1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/backing-dev.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/prefetch.h> 18 #include <linux/uio.h> 19 #include <linux/cleancache.h> 20 #include <linux/sched/signal.h> 21 22 #include "f2fs.h" 23 #include "node.h" 24 #include "segment.h" 25 #include "trace.h" 26 #include <trace/events/f2fs.h> 27 28 #define NUM_PREALLOC_POST_READ_CTXS 128 29 30 static struct kmem_cache *bio_post_read_ctx_cache; 31 static mempool_t *bio_post_read_ctx_pool; 32 33 static bool __is_cp_guaranteed(struct page *page) 34 { 35 struct address_space *mapping = page->mapping; 36 struct inode *inode; 37 struct f2fs_sb_info *sbi; 38 39 if (!mapping) 40 return false; 41 42 inode = mapping->host; 43 sbi = F2FS_I_SB(inode); 44 45 if (inode->i_ino == F2FS_META_INO(sbi) || 46 inode->i_ino == F2FS_NODE_INO(sbi) || 47 S_ISDIR(inode->i_mode) || 48 (S_ISREG(inode->i_mode) && 49 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 50 is_cold_data(page)) 51 return true; 52 return false; 53 } 54 55 static enum count_type __read_io_type(struct page *page) 56 { 57 struct address_space *mapping = page->mapping; 58 59 if (mapping) { 60 struct inode *inode = mapping->host; 61 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 62 63 if (inode->i_ino == F2FS_META_INO(sbi)) 64 return F2FS_RD_META; 65 66 if (inode->i_ino == F2FS_NODE_INO(sbi)) 67 return F2FS_RD_NODE; 68 } 69 return F2FS_RD_DATA; 70 } 71 72 /* postprocessing steps for read bios */ 73 enum bio_post_read_step { 74 STEP_INITIAL = 0, 75 STEP_DECRYPT, 76 }; 77 78 struct bio_post_read_ctx { 79 struct bio *bio; 80 struct work_struct work; 81 unsigned int cur_step; 82 unsigned int enabled_steps; 83 }; 84 85 static void __read_end_io(struct bio *bio) 86 { 87 struct page *page; 88 struct bio_vec *bv; 89 int i; 90 struct bvec_iter_all iter_all; 91 92 bio_for_each_segment_all(bv, bio, i, iter_all) { 93 page = bv->bv_page; 94 95 /* PG_error was set if any post_read step failed */ 96 if (bio->bi_status || PageError(page)) { 97 ClearPageUptodate(page); 98 /* will re-read again later */ 99 ClearPageError(page); 100 } else { 101 SetPageUptodate(page); 102 } 103 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 104 unlock_page(page); 105 } 106 if (bio->bi_private) 107 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 108 bio_put(bio); 109 } 110 111 static void bio_post_read_processing(struct bio_post_read_ctx *ctx); 112 113 static void decrypt_work(struct work_struct *work) 114 { 115 struct bio_post_read_ctx *ctx = 116 container_of(work, struct bio_post_read_ctx, work); 117 118 fscrypt_decrypt_bio(ctx->bio); 119 120 bio_post_read_processing(ctx); 121 } 122 123 static void bio_post_read_processing(struct bio_post_read_ctx *ctx) 124 { 125 switch (++ctx->cur_step) { 126 case STEP_DECRYPT: 127 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) { 128 INIT_WORK(&ctx->work, decrypt_work); 129 fscrypt_enqueue_decrypt_work(&ctx->work); 130 return; 131 } 132 ctx->cur_step++; 133 /* fall-through */ 134 default: 135 __read_end_io(ctx->bio); 136 } 137 } 138 139 static bool f2fs_bio_post_read_required(struct bio *bio) 140 { 141 return bio->bi_private && !bio->bi_status; 142 } 143 144 static void f2fs_read_end_io(struct bio *bio) 145 { 146 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), 147 FAULT_READ_IO)) { 148 f2fs_show_injection_info(FAULT_READ_IO); 149 bio->bi_status = BLK_STS_IOERR; 150 } 151 152 if (f2fs_bio_post_read_required(bio)) { 153 struct bio_post_read_ctx *ctx = bio->bi_private; 154 155 ctx->cur_step = STEP_INITIAL; 156 bio_post_read_processing(ctx); 157 return; 158 } 159 160 __read_end_io(bio); 161 } 162 163 static void f2fs_write_end_io(struct bio *bio) 164 { 165 struct f2fs_sb_info *sbi = bio->bi_private; 166 struct bio_vec *bvec; 167 int i; 168 struct bvec_iter_all iter_all; 169 170 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 171 f2fs_show_injection_info(FAULT_WRITE_IO); 172 bio->bi_status = BLK_STS_IOERR; 173 } 174 175 bio_for_each_segment_all(bvec, bio, i, iter_all) { 176 struct page *page = bvec->bv_page; 177 enum count_type type = WB_DATA_TYPE(page); 178 179 if (IS_DUMMY_WRITTEN_PAGE(page)) { 180 set_page_private(page, (unsigned long)NULL); 181 ClearPagePrivate(page); 182 unlock_page(page); 183 mempool_free(page, sbi->write_io_dummy); 184 185 if (unlikely(bio->bi_status)) 186 f2fs_stop_checkpoint(sbi, true); 187 continue; 188 } 189 190 fscrypt_pullback_bio_page(&page, true); 191 192 if (unlikely(bio->bi_status)) { 193 mapping_set_error(page->mapping, -EIO); 194 if (type == F2FS_WB_CP_DATA) 195 f2fs_stop_checkpoint(sbi, true); 196 } 197 198 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 199 page->index != nid_of_node(page)); 200 201 dec_page_count(sbi, type); 202 if (f2fs_in_warm_node_list(sbi, page)) 203 f2fs_del_fsync_node_entry(sbi, page); 204 clear_cold_data(page); 205 end_page_writeback(page); 206 } 207 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 208 wq_has_sleeper(&sbi->cp_wait)) 209 wake_up(&sbi->cp_wait); 210 211 bio_put(bio); 212 } 213 214 /* 215 * Return true, if pre_bio's bdev is same as its target device. 216 */ 217 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 218 block_t blk_addr, struct bio *bio) 219 { 220 struct block_device *bdev = sbi->sb->s_bdev; 221 int i; 222 223 for (i = 0; i < sbi->s_ndevs; i++) { 224 if (FDEV(i).start_blk <= blk_addr && 225 FDEV(i).end_blk >= blk_addr) { 226 blk_addr -= FDEV(i).start_blk; 227 bdev = FDEV(i).bdev; 228 break; 229 } 230 } 231 if (bio) { 232 bio_set_dev(bio, bdev); 233 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 234 } 235 return bdev; 236 } 237 238 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 239 { 240 int i; 241 242 for (i = 0; i < sbi->s_ndevs; i++) 243 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 244 return i; 245 return 0; 246 } 247 248 static bool __same_bdev(struct f2fs_sb_info *sbi, 249 block_t blk_addr, struct bio *bio) 250 { 251 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 252 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 253 } 254 255 /* 256 * Low-level block read/write IO operations. 257 */ 258 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 259 struct writeback_control *wbc, 260 int npages, bool is_read, 261 enum page_type type, enum temp_type temp) 262 { 263 struct bio *bio; 264 265 bio = f2fs_bio_alloc(sbi, npages, true); 266 267 f2fs_target_device(sbi, blk_addr, bio); 268 if (is_read) { 269 bio->bi_end_io = f2fs_read_end_io; 270 bio->bi_private = NULL; 271 } else { 272 bio->bi_end_io = f2fs_write_end_io; 273 bio->bi_private = sbi; 274 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp); 275 } 276 if (wbc) 277 wbc_init_bio(wbc, bio); 278 279 return bio; 280 } 281 282 static inline void __submit_bio(struct f2fs_sb_info *sbi, 283 struct bio *bio, enum page_type type) 284 { 285 if (!is_read_io(bio_op(bio))) { 286 unsigned int start; 287 288 if (type != DATA && type != NODE) 289 goto submit_io; 290 291 if (test_opt(sbi, LFS) && current->plug) 292 blk_finish_plug(current->plug); 293 294 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 295 start %= F2FS_IO_SIZE(sbi); 296 297 if (start == 0) 298 goto submit_io; 299 300 /* fill dummy pages */ 301 for (; start < F2FS_IO_SIZE(sbi); start++) { 302 struct page *page = 303 mempool_alloc(sbi->write_io_dummy, 304 GFP_NOIO | __GFP_NOFAIL); 305 f2fs_bug_on(sbi, !page); 306 307 zero_user_segment(page, 0, PAGE_SIZE); 308 SetPagePrivate(page); 309 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 310 lock_page(page); 311 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 312 f2fs_bug_on(sbi, 1); 313 } 314 /* 315 * In the NODE case, we lose next block address chain. So, we 316 * need to do checkpoint in f2fs_sync_file. 317 */ 318 if (type == NODE) 319 set_sbi_flag(sbi, SBI_NEED_CP); 320 } 321 submit_io: 322 if (is_read_io(bio_op(bio))) 323 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 324 else 325 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 326 submit_bio(bio); 327 } 328 329 static void __submit_merged_bio(struct f2fs_bio_info *io) 330 { 331 struct f2fs_io_info *fio = &io->fio; 332 333 if (!io->bio) 334 return; 335 336 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 337 338 if (is_read_io(fio->op)) 339 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 340 else 341 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 342 343 __submit_bio(io->sbi, io->bio, fio->type); 344 io->bio = NULL; 345 } 346 347 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode, 348 struct page *page, nid_t ino) 349 { 350 struct bio_vec *bvec; 351 struct page *target; 352 int i; 353 struct bvec_iter_all iter_all; 354 355 if (!io->bio) 356 return false; 357 358 if (!inode && !page && !ino) 359 return true; 360 361 bio_for_each_segment_all(bvec, io->bio, i, iter_all) { 362 363 if (bvec->bv_page->mapping) 364 target = bvec->bv_page; 365 else 366 target = fscrypt_control_page(bvec->bv_page); 367 368 if (inode && inode == target->mapping->host) 369 return true; 370 if (page && page == target) 371 return true; 372 if (ino && ino == ino_of_node(target)) 373 return true; 374 } 375 376 return false; 377 } 378 379 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 380 enum page_type type, enum temp_type temp) 381 { 382 enum page_type btype = PAGE_TYPE_OF_BIO(type); 383 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 384 385 down_write(&io->io_rwsem); 386 387 /* change META to META_FLUSH in the checkpoint procedure */ 388 if (type >= META_FLUSH) { 389 io->fio.type = META_FLUSH; 390 io->fio.op = REQ_OP_WRITE; 391 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 392 if (!test_opt(sbi, NOBARRIER)) 393 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 394 } 395 __submit_merged_bio(io); 396 up_write(&io->io_rwsem); 397 } 398 399 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 400 struct inode *inode, struct page *page, 401 nid_t ino, enum page_type type, bool force) 402 { 403 enum temp_type temp; 404 bool ret = true; 405 406 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 407 if (!force) { 408 enum page_type btype = PAGE_TYPE_OF_BIO(type); 409 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 410 411 down_read(&io->io_rwsem); 412 ret = __has_merged_page(io, inode, page, ino); 413 up_read(&io->io_rwsem); 414 } 415 if (ret) 416 __f2fs_submit_merged_write(sbi, type, temp); 417 418 /* TODO: use HOT temp only for meta pages now. */ 419 if (type >= META) 420 break; 421 } 422 } 423 424 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 425 { 426 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true); 427 } 428 429 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 430 struct inode *inode, struct page *page, 431 nid_t ino, enum page_type type) 432 { 433 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 434 } 435 436 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 437 { 438 f2fs_submit_merged_write(sbi, DATA); 439 f2fs_submit_merged_write(sbi, NODE); 440 f2fs_submit_merged_write(sbi, META); 441 } 442 443 /* 444 * Fill the locked page with data located in the block address. 445 * A caller needs to unlock the page on failure. 446 */ 447 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 448 { 449 struct bio *bio; 450 struct page *page = fio->encrypted_page ? 451 fio->encrypted_page : fio->page; 452 453 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 454 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 455 return -EFAULT; 456 457 trace_f2fs_submit_page_bio(page, fio); 458 f2fs_trace_ios(fio, 0); 459 460 /* Allocate a new bio */ 461 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc, 462 1, is_read_io(fio->op), fio->type, fio->temp); 463 464 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 465 bio_put(bio); 466 return -EFAULT; 467 } 468 469 if (fio->io_wbc && !is_read_io(fio->op)) 470 wbc_account_io(fio->io_wbc, page, PAGE_SIZE); 471 472 bio_set_op_attrs(bio, fio->op, fio->op_flags); 473 474 inc_page_count(fio->sbi, is_read_io(fio->op) ? 475 __read_io_type(page): WB_DATA_TYPE(fio->page)); 476 477 __submit_bio(fio->sbi, bio, fio->type); 478 return 0; 479 } 480 481 void f2fs_submit_page_write(struct f2fs_io_info *fio) 482 { 483 struct f2fs_sb_info *sbi = fio->sbi; 484 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 485 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 486 struct page *bio_page; 487 488 f2fs_bug_on(sbi, is_read_io(fio->op)); 489 490 down_write(&io->io_rwsem); 491 next: 492 if (fio->in_list) { 493 spin_lock(&io->io_lock); 494 if (list_empty(&io->io_list)) { 495 spin_unlock(&io->io_lock); 496 goto out; 497 } 498 fio = list_first_entry(&io->io_list, 499 struct f2fs_io_info, list); 500 list_del(&fio->list); 501 spin_unlock(&io->io_lock); 502 } 503 504 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 505 verify_block_addr(fio, fio->old_blkaddr); 506 verify_block_addr(fio, fio->new_blkaddr); 507 508 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 509 510 /* set submitted = true as a return value */ 511 fio->submitted = true; 512 513 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 514 515 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 516 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 517 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 518 __submit_merged_bio(io); 519 alloc_new: 520 if (io->bio == NULL) { 521 if ((fio->type == DATA || fio->type == NODE) && 522 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 523 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 524 fio->retry = true; 525 goto skip; 526 } 527 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc, 528 BIO_MAX_PAGES, false, 529 fio->type, fio->temp); 530 io->fio = *fio; 531 } 532 533 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 534 __submit_merged_bio(io); 535 goto alloc_new; 536 } 537 538 if (fio->io_wbc) 539 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE); 540 541 io->last_block_in_bio = fio->new_blkaddr; 542 f2fs_trace_ios(fio, 0); 543 544 trace_f2fs_submit_page_write(fio->page, fio); 545 skip: 546 if (fio->in_list) 547 goto next; 548 out: 549 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 550 f2fs_is_checkpoint_ready(sbi)) 551 __submit_merged_bio(io); 552 up_write(&io->io_rwsem); 553 } 554 555 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 556 unsigned nr_pages, unsigned op_flag) 557 { 558 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 559 struct bio *bio; 560 struct bio_post_read_ctx *ctx; 561 unsigned int post_read_steps = 0; 562 563 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) 564 return ERR_PTR(-EFAULT); 565 566 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false); 567 if (!bio) 568 return ERR_PTR(-ENOMEM); 569 f2fs_target_device(sbi, blkaddr, bio); 570 bio->bi_end_io = f2fs_read_end_io; 571 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 572 573 if (f2fs_encrypted_file(inode)) 574 post_read_steps |= 1 << STEP_DECRYPT; 575 if (post_read_steps) { 576 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 577 if (!ctx) { 578 bio_put(bio); 579 return ERR_PTR(-ENOMEM); 580 } 581 ctx->bio = bio; 582 ctx->enabled_steps = post_read_steps; 583 bio->bi_private = ctx; 584 } 585 586 return bio; 587 } 588 589 /* This can handle encryption stuffs */ 590 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 591 block_t blkaddr) 592 { 593 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0); 594 595 if (IS_ERR(bio)) 596 return PTR_ERR(bio); 597 598 /* wait for GCed page writeback via META_MAPPING */ 599 f2fs_wait_on_block_writeback(inode, blkaddr); 600 601 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 602 bio_put(bio); 603 return -EFAULT; 604 } 605 ClearPageError(page); 606 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 607 __submit_bio(F2FS_I_SB(inode), bio, DATA); 608 return 0; 609 } 610 611 static void __set_data_blkaddr(struct dnode_of_data *dn) 612 { 613 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 614 __le32 *addr_array; 615 int base = 0; 616 617 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 618 base = get_extra_isize(dn->inode); 619 620 /* Get physical address of data block */ 621 addr_array = blkaddr_in_node(rn); 622 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 623 } 624 625 /* 626 * Lock ordering for the change of data block address: 627 * ->data_page 628 * ->node_page 629 * update block addresses in the node page 630 */ 631 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 632 { 633 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 634 __set_data_blkaddr(dn); 635 if (set_page_dirty(dn->node_page)) 636 dn->node_changed = true; 637 } 638 639 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 640 { 641 dn->data_blkaddr = blkaddr; 642 f2fs_set_data_blkaddr(dn); 643 f2fs_update_extent_cache(dn); 644 } 645 646 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 647 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 648 { 649 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 650 int err; 651 652 if (!count) 653 return 0; 654 655 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 656 return -EPERM; 657 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 658 return err; 659 660 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 661 dn->ofs_in_node, count); 662 663 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 664 665 for (; count > 0; dn->ofs_in_node++) { 666 block_t blkaddr = datablock_addr(dn->inode, 667 dn->node_page, dn->ofs_in_node); 668 if (blkaddr == NULL_ADDR) { 669 dn->data_blkaddr = NEW_ADDR; 670 __set_data_blkaddr(dn); 671 count--; 672 } 673 } 674 675 if (set_page_dirty(dn->node_page)) 676 dn->node_changed = true; 677 return 0; 678 } 679 680 /* Should keep dn->ofs_in_node unchanged */ 681 int f2fs_reserve_new_block(struct dnode_of_data *dn) 682 { 683 unsigned int ofs_in_node = dn->ofs_in_node; 684 int ret; 685 686 ret = f2fs_reserve_new_blocks(dn, 1); 687 dn->ofs_in_node = ofs_in_node; 688 return ret; 689 } 690 691 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 692 { 693 bool need_put = dn->inode_page ? false : true; 694 int err; 695 696 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 697 if (err) 698 return err; 699 700 if (dn->data_blkaddr == NULL_ADDR) 701 err = f2fs_reserve_new_block(dn); 702 if (err || need_put) 703 f2fs_put_dnode(dn); 704 return err; 705 } 706 707 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 708 { 709 struct extent_info ei = {0,0,0}; 710 struct inode *inode = dn->inode; 711 712 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 713 dn->data_blkaddr = ei.blk + index - ei.fofs; 714 return 0; 715 } 716 717 return f2fs_reserve_block(dn, index); 718 } 719 720 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 721 int op_flags, bool for_write) 722 { 723 struct address_space *mapping = inode->i_mapping; 724 struct dnode_of_data dn; 725 struct page *page; 726 struct extent_info ei = {0,0,0}; 727 int err; 728 729 page = f2fs_grab_cache_page(mapping, index, for_write); 730 if (!page) 731 return ERR_PTR(-ENOMEM); 732 733 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 734 dn.data_blkaddr = ei.blk + index - ei.fofs; 735 goto got_it; 736 } 737 738 set_new_dnode(&dn, inode, NULL, NULL, 0); 739 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 740 if (err) 741 goto put_err; 742 f2fs_put_dnode(&dn); 743 744 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 745 err = -ENOENT; 746 goto put_err; 747 } 748 got_it: 749 if (PageUptodate(page)) { 750 unlock_page(page); 751 return page; 752 } 753 754 /* 755 * A new dentry page is allocated but not able to be written, since its 756 * new inode page couldn't be allocated due to -ENOSPC. 757 * In such the case, its blkaddr can be remained as NEW_ADDR. 758 * see, f2fs_add_link -> f2fs_get_new_data_page -> 759 * f2fs_init_inode_metadata. 760 */ 761 if (dn.data_blkaddr == NEW_ADDR) { 762 zero_user_segment(page, 0, PAGE_SIZE); 763 if (!PageUptodate(page)) 764 SetPageUptodate(page); 765 unlock_page(page); 766 return page; 767 } 768 769 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr); 770 if (err) 771 goto put_err; 772 return page; 773 774 put_err: 775 f2fs_put_page(page, 1); 776 return ERR_PTR(err); 777 } 778 779 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 780 { 781 struct address_space *mapping = inode->i_mapping; 782 struct page *page; 783 784 page = find_get_page(mapping, index); 785 if (page && PageUptodate(page)) 786 return page; 787 f2fs_put_page(page, 0); 788 789 page = f2fs_get_read_data_page(inode, index, 0, false); 790 if (IS_ERR(page)) 791 return page; 792 793 if (PageUptodate(page)) 794 return page; 795 796 wait_on_page_locked(page); 797 if (unlikely(!PageUptodate(page))) { 798 f2fs_put_page(page, 0); 799 return ERR_PTR(-EIO); 800 } 801 return page; 802 } 803 804 /* 805 * If it tries to access a hole, return an error. 806 * Because, the callers, functions in dir.c and GC, should be able to know 807 * whether this page exists or not. 808 */ 809 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 810 bool for_write) 811 { 812 struct address_space *mapping = inode->i_mapping; 813 struct page *page; 814 repeat: 815 page = f2fs_get_read_data_page(inode, index, 0, for_write); 816 if (IS_ERR(page)) 817 return page; 818 819 /* wait for read completion */ 820 lock_page(page); 821 if (unlikely(page->mapping != mapping)) { 822 f2fs_put_page(page, 1); 823 goto repeat; 824 } 825 if (unlikely(!PageUptodate(page))) { 826 f2fs_put_page(page, 1); 827 return ERR_PTR(-EIO); 828 } 829 return page; 830 } 831 832 /* 833 * Caller ensures that this data page is never allocated. 834 * A new zero-filled data page is allocated in the page cache. 835 * 836 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 837 * f2fs_unlock_op(). 838 * Note that, ipage is set only by make_empty_dir, and if any error occur, 839 * ipage should be released by this function. 840 */ 841 struct page *f2fs_get_new_data_page(struct inode *inode, 842 struct page *ipage, pgoff_t index, bool new_i_size) 843 { 844 struct address_space *mapping = inode->i_mapping; 845 struct page *page; 846 struct dnode_of_data dn; 847 int err; 848 849 page = f2fs_grab_cache_page(mapping, index, true); 850 if (!page) { 851 /* 852 * before exiting, we should make sure ipage will be released 853 * if any error occur. 854 */ 855 f2fs_put_page(ipage, 1); 856 return ERR_PTR(-ENOMEM); 857 } 858 859 set_new_dnode(&dn, inode, ipage, NULL, 0); 860 err = f2fs_reserve_block(&dn, index); 861 if (err) { 862 f2fs_put_page(page, 1); 863 return ERR_PTR(err); 864 } 865 if (!ipage) 866 f2fs_put_dnode(&dn); 867 868 if (PageUptodate(page)) 869 goto got_it; 870 871 if (dn.data_blkaddr == NEW_ADDR) { 872 zero_user_segment(page, 0, PAGE_SIZE); 873 if (!PageUptodate(page)) 874 SetPageUptodate(page); 875 } else { 876 f2fs_put_page(page, 1); 877 878 /* if ipage exists, blkaddr should be NEW_ADDR */ 879 f2fs_bug_on(F2FS_I_SB(inode), ipage); 880 page = f2fs_get_lock_data_page(inode, index, true); 881 if (IS_ERR(page)) 882 return page; 883 } 884 got_it: 885 if (new_i_size && i_size_read(inode) < 886 ((loff_t)(index + 1) << PAGE_SHIFT)) 887 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 888 return page; 889 } 890 891 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 892 { 893 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 894 struct f2fs_summary sum; 895 struct node_info ni; 896 block_t old_blkaddr; 897 blkcnt_t count = 1; 898 int err; 899 900 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 901 return -EPERM; 902 903 err = f2fs_get_node_info(sbi, dn->nid, &ni); 904 if (err) 905 return err; 906 907 dn->data_blkaddr = datablock_addr(dn->inode, 908 dn->node_page, dn->ofs_in_node); 909 if (dn->data_blkaddr != NULL_ADDR) 910 goto alloc; 911 912 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 913 return err; 914 915 alloc: 916 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 917 old_blkaddr = dn->data_blkaddr; 918 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 919 &sum, seg_type, NULL, false); 920 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 921 invalidate_mapping_pages(META_MAPPING(sbi), 922 old_blkaddr, old_blkaddr); 923 f2fs_set_data_blkaddr(dn); 924 925 /* 926 * i_size will be updated by direct_IO. Otherwise, we'll get stale 927 * data from unwritten block via dio_read. 928 */ 929 return 0; 930 } 931 932 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 933 { 934 struct inode *inode = file_inode(iocb->ki_filp); 935 struct f2fs_map_blocks map; 936 int flag; 937 int err = 0; 938 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 939 940 /* convert inline data for Direct I/O*/ 941 if (direct_io) { 942 err = f2fs_convert_inline_inode(inode); 943 if (err) 944 return err; 945 } 946 947 if (direct_io && allow_outplace_dio(inode, iocb, from)) 948 return 0; 949 950 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 951 return 0; 952 953 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 954 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 955 if (map.m_len > map.m_lblk) 956 map.m_len -= map.m_lblk; 957 else 958 map.m_len = 0; 959 960 map.m_next_pgofs = NULL; 961 map.m_next_extent = NULL; 962 map.m_seg_type = NO_CHECK_TYPE; 963 map.m_may_create = true; 964 965 if (direct_io) { 966 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 967 flag = f2fs_force_buffered_io(inode, iocb, from) ? 968 F2FS_GET_BLOCK_PRE_AIO : 969 F2FS_GET_BLOCK_PRE_DIO; 970 goto map_blocks; 971 } 972 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 973 err = f2fs_convert_inline_inode(inode); 974 if (err) 975 return err; 976 } 977 if (f2fs_has_inline_data(inode)) 978 return err; 979 980 flag = F2FS_GET_BLOCK_PRE_AIO; 981 982 map_blocks: 983 err = f2fs_map_blocks(inode, &map, 1, flag); 984 if (map.m_len > 0 && err == -ENOSPC) { 985 if (!direct_io) 986 set_inode_flag(inode, FI_NO_PREALLOC); 987 err = 0; 988 } 989 return err; 990 } 991 992 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 993 { 994 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 995 if (lock) 996 down_read(&sbi->node_change); 997 else 998 up_read(&sbi->node_change); 999 } else { 1000 if (lock) 1001 f2fs_lock_op(sbi); 1002 else 1003 f2fs_unlock_op(sbi); 1004 } 1005 } 1006 1007 /* 1008 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 1009 * f2fs_map_blocks structure. 1010 * If original data blocks are allocated, then give them to blockdev. 1011 * Otherwise, 1012 * a. preallocate requested block addresses 1013 * b. do not use extent cache for better performance 1014 * c. give the block addresses to blockdev 1015 */ 1016 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1017 int create, int flag) 1018 { 1019 unsigned int maxblocks = map->m_len; 1020 struct dnode_of_data dn; 1021 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1022 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1023 pgoff_t pgofs, end_offset, end; 1024 int err = 0, ofs = 1; 1025 unsigned int ofs_in_node, last_ofs_in_node; 1026 blkcnt_t prealloc; 1027 struct extent_info ei = {0,0,0}; 1028 block_t blkaddr; 1029 unsigned int start_pgofs; 1030 1031 if (!maxblocks) 1032 return 0; 1033 1034 map->m_len = 0; 1035 map->m_flags = 0; 1036 1037 /* it only supports block size == page size */ 1038 pgofs = (pgoff_t)map->m_lblk; 1039 end = pgofs + maxblocks; 1040 1041 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1042 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO && 1043 map->m_may_create) 1044 goto next_dnode; 1045 1046 map->m_pblk = ei.blk + pgofs - ei.fofs; 1047 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1048 map->m_flags = F2FS_MAP_MAPPED; 1049 if (map->m_next_extent) 1050 *map->m_next_extent = pgofs + map->m_len; 1051 1052 /* for hardware encryption, but to avoid potential issue in future */ 1053 if (flag == F2FS_GET_BLOCK_DIO) 1054 f2fs_wait_on_block_writeback_range(inode, 1055 map->m_pblk, map->m_len); 1056 goto out; 1057 } 1058 1059 next_dnode: 1060 if (map->m_may_create) 1061 __do_map_lock(sbi, flag, true); 1062 1063 /* When reading holes, we need its node page */ 1064 set_new_dnode(&dn, inode, NULL, NULL, 0); 1065 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1066 if (err) { 1067 if (flag == F2FS_GET_BLOCK_BMAP) 1068 map->m_pblk = 0; 1069 if (err == -ENOENT) { 1070 err = 0; 1071 if (map->m_next_pgofs) 1072 *map->m_next_pgofs = 1073 f2fs_get_next_page_offset(&dn, pgofs); 1074 if (map->m_next_extent) 1075 *map->m_next_extent = 1076 f2fs_get_next_page_offset(&dn, pgofs); 1077 } 1078 goto unlock_out; 1079 } 1080 1081 start_pgofs = pgofs; 1082 prealloc = 0; 1083 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1084 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1085 1086 next_block: 1087 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 1088 1089 if (__is_valid_data_blkaddr(blkaddr) && 1090 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 1091 err = -EFAULT; 1092 goto sync_out; 1093 } 1094 1095 if (is_valid_data_blkaddr(sbi, blkaddr)) { 1096 /* use out-place-update for driect IO under LFS mode */ 1097 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO && 1098 map->m_may_create) { 1099 err = __allocate_data_block(&dn, map->m_seg_type); 1100 if (!err) { 1101 blkaddr = dn.data_blkaddr; 1102 set_inode_flag(inode, FI_APPEND_WRITE); 1103 } 1104 } 1105 } else { 1106 if (create) { 1107 if (unlikely(f2fs_cp_error(sbi))) { 1108 err = -EIO; 1109 goto sync_out; 1110 } 1111 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1112 if (blkaddr == NULL_ADDR) { 1113 prealloc++; 1114 last_ofs_in_node = dn.ofs_in_node; 1115 } 1116 } else { 1117 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1118 flag != F2FS_GET_BLOCK_DIO); 1119 err = __allocate_data_block(&dn, 1120 map->m_seg_type); 1121 if (!err) 1122 set_inode_flag(inode, FI_APPEND_WRITE); 1123 } 1124 if (err) 1125 goto sync_out; 1126 map->m_flags |= F2FS_MAP_NEW; 1127 blkaddr = dn.data_blkaddr; 1128 } else { 1129 if (flag == F2FS_GET_BLOCK_BMAP) { 1130 map->m_pblk = 0; 1131 goto sync_out; 1132 } 1133 if (flag == F2FS_GET_BLOCK_PRECACHE) 1134 goto sync_out; 1135 if (flag == F2FS_GET_BLOCK_FIEMAP && 1136 blkaddr == NULL_ADDR) { 1137 if (map->m_next_pgofs) 1138 *map->m_next_pgofs = pgofs + 1; 1139 goto sync_out; 1140 } 1141 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1142 /* for defragment case */ 1143 if (map->m_next_pgofs) 1144 *map->m_next_pgofs = pgofs + 1; 1145 goto sync_out; 1146 } 1147 } 1148 } 1149 1150 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1151 goto skip; 1152 1153 if (map->m_len == 0) { 1154 /* preallocated unwritten block should be mapped for fiemap. */ 1155 if (blkaddr == NEW_ADDR) 1156 map->m_flags |= F2FS_MAP_UNWRITTEN; 1157 map->m_flags |= F2FS_MAP_MAPPED; 1158 1159 map->m_pblk = blkaddr; 1160 map->m_len = 1; 1161 } else if ((map->m_pblk != NEW_ADDR && 1162 blkaddr == (map->m_pblk + ofs)) || 1163 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1164 flag == F2FS_GET_BLOCK_PRE_DIO) { 1165 ofs++; 1166 map->m_len++; 1167 } else { 1168 goto sync_out; 1169 } 1170 1171 skip: 1172 dn.ofs_in_node++; 1173 pgofs++; 1174 1175 /* preallocate blocks in batch for one dnode page */ 1176 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1177 (pgofs == end || dn.ofs_in_node == end_offset)) { 1178 1179 dn.ofs_in_node = ofs_in_node; 1180 err = f2fs_reserve_new_blocks(&dn, prealloc); 1181 if (err) 1182 goto sync_out; 1183 1184 map->m_len += dn.ofs_in_node - ofs_in_node; 1185 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1186 err = -ENOSPC; 1187 goto sync_out; 1188 } 1189 dn.ofs_in_node = end_offset; 1190 } 1191 1192 if (pgofs >= end) 1193 goto sync_out; 1194 else if (dn.ofs_in_node < end_offset) 1195 goto next_block; 1196 1197 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1198 if (map->m_flags & F2FS_MAP_MAPPED) { 1199 unsigned int ofs = start_pgofs - map->m_lblk; 1200 1201 f2fs_update_extent_cache_range(&dn, 1202 start_pgofs, map->m_pblk + ofs, 1203 map->m_len - ofs); 1204 } 1205 } 1206 1207 f2fs_put_dnode(&dn); 1208 1209 if (map->m_may_create) { 1210 __do_map_lock(sbi, flag, false); 1211 f2fs_balance_fs(sbi, dn.node_changed); 1212 } 1213 goto next_dnode; 1214 1215 sync_out: 1216 1217 /* for hardware encryption, but to avoid potential issue in future */ 1218 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) 1219 f2fs_wait_on_block_writeback_range(inode, 1220 map->m_pblk, map->m_len); 1221 1222 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1223 if (map->m_flags & F2FS_MAP_MAPPED) { 1224 unsigned int ofs = start_pgofs - map->m_lblk; 1225 1226 f2fs_update_extent_cache_range(&dn, 1227 start_pgofs, map->m_pblk + ofs, 1228 map->m_len - ofs); 1229 } 1230 if (map->m_next_extent) 1231 *map->m_next_extent = pgofs + 1; 1232 } 1233 f2fs_put_dnode(&dn); 1234 unlock_out: 1235 if (map->m_may_create) { 1236 __do_map_lock(sbi, flag, false); 1237 f2fs_balance_fs(sbi, dn.node_changed); 1238 } 1239 out: 1240 trace_f2fs_map_blocks(inode, map, err); 1241 return err; 1242 } 1243 1244 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1245 { 1246 struct f2fs_map_blocks map; 1247 block_t last_lblk; 1248 int err; 1249 1250 if (pos + len > i_size_read(inode)) 1251 return false; 1252 1253 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1254 map.m_next_pgofs = NULL; 1255 map.m_next_extent = NULL; 1256 map.m_seg_type = NO_CHECK_TYPE; 1257 map.m_may_create = false; 1258 last_lblk = F2FS_BLK_ALIGN(pos + len); 1259 1260 while (map.m_lblk < last_lblk) { 1261 map.m_len = last_lblk - map.m_lblk; 1262 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1263 if (err || map.m_len == 0) 1264 return false; 1265 map.m_lblk += map.m_len; 1266 } 1267 return true; 1268 } 1269 1270 static int __get_data_block(struct inode *inode, sector_t iblock, 1271 struct buffer_head *bh, int create, int flag, 1272 pgoff_t *next_pgofs, int seg_type, bool may_write) 1273 { 1274 struct f2fs_map_blocks map; 1275 int err; 1276 1277 map.m_lblk = iblock; 1278 map.m_len = bh->b_size >> inode->i_blkbits; 1279 map.m_next_pgofs = next_pgofs; 1280 map.m_next_extent = NULL; 1281 map.m_seg_type = seg_type; 1282 map.m_may_create = may_write; 1283 1284 err = f2fs_map_blocks(inode, &map, create, flag); 1285 if (!err) { 1286 map_bh(bh, inode->i_sb, map.m_pblk); 1287 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1288 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1289 } 1290 return err; 1291 } 1292 1293 static int get_data_block(struct inode *inode, sector_t iblock, 1294 struct buffer_head *bh_result, int create, int flag, 1295 pgoff_t *next_pgofs) 1296 { 1297 return __get_data_block(inode, iblock, bh_result, create, 1298 flag, next_pgofs, 1299 NO_CHECK_TYPE, create); 1300 } 1301 1302 static int get_data_block_dio_write(struct inode *inode, sector_t iblock, 1303 struct buffer_head *bh_result, int create) 1304 { 1305 return __get_data_block(inode, iblock, bh_result, create, 1306 F2FS_GET_BLOCK_DIO, NULL, 1307 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1308 true); 1309 } 1310 1311 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1312 struct buffer_head *bh_result, int create) 1313 { 1314 return __get_data_block(inode, iblock, bh_result, create, 1315 F2FS_GET_BLOCK_DIO, NULL, 1316 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1317 false); 1318 } 1319 1320 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1321 struct buffer_head *bh_result, int create) 1322 { 1323 /* Block number less than F2FS MAX BLOCKS */ 1324 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1325 return -EFBIG; 1326 1327 return __get_data_block(inode, iblock, bh_result, create, 1328 F2FS_GET_BLOCK_BMAP, NULL, 1329 NO_CHECK_TYPE, create); 1330 } 1331 1332 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1333 { 1334 return (offset >> inode->i_blkbits); 1335 } 1336 1337 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1338 { 1339 return (blk << inode->i_blkbits); 1340 } 1341 1342 static int f2fs_xattr_fiemap(struct inode *inode, 1343 struct fiemap_extent_info *fieinfo) 1344 { 1345 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1346 struct page *page; 1347 struct node_info ni; 1348 __u64 phys = 0, len; 1349 __u32 flags; 1350 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1351 int err = 0; 1352 1353 if (f2fs_has_inline_xattr(inode)) { 1354 int offset; 1355 1356 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1357 inode->i_ino, false); 1358 if (!page) 1359 return -ENOMEM; 1360 1361 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1362 if (err) { 1363 f2fs_put_page(page, 1); 1364 return err; 1365 } 1366 1367 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1368 offset = offsetof(struct f2fs_inode, i_addr) + 1369 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1370 get_inline_xattr_addrs(inode)); 1371 1372 phys += offset; 1373 len = inline_xattr_size(inode); 1374 1375 f2fs_put_page(page, 1); 1376 1377 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1378 1379 if (!xnid) 1380 flags |= FIEMAP_EXTENT_LAST; 1381 1382 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1383 if (err || err == 1) 1384 return err; 1385 } 1386 1387 if (xnid) { 1388 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1389 if (!page) 1390 return -ENOMEM; 1391 1392 err = f2fs_get_node_info(sbi, xnid, &ni); 1393 if (err) { 1394 f2fs_put_page(page, 1); 1395 return err; 1396 } 1397 1398 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1399 len = inode->i_sb->s_blocksize; 1400 1401 f2fs_put_page(page, 1); 1402 1403 flags = FIEMAP_EXTENT_LAST; 1404 } 1405 1406 if (phys) 1407 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1408 1409 return (err < 0 ? err : 0); 1410 } 1411 1412 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1413 u64 start, u64 len) 1414 { 1415 struct buffer_head map_bh; 1416 sector_t start_blk, last_blk; 1417 pgoff_t next_pgofs; 1418 u64 logical = 0, phys = 0, size = 0; 1419 u32 flags = 0; 1420 int ret = 0; 1421 1422 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1423 ret = f2fs_precache_extents(inode); 1424 if (ret) 1425 return ret; 1426 } 1427 1428 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR); 1429 if (ret) 1430 return ret; 1431 1432 inode_lock(inode); 1433 1434 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1435 ret = f2fs_xattr_fiemap(inode, fieinfo); 1436 goto out; 1437 } 1438 1439 if (f2fs_has_inline_data(inode)) { 1440 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1441 if (ret != -EAGAIN) 1442 goto out; 1443 } 1444 1445 if (logical_to_blk(inode, len) == 0) 1446 len = blk_to_logical(inode, 1); 1447 1448 start_blk = logical_to_blk(inode, start); 1449 last_blk = logical_to_blk(inode, start + len - 1); 1450 1451 next: 1452 memset(&map_bh, 0, sizeof(struct buffer_head)); 1453 map_bh.b_size = len; 1454 1455 ret = get_data_block(inode, start_blk, &map_bh, 0, 1456 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1457 if (ret) 1458 goto out; 1459 1460 /* HOLE */ 1461 if (!buffer_mapped(&map_bh)) { 1462 start_blk = next_pgofs; 1463 1464 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1465 F2FS_I_SB(inode)->max_file_blocks)) 1466 goto prep_next; 1467 1468 flags |= FIEMAP_EXTENT_LAST; 1469 } 1470 1471 if (size) { 1472 if (IS_ENCRYPTED(inode)) 1473 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1474 1475 ret = fiemap_fill_next_extent(fieinfo, logical, 1476 phys, size, flags); 1477 } 1478 1479 if (start_blk > last_blk || ret) 1480 goto out; 1481 1482 logical = blk_to_logical(inode, start_blk); 1483 phys = blk_to_logical(inode, map_bh.b_blocknr); 1484 size = map_bh.b_size; 1485 flags = 0; 1486 if (buffer_unwritten(&map_bh)) 1487 flags = FIEMAP_EXTENT_UNWRITTEN; 1488 1489 start_blk += logical_to_blk(inode, size); 1490 1491 prep_next: 1492 cond_resched(); 1493 if (fatal_signal_pending(current)) 1494 ret = -EINTR; 1495 else 1496 goto next; 1497 out: 1498 if (ret == 1) 1499 ret = 0; 1500 1501 inode_unlock(inode); 1502 return ret; 1503 } 1504 1505 /* 1506 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1507 * Major change was from block_size == page_size in f2fs by default. 1508 * 1509 * Note that the aops->readpages() function is ONLY used for read-ahead. If 1510 * this function ever deviates from doing just read-ahead, it should either 1511 * use ->readpage() or do the necessary surgery to decouple ->readpages() 1512 * from read-ahead. 1513 */ 1514 static int f2fs_mpage_readpages(struct address_space *mapping, 1515 struct list_head *pages, struct page *page, 1516 unsigned nr_pages, bool is_readahead) 1517 { 1518 struct bio *bio = NULL; 1519 sector_t last_block_in_bio = 0; 1520 struct inode *inode = mapping->host; 1521 const unsigned blkbits = inode->i_blkbits; 1522 const unsigned blocksize = 1 << blkbits; 1523 sector_t block_in_file; 1524 sector_t last_block; 1525 sector_t last_block_in_file; 1526 sector_t block_nr; 1527 struct f2fs_map_blocks map; 1528 1529 map.m_pblk = 0; 1530 map.m_lblk = 0; 1531 map.m_len = 0; 1532 map.m_flags = 0; 1533 map.m_next_pgofs = NULL; 1534 map.m_next_extent = NULL; 1535 map.m_seg_type = NO_CHECK_TYPE; 1536 map.m_may_create = false; 1537 1538 for (; nr_pages; nr_pages--) { 1539 if (pages) { 1540 page = list_last_entry(pages, struct page, lru); 1541 1542 prefetchw(&page->flags); 1543 list_del(&page->lru); 1544 if (add_to_page_cache_lru(page, mapping, 1545 page->index, 1546 readahead_gfp_mask(mapping))) 1547 goto next_page; 1548 } 1549 1550 block_in_file = (sector_t)page->index; 1551 last_block = block_in_file + nr_pages; 1552 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1553 blkbits; 1554 if (last_block > last_block_in_file) 1555 last_block = last_block_in_file; 1556 1557 /* just zeroing out page which is beyond EOF */ 1558 if (block_in_file >= last_block) 1559 goto zero_out; 1560 /* 1561 * Map blocks using the previous result first. 1562 */ 1563 if ((map.m_flags & F2FS_MAP_MAPPED) && 1564 block_in_file > map.m_lblk && 1565 block_in_file < (map.m_lblk + map.m_len)) 1566 goto got_it; 1567 1568 /* 1569 * Then do more f2fs_map_blocks() calls until we are 1570 * done with this page. 1571 */ 1572 map.m_lblk = block_in_file; 1573 map.m_len = last_block - block_in_file; 1574 1575 if (f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT)) 1576 goto set_error_page; 1577 got_it: 1578 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1579 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1580 SetPageMappedToDisk(page); 1581 1582 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1583 SetPageUptodate(page); 1584 goto confused; 1585 } 1586 1587 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 1588 DATA_GENERIC)) 1589 goto set_error_page; 1590 } else { 1591 zero_out: 1592 zero_user_segment(page, 0, PAGE_SIZE); 1593 if (!PageUptodate(page)) 1594 SetPageUptodate(page); 1595 unlock_page(page); 1596 goto next_page; 1597 } 1598 1599 /* 1600 * This page will go to BIO. Do we need to send this 1601 * BIO off first? 1602 */ 1603 if (bio && (last_block_in_bio != block_nr - 1 || 1604 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1605 submit_and_realloc: 1606 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1607 bio = NULL; 1608 } 1609 if (bio == NULL) { 1610 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 1611 is_readahead ? REQ_RAHEAD : 0); 1612 if (IS_ERR(bio)) { 1613 bio = NULL; 1614 goto set_error_page; 1615 } 1616 } 1617 1618 /* 1619 * If the page is under writeback, we need to wait for 1620 * its completion to see the correct decrypted data. 1621 */ 1622 f2fs_wait_on_block_writeback(inode, block_nr); 1623 1624 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1625 goto submit_and_realloc; 1626 1627 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 1628 ClearPageError(page); 1629 last_block_in_bio = block_nr; 1630 goto next_page; 1631 set_error_page: 1632 SetPageError(page); 1633 zero_user_segment(page, 0, PAGE_SIZE); 1634 unlock_page(page); 1635 goto next_page; 1636 confused: 1637 if (bio) { 1638 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1639 bio = NULL; 1640 } 1641 unlock_page(page); 1642 next_page: 1643 if (pages) 1644 put_page(page); 1645 } 1646 BUG_ON(pages && !list_empty(pages)); 1647 if (bio) 1648 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1649 return 0; 1650 } 1651 1652 static int f2fs_read_data_page(struct file *file, struct page *page) 1653 { 1654 struct inode *inode = page->mapping->host; 1655 int ret = -EAGAIN; 1656 1657 trace_f2fs_readpage(page, DATA); 1658 1659 /* If the file has inline data, try to read it directly */ 1660 if (f2fs_has_inline_data(inode)) 1661 ret = f2fs_read_inline_data(inode, page); 1662 if (ret == -EAGAIN) 1663 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false); 1664 return ret; 1665 } 1666 1667 static int f2fs_read_data_pages(struct file *file, 1668 struct address_space *mapping, 1669 struct list_head *pages, unsigned nr_pages) 1670 { 1671 struct inode *inode = mapping->host; 1672 struct page *page = list_last_entry(pages, struct page, lru); 1673 1674 trace_f2fs_readpages(inode, page, nr_pages); 1675 1676 /* If the file has inline data, skip readpages */ 1677 if (f2fs_has_inline_data(inode)) 1678 return 0; 1679 1680 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true); 1681 } 1682 1683 static int encrypt_one_page(struct f2fs_io_info *fio) 1684 { 1685 struct inode *inode = fio->page->mapping->host; 1686 struct page *mpage; 1687 gfp_t gfp_flags = GFP_NOFS; 1688 1689 if (!f2fs_encrypted_file(inode)) 1690 return 0; 1691 1692 /* wait for GCed page writeback via META_MAPPING */ 1693 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 1694 1695 retry_encrypt: 1696 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1697 PAGE_SIZE, 0, fio->page->index, gfp_flags); 1698 if (IS_ERR(fio->encrypted_page)) { 1699 /* flush pending IOs and wait for a while in the ENOMEM case */ 1700 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 1701 f2fs_flush_merged_writes(fio->sbi); 1702 congestion_wait(BLK_RW_ASYNC, HZ/50); 1703 gfp_flags |= __GFP_NOFAIL; 1704 goto retry_encrypt; 1705 } 1706 return PTR_ERR(fio->encrypted_page); 1707 } 1708 1709 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 1710 if (mpage) { 1711 if (PageUptodate(mpage)) 1712 memcpy(page_address(mpage), 1713 page_address(fio->encrypted_page), PAGE_SIZE); 1714 f2fs_put_page(mpage, 1); 1715 } 1716 return 0; 1717 } 1718 1719 static inline bool check_inplace_update_policy(struct inode *inode, 1720 struct f2fs_io_info *fio) 1721 { 1722 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1723 unsigned int policy = SM_I(sbi)->ipu_policy; 1724 1725 if (policy & (0x1 << F2FS_IPU_FORCE)) 1726 return true; 1727 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 1728 return true; 1729 if (policy & (0x1 << F2FS_IPU_UTIL) && 1730 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1731 return true; 1732 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 1733 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1734 return true; 1735 1736 /* 1737 * IPU for rewrite async pages 1738 */ 1739 if (policy & (0x1 << F2FS_IPU_ASYNC) && 1740 fio && fio->op == REQ_OP_WRITE && 1741 !(fio->op_flags & REQ_SYNC) && 1742 !IS_ENCRYPTED(inode)) 1743 return true; 1744 1745 /* this is only set during fdatasync */ 1746 if (policy & (0x1 << F2FS_IPU_FSYNC) && 1747 is_inode_flag_set(inode, FI_NEED_IPU)) 1748 return true; 1749 1750 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1751 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 1752 return true; 1753 1754 return false; 1755 } 1756 1757 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 1758 { 1759 if (f2fs_is_pinned_file(inode)) 1760 return true; 1761 1762 /* if this is cold file, we should overwrite to avoid fragmentation */ 1763 if (file_is_cold(inode)) 1764 return true; 1765 1766 return check_inplace_update_policy(inode, fio); 1767 } 1768 1769 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 1770 { 1771 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1772 1773 if (test_opt(sbi, LFS)) 1774 return true; 1775 if (S_ISDIR(inode->i_mode)) 1776 return true; 1777 if (IS_NOQUOTA(inode)) 1778 return true; 1779 if (f2fs_is_atomic_file(inode)) 1780 return true; 1781 if (fio) { 1782 if (is_cold_data(fio->page)) 1783 return true; 1784 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 1785 return true; 1786 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1787 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 1788 return true; 1789 } 1790 return false; 1791 } 1792 1793 static inline bool need_inplace_update(struct f2fs_io_info *fio) 1794 { 1795 struct inode *inode = fio->page->mapping->host; 1796 1797 if (f2fs_should_update_outplace(inode, fio)) 1798 return false; 1799 1800 return f2fs_should_update_inplace(inode, fio); 1801 } 1802 1803 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 1804 { 1805 struct page *page = fio->page; 1806 struct inode *inode = page->mapping->host; 1807 struct dnode_of_data dn; 1808 struct extent_info ei = {0,0,0}; 1809 struct node_info ni; 1810 bool ipu_force = false; 1811 int err = 0; 1812 1813 set_new_dnode(&dn, inode, NULL, NULL, 0); 1814 if (need_inplace_update(fio) && 1815 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 1816 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 1817 1818 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1819 DATA_GENERIC)) 1820 return -EFAULT; 1821 1822 ipu_force = true; 1823 fio->need_lock = LOCK_DONE; 1824 goto got_it; 1825 } 1826 1827 /* Deadlock due to between page->lock and f2fs_lock_op */ 1828 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 1829 return -EAGAIN; 1830 1831 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1832 if (err) 1833 goto out; 1834 1835 fio->old_blkaddr = dn.data_blkaddr; 1836 1837 /* This page is already truncated */ 1838 if (fio->old_blkaddr == NULL_ADDR) { 1839 ClearPageUptodate(page); 1840 clear_cold_data(page); 1841 goto out_writepage; 1842 } 1843 got_it: 1844 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 1845 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1846 DATA_GENERIC)) { 1847 err = -EFAULT; 1848 goto out_writepage; 1849 } 1850 /* 1851 * If current allocation needs SSR, 1852 * it had better in-place writes for updated data. 1853 */ 1854 if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) && 1855 need_inplace_update(fio))) { 1856 err = encrypt_one_page(fio); 1857 if (err) 1858 goto out_writepage; 1859 1860 set_page_writeback(page); 1861 ClearPageError(page); 1862 f2fs_put_dnode(&dn); 1863 if (fio->need_lock == LOCK_REQ) 1864 f2fs_unlock_op(fio->sbi); 1865 err = f2fs_inplace_write_data(fio); 1866 if (err) { 1867 if (f2fs_encrypted_file(inode)) 1868 fscrypt_pullback_bio_page(&fio->encrypted_page, 1869 true); 1870 if (PageWriteback(page)) 1871 end_page_writeback(page); 1872 } 1873 trace_f2fs_do_write_data_page(fio->page, IPU); 1874 set_inode_flag(inode, FI_UPDATE_WRITE); 1875 return err; 1876 } 1877 1878 if (fio->need_lock == LOCK_RETRY) { 1879 if (!f2fs_trylock_op(fio->sbi)) { 1880 err = -EAGAIN; 1881 goto out_writepage; 1882 } 1883 fio->need_lock = LOCK_REQ; 1884 } 1885 1886 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 1887 if (err) 1888 goto out_writepage; 1889 1890 fio->version = ni.version; 1891 1892 err = encrypt_one_page(fio); 1893 if (err) 1894 goto out_writepage; 1895 1896 set_page_writeback(page); 1897 ClearPageError(page); 1898 1899 /* LFS mode write path */ 1900 f2fs_outplace_write_data(&dn, fio); 1901 trace_f2fs_do_write_data_page(page, OPU); 1902 set_inode_flag(inode, FI_APPEND_WRITE); 1903 if (page->index == 0) 1904 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1905 out_writepage: 1906 f2fs_put_dnode(&dn); 1907 out: 1908 if (fio->need_lock == LOCK_REQ) 1909 f2fs_unlock_op(fio->sbi); 1910 return err; 1911 } 1912 1913 static int __write_data_page(struct page *page, bool *submitted, 1914 struct writeback_control *wbc, 1915 enum iostat_type io_type) 1916 { 1917 struct inode *inode = page->mapping->host; 1918 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1919 loff_t i_size = i_size_read(inode); 1920 const pgoff_t end_index = ((unsigned long long) i_size) 1921 >> PAGE_SHIFT; 1922 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1923 unsigned offset = 0; 1924 bool need_balance_fs = false; 1925 int err = 0; 1926 struct f2fs_io_info fio = { 1927 .sbi = sbi, 1928 .ino = inode->i_ino, 1929 .type = DATA, 1930 .op = REQ_OP_WRITE, 1931 .op_flags = wbc_to_write_flags(wbc), 1932 .old_blkaddr = NULL_ADDR, 1933 .page = page, 1934 .encrypted_page = NULL, 1935 .submitted = false, 1936 .need_lock = LOCK_RETRY, 1937 .io_type = io_type, 1938 .io_wbc = wbc, 1939 }; 1940 1941 trace_f2fs_writepage(page, DATA); 1942 1943 /* we should bypass data pages to proceed the kworkder jobs */ 1944 if (unlikely(f2fs_cp_error(sbi))) { 1945 mapping_set_error(page->mapping, -EIO); 1946 /* 1947 * don't drop any dirty dentry pages for keeping lastest 1948 * directory structure. 1949 */ 1950 if (S_ISDIR(inode->i_mode)) 1951 goto redirty_out; 1952 goto out; 1953 } 1954 1955 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1956 goto redirty_out; 1957 1958 if (page->index < end_index) 1959 goto write; 1960 1961 /* 1962 * If the offset is out-of-range of file size, 1963 * this page does not have to be written to disk. 1964 */ 1965 offset = i_size & (PAGE_SIZE - 1); 1966 if ((page->index >= end_index + 1) || !offset) 1967 goto out; 1968 1969 zero_user_segment(page, offset, PAGE_SIZE); 1970 write: 1971 if (f2fs_is_drop_cache(inode)) 1972 goto out; 1973 /* we should not write 0'th page having journal header */ 1974 if (f2fs_is_volatile_file(inode) && (!page->index || 1975 (!wbc->for_reclaim && 1976 f2fs_available_free_memory(sbi, BASE_CHECK)))) 1977 goto redirty_out; 1978 1979 /* Dentry blocks are controlled by checkpoint */ 1980 if (S_ISDIR(inode->i_mode)) { 1981 fio.need_lock = LOCK_DONE; 1982 err = f2fs_do_write_data_page(&fio); 1983 goto done; 1984 } 1985 1986 if (!wbc->for_reclaim) 1987 need_balance_fs = true; 1988 else if (has_not_enough_free_secs(sbi, 0, 0)) 1989 goto redirty_out; 1990 else 1991 set_inode_flag(inode, FI_HOT_DATA); 1992 1993 err = -EAGAIN; 1994 if (f2fs_has_inline_data(inode)) { 1995 err = f2fs_write_inline_data(inode, page); 1996 if (!err) 1997 goto out; 1998 } 1999 2000 if (err == -EAGAIN) { 2001 err = f2fs_do_write_data_page(&fio); 2002 if (err == -EAGAIN) { 2003 fio.need_lock = LOCK_REQ; 2004 err = f2fs_do_write_data_page(&fio); 2005 } 2006 } 2007 2008 if (err) { 2009 file_set_keep_isize(inode); 2010 } else { 2011 down_write(&F2FS_I(inode)->i_sem); 2012 if (F2FS_I(inode)->last_disk_size < psize) 2013 F2FS_I(inode)->last_disk_size = psize; 2014 up_write(&F2FS_I(inode)->i_sem); 2015 } 2016 2017 done: 2018 if (err && err != -ENOENT) 2019 goto redirty_out; 2020 2021 out: 2022 inode_dec_dirty_pages(inode); 2023 if (err) { 2024 ClearPageUptodate(page); 2025 clear_cold_data(page); 2026 } 2027 2028 if (wbc->for_reclaim) { 2029 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2030 clear_inode_flag(inode, FI_HOT_DATA); 2031 f2fs_remove_dirty_inode(inode); 2032 submitted = NULL; 2033 } 2034 2035 unlock_page(page); 2036 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode)) 2037 f2fs_balance_fs(sbi, need_balance_fs); 2038 2039 if (unlikely(f2fs_cp_error(sbi))) { 2040 f2fs_submit_merged_write(sbi, DATA); 2041 submitted = NULL; 2042 } 2043 2044 if (submitted) 2045 *submitted = fio.submitted; 2046 2047 return 0; 2048 2049 redirty_out: 2050 redirty_page_for_writepage(wbc, page); 2051 /* 2052 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2053 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2054 * file_write_and_wait_range() will see EIO error, which is critical 2055 * to return value of fsync() followed by atomic_write failure to user. 2056 */ 2057 if (!err || wbc->for_reclaim) 2058 return AOP_WRITEPAGE_ACTIVATE; 2059 unlock_page(page); 2060 return err; 2061 } 2062 2063 static int f2fs_write_data_page(struct page *page, 2064 struct writeback_control *wbc) 2065 { 2066 return __write_data_page(page, NULL, wbc, FS_DATA_IO); 2067 } 2068 2069 /* 2070 * This function was copied from write_cche_pages from mm/page-writeback.c. 2071 * The major change is making write step of cold data page separately from 2072 * warm/hot data page. 2073 */ 2074 static int f2fs_write_cache_pages(struct address_space *mapping, 2075 struct writeback_control *wbc, 2076 enum iostat_type io_type) 2077 { 2078 int ret = 0; 2079 int done = 0; 2080 struct pagevec pvec; 2081 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2082 int nr_pages; 2083 pgoff_t uninitialized_var(writeback_index); 2084 pgoff_t index; 2085 pgoff_t end; /* Inclusive */ 2086 pgoff_t done_index; 2087 int cycled; 2088 int range_whole = 0; 2089 xa_mark_t tag; 2090 int nwritten = 0; 2091 2092 pagevec_init(&pvec); 2093 2094 if (get_dirty_pages(mapping->host) <= 2095 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2096 set_inode_flag(mapping->host, FI_HOT_DATA); 2097 else 2098 clear_inode_flag(mapping->host, FI_HOT_DATA); 2099 2100 if (wbc->range_cyclic) { 2101 writeback_index = mapping->writeback_index; /* prev offset */ 2102 index = writeback_index; 2103 if (index == 0) 2104 cycled = 1; 2105 else 2106 cycled = 0; 2107 end = -1; 2108 } else { 2109 index = wbc->range_start >> PAGE_SHIFT; 2110 end = wbc->range_end >> PAGE_SHIFT; 2111 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2112 range_whole = 1; 2113 cycled = 1; /* ignore range_cyclic tests */ 2114 } 2115 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2116 tag = PAGECACHE_TAG_TOWRITE; 2117 else 2118 tag = PAGECACHE_TAG_DIRTY; 2119 retry: 2120 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2121 tag_pages_for_writeback(mapping, index, end); 2122 done_index = index; 2123 while (!done && (index <= end)) { 2124 int i; 2125 2126 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2127 tag); 2128 if (nr_pages == 0) 2129 break; 2130 2131 for (i = 0; i < nr_pages; i++) { 2132 struct page *page = pvec.pages[i]; 2133 bool submitted = false; 2134 2135 /* give a priority to WB_SYNC threads */ 2136 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2137 wbc->sync_mode == WB_SYNC_NONE) { 2138 done = 1; 2139 break; 2140 } 2141 2142 done_index = page->index; 2143 retry_write: 2144 lock_page(page); 2145 2146 if (unlikely(page->mapping != mapping)) { 2147 continue_unlock: 2148 unlock_page(page); 2149 continue; 2150 } 2151 2152 if (!PageDirty(page)) { 2153 /* someone wrote it for us */ 2154 goto continue_unlock; 2155 } 2156 2157 if (PageWriteback(page)) { 2158 if (wbc->sync_mode != WB_SYNC_NONE) 2159 f2fs_wait_on_page_writeback(page, 2160 DATA, true, true); 2161 else 2162 goto continue_unlock; 2163 } 2164 2165 if (!clear_page_dirty_for_io(page)) 2166 goto continue_unlock; 2167 2168 ret = __write_data_page(page, &submitted, wbc, io_type); 2169 if (unlikely(ret)) { 2170 /* 2171 * keep nr_to_write, since vfs uses this to 2172 * get # of written pages. 2173 */ 2174 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2175 unlock_page(page); 2176 ret = 0; 2177 continue; 2178 } else if (ret == -EAGAIN) { 2179 ret = 0; 2180 if (wbc->sync_mode == WB_SYNC_ALL) { 2181 cond_resched(); 2182 congestion_wait(BLK_RW_ASYNC, 2183 HZ/50); 2184 goto retry_write; 2185 } 2186 continue; 2187 } 2188 done_index = page->index + 1; 2189 done = 1; 2190 break; 2191 } else if (submitted) { 2192 nwritten++; 2193 } 2194 2195 if (--wbc->nr_to_write <= 0 && 2196 wbc->sync_mode == WB_SYNC_NONE) { 2197 done = 1; 2198 break; 2199 } 2200 } 2201 pagevec_release(&pvec); 2202 cond_resched(); 2203 } 2204 2205 if (!cycled && !done) { 2206 cycled = 1; 2207 index = 0; 2208 end = writeback_index - 1; 2209 goto retry; 2210 } 2211 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2212 mapping->writeback_index = done_index; 2213 2214 if (nwritten) 2215 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 2216 NULL, 0, DATA); 2217 2218 return ret; 2219 } 2220 2221 static inline bool __should_serialize_io(struct inode *inode, 2222 struct writeback_control *wbc) 2223 { 2224 if (!S_ISREG(inode->i_mode)) 2225 return false; 2226 if (IS_NOQUOTA(inode)) 2227 return false; 2228 if (wbc->sync_mode != WB_SYNC_ALL) 2229 return true; 2230 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 2231 return true; 2232 return false; 2233 } 2234 2235 static int __f2fs_write_data_pages(struct address_space *mapping, 2236 struct writeback_control *wbc, 2237 enum iostat_type io_type) 2238 { 2239 struct inode *inode = mapping->host; 2240 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2241 struct blk_plug plug; 2242 int ret; 2243 bool locked = false; 2244 2245 /* deal with chardevs and other special file */ 2246 if (!mapping->a_ops->writepage) 2247 return 0; 2248 2249 /* skip writing if there is no dirty page in this inode */ 2250 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 2251 return 0; 2252 2253 /* during POR, we don't need to trigger writepage at all. */ 2254 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2255 goto skip_write; 2256 2257 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 2258 wbc->sync_mode == WB_SYNC_NONE && 2259 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 2260 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 2261 goto skip_write; 2262 2263 /* skip writing during file defragment */ 2264 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 2265 goto skip_write; 2266 2267 trace_f2fs_writepages(mapping->host, wbc, DATA); 2268 2269 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 2270 if (wbc->sync_mode == WB_SYNC_ALL) 2271 atomic_inc(&sbi->wb_sync_req[DATA]); 2272 else if (atomic_read(&sbi->wb_sync_req[DATA])) 2273 goto skip_write; 2274 2275 if (__should_serialize_io(inode, wbc)) { 2276 mutex_lock(&sbi->writepages); 2277 locked = true; 2278 } 2279 2280 blk_start_plug(&plug); 2281 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 2282 blk_finish_plug(&plug); 2283 2284 if (locked) 2285 mutex_unlock(&sbi->writepages); 2286 2287 if (wbc->sync_mode == WB_SYNC_ALL) 2288 atomic_dec(&sbi->wb_sync_req[DATA]); 2289 /* 2290 * if some pages were truncated, we cannot guarantee its mapping->host 2291 * to detect pending bios. 2292 */ 2293 2294 f2fs_remove_dirty_inode(inode); 2295 return ret; 2296 2297 skip_write: 2298 wbc->pages_skipped += get_dirty_pages(inode); 2299 trace_f2fs_writepages(mapping->host, wbc, DATA); 2300 return 0; 2301 } 2302 2303 static int f2fs_write_data_pages(struct address_space *mapping, 2304 struct writeback_control *wbc) 2305 { 2306 struct inode *inode = mapping->host; 2307 2308 return __f2fs_write_data_pages(mapping, wbc, 2309 F2FS_I(inode)->cp_task == current ? 2310 FS_CP_DATA_IO : FS_DATA_IO); 2311 } 2312 2313 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 2314 { 2315 struct inode *inode = mapping->host; 2316 loff_t i_size = i_size_read(inode); 2317 2318 if (to > i_size) { 2319 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2320 down_write(&F2FS_I(inode)->i_mmap_sem); 2321 2322 truncate_pagecache(inode, i_size); 2323 if (!IS_NOQUOTA(inode)) 2324 f2fs_truncate_blocks(inode, i_size, true); 2325 2326 up_write(&F2FS_I(inode)->i_mmap_sem); 2327 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2328 } 2329 } 2330 2331 static int prepare_write_begin(struct f2fs_sb_info *sbi, 2332 struct page *page, loff_t pos, unsigned len, 2333 block_t *blk_addr, bool *node_changed) 2334 { 2335 struct inode *inode = page->mapping->host; 2336 pgoff_t index = page->index; 2337 struct dnode_of_data dn; 2338 struct page *ipage; 2339 bool locked = false; 2340 struct extent_info ei = {0,0,0}; 2341 int err = 0; 2342 int flag; 2343 2344 /* 2345 * we already allocated all the blocks, so we don't need to get 2346 * the block addresses when there is no need to fill the page. 2347 */ 2348 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 2349 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 2350 return 0; 2351 2352 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 2353 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 2354 flag = F2FS_GET_BLOCK_DEFAULT; 2355 else 2356 flag = F2FS_GET_BLOCK_PRE_AIO; 2357 2358 if (f2fs_has_inline_data(inode) || 2359 (pos & PAGE_MASK) >= i_size_read(inode)) { 2360 __do_map_lock(sbi, flag, true); 2361 locked = true; 2362 } 2363 restart: 2364 /* check inline_data */ 2365 ipage = f2fs_get_node_page(sbi, inode->i_ino); 2366 if (IS_ERR(ipage)) { 2367 err = PTR_ERR(ipage); 2368 goto unlock_out; 2369 } 2370 2371 set_new_dnode(&dn, inode, ipage, ipage, 0); 2372 2373 if (f2fs_has_inline_data(inode)) { 2374 if (pos + len <= MAX_INLINE_DATA(inode)) { 2375 f2fs_do_read_inline_data(page, ipage); 2376 set_inode_flag(inode, FI_DATA_EXIST); 2377 if (inode->i_nlink) 2378 set_inline_node(ipage); 2379 } else { 2380 err = f2fs_convert_inline_page(&dn, page); 2381 if (err) 2382 goto out; 2383 if (dn.data_blkaddr == NULL_ADDR) 2384 err = f2fs_get_block(&dn, index); 2385 } 2386 } else if (locked) { 2387 err = f2fs_get_block(&dn, index); 2388 } else { 2389 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 2390 dn.data_blkaddr = ei.blk + index - ei.fofs; 2391 } else { 2392 /* hole case */ 2393 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 2394 if (err || dn.data_blkaddr == NULL_ADDR) { 2395 f2fs_put_dnode(&dn); 2396 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 2397 true); 2398 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 2399 locked = true; 2400 goto restart; 2401 } 2402 } 2403 } 2404 2405 /* convert_inline_page can make node_changed */ 2406 *blk_addr = dn.data_blkaddr; 2407 *node_changed = dn.node_changed; 2408 out: 2409 f2fs_put_dnode(&dn); 2410 unlock_out: 2411 if (locked) 2412 __do_map_lock(sbi, flag, false); 2413 return err; 2414 } 2415 2416 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 2417 loff_t pos, unsigned len, unsigned flags, 2418 struct page **pagep, void **fsdata) 2419 { 2420 struct inode *inode = mapping->host; 2421 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2422 struct page *page = NULL; 2423 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 2424 bool need_balance = false, drop_atomic = false; 2425 block_t blkaddr = NULL_ADDR; 2426 int err = 0; 2427 2428 trace_f2fs_write_begin(inode, pos, len, flags); 2429 2430 err = f2fs_is_checkpoint_ready(sbi); 2431 if (err) 2432 goto fail; 2433 2434 if ((f2fs_is_atomic_file(inode) && 2435 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 2436 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2437 err = -ENOMEM; 2438 drop_atomic = true; 2439 goto fail; 2440 } 2441 2442 /* 2443 * We should check this at this moment to avoid deadlock on inode page 2444 * and #0 page. The locking rule for inline_data conversion should be: 2445 * lock_page(page #0) -> lock_page(inode_page) 2446 */ 2447 if (index != 0) { 2448 err = f2fs_convert_inline_inode(inode); 2449 if (err) 2450 goto fail; 2451 } 2452 repeat: 2453 /* 2454 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 2455 * wait_for_stable_page. Will wait that below with our IO control. 2456 */ 2457 page = f2fs_pagecache_get_page(mapping, index, 2458 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 2459 if (!page) { 2460 err = -ENOMEM; 2461 goto fail; 2462 } 2463 2464 *pagep = page; 2465 2466 err = prepare_write_begin(sbi, page, pos, len, 2467 &blkaddr, &need_balance); 2468 if (err) 2469 goto fail; 2470 2471 if (need_balance && !IS_NOQUOTA(inode) && 2472 has_not_enough_free_secs(sbi, 0, 0)) { 2473 unlock_page(page); 2474 f2fs_balance_fs(sbi, true); 2475 lock_page(page); 2476 if (page->mapping != mapping) { 2477 /* The page got truncated from under us */ 2478 f2fs_put_page(page, 1); 2479 goto repeat; 2480 } 2481 } 2482 2483 f2fs_wait_on_page_writeback(page, DATA, false, true); 2484 2485 if (len == PAGE_SIZE || PageUptodate(page)) 2486 return 0; 2487 2488 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 2489 zero_user_segment(page, len, PAGE_SIZE); 2490 return 0; 2491 } 2492 2493 if (blkaddr == NEW_ADDR) { 2494 zero_user_segment(page, 0, PAGE_SIZE); 2495 SetPageUptodate(page); 2496 } else { 2497 err = f2fs_submit_page_read(inode, page, blkaddr); 2498 if (err) 2499 goto fail; 2500 2501 lock_page(page); 2502 if (unlikely(page->mapping != mapping)) { 2503 f2fs_put_page(page, 1); 2504 goto repeat; 2505 } 2506 if (unlikely(!PageUptodate(page))) { 2507 err = -EIO; 2508 goto fail; 2509 } 2510 } 2511 return 0; 2512 2513 fail: 2514 f2fs_put_page(page, 1); 2515 f2fs_write_failed(mapping, pos + len); 2516 if (drop_atomic) 2517 f2fs_drop_inmem_pages_all(sbi, false); 2518 return err; 2519 } 2520 2521 static int f2fs_write_end(struct file *file, 2522 struct address_space *mapping, 2523 loff_t pos, unsigned len, unsigned copied, 2524 struct page *page, void *fsdata) 2525 { 2526 struct inode *inode = page->mapping->host; 2527 2528 trace_f2fs_write_end(inode, pos, len, copied); 2529 2530 /* 2531 * This should be come from len == PAGE_SIZE, and we expect copied 2532 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 2533 * let generic_perform_write() try to copy data again through copied=0. 2534 */ 2535 if (!PageUptodate(page)) { 2536 if (unlikely(copied != len)) 2537 copied = 0; 2538 else 2539 SetPageUptodate(page); 2540 } 2541 if (!copied) 2542 goto unlock_out; 2543 2544 set_page_dirty(page); 2545 2546 if (pos + copied > i_size_read(inode)) 2547 f2fs_i_size_write(inode, pos + copied); 2548 unlock_out: 2549 f2fs_put_page(page, 1); 2550 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2551 return copied; 2552 } 2553 2554 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 2555 loff_t offset) 2556 { 2557 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 2558 unsigned blkbits = i_blkbits; 2559 unsigned blocksize_mask = (1 << blkbits) - 1; 2560 unsigned long align = offset | iov_iter_alignment(iter); 2561 struct block_device *bdev = inode->i_sb->s_bdev; 2562 2563 if (align & blocksize_mask) { 2564 if (bdev) 2565 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 2566 blocksize_mask = (1 << blkbits) - 1; 2567 if (align & blocksize_mask) 2568 return -EINVAL; 2569 return 1; 2570 } 2571 return 0; 2572 } 2573 2574 static void f2fs_dio_end_io(struct bio *bio) 2575 { 2576 struct f2fs_private_dio *dio = bio->bi_private; 2577 2578 dec_page_count(F2FS_I_SB(dio->inode), 2579 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 2580 2581 bio->bi_private = dio->orig_private; 2582 bio->bi_end_io = dio->orig_end_io; 2583 2584 kvfree(dio); 2585 2586 bio_endio(bio); 2587 } 2588 2589 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, 2590 loff_t file_offset) 2591 { 2592 struct f2fs_private_dio *dio; 2593 bool write = (bio_op(bio) == REQ_OP_WRITE); 2594 2595 dio = f2fs_kzalloc(F2FS_I_SB(inode), 2596 sizeof(struct f2fs_private_dio), GFP_NOFS); 2597 if (!dio) 2598 goto out; 2599 2600 dio->inode = inode; 2601 dio->orig_end_io = bio->bi_end_io; 2602 dio->orig_private = bio->bi_private; 2603 dio->write = write; 2604 2605 bio->bi_end_io = f2fs_dio_end_io; 2606 bio->bi_private = dio; 2607 2608 inc_page_count(F2FS_I_SB(inode), 2609 write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 2610 2611 submit_bio(bio); 2612 return; 2613 out: 2614 bio->bi_status = BLK_STS_IOERR; 2615 bio_endio(bio); 2616 } 2617 2618 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2619 { 2620 struct address_space *mapping = iocb->ki_filp->f_mapping; 2621 struct inode *inode = mapping->host; 2622 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2623 struct f2fs_inode_info *fi = F2FS_I(inode); 2624 size_t count = iov_iter_count(iter); 2625 loff_t offset = iocb->ki_pos; 2626 int rw = iov_iter_rw(iter); 2627 int err; 2628 enum rw_hint hint = iocb->ki_hint; 2629 int whint_mode = F2FS_OPTION(sbi).whint_mode; 2630 bool do_opu; 2631 2632 err = check_direct_IO(inode, iter, offset); 2633 if (err) 2634 return err < 0 ? err : 0; 2635 2636 if (f2fs_force_buffered_io(inode, iocb, iter)) 2637 return 0; 2638 2639 do_opu = allow_outplace_dio(inode, iocb, iter); 2640 2641 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 2642 2643 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 2644 iocb->ki_hint = WRITE_LIFE_NOT_SET; 2645 2646 if (iocb->ki_flags & IOCB_NOWAIT) { 2647 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 2648 iocb->ki_hint = hint; 2649 err = -EAGAIN; 2650 goto out; 2651 } 2652 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 2653 up_read(&fi->i_gc_rwsem[rw]); 2654 iocb->ki_hint = hint; 2655 err = -EAGAIN; 2656 goto out; 2657 } 2658 } else { 2659 down_read(&fi->i_gc_rwsem[rw]); 2660 if (do_opu) 2661 down_read(&fi->i_gc_rwsem[READ]); 2662 } 2663 2664 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2665 iter, rw == WRITE ? get_data_block_dio_write : 2666 get_data_block_dio, NULL, f2fs_dio_submit_bio, 2667 DIO_LOCKING | DIO_SKIP_HOLES); 2668 2669 if (do_opu) 2670 up_read(&fi->i_gc_rwsem[READ]); 2671 2672 up_read(&fi->i_gc_rwsem[rw]); 2673 2674 if (rw == WRITE) { 2675 if (whint_mode == WHINT_MODE_OFF) 2676 iocb->ki_hint = hint; 2677 if (err > 0) { 2678 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 2679 err); 2680 if (!do_opu) 2681 set_inode_flag(inode, FI_UPDATE_WRITE); 2682 } else if (err < 0) { 2683 f2fs_write_failed(mapping, offset + count); 2684 } 2685 } 2686 2687 out: 2688 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 2689 2690 return err; 2691 } 2692 2693 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2694 unsigned int length) 2695 { 2696 struct inode *inode = page->mapping->host; 2697 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2698 2699 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 2700 (offset % PAGE_SIZE || length != PAGE_SIZE)) 2701 return; 2702 2703 if (PageDirty(page)) { 2704 if (inode->i_ino == F2FS_META_INO(sbi)) { 2705 dec_page_count(sbi, F2FS_DIRTY_META); 2706 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 2707 dec_page_count(sbi, F2FS_DIRTY_NODES); 2708 } else { 2709 inode_dec_dirty_pages(inode); 2710 f2fs_remove_dirty_inode(inode); 2711 } 2712 } 2713 2714 clear_cold_data(page); 2715 2716 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2717 return f2fs_drop_inmem_page(inode, page); 2718 2719 f2fs_clear_page_private(page); 2720 } 2721 2722 int f2fs_release_page(struct page *page, gfp_t wait) 2723 { 2724 /* If this is dirty page, keep PagePrivate */ 2725 if (PageDirty(page)) 2726 return 0; 2727 2728 /* This is atomic written page, keep Private */ 2729 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2730 return 0; 2731 2732 clear_cold_data(page); 2733 f2fs_clear_page_private(page); 2734 return 1; 2735 } 2736 2737 static int f2fs_set_data_page_dirty(struct page *page) 2738 { 2739 struct address_space *mapping = page->mapping; 2740 struct inode *inode = mapping->host; 2741 2742 trace_f2fs_set_page_dirty(page, DATA); 2743 2744 if (!PageUptodate(page)) 2745 SetPageUptodate(page); 2746 2747 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2748 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2749 f2fs_register_inmem_page(inode, page); 2750 return 1; 2751 } 2752 /* 2753 * Previously, this page has been registered, we just 2754 * return here. 2755 */ 2756 return 0; 2757 } 2758 2759 if (!PageDirty(page)) { 2760 __set_page_dirty_nobuffers(page); 2761 f2fs_update_dirty_page(inode, page); 2762 return 1; 2763 } 2764 return 0; 2765 } 2766 2767 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2768 { 2769 struct inode *inode = mapping->host; 2770 2771 if (f2fs_has_inline_data(inode)) 2772 return 0; 2773 2774 /* make sure allocating whole blocks */ 2775 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2776 filemap_write_and_wait(mapping); 2777 2778 return generic_block_bmap(mapping, block, get_data_block_bmap); 2779 } 2780 2781 #ifdef CONFIG_MIGRATION 2782 #include <linux/migrate.h> 2783 2784 int f2fs_migrate_page(struct address_space *mapping, 2785 struct page *newpage, struct page *page, enum migrate_mode mode) 2786 { 2787 int rc, extra_count; 2788 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2789 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2790 2791 BUG_ON(PageWriteback(page)); 2792 2793 /* migrating an atomic written page is safe with the inmem_lock hold */ 2794 if (atomic_written) { 2795 if (mode != MIGRATE_SYNC) 2796 return -EBUSY; 2797 if (!mutex_trylock(&fi->inmem_lock)) 2798 return -EAGAIN; 2799 } 2800 2801 /* one extra reference was held for atomic_write page */ 2802 extra_count = atomic_written ? 1 : 0; 2803 rc = migrate_page_move_mapping(mapping, newpage, 2804 page, mode, extra_count); 2805 if (rc != MIGRATEPAGE_SUCCESS) { 2806 if (atomic_written) 2807 mutex_unlock(&fi->inmem_lock); 2808 return rc; 2809 } 2810 2811 if (atomic_written) { 2812 struct inmem_pages *cur; 2813 list_for_each_entry(cur, &fi->inmem_pages, list) 2814 if (cur->page == page) { 2815 cur->page = newpage; 2816 break; 2817 } 2818 mutex_unlock(&fi->inmem_lock); 2819 put_page(page); 2820 get_page(newpage); 2821 } 2822 2823 if (PagePrivate(page)) { 2824 f2fs_set_page_private(newpage, page_private(page)); 2825 f2fs_clear_page_private(page); 2826 } 2827 2828 if (mode != MIGRATE_SYNC_NO_COPY) 2829 migrate_page_copy(newpage, page); 2830 else 2831 migrate_page_states(newpage, page); 2832 2833 return MIGRATEPAGE_SUCCESS; 2834 } 2835 #endif 2836 2837 const struct address_space_operations f2fs_dblock_aops = { 2838 .readpage = f2fs_read_data_page, 2839 .readpages = f2fs_read_data_pages, 2840 .writepage = f2fs_write_data_page, 2841 .writepages = f2fs_write_data_pages, 2842 .write_begin = f2fs_write_begin, 2843 .write_end = f2fs_write_end, 2844 .set_page_dirty = f2fs_set_data_page_dirty, 2845 .invalidatepage = f2fs_invalidate_page, 2846 .releasepage = f2fs_release_page, 2847 .direct_IO = f2fs_direct_IO, 2848 .bmap = f2fs_bmap, 2849 #ifdef CONFIG_MIGRATION 2850 .migratepage = f2fs_migrate_page, 2851 #endif 2852 }; 2853 2854 void f2fs_clear_page_cache_dirty_tag(struct page *page) 2855 { 2856 struct address_space *mapping = page_mapping(page); 2857 unsigned long flags; 2858 2859 xa_lock_irqsave(&mapping->i_pages, flags); 2860 __xa_clear_mark(&mapping->i_pages, page_index(page), 2861 PAGECACHE_TAG_DIRTY); 2862 xa_unlock_irqrestore(&mapping->i_pages, flags); 2863 } 2864 2865 int __init f2fs_init_post_read_processing(void) 2866 { 2867 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0); 2868 if (!bio_post_read_ctx_cache) 2869 goto fail; 2870 bio_post_read_ctx_pool = 2871 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 2872 bio_post_read_ctx_cache); 2873 if (!bio_post_read_ctx_pool) 2874 goto fail_free_cache; 2875 return 0; 2876 2877 fail_free_cache: 2878 kmem_cache_destroy(bio_post_read_ctx_cache); 2879 fail: 2880 return -ENOMEM; 2881 } 2882 2883 void __exit f2fs_destroy_post_read_processing(void) 2884 { 2885 mempool_destroy(bio_post_read_ctx_pool); 2886 kmem_cache_destroy(bio_post_read_ctx_cache); 2887 } 2888