xref: /openbmc/linux/fs/f2fs/data.c (revision f21e49be)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
40 int __init f2fs_init_bioset(void)
41 {
42 	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS))
44 		return -ENOMEM;
45 	return 0;
46 }
47 
48 void f2fs_destroy_bioset(void)
49 {
50 	bioset_exit(&f2fs_bioset);
51 }
52 
53 static bool __is_cp_guaranteed(struct page *page)
54 {
55 	struct address_space *mapping = page->mapping;
56 	struct inode *inode;
57 	struct f2fs_sb_info *sbi;
58 
59 	if (!mapping)
60 		return false;
61 
62 	inode = mapping->host;
63 	sbi = F2FS_I_SB(inode);
64 
65 	if (inode->i_ino == F2FS_META_INO(sbi) ||
66 			inode->i_ino == F2FS_NODE_INO(sbi) ||
67 			S_ISDIR(inode->i_mode))
68 		return true;
69 
70 	if (f2fs_is_compressed_page(page))
71 		return false;
72 	if ((S_ISREG(inode->i_mode) &&
73 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
74 			page_private_gcing(page))
75 		return true;
76 	return false;
77 }
78 
79 static enum count_type __read_io_type(struct page *page)
80 {
81 	struct address_space *mapping = page_file_mapping(page);
82 
83 	if (mapping) {
84 		struct inode *inode = mapping->host;
85 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86 
87 		if (inode->i_ino == F2FS_META_INO(sbi))
88 			return F2FS_RD_META;
89 
90 		if (inode->i_ino == F2FS_NODE_INO(sbi))
91 			return F2FS_RD_NODE;
92 	}
93 	return F2FS_RD_DATA;
94 }
95 
96 /* postprocessing steps for read bios */
97 enum bio_post_read_step {
98 #ifdef CONFIG_FS_ENCRYPTION
99 	STEP_DECRYPT	= 1 << 0,
100 #else
101 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
102 #endif
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 	STEP_DECOMPRESS	= 1 << 1,
105 #else
106 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
107 #endif
108 #ifdef CONFIG_FS_VERITY
109 	STEP_VERITY	= 1 << 2,
110 #else
111 	STEP_VERITY	= 0,	/* compile out the verity-related code */
112 #endif
113 };
114 
115 struct bio_post_read_ctx {
116 	struct bio *bio;
117 	struct f2fs_sb_info *sbi;
118 	struct work_struct work;
119 	unsigned int enabled_steps;
120 	block_t fs_blkaddr;
121 };
122 
123 static void f2fs_finish_read_bio(struct bio *bio)
124 {
125 	struct bio_vec *bv;
126 	struct bvec_iter_all iter_all;
127 
128 	/*
129 	 * Update and unlock the bio's pagecache pages, and put the
130 	 * decompression context for any compressed pages.
131 	 */
132 	bio_for_each_segment_all(bv, bio, iter_all) {
133 		struct page *page = bv->bv_page;
134 
135 		if (f2fs_is_compressed_page(page)) {
136 			if (bio->bi_status)
137 				f2fs_end_read_compressed_page(page, true, 0);
138 			f2fs_put_page_dic(page);
139 			continue;
140 		}
141 
142 		/* PG_error was set if decryption or verity failed. */
143 		if (bio->bi_status || PageError(page)) {
144 			ClearPageUptodate(page);
145 			/* will re-read again later */
146 			ClearPageError(page);
147 		} else {
148 			SetPageUptodate(page);
149 		}
150 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151 		unlock_page(page);
152 	}
153 
154 	if (bio->bi_private)
155 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156 	bio_put(bio);
157 }
158 
159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161 	struct bio_post_read_ctx *ctx =
162 		container_of(work, struct bio_post_read_ctx, work);
163 	struct bio *bio = ctx->bio;
164 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165 
166 	/*
167 	 * fsverity_verify_bio() may call readpages() again, and while verity
168 	 * will be disabled for this, decryption and/or decompression may still
169 	 * be needed, resulting in another bio_post_read_ctx being allocated.
170 	 * So to prevent deadlocks we need to release the current ctx to the
171 	 * mempool first.  This assumes that verity is the last post-read step.
172 	 */
173 	mempool_free(ctx, bio_post_read_ctx_pool);
174 	bio->bi_private = NULL;
175 
176 	/*
177 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
178 	 * as those were handled separately by f2fs_end_read_compressed_page().
179 	 */
180 	if (may_have_compressed_pages) {
181 		struct bio_vec *bv;
182 		struct bvec_iter_all iter_all;
183 
184 		bio_for_each_segment_all(bv, bio, iter_all) {
185 			struct page *page = bv->bv_page;
186 
187 			if (!f2fs_is_compressed_page(page) &&
188 			    !PageError(page) && !fsverity_verify_page(page))
189 				SetPageError(page);
190 		}
191 	} else {
192 		fsverity_verify_bio(bio);
193 	}
194 
195 	f2fs_finish_read_bio(bio);
196 }
197 
198 /*
199  * If the bio's data needs to be verified with fs-verity, then enqueue the
200  * verity work for the bio.  Otherwise finish the bio now.
201  *
202  * Note that to avoid deadlocks, the verity work can't be done on the
203  * decryption/decompression workqueue.  This is because verifying the data pages
204  * can involve reading verity metadata pages from the file, and these verity
205  * metadata pages may be encrypted and/or compressed.
206  */
207 static void f2fs_verify_and_finish_bio(struct bio *bio)
208 {
209 	struct bio_post_read_ctx *ctx = bio->bi_private;
210 
211 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212 		INIT_WORK(&ctx->work, f2fs_verify_bio);
213 		fsverity_enqueue_verify_work(&ctx->work);
214 	} else {
215 		f2fs_finish_read_bio(bio);
216 	}
217 }
218 
219 /*
220  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221  * remaining page was read by @ctx->bio.
222  *
223  * Note that a bio may span clusters (even a mix of compressed and uncompressed
224  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
225  * that the bio includes at least one compressed page.  The actual decompression
226  * is done on a per-cluster basis, not a per-bio basis.
227  */
228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
229 {
230 	struct bio_vec *bv;
231 	struct bvec_iter_all iter_all;
232 	bool all_compressed = true;
233 	block_t blkaddr = ctx->fs_blkaddr;
234 
235 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
236 		struct page *page = bv->bv_page;
237 
238 		/* PG_error was set if decryption failed. */
239 		if (f2fs_is_compressed_page(page))
240 			f2fs_end_read_compressed_page(page, PageError(page),
241 						blkaddr);
242 		else
243 			all_compressed = false;
244 
245 		blkaddr++;
246 	}
247 
248 	/*
249 	 * Optimization: if all the bio's pages are compressed, then scheduling
250 	 * the per-bio verity work is unnecessary, as verity will be fully
251 	 * handled at the compression cluster level.
252 	 */
253 	if (all_compressed)
254 		ctx->enabled_steps &= ~STEP_VERITY;
255 }
256 
257 static void f2fs_post_read_work(struct work_struct *work)
258 {
259 	struct bio_post_read_ctx *ctx =
260 		container_of(work, struct bio_post_read_ctx, work);
261 
262 	if (ctx->enabled_steps & STEP_DECRYPT)
263 		fscrypt_decrypt_bio(ctx->bio);
264 
265 	if (ctx->enabled_steps & STEP_DECOMPRESS)
266 		f2fs_handle_step_decompress(ctx);
267 
268 	f2fs_verify_and_finish_bio(ctx->bio);
269 }
270 
271 static void f2fs_read_end_io(struct bio *bio)
272 {
273 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
274 	struct bio_post_read_ctx *ctx;
275 
276 	iostat_update_and_unbind_ctx(bio, 0);
277 	ctx = bio->bi_private;
278 
279 	if (time_to_inject(sbi, FAULT_READ_IO)) {
280 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
281 		bio->bi_status = BLK_STS_IOERR;
282 	}
283 
284 	if (bio->bi_status) {
285 		f2fs_finish_read_bio(bio);
286 		return;
287 	}
288 
289 	if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
290 		INIT_WORK(&ctx->work, f2fs_post_read_work);
291 		queue_work(ctx->sbi->post_read_wq, &ctx->work);
292 	} else {
293 		f2fs_verify_and_finish_bio(bio);
294 	}
295 }
296 
297 static void f2fs_write_end_io(struct bio *bio)
298 {
299 	struct f2fs_sb_info *sbi;
300 	struct bio_vec *bvec;
301 	struct bvec_iter_all iter_all;
302 
303 	iostat_update_and_unbind_ctx(bio, 1);
304 	sbi = bio->bi_private;
305 
306 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
307 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
308 		bio->bi_status = BLK_STS_IOERR;
309 	}
310 
311 	bio_for_each_segment_all(bvec, bio, iter_all) {
312 		struct page *page = bvec->bv_page;
313 		enum count_type type = WB_DATA_TYPE(page);
314 
315 		if (page_private_dummy(page)) {
316 			clear_page_private_dummy(page);
317 			unlock_page(page);
318 			mempool_free(page, sbi->write_io_dummy);
319 
320 			if (unlikely(bio->bi_status))
321 				f2fs_stop_checkpoint(sbi, true);
322 			continue;
323 		}
324 
325 		fscrypt_finalize_bounce_page(&page);
326 
327 #ifdef CONFIG_F2FS_FS_COMPRESSION
328 		if (f2fs_is_compressed_page(page)) {
329 			f2fs_compress_write_end_io(bio, page);
330 			continue;
331 		}
332 #endif
333 
334 		if (unlikely(bio->bi_status)) {
335 			mapping_set_error(page->mapping, -EIO);
336 			if (type == F2FS_WB_CP_DATA)
337 				f2fs_stop_checkpoint(sbi, true);
338 		}
339 
340 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
341 					page->index != nid_of_node(page));
342 
343 		dec_page_count(sbi, type);
344 		if (f2fs_in_warm_node_list(sbi, page))
345 			f2fs_del_fsync_node_entry(sbi, page);
346 		clear_page_private_gcing(page);
347 		end_page_writeback(page);
348 	}
349 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
350 				wq_has_sleeper(&sbi->cp_wait))
351 		wake_up(&sbi->cp_wait);
352 
353 	bio_put(bio);
354 }
355 
356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
357 				block_t blk_addr, struct bio *bio)
358 {
359 	struct block_device *bdev = sbi->sb->s_bdev;
360 	int i;
361 
362 	if (f2fs_is_multi_device(sbi)) {
363 		for (i = 0; i < sbi->s_ndevs; i++) {
364 			if (FDEV(i).start_blk <= blk_addr &&
365 			    FDEV(i).end_blk >= blk_addr) {
366 				blk_addr -= FDEV(i).start_blk;
367 				bdev = FDEV(i).bdev;
368 				break;
369 			}
370 		}
371 	}
372 	if (bio) {
373 		bio_set_dev(bio, bdev);
374 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
375 	}
376 	return bdev;
377 }
378 
379 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
380 {
381 	int i;
382 
383 	if (!f2fs_is_multi_device(sbi))
384 		return 0;
385 
386 	for (i = 0; i < sbi->s_ndevs; i++)
387 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
388 			return i;
389 	return 0;
390 }
391 
392 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
393 {
394 	struct f2fs_sb_info *sbi = fio->sbi;
395 	struct bio *bio;
396 
397 	bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
398 
399 	f2fs_target_device(sbi, fio->new_blkaddr, bio);
400 	if (is_read_io(fio->op)) {
401 		bio->bi_end_io = f2fs_read_end_io;
402 		bio->bi_private = NULL;
403 	} else {
404 		bio->bi_end_io = f2fs_write_end_io;
405 		bio->bi_private = sbi;
406 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
407 						fio->type, fio->temp);
408 	}
409 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
410 
411 	if (fio->io_wbc)
412 		wbc_init_bio(fio->io_wbc, bio);
413 
414 	return bio;
415 }
416 
417 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
418 				  pgoff_t first_idx,
419 				  const struct f2fs_io_info *fio,
420 				  gfp_t gfp_mask)
421 {
422 	/*
423 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
424 	 * read/write raw data without encryption.
425 	 */
426 	if (!fio || !fio->encrypted_page)
427 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
428 }
429 
430 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
431 				     pgoff_t next_idx,
432 				     const struct f2fs_io_info *fio)
433 {
434 	/*
435 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
436 	 * read/write raw data without encryption.
437 	 */
438 	if (fio && fio->encrypted_page)
439 		return !bio_has_crypt_ctx(bio);
440 
441 	return fscrypt_mergeable_bio(bio, inode, next_idx);
442 }
443 
444 static inline void __submit_bio(struct f2fs_sb_info *sbi,
445 				struct bio *bio, enum page_type type)
446 {
447 	if (!is_read_io(bio_op(bio))) {
448 		unsigned int start;
449 
450 		if (type != DATA && type != NODE)
451 			goto submit_io;
452 
453 		if (f2fs_lfs_mode(sbi) && current->plug)
454 			blk_finish_plug(current->plug);
455 
456 		if (!F2FS_IO_ALIGNED(sbi))
457 			goto submit_io;
458 
459 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
460 		start %= F2FS_IO_SIZE(sbi);
461 
462 		if (start == 0)
463 			goto submit_io;
464 
465 		/* fill dummy pages */
466 		for (; start < F2FS_IO_SIZE(sbi); start++) {
467 			struct page *page =
468 				mempool_alloc(sbi->write_io_dummy,
469 					      GFP_NOIO | __GFP_NOFAIL);
470 			f2fs_bug_on(sbi, !page);
471 
472 			lock_page(page);
473 
474 			zero_user_segment(page, 0, PAGE_SIZE);
475 			set_page_private_dummy(page);
476 
477 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
478 				f2fs_bug_on(sbi, 1);
479 		}
480 		/*
481 		 * In the NODE case, we lose next block address chain. So, we
482 		 * need to do checkpoint in f2fs_sync_file.
483 		 */
484 		if (type == NODE)
485 			set_sbi_flag(sbi, SBI_NEED_CP);
486 	}
487 submit_io:
488 	if (is_read_io(bio_op(bio)))
489 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
490 	else
491 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
492 
493 	iostat_update_submit_ctx(bio, type);
494 	submit_bio(bio);
495 }
496 
497 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
498 				struct bio *bio, enum page_type type)
499 {
500 	__submit_bio(sbi, bio, type);
501 }
502 
503 static void __attach_io_flag(struct f2fs_io_info *fio)
504 {
505 	struct f2fs_sb_info *sbi = fio->sbi;
506 	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
507 	unsigned int io_flag, fua_flag, meta_flag;
508 
509 	if (fio->type == DATA)
510 		io_flag = sbi->data_io_flag;
511 	else if (fio->type == NODE)
512 		io_flag = sbi->node_io_flag;
513 	else
514 		return;
515 
516 	fua_flag = io_flag & temp_mask;
517 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
518 
519 	/*
520 	 * data/node io flag bits per temp:
521 	 *      REQ_META     |      REQ_FUA      |
522 	 *    5 |    4 |   3 |    2 |    1 |   0 |
523 	 * Cold | Warm | Hot | Cold | Warm | Hot |
524 	 */
525 	if ((1 << fio->temp) & meta_flag)
526 		fio->op_flags |= REQ_META;
527 	if ((1 << fio->temp) & fua_flag)
528 		fio->op_flags |= REQ_FUA;
529 }
530 
531 static void __submit_merged_bio(struct f2fs_bio_info *io)
532 {
533 	struct f2fs_io_info *fio = &io->fio;
534 
535 	if (!io->bio)
536 		return;
537 
538 	__attach_io_flag(fio);
539 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
540 
541 	if (is_read_io(fio->op))
542 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
543 	else
544 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
545 
546 	__submit_bio(io->sbi, io->bio, fio->type);
547 	io->bio = NULL;
548 }
549 
550 static bool __has_merged_page(struct bio *bio, struct inode *inode,
551 						struct page *page, nid_t ino)
552 {
553 	struct bio_vec *bvec;
554 	struct bvec_iter_all iter_all;
555 
556 	if (!bio)
557 		return false;
558 
559 	if (!inode && !page && !ino)
560 		return true;
561 
562 	bio_for_each_segment_all(bvec, bio, iter_all) {
563 		struct page *target = bvec->bv_page;
564 
565 		if (fscrypt_is_bounce_page(target)) {
566 			target = fscrypt_pagecache_page(target);
567 			if (IS_ERR(target))
568 				continue;
569 		}
570 		if (f2fs_is_compressed_page(target)) {
571 			target = f2fs_compress_control_page(target);
572 			if (IS_ERR(target))
573 				continue;
574 		}
575 
576 		if (inode && inode == target->mapping->host)
577 			return true;
578 		if (page && page == target)
579 			return true;
580 		if (ino && ino == ino_of_node(target))
581 			return true;
582 	}
583 
584 	return false;
585 }
586 
587 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
588 				enum page_type type, enum temp_type temp)
589 {
590 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
591 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
592 
593 	down_write(&io->io_rwsem);
594 
595 	/* change META to META_FLUSH in the checkpoint procedure */
596 	if (type >= META_FLUSH) {
597 		io->fio.type = META_FLUSH;
598 		io->fio.op = REQ_OP_WRITE;
599 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
600 		if (!test_opt(sbi, NOBARRIER))
601 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
602 	}
603 	__submit_merged_bio(io);
604 	up_write(&io->io_rwsem);
605 }
606 
607 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
608 				struct inode *inode, struct page *page,
609 				nid_t ino, enum page_type type, bool force)
610 {
611 	enum temp_type temp;
612 	bool ret = true;
613 
614 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
615 		if (!force)	{
616 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
617 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
618 
619 			down_read(&io->io_rwsem);
620 			ret = __has_merged_page(io->bio, inode, page, ino);
621 			up_read(&io->io_rwsem);
622 		}
623 		if (ret)
624 			__f2fs_submit_merged_write(sbi, type, temp);
625 
626 		/* TODO: use HOT temp only for meta pages now. */
627 		if (type >= META)
628 			break;
629 	}
630 }
631 
632 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
633 {
634 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
635 }
636 
637 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
638 				struct inode *inode, struct page *page,
639 				nid_t ino, enum page_type type)
640 {
641 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
642 }
643 
644 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
645 {
646 	f2fs_submit_merged_write(sbi, DATA);
647 	f2fs_submit_merged_write(sbi, NODE);
648 	f2fs_submit_merged_write(sbi, META);
649 }
650 
651 /*
652  * Fill the locked page with data located in the block address.
653  * A caller needs to unlock the page on failure.
654  */
655 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
656 {
657 	struct bio *bio;
658 	struct page *page = fio->encrypted_page ?
659 			fio->encrypted_page : fio->page;
660 
661 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
662 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
663 			META_GENERIC : DATA_GENERIC_ENHANCE)))
664 		return -EFSCORRUPTED;
665 
666 	trace_f2fs_submit_page_bio(page, fio);
667 
668 	/* Allocate a new bio */
669 	bio = __bio_alloc(fio, 1);
670 
671 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
672 			       fio->page->index, fio, GFP_NOIO);
673 
674 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
675 		bio_put(bio);
676 		return -EFAULT;
677 	}
678 
679 	if (fio->io_wbc && !is_read_io(fio->op))
680 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
681 
682 	__attach_io_flag(fio);
683 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
684 
685 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
686 			__read_io_type(page): WB_DATA_TYPE(fio->page));
687 
688 	__submit_bio(fio->sbi, bio, fio->type);
689 	return 0;
690 }
691 
692 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
693 				block_t last_blkaddr, block_t cur_blkaddr)
694 {
695 	if (unlikely(sbi->max_io_bytes &&
696 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
697 		return false;
698 	if (last_blkaddr + 1 != cur_blkaddr)
699 		return false;
700 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
701 }
702 
703 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
704 						struct f2fs_io_info *fio)
705 {
706 	if (io->fio.op != fio->op)
707 		return false;
708 	return io->fio.op_flags == fio->op_flags;
709 }
710 
711 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
712 					struct f2fs_bio_info *io,
713 					struct f2fs_io_info *fio,
714 					block_t last_blkaddr,
715 					block_t cur_blkaddr)
716 {
717 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
718 		unsigned int filled_blocks =
719 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
720 		unsigned int io_size = F2FS_IO_SIZE(sbi);
721 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
722 
723 		/* IOs in bio is aligned and left space of vectors is not enough */
724 		if (!(filled_blocks % io_size) && left_vecs < io_size)
725 			return false;
726 	}
727 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
728 		return false;
729 	return io_type_is_mergeable(io, fio);
730 }
731 
732 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
733 				struct page *page, enum temp_type temp)
734 {
735 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
736 	struct bio_entry *be;
737 
738 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
739 	be->bio = bio;
740 	bio_get(bio);
741 
742 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
743 		f2fs_bug_on(sbi, 1);
744 
745 	down_write(&io->bio_list_lock);
746 	list_add_tail(&be->list, &io->bio_list);
747 	up_write(&io->bio_list_lock);
748 }
749 
750 static void del_bio_entry(struct bio_entry *be)
751 {
752 	list_del(&be->list);
753 	kmem_cache_free(bio_entry_slab, be);
754 }
755 
756 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
757 							struct page *page)
758 {
759 	struct f2fs_sb_info *sbi = fio->sbi;
760 	enum temp_type temp;
761 	bool found = false;
762 	int ret = -EAGAIN;
763 
764 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
765 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
766 		struct list_head *head = &io->bio_list;
767 		struct bio_entry *be;
768 
769 		down_write(&io->bio_list_lock);
770 		list_for_each_entry(be, head, list) {
771 			if (be->bio != *bio)
772 				continue;
773 
774 			found = true;
775 
776 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
777 							    *fio->last_block,
778 							    fio->new_blkaddr));
779 			if (f2fs_crypt_mergeable_bio(*bio,
780 					fio->page->mapping->host,
781 					fio->page->index, fio) &&
782 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
783 					PAGE_SIZE) {
784 				ret = 0;
785 				break;
786 			}
787 
788 			/* page can't be merged into bio; submit the bio */
789 			del_bio_entry(be);
790 			__submit_bio(sbi, *bio, DATA);
791 			break;
792 		}
793 		up_write(&io->bio_list_lock);
794 	}
795 
796 	if (ret) {
797 		bio_put(*bio);
798 		*bio = NULL;
799 	}
800 
801 	return ret;
802 }
803 
804 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
805 					struct bio **bio, struct page *page)
806 {
807 	enum temp_type temp;
808 	bool found = false;
809 	struct bio *target = bio ? *bio : NULL;
810 
811 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
812 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
813 		struct list_head *head = &io->bio_list;
814 		struct bio_entry *be;
815 
816 		if (list_empty(head))
817 			continue;
818 
819 		down_read(&io->bio_list_lock);
820 		list_for_each_entry(be, head, list) {
821 			if (target)
822 				found = (target == be->bio);
823 			else
824 				found = __has_merged_page(be->bio, NULL,
825 								page, 0);
826 			if (found)
827 				break;
828 		}
829 		up_read(&io->bio_list_lock);
830 
831 		if (!found)
832 			continue;
833 
834 		found = false;
835 
836 		down_write(&io->bio_list_lock);
837 		list_for_each_entry(be, head, list) {
838 			if (target)
839 				found = (target == be->bio);
840 			else
841 				found = __has_merged_page(be->bio, NULL,
842 								page, 0);
843 			if (found) {
844 				target = be->bio;
845 				del_bio_entry(be);
846 				break;
847 			}
848 		}
849 		up_write(&io->bio_list_lock);
850 	}
851 
852 	if (found)
853 		__submit_bio(sbi, target, DATA);
854 	if (bio && *bio) {
855 		bio_put(*bio);
856 		*bio = NULL;
857 	}
858 }
859 
860 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
861 {
862 	struct bio *bio = *fio->bio;
863 	struct page *page = fio->encrypted_page ?
864 			fio->encrypted_page : fio->page;
865 
866 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
867 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
868 		return -EFSCORRUPTED;
869 
870 	trace_f2fs_submit_page_bio(page, fio);
871 
872 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
873 						fio->new_blkaddr))
874 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
875 alloc_new:
876 	if (!bio) {
877 		bio = __bio_alloc(fio, BIO_MAX_VECS);
878 		__attach_io_flag(fio);
879 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
880 				       fio->page->index, fio, GFP_NOIO);
881 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
882 
883 		add_bio_entry(fio->sbi, bio, page, fio->temp);
884 	} else {
885 		if (add_ipu_page(fio, &bio, page))
886 			goto alloc_new;
887 	}
888 
889 	if (fio->io_wbc)
890 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
891 
892 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
893 
894 	*fio->last_block = fio->new_blkaddr;
895 	*fio->bio = bio;
896 
897 	return 0;
898 }
899 
900 void f2fs_submit_page_write(struct f2fs_io_info *fio)
901 {
902 	struct f2fs_sb_info *sbi = fio->sbi;
903 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
904 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
905 	struct page *bio_page;
906 
907 	f2fs_bug_on(sbi, is_read_io(fio->op));
908 
909 	down_write(&io->io_rwsem);
910 next:
911 	if (fio->in_list) {
912 		spin_lock(&io->io_lock);
913 		if (list_empty(&io->io_list)) {
914 			spin_unlock(&io->io_lock);
915 			goto out;
916 		}
917 		fio = list_first_entry(&io->io_list,
918 						struct f2fs_io_info, list);
919 		list_del(&fio->list);
920 		spin_unlock(&io->io_lock);
921 	}
922 
923 	verify_fio_blkaddr(fio);
924 
925 	if (fio->encrypted_page)
926 		bio_page = fio->encrypted_page;
927 	else if (fio->compressed_page)
928 		bio_page = fio->compressed_page;
929 	else
930 		bio_page = fio->page;
931 
932 	/* set submitted = true as a return value */
933 	fio->submitted = true;
934 
935 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
936 
937 	if (io->bio &&
938 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
939 			      fio->new_blkaddr) ||
940 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
941 				       bio_page->index, fio)))
942 		__submit_merged_bio(io);
943 alloc_new:
944 	if (io->bio == NULL) {
945 		if (F2FS_IO_ALIGNED(sbi) &&
946 				(fio->type == DATA || fio->type == NODE) &&
947 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
948 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
949 			fio->retry = true;
950 			goto skip;
951 		}
952 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
953 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
954 				       bio_page->index, fio, GFP_NOIO);
955 		io->fio = *fio;
956 	}
957 
958 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
959 		__submit_merged_bio(io);
960 		goto alloc_new;
961 	}
962 
963 	if (fio->io_wbc)
964 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
965 
966 	io->last_block_in_bio = fio->new_blkaddr;
967 
968 	trace_f2fs_submit_page_write(fio->page, fio);
969 skip:
970 	if (fio->in_list)
971 		goto next;
972 out:
973 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
974 				!f2fs_is_checkpoint_ready(sbi))
975 		__submit_merged_bio(io);
976 	up_write(&io->io_rwsem);
977 }
978 
979 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
980 				      unsigned nr_pages, unsigned op_flag,
981 				      pgoff_t first_idx, bool for_write)
982 {
983 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
984 	struct bio *bio;
985 	struct bio_post_read_ctx *ctx = NULL;
986 	unsigned int post_read_steps = 0;
987 
988 	bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
989 			       bio_max_segs(nr_pages), &f2fs_bioset);
990 	if (!bio)
991 		return ERR_PTR(-ENOMEM);
992 
993 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
994 
995 	f2fs_target_device(sbi, blkaddr, bio);
996 	bio->bi_end_io = f2fs_read_end_io;
997 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
998 
999 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1000 		post_read_steps |= STEP_DECRYPT;
1001 
1002 	if (f2fs_need_verity(inode, first_idx))
1003 		post_read_steps |= STEP_VERITY;
1004 
1005 	/*
1006 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1007 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1008 	 * bio_post_read_ctx if the file is compressed, but the caller is
1009 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1010 	 */
1011 
1012 	if (post_read_steps || f2fs_compressed_file(inode)) {
1013 		/* Due to the mempool, this never fails. */
1014 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1015 		ctx->bio = bio;
1016 		ctx->sbi = sbi;
1017 		ctx->enabled_steps = post_read_steps;
1018 		ctx->fs_blkaddr = blkaddr;
1019 		bio->bi_private = ctx;
1020 	}
1021 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1022 
1023 	return bio;
1024 }
1025 
1026 /* This can handle encryption stuffs */
1027 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1028 				 block_t blkaddr, int op_flags, bool for_write)
1029 {
1030 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031 	struct bio *bio;
1032 
1033 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1034 					page->index, for_write);
1035 	if (IS_ERR(bio))
1036 		return PTR_ERR(bio);
1037 
1038 	/* wait for GCed page writeback via META_MAPPING */
1039 	f2fs_wait_on_block_writeback(inode, blkaddr);
1040 
1041 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1042 		bio_put(bio);
1043 		return -EFAULT;
1044 	}
1045 	ClearPageError(page);
1046 	inc_page_count(sbi, F2FS_RD_DATA);
1047 	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1048 	__submit_bio(sbi, bio, DATA);
1049 	return 0;
1050 }
1051 
1052 static void __set_data_blkaddr(struct dnode_of_data *dn)
1053 {
1054 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1055 	__le32 *addr_array;
1056 	int base = 0;
1057 
1058 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1059 		base = get_extra_isize(dn->inode);
1060 
1061 	/* Get physical address of data block */
1062 	addr_array = blkaddr_in_node(rn);
1063 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1064 }
1065 
1066 /*
1067  * Lock ordering for the change of data block address:
1068  * ->data_page
1069  *  ->node_page
1070  *    update block addresses in the node page
1071  */
1072 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1073 {
1074 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1075 	__set_data_blkaddr(dn);
1076 	if (set_page_dirty(dn->node_page))
1077 		dn->node_changed = true;
1078 }
1079 
1080 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1081 {
1082 	dn->data_blkaddr = blkaddr;
1083 	f2fs_set_data_blkaddr(dn);
1084 	f2fs_update_extent_cache(dn);
1085 }
1086 
1087 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1088 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1089 {
1090 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1091 	int err;
1092 
1093 	if (!count)
1094 		return 0;
1095 
1096 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1097 		return -EPERM;
1098 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1099 		return err;
1100 
1101 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1102 						dn->ofs_in_node, count);
1103 
1104 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1105 
1106 	for (; count > 0; dn->ofs_in_node++) {
1107 		block_t blkaddr = f2fs_data_blkaddr(dn);
1108 
1109 		if (blkaddr == NULL_ADDR) {
1110 			dn->data_blkaddr = NEW_ADDR;
1111 			__set_data_blkaddr(dn);
1112 			count--;
1113 		}
1114 	}
1115 
1116 	if (set_page_dirty(dn->node_page))
1117 		dn->node_changed = true;
1118 	return 0;
1119 }
1120 
1121 /* Should keep dn->ofs_in_node unchanged */
1122 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1123 {
1124 	unsigned int ofs_in_node = dn->ofs_in_node;
1125 	int ret;
1126 
1127 	ret = f2fs_reserve_new_blocks(dn, 1);
1128 	dn->ofs_in_node = ofs_in_node;
1129 	return ret;
1130 }
1131 
1132 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1133 {
1134 	bool need_put = dn->inode_page ? false : true;
1135 	int err;
1136 
1137 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1138 	if (err)
1139 		return err;
1140 
1141 	if (dn->data_blkaddr == NULL_ADDR)
1142 		err = f2fs_reserve_new_block(dn);
1143 	if (err || need_put)
1144 		f2fs_put_dnode(dn);
1145 	return err;
1146 }
1147 
1148 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1149 {
1150 	struct extent_info ei = {0, };
1151 	struct inode *inode = dn->inode;
1152 
1153 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1154 		dn->data_blkaddr = ei.blk + index - ei.fofs;
1155 		return 0;
1156 	}
1157 
1158 	return f2fs_reserve_block(dn, index);
1159 }
1160 
1161 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1162 						int op_flags, bool for_write)
1163 {
1164 	struct address_space *mapping = inode->i_mapping;
1165 	struct dnode_of_data dn;
1166 	struct page *page;
1167 	struct extent_info ei = {0, };
1168 	int err;
1169 
1170 	page = f2fs_grab_cache_page(mapping, index, for_write);
1171 	if (!page)
1172 		return ERR_PTR(-ENOMEM);
1173 
1174 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1175 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1176 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1177 						DATA_GENERIC_ENHANCE_READ)) {
1178 			err = -EFSCORRUPTED;
1179 			goto put_err;
1180 		}
1181 		goto got_it;
1182 	}
1183 
1184 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1185 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1186 	if (err)
1187 		goto put_err;
1188 	f2fs_put_dnode(&dn);
1189 
1190 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1191 		err = -ENOENT;
1192 		goto put_err;
1193 	}
1194 	if (dn.data_blkaddr != NEW_ADDR &&
1195 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1196 						dn.data_blkaddr,
1197 						DATA_GENERIC_ENHANCE)) {
1198 		err = -EFSCORRUPTED;
1199 		goto put_err;
1200 	}
1201 got_it:
1202 	if (PageUptodate(page)) {
1203 		unlock_page(page);
1204 		return page;
1205 	}
1206 
1207 	/*
1208 	 * A new dentry page is allocated but not able to be written, since its
1209 	 * new inode page couldn't be allocated due to -ENOSPC.
1210 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1211 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1212 	 * f2fs_init_inode_metadata.
1213 	 */
1214 	if (dn.data_blkaddr == NEW_ADDR) {
1215 		zero_user_segment(page, 0, PAGE_SIZE);
1216 		if (!PageUptodate(page))
1217 			SetPageUptodate(page);
1218 		unlock_page(page);
1219 		return page;
1220 	}
1221 
1222 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1223 						op_flags, for_write);
1224 	if (err)
1225 		goto put_err;
1226 	return page;
1227 
1228 put_err:
1229 	f2fs_put_page(page, 1);
1230 	return ERR_PTR(err);
1231 }
1232 
1233 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1234 {
1235 	struct address_space *mapping = inode->i_mapping;
1236 	struct page *page;
1237 
1238 	page = find_get_page(mapping, index);
1239 	if (page && PageUptodate(page))
1240 		return page;
1241 	f2fs_put_page(page, 0);
1242 
1243 	page = f2fs_get_read_data_page(inode, index, 0, false);
1244 	if (IS_ERR(page))
1245 		return page;
1246 
1247 	if (PageUptodate(page))
1248 		return page;
1249 
1250 	wait_on_page_locked(page);
1251 	if (unlikely(!PageUptodate(page))) {
1252 		f2fs_put_page(page, 0);
1253 		return ERR_PTR(-EIO);
1254 	}
1255 	return page;
1256 }
1257 
1258 /*
1259  * If it tries to access a hole, return an error.
1260  * Because, the callers, functions in dir.c and GC, should be able to know
1261  * whether this page exists or not.
1262  */
1263 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1264 							bool for_write)
1265 {
1266 	struct address_space *mapping = inode->i_mapping;
1267 	struct page *page;
1268 repeat:
1269 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1270 	if (IS_ERR(page))
1271 		return page;
1272 
1273 	/* wait for read completion */
1274 	lock_page(page);
1275 	if (unlikely(page->mapping != mapping)) {
1276 		f2fs_put_page(page, 1);
1277 		goto repeat;
1278 	}
1279 	if (unlikely(!PageUptodate(page))) {
1280 		f2fs_put_page(page, 1);
1281 		return ERR_PTR(-EIO);
1282 	}
1283 	return page;
1284 }
1285 
1286 /*
1287  * Caller ensures that this data page is never allocated.
1288  * A new zero-filled data page is allocated in the page cache.
1289  *
1290  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1291  * f2fs_unlock_op().
1292  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1293  * ipage should be released by this function.
1294  */
1295 struct page *f2fs_get_new_data_page(struct inode *inode,
1296 		struct page *ipage, pgoff_t index, bool new_i_size)
1297 {
1298 	struct address_space *mapping = inode->i_mapping;
1299 	struct page *page;
1300 	struct dnode_of_data dn;
1301 	int err;
1302 
1303 	page = f2fs_grab_cache_page(mapping, index, true);
1304 	if (!page) {
1305 		/*
1306 		 * before exiting, we should make sure ipage will be released
1307 		 * if any error occur.
1308 		 */
1309 		f2fs_put_page(ipage, 1);
1310 		return ERR_PTR(-ENOMEM);
1311 	}
1312 
1313 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1314 	err = f2fs_reserve_block(&dn, index);
1315 	if (err) {
1316 		f2fs_put_page(page, 1);
1317 		return ERR_PTR(err);
1318 	}
1319 	if (!ipage)
1320 		f2fs_put_dnode(&dn);
1321 
1322 	if (PageUptodate(page))
1323 		goto got_it;
1324 
1325 	if (dn.data_blkaddr == NEW_ADDR) {
1326 		zero_user_segment(page, 0, PAGE_SIZE);
1327 		if (!PageUptodate(page))
1328 			SetPageUptodate(page);
1329 	} else {
1330 		f2fs_put_page(page, 1);
1331 
1332 		/* if ipage exists, blkaddr should be NEW_ADDR */
1333 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1334 		page = f2fs_get_lock_data_page(inode, index, true);
1335 		if (IS_ERR(page))
1336 			return page;
1337 	}
1338 got_it:
1339 	if (new_i_size && i_size_read(inode) <
1340 				((loff_t)(index + 1) << PAGE_SHIFT))
1341 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1342 	return page;
1343 }
1344 
1345 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1346 {
1347 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1348 	struct f2fs_summary sum;
1349 	struct node_info ni;
1350 	block_t old_blkaddr;
1351 	blkcnt_t count = 1;
1352 	int err;
1353 
1354 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1355 		return -EPERM;
1356 
1357 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1358 	if (err)
1359 		return err;
1360 
1361 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1362 	if (dn->data_blkaddr != NULL_ADDR)
1363 		goto alloc;
1364 
1365 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1366 		return err;
1367 
1368 alloc:
1369 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1370 	old_blkaddr = dn->data_blkaddr;
1371 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1372 				&sum, seg_type, NULL);
1373 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1374 		invalidate_mapping_pages(META_MAPPING(sbi),
1375 					old_blkaddr, old_blkaddr);
1376 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1377 	}
1378 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1379 
1380 	/*
1381 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1382 	 * data from unwritten block via dio_read.
1383 	 */
1384 	return 0;
1385 }
1386 
1387 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1388 {
1389 	struct inode *inode = file_inode(iocb->ki_filp);
1390 	struct f2fs_map_blocks map;
1391 	int flag;
1392 	int err = 0;
1393 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1394 
1395 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1396 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1397 	if (map.m_len > map.m_lblk)
1398 		map.m_len -= map.m_lblk;
1399 	else
1400 		map.m_len = 0;
1401 
1402 	map.m_next_pgofs = NULL;
1403 	map.m_next_extent = NULL;
1404 	map.m_seg_type = NO_CHECK_TYPE;
1405 	map.m_may_create = true;
1406 
1407 	if (direct_io) {
1408 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1409 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1410 					F2FS_GET_BLOCK_PRE_AIO :
1411 					F2FS_GET_BLOCK_PRE_DIO;
1412 		goto map_blocks;
1413 	}
1414 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1415 		err = f2fs_convert_inline_inode(inode);
1416 		if (err)
1417 			return err;
1418 	}
1419 	if (f2fs_has_inline_data(inode))
1420 		return err;
1421 
1422 	flag = F2FS_GET_BLOCK_PRE_AIO;
1423 
1424 map_blocks:
1425 	err = f2fs_map_blocks(inode, &map, 1, flag);
1426 	if (map.m_len > 0 && err == -ENOSPC) {
1427 		if (!direct_io)
1428 			set_inode_flag(inode, FI_NO_PREALLOC);
1429 		err = 0;
1430 	}
1431 	return err;
1432 }
1433 
1434 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1435 {
1436 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1437 		if (lock)
1438 			down_read(&sbi->node_change);
1439 		else
1440 			up_read(&sbi->node_change);
1441 	} else {
1442 		if (lock)
1443 			f2fs_lock_op(sbi);
1444 		else
1445 			f2fs_unlock_op(sbi);
1446 	}
1447 }
1448 
1449 /*
1450  * f2fs_map_blocks() tries to find or build mapping relationship which
1451  * maps continuous logical blocks to physical blocks, and return such
1452  * info via f2fs_map_blocks structure.
1453  */
1454 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1455 						int create, int flag)
1456 {
1457 	unsigned int maxblocks = map->m_len;
1458 	struct dnode_of_data dn;
1459 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1460 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1461 	pgoff_t pgofs, end_offset, end;
1462 	int err = 0, ofs = 1;
1463 	unsigned int ofs_in_node, last_ofs_in_node;
1464 	blkcnt_t prealloc;
1465 	struct extent_info ei = {0, };
1466 	block_t blkaddr;
1467 	unsigned int start_pgofs;
1468 	int bidx = 0;
1469 
1470 	if (!maxblocks)
1471 		return 0;
1472 
1473 	map->m_bdev = inode->i_sb->s_bdev;
1474 	map->m_multidev_dio =
1475 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1476 
1477 	map->m_len = 0;
1478 	map->m_flags = 0;
1479 
1480 	/* it only supports block size == page size */
1481 	pgofs =	(pgoff_t)map->m_lblk;
1482 	end = pgofs + maxblocks;
1483 
1484 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1485 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1486 							map->m_may_create)
1487 			goto next_dnode;
1488 
1489 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1490 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1491 		map->m_flags = F2FS_MAP_MAPPED;
1492 		if (map->m_next_extent)
1493 			*map->m_next_extent = pgofs + map->m_len;
1494 
1495 		/* for hardware encryption, but to avoid potential issue in future */
1496 		if (flag == F2FS_GET_BLOCK_DIO)
1497 			f2fs_wait_on_block_writeback_range(inode,
1498 						map->m_pblk, map->m_len);
1499 
1500 		if (map->m_multidev_dio) {
1501 			block_t blk_addr = map->m_pblk;
1502 
1503 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1504 
1505 			map->m_bdev = FDEV(bidx).bdev;
1506 			map->m_pblk -= FDEV(bidx).start_blk;
1507 			map->m_len = min(map->m_len,
1508 				FDEV(bidx).end_blk + 1 - map->m_pblk);
1509 
1510 			if (map->m_may_create)
1511 				f2fs_update_device_state(sbi, inode->i_ino,
1512 							blk_addr, map->m_len);
1513 		}
1514 		goto out;
1515 	}
1516 
1517 next_dnode:
1518 	if (map->m_may_create)
1519 		f2fs_do_map_lock(sbi, flag, true);
1520 
1521 	/* When reading holes, we need its node page */
1522 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1523 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1524 	if (err) {
1525 		if (flag == F2FS_GET_BLOCK_BMAP)
1526 			map->m_pblk = 0;
1527 
1528 		if (err == -ENOENT) {
1529 			/*
1530 			 * There is one exceptional case that read_node_page()
1531 			 * may return -ENOENT due to filesystem has been
1532 			 * shutdown or cp_error, so force to convert error
1533 			 * number to EIO for such case.
1534 			 */
1535 			if (map->m_may_create &&
1536 				(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1537 				f2fs_cp_error(sbi))) {
1538 				err = -EIO;
1539 				goto unlock_out;
1540 			}
1541 
1542 			err = 0;
1543 			if (map->m_next_pgofs)
1544 				*map->m_next_pgofs =
1545 					f2fs_get_next_page_offset(&dn, pgofs);
1546 			if (map->m_next_extent)
1547 				*map->m_next_extent =
1548 					f2fs_get_next_page_offset(&dn, pgofs);
1549 		}
1550 		goto unlock_out;
1551 	}
1552 
1553 	start_pgofs = pgofs;
1554 	prealloc = 0;
1555 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1556 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1557 
1558 next_block:
1559 	blkaddr = f2fs_data_blkaddr(&dn);
1560 
1561 	if (__is_valid_data_blkaddr(blkaddr) &&
1562 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1563 		err = -EFSCORRUPTED;
1564 		goto sync_out;
1565 	}
1566 
1567 	if (__is_valid_data_blkaddr(blkaddr)) {
1568 		/* use out-place-update for driect IO under LFS mode */
1569 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1570 							map->m_may_create) {
1571 			err = __allocate_data_block(&dn, map->m_seg_type);
1572 			if (err)
1573 				goto sync_out;
1574 			blkaddr = dn.data_blkaddr;
1575 			set_inode_flag(inode, FI_APPEND_WRITE);
1576 		}
1577 	} else {
1578 		if (create) {
1579 			if (unlikely(f2fs_cp_error(sbi))) {
1580 				err = -EIO;
1581 				goto sync_out;
1582 			}
1583 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1584 				if (blkaddr == NULL_ADDR) {
1585 					prealloc++;
1586 					last_ofs_in_node = dn.ofs_in_node;
1587 				}
1588 			} else {
1589 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1590 					flag != F2FS_GET_BLOCK_DIO);
1591 				err = __allocate_data_block(&dn,
1592 							map->m_seg_type);
1593 				if (!err)
1594 					set_inode_flag(inode, FI_APPEND_WRITE);
1595 			}
1596 			if (err)
1597 				goto sync_out;
1598 			map->m_flags |= F2FS_MAP_NEW;
1599 			blkaddr = dn.data_blkaddr;
1600 		} else {
1601 			if (f2fs_compressed_file(inode) &&
1602 					f2fs_sanity_check_cluster(&dn) &&
1603 					(flag != F2FS_GET_BLOCK_FIEMAP ||
1604 					IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1605 				err = -EFSCORRUPTED;
1606 				goto sync_out;
1607 			}
1608 			if (flag == F2FS_GET_BLOCK_BMAP) {
1609 				map->m_pblk = 0;
1610 				goto sync_out;
1611 			}
1612 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1613 				goto sync_out;
1614 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1615 						blkaddr == NULL_ADDR) {
1616 				if (map->m_next_pgofs)
1617 					*map->m_next_pgofs = pgofs + 1;
1618 				goto sync_out;
1619 			}
1620 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1621 				/* for defragment case */
1622 				if (map->m_next_pgofs)
1623 					*map->m_next_pgofs = pgofs + 1;
1624 				goto sync_out;
1625 			}
1626 		}
1627 	}
1628 
1629 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1630 		goto skip;
1631 
1632 	if (map->m_multidev_dio)
1633 		bidx = f2fs_target_device_index(sbi, blkaddr);
1634 
1635 	if (map->m_len == 0) {
1636 		/* preallocated unwritten block should be mapped for fiemap. */
1637 		if (blkaddr == NEW_ADDR)
1638 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1639 		map->m_flags |= F2FS_MAP_MAPPED;
1640 
1641 		map->m_pblk = blkaddr;
1642 		map->m_len = 1;
1643 
1644 		if (map->m_multidev_dio)
1645 			map->m_bdev = FDEV(bidx).bdev;
1646 	} else if ((map->m_pblk != NEW_ADDR &&
1647 			blkaddr == (map->m_pblk + ofs)) ||
1648 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1649 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1650 		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1651 			goto sync_out;
1652 		ofs++;
1653 		map->m_len++;
1654 	} else {
1655 		goto sync_out;
1656 	}
1657 
1658 skip:
1659 	dn.ofs_in_node++;
1660 	pgofs++;
1661 
1662 	/* preallocate blocks in batch for one dnode page */
1663 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1664 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1665 
1666 		dn.ofs_in_node = ofs_in_node;
1667 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1668 		if (err)
1669 			goto sync_out;
1670 
1671 		map->m_len += dn.ofs_in_node - ofs_in_node;
1672 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1673 			err = -ENOSPC;
1674 			goto sync_out;
1675 		}
1676 		dn.ofs_in_node = end_offset;
1677 	}
1678 
1679 	if (pgofs >= end)
1680 		goto sync_out;
1681 	else if (dn.ofs_in_node < end_offset)
1682 		goto next_block;
1683 
1684 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1685 		if (map->m_flags & F2FS_MAP_MAPPED) {
1686 			unsigned int ofs = start_pgofs - map->m_lblk;
1687 
1688 			f2fs_update_extent_cache_range(&dn,
1689 				start_pgofs, map->m_pblk + ofs,
1690 				map->m_len - ofs);
1691 		}
1692 	}
1693 
1694 	f2fs_put_dnode(&dn);
1695 
1696 	if (map->m_may_create) {
1697 		f2fs_do_map_lock(sbi, flag, false);
1698 		f2fs_balance_fs(sbi, dn.node_changed);
1699 	}
1700 	goto next_dnode;
1701 
1702 sync_out:
1703 
1704 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1705 		/*
1706 		 * for hardware encryption, but to avoid potential issue
1707 		 * in future
1708 		 */
1709 		f2fs_wait_on_block_writeback_range(inode,
1710 						map->m_pblk, map->m_len);
1711 		invalidate_mapping_pages(META_MAPPING(sbi),
1712 						map->m_pblk, map->m_pblk);
1713 
1714 		if (map->m_multidev_dio) {
1715 			block_t blk_addr = map->m_pblk;
1716 
1717 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1718 
1719 			map->m_bdev = FDEV(bidx).bdev;
1720 			map->m_pblk -= FDEV(bidx).start_blk;
1721 
1722 			if (map->m_may_create)
1723 				f2fs_update_device_state(sbi, inode->i_ino,
1724 							blk_addr, map->m_len);
1725 
1726 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1727 						FDEV(bidx).end_blk + 1);
1728 		}
1729 	}
1730 
1731 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1732 		if (map->m_flags & F2FS_MAP_MAPPED) {
1733 			unsigned int ofs = start_pgofs - map->m_lblk;
1734 
1735 			f2fs_update_extent_cache_range(&dn,
1736 				start_pgofs, map->m_pblk + ofs,
1737 				map->m_len - ofs);
1738 		}
1739 		if (map->m_next_extent)
1740 			*map->m_next_extent = pgofs + 1;
1741 	}
1742 	f2fs_put_dnode(&dn);
1743 unlock_out:
1744 	if (map->m_may_create) {
1745 		f2fs_do_map_lock(sbi, flag, false);
1746 		f2fs_balance_fs(sbi, dn.node_changed);
1747 	}
1748 out:
1749 	trace_f2fs_map_blocks(inode, map, create, flag, err);
1750 	return err;
1751 }
1752 
1753 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1754 {
1755 	struct f2fs_map_blocks map;
1756 	block_t last_lblk;
1757 	int err;
1758 
1759 	if (pos + len > i_size_read(inode))
1760 		return false;
1761 
1762 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1763 	map.m_next_pgofs = NULL;
1764 	map.m_next_extent = NULL;
1765 	map.m_seg_type = NO_CHECK_TYPE;
1766 	map.m_may_create = false;
1767 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1768 
1769 	while (map.m_lblk < last_lblk) {
1770 		map.m_len = last_lblk - map.m_lblk;
1771 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1772 		if (err || map.m_len == 0)
1773 			return false;
1774 		map.m_lblk += map.m_len;
1775 	}
1776 	return true;
1777 }
1778 
1779 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1780 {
1781 	return (bytes >> inode->i_blkbits);
1782 }
1783 
1784 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1785 {
1786 	return (blks << inode->i_blkbits);
1787 }
1788 
1789 static int __get_data_block(struct inode *inode, sector_t iblock,
1790 			struct buffer_head *bh, int create, int flag,
1791 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1792 {
1793 	struct f2fs_map_blocks map;
1794 	int err;
1795 
1796 	map.m_lblk = iblock;
1797 	map.m_len = bytes_to_blks(inode, bh->b_size);
1798 	map.m_next_pgofs = next_pgofs;
1799 	map.m_next_extent = NULL;
1800 	map.m_seg_type = seg_type;
1801 	map.m_may_create = may_write;
1802 
1803 	err = f2fs_map_blocks(inode, &map, create, flag);
1804 	if (!err) {
1805 		map_bh(bh, inode->i_sb, map.m_pblk);
1806 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1807 		bh->b_size = blks_to_bytes(inode, map.m_len);
1808 
1809 		if (map.m_multidev_dio)
1810 			bh->b_bdev = map.m_bdev;
1811 	}
1812 	return err;
1813 }
1814 
1815 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1816 			struct buffer_head *bh_result, int create)
1817 {
1818 	return __get_data_block(inode, iblock, bh_result, create,
1819 				F2FS_GET_BLOCK_DIO, NULL,
1820 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1821 				true);
1822 }
1823 
1824 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1825 			struct buffer_head *bh_result, int create)
1826 {
1827 	return __get_data_block(inode, iblock, bh_result, create,
1828 				F2FS_GET_BLOCK_DIO, NULL,
1829 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1830 				false);
1831 }
1832 
1833 static int f2fs_xattr_fiemap(struct inode *inode,
1834 				struct fiemap_extent_info *fieinfo)
1835 {
1836 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1837 	struct page *page;
1838 	struct node_info ni;
1839 	__u64 phys = 0, len;
1840 	__u32 flags;
1841 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1842 	int err = 0;
1843 
1844 	if (f2fs_has_inline_xattr(inode)) {
1845 		int offset;
1846 
1847 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1848 						inode->i_ino, false);
1849 		if (!page)
1850 			return -ENOMEM;
1851 
1852 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1853 		if (err) {
1854 			f2fs_put_page(page, 1);
1855 			return err;
1856 		}
1857 
1858 		phys = blks_to_bytes(inode, ni.blk_addr);
1859 		offset = offsetof(struct f2fs_inode, i_addr) +
1860 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1861 					get_inline_xattr_addrs(inode));
1862 
1863 		phys += offset;
1864 		len = inline_xattr_size(inode);
1865 
1866 		f2fs_put_page(page, 1);
1867 
1868 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1869 
1870 		if (!xnid)
1871 			flags |= FIEMAP_EXTENT_LAST;
1872 
1873 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1874 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1875 		if (err || err == 1)
1876 			return err;
1877 	}
1878 
1879 	if (xnid) {
1880 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1881 		if (!page)
1882 			return -ENOMEM;
1883 
1884 		err = f2fs_get_node_info(sbi, xnid, &ni);
1885 		if (err) {
1886 			f2fs_put_page(page, 1);
1887 			return err;
1888 		}
1889 
1890 		phys = blks_to_bytes(inode, ni.blk_addr);
1891 		len = inode->i_sb->s_blocksize;
1892 
1893 		f2fs_put_page(page, 1);
1894 
1895 		flags = FIEMAP_EXTENT_LAST;
1896 	}
1897 
1898 	if (phys) {
1899 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1900 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1901 	}
1902 
1903 	return (err < 0 ? err : 0);
1904 }
1905 
1906 static loff_t max_inode_blocks(struct inode *inode)
1907 {
1908 	loff_t result = ADDRS_PER_INODE(inode);
1909 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1910 
1911 	/* two direct node blocks */
1912 	result += (leaf_count * 2);
1913 
1914 	/* two indirect node blocks */
1915 	leaf_count *= NIDS_PER_BLOCK;
1916 	result += (leaf_count * 2);
1917 
1918 	/* one double indirect node block */
1919 	leaf_count *= NIDS_PER_BLOCK;
1920 	result += leaf_count;
1921 
1922 	return result;
1923 }
1924 
1925 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1926 		u64 start, u64 len)
1927 {
1928 	struct f2fs_map_blocks map;
1929 	sector_t start_blk, last_blk;
1930 	pgoff_t next_pgofs;
1931 	u64 logical = 0, phys = 0, size = 0;
1932 	u32 flags = 0;
1933 	int ret = 0;
1934 	bool compr_cluster = false, compr_appended;
1935 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1936 	unsigned int count_in_cluster = 0;
1937 	loff_t maxbytes;
1938 
1939 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1940 		ret = f2fs_precache_extents(inode);
1941 		if (ret)
1942 			return ret;
1943 	}
1944 
1945 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1946 	if (ret)
1947 		return ret;
1948 
1949 	inode_lock(inode);
1950 
1951 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1952 	if (start > maxbytes) {
1953 		ret = -EFBIG;
1954 		goto out;
1955 	}
1956 
1957 	if (len > maxbytes || (maxbytes - len) < start)
1958 		len = maxbytes - start;
1959 
1960 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1961 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1962 		goto out;
1963 	}
1964 
1965 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1966 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1967 		if (ret != -EAGAIN)
1968 			goto out;
1969 	}
1970 
1971 	if (bytes_to_blks(inode, len) == 0)
1972 		len = blks_to_bytes(inode, 1);
1973 
1974 	start_blk = bytes_to_blks(inode, start);
1975 	last_blk = bytes_to_blks(inode, start + len - 1);
1976 
1977 next:
1978 	memset(&map, 0, sizeof(map));
1979 	map.m_lblk = start_blk;
1980 	map.m_len = bytes_to_blks(inode, len);
1981 	map.m_next_pgofs = &next_pgofs;
1982 	map.m_seg_type = NO_CHECK_TYPE;
1983 
1984 	if (compr_cluster) {
1985 		map.m_lblk += 1;
1986 		map.m_len = cluster_size - count_in_cluster;
1987 	}
1988 
1989 	ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1990 	if (ret)
1991 		goto out;
1992 
1993 	/* HOLE */
1994 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1995 		start_blk = next_pgofs;
1996 
1997 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1998 						max_inode_blocks(inode)))
1999 			goto prep_next;
2000 
2001 		flags |= FIEMAP_EXTENT_LAST;
2002 	}
2003 
2004 	compr_appended = false;
2005 	/* In a case of compressed cluster, append this to the last extent */
2006 	if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
2007 			!(map.m_flags & F2FS_MAP_FLAGS))) {
2008 		compr_appended = true;
2009 		goto skip_fill;
2010 	}
2011 
2012 	if (size) {
2013 		flags |= FIEMAP_EXTENT_MERGED;
2014 		if (IS_ENCRYPTED(inode))
2015 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2016 
2017 		ret = fiemap_fill_next_extent(fieinfo, logical,
2018 				phys, size, flags);
2019 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2020 		if (ret)
2021 			goto out;
2022 		size = 0;
2023 	}
2024 
2025 	if (start_blk > last_blk)
2026 		goto out;
2027 
2028 skip_fill:
2029 	if (map.m_pblk == COMPRESS_ADDR) {
2030 		compr_cluster = true;
2031 		count_in_cluster = 1;
2032 	} else if (compr_appended) {
2033 		unsigned int appended_blks = cluster_size -
2034 						count_in_cluster + 1;
2035 		size += blks_to_bytes(inode, appended_blks);
2036 		start_blk += appended_blks;
2037 		compr_cluster = false;
2038 	} else {
2039 		logical = blks_to_bytes(inode, start_blk);
2040 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2041 			blks_to_bytes(inode, map.m_pblk) : 0;
2042 		size = blks_to_bytes(inode, map.m_len);
2043 		flags = 0;
2044 
2045 		if (compr_cluster) {
2046 			flags = FIEMAP_EXTENT_ENCODED;
2047 			count_in_cluster += map.m_len;
2048 			if (count_in_cluster == cluster_size) {
2049 				compr_cluster = false;
2050 				size += blks_to_bytes(inode, 1);
2051 			}
2052 		} else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
2053 			flags = FIEMAP_EXTENT_UNWRITTEN;
2054 		}
2055 
2056 		start_blk += bytes_to_blks(inode, size);
2057 	}
2058 
2059 prep_next:
2060 	cond_resched();
2061 	if (fatal_signal_pending(current))
2062 		ret = -EINTR;
2063 	else
2064 		goto next;
2065 out:
2066 	if (ret == 1)
2067 		ret = 0;
2068 
2069 	inode_unlock(inode);
2070 	return ret;
2071 }
2072 
2073 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2074 {
2075 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
2076 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2077 		return inode->i_sb->s_maxbytes;
2078 
2079 	return i_size_read(inode);
2080 }
2081 
2082 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2083 					unsigned nr_pages,
2084 					struct f2fs_map_blocks *map,
2085 					struct bio **bio_ret,
2086 					sector_t *last_block_in_bio,
2087 					bool is_readahead)
2088 {
2089 	struct bio *bio = *bio_ret;
2090 	const unsigned blocksize = blks_to_bytes(inode, 1);
2091 	sector_t block_in_file;
2092 	sector_t last_block;
2093 	sector_t last_block_in_file;
2094 	sector_t block_nr;
2095 	int ret = 0;
2096 
2097 	block_in_file = (sector_t)page_index(page);
2098 	last_block = block_in_file + nr_pages;
2099 	last_block_in_file = bytes_to_blks(inode,
2100 			f2fs_readpage_limit(inode) + blocksize - 1);
2101 	if (last_block > last_block_in_file)
2102 		last_block = last_block_in_file;
2103 
2104 	/* just zeroing out page which is beyond EOF */
2105 	if (block_in_file >= last_block)
2106 		goto zero_out;
2107 	/*
2108 	 * Map blocks using the previous result first.
2109 	 */
2110 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2111 			block_in_file > map->m_lblk &&
2112 			block_in_file < (map->m_lblk + map->m_len))
2113 		goto got_it;
2114 
2115 	/*
2116 	 * Then do more f2fs_map_blocks() calls until we are
2117 	 * done with this page.
2118 	 */
2119 	map->m_lblk = block_in_file;
2120 	map->m_len = last_block - block_in_file;
2121 
2122 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2123 	if (ret)
2124 		goto out;
2125 got_it:
2126 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2127 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2128 		SetPageMappedToDisk(page);
2129 
2130 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2131 					!cleancache_get_page(page))) {
2132 			SetPageUptodate(page);
2133 			goto confused;
2134 		}
2135 
2136 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2137 						DATA_GENERIC_ENHANCE_READ)) {
2138 			ret = -EFSCORRUPTED;
2139 			goto out;
2140 		}
2141 	} else {
2142 zero_out:
2143 		zero_user_segment(page, 0, PAGE_SIZE);
2144 		if (f2fs_need_verity(inode, page->index) &&
2145 		    !fsverity_verify_page(page)) {
2146 			ret = -EIO;
2147 			goto out;
2148 		}
2149 		if (!PageUptodate(page))
2150 			SetPageUptodate(page);
2151 		unlock_page(page);
2152 		goto out;
2153 	}
2154 
2155 	/*
2156 	 * This page will go to BIO.  Do we need to send this
2157 	 * BIO off first?
2158 	 */
2159 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2160 				       *last_block_in_bio, block_nr) ||
2161 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2162 submit_and_realloc:
2163 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2164 		bio = NULL;
2165 	}
2166 	if (bio == NULL) {
2167 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2168 				is_readahead ? REQ_RAHEAD : 0, page->index,
2169 				false);
2170 		if (IS_ERR(bio)) {
2171 			ret = PTR_ERR(bio);
2172 			bio = NULL;
2173 			goto out;
2174 		}
2175 	}
2176 
2177 	/*
2178 	 * If the page is under writeback, we need to wait for
2179 	 * its completion to see the correct decrypted data.
2180 	 */
2181 	f2fs_wait_on_block_writeback(inode, block_nr);
2182 
2183 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2184 		goto submit_and_realloc;
2185 
2186 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2187 	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2188 	ClearPageError(page);
2189 	*last_block_in_bio = block_nr;
2190 	goto out;
2191 confused:
2192 	if (bio) {
2193 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2194 		bio = NULL;
2195 	}
2196 	unlock_page(page);
2197 out:
2198 	*bio_ret = bio;
2199 	return ret;
2200 }
2201 
2202 #ifdef CONFIG_F2FS_FS_COMPRESSION
2203 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2204 				unsigned nr_pages, sector_t *last_block_in_bio,
2205 				bool is_readahead, bool for_write)
2206 {
2207 	struct dnode_of_data dn;
2208 	struct inode *inode = cc->inode;
2209 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2210 	struct bio *bio = *bio_ret;
2211 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2212 	sector_t last_block_in_file;
2213 	const unsigned blocksize = blks_to_bytes(inode, 1);
2214 	struct decompress_io_ctx *dic = NULL;
2215 	struct extent_info ei = {0, };
2216 	bool from_dnode = true;
2217 	int i;
2218 	int ret = 0;
2219 
2220 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2221 
2222 	last_block_in_file = bytes_to_blks(inode,
2223 			f2fs_readpage_limit(inode) + blocksize - 1);
2224 
2225 	/* get rid of pages beyond EOF */
2226 	for (i = 0; i < cc->cluster_size; i++) {
2227 		struct page *page = cc->rpages[i];
2228 
2229 		if (!page)
2230 			continue;
2231 		if ((sector_t)page->index >= last_block_in_file) {
2232 			zero_user_segment(page, 0, PAGE_SIZE);
2233 			if (!PageUptodate(page))
2234 				SetPageUptodate(page);
2235 		} else if (!PageUptodate(page)) {
2236 			continue;
2237 		}
2238 		unlock_page(page);
2239 		if (for_write)
2240 			put_page(page);
2241 		cc->rpages[i] = NULL;
2242 		cc->nr_rpages--;
2243 	}
2244 
2245 	/* we are done since all pages are beyond EOF */
2246 	if (f2fs_cluster_is_empty(cc))
2247 		goto out;
2248 
2249 	if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2250 		from_dnode = false;
2251 
2252 	if (!from_dnode)
2253 		goto skip_reading_dnode;
2254 
2255 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2256 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2257 	if (ret)
2258 		goto out;
2259 
2260 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2261 
2262 skip_reading_dnode:
2263 	for (i = 1; i < cc->cluster_size; i++) {
2264 		block_t blkaddr;
2265 
2266 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2267 					dn.ofs_in_node + i) :
2268 					ei.blk + i - 1;
2269 
2270 		if (!__is_valid_data_blkaddr(blkaddr))
2271 			break;
2272 
2273 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2274 			ret = -EFAULT;
2275 			goto out_put_dnode;
2276 		}
2277 		cc->nr_cpages++;
2278 
2279 		if (!from_dnode && i >= ei.c_len)
2280 			break;
2281 	}
2282 
2283 	/* nothing to decompress */
2284 	if (cc->nr_cpages == 0) {
2285 		ret = 0;
2286 		goto out_put_dnode;
2287 	}
2288 
2289 	dic = f2fs_alloc_dic(cc);
2290 	if (IS_ERR(dic)) {
2291 		ret = PTR_ERR(dic);
2292 		goto out_put_dnode;
2293 	}
2294 
2295 	for (i = 0; i < cc->nr_cpages; i++) {
2296 		struct page *page = dic->cpages[i];
2297 		block_t blkaddr;
2298 		struct bio_post_read_ctx *ctx;
2299 
2300 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2301 					dn.ofs_in_node + i + 1) :
2302 					ei.blk + i;
2303 
2304 		f2fs_wait_on_block_writeback(inode, blkaddr);
2305 
2306 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2307 			if (atomic_dec_and_test(&dic->remaining_pages))
2308 				f2fs_decompress_cluster(dic);
2309 			continue;
2310 		}
2311 
2312 		if (bio && (!page_is_mergeable(sbi, bio,
2313 					*last_block_in_bio, blkaddr) ||
2314 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2315 submit_and_realloc:
2316 			__submit_bio(sbi, bio, DATA);
2317 			bio = NULL;
2318 		}
2319 
2320 		if (!bio) {
2321 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2322 					is_readahead ? REQ_RAHEAD : 0,
2323 					page->index, for_write);
2324 			if (IS_ERR(bio)) {
2325 				ret = PTR_ERR(bio);
2326 				f2fs_decompress_end_io(dic, ret);
2327 				f2fs_put_dnode(&dn);
2328 				*bio_ret = NULL;
2329 				return ret;
2330 			}
2331 		}
2332 
2333 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2334 			goto submit_and_realloc;
2335 
2336 		ctx = get_post_read_ctx(bio);
2337 		ctx->enabled_steps |= STEP_DECOMPRESS;
2338 		refcount_inc(&dic->refcnt);
2339 
2340 		inc_page_count(sbi, F2FS_RD_DATA);
2341 		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2342 		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2343 		ClearPageError(page);
2344 		*last_block_in_bio = blkaddr;
2345 	}
2346 
2347 	if (from_dnode)
2348 		f2fs_put_dnode(&dn);
2349 
2350 	*bio_ret = bio;
2351 	return 0;
2352 
2353 out_put_dnode:
2354 	if (from_dnode)
2355 		f2fs_put_dnode(&dn);
2356 out:
2357 	for (i = 0; i < cc->cluster_size; i++) {
2358 		if (cc->rpages[i]) {
2359 			ClearPageUptodate(cc->rpages[i]);
2360 			ClearPageError(cc->rpages[i]);
2361 			unlock_page(cc->rpages[i]);
2362 		}
2363 	}
2364 	*bio_ret = bio;
2365 	return ret;
2366 }
2367 #endif
2368 
2369 /*
2370  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2371  * Major change was from block_size == page_size in f2fs by default.
2372  */
2373 static int f2fs_mpage_readpages(struct inode *inode,
2374 		struct readahead_control *rac, struct page *page)
2375 {
2376 	struct bio *bio = NULL;
2377 	sector_t last_block_in_bio = 0;
2378 	struct f2fs_map_blocks map;
2379 #ifdef CONFIG_F2FS_FS_COMPRESSION
2380 	struct compress_ctx cc = {
2381 		.inode = inode,
2382 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2383 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2384 		.cluster_idx = NULL_CLUSTER,
2385 		.rpages = NULL,
2386 		.cpages = NULL,
2387 		.nr_rpages = 0,
2388 		.nr_cpages = 0,
2389 	};
2390 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2391 #endif
2392 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2393 	unsigned max_nr_pages = nr_pages;
2394 	int ret = 0;
2395 
2396 	map.m_pblk = 0;
2397 	map.m_lblk = 0;
2398 	map.m_len = 0;
2399 	map.m_flags = 0;
2400 	map.m_next_pgofs = NULL;
2401 	map.m_next_extent = NULL;
2402 	map.m_seg_type = NO_CHECK_TYPE;
2403 	map.m_may_create = false;
2404 
2405 	for (; nr_pages; nr_pages--) {
2406 		if (rac) {
2407 			page = readahead_page(rac);
2408 			prefetchw(&page->flags);
2409 		}
2410 
2411 #ifdef CONFIG_F2FS_FS_COMPRESSION
2412 		if (f2fs_compressed_file(inode)) {
2413 			/* there are remained comressed pages, submit them */
2414 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2415 				ret = f2fs_read_multi_pages(&cc, &bio,
2416 							max_nr_pages,
2417 							&last_block_in_bio,
2418 							rac != NULL, false);
2419 				f2fs_destroy_compress_ctx(&cc, false);
2420 				if (ret)
2421 					goto set_error_page;
2422 			}
2423 			if (cc.cluster_idx == NULL_CLUSTER) {
2424 				if (nc_cluster_idx ==
2425 					page->index >> cc.log_cluster_size) {
2426 					goto read_single_page;
2427 				}
2428 
2429 				ret = f2fs_is_compressed_cluster(inode, page->index);
2430 				if (ret < 0)
2431 					goto set_error_page;
2432 				else if (!ret) {
2433 					nc_cluster_idx =
2434 						page->index >> cc.log_cluster_size;
2435 					goto read_single_page;
2436 				}
2437 
2438 				nc_cluster_idx = NULL_CLUSTER;
2439 			}
2440 			ret = f2fs_init_compress_ctx(&cc);
2441 			if (ret)
2442 				goto set_error_page;
2443 
2444 			f2fs_compress_ctx_add_page(&cc, page);
2445 
2446 			goto next_page;
2447 		}
2448 read_single_page:
2449 #endif
2450 
2451 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2452 					&bio, &last_block_in_bio, rac);
2453 		if (ret) {
2454 #ifdef CONFIG_F2FS_FS_COMPRESSION
2455 set_error_page:
2456 #endif
2457 			SetPageError(page);
2458 			zero_user_segment(page, 0, PAGE_SIZE);
2459 			unlock_page(page);
2460 		}
2461 #ifdef CONFIG_F2FS_FS_COMPRESSION
2462 next_page:
2463 #endif
2464 		if (rac)
2465 			put_page(page);
2466 
2467 #ifdef CONFIG_F2FS_FS_COMPRESSION
2468 		if (f2fs_compressed_file(inode)) {
2469 			/* last page */
2470 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2471 				ret = f2fs_read_multi_pages(&cc, &bio,
2472 							max_nr_pages,
2473 							&last_block_in_bio,
2474 							rac != NULL, false);
2475 				f2fs_destroy_compress_ctx(&cc, false);
2476 			}
2477 		}
2478 #endif
2479 	}
2480 	if (bio)
2481 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2482 	return ret;
2483 }
2484 
2485 static int f2fs_read_data_page(struct file *file, struct page *page)
2486 {
2487 	struct inode *inode = page_file_mapping(page)->host;
2488 	int ret = -EAGAIN;
2489 
2490 	trace_f2fs_readpage(page, DATA);
2491 
2492 	if (!f2fs_is_compress_backend_ready(inode)) {
2493 		unlock_page(page);
2494 		return -EOPNOTSUPP;
2495 	}
2496 
2497 	/* If the file has inline data, try to read it directly */
2498 	if (f2fs_has_inline_data(inode))
2499 		ret = f2fs_read_inline_data(inode, page);
2500 	if (ret == -EAGAIN)
2501 		ret = f2fs_mpage_readpages(inode, NULL, page);
2502 	return ret;
2503 }
2504 
2505 static void f2fs_readahead(struct readahead_control *rac)
2506 {
2507 	struct inode *inode = rac->mapping->host;
2508 
2509 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2510 
2511 	if (!f2fs_is_compress_backend_ready(inode))
2512 		return;
2513 
2514 	/* If the file has inline data, skip readpages */
2515 	if (f2fs_has_inline_data(inode))
2516 		return;
2517 
2518 	f2fs_mpage_readpages(inode, rac, NULL);
2519 }
2520 
2521 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2522 {
2523 	struct inode *inode = fio->page->mapping->host;
2524 	struct page *mpage, *page;
2525 	gfp_t gfp_flags = GFP_NOFS;
2526 
2527 	if (!f2fs_encrypted_file(inode))
2528 		return 0;
2529 
2530 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2531 
2532 	/* wait for GCed page writeback via META_MAPPING */
2533 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2534 
2535 	if (fscrypt_inode_uses_inline_crypto(inode))
2536 		return 0;
2537 
2538 retry_encrypt:
2539 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2540 					PAGE_SIZE, 0, gfp_flags);
2541 	if (IS_ERR(fio->encrypted_page)) {
2542 		/* flush pending IOs and wait for a while in the ENOMEM case */
2543 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2544 			f2fs_flush_merged_writes(fio->sbi);
2545 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2546 			gfp_flags |= __GFP_NOFAIL;
2547 			goto retry_encrypt;
2548 		}
2549 		return PTR_ERR(fio->encrypted_page);
2550 	}
2551 
2552 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2553 	if (mpage) {
2554 		if (PageUptodate(mpage))
2555 			memcpy(page_address(mpage),
2556 				page_address(fio->encrypted_page), PAGE_SIZE);
2557 		f2fs_put_page(mpage, 1);
2558 	}
2559 	return 0;
2560 }
2561 
2562 static inline bool check_inplace_update_policy(struct inode *inode,
2563 				struct f2fs_io_info *fio)
2564 {
2565 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2566 	unsigned int policy = SM_I(sbi)->ipu_policy;
2567 
2568 	if (policy & (0x1 << F2FS_IPU_FORCE))
2569 		return true;
2570 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2571 		return true;
2572 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2573 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2574 		return true;
2575 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2576 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2577 		return true;
2578 
2579 	/*
2580 	 * IPU for rewrite async pages
2581 	 */
2582 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2583 			fio && fio->op == REQ_OP_WRITE &&
2584 			!(fio->op_flags & REQ_SYNC) &&
2585 			!IS_ENCRYPTED(inode))
2586 		return true;
2587 
2588 	/* this is only set during fdatasync */
2589 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2590 			is_inode_flag_set(inode, FI_NEED_IPU))
2591 		return true;
2592 
2593 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2594 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2595 		return true;
2596 
2597 	return false;
2598 }
2599 
2600 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2601 {
2602 	/* swap file is migrating in aligned write mode */
2603 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2604 		return false;
2605 
2606 	if (f2fs_is_pinned_file(inode))
2607 		return true;
2608 
2609 	/* if this is cold file, we should overwrite to avoid fragmentation */
2610 	if (file_is_cold(inode))
2611 		return true;
2612 
2613 	return check_inplace_update_policy(inode, fio);
2614 }
2615 
2616 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2617 {
2618 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2619 
2620 	if (f2fs_lfs_mode(sbi))
2621 		return true;
2622 	if (S_ISDIR(inode->i_mode))
2623 		return true;
2624 	if (IS_NOQUOTA(inode))
2625 		return true;
2626 	if (f2fs_is_atomic_file(inode))
2627 		return true;
2628 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2629 		return true;
2630 
2631 	/* swap file is migrating in aligned write mode */
2632 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2633 		return true;
2634 
2635 	if (fio) {
2636 		if (page_private_gcing(fio->page))
2637 			return true;
2638 		if (page_private_dummy(fio->page))
2639 			return true;
2640 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2641 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2642 			return true;
2643 	}
2644 	return false;
2645 }
2646 
2647 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2648 {
2649 	struct inode *inode = fio->page->mapping->host;
2650 
2651 	if (f2fs_should_update_outplace(inode, fio))
2652 		return false;
2653 
2654 	return f2fs_should_update_inplace(inode, fio);
2655 }
2656 
2657 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2658 {
2659 	struct page *page = fio->page;
2660 	struct inode *inode = page->mapping->host;
2661 	struct dnode_of_data dn;
2662 	struct extent_info ei = {0, };
2663 	struct node_info ni;
2664 	bool ipu_force = false;
2665 	int err = 0;
2666 
2667 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2668 	if (need_inplace_update(fio) &&
2669 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2670 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2671 
2672 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2673 						DATA_GENERIC_ENHANCE))
2674 			return -EFSCORRUPTED;
2675 
2676 		ipu_force = true;
2677 		fio->need_lock = LOCK_DONE;
2678 		goto got_it;
2679 	}
2680 
2681 	/* Deadlock due to between page->lock and f2fs_lock_op */
2682 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2683 		return -EAGAIN;
2684 
2685 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2686 	if (err)
2687 		goto out;
2688 
2689 	fio->old_blkaddr = dn.data_blkaddr;
2690 
2691 	/* This page is already truncated */
2692 	if (fio->old_blkaddr == NULL_ADDR) {
2693 		ClearPageUptodate(page);
2694 		clear_page_private_gcing(page);
2695 		goto out_writepage;
2696 	}
2697 got_it:
2698 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2699 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2700 						DATA_GENERIC_ENHANCE)) {
2701 		err = -EFSCORRUPTED;
2702 		goto out_writepage;
2703 	}
2704 	/*
2705 	 * If current allocation needs SSR,
2706 	 * it had better in-place writes for updated data.
2707 	 */
2708 	if (ipu_force ||
2709 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2710 					need_inplace_update(fio))) {
2711 		err = f2fs_encrypt_one_page(fio);
2712 		if (err)
2713 			goto out_writepage;
2714 
2715 		set_page_writeback(page);
2716 		ClearPageError(page);
2717 		f2fs_put_dnode(&dn);
2718 		if (fio->need_lock == LOCK_REQ)
2719 			f2fs_unlock_op(fio->sbi);
2720 		err = f2fs_inplace_write_data(fio);
2721 		if (err) {
2722 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2723 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2724 			if (PageWriteback(page))
2725 				end_page_writeback(page);
2726 		} else {
2727 			set_inode_flag(inode, FI_UPDATE_WRITE);
2728 		}
2729 		trace_f2fs_do_write_data_page(fio->page, IPU);
2730 		return err;
2731 	}
2732 
2733 	if (fio->need_lock == LOCK_RETRY) {
2734 		if (!f2fs_trylock_op(fio->sbi)) {
2735 			err = -EAGAIN;
2736 			goto out_writepage;
2737 		}
2738 		fio->need_lock = LOCK_REQ;
2739 	}
2740 
2741 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2742 	if (err)
2743 		goto out_writepage;
2744 
2745 	fio->version = ni.version;
2746 
2747 	err = f2fs_encrypt_one_page(fio);
2748 	if (err)
2749 		goto out_writepage;
2750 
2751 	set_page_writeback(page);
2752 	ClearPageError(page);
2753 
2754 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2755 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2756 
2757 	/* LFS mode write path */
2758 	f2fs_outplace_write_data(&dn, fio);
2759 	trace_f2fs_do_write_data_page(page, OPU);
2760 	set_inode_flag(inode, FI_APPEND_WRITE);
2761 	if (page->index == 0)
2762 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2763 out_writepage:
2764 	f2fs_put_dnode(&dn);
2765 out:
2766 	if (fio->need_lock == LOCK_REQ)
2767 		f2fs_unlock_op(fio->sbi);
2768 	return err;
2769 }
2770 
2771 int f2fs_write_single_data_page(struct page *page, int *submitted,
2772 				struct bio **bio,
2773 				sector_t *last_block,
2774 				struct writeback_control *wbc,
2775 				enum iostat_type io_type,
2776 				int compr_blocks,
2777 				bool allow_balance)
2778 {
2779 	struct inode *inode = page->mapping->host;
2780 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2781 	loff_t i_size = i_size_read(inode);
2782 	const pgoff_t end_index = ((unsigned long long)i_size)
2783 							>> PAGE_SHIFT;
2784 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2785 	unsigned offset = 0;
2786 	bool need_balance_fs = false;
2787 	int err = 0;
2788 	struct f2fs_io_info fio = {
2789 		.sbi = sbi,
2790 		.ino = inode->i_ino,
2791 		.type = DATA,
2792 		.op = REQ_OP_WRITE,
2793 		.op_flags = wbc_to_write_flags(wbc),
2794 		.old_blkaddr = NULL_ADDR,
2795 		.page = page,
2796 		.encrypted_page = NULL,
2797 		.submitted = false,
2798 		.compr_blocks = compr_blocks,
2799 		.need_lock = LOCK_RETRY,
2800 		.io_type = io_type,
2801 		.io_wbc = wbc,
2802 		.bio = bio,
2803 		.last_block = last_block,
2804 	};
2805 
2806 	trace_f2fs_writepage(page, DATA);
2807 
2808 	/* we should bypass data pages to proceed the kworkder jobs */
2809 	if (unlikely(f2fs_cp_error(sbi))) {
2810 		mapping_set_error(page->mapping, -EIO);
2811 		/*
2812 		 * don't drop any dirty dentry pages for keeping lastest
2813 		 * directory structure.
2814 		 */
2815 		if (S_ISDIR(inode->i_mode))
2816 			goto redirty_out;
2817 		goto out;
2818 	}
2819 
2820 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2821 		goto redirty_out;
2822 
2823 	if (page->index < end_index ||
2824 			f2fs_verity_in_progress(inode) ||
2825 			compr_blocks)
2826 		goto write;
2827 
2828 	/*
2829 	 * If the offset is out-of-range of file size,
2830 	 * this page does not have to be written to disk.
2831 	 */
2832 	offset = i_size & (PAGE_SIZE - 1);
2833 	if ((page->index >= end_index + 1) || !offset)
2834 		goto out;
2835 
2836 	zero_user_segment(page, offset, PAGE_SIZE);
2837 write:
2838 	if (f2fs_is_drop_cache(inode))
2839 		goto out;
2840 	/* we should not write 0'th page having journal header */
2841 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2842 			(!wbc->for_reclaim &&
2843 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2844 		goto redirty_out;
2845 
2846 	/* Dentry/quota blocks are controlled by checkpoint */
2847 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2848 		/*
2849 		 * We need to wait for node_write to avoid block allocation during
2850 		 * checkpoint. This can only happen to quota writes which can cause
2851 		 * the below discard race condition.
2852 		 */
2853 		if (IS_NOQUOTA(inode))
2854 			down_read(&sbi->node_write);
2855 
2856 		fio.need_lock = LOCK_DONE;
2857 		err = f2fs_do_write_data_page(&fio);
2858 
2859 		if (IS_NOQUOTA(inode))
2860 			up_read(&sbi->node_write);
2861 
2862 		goto done;
2863 	}
2864 
2865 	if (!wbc->for_reclaim)
2866 		need_balance_fs = true;
2867 	else if (has_not_enough_free_secs(sbi, 0, 0))
2868 		goto redirty_out;
2869 	else
2870 		set_inode_flag(inode, FI_HOT_DATA);
2871 
2872 	err = -EAGAIN;
2873 	if (f2fs_has_inline_data(inode)) {
2874 		err = f2fs_write_inline_data(inode, page);
2875 		if (!err)
2876 			goto out;
2877 	}
2878 
2879 	if (err == -EAGAIN) {
2880 		err = f2fs_do_write_data_page(&fio);
2881 		if (err == -EAGAIN) {
2882 			fio.need_lock = LOCK_REQ;
2883 			err = f2fs_do_write_data_page(&fio);
2884 		}
2885 	}
2886 
2887 	if (err) {
2888 		file_set_keep_isize(inode);
2889 	} else {
2890 		spin_lock(&F2FS_I(inode)->i_size_lock);
2891 		if (F2FS_I(inode)->last_disk_size < psize)
2892 			F2FS_I(inode)->last_disk_size = psize;
2893 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2894 	}
2895 
2896 done:
2897 	if (err && err != -ENOENT)
2898 		goto redirty_out;
2899 
2900 out:
2901 	inode_dec_dirty_pages(inode);
2902 	if (err) {
2903 		ClearPageUptodate(page);
2904 		clear_page_private_gcing(page);
2905 	}
2906 
2907 	if (wbc->for_reclaim) {
2908 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2909 		clear_inode_flag(inode, FI_HOT_DATA);
2910 		f2fs_remove_dirty_inode(inode);
2911 		submitted = NULL;
2912 	}
2913 	unlock_page(page);
2914 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2915 			!F2FS_I(inode)->cp_task && allow_balance)
2916 		f2fs_balance_fs(sbi, need_balance_fs);
2917 
2918 	if (unlikely(f2fs_cp_error(sbi))) {
2919 		f2fs_submit_merged_write(sbi, DATA);
2920 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2921 		submitted = NULL;
2922 	}
2923 
2924 	if (submitted)
2925 		*submitted = fio.submitted ? 1 : 0;
2926 
2927 	return 0;
2928 
2929 redirty_out:
2930 	redirty_page_for_writepage(wbc, page);
2931 	/*
2932 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2933 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2934 	 * file_write_and_wait_range() will see EIO error, which is critical
2935 	 * to return value of fsync() followed by atomic_write failure to user.
2936 	 */
2937 	if (!err || wbc->for_reclaim)
2938 		return AOP_WRITEPAGE_ACTIVATE;
2939 	unlock_page(page);
2940 	return err;
2941 }
2942 
2943 static int f2fs_write_data_page(struct page *page,
2944 					struct writeback_control *wbc)
2945 {
2946 #ifdef CONFIG_F2FS_FS_COMPRESSION
2947 	struct inode *inode = page->mapping->host;
2948 
2949 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2950 		goto out;
2951 
2952 	if (f2fs_compressed_file(inode)) {
2953 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2954 			redirty_page_for_writepage(wbc, page);
2955 			return AOP_WRITEPAGE_ACTIVATE;
2956 		}
2957 	}
2958 out:
2959 #endif
2960 
2961 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2962 						wbc, FS_DATA_IO, 0, true);
2963 }
2964 
2965 /*
2966  * This function was copied from write_cche_pages from mm/page-writeback.c.
2967  * The major change is making write step of cold data page separately from
2968  * warm/hot data page.
2969  */
2970 static int f2fs_write_cache_pages(struct address_space *mapping,
2971 					struct writeback_control *wbc,
2972 					enum iostat_type io_type)
2973 {
2974 	int ret = 0;
2975 	int done = 0, retry = 0;
2976 	struct pagevec pvec;
2977 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2978 	struct bio *bio = NULL;
2979 	sector_t last_block;
2980 #ifdef CONFIG_F2FS_FS_COMPRESSION
2981 	struct inode *inode = mapping->host;
2982 	struct compress_ctx cc = {
2983 		.inode = inode,
2984 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2985 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2986 		.cluster_idx = NULL_CLUSTER,
2987 		.rpages = NULL,
2988 		.nr_rpages = 0,
2989 		.cpages = NULL,
2990 		.rbuf = NULL,
2991 		.cbuf = NULL,
2992 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2993 		.private = NULL,
2994 	};
2995 #endif
2996 	int nr_pages;
2997 	pgoff_t index;
2998 	pgoff_t end;		/* Inclusive */
2999 	pgoff_t done_index;
3000 	int range_whole = 0;
3001 	xa_mark_t tag;
3002 	int nwritten = 0;
3003 	int submitted = 0;
3004 	int i;
3005 
3006 	pagevec_init(&pvec);
3007 
3008 	if (get_dirty_pages(mapping->host) <=
3009 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3010 		set_inode_flag(mapping->host, FI_HOT_DATA);
3011 	else
3012 		clear_inode_flag(mapping->host, FI_HOT_DATA);
3013 
3014 	if (wbc->range_cyclic) {
3015 		index = mapping->writeback_index; /* prev offset */
3016 		end = -1;
3017 	} else {
3018 		index = wbc->range_start >> PAGE_SHIFT;
3019 		end = wbc->range_end >> PAGE_SHIFT;
3020 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3021 			range_whole = 1;
3022 	}
3023 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3024 		tag = PAGECACHE_TAG_TOWRITE;
3025 	else
3026 		tag = PAGECACHE_TAG_DIRTY;
3027 retry:
3028 	retry = 0;
3029 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3030 		tag_pages_for_writeback(mapping, index, end);
3031 	done_index = index;
3032 	while (!done && !retry && (index <= end)) {
3033 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3034 				tag);
3035 		if (nr_pages == 0)
3036 			break;
3037 
3038 		for (i = 0; i < nr_pages; i++) {
3039 			struct page *page = pvec.pages[i];
3040 			bool need_readd;
3041 readd:
3042 			need_readd = false;
3043 #ifdef CONFIG_F2FS_FS_COMPRESSION
3044 			if (f2fs_compressed_file(inode)) {
3045 				void *fsdata = NULL;
3046 				struct page *pagep;
3047 				int ret2;
3048 
3049 				ret = f2fs_init_compress_ctx(&cc);
3050 				if (ret) {
3051 					done = 1;
3052 					break;
3053 				}
3054 
3055 				if (!f2fs_cluster_can_merge_page(&cc,
3056 								page->index)) {
3057 					ret = f2fs_write_multi_pages(&cc,
3058 						&submitted, wbc, io_type);
3059 					if (!ret)
3060 						need_readd = true;
3061 					goto result;
3062 				}
3063 
3064 				if (unlikely(f2fs_cp_error(sbi)))
3065 					goto lock_page;
3066 
3067 				if (!f2fs_cluster_is_empty(&cc))
3068 					goto lock_page;
3069 
3070 				ret2 = f2fs_prepare_compress_overwrite(
3071 							inode, &pagep,
3072 							page->index, &fsdata);
3073 				if (ret2 < 0) {
3074 					ret = ret2;
3075 					done = 1;
3076 					break;
3077 				} else if (ret2 &&
3078 					(!f2fs_compress_write_end(inode,
3079 						fsdata, page->index, 1) ||
3080 					 !f2fs_all_cluster_page_loaded(&cc,
3081 						&pvec, i, nr_pages))) {
3082 					retry = 1;
3083 					break;
3084 				}
3085 			}
3086 #endif
3087 			/* give a priority to WB_SYNC threads */
3088 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3089 					wbc->sync_mode == WB_SYNC_NONE) {
3090 				done = 1;
3091 				break;
3092 			}
3093 #ifdef CONFIG_F2FS_FS_COMPRESSION
3094 lock_page:
3095 #endif
3096 			done_index = page->index;
3097 retry_write:
3098 			lock_page(page);
3099 
3100 			if (unlikely(page->mapping != mapping)) {
3101 continue_unlock:
3102 				unlock_page(page);
3103 				continue;
3104 			}
3105 
3106 			if (!PageDirty(page)) {
3107 				/* someone wrote it for us */
3108 				goto continue_unlock;
3109 			}
3110 
3111 			if (PageWriteback(page)) {
3112 				if (wbc->sync_mode != WB_SYNC_NONE)
3113 					f2fs_wait_on_page_writeback(page,
3114 							DATA, true, true);
3115 				else
3116 					goto continue_unlock;
3117 			}
3118 
3119 			if (!clear_page_dirty_for_io(page))
3120 				goto continue_unlock;
3121 
3122 #ifdef CONFIG_F2FS_FS_COMPRESSION
3123 			if (f2fs_compressed_file(inode)) {
3124 				get_page(page);
3125 				f2fs_compress_ctx_add_page(&cc, page);
3126 				continue;
3127 			}
3128 #endif
3129 			ret = f2fs_write_single_data_page(page, &submitted,
3130 					&bio, &last_block, wbc, io_type,
3131 					0, true);
3132 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3133 				unlock_page(page);
3134 #ifdef CONFIG_F2FS_FS_COMPRESSION
3135 result:
3136 #endif
3137 			nwritten += submitted;
3138 			wbc->nr_to_write -= submitted;
3139 
3140 			if (unlikely(ret)) {
3141 				/*
3142 				 * keep nr_to_write, since vfs uses this to
3143 				 * get # of written pages.
3144 				 */
3145 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3146 					ret = 0;
3147 					goto next;
3148 				} else if (ret == -EAGAIN) {
3149 					ret = 0;
3150 					if (wbc->sync_mode == WB_SYNC_ALL) {
3151 						cond_resched();
3152 						congestion_wait(BLK_RW_ASYNC,
3153 							DEFAULT_IO_TIMEOUT);
3154 						goto retry_write;
3155 					}
3156 					goto next;
3157 				}
3158 				done_index = page->index + 1;
3159 				done = 1;
3160 				break;
3161 			}
3162 
3163 			if (wbc->nr_to_write <= 0 &&
3164 					wbc->sync_mode == WB_SYNC_NONE) {
3165 				done = 1;
3166 				break;
3167 			}
3168 next:
3169 			if (need_readd)
3170 				goto readd;
3171 		}
3172 		pagevec_release(&pvec);
3173 		cond_resched();
3174 	}
3175 #ifdef CONFIG_F2FS_FS_COMPRESSION
3176 	/* flush remained pages in compress cluster */
3177 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3178 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3179 		nwritten += submitted;
3180 		wbc->nr_to_write -= submitted;
3181 		if (ret) {
3182 			done = 1;
3183 			retry = 0;
3184 		}
3185 	}
3186 	if (f2fs_compressed_file(inode))
3187 		f2fs_destroy_compress_ctx(&cc, false);
3188 #endif
3189 	if (retry) {
3190 		index = 0;
3191 		end = -1;
3192 		goto retry;
3193 	}
3194 	if (wbc->range_cyclic && !done)
3195 		done_index = 0;
3196 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3197 		mapping->writeback_index = done_index;
3198 
3199 	if (nwritten)
3200 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3201 								NULL, 0, DATA);
3202 	/* submit cached bio of IPU write */
3203 	if (bio)
3204 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3205 
3206 	return ret;
3207 }
3208 
3209 static inline bool __should_serialize_io(struct inode *inode,
3210 					struct writeback_control *wbc)
3211 {
3212 	/* to avoid deadlock in path of data flush */
3213 	if (F2FS_I(inode)->cp_task)
3214 		return false;
3215 
3216 	if (!S_ISREG(inode->i_mode))
3217 		return false;
3218 	if (IS_NOQUOTA(inode))
3219 		return false;
3220 
3221 	if (f2fs_need_compress_data(inode))
3222 		return true;
3223 	if (wbc->sync_mode != WB_SYNC_ALL)
3224 		return true;
3225 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3226 		return true;
3227 	return false;
3228 }
3229 
3230 static int __f2fs_write_data_pages(struct address_space *mapping,
3231 						struct writeback_control *wbc,
3232 						enum iostat_type io_type)
3233 {
3234 	struct inode *inode = mapping->host;
3235 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3236 	struct blk_plug plug;
3237 	int ret;
3238 	bool locked = false;
3239 
3240 	/* deal with chardevs and other special file */
3241 	if (!mapping->a_ops->writepage)
3242 		return 0;
3243 
3244 	/* skip writing if there is no dirty page in this inode */
3245 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3246 		return 0;
3247 
3248 	/* during POR, we don't need to trigger writepage at all. */
3249 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3250 		goto skip_write;
3251 
3252 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3253 			wbc->sync_mode == WB_SYNC_NONE &&
3254 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3255 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3256 		goto skip_write;
3257 
3258 	/* skip writing during file defragment */
3259 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3260 		goto skip_write;
3261 
3262 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3263 
3264 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3265 	if (wbc->sync_mode == WB_SYNC_ALL)
3266 		atomic_inc(&sbi->wb_sync_req[DATA]);
3267 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
3268 		goto skip_write;
3269 
3270 	if (__should_serialize_io(inode, wbc)) {
3271 		mutex_lock(&sbi->writepages);
3272 		locked = true;
3273 	}
3274 
3275 	blk_start_plug(&plug);
3276 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3277 	blk_finish_plug(&plug);
3278 
3279 	if (locked)
3280 		mutex_unlock(&sbi->writepages);
3281 
3282 	if (wbc->sync_mode == WB_SYNC_ALL)
3283 		atomic_dec(&sbi->wb_sync_req[DATA]);
3284 	/*
3285 	 * if some pages were truncated, we cannot guarantee its mapping->host
3286 	 * to detect pending bios.
3287 	 */
3288 
3289 	f2fs_remove_dirty_inode(inode);
3290 	return ret;
3291 
3292 skip_write:
3293 	wbc->pages_skipped += get_dirty_pages(inode);
3294 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3295 	return 0;
3296 }
3297 
3298 static int f2fs_write_data_pages(struct address_space *mapping,
3299 			    struct writeback_control *wbc)
3300 {
3301 	struct inode *inode = mapping->host;
3302 
3303 	return __f2fs_write_data_pages(mapping, wbc,
3304 			F2FS_I(inode)->cp_task == current ?
3305 			FS_CP_DATA_IO : FS_DATA_IO);
3306 }
3307 
3308 static void f2fs_write_failed(struct inode *inode, loff_t to)
3309 {
3310 	loff_t i_size = i_size_read(inode);
3311 
3312 	if (IS_NOQUOTA(inode))
3313 		return;
3314 
3315 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3316 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3317 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3318 		filemap_invalidate_lock(inode->i_mapping);
3319 
3320 		truncate_pagecache(inode, i_size);
3321 		f2fs_truncate_blocks(inode, i_size, true);
3322 
3323 		filemap_invalidate_unlock(inode->i_mapping);
3324 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3325 	}
3326 }
3327 
3328 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3329 			struct page *page, loff_t pos, unsigned len,
3330 			block_t *blk_addr, bool *node_changed)
3331 {
3332 	struct inode *inode = page->mapping->host;
3333 	pgoff_t index = page->index;
3334 	struct dnode_of_data dn;
3335 	struct page *ipage;
3336 	bool locked = false;
3337 	struct extent_info ei = {0, };
3338 	int err = 0;
3339 	int flag;
3340 
3341 	/*
3342 	 * we already allocated all the blocks, so we don't need to get
3343 	 * the block addresses when there is no need to fill the page.
3344 	 */
3345 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3346 	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3347 	    !f2fs_verity_in_progress(inode))
3348 		return 0;
3349 
3350 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3351 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3352 		flag = F2FS_GET_BLOCK_DEFAULT;
3353 	else
3354 		flag = F2FS_GET_BLOCK_PRE_AIO;
3355 
3356 	if (f2fs_has_inline_data(inode) ||
3357 			(pos & PAGE_MASK) >= i_size_read(inode)) {
3358 		f2fs_do_map_lock(sbi, flag, true);
3359 		locked = true;
3360 	}
3361 
3362 restart:
3363 	/* check inline_data */
3364 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3365 	if (IS_ERR(ipage)) {
3366 		err = PTR_ERR(ipage);
3367 		goto unlock_out;
3368 	}
3369 
3370 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3371 
3372 	if (f2fs_has_inline_data(inode)) {
3373 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3374 			f2fs_do_read_inline_data(page, ipage);
3375 			set_inode_flag(inode, FI_DATA_EXIST);
3376 			if (inode->i_nlink)
3377 				set_page_private_inline(ipage);
3378 		} else {
3379 			err = f2fs_convert_inline_page(&dn, page);
3380 			if (err)
3381 				goto out;
3382 			if (dn.data_blkaddr == NULL_ADDR)
3383 				err = f2fs_get_block(&dn, index);
3384 		}
3385 	} else if (locked) {
3386 		err = f2fs_get_block(&dn, index);
3387 	} else {
3388 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3389 			dn.data_blkaddr = ei.blk + index - ei.fofs;
3390 		} else {
3391 			/* hole case */
3392 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3393 			if (err || dn.data_blkaddr == NULL_ADDR) {
3394 				f2fs_put_dnode(&dn);
3395 				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3396 								true);
3397 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3398 				locked = true;
3399 				goto restart;
3400 			}
3401 		}
3402 	}
3403 
3404 	/* convert_inline_page can make node_changed */
3405 	*blk_addr = dn.data_blkaddr;
3406 	*node_changed = dn.node_changed;
3407 out:
3408 	f2fs_put_dnode(&dn);
3409 unlock_out:
3410 	if (locked)
3411 		f2fs_do_map_lock(sbi, flag, false);
3412 	return err;
3413 }
3414 
3415 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3416 		loff_t pos, unsigned len, unsigned flags,
3417 		struct page **pagep, void **fsdata)
3418 {
3419 	struct inode *inode = mapping->host;
3420 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3421 	struct page *page = NULL;
3422 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3423 	bool need_balance = false, drop_atomic = false;
3424 	block_t blkaddr = NULL_ADDR;
3425 	int err = 0;
3426 
3427 	trace_f2fs_write_begin(inode, pos, len, flags);
3428 
3429 	if (!f2fs_is_checkpoint_ready(sbi)) {
3430 		err = -ENOSPC;
3431 		goto fail;
3432 	}
3433 
3434 	if ((f2fs_is_atomic_file(inode) &&
3435 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3436 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3437 		err = -ENOMEM;
3438 		drop_atomic = true;
3439 		goto fail;
3440 	}
3441 
3442 	/*
3443 	 * We should check this at this moment to avoid deadlock on inode page
3444 	 * and #0 page. The locking rule for inline_data conversion should be:
3445 	 * lock_page(page #0) -> lock_page(inode_page)
3446 	 */
3447 	if (index != 0) {
3448 		err = f2fs_convert_inline_inode(inode);
3449 		if (err)
3450 			goto fail;
3451 	}
3452 
3453 #ifdef CONFIG_F2FS_FS_COMPRESSION
3454 	if (f2fs_compressed_file(inode)) {
3455 		int ret;
3456 
3457 		*fsdata = NULL;
3458 
3459 		if (len == PAGE_SIZE)
3460 			goto repeat;
3461 
3462 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3463 							index, fsdata);
3464 		if (ret < 0) {
3465 			err = ret;
3466 			goto fail;
3467 		} else if (ret) {
3468 			return 0;
3469 		}
3470 	}
3471 #endif
3472 
3473 repeat:
3474 	/*
3475 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3476 	 * wait_for_stable_page. Will wait that below with our IO control.
3477 	 */
3478 	page = f2fs_pagecache_get_page(mapping, index,
3479 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3480 	if (!page) {
3481 		err = -ENOMEM;
3482 		goto fail;
3483 	}
3484 
3485 	/* TODO: cluster can be compressed due to race with .writepage */
3486 
3487 	*pagep = page;
3488 
3489 	err = prepare_write_begin(sbi, page, pos, len,
3490 					&blkaddr, &need_balance);
3491 	if (err)
3492 		goto fail;
3493 
3494 	if (need_balance && !IS_NOQUOTA(inode) &&
3495 			has_not_enough_free_secs(sbi, 0, 0)) {
3496 		unlock_page(page);
3497 		f2fs_balance_fs(sbi, true);
3498 		lock_page(page);
3499 		if (page->mapping != mapping) {
3500 			/* The page got truncated from under us */
3501 			f2fs_put_page(page, 1);
3502 			goto repeat;
3503 		}
3504 	}
3505 
3506 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3507 
3508 	if (len == PAGE_SIZE || PageUptodate(page))
3509 		return 0;
3510 
3511 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3512 	    !f2fs_verity_in_progress(inode)) {
3513 		zero_user_segment(page, len, PAGE_SIZE);
3514 		return 0;
3515 	}
3516 
3517 	if (blkaddr == NEW_ADDR) {
3518 		zero_user_segment(page, 0, PAGE_SIZE);
3519 		SetPageUptodate(page);
3520 	} else {
3521 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3522 				DATA_GENERIC_ENHANCE_READ)) {
3523 			err = -EFSCORRUPTED;
3524 			goto fail;
3525 		}
3526 		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3527 		if (err)
3528 			goto fail;
3529 
3530 		lock_page(page);
3531 		if (unlikely(page->mapping != mapping)) {
3532 			f2fs_put_page(page, 1);
3533 			goto repeat;
3534 		}
3535 		if (unlikely(!PageUptodate(page))) {
3536 			err = -EIO;
3537 			goto fail;
3538 		}
3539 	}
3540 	return 0;
3541 
3542 fail:
3543 	f2fs_put_page(page, 1);
3544 	f2fs_write_failed(inode, pos + len);
3545 	if (drop_atomic)
3546 		f2fs_drop_inmem_pages_all(sbi, false);
3547 	return err;
3548 }
3549 
3550 static int f2fs_write_end(struct file *file,
3551 			struct address_space *mapping,
3552 			loff_t pos, unsigned len, unsigned copied,
3553 			struct page *page, void *fsdata)
3554 {
3555 	struct inode *inode = page->mapping->host;
3556 
3557 	trace_f2fs_write_end(inode, pos, len, copied);
3558 
3559 	/*
3560 	 * This should be come from len == PAGE_SIZE, and we expect copied
3561 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3562 	 * let generic_perform_write() try to copy data again through copied=0.
3563 	 */
3564 	if (!PageUptodate(page)) {
3565 		if (unlikely(copied != len))
3566 			copied = 0;
3567 		else
3568 			SetPageUptodate(page);
3569 	}
3570 
3571 #ifdef CONFIG_F2FS_FS_COMPRESSION
3572 	/* overwrite compressed file */
3573 	if (f2fs_compressed_file(inode) && fsdata) {
3574 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3575 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3576 
3577 		if (pos + copied > i_size_read(inode) &&
3578 				!f2fs_verity_in_progress(inode))
3579 			f2fs_i_size_write(inode, pos + copied);
3580 		return copied;
3581 	}
3582 #endif
3583 
3584 	if (!copied)
3585 		goto unlock_out;
3586 
3587 	set_page_dirty(page);
3588 
3589 	if (pos + copied > i_size_read(inode) &&
3590 	    !f2fs_verity_in_progress(inode))
3591 		f2fs_i_size_write(inode, pos + copied);
3592 unlock_out:
3593 	f2fs_put_page(page, 1);
3594 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3595 	return copied;
3596 }
3597 
3598 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3599 			   loff_t offset)
3600 {
3601 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3602 	unsigned blkbits = i_blkbits;
3603 	unsigned blocksize_mask = (1 << blkbits) - 1;
3604 	unsigned long align = offset | iov_iter_alignment(iter);
3605 	struct block_device *bdev = inode->i_sb->s_bdev;
3606 
3607 	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3608 		return 1;
3609 
3610 	if (align & blocksize_mask) {
3611 		if (bdev)
3612 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
3613 		blocksize_mask = (1 << blkbits) - 1;
3614 		if (align & blocksize_mask)
3615 			return -EINVAL;
3616 		return 1;
3617 	}
3618 	return 0;
3619 }
3620 
3621 static void f2fs_dio_end_io(struct bio *bio)
3622 {
3623 	struct f2fs_private_dio *dio = bio->bi_private;
3624 
3625 	dec_page_count(F2FS_I_SB(dio->inode),
3626 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3627 
3628 	bio->bi_private = dio->orig_private;
3629 	bio->bi_end_io = dio->orig_end_io;
3630 
3631 	kfree(dio);
3632 
3633 	bio_endio(bio);
3634 }
3635 
3636 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3637 							loff_t file_offset)
3638 {
3639 	struct f2fs_private_dio *dio;
3640 	bool write = (bio_op(bio) == REQ_OP_WRITE);
3641 
3642 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
3643 			sizeof(struct f2fs_private_dio), GFP_NOFS);
3644 	if (!dio)
3645 		goto out;
3646 
3647 	dio->inode = inode;
3648 	dio->orig_end_io = bio->bi_end_io;
3649 	dio->orig_private = bio->bi_private;
3650 	dio->write = write;
3651 
3652 	bio->bi_end_io = f2fs_dio_end_io;
3653 	bio->bi_private = dio;
3654 
3655 	inc_page_count(F2FS_I_SB(inode),
3656 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3657 
3658 	submit_bio(bio);
3659 	return;
3660 out:
3661 	bio->bi_status = BLK_STS_IOERR;
3662 	bio_endio(bio);
3663 }
3664 
3665 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3666 {
3667 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3668 	struct inode *inode = mapping->host;
3669 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3670 	struct f2fs_inode_info *fi = F2FS_I(inode);
3671 	size_t count = iov_iter_count(iter);
3672 	loff_t offset = iocb->ki_pos;
3673 	int rw = iov_iter_rw(iter);
3674 	int err;
3675 	enum rw_hint hint = iocb->ki_hint;
3676 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
3677 	bool do_opu;
3678 
3679 	err = check_direct_IO(inode, iter, offset);
3680 	if (err)
3681 		return err < 0 ? err : 0;
3682 
3683 	if (f2fs_force_buffered_io(inode, iocb, iter))
3684 		return 0;
3685 
3686 	do_opu = rw == WRITE && f2fs_lfs_mode(sbi);
3687 
3688 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3689 
3690 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3691 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
3692 
3693 	if (iocb->ki_flags & IOCB_NOWAIT) {
3694 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3695 			iocb->ki_hint = hint;
3696 			err = -EAGAIN;
3697 			goto out;
3698 		}
3699 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3700 			up_read(&fi->i_gc_rwsem[rw]);
3701 			iocb->ki_hint = hint;
3702 			err = -EAGAIN;
3703 			goto out;
3704 		}
3705 	} else {
3706 		down_read(&fi->i_gc_rwsem[rw]);
3707 		if (do_opu)
3708 			down_read(&fi->i_gc_rwsem[READ]);
3709 	}
3710 
3711 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3712 			iter, rw == WRITE ? get_data_block_dio_write :
3713 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
3714 			rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3715 			DIO_SKIP_HOLES);
3716 
3717 	if (do_opu)
3718 		up_read(&fi->i_gc_rwsem[READ]);
3719 
3720 	up_read(&fi->i_gc_rwsem[rw]);
3721 
3722 	if (rw == WRITE) {
3723 		if (whint_mode == WHINT_MODE_OFF)
3724 			iocb->ki_hint = hint;
3725 		if (err > 0) {
3726 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3727 									err);
3728 			if (!do_opu)
3729 				set_inode_flag(inode, FI_UPDATE_WRITE);
3730 		} else if (err == -EIOCBQUEUED) {
3731 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3732 						count - iov_iter_count(iter));
3733 		} else if (err < 0) {
3734 			f2fs_write_failed(inode, offset + count);
3735 		}
3736 	} else {
3737 		if (err > 0)
3738 			f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3739 		else if (err == -EIOCBQUEUED)
3740 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3741 						count - iov_iter_count(iter));
3742 	}
3743 
3744 out:
3745 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3746 
3747 	return err;
3748 }
3749 
3750 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3751 							unsigned int length)
3752 {
3753 	struct inode *inode = page->mapping->host;
3754 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3755 
3756 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3757 		(offset % PAGE_SIZE || length != PAGE_SIZE))
3758 		return;
3759 
3760 	if (PageDirty(page)) {
3761 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3762 			dec_page_count(sbi, F2FS_DIRTY_META);
3763 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3764 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3765 		} else {
3766 			inode_dec_dirty_pages(inode);
3767 			f2fs_remove_dirty_inode(inode);
3768 		}
3769 	}
3770 
3771 	clear_page_private_gcing(page);
3772 
3773 	if (test_opt(sbi, COMPRESS_CACHE)) {
3774 		if (f2fs_compressed_file(inode))
3775 			f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3776 		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3777 			clear_page_private_data(page);
3778 	}
3779 
3780 	if (page_private_atomic(page))
3781 		return f2fs_drop_inmem_page(inode, page);
3782 
3783 	detach_page_private(page);
3784 	set_page_private(page, 0);
3785 }
3786 
3787 int f2fs_release_page(struct page *page, gfp_t wait)
3788 {
3789 	/* If this is dirty page, keep PagePrivate */
3790 	if (PageDirty(page))
3791 		return 0;
3792 
3793 	/* This is atomic written page, keep Private */
3794 	if (page_private_atomic(page))
3795 		return 0;
3796 
3797 	if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3798 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3799 		struct inode *inode = page->mapping->host;
3800 
3801 		if (f2fs_compressed_file(inode))
3802 			f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3803 		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3804 			clear_page_private_data(page);
3805 	}
3806 
3807 	clear_page_private_gcing(page);
3808 
3809 	detach_page_private(page);
3810 	set_page_private(page, 0);
3811 	return 1;
3812 }
3813 
3814 static int f2fs_set_data_page_dirty(struct page *page)
3815 {
3816 	struct inode *inode = page_file_mapping(page)->host;
3817 
3818 	trace_f2fs_set_page_dirty(page, DATA);
3819 
3820 	if (!PageUptodate(page))
3821 		SetPageUptodate(page);
3822 	if (PageSwapCache(page))
3823 		return __set_page_dirty_nobuffers(page);
3824 
3825 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3826 		if (!page_private_atomic(page)) {
3827 			f2fs_register_inmem_page(inode, page);
3828 			return 1;
3829 		}
3830 		/*
3831 		 * Previously, this page has been registered, we just
3832 		 * return here.
3833 		 */
3834 		return 0;
3835 	}
3836 
3837 	if (!PageDirty(page)) {
3838 		__set_page_dirty_nobuffers(page);
3839 		f2fs_update_dirty_page(inode, page);
3840 		return 1;
3841 	}
3842 	return 0;
3843 }
3844 
3845 
3846 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3847 {
3848 #ifdef CONFIG_F2FS_FS_COMPRESSION
3849 	struct dnode_of_data dn;
3850 	sector_t start_idx, blknr = 0;
3851 	int ret;
3852 
3853 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3854 
3855 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3856 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3857 	if (ret)
3858 		return 0;
3859 
3860 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3861 		dn.ofs_in_node += block - start_idx;
3862 		blknr = f2fs_data_blkaddr(&dn);
3863 		if (!__is_valid_data_blkaddr(blknr))
3864 			blknr = 0;
3865 	}
3866 
3867 	f2fs_put_dnode(&dn);
3868 	return blknr;
3869 #else
3870 	return 0;
3871 #endif
3872 }
3873 
3874 
3875 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3876 {
3877 	struct inode *inode = mapping->host;
3878 	sector_t blknr = 0;
3879 
3880 	if (f2fs_has_inline_data(inode))
3881 		goto out;
3882 
3883 	/* make sure allocating whole blocks */
3884 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3885 		filemap_write_and_wait(mapping);
3886 
3887 	/* Block number less than F2FS MAX BLOCKS */
3888 	if (unlikely(block >= max_file_blocks(inode)))
3889 		goto out;
3890 
3891 	if (f2fs_compressed_file(inode)) {
3892 		blknr = f2fs_bmap_compress(inode, block);
3893 	} else {
3894 		struct f2fs_map_blocks map;
3895 
3896 		memset(&map, 0, sizeof(map));
3897 		map.m_lblk = block;
3898 		map.m_len = 1;
3899 		map.m_next_pgofs = NULL;
3900 		map.m_seg_type = NO_CHECK_TYPE;
3901 
3902 		if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3903 			blknr = map.m_pblk;
3904 	}
3905 out:
3906 	trace_f2fs_bmap(inode, block, blknr);
3907 	return blknr;
3908 }
3909 
3910 #ifdef CONFIG_MIGRATION
3911 #include <linux/migrate.h>
3912 
3913 int f2fs_migrate_page(struct address_space *mapping,
3914 		struct page *newpage, struct page *page, enum migrate_mode mode)
3915 {
3916 	int rc, extra_count;
3917 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3918 	bool atomic_written = page_private_atomic(page);
3919 
3920 	BUG_ON(PageWriteback(page));
3921 
3922 	/* migrating an atomic written page is safe with the inmem_lock hold */
3923 	if (atomic_written) {
3924 		if (mode != MIGRATE_SYNC)
3925 			return -EBUSY;
3926 		if (!mutex_trylock(&fi->inmem_lock))
3927 			return -EAGAIN;
3928 	}
3929 
3930 	/* one extra reference was held for atomic_write page */
3931 	extra_count = atomic_written ? 1 : 0;
3932 	rc = migrate_page_move_mapping(mapping, newpage,
3933 				page, extra_count);
3934 	if (rc != MIGRATEPAGE_SUCCESS) {
3935 		if (atomic_written)
3936 			mutex_unlock(&fi->inmem_lock);
3937 		return rc;
3938 	}
3939 
3940 	if (atomic_written) {
3941 		struct inmem_pages *cur;
3942 
3943 		list_for_each_entry(cur, &fi->inmem_pages, list)
3944 			if (cur->page == page) {
3945 				cur->page = newpage;
3946 				break;
3947 			}
3948 		mutex_unlock(&fi->inmem_lock);
3949 		put_page(page);
3950 		get_page(newpage);
3951 	}
3952 
3953 	/* guarantee to start from no stale private field */
3954 	set_page_private(newpage, 0);
3955 	if (PagePrivate(page)) {
3956 		set_page_private(newpage, page_private(page));
3957 		SetPagePrivate(newpage);
3958 		get_page(newpage);
3959 
3960 		set_page_private(page, 0);
3961 		ClearPagePrivate(page);
3962 		put_page(page);
3963 	}
3964 
3965 	if (mode != MIGRATE_SYNC_NO_COPY)
3966 		migrate_page_copy(newpage, page);
3967 	else
3968 		migrate_page_states(newpage, page);
3969 
3970 	return MIGRATEPAGE_SUCCESS;
3971 }
3972 #endif
3973 
3974 #ifdef CONFIG_SWAP
3975 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3976 							unsigned int blkcnt)
3977 {
3978 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3979 	unsigned int blkofs;
3980 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3981 	unsigned int secidx = start_blk / blk_per_sec;
3982 	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3983 	int ret = 0;
3984 
3985 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3986 	filemap_invalidate_lock(inode->i_mapping);
3987 
3988 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3989 
3990 	for (; secidx < end_sec; secidx++) {
3991 		down_write(&sbi->pin_sem);
3992 
3993 		f2fs_lock_op(sbi);
3994 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3995 		f2fs_unlock_op(sbi);
3996 
3997 		set_inode_flag(inode, FI_DO_DEFRAG);
3998 
3999 		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
4000 			struct page *page;
4001 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
4002 
4003 			page = f2fs_get_lock_data_page(inode, blkidx, true);
4004 			if (IS_ERR(page)) {
4005 				up_write(&sbi->pin_sem);
4006 				ret = PTR_ERR(page);
4007 				goto done;
4008 			}
4009 
4010 			set_page_dirty(page);
4011 			f2fs_put_page(page, 1);
4012 		}
4013 
4014 		clear_inode_flag(inode, FI_DO_DEFRAG);
4015 
4016 		ret = filemap_fdatawrite(inode->i_mapping);
4017 
4018 		up_write(&sbi->pin_sem);
4019 
4020 		if (ret)
4021 			break;
4022 	}
4023 
4024 done:
4025 	clear_inode_flag(inode, FI_DO_DEFRAG);
4026 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
4027 
4028 	filemap_invalidate_unlock(inode->i_mapping);
4029 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4030 
4031 	return ret;
4032 }
4033 
4034 static int check_swap_activate(struct swap_info_struct *sis,
4035 				struct file *swap_file, sector_t *span)
4036 {
4037 	struct address_space *mapping = swap_file->f_mapping;
4038 	struct inode *inode = mapping->host;
4039 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4040 	sector_t cur_lblock;
4041 	sector_t last_lblock;
4042 	sector_t pblock;
4043 	sector_t lowest_pblock = -1;
4044 	sector_t highest_pblock = 0;
4045 	int nr_extents = 0;
4046 	unsigned long nr_pblocks;
4047 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
4048 	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
4049 	unsigned int not_aligned = 0;
4050 	int ret = 0;
4051 
4052 	/*
4053 	 * Map all the blocks into the extent list.  This code doesn't try
4054 	 * to be very smart.
4055 	 */
4056 	cur_lblock = 0;
4057 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
4058 
4059 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
4060 		struct f2fs_map_blocks map;
4061 retry:
4062 		cond_resched();
4063 
4064 		memset(&map, 0, sizeof(map));
4065 		map.m_lblk = cur_lblock;
4066 		map.m_len = last_lblock - cur_lblock;
4067 		map.m_next_pgofs = NULL;
4068 		map.m_next_extent = NULL;
4069 		map.m_seg_type = NO_CHECK_TYPE;
4070 		map.m_may_create = false;
4071 
4072 		ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
4073 		if (ret)
4074 			goto out;
4075 
4076 		/* hole */
4077 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4078 			f2fs_err(sbi, "Swapfile has holes");
4079 			ret = -EINVAL;
4080 			goto out;
4081 		}
4082 
4083 		pblock = map.m_pblk;
4084 		nr_pblocks = map.m_len;
4085 
4086 		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4087 				nr_pblocks & sec_blks_mask) {
4088 			not_aligned++;
4089 
4090 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4091 			if (cur_lblock + nr_pblocks > sis->max)
4092 				nr_pblocks -= blks_per_sec;
4093 
4094 			if (!nr_pblocks) {
4095 				/* this extent is last one */
4096 				nr_pblocks = map.m_len;
4097 				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4098 				goto next;
4099 			}
4100 
4101 			ret = f2fs_migrate_blocks(inode, cur_lblock,
4102 							nr_pblocks);
4103 			if (ret)
4104 				goto out;
4105 			goto retry;
4106 		}
4107 next:
4108 		if (cur_lblock + nr_pblocks >= sis->max)
4109 			nr_pblocks = sis->max - cur_lblock;
4110 
4111 		if (cur_lblock) {	/* exclude the header page */
4112 			if (pblock < lowest_pblock)
4113 				lowest_pblock = pblock;
4114 			if (pblock + nr_pblocks - 1 > highest_pblock)
4115 				highest_pblock = pblock + nr_pblocks - 1;
4116 		}
4117 
4118 		/*
4119 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4120 		 */
4121 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4122 		if (ret < 0)
4123 			goto out;
4124 		nr_extents += ret;
4125 		cur_lblock += nr_pblocks;
4126 	}
4127 	ret = nr_extents;
4128 	*span = 1 + highest_pblock - lowest_pblock;
4129 	if (cur_lblock == 0)
4130 		cur_lblock = 1;	/* force Empty message */
4131 	sis->max = cur_lblock;
4132 	sis->pages = cur_lblock - 1;
4133 	sis->highest_bit = cur_lblock - 1;
4134 out:
4135 	if (not_aligned)
4136 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4137 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4138 	return ret;
4139 }
4140 
4141 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4142 				sector_t *span)
4143 {
4144 	struct inode *inode = file_inode(file);
4145 	int ret;
4146 
4147 	if (!S_ISREG(inode->i_mode))
4148 		return -EINVAL;
4149 
4150 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4151 		return -EROFS;
4152 
4153 	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4154 		f2fs_err(F2FS_I_SB(inode),
4155 			"Swapfile not supported in LFS mode");
4156 		return -EINVAL;
4157 	}
4158 
4159 	ret = f2fs_convert_inline_inode(inode);
4160 	if (ret)
4161 		return ret;
4162 
4163 	if (!f2fs_disable_compressed_file(inode))
4164 		return -EINVAL;
4165 
4166 	f2fs_precache_extents(inode);
4167 
4168 	ret = check_swap_activate(sis, file, span);
4169 	if (ret < 0)
4170 		return ret;
4171 
4172 	set_inode_flag(inode, FI_PIN_FILE);
4173 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4174 	return ret;
4175 }
4176 
4177 static void f2fs_swap_deactivate(struct file *file)
4178 {
4179 	struct inode *inode = file_inode(file);
4180 
4181 	clear_inode_flag(inode, FI_PIN_FILE);
4182 }
4183 #else
4184 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4185 				sector_t *span)
4186 {
4187 	return -EOPNOTSUPP;
4188 }
4189 
4190 static void f2fs_swap_deactivate(struct file *file)
4191 {
4192 }
4193 #endif
4194 
4195 const struct address_space_operations f2fs_dblock_aops = {
4196 	.readpage	= f2fs_read_data_page,
4197 	.readahead	= f2fs_readahead,
4198 	.writepage	= f2fs_write_data_page,
4199 	.writepages	= f2fs_write_data_pages,
4200 	.write_begin	= f2fs_write_begin,
4201 	.write_end	= f2fs_write_end,
4202 	.set_page_dirty	= f2fs_set_data_page_dirty,
4203 	.invalidatepage	= f2fs_invalidate_page,
4204 	.releasepage	= f2fs_release_page,
4205 	.direct_IO	= f2fs_direct_IO,
4206 	.bmap		= f2fs_bmap,
4207 	.swap_activate  = f2fs_swap_activate,
4208 	.swap_deactivate = f2fs_swap_deactivate,
4209 #ifdef CONFIG_MIGRATION
4210 	.migratepage    = f2fs_migrate_page,
4211 #endif
4212 };
4213 
4214 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4215 {
4216 	struct address_space *mapping = page_mapping(page);
4217 	unsigned long flags;
4218 
4219 	xa_lock_irqsave(&mapping->i_pages, flags);
4220 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4221 						PAGECACHE_TAG_DIRTY);
4222 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4223 }
4224 
4225 int __init f2fs_init_post_read_processing(void)
4226 {
4227 	bio_post_read_ctx_cache =
4228 		kmem_cache_create("f2fs_bio_post_read_ctx",
4229 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4230 	if (!bio_post_read_ctx_cache)
4231 		goto fail;
4232 	bio_post_read_ctx_pool =
4233 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4234 					 bio_post_read_ctx_cache);
4235 	if (!bio_post_read_ctx_pool)
4236 		goto fail_free_cache;
4237 	return 0;
4238 
4239 fail_free_cache:
4240 	kmem_cache_destroy(bio_post_read_ctx_cache);
4241 fail:
4242 	return -ENOMEM;
4243 }
4244 
4245 void f2fs_destroy_post_read_processing(void)
4246 {
4247 	mempool_destroy(bio_post_read_ctx_pool);
4248 	kmem_cache_destroy(bio_post_read_ctx_cache);
4249 }
4250 
4251 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4252 {
4253 	if (!f2fs_sb_has_encrypt(sbi) &&
4254 		!f2fs_sb_has_verity(sbi) &&
4255 		!f2fs_sb_has_compression(sbi))
4256 		return 0;
4257 
4258 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4259 						 WQ_UNBOUND | WQ_HIGHPRI,
4260 						 num_online_cpus());
4261 	if (!sbi->post_read_wq)
4262 		return -ENOMEM;
4263 	return 0;
4264 }
4265 
4266 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4267 {
4268 	if (sbi->post_read_wq)
4269 		destroy_workqueue(sbi->post_read_wq);
4270 }
4271 
4272 int __init f2fs_init_bio_entry_cache(void)
4273 {
4274 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4275 			sizeof(struct bio_entry));
4276 	if (!bio_entry_slab)
4277 		return -ENOMEM;
4278 	return 0;
4279 }
4280 
4281 void f2fs_destroy_bio_entry_cache(void)
4282 {
4283 	kmem_cache_destroy(bio_entry_slab);
4284 }
4285