_out: 3360 if (locked) 3361 f2fs_do_map_lock(sbi, flag, false); 3362 return err; 3363 } 3364 3365 static int __find_data_block(struct inode *inode, pgoff_t index, 3366 block_t *blk_addr) 3367 { 3368 struct dnode_of_data dn; 3369 struct page *ipage; 3370 struct extent_info ei = {0, }; 3371 int err = 0; 3372 3373 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 3374 if (IS_ERR(ipage)) 3375 return PTR_ERR(ipage); 3376 3377 set_new_dnode(&dn, inode, ipage, ipage, 0); 3378 3379 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3380 dn.data_blkaddr = ei.blk + index - ei.fofs; 3381 } else { 3382 /* hole case */ 3383 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3384 if (err) { 3385 dn.data_blkaddr = NULL_ADDR; 3386 err = 0; 3387 } 3388 } 3389 *blk_addr = dn.data_blkaddr; 3390 f2fs_put_dnode(&dn); 3391 return err; 3392 } 3393 3394 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3395 block_t *blk_addr, bool *node_changed) 3396 { 3397 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3398 struct dnode_of_data dn; 3399 struct page *ipage; 3400 int err = 0; 3401 3402 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 3403 3404 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3405 if (IS_ERR(ipage)) { 3406 err = PTR_ERR(ipage); 3407 goto unlock_out; 3408 } 3409 set_new_dnode(&dn, inode, ipage, ipage, 0); 3410 3411 err = f2fs_get_block(&dn, index); 3412 3413 *blk_addr = dn.data_blkaddr; 3414 *node_changed = dn.node_changed; 3415 f2fs_put_dnode(&dn); 3416 3417 unlock_out: 3418 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 3419 return err; 3420 } 3421 3422 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3423 struct page *page, loff_t pos, unsigned int len, 3424 block_t *blk_addr, bool *node_changed) 3425 { 3426 struct inode *inode = page->mapping->host; 3427 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3428 pgoff_t index = page->index; 3429 int err = 0; 3430 block_t ori_blk_addr = NULL_ADDR; 3431 3432 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3433 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3434 goto reserve_block; 3435 3436 /* Look for the block in COW inode first */ 3437 err = __find_data_block(cow_inode, index, blk_addr); 3438 if (err) 3439 return err; 3440 else if (*blk_addr != NULL_ADDR) 3441 return 0; 3442 3443 /* Look for the block in the original inode */ 3444 err = __find_data_block(inode, index, &ori_blk_addr); 3445 if (err) 3446 return err; 3447 3448 reserve_block: 3449 /* Finally, we should reserve a new block in COW inode for the update */ 3450 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3451 if (err) 3452 return err; 3453 inc_atomic_write_cnt(inode); 3454 3455 if (ori_blk_addr != NULL_ADDR) 3456 *blk_addr = ori_blk_addr; 3457 return 0; 3458 } 3459 3460 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3461 loff_t pos, unsigned len, struct page **pagep, void **fsdata) 3462 { 3463 struct inode *inode = mapping->host; 3464 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3465 struct page *page = NULL; 3466 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3467 bool need_balance = false; 3468 block_t blkaddr = NULL_ADDR; 3469 int err = 0; 3470 3471 trace_f2fs_write_begin(inode, pos, len); 3472 3473 if (!f2fs_is_checkpoint_ready(sbi)) { 3474 err = -ENOSPC; 3475 goto fail; 3476 } 3477 3478 /* 3479 * We should check this at this moment to avoid deadlock on inode page 3480 * and #0 page. The locking rule for inline_data conversion should be: 3481 * lock_page(page #0) -> lock_page(inode_page) 3482 */ 3483 if (index != 0) { 3484 err = f2fs_convert_inline_inode(inode); 3485 if (err) 3486 goto fail; 3487 } 3488 3489 #ifdef CONFIG_F2FS_FS_COMPRESSION 3490 if (f2fs_compressed_file(inode)) { 3491 int ret; 3492 3493 *fsdata = NULL; 3494 3495 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3496 goto repeat; 3497 3498 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3499 index, fsdata); 3500 if (ret < 0) { 3501 err = ret; 3502 goto fail; 3503 } else if (ret) { 3504 return 0; 3505 } 3506 } 3507 #endif 3508 3509 repeat: 3510 /* 3511 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3512 * wait_for_stable_page. Will wait that below with our IO control. 3513 */ 3514 page = f2fs_pagecache_get_page(mapping, index, 3515 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3516 if (!page) { 3517 err = -ENOMEM; 3518 goto fail; 3519 } 3520 3521 /* TODO: cluster can be compressed due to race with .writepage */ 3522 3523 *pagep = page; 3524 3525 if (f2fs_is_atomic_file(inode)) 3526 err = prepare_atomic_write_begin(sbi, page, pos, len, 3527 &blkaddr, &need_balance); 3528 else 3529 err = prepare_write_begin(sbi, page, pos, len, 3530 &blkaddr, &need_balance); 3531 if (err) 3532 goto fail; 3533 3534 if (need_balance && !IS_NOQUOTA(inode) && 3535 has_not_enough_free_secs(sbi, 0, 0)) { 3536 unlock_page(page); 3537 f2fs_balance_fs(sbi, true); 3538 lock_page(page); 3539 if (page->mapping != mapping) { 3540 /* The page got truncated from under us */ 3541 f2fs_put_page(page, 1); 3542 goto repeat; 3543 } 3544 } 3545 3546 f2fs_wait_on_page_writeback(page, DATA, false, true); 3547 3548 if (len == PAGE_SIZE || PageUptodate(page)) 3549 return 0; 3550 3551 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3552 !f2fs_verity_in_progress(inode)) { 3553 zero_user_segment(page, len, PAGE_SIZE); 3554 return 0; 3555 } 3556 3557 if (blkaddr == NEW_ADDR) { 3558 zero_user_segment(page, 0, PAGE_SIZE); 3559 SetPageUptodate(page); 3560 } else { 3561 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3562 DATA_GENERIC_ENHANCE_READ)) { 3563 err = -EFSCORRUPTED; 3564 goto fail; 3565 } 3566 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3567 if (err) 3568 goto fail; 3569 3570 lock_page(page); 3571 if (unlikely(page->mapping != mapping)) { 3572 f2fs_put_page(page, 1); 3573 goto repeat; 3574 } 3575 if (unlikely(!PageUptodate(page))) { 3576 err = -EIO; 3577 goto fail; 3578 } 3579 } 3580 return 0; 3581 3582 fail: 3583 f2fs_put_page(page, 1); 3584 f2fs_write_failed(inode, pos + len); 3585 return err; 3586 } 3587 3588 static int f2fs_write_end(struct file *file, 3589 struct address_space *mapping, 3590 loff_t pos, unsigned len, unsigned copied, 3591 struct page *page, void *fsdata) 3592 { 3593 struct inode *inode = page->mapping->host; 3594 3595 trace_f2fs_write_end(inode, pos, len, copied); 3596 3597 /* 3598 * This should be come from len == PAGE_SIZE, and we expect copied 3599 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3600 * let generic_perform_write() try to copy data again through copied=0. 3601 */ 3602 if (!PageUptodate(page)) { 3603 if (unlikely(copied != len)) 3604 copied = 0; 3605 else 3606 SetPageUptodate(page); 3607 } 3608 3609 #ifdef CONFIG_F2FS_FS_COMPRESSION 3610 /* overwrite compressed file */ 3611 if (f2fs_compressed_file(inode) && fsdata) { 3612 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3613 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3614 3615 if (pos + copied > i_size_read(inode) && 3616 !f2fs_verity_in_progress(inode)) 3617 f2fs_i_size_write(inode, pos + copied); 3618 return copied; 3619 } 3620 #endif 3621 3622 if (!copied) 3623 goto unlock_out; 3624 3625 set_page_dirty(page); 3626 3627 if (pos + copied > i_size_read(inode) && 3628 !f2fs_verity_in_progress(inode)) { 3629 f2fs_i_size_write(inode, pos + copied); 3630 if (f2fs_is_atomic_file(inode)) 3631 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3632 pos + copied); 3633 } 3634 unlock_out: 3635 f2fs_put_page(page, 1); 3636 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3637 return copied; 3638 } 3639 3640 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3641 { 3642 struct inode *inode = folio->mapping->host; 3643 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3644 3645 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3646 (offset || length != folio_size(folio))) 3647 return; 3648 3649 if (folio_test_dirty(folio)) { 3650 if (inode->i_ino == F2FS_META_INO(sbi)) { 3651 dec_page_count(sbi, F2FS_DIRTY_META); 3652 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3653 dec_page_count(sbi, F2FS_DIRTY_NODES); 3654 } else { 3655 inode_dec_dirty_pages(inode); 3656 f2fs_remove_dirty_inode(inode); 3657 } 3658 } 3659 3660 clear_page_private_gcing(&folio->page); 3661 3662 if (test_opt(sbi, COMPRESS_CACHE) && 3663 inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3664 clear_page_private_data(&folio->page); 3665 3666 folio_detach_private(folio); 3667 } 3668 3669 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3670 { 3671 struct f2fs_sb_info *sbi; 3672 3673 /* If this is dirty folio, keep private data */ 3674 if (folio_test_dirty(folio)) 3675 return false; 3676 3677 sbi = F2FS_M_SB(folio->mapping); 3678 if (test_opt(sbi, COMPRESS_CACHE)) { 3679 struct inode *inode = folio->mapping->host; 3680 3681 if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3682 clear_page_private_data(&folio->page); 3683 } 3684 3685 clear_page_private_gcing(&folio->page); 3686 3687 folio_detach_private(folio); 3688 return true; 3689 } 3690 3691 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3692 struct folio *folio) 3693 { 3694 struct inode *inode = mapping->host; 3695 3696 trace_f2fs_set_page_dirty(&folio->page, DATA); 3697 3698 if (!folio_test_uptodate(folio)) 3699 folio_mark_uptodate(folio); 3700 BUG_ON(folio_test_swapcache(folio)); 3701 3702 if (!folio_test_dirty(folio)) { 3703 filemap_dirty_folio(mapping, folio); 3704 f2fs_update_dirty_folio(inode, folio); 3705 return true; 3706 } 3707 return false; 3708 } 3709 3710 3711 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3712 { 3713 #ifdef CONFIG_F2FS_FS_COMPRESSION 3714 struct dnode_of_data dn; 3715 sector_t start_idx, blknr = 0; 3716 int ret; 3717 3718 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3719 3720 set_new_dnode(&dn, inode, NULL, NULL, 0); 3721 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3722 if (ret) 3723 return 0; 3724 3725 if (dn.data_blkaddr != COMPRESS_ADDR) { 3726 dn.ofs_in_node += block - start_idx; 3727 blknr = f2fs_data_blkaddr(&dn); 3728 if (!__is_valid_data_blkaddr(blknr)) 3729 blknr = 0; 3730 } 3731 3732 f2fs_put_dnode(&dn); 3733 return blknr; 3734 #else 3735 return 0; 3736 #endif 3737 } 3738 3739 3740 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3741 { 3742 struct inode *inode = mapping->host; 3743 sector_t blknr = 0; 3744 3745 if (f2fs_has_inline_data(inode)) 3746 goto out; 3747 3748 /* make sure allocating whole blocks */ 3749 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3750 filemap_write_and_wait(mapping); 3751 3752 /* Block number less than F2FS MAX BLOCKS */ 3753 if (unlikely(block >= max_file_blocks(inode))) 3754 goto out; 3755 3756 if (f2fs_compressed_file(inode)) { 3757 blknr = f2fs_bmap_compress(inode, block); 3758 } else { 3759 struct f2fs_map_blocks map; 3760 3761 memset(&map, 0, sizeof(map)); 3762 map.m_lblk = block; 3763 map.m_len = 1; 3764 map.m_next_pgofs = NULL; 3765 map.m_seg_type = NO_CHECK_TYPE; 3766 3767 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3768 blknr = map.m_pblk; 3769 } 3770 out: 3771 trace_f2fs_bmap(inode, block, blknr); 3772 return blknr; 3773 } 3774 3775 #ifdef CONFIG_SWAP 3776 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3777 unsigned int blkcnt) 3778 { 3779 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3780 unsigned int blkofs; 3781 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3782 unsigned int secidx = start_blk / blk_per_sec; 3783 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3784 int ret = 0; 3785 3786 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3787 filemap_invalidate_lock(inode->i_mapping); 3788 3789 set_inode_flag(inode, FI_ALIGNED_WRITE); 3790 set_inode_flag(inode, FI_OPU_WRITE); 3791 3792 for (; secidx < end_sec; secidx++) { 3793 f2fs_down_write(&sbi->pin_sem); 3794 3795 f2fs_lock_op(sbi); 3796 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3797 f2fs_unlock_op(sbi); 3798 3799 set_inode_flag(inode, FI_SKIP_WRITES); 3800 3801 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3802 struct page *page; 3803 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3804 3805 page = f2fs_get_lock_data_page(inode, blkidx, true); 3806 if (IS_ERR(page)) { 3807 f2fs_up_write(&sbi->pin_sem); 3808 ret = PTR_ERR(page); 3809 goto done; 3810 } 3811 3812 set_page_dirty(page); 3813 f2fs_put_page(page, 1); 3814 } 3815 3816 clear_inode_flag(inode, FI_SKIP_WRITES); 3817 3818 ret = filemap_fdatawrite(inode->i_mapping); 3819 3820 f2fs_up_write(&sbi->pin_sem); 3821 3822 if (ret) 3823 break; 3824 } 3825 3826 done: 3827 clear_inode_flag(inode, FI_SKIP_WRITES); 3828 clear_inode_flag(inode, FI_OPU_WRITE); 3829 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3830 3831 filemap_invalidate_unlock(inode->i_mapping); 3832 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3833 3834 return ret; 3835 } 3836 3837 static int check_swap_activate(struct swap_info_struct *sis, 3838 struct file *swap_file, sector_t *span) 3839 { 3840 struct address_space *mapping = swap_file->f_mapping; 3841 struct inode *inode = mapping->host; 3842 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3843 sector_t cur_lblock; 3844 sector_t last_lblock; 3845 sector_t pblock; 3846 sector_t lowest_pblock = -1; 3847 sector_t highest_pblock = 0; 3848 int nr_extents = 0; 3849 unsigned long nr_pblocks; 3850 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3851 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3852 unsigned int not_aligned = 0; 3853 int ret = 0; 3854 3855 /* 3856 * Map all the blocks into the extent list. This code doesn't try 3857 * to be very smart. 3858 */ 3859 cur_lblock = 0; 3860 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3861 3862 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3863 struct f2fs_map_blocks map; 3864 retry: 3865 cond_resched(); 3866 3867 memset(&map, 0, sizeof(map)); 3868 map.m_lblk = cur_lblock; 3869 map.m_len = last_lblock - cur_lblock; 3870 map.m_next_pgofs = NULL; 3871 map.m_next_extent = NULL; 3872 map.m_seg_type = NO_CHECK_TYPE; 3873 map.m_may_create = false; 3874 3875 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3876 if (ret) 3877 goto out; 3878 3879 /* hole */ 3880 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3881 f2fs_err(sbi, "Swapfile has holes"); 3882 ret = -EINVAL; 3883 goto out; 3884 } 3885 3886 pblock = map.m_pblk; 3887 nr_pblocks = map.m_len; 3888 3889 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 3890 nr_pblocks & sec_blks_mask) { 3891 not_aligned++; 3892 3893 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3894 if (cur_lblock + nr_pblocks > sis->max) 3895 nr_pblocks -= blks_per_sec; 3896 3897 if (!nr_pblocks) { 3898 /* this extent is last one */ 3899 nr_pblocks = map.m_len; 3900 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 3901 goto next; 3902 } 3903 3904 ret = f2fs_migrate_blocks(inode, cur_lblock, 3905 nr_pblocks); 3906 if (ret) 3907 goto out; 3908 goto retry; 3909 } 3910 next: 3911 if (cur_lblock + nr_pblocks >= sis->max) 3912 nr_pblocks = sis->max - cur_lblock; 3913 3914 if (cur_lblock) { /* exclude the header page */ 3915 if (pblock < lowest_pblock) 3916 lowest_pblock = pblock; 3917 if (pblock + nr_pblocks - 1 > highest_pblock) 3918 highest_pblock = pblock + nr_pblocks - 1; 3919 } 3920 3921 /* 3922 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3923 */ 3924 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3925 if (ret < 0) 3926 goto out; 3927 nr_extents += ret; 3928 cur_lblock += nr_pblocks; 3929 } 3930 ret = nr_extents; 3931 *span = 1 + highest_pblock - lowest_pblock; 3932 if (cur_lblock == 0) 3933 cur_lblock = 1; /* force Empty message */ 3934 sis->max = cur_lblock; 3935 sis->pages = cur_lblock - 1; 3936 sis->highest_bit = cur_lblock - 1; 3937 out: 3938 if (not_aligned) 3939 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 3940 not_aligned, blks_per_sec * F2FS_BLKSIZE); 3941 return ret; 3942 } 3943 3944 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3945 sector_t *span) 3946 { 3947 struct inode *inode = file_inode(file); 3948 int ret; 3949 3950 if (!S_ISREG(inode->i_mode)) 3951 return -EINVAL; 3952 3953 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3954 return -EROFS; 3955 3956 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 3957 f2fs_err(F2FS_I_SB(inode), 3958 "Swapfile not supported in LFS mode"); 3959 return -EINVAL; 3960 } 3961 3962 ret = f2fs_convert_inline_inode(inode); 3963 if (ret) 3964 return ret; 3965 3966 if (!f2fs_disable_compressed_file(inode)) 3967 return -EINVAL; 3968 3969 f2fs_precache_extents(inode); 3970 3971 ret = check_swap_activate(sis, file, span); 3972 if (ret < 0) 3973 return ret; 3974 3975 set_inode_flag(inode, FI_PIN_FILE); 3976 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3977 return ret; 3978 } 3979 3980 static void f2fs_swap_deactivate(struct file *file) 3981 { 3982 struct inode *inode = file_inode(file); 3983 3984 clear_inode_flag(inode, FI_PIN_FILE); 3985 } 3986 #else 3987 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3988 sector_t *span) 3989 { 3990 return -EOPNOTSUPP; 3991 } 3992 3993 static void f2fs_swap_deactivate(struct file *file) 3994 { 3995 } 3996 #endif 3997 3998 const struct address_space_operations f2fs_dblock_aops = { 3999 .read_folio = f2fs_read_data_folio, 4000 .readahead = f2fs_readahead, 4001 .writepage = f2fs_write_data_page, 4002 .writepages = f2fs_write_data_pages, 4003 .write_begin = f2fs_write_begin, 4004 .write_end = f2fs_write_end, 4005 .dirty_folio = f2fs_dirty_data_folio, 4006 .migrate_folio = filemap_migrate_folio, 4007 .invalidate_folio = f2fs_invalidate_folio, 4008 .release_folio = f2fs_release_folio, 4009 .direct_IO = noop_direct_IO, 4010 .bmap = f2fs_bmap, 4011 .swap_activate = f2fs_swap_activate, 4012 .swap_deactivate = f2fs_swap_deactivate, 4013 }; 4014 4015 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4016 { 4017 struct address_space *mapping = page_mapping(page); 4018 unsigned long flags; 4019 4020 xa_lock_irqsave(&mapping->i_pages, flags); 4021 __xa_clear_mark(&mapping->i_pages, page_index(page), 4022 PAGECACHE_TAG_DIRTY); 4023 xa_unlock_irqrestore(&mapping->i_pages, flags); 4024 } 4025 4026 int __init f2fs_init_post_read_processing(void) 4027 { 4028 bio_post_read_ctx_cache = 4029 kmem_cache_create("f2fs_bio_post_read_ctx", 4030 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4031 if (!bio_post_read_ctx_cache) 4032 goto fail; 4033 bio_post_read_ctx_pool = 4034 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4035 bio_post_read_ctx_cache); 4036 if (!bio_post_read_ctx_pool) 4037 goto fail_free_cache; 4038 return 0; 4039 4040 fail_free_cache: 4041 kmem_cache_destroy(bio_post_read_ctx_cache); 4042 fail: 4043 return -ENOMEM; 4044 } 4045 4046 void f2fs_destroy_post_read_processing(void) 4047 { 4048 mempool_destroy(bio_post_read_ctx_pool); 4049 kmem_cache_destroy(bio_post_read_ctx_cache); 4050 } 4051 4052 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4053 { 4054 if (!f2fs_sb_has_encrypt(sbi) && 4055 !f2fs_sb_has_verity(sbi) && 4056 !f2fs_sb_has_compression(sbi)) 4057 return 0; 4058 4059 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4060 WQ_UNBOUND | WQ_HIGHPRI, 4061 num_online_cpus()); 4062 if (!sbi->post_read_wq) 4063 return -ENOMEM; 4064 return 0; 4065 } 4066 4067 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4068 { 4069 if (sbi->post_read_wq) 4070 destroy_workqueue(sbi->post_read_wq); 4071 } 4072 4073 int __init f2fs_init_bio_entry_cache(void) 4074 { 4075 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4076 sizeof(struct bio_entry)); 4077 if (!bio_entry_slab) 4078 return -ENOMEM; 4079 return 0; 4080 } 4081 4082 void f2fs_destroy_bio_entry_cache(void) 4083 { 4084 kmem_cache_destroy(bio_entry_slab); 4085 } 4086 4087 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4088 unsigned int flags, struct iomap *iomap, 4089 struct iomap *srcmap) 4090 { 4091 struct f2fs_map_blocks map = {}; 4092 pgoff_t next_pgofs = 0; 4093 int err; 4094 4095 map.m_lblk = bytes_to_blks(inode, offset); 4096 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4097 map.m_next_pgofs = &next_pgofs; 4098 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4099 if (flags & IOMAP_WRITE) 4100 map.m_may_create = true; 4101 4102 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE, 4103 F2FS_GET_BLOCK_DIO); 4104 if (err) 4105 return err; 4106 4107 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4108 4109 /* 4110 * When inline encryption is enabled, sometimes I/O to an encrypted file 4111 * has to be broken up to guarantee DUN contiguity. Handle this by 4112 * limiting the length of the mapping returned. 4113 */ 4114 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4115 4116 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) { 4117 iomap->length = blks_to_bytes(inode, map.m_len); 4118 if (map.m_flags & F2FS_MAP_MAPPED) { 4119 iomap->type = IOMAP_MAPPED; 4120 iomap->flags |= IOMAP_F_MERGED; 4121 } else { 4122 iomap->type = IOMAP_UNWRITTEN; 4123 } 4124 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk))) 4125 return -EINVAL; 4126 4127 iomap->bdev = map.m_bdev; 4128 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4129 } else { 4130 iomap->length = blks_to_bytes(inode, next_pgofs) - 4131 iomap->offset; 4132 iomap->type = IOMAP_HOLE; 4133 iomap->addr = IOMAP_NULL_ADDR; 4134 } 4135 4136 if (map.m_flags & F2FS_MAP_NEW) 4137 iomap->flags |= IOMAP_F_NEW; 4138 if ((inode->i_state & I_DIRTY_DATASYNC) || 4139 offset + length > i_size_read(inode)) 4140 iomap->flags |= IOMAP_F_DIRTY; 4141 4142 return 0; 4143 } 4144 4145 const struct iomap_ops f2fs_iomap_ops = { 4146 .iomap_begin = f2fs_iomap_begin, 4147 }; 4148