xref: /openbmc/linux/fs/f2fs/data.c (revision e6dec923)
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32 
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 	struct address_space *mapping = page->mapping;
36 	struct inode *inode;
37 	struct f2fs_sb_info *sbi;
38 
39 	if (!mapping)
40 		return false;
41 
42 	inode = mapping->host;
43 	sbi = F2FS_I_SB(inode);
44 
45 	if (inode->i_ino == F2FS_META_INO(sbi) ||
46 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
47 			S_ISDIR(inode->i_mode) ||
48 			is_cold_data(page))
49 		return true;
50 	return false;
51 }
52 
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55 	struct bio_vec *bvec;
56 	int i;
57 
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59 	if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
60 		f2fs_show_injection_info(FAULT_IO);
61 		bio->bi_status = BLK_STS_IOERR;
62 	}
63 #endif
64 
65 	if (f2fs_bio_encrypted(bio)) {
66 		if (bio->bi_status) {
67 			fscrypt_release_ctx(bio->bi_private);
68 		} else {
69 			fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70 			return;
71 		}
72 	}
73 
74 	bio_for_each_segment_all(bvec, bio, i) {
75 		struct page *page = bvec->bv_page;
76 
77 		if (!bio->bi_status) {
78 			if (!PageUptodate(page))
79 				SetPageUptodate(page);
80 		} else {
81 			ClearPageUptodate(page);
82 			SetPageError(page);
83 		}
84 		unlock_page(page);
85 	}
86 	bio_put(bio);
87 }
88 
89 static void f2fs_write_end_io(struct bio *bio)
90 {
91 	struct f2fs_sb_info *sbi = bio->bi_private;
92 	struct bio_vec *bvec;
93 	int i;
94 
95 	bio_for_each_segment_all(bvec, bio, i) {
96 		struct page *page = bvec->bv_page;
97 		enum count_type type = WB_DATA_TYPE(page);
98 
99 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
100 			set_page_private(page, (unsigned long)NULL);
101 			ClearPagePrivate(page);
102 			unlock_page(page);
103 			mempool_free(page, sbi->write_io_dummy);
104 
105 			if (unlikely(bio->bi_status))
106 				f2fs_stop_checkpoint(sbi, true);
107 			continue;
108 		}
109 
110 		fscrypt_pullback_bio_page(&page, true);
111 
112 		if (unlikely(bio->bi_status)) {
113 			mapping_set_error(page->mapping, -EIO);
114 			f2fs_stop_checkpoint(sbi, true);
115 		}
116 		dec_page_count(sbi, type);
117 		clear_cold_data(page);
118 		end_page_writeback(page);
119 	}
120 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
121 				wq_has_sleeper(&sbi->cp_wait))
122 		wake_up(&sbi->cp_wait);
123 
124 	bio_put(bio);
125 }
126 
127 /*
128  * Return true, if pre_bio's bdev is same as its target device.
129  */
130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
131 				block_t blk_addr, struct bio *bio)
132 {
133 	struct block_device *bdev = sbi->sb->s_bdev;
134 	int i;
135 
136 	for (i = 0; i < sbi->s_ndevs; i++) {
137 		if (FDEV(i).start_blk <= blk_addr &&
138 					FDEV(i).end_blk >= blk_addr) {
139 			blk_addr -= FDEV(i).start_blk;
140 			bdev = FDEV(i).bdev;
141 			break;
142 		}
143 	}
144 	if (bio) {
145 		bio->bi_bdev = bdev;
146 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
147 	}
148 	return bdev;
149 }
150 
151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
152 {
153 	int i;
154 
155 	for (i = 0; i < sbi->s_ndevs; i++)
156 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
157 			return i;
158 	return 0;
159 }
160 
161 static bool __same_bdev(struct f2fs_sb_info *sbi,
162 				block_t blk_addr, struct bio *bio)
163 {
164 	return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
165 }
166 
167 /*
168  * Low-level block read/write IO operations.
169  */
170 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
171 				int npages, bool is_read)
172 {
173 	struct bio *bio;
174 
175 	bio = f2fs_bio_alloc(npages);
176 
177 	f2fs_target_device(sbi, blk_addr, bio);
178 	bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
179 	bio->bi_private = is_read ? NULL : sbi;
180 
181 	return bio;
182 }
183 
184 static inline void __submit_bio(struct f2fs_sb_info *sbi,
185 				struct bio *bio, enum page_type type)
186 {
187 	if (!is_read_io(bio_op(bio))) {
188 		unsigned int start;
189 
190 		if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
191 			current->plug && (type == DATA || type == NODE))
192 			blk_finish_plug(current->plug);
193 
194 		if (type != DATA && type != NODE)
195 			goto submit_io;
196 
197 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
198 		start %= F2FS_IO_SIZE(sbi);
199 
200 		if (start == 0)
201 			goto submit_io;
202 
203 		/* fill dummy pages */
204 		for (; start < F2FS_IO_SIZE(sbi); start++) {
205 			struct page *page =
206 				mempool_alloc(sbi->write_io_dummy,
207 					GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
208 			f2fs_bug_on(sbi, !page);
209 
210 			SetPagePrivate(page);
211 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
212 			lock_page(page);
213 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
214 				f2fs_bug_on(sbi, 1);
215 		}
216 		/*
217 		 * In the NODE case, we lose next block address chain. So, we
218 		 * need to do checkpoint in f2fs_sync_file.
219 		 */
220 		if (type == NODE)
221 			set_sbi_flag(sbi, SBI_NEED_CP);
222 	}
223 submit_io:
224 	if (is_read_io(bio_op(bio)))
225 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
226 	else
227 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
228 	submit_bio(bio);
229 }
230 
231 static void __submit_merged_bio(struct f2fs_bio_info *io)
232 {
233 	struct f2fs_io_info *fio = &io->fio;
234 
235 	if (!io->bio)
236 		return;
237 
238 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
239 
240 	if (is_read_io(fio->op))
241 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
242 	else
243 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
244 
245 	__submit_bio(io->sbi, io->bio, fio->type);
246 	io->bio = NULL;
247 }
248 
249 static bool __has_merged_page(struct f2fs_bio_info *io,
250 				struct inode *inode, nid_t ino, pgoff_t idx)
251 {
252 	struct bio_vec *bvec;
253 	struct page *target;
254 	int i;
255 
256 	if (!io->bio)
257 		return false;
258 
259 	if (!inode && !ino)
260 		return true;
261 
262 	bio_for_each_segment_all(bvec, io->bio, i) {
263 
264 		if (bvec->bv_page->mapping)
265 			target = bvec->bv_page;
266 		else
267 			target = fscrypt_control_page(bvec->bv_page);
268 
269 		if (idx != target->index)
270 			continue;
271 
272 		if (inode && inode == target->mapping->host)
273 			return true;
274 		if (ino && ino == ino_of_node(target))
275 			return true;
276 	}
277 
278 	return false;
279 }
280 
281 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
282 				nid_t ino, pgoff_t idx, enum page_type type)
283 {
284 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
285 	enum temp_type temp;
286 	struct f2fs_bio_info *io;
287 	bool ret = false;
288 
289 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
290 		io = sbi->write_io[btype] + temp;
291 
292 		down_read(&io->io_rwsem);
293 		ret = __has_merged_page(io, inode, ino, idx);
294 		up_read(&io->io_rwsem);
295 
296 		/* TODO: use HOT temp only for meta pages now. */
297 		if (ret || btype == META)
298 			break;
299 	}
300 	return ret;
301 }
302 
303 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
304 				enum page_type type, enum temp_type temp)
305 {
306 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
307 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
308 
309 	down_write(&io->io_rwsem);
310 
311 	/* change META to META_FLUSH in the checkpoint procedure */
312 	if (type >= META_FLUSH) {
313 		io->fio.type = META_FLUSH;
314 		io->fio.op = REQ_OP_WRITE;
315 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
316 		if (!test_opt(sbi, NOBARRIER))
317 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
318 	}
319 	__submit_merged_bio(io);
320 	up_write(&io->io_rwsem);
321 }
322 
323 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
324 				struct inode *inode, nid_t ino, pgoff_t idx,
325 				enum page_type type, bool force)
326 {
327 	enum temp_type temp;
328 
329 	if (!force && !has_merged_page(sbi, inode, ino, idx, type))
330 		return;
331 
332 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
333 
334 		__f2fs_submit_merged_write(sbi, type, temp);
335 
336 		/* TODO: use HOT temp only for meta pages now. */
337 		if (type >= META)
338 			break;
339 	}
340 }
341 
342 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
343 {
344 	__submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
345 }
346 
347 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
348 				struct inode *inode, nid_t ino, pgoff_t idx,
349 				enum page_type type)
350 {
351 	__submit_merged_write_cond(sbi, inode, ino, idx, type, false);
352 }
353 
354 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
355 {
356 	f2fs_submit_merged_write(sbi, DATA);
357 	f2fs_submit_merged_write(sbi, NODE);
358 	f2fs_submit_merged_write(sbi, META);
359 }
360 
361 /*
362  * Fill the locked page with data located in the block address.
363  * A caller needs to unlock the page on failure.
364  */
365 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
366 {
367 	struct bio *bio;
368 	struct page *page = fio->encrypted_page ?
369 			fio->encrypted_page : fio->page;
370 
371 	trace_f2fs_submit_page_bio(page, fio);
372 	f2fs_trace_ios(fio, 0);
373 
374 	/* Allocate a new bio */
375 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
376 
377 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
378 		bio_put(bio);
379 		return -EFAULT;
380 	}
381 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
382 
383 	__submit_bio(fio->sbi, bio, fio->type);
384 
385 	if (!is_read_io(fio->op))
386 		inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
387 	return 0;
388 }
389 
390 int f2fs_submit_page_write(struct f2fs_io_info *fio)
391 {
392 	struct f2fs_sb_info *sbi = fio->sbi;
393 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
394 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
395 	struct page *bio_page;
396 	int err = 0;
397 
398 	f2fs_bug_on(sbi, is_read_io(fio->op));
399 
400 	down_write(&io->io_rwsem);
401 next:
402 	if (fio->in_list) {
403 		spin_lock(&io->io_lock);
404 		if (list_empty(&io->io_list)) {
405 			spin_unlock(&io->io_lock);
406 			goto out_fail;
407 		}
408 		fio = list_first_entry(&io->io_list,
409 						struct f2fs_io_info, list);
410 		list_del(&fio->list);
411 		spin_unlock(&io->io_lock);
412 	}
413 
414 	if (fio->old_blkaddr != NEW_ADDR)
415 		verify_block_addr(sbi, fio->old_blkaddr);
416 	verify_block_addr(sbi, fio->new_blkaddr);
417 
418 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
419 
420 	/* set submitted = 1 as a return value */
421 	fio->submitted = 1;
422 
423 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
424 
425 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
426 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
427 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
428 		__submit_merged_bio(io);
429 alloc_new:
430 	if (io->bio == NULL) {
431 		if ((fio->type == DATA || fio->type == NODE) &&
432 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
433 			err = -EAGAIN;
434 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
435 			goto out_fail;
436 		}
437 		io->bio = __bio_alloc(sbi, fio->new_blkaddr,
438 						BIO_MAX_PAGES, false);
439 		io->fio = *fio;
440 	}
441 
442 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
443 		__submit_merged_bio(io);
444 		goto alloc_new;
445 	}
446 
447 	io->last_block_in_bio = fio->new_blkaddr;
448 	f2fs_trace_ios(fio, 0);
449 
450 	trace_f2fs_submit_page_write(fio->page, fio);
451 
452 	if (fio->in_list)
453 		goto next;
454 out_fail:
455 	up_write(&io->io_rwsem);
456 	return err;
457 }
458 
459 static void __set_data_blkaddr(struct dnode_of_data *dn)
460 {
461 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
462 	__le32 *addr_array;
463 
464 	/* Get physical address of data block */
465 	addr_array = blkaddr_in_node(rn);
466 	addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
467 }
468 
469 /*
470  * Lock ordering for the change of data block address:
471  * ->data_page
472  *  ->node_page
473  *    update block addresses in the node page
474  */
475 void set_data_blkaddr(struct dnode_of_data *dn)
476 {
477 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
478 	__set_data_blkaddr(dn);
479 	if (set_page_dirty(dn->node_page))
480 		dn->node_changed = true;
481 }
482 
483 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
484 {
485 	dn->data_blkaddr = blkaddr;
486 	set_data_blkaddr(dn);
487 	f2fs_update_extent_cache(dn);
488 }
489 
490 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
491 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
492 {
493 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
494 	int err;
495 
496 	if (!count)
497 		return 0;
498 
499 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
500 		return -EPERM;
501 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
502 		return err;
503 
504 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
505 						dn->ofs_in_node, count);
506 
507 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
508 
509 	for (; count > 0; dn->ofs_in_node++) {
510 		block_t blkaddr =
511 			datablock_addr(dn->node_page, dn->ofs_in_node);
512 		if (blkaddr == NULL_ADDR) {
513 			dn->data_blkaddr = NEW_ADDR;
514 			__set_data_blkaddr(dn);
515 			count--;
516 		}
517 	}
518 
519 	if (set_page_dirty(dn->node_page))
520 		dn->node_changed = true;
521 	return 0;
522 }
523 
524 /* Should keep dn->ofs_in_node unchanged */
525 int reserve_new_block(struct dnode_of_data *dn)
526 {
527 	unsigned int ofs_in_node = dn->ofs_in_node;
528 	int ret;
529 
530 	ret = reserve_new_blocks(dn, 1);
531 	dn->ofs_in_node = ofs_in_node;
532 	return ret;
533 }
534 
535 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
536 {
537 	bool need_put = dn->inode_page ? false : true;
538 	int err;
539 
540 	err = get_dnode_of_data(dn, index, ALLOC_NODE);
541 	if (err)
542 		return err;
543 
544 	if (dn->data_blkaddr == NULL_ADDR)
545 		err = reserve_new_block(dn);
546 	if (err || need_put)
547 		f2fs_put_dnode(dn);
548 	return err;
549 }
550 
551 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
552 {
553 	struct extent_info ei  = {0,0,0};
554 	struct inode *inode = dn->inode;
555 
556 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
557 		dn->data_blkaddr = ei.blk + index - ei.fofs;
558 		return 0;
559 	}
560 
561 	return f2fs_reserve_block(dn, index);
562 }
563 
564 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
565 						int op_flags, bool for_write)
566 {
567 	struct address_space *mapping = inode->i_mapping;
568 	struct dnode_of_data dn;
569 	struct page *page;
570 	struct extent_info ei = {0,0,0};
571 	int err;
572 	struct f2fs_io_info fio = {
573 		.sbi = F2FS_I_SB(inode),
574 		.type = DATA,
575 		.op = REQ_OP_READ,
576 		.op_flags = op_flags,
577 		.encrypted_page = NULL,
578 	};
579 
580 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
581 		return read_mapping_page(mapping, index, NULL);
582 
583 	page = f2fs_grab_cache_page(mapping, index, for_write);
584 	if (!page)
585 		return ERR_PTR(-ENOMEM);
586 
587 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
588 		dn.data_blkaddr = ei.blk + index - ei.fofs;
589 		goto got_it;
590 	}
591 
592 	set_new_dnode(&dn, inode, NULL, NULL, 0);
593 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
594 	if (err)
595 		goto put_err;
596 	f2fs_put_dnode(&dn);
597 
598 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
599 		err = -ENOENT;
600 		goto put_err;
601 	}
602 got_it:
603 	if (PageUptodate(page)) {
604 		unlock_page(page);
605 		return page;
606 	}
607 
608 	/*
609 	 * A new dentry page is allocated but not able to be written, since its
610 	 * new inode page couldn't be allocated due to -ENOSPC.
611 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
612 	 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
613 	 */
614 	if (dn.data_blkaddr == NEW_ADDR) {
615 		zero_user_segment(page, 0, PAGE_SIZE);
616 		if (!PageUptodate(page))
617 			SetPageUptodate(page);
618 		unlock_page(page);
619 		return page;
620 	}
621 
622 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
623 	fio.page = page;
624 	err = f2fs_submit_page_bio(&fio);
625 	if (err)
626 		goto put_err;
627 	return page;
628 
629 put_err:
630 	f2fs_put_page(page, 1);
631 	return ERR_PTR(err);
632 }
633 
634 struct page *find_data_page(struct inode *inode, pgoff_t index)
635 {
636 	struct address_space *mapping = inode->i_mapping;
637 	struct page *page;
638 
639 	page = find_get_page(mapping, index);
640 	if (page && PageUptodate(page))
641 		return page;
642 	f2fs_put_page(page, 0);
643 
644 	page = get_read_data_page(inode, index, 0, false);
645 	if (IS_ERR(page))
646 		return page;
647 
648 	if (PageUptodate(page))
649 		return page;
650 
651 	wait_on_page_locked(page);
652 	if (unlikely(!PageUptodate(page))) {
653 		f2fs_put_page(page, 0);
654 		return ERR_PTR(-EIO);
655 	}
656 	return page;
657 }
658 
659 /*
660  * If it tries to access a hole, return an error.
661  * Because, the callers, functions in dir.c and GC, should be able to know
662  * whether this page exists or not.
663  */
664 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
665 							bool for_write)
666 {
667 	struct address_space *mapping = inode->i_mapping;
668 	struct page *page;
669 repeat:
670 	page = get_read_data_page(inode, index, 0, for_write);
671 	if (IS_ERR(page))
672 		return page;
673 
674 	/* wait for read completion */
675 	lock_page(page);
676 	if (unlikely(page->mapping != mapping)) {
677 		f2fs_put_page(page, 1);
678 		goto repeat;
679 	}
680 	if (unlikely(!PageUptodate(page))) {
681 		f2fs_put_page(page, 1);
682 		return ERR_PTR(-EIO);
683 	}
684 	return page;
685 }
686 
687 /*
688  * Caller ensures that this data page is never allocated.
689  * A new zero-filled data page is allocated in the page cache.
690  *
691  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
692  * f2fs_unlock_op().
693  * Note that, ipage is set only by make_empty_dir, and if any error occur,
694  * ipage should be released by this function.
695  */
696 struct page *get_new_data_page(struct inode *inode,
697 		struct page *ipage, pgoff_t index, bool new_i_size)
698 {
699 	struct address_space *mapping = inode->i_mapping;
700 	struct page *page;
701 	struct dnode_of_data dn;
702 	int err;
703 
704 	page = f2fs_grab_cache_page(mapping, index, true);
705 	if (!page) {
706 		/*
707 		 * before exiting, we should make sure ipage will be released
708 		 * if any error occur.
709 		 */
710 		f2fs_put_page(ipage, 1);
711 		return ERR_PTR(-ENOMEM);
712 	}
713 
714 	set_new_dnode(&dn, inode, ipage, NULL, 0);
715 	err = f2fs_reserve_block(&dn, index);
716 	if (err) {
717 		f2fs_put_page(page, 1);
718 		return ERR_PTR(err);
719 	}
720 	if (!ipage)
721 		f2fs_put_dnode(&dn);
722 
723 	if (PageUptodate(page))
724 		goto got_it;
725 
726 	if (dn.data_blkaddr == NEW_ADDR) {
727 		zero_user_segment(page, 0, PAGE_SIZE);
728 		if (!PageUptodate(page))
729 			SetPageUptodate(page);
730 	} else {
731 		f2fs_put_page(page, 1);
732 
733 		/* if ipage exists, blkaddr should be NEW_ADDR */
734 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
735 		page = get_lock_data_page(inode, index, true);
736 		if (IS_ERR(page))
737 			return page;
738 	}
739 got_it:
740 	if (new_i_size && i_size_read(inode) <
741 				((loff_t)(index + 1) << PAGE_SHIFT))
742 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
743 	return page;
744 }
745 
746 static int __allocate_data_block(struct dnode_of_data *dn)
747 {
748 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
749 	struct f2fs_summary sum;
750 	struct node_info ni;
751 	pgoff_t fofs;
752 	blkcnt_t count = 1;
753 	int err;
754 
755 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
756 		return -EPERM;
757 
758 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
759 	if (dn->data_blkaddr == NEW_ADDR)
760 		goto alloc;
761 
762 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
763 		return err;
764 
765 alloc:
766 	get_node_info(sbi, dn->nid, &ni);
767 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
768 
769 	allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
770 					&sum, CURSEG_WARM_DATA, NULL, false);
771 	set_data_blkaddr(dn);
772 
773 	/* update i_size */
774 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
775 							dn->ofs_in_node;
776 	if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
777 		f2fs_i_size_write(dn->inode,
778 				((loff_t)(fofs + 1) << PAGE_SHIFT));
779 	return 0;
780 }
781 
782 static inline bool __force_buffered_io(struct inode *inode, int rw)
783 {
784 	return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
785 			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
786 			F2FS_I_SB(inode)->s_ndevs);
787 }
788 
789 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
790 {
791 	struct inode *inode = file_inode(iocb->ki_filp);
792 	struct f2fs_map_blocks map;
793 	int err = 0;
794 
795 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
796 		return 0;
797 
798 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
799 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
800 	if (map.m_len > map.m_lblk)
801 		map.m_len -= map.m_lblk;
802 	else
803 		map.m_len = 0;
804 
805 	map.m_next_pgofs = NULL;
806 
807 	if (iocb->ki_flags & IOCB_DIRECT) {
808 		err = f2fs_convert_inline_inode(inode);
809 		if (err)
810 			return err;
811 		return f2fs_map_blocks(inode, &map, 1,
812 			__force_buffered_io(inode, WRITE) ?
813 				F2FS_GET_BLOCK_PRE_AIO :
814 				F2FS_GET_BLOCK_PRE_DIO);
815 	}
816 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
817 		err = f2fs_convert_inline_inode(inode);
818 		if (err)
819 			return err;
820 	}
821 	if (!f2fs_has_inline_data(inode))
822 		return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
823 	return err;
824 }
825 
826 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
827 {
828 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
829 		if (lock)
830 			down_read(&sbi->node_change);
831 		else
832 			up_read(&sbi->node_change);
833 	} else {
834 		if (lock)
835 			f2fs_lock_op(sbi);
836 		else
837 			f2fs_unlock_op(sbi);
838 	}
839 }
840 
841 /*
842  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
843  * f2fs_map_blocks structure.
844  * If original data blocks are allocated, then give them to blockdev.
845  * Otherwise,
846  *     a. preallocate requested block addresses
847  *     b. do not use extent cache for better performance
848  *     c. give the block addresses to blockdev
849  */
850 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
851 						int create, int flag)
852 {
853 	unsigned int maxblocks = map->m_len;
854 	struct dnode_of_data dn;
855 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
856 	int mode = create ? ALLOC_NODE : LOOKUP_NODE;
857 	pgoff_t pgofs, end_offset, end;
858 	int err = 0, ofs = 1;
859 	unsigned int ofs_in_node, last_ofs_in_node;
860 	blkcnt_t prealloc;
861 	struct extent_info ei = {0,0,0};
862 	block_t blkaddr;
863 
864 	if (!maxblocks)
865 		return 0;
866 
867 	map->m_len = 0;
868 	map->m_flags = 0;
869 
870 	/* it only supports block size == page size */
871 	pgofs =	(pgoff_t)map->m_lblk;
872 	end = pgofs + maxblocks;
873 
874 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
875 		map->m_pblk = ei.blk + pgofs - ei.fofs;
876 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
877 		map->m_flags = F2FS_MAP_MAPPED;
878 		goto out;
879 	}
880 
881 next_dnode:
882 	if (create)
883 		__do_map_lock(sbi, flag, true);
884 
885 	/* When reading holes, we need its node page */
886 	set_new_dnode(&dn, inode, NULL, NULL, 0);
887 	err = get_dnode_of_data(&dn, pgofs, mode);
888 	if (err) {
889 		if (flag == F2FS_GET_BLOCK_BMAP)
890 			map->m_pblk = 0;
891 		if (err == -ENOENT) {
892 			err = 0;
893 			if (map->m_next_pgofs)
894 				*map->m_next_pgofs =
895 					get_next_page_offset(&dn, pgofs);
896 		}
897 		goto unlock_out;
898 	}
899 
900 	prealloc = 0;
901 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
902 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
903 
904 next_block:
905 	blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
906 
907 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
908 		if (create) {
909 			if (unlikely(f2fs_cp_error(sbi))) {
910 				err = -EIO;
911 				goto sync_out;
912 			}
913 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
914 				if (blkaddr == NULL_ADDR) {
915 					prealloc++;
916 					last_ofs_in_node = dn.ofs_in_node;
917 				}
918 			} else {
919 				err = __allocate_data_block(&dn);
920 				if (!err)
921 					set_inode_flag(inode, FI_APPEND_WRITE);
922 			}
923 			if (err)
924 				goto sync_out;
925 			map->m_flags |= F2FS_MAP_NEW;
926 			blkaddr = dn.data_blkaddr;
927 		} else {
928 			if (flag == F2FS_GET_BLOCK_BMAP) {
929 				map->m_pblk = 0;
930 				goto sync_out;
931 			}
932 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
933 						blkaddr == NULL_ADDR) {
934 				if (map->m_next_pgofs)
935 					*map->m_next_pgofs = pgofs + 1;
936 			}
937 			if (flag != F2FS_GET_BLOCK_FIEMAP ||
938 						blkaddr != NEW_ADDR)
939 				goto sync_out;
940 		}
941 	}
942 
943 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
944 		goto skip;
945 
946 	if (map->m_len == 0) {
947 		/* preallocated unwritten block should be mapped for fiemap. */
948 		if (blkaddr == NEW_ADDR)
949 			map->m_flags |= F2FS_MAP_UNWRITTEN;
950 		map->m_flags |= F2FS_MAP_MAPPED;
951 
952 		map->m_pblk = blkaddr;
953 		map->m_len = 1;
954 	} else if ((map->m_pblk != NEW_ADDR &&
955 			blkaddr == (map->m_pblk + ofs)) ||
956 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
957 			flag == F2FS_GET_BLOCK_PRE_DIO) {
958 		ofs++;
959 		map->m_len++;
960 	} else {
961 		goto sync_out;
962 	}
963 
964 skip:
965 	dn.ofs_in_node++;
966 	pgofs++;
967 
968 	/* preallocate blocks in batch for one dnode page */
969 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
970 			(pgofs == end || dn.ofs_in_node == end_offset)) {
971 
972 		dn.ofs_in_node = ofs_in_node;
973 		err = reserve_new_blocks(&dn, prealloc);
974 		if (err)
975 			goto sync_out;
976 
977 		map->m_len += dn.ofs_in_node - ofs_in_node;
978 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
979 			err = -ENOSPC;
980 			goto sync_out;
981 		}
982 		dn.ofs_in_node = end_offset;
983 	}
984 
985 	if (pgofs >= end)
986 		goto sync_out;
987 	else if (dn.ofs_in_node < end_offset)
988 		goto next_block;
989 
990 	f2fs_put_dnode(&dn);
991 
992 	if (create) {
993 		__do_map_lock(sbi, flag, false);
994 		f2fs_balance_fs(sbi, dn.node_changed);
995 	}
996 	goto next_dnode;
997 
998 sync_out:
999 	f2fs_put_dnode(&dn);
1000 unlock_out:
1001 	if (create) {
1002 		__do_map_lock(sbi, flag, false);
1003 		f2fs_balance_fs(sbi, dn.node_changed);
1004 	}
1005 out:
1006 	trace_f2fs_map_blocks(inode, map, err);
1007 	return err;
1008 }
1009 
1010 static int __get_data_block(struct inode *inode, sector_t iblock,
1011 			struct buffer_head *bh, int create, int flag,
1012 			pgoff_t *next_pgofs)
1013 {
1014 	struct f2fs_map_blocks map;
1015 	int err;
1016 
1017 	map.m_lblk = iblock;
1018 	map.m_len = bh->b_size >> inode->i_blkbits;
1019 	map.m_next_pgofs = next_pgofs;
1020 
1021 	err = f2fs_map_blocks(inode, &map, create, flag);
1022 	if (!err) {
1023 		map_bh(bh, inode->i_sb, map.m_pblk);
1024 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1025 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1026 	}
1027 	return err;
1028 }
1029 
1030 static int get_data_block(struct inode *inode, sector_t iblock,
1031 			struct buffer_head *bh_result, int create, int flag,
1032 			pgoff_t *next_pgofs)
1033 {
1034 	return __get_data_block(inode, iblock, bh_result, create,
1035 							flag, next_pgofs);
1036 }
1037 
1038 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1039 			struct buffer_head *bh_result, int create)
1040 {
1041 	return __get_data_block(inode, iblock, bh_result, create,
1042 						F2FS_GET_BLOCK_DIO, NULL);
1043 }
1044 
1045 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1046 			struct buffer_head *bh_result, int create)
1047 {
1048 	/* Block number less than F2FS MAX BLOCKS */
1049 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1050 		return -EFBIG;
1051 
1052 	return __get_data_block(inode, iblock, bh_result, create,
1053 						F2FS_GET_BLOCK_BMAP, NULL);
1054 }
1055 
1056 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1057 {
1058 	return (offset >> inode->i_blkbits);
1059 }
1060 
1061 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1062 {
1063 	return (blk << inode->i_blkbits);
1064 }
1065 
1066 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1067 		u64 start, u64 len)
1068 {
1069 	struct buffer_head map_bh;
1070 	sector_t start_blk, last_blk;
1071 	pgoff_t next_pgofs;
1072 	u64 logical = 0, phys = 0, size = 0;
1073 	u32 flags = 0;
1074 	int ret = 0;
1075 
1076 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1077 	if (ret)
1078 		return ret;
1079 
1080 	if (f2fs_has_inline_data(inode)) {
1081 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1082 		if (ret != -EAGAIN)
1083 			return ret;
1084 	}
1085 
1086 	inode_lock(inode);
1087 
1088 	if (logical_to_blk(inode, len) == 0)
1089 		len = blk_to_logical(inode, 1);
1090 
1091 	start_blk = logical_to_blk(inode, start);
1092 	last_blk = logical_to_blk(inode, start + len - 1);
1093 
1094 next:
1095 	memset(&map_bh, 0, sizeof(struct buffer_head));
1096 	map_bh.b_size = len;
1097 
1098 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1099 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1100 	if (ret)
1101 		goto out;
1102 
1103 	/* HOLE */
1104 	if (!buffer_mapped(&map_bh)) {
1105 		start_blk = next_pgofs;
1106 
1107 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1108 					F2FS_I_SB(inode)->max_file_blocks))
1109 			goto prep_next;
1110 
1111 		flags |= FIEMAP_EXTENT_LAST;
1112 	}
1113 
1114 	if (size) {
1115 		if (f2fs_encrypted_inode(inode))
1116 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1117 
1118 		ret = fiemap_fill_next_extent(fieinfo, logical,
1119 				phys, size, flags);
1120 	}
1121 
1122 	if (start_blk > last_blk || ret)
1123 		goto out;
1124 
1125 	logical = blk_to_logical(inode, start_blk);
1126 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1127 	size = map_bh.b_size;
1128 	flags = 0;
1129 	if (buffer_unwritten(&map_bh))
1130 		flags = FIEMAP_EXTENT_UNWRITTEN;
1131 
1132 	start_blk += logical_to_blk(inode, size);
1133 
1134 prep_next:
1135 	cond_resched();
1136 	if (fatal_signal_pending(current))
1137 		ret = -EINTR;
1138 	else
1139 		goto next;
1140 out:
1141 	if (ret == 1)
1142 		ret = 0;
1143 
1144 	inode_unlock(inode);
1145 	return ret;
1146 }
1147 
1148 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1149 				 unsigned nr_pages)
1150 {
1151 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1152 	struct fscrypt_ctx *ctx = NULL;
1153 	struct bio *bio;
1154 
1155 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1156 		ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1157 		if (IS_ERR(ctx))
1158 			return ERR_CAST(ctx);
1159 
1160 		/* wait the page to be moved by cleaning */
1161 		f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1162 	}
1163 
1164 	bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1165 	if (!bio) {
1166 		if (ctx)
1167 			fscrypt_release_ctx(ctx);
1168 		return ERR_PTR(-ENOMEM);
1169 	}
1170 	f2fs_target_device(sbi, blkaddr, bio);
1171 	bio->bi_end_io = f2fs_read_end_io;
1172 	bio->bi_private = ctx;
1173 
1174 	return bio;
1175 }
1176 
1177 /*
1178  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1179  * Major change was from block_size == page_size in f2fs by default.
1180  */
1181 static int f2fs_mpage_readpages(struct address_space *mapping,
1182 			struct list_head *pages, struct page *page,
1183 			unsigned nr_pages)
1184 {
1185 	struct bio *bio = NULL;
1186 	unsigned page_idx;
1187 	sector_t last_block_in_bio = 0;
1188 	struct inode *inode = mapping->host;
1189 	const unsigned blkbits = inode->i_blkbits;
1190 	const unsigned blocksize = 1 << blkbits;
1191 	sector_t block_in_file;
1192 	sector_t last_block;
1193 	sector_t last_block_in_file;
1194 	sector_t block_nr;
1195 	struct f2fs_map_blocks map;
1196 
1197 	map.m_pblk = 0;
1198 	map.m_lblk = 0;
1199 	map.m_len = 0;
1200 	map.m_flags = 0;
1201 	map.m_next_pgofs = NULL;
1202 
1203 	for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1204 
1205 		if (pages) {
1206 			page = list_last_entry(pages, struct page, lru);
1207 
1208 			prefetchw(&page->flags);
1209 			list_del(&page->lru);
1210 			if (add_to_page_cache_lru(page, mapping,
1211 						  page->index,
1212 						  readahead_gfp_mask(mapping)))
1213 				goto next_page;
1214 		}
1215 
1216 		block_in_file = (sector_t)page->index;
1217 		last_block = block_in_file + nr_pages;
1218 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1219 								blkbits;
1220 		if (last_block > last_block_in_file)
1221 			last_block = last_block_in_file;
1222 
1223 		/*
1224 		 * Map blocks using the previous result first.
1225 		 */
1226 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1227 				block_in_file > map.m_lblk &&
1228 				block_in_file < (map.m_lblk + map.m_len))
1229 			goto got_it;
1230 
1231 		/*
1232 		 * Then do more f2fs_map_blocks() calls until we are
1233 		 * done with this page.
1234 		 */
1235 		map.m_flags = 0;
1236 
1237 		if (block_in_file < last_block) {
1238 			map.m_lblk = block_in_file;
1239 			map.m_len = last_block - block_in_file;
1240 
1241 			if (f2fs_map_blocks(inode, &map, 0,
1242 						F2FS_GET_BLOCK_READ))
1243 				goto set_error_page;
1244 		}
1245 got_it:
1246 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1247 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1248 			SetPageMappedToDisk(page);
1249 
1250 			if (!PageUptodate(page) && !cleancache_get_page(page)) {
1251 				SetPageUptodate(page);
1252 				goto confused;
1253 			}
1254 		} else {
1255 			zero_user_segment(page, 0, PAGE_SIZE);
1256 			if (!PageUptodate(page))
1257 				SetPageUptodate(page);
1258 			unlock_page(page);
1259 			goto next_page;
1260 		}
1261 
1262 		/*
1263 		 * This page will go to BIO.  Do we need to send this
1264 		 * BIO off first?
1265 		 */
1266 		if (bio && (last_block_in_bio != block_nr - 1 ||
1267 			!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1268 submit_and_realloc:
1269 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1270 			bio = NULL;
1271 		}
1272 		if (bio == NULL) {
1273 			bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1274 			if (IS_ERR(bio)) {
1275 				bio = NULL;
1276 				goto set_error_page;
1277 			}
1278 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1279 		}
1280 
1281 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1282 			goto submit_and_realloc;
1283 
1284 		last_block_in_bio = block_nr;
1285 		goto next_page;
1286 set_error_page:
1287 		SetPageError(page);
1288 		zero_user_segment(page, 0, PAGE_SIZE);
1289 		unlock_page(page);
1290 		goto next_page;
1291 confused:
1292 		if (bio) {
1293 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1294 			bio = NULL;
1295 		}
1296 		unlock_page(page);
1297 next_page:
1298 		if (pages)
1299 			put_page(page);
1300 	}
1301 	BUG_ON(pages && !list_empty(pages));
1302 	if (bio)
1303 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1304 	return 0;
1305 }
1306 
1307 static int f2fs_read_data_page(struct file *file, struct page *page)
1308 {
1309 	struct inode *inode = page->mapping->host;
1310 	int ret = -EAGAIN;
1311 
1312 	trace_f2fs_readpage(page, DATA);
1313 
1314 	/* If the file has inline data, try to read it directly */
1315 	if (f2fs_has_inline_data(inode))
1316 		ret = f2fs_read_inline_data(inode, page);
1317 	if (ret == -EAGAIN)
1318 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1319 	return ret;
1320 }
1321 
1322 static int f2fs_read_data_pages(struct file *file,
1323 			struct address_space *mapping,
1324 			struct list_head *pages, unsigned nr_pages)
1325 {
1326 	struct inode *inode = file->f_mapping->host;
1327 	struct page *page = list_last_entry(pages, struct page, lru);
1328 
1329 	trace_f2fs_readpages(inode, page, nr_pages);
1330 
1331 	/* If the file has inline data, skip readpages */
1332 	if (f2fs_has_inline_data(inode))
1333 		return 0;
1334 
1335 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1336 }
1337 
1338 static int encrypt_one_page(struct f2fs_io_info *fio)
1339 {
1340 	struct inode *inode = fio->page->mapping->host;
1341 	gfp_t gfp_flags = GFP_NOFS;
1342 
1343 	if (!f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
1344 		return 0;
1345 
1346 	/* wait for GCed encrypted page writeback */
1347 	f2fs_wait_on_encrypted_page_writeback(fio->sbi, fio->old_blkaddr);
1348 
1349 retry_encrypt:
1350 	fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1351 			PAGE_SIZE, 0, fio->page->index, gfp_flags);
1352 	if (!IS_ERR(fio->encrypted_page))
1353 		return 0;
1354 
1355 	/* flush pending IOs and wait for a while in the ENOMEM case */
1356 	if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1357 		f2fs_flush_merged_writes(fio->sbi);
1358 		congestion_wait(BLK_RW_ASYNC, HZ/50);
1359 		gfp_flags |= __GFP_NOFAIL;
1360 		goto retry_encrypt;
1361 	}
1362 	return PTR_ERR(fio->encrypted_page);
1363 }
1364 
1365 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1366 {
1367 	struct inode *inode = fio->page->mapping->host;
1368 
1369 	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
1370 		return false;
1371 	if (is_cold_data(fio->page))
1372 		return false;
1373 	if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1374 		return false;
1375 
1376 	return need_inplace_update_policy(inode, fio);
1377 }
1378 
1379 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
1380 {
1381 	if (fio->old_blkaddr == NEW_ADDR)
1382 		return false;
1383 	if (fio->old_blkaddr == NULL_ADDR)
1384 		return false;
1385 	return true;
1386 }
1387 
1388 int do_write_data_page(struct f2fs_io_info *fio)
1389 {
1390 	struct page *page = fio->page;
1391 	struct inode *inode = page->mapping->host;
1392 	struct dnode_of_data dn;
1393 	struct extent_info ei = {0,0,0};
1394 	bool ipu_force = false;
1395 	int err = 0;
1396 
1397 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1398 	if (need_inplace_update(fio) &&
1399 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1400 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1401 
1402 		if (valid_ipu_blkaddr(fio)) {
1403 			ipu_force = true;
1404 			fio->need_lock = LOCK_DONE;
1405 			goto got_it;
1406 		}
1407 	}
1408 
1409 	/* Deadlock due to between page->lock and f2fs_lock_op */
1410 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1411 		return -EAGAIN;
1412 
1413 	err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1414 	if (err)
1415 		goto out;
1416 
1417 	fio->old_blkaddr = dn.data_blkaddr;
1418 
1419 	/* This page is already truncated */
1420 	if (fio->old_blkaddr == NULL_ADDR) {
1421 		ClearPageUptodate(page);
1422 		goto out_writepage;
1423 	}
1424 got_it:
1425 	/*
1426 	 * If current allocation needs SSR,
1427 	 * it had better in-place writes for updated data.
1428 	 */
1429 	if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
1430 		err = encrypt_one_page(fio);
1431 		if (err)
1432 			goto out_writepage;
1433 
1434 		set_page_writeback(page);
1435 		f2fs_put_dnode(&dn);
1436 		if (fio->need_lock == LOCK_REQ)
1437 			f2fs_unlock_op(fio->sbi);
1438 		err = rewrite_data_page(fio);
1439 		trace_f2fs_do_write_data_page(fio->page, IPU);
1440 		set_inode_flag(inode, FI_UPDATE_WRITE);
1441 		return err;
1442 	}
1443 
1444 	if (fio->need_lock == LOCK_RETRY) {
1445 		if (!f2fs_trylock_op(fio->sbi)) {
1446 			err = -EAGAIN;
1447 			goto out_writepage;
1448 		}
1449 		fio->need_lock = LOCK_REQ;
1450 	}
1451 
1452 	err = encrypt_one_page(fio);
1453 	if (err)
1454 		goto out_writepage;
1455 
1456 	set_page_writeback(page);
1457 
1458 	/* LFS mode write path */
1459 	write_data_page(&dn, fio);
1460 	trace_f2fs_do_write_data_page(page, OPU);
1461 	set_inode_flag(inode, FI_APPEND_WRITE);
1462 	if (page->index == 0)
1463 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1464 out_writepage:
1465 	f2fs_put_dnode(&dn);
1466 out:
1467 	if (fio->need_lock == LOCK_REQ)
1468 		f2fs_unlock_op(fio->sbi);
1469 	return err;
1470 }
1471 
1472 static int __write_data_page(struct page *page, bool *submitted,
1473 				struct writeback_control *wbc)
1474 {
1475 	struct inode *inode = page->mapping->host;
1476 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1477 	loff_t i_size = i_size_read(inode);
1478 	const pgoff_t end_index = ((unsigned long long) i_size)
1479 							>> PAGE_SHIFT;
1480 	loff_t psize = (page->index + 1) << PAGE_SHIFT;
1481 	unsigned offset = 0;
1482 	bool need_balance_fs = false;
1483 	int err = 0;
1484 	struct f2fs_io_info fio = {
1485 		.sbi = sbi,
1486 		.type = DATA,
1487 		.op = REQ_OP_WRITE,
1488 		.op_flags = wbc_to_write_flags(wbc),
1489 		.old_blkaddr = NULL_ADDR,
1490 		.page = page,
1491 		.encrypted_page = NULL,
1492 		.submitted = false,
1493 		.need_lock = LOCK_RETRY,
1494 	};
1495 
1496 	trace_f2fs_writepage(page, DATA);
1497 
1498 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1499 		goto redirty_out;
1500 
1501 	if (page->index < end_index)
1502 		goto write;
1503 
1504 	/*
1505 	 * If the offset is out-of-range of file size,
1506 	 * this page does not have to be written to disk.
1507 	 */
1508 	offset = i_size & (PAGE_SIZE - 1);
1509 	if ((page->index >= end_index + 1) || !offset)
1510 		goto out;
1511 
1512 	zero_user_segment(page, offset, PAGE_SIZE);
1513 write:
1514 	if (f2fs_is_drop_cache(inode))
1515 		goto out;
1516 	/* we should not write 0'th page having journal header */
1517 	if (f2fs_is_volatile_file(inode) && (!page->index ||
1518 			(!wbc->for_reclaim &&
1519 			available_free_memory(sbi, BASE_CHECK))))
1520 		goto redirty_out;
1521 
1522 	/* we should bypass data pages to proceed the kworkder jobs */
1523 	if (unlikely(f2fs_cp_error(sbi))) {
1524 		mapping_set_error(page->mapping, -EIO);
1525 		goto out;
1526 	}
1527 
1528 	/* Dentry blocks are controlled by checkpoint */
1529 	if (S_ISDIR(inode->i_mode)) {
1530 		fio.need_lock = LOCK_DONE;
1531 		err = do_write_data_page(&fio);
1532 		goto done;
1533 	}
1534 
1535 	if (!wbc->for_reclaim)
1536 		need_balance_fs = true;
1537 	else if (has_not_enough_free_secs(sbi, 0, 0))
1538 		goto redirty_out;
1539 	else
1540 		set_inode_flag(inode, FI_HOT_DATA);
1541 
1542 	err = -EAGAIN;
1543 	if (f2fs_has_inline_data(inode)) {
1544 		err = f2fs_write_inline_data(inode, page);
1545 		if (!err)
1546 			goto out;
1547 	}
1548 
1549 	if (err == -EAGAIN) {
1550 		err = do_write_data_page(&fio);
1551 		if (err == -EAGAIN) {
1552 			fio.need_lock = LOCK_REQ;
1553 			err = do_write_data_page(&fio);
1554 		}
1555 	}
1556 	if (F2FS_I(inode)->last_disk_size < psize)
1557 		F2FS_I(inode)->last_disk_size = psize;
1558 
1559 done:
1560 	if (err && err != -ENOENT)
1561 		goto redirty_out;
1562 
1563 out:
1564 	inode_dec_dirty_pages(inode);
1565 	if (err)
1566 		ClearPageUptodate(page);
1567 
1568 	if (wbc->for_reclaim) {
1569 		f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1570 		clear_inode_flag(inode, FI_HOT_DATA);
1571 		remove_dirty_inode(inode);
1572 		submitted = NULL;
1573 	}
1574 
1575 	unlock_page(page);
1576 	if (!S_ISDIR(inode->i_mode))
1577 		f2fs_balance_fs(sbi, need_balance_fs);
1578 
1579 	if (unlikely(f2fs_cp_error(sbi))) {
1580 		f2fs_submit_merged_write(sbi, DATA);
1581 		submitted = NULL;
1582 	}
1583 
1584 	if (submitted)
1585 		*submitted = fio.submitted;
1586 
1587 	return 0;
1588 
1589 redirty_out:
1590 	redirty_page_for_writepage(wbc, page);
1591 	if (!err)
1592 		return AOP_WRITEPAGE_ACTIVATE;
1593 	unlock_page(page);
1594 	return err;
1595 }
1596 
1597 static int f2fs_write_data_page(struct page *page,
1598 					struct writeback_control *wbc)
1599 {
1600 	return __write_data_page(page, NULL, wbc);
1601 }
1602 
1603 /*
1604  * This function was copied from write_cche_pages from mm/page-writeback.c.
1605  * The major change is making write step of cold data page separately from
1606  * warm/hot data page.
1607  */
1608 static int f2fs_write_cache_pages(struct address_space *mapping,
1609 					struct writeback_control *wbc)
1610 {
1611 	int ret = 0;
1612 	int done = 0;
1613 	struct pagevec pvec;
1614 	int nr_pages;
1615 	pgoff_t uninitialized_var(writeback_index);
1616 	pgoff_t index;
1617 	pgoff_t end;		/* Inclusive */
1618 	pgoff_t done_index;
1619 	pgoff_t last_idx = ULONG_MAX;
1620 	int cycled;
1621 	int range_whole = 0;
1622 	int tag;
1623 
1624 	pagevec_init(&pvec, 0);
1625 
1626 	if (get_dirty_pages(mapping->host) <=
1627 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1628 		set_inode_flag(mapping->host, FI_HOT_DATA);
1629 	else
1630 		clear_inode_flag(mapping->host, FI_HOT_DATA);
1631 
1632 	if (wbc->range_cyclic) {
1633 		writeback_index = mapping->writeback_index; /* prev offset */
1634 		index = writeback_index;
1635 		if (index == 0)
1636 			cycled = 1;
1637 		else
1638 			cycled = 0;
1639 		end = -1;
1640 	} else {
1641 		index = wbc->range_start >> PAGE_SHIFT;
1642 		end = wbc->range_end >> PAGE_SHIFT;
1643 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1644 			range_whole = 1;
1645 		cycled = 1; /* ignore range_cyclic tests */
1646 	}
1647 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1648 		tag = PAGECACHE_TAG_TOWRITE;
1649 	else
1650 		tag = PAGECACHE_TAG_DIRTY;
1651 retry:
1652 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1653 		tag_pages_for_writeback(mapping, index, end);
1654 	done_index = index;
1655 	while (!done && (index <= end)) {
1656 		int i;
1657 
1658 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1659 			      min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1660 		if (nr_pages == 0)
1661 			break;
1662 
1663 		for (i = 0; i < nr_pages; i++) {
1664 			struct page *page = pvec.pages[i];
1665 			bool submitted = false;
1666 
1667 			if (page->index > end) {
1668 				done = 1;
1669 				break;
1670 			}
1671 
1672 			done_index = page->index;
1673 retry_write:
1674 			lock_page(page);
1675 
1676 			if (unlikely(page->mapping != mapping)) {
1677 continue_unlock:
1678 				unlock_page(page);
1679 				continue;
1680 			}
1681 
1682 			if (!PageDirty(page)) {
1683 				/* someone wrote it for us */
1684 				goto continue_unlock;
1685 			}
1686 
1687 			if (PageWriteback(page)) {
1688 				if (wbc->sync_mode != WB_SYNC_NONE)
1689 					f2fs_wait_on_page_writeback(page,
1690 								DATA, true);
1691 				else
1692 					goto continue_unlock;
1693 			}
1694 
1695 			BUG_ON(PageWriteback(page));
1696 			if (!clear_page_dirty_for_io(page))
1697 				goto continue_unlock;
1698 
1699 			ret = __write_data_page(page, &submitted, wbc);
1700 			if (unlikely(ret)) {
1701 				/*
1702 				 * keep nr_to_write, since vfs uses this to
1703 				 * get # of written pages.
1704 				 */
1705 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1706 					unlock_page(page);
1707 					ret = 0;
1708 					continue;
1709 				} else if (ret == -EAGAIN) {
1710 					ret = 0;
1711 					if (wbc->sync_mode == WB_SYNC_ALL) {
1712 						cond_resched();
1713 						congestion_wait(BLK_RW_ASYNC,
1714 									HZ/50);
1715 						goto retry_write;
1716 					}
1717 					continue;
1718 				}
1719 				done_index = page->index + 1;
1720 				done = 1;
1721 				break;
1722 			} else if (submitted) {
1723 				last_idx = page->index;
1724 			}
1725 
1726 			/* give a priority to WB_SYNC threads */
1727 			if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
1728 					--wbc->nr_to_write <= 0) &&
1729 					wbc->sync_mode == WB_SYNC_NONE) {
1730 				done = 1;
1731 				break;
1732 			}
1733 		}
1734 		pagevec_release(&pvec);
1735 		cond_resched();
1736 	}
1737 
1738 	if (!cycled && !done) {
1739 		cycled = 1;
1740 		index = 0;
1741 		end = writeback_index - 1;
1742 		goto retry;
1743 	}
1744 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1745 		mapping->writeback_index = done_index;
1746 
1747 	if (last_idx != ULONG_MAX)
1748 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
1749 						0, last_idx, DATA);
1750 
1751 	return ret;
1752 }
1753 
1754 static int f2fs_write_data_pages(struct address_space *mapping,
1755 			    struct writeback_control *wbc)
1756 {
1757 	struct inode *inode = mapping->host;
1758 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1759 	struct blk_plug plug;
1760 	int ret;
1761 
1762 	/* deal with chardevs and other special file */
1763 	if (!mapping->a_ops->writepage)
1764 		return 0;
1765 
1766 	/* skip writing if there is no dirty page in this inode */
1767 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1768 		return 0;
1769 
1770 	/* during POR, we don't need to trigger writepage at all. */
1771 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1772 		goto skip_write;
1773 
1774 	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1775 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1776 			available_free_memory(sbi, DIRTY_DENTS))
1777 		goto skip_write;
1778 
1779 	/* skip writing during file defragment */
1780 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1781 		goto skip_write;
1782 
1783 	trace_f2fs_writepages(mapping->host, wbc, DATA);
1784 
1785 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
1786 	if (wbc->sync_mode == WB_SYNC_ALL)
1787 		atomic_inc(&sbi->wb_sync_req);
1788 	else if (atomic_read(&sbi->wb_sync_req))
1789 		goto skip_write;
1790 
1791 	blk_start_plug(&plug);
1792 	ret = f2fs_write_cache_pages(mapping, wbc);
1793 	blk_finish_plug(&plug);
1794 
1795 	if (wbc->sync_mode == WB_SYNC_ALL)
1796 		atomic_dec(&sbi->wb_sync_req);
1797 	/*
1798 	 * if some pages were truncated, we cannot guarantee its mapping->host
1799 	 * to detect pending bios.
1800 	 */
1801 
1802 	remove_dirty_inode(inode);
1803 	return ret;
1804 
1805 skip_write:
1806 	wbc->pages_skipped += get_dirty_pages(inode);
1807 	trace_f2fs_writepages(mapping->host, wbc, DATA);
1808 	return 0;
1809 }
1810 
1811 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1812 {
1813 	struct inode *inode = mapping->host;
1814 	loff_t i_size = i_size_read(inode);
1815 
1816 	if (to > i_size) {
1817 		down_write(&F2FS_I(inode)->i_mmap_sem);
1818 		truncate_pagecache(inode, i_size);
1819 		truncate_blocks(inode, i_size, true);
1820 		up_write(&F2FS_I(inode)->i_mmap_sem);
1821 	}
1822 }
1823 
1824 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1825 			struct page *page, loff_t pos, unsigned len,
1826 			block_t *blk_addr, bool *node_changed)
1827 {
1828 	struct inode *inode = page->mapping->host;
1829 	pgoff_t index = page->index;
1830 	struct dnode_of_data dn;
1831 	struct page *ipage;
1832 	bool locked = false;
1833 	struct extent_info ei = {0,0,0};
1834 	int err = 0;
1835 
1836 	/*
1837 	 * we already allocated all the blocks, so we don't need to get
1838 	 * the block addresses when there is no need to fill the page.
1839 	 */
1840 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
1841 			!is_inode_flag_set(inode, FI_NO_PREALLOC))
1842 		return 0;
1843 
1844 	if (f2fs_has_inline_data(inode) ||
1845 			(pos & PAGE_MASK) >= i_size_read(inode)) {
1846 		__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
1847 		locked = true;
1848 	}
1849 restart:
1850 	/* check inline_data */
1851 	ipage = get_node_page(sbi, inode->i_ino);
1852 	if (IS_ERR(ipage)) {
1853 		err = PTR_ERR(ipage);
1854 		goto unlock_out;
1855 	}
1856 
1857 	set_new_dnode(&dn, inode, ipage, ipage, 0);
1858 
1859 	if (f2fs_has_inline_data(inode)) {
1860 		if (pos + len <= MAX_INLINE_DATA) {
1861 			read_inline_data(page, ipage);
1862 			set_inode_flag(inode, FI_DATA_EXIST);
1863 			if (inode->i_nlink)
1864 				set_inline_node(ipage);
1865 		} else {
1866 			err = f2fs_convert_inline_page(&dn, page);
1867 			if (err)
1868 				goto out;
1869 			if (dn.data_blkaddr == NULL_ADDR)
1870 				err = f2fs_get_block(&dn, index);
1871 		}
1872 	} else if (locked) {
1873 		err = f2fs_get_block(&dn, index);
1874 	} else {
1875 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1876 			dn.data_blkaddr = ei.blk + index - ei.fofs;
1877 		} else {
1878 			/* hole case */
1879 			err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1880 			if (err || dn.data_blkaddr == NULL_ADDR) {
1881 				f2fs_put_dnode(&dn);
1882 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
1883 								true);
1884 				locked = true;
1885 				goto restart;
1886 			}
1887 		}
1888 	}
1889 
1890 	/* convert_inline_page can make node_changed */
1891 	*blk_addr = dn.data_blkaddr;
1892 	*node_changed = dn.node_changed;
1893 out:
1894 	f2fs_put_dnode(&dn);
1895 unlock_out:
1896 	if (locked)
1897 		__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
1898 	return err;
1899 }
1900 
1901 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1902 		loff_t pos, unsigned len, unsigned flags,
1903 		struct page **pagep, void **fsdata)
1904 {
1905 	struct inode *inode = mapping->host;
1906 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1907 	struct page *page = NULL;
1908 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1909 	bool need_balance = false;
1910 	block_t blkaddr = NULL_ADDR;
1911 	int err = 0;
1912 
1913 	trace_f2fs_write_begin(inode, pos, len, flags);
1914 
1915 	/*
1916 	 * We should check this at this moment to avoid deadlock on inode page
1917 	 * and #0 page. The locking rule for inline_data conversion should be:
1918 	 * lock_page(page #0) -> lock_page(inode_page)
1919 	 */
1920 	if (index != 0) {
1921 		err = f2fs_convert_inline_inode(inode);
1922 		if (err)
1923 			goto fail;
1924 	}
1925 repeat:
1926 	/*
1927 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1928 	 * wait_for_stable_page. Will wait that below with our IO control.
1929 	 */
1930 	page = pagecache_get_page(mapping, index,
1931 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1932 	if (!page) {
1933 		err = -ENOMEM;
1934 		goto fail;
1935 	}
1936 
1937 	*pagep = page;
1938 
1939 	err = prepare_write_begin(sbi, page, pos, len,
1940 					&blkaddr, &need_balance);
1941 	if (err)
1942 		goto fail;
1943 
1944 	if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1945 		unlock_page(page);
1946 		f2fs_balance_fs(sbi, true);
1947 		lock_page(page);
1948 		if (page->mapping != mapping) {
1949 			/* The page got truncated from under us */
1950 			f2fs_put_page(page, 1);
1951 			goto repeat;
1952 		}
1953 	}
1954 
1955 	f2fs_wait_on_page_writeback(page, DATA, false);
1956 
1957 	/* wait for GCed encrypted page writeback */
1958 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1959 		f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1960 
1961 	if (len == PAGE_SIZE || PageUptodate(page))
1962 		return 0;
1963 
1964 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
1965 		zero_user_segment(page, len, PAGE_SIZE);
1966 		return 0;
1967 	}
1968 
1969 	if (blkaddr == NEW_ADDR) {
1970 		zero_user_segment(page, 0, PAGE_SIZE);
1971 		SetPageUptodate(page);
1972 	} else {
1973 		struct bio *bio;
1974 
1975 		bio = f2fs_grab_bio(inode, blkaddr, 1);
1976 		if (IS_ERR(bio)) {
1977 			err = PTR_ERR(bio);
1978 			goto fail;
1979 		}
1980 		bio->bi_opf = REQ_OP_READ;
1981 		if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1982 			bio_put(bio);
1983 			err = -EFAULT;
1984 			goto fail;
1985 		}
1986 
1987 		__submit_bio(sbi, bio, DATA);
1988 
1989 		lock_page(page);
1990 		if (unlikely(page->mapping != mapping)) {
1991 			f2fs_put_page(page, 1);
1992 			goto repeat;
1993 		}
1994 		if (unlikely(!PageUptodate(page))) {
1995 			err = -EIO;
1996 			goto fail;
1997 		}
1998 	}
1999 	return 0;
2000 
2001 fail:
2002 	f2fs_put_page(page, 1);
2003 	f2fs_write_failed(mapping, pos + len);
2004 	return err;
2005 }
2006 
2007 static int f2fs_write_end(struct file *file,
2008 			struct address_space *mapping,
2009 			loff_t pos, unsigned len, unsigned copied,
2010 			struct page *page, void *fsdata)
2011 {
2012 	struct inode *inode = page->mapping->host;
2013 
2014 	trace_f2fs_write_end(inode, pos, len, copied);
2015 
2016 	/*
2017 	 * This should be come from len == PAGE_SIZE, and we expect copied
2018 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2019 	 * let generic_perform_write() try to copy data again through copied=0.
2020 	 */
2021 	if (!PageUptodate(page)) {
2022 		if (unlikely(copied != len))
2023 			copied = 0;
2024 		else
2025 			SetPageUptodate(page);
2026 	}
2027 	if (!copied)
2028 		goto unlock_out;
2029 
2030 	set_page_dirty(page);
2031 
2032 	if (pos + copied > i_size_read(inode))
2033 		f2fs_i_size_write(inode, pos + copied);
2034 unlock_out:
2035 	f2fs_put_page(page, 1);
2036 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2037 	return copied;
2038 }
2039 
2040 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2041 			   loff_t offset)
2042 {
2043 	unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
2044 
2045 	if (offset & blocksize_mask)
2046 		return -EINVAL;
2047 
2048 	if (iov_iter_alignment(iter) & blocksize_mask)
2049 		return -EINVAL;
2050 
2051 	return 0;
2052 }
2053 
2054 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2055 {
2056 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2057 	struct inode *inode = mapping->host;
2058 	size_t count = iov_iter_count(iter);
2059 	loff_t offset = iocb->ki_pos;
2060 	int rw = iov_iter_rw(iter);
2061 	int err;
2062 
2063 	err = check_direct_IO(inode, iter, offset);
2064 	if (err)
2065 		return err;
2066 
2067 	if (__force_buffered_io(inode, rw))
2068 		return 0;
2069 
2070 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2071 
2072 	down_read(&F2FS_I(inode)->dio_rwsem[rw]);
2073 	err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2074 	up_read(&F2FS_I(inode)->dio_rwsem[rw]);
2075 
2076 	if (rw == WRITE) {
2077 		if (err > 0)
2078 			set_inode_flag(inode, FI_UPDATE_WRITE);
2079 		else if (err < 0)
2080 			f2fs_write_failed(mapping, offset + count);
2081 	}
2082 
2083 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2084 
2085 	return err;
2086 }
2087 
2088 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2089 							unsigned int length)
2090 {
2091 	struct inode *inode = page->mapping->host;
2092 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2093 
2094 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2095 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2096 		return;
2097 
2098 	if (PageDirty(page)) {
2099 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2100 			dec_page_count(sbi, F2FS_DIRTY_META);
2101 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2102 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2103 		} else {
2104 			inode_dec_dirty_pages(inode);
2105 			remove_dirty_inode(inode);
2106 		}
2107 	}
2108 
2109 	/* This is atomic written page, keep Private */
2110 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2111 		return drop_inmem_page(inode, page);
2112 
2113 	set_page_private(page, 0);
2114 	ClearPagePrivate(page);
2115 }
2116 
2117 int f2fs_release_page(struct page *page, gfp_t wait)
2118 {
2119 	/* If this is dirty page, keep PagePrivate */
2120 	if (PageDirty(page))
2121 		return 0;
2122 
2123 	/* This is atomic written page, keep Private */
2124 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2125 		return 0;
2126 
2127 	set_page_private(page, 0);
2128 	ClearPagePrivate(page);
2129 	return 1;
2130 }
2131 
2132 /*
2133  * This was copied from __set_page_dirty_buffers which gives higher performance
2134  * in very high speed storages. (e.g., pmem)
2135  */
2136 void f2fs_set_page_dirty_nobuffers(struct page *page)
2137 {
2138 	struct address_space *mapping = page->mapping;
2139 	unsigned long flags;
2140 
2141 	if (unlikely(!mapping))
2142 		return;
2143 
2144 	spin_lock(&mapping->private_lock);
2145 	lock_page_memcg(page);
2146 	SetPageDirty(page);
2147 	spin_unlock(&mapping->private_lock);
2148 
2149 	spin_lock_irqsave(&mapping->tree_lock, flags);
2150 	WARN_ON_ONCE(!PageUptodate(page));
2151 	account_page_dirtied(page, mapping);
2152 	radix_tree_tag_set(&mapping->page_tree,
2153 			page_index(page), PAGECACHE_TAG_DIRTY);
2154 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
2155 	unlock_page_memcg(page);
2156 
2157 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2158 	return;
2159 }
2160 
2161 static int f2fs_set_data_page_dirty(struct page *page)
2162 {
2163 	struct address_space *mapping = page->mapping;
2164 	struct inode *inode = mapping->host;
2165 
2166 	trace_f2fs_set_page_dirty(page, DATA);
2167 
2168 	if (!PageUptodate(page))
2169 		SetPageUptodate(page);
2170 
2171 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2172 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2173 			register_inmem_page(inode, page);
2174 			return 1;
2175 		}
2176 		/*
2177 		 * Previously, this page has been registered, we just
2178 		 * return here.
2179 		 */
2180 		return 0;
2181 	}
2182 
2183 	if (!PageDirty(page)) {
2184 		f2fs_set_page_dirty_nobuffers(page);
2185 		update_dirty_page(inode, page);
2186 		return 1;
2187 	}
2188 	return 0;
2189 }
2190 
2191 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2192 {
2193 	struct inode *inode = mapping->host;
2194 
2195 	if (f2fs_has_inline_data(inode))
2196 		return 0;
2197 
2198 	/* make sure allocating whole blocks */
2199 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2200 		filemap_write_and_wait(mapping);
2201 
2202 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2203 }
2204 
2205 #ifdef CONFIG_MIGRATION
2206 #include <linux/migrate.h>
2207 
2208 int f2fs_migrate_page(struct address_space *mapping,
2209 		struct page *newpage, struct page *page, enum migrate_mode mode)
2210 {
2211 	int rc, extra_count;
2212 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2213 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2214 
2215 	BUG_ON(PageWriteback(page));
2216 
2217 	/* migrating an atomic written page is safe with the inmem_lock hold */
2218 	if (atomic_written) {
2219 		if (mode != MIGRATE_SYNC)
2220 			return -EBUSY;
2221 		if (!mutex_trylock(&fi->inmem_lock))
2222 			return -EAGAIN;
2223 	}
2224 
2225 	/*
2226 	 * A reference is expected if PagePrivate set when move mapping,
2227 	 * however F2FS breaks this for maintaining dirty page counts when
2228 	 * truncating pages. So here adjusting the 'extra_count' make it work.
2229 	 */
2230 	extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2231 	rc = migrate_page_move_mapping(mapping, newpage,
2232 				page, NULL, mode, extra_count);
2233 	if (rc != MIGRATEPAGE_SUCCESS) {
2234 		if (atomic_written)
2235 			mutex_unlock(&fi->inmem_lock);
2236 		return rc;
2237 	}
2238 
2239 	if (atomic_written) {
2240 		struct inmem_pages *cur;
2241 		list_for_each_entry(cur, &fi->inmem_pages, list)
2242 			if (cur->page == page) {
2243 				cur->page = newpage;
2244 				break;
2245 			}
2246 		mutex_unlock(&fi->inmem_lock);
2247 		put_page(page);
2248 		get_page(newpage);
2249 	}
2250 
2251 	if (PagePrivate(page))
2252 		SetPagePrivate(newpage);
2253 	set_page_private(newpage, page_private(page));
2254 
2255 	migrate_page_copy(newpage, page);
2256 
2257 	return MIGRATEPAGE_SUCCESS;
2258 }
2259 #endif
2260 
2261 const struct address_space_operations f2fs_dblock_aops = {
2262 	.readpage	= f2fs_read_data_page,
2263 	.readpages	= f2fs_read_data_pages,
2264 	.writepage	= f2fs_write_data_page,
2265 	.writepages	= f2fs_write_data_pages,
2266 	.write_begin	= f2fs_write_begin,
2267 	.write_end	= f2fs_write_end,
2268 	.set_page_dirty	= f2fs_set_data_page_dirty,
2269 	.invalidatepage	= f2fs_invalidate_page,
2270 	.releasepage	= f2fs_release_page,
2271 	.direct_IO	= f2fs_direct_IO,
2272 	.bmap		= f2fs_bmap,
2273 #ifdef CONFIG_MIGRATION
2274 	.migratepage    = f2fs_migrate_page,
2275 #endif
2276 };
2277