xref: /openbmc/linux/fs/f2fs/data.c (revision e2afb7de)
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include <trace/events/f2fs.h>
26 
27 static void f2fs_read_end_io(struct bio *bio, int err)
28 {
29 	struct bio_vec *bvec;
30 	int i;
31 
32 	bio_for_each_segment_all(bvec, bio, i) {
33 		struct page *page = bvec->bv_page;
34 
35 		if (!err) {
36 			SetPageUptodate(page);
37 		} else {
38 			ClearPageUptodate(page);
39 			SetPageError(page);
40 		}
41 		unlock_page(page);
42 	}
43 	bio_put(bio);
44 }
45 
46 static void f2fs_write_end_io(struct bio *bio, int err)
47 {
48 	struct f2fs_sb_info *sbi = bio->bi_private;
49 	struct bio_vec *bvec;
50 	int i;
51 
52 	bio_for_each_segment_all(bvec, bio, i) {
53 		struct page *page = bvec->bv_page;
54 
55 		if (unlikely(err)) {
56 			set_page_dirty(page);
57 			set_bit(AS_EIO, &page->mapping->flags);
58 			f2fs_stop_checkpoint(sbi);
59 		}
60 		end_page_writeback(page);
61 		dec_page_count(sbi, F2FS_WRITEBACK);
62 	}
63 
64 	if (sbi->wait_io) {
65 		complete(sbi->wait_io);
66 		sbi->wait_io = NULL;
67 	}
68 
69 	if (!get_pages(sbi, F2FS_WRITEBACK) &&
70 			!list_empty(&sbi->cp_wait.task_list))
71 		wake_up(&sbi->cp_wait);
72 
73 	bio_put(bio);
74 }
75 
76 /*
77  * Low-level block read/write IO operations.
78  */
79 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
80 				int npages, bool is_read)
81 {
82 	struct bio *bio;
83 
84 	/* No failure on bio allocation */
85 	bio = bio_alloc(GFP_NOIO, npages);
86 
87 	bio->bi_bdev = sbi->sb->s_bdev;
88 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
89 	bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
90 	bio->bi_private = sbi;
91 
92 	return bio;
93 }
94 
95 static void __submit_merged_bio(struct f2fs_bio_info *io)
96 {
97 	struct f2fs_io_info *fio = &io->fio;
98 	int rw;
99 
100 	if (!io->bio)
101 		return;
102 
103 	rw = fio->rw;
104 
105 	if (is_read_io(rw)) {
106 		trace_f2fs_submit_read_bio(io->sbi->sb, rw,
107 						fio->type, io->bio);
108 		submit_bio(rw, io->bio);
109 	} else {
110 		trace_f2fs_submit_write_bio(io->sbi->sb, rw,
111 						fio->type, io->bio);
112 		/*
113 		 * META_FLUSH is only from the checkpoint procedure, and we
114 		 * should wait this metadata bio for FS consistency.
115 		 */
116 		if (fio->type == META_FLUSH) {
117 			DECLARE_COMPLETION_ONSTACK(wait);
118 			io->sbi->wait_io = &wait;
119 			submit_bio(rw, io->bio);
120 			wait_for_completion(&wait);
121 		} else {
122 			submit_bio(rw, io->bio);
123 		}
124 	}
125 
126 	io->bio = NULL;
127 }
128 
129 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
130 				enum page_type type, int rw)
131 {
132 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
133 	struct f2fs_bio_info *io;
134 
135 	io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
136 
137 	down_write(&io->io_rwsem);
138 
139 	/* change META to META_FLUSH in the checkpoint procedure */
140 	if (type >= META_FLUSH) {
141 		io->fio.type = META_FLUSH;
142 		if (test_opt(sbi, NOBARRIER))
143 			io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
144 		else
145 			io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
146 	}
147 	__submit_merged_bio(io);
148 	up_write(&io->io_rwsem);
149 }
150 
151 /*
152  * Fill the locked page with data located in the block address.
153  * Return unlocked page.
154  */
155 int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
156 					block_t blk_addr, int rw)
157 {
158 	struct bio *bio;
159 
160 	trace_f2fs_submit_page_bio(page, blk_addr, rw);
161 
162 	/* Allocate a new bio */
163 	bio = __bio_alloc(sbi, blk_addr, 1, is_read_io(rw));
164 
165 	if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
166 		bio_put(bio);
167 		f2fs_put_page(page, 1);
168 		return -EFAULT;
169 	}
170 
171 	submit_bio(rw, bio);
172 	return 0;
173 }
174 
175 void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
176 			block_t blk_addr, struct f2fs_io_info *fio)
177 {
178 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
179 	struct f2fs_bio_info *io;
180 	bool is_read = is_read_io(fio->rw);
181 
182 	io = is_read ? &sbi->read_io : &sbi->write_io[btype];
183 
184 	verify_block_addr(sbi, blk_addr);
185 
186 	down_write(&io->io_rwsem);
187 
188 	if (!is_read)
189 		inc_page_count(sbi, F2FS_WRITEBACK);
190 
191 	if (io->bio && (io->last_block_in_bio != blk_addr - 1 ||
192 						io->fio.rw != fio->rw))
193 		__submit_merged_bio(io);
194 alloc_new:
195 	if (io->bio == NULL) {
196 		int bio_blocks = MAX_BIO_BLOCKS(sbi);
197 
198 		io->bio = __bio_alloc(sbi, blk_addr, bio_blocks, is_read);
199 		io->fio = *fio;
200 	}
201 
202 	if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
203 							PAGE_CACHE_SIZE) {
204 		__submit_merged_bio(io);
205 		goto alloc_new;
206 	}
207 
208 	io->last_block_in_bio = blk_addr;
209 
210 	up_write(&io->io_rwsem);
211 	trace_f2fs_submit_page_mbio(page, fio->rw, fio->type, blk_addr);
212 }
213 
214 /*
215  * Lock ordering for the change of data block address:
216  * ->data_page
217  *  ->node_page
218  *    update block addresses in the node page
219  */
220 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
221 {
222 	struct f2fs_node *rn;
223 	__le32 *addr_array;
224 	struct page *node_page = dn->node_page;
225 	unsigned int ofs_in_node = dn->ofs_in_node;
226 
227 	f2fs_wait_on_page_writeback(node_page, NODE);
228 
229 	rn = F2FS_NODE(node_page);
230 
231 	/* Get physical address of data block */
232 	addr_array = blkaddr_in_node(rn);
233 	addr_array[ofs_in_node] = cpu_to_le32(new_addr);
234 	set_page_dirty(node_page);
235 }
236 
237 int reserve_new_block(struct dnode_of_data *dn)
238 {
239 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
240 
241 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
242 		return -EPERM;
243 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
244 		return -ENOSPC;
245 
246 	trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
247 
248 	__set_data_blkaddr(dn, NEW_ADDR);
249 	dn->data_blkaddr = NEW_ADDR;
250 	mark_inode_dirty(dn->inode);
251 	sync_inode_page(dn);
252 	return 0;
253 }
254 
255 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
256 {
257 	bool need_put = dn->inode_page ? false : true;
258 	int err;
259 
260 	/* if inode_page exists, index should be zero */
261 	f2fs_bug_on(F2FS_I_SB(dn->inode), !need_put && index);
262 
263 	err = get_dnode_of_data(dn, index, ALLOC_NODE);
264 	if (err)
265 		return err;
266 
267 	if (dn->data_blkaddr == NULL_ADDR)
268 		err = reserve_new_block(dn);
269 	if (err || need_put)
270 		f2fs_put_dnode(dn);
271 	return err;
272 }
273 
274 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
275 					struct buffer_head *bh_result)
276 {
277 	struct f2fs_inode_info *fi = F2FS_I(inode);
278 	pgoff_t start_fofs, end_fofs;
279 	block_t start_blkaddr;
280 
281 	if (is_inode_flag_set(fi, FI_NO_EXTENT))
282 		return 0;
283 
284 	read_lock(&fi->ext.ext_lock);
285 	if (fi->ext.len == 0) {
286 		read_unlock(&fi->ext.ext_lock);
287 		return 0;
288 	}
289 
290 	stat_inc_total_hit(inode->i_sb);
291 
292 	start_fofs = fi->ext.fofs;
293 	end_fofs = fi->ext.fofs + fi->ext.len - 1;
294 	start_blkaddr = fi->ext.blk_addr;
295 
296 	if (pgofs >= start_fofs && pgofs <= end_fofs) {
297 		unsigned int blkbits = inode->i_sb->s_blocksize_bits;
298 		size_t count;
299 
300 		clear_buffer_new(bh_result);
301 		map_bh(bh_result, inode->i_sb,
302 				start_blkaddr + pgofs - start_fofs);
303 		count = end_fofs - pgofs + 1;
304 		if (count < (UINT_MAX >> blkbits))
305 			bh_result->b_size = (count << blkbits);
306 		else
307 			bh_result->b_size = UINT_MAX;
308 
309 		stat_inc_read_hit(inode->i_sb);
310 		read_unlock(&fi->ext.ext_lock);
311 		return 1;
312 	}
313 	read_unlock(&fi->ext.ext_lock);
314 	return 0;
315 }
316 
317 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
318 {
319 	struct f2fs_inode_info *fi = F2FS_I(dn->inode);
320 	pgoff_t fofs, start_fofs, end_fofs;
321 	block_t start_blkaddr, end_blkaddr;
322 	int need_update = true;
323 
324 	f2fs_bug_on(F2FS_I_SB(dn->inode), blk_addr == NEW_ADDR);
325 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
326 							dn->ofs_in_node;
327 
328 	/* Update the page address in the parent node */
329 	__set_data_blkaddr(dn, blk_addr);
330 
331 	if (is_inode_flag_set(fi, FI_NO_EXTENT))
332 		return;
333 
334 	write_lock(&fi->ext.ext_lock);
335 
336 	start_fofs = fi->ext.fofs;
337 	end_fofs = fi->ext.fofs + fi->ext.len - 1;
338 	start_blkaddr = fi->ext.blk_addr;
339 	end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
340 
341 	/* Drop and initialize the matched extent */
342 	if (fi->ext.len == 1 && fofs == start_fofs)
343 		fi->ext.len = 0;
344 
345 	/* Initial extent */
346 	if (fi->ext.len == 0) {
347 		if (blk_addr != NULL_ADDR) {
348 			fi->ext.fofs = fofs;
349 			fi->ext.blk_addr = blk_addr;
350 			fi->ext.len = 1;
351 		}
352 		goto end_update;
353 	}
354 
355 	/* Front merge */
356 	if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
357 		fi->ext.fofs--;
358 		fi->ext.blk_addr--;
359 		fi->ext.len++;
360 		goto end_update;
361 	}
362 
363 	/* Back merge */
364 	if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
365 		fi->ext.len++;
366 		goto end_update;
367 	}
368 
369 	/* Split the existing extent */
370 	if (fi->ext.len > 1 &&
371 		fofs >= start_fofs && fofs <= end_fofs) {
372 		if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
373 			fi->ext.len = fofs - start_fofs;
374 		} else {
375 			fi->ext.fofs = fofs + 1;
376 			fi->ext.blk_addr = start_blkaddr +
377 					fofs - start_fofs + 1;
378 			fi->ext.len -= fofs - start_fofs + 1;
379 		}
380 	} else {
381 		need_update = false;
382 	}
383 
384 	/* Finally, if the extent is very fragmented, let's drop the cache. */
385 	if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
386 		fi->ext.len = 0;
387 		set_inode_flag(fi, FI_NO_EXTENT);
388 		need_update = true;
389 	}
390 end_update:
391 	write_unlock(&fi->ext.ext_lock);
392 	if (need_update)
393 		sync_inode_page(dn);
394 	return;
395 }
396 
397 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
398 {
399 	struct address_space *mapping = inode->i_mapping;
400 	struct dnode_of_data dn;
401 	struct page *page;
402 	int err;
403 
404 	page = find_get_page(mapping, index);
405 	if (page && PageUptodate(page))
406 		return page;
407 	f2fs_put_page(page, 0);
408 
409 	set_new_dnode(&dn, inode, NULL, NULL, 0);
410 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
411 	if (err)
412 		return ERR_PTR(err);
413 	f2fs_put_dnode(&dn);
414 
415 	if (dn.data_blkaddr == NULL_ADDR)
416 		return ERR_PTR(-ENOENT);
417 
418 	/* By fallocate(), there is no cached page, but with NEW_ADDR */
419 	if (unlikely(dn.data_blkaddr == NEW_ADDR))
420 		return ERR_PTR(-EINVAL);
421 
422 	page = grab_cache_page(mapping, index);
423 	if (!page)
424 		return ERR_PTR(-ENOMEM);
425 
426 	if (PageUptodate(page)) {
427 		unlock_page(page);
428 		return page;
429 	}
430 
431 	err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, dn.data_blkaddr,
432 					sync ? READ_SYNC : READA);
433 	if (err)
434 		return ERR_PTR(err);
435 
436 	if (sync) {
437 		wait_on_page_locked(page);
438 		if (unlikely(!PageUptodate(page))) {
439 			f2fs_put_page(page, 0);
440 			return ERR_PTR(-EIO);
441 		}
442 	}
443 	return page;
444 }
445 
446 /*
447  * If it tries to access a hole, return an error.
448  * Because, the callers, functions in dir.c and GC, should be able to know
449  * whether this page exists or not.
450  */
451 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
452 {
453 	struct address_space *mapping = inode->i_mapping;
454 	struct dnode_of_data dn;
455 	struct page *page;
456 	int err;
457 
458 repeat:
459 	page = grab_cache_page(mapping, index);
460 	if (!page)
461 		return ERR_PTR(-ENOMEM);
462 
463 	set_new_dnode(&dn, inode, NULL, NULL, 0);
464 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
465 	if (err) {
466 		f2fs_put_page(page, 1);
467 		return ERR_PTR(err);
468 	}
469 	f2fs_put_dnode(&dn);
470 
471 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
472 		f2fs_put_page(page, 1);
473 		return ERR_PTR(-ENOENT);
474 	}
475 
476 	if (PageUptodate(page))
477 		return page;
478 
479 	/*
480 	 * A new dentry page is allocated but not able to be written, since its
481 	 * new inode page couldn't be allocated due to -ENOSPC.
482 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
483 	 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
484 	 */
485 	if (dn.data_blkaddr == NEW_ADDR) {
486 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
487 		SetPageUptodate(page);
488 		return page;
489 	}
490 
491 	err = f2fs_submit_page_bio(F2FS_I_SB(inode), page,
492 					dn.data_blkaddr, READ_SYNC);
493 	if (err)
494 		return ERR_PTR(err);
495 
496 	lock_page(page);
497 	if (unlikely(!PageUptodate(page))) {
498 		f2fs_put_page(page, 1);
499 		return ERR_PTR(-EIO);
500 	}
501 	if (unlikely(page->mapping != mapping)) {
502 		f2fs_put_page(page, 1);
503 		goto repeat;
504 	}
505 	return page;
506 }
507 
508 /*
509  * Caller ensures that this data page is never allocated.
510  * A new zero-filled data page is allocated in the page cache.
511  *
512  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
513  * f2fs_unlock_op().
514  * Note that, ipage is set only by make_empty_dir.
515  */
516 struct page *get_new_data_page(struct inode *inode,
517 		struct page *ipage, pgoff_t index, bool new_i_size)
518 {
519 	struct address_space *mapping = inode->i_mapping;
520 	struct page *page;
521 	struct dnode_of_data dn;
522 	int err;
523 
524 	set_new_dnode(&dn, inode, ipage, NULL, 0);
525 	err = f2fs_reserve_block(&dn, index);
526 	if (err)
527 		return ERR_PTR(err);
528 repeat:
529 	page = grab_cache_page(mapping, index);
530 	if (!page) {
531 		err = -ENOMEM;
532 		goto put_err;
533 	}
534 
535 	if (PageUptodate(page))
536 		return page;
537 
538 	if (dn.data_blkaddr == NEW_ADDR) {
539 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
540 		SetPageUptodate(page);
541 	} else {
542 		err = f2fs_submit_page_bio(F2FS_I_SB(inode), page,
543 						dn.data_blkaddr, READ_SYNC);
544 		if (err)
545 			goto put_err;
546 
547 		lock_page(page);
548 		if (unlikely(!PageUptodate(page))) {
549 			f2fs_put_page(page, 1);
550 			err = -EIO;
551 			goto put_err;
552 		}
553 		if (unlikely(page->mapping != mapping)) {
554 			f2fs_put_page(page, 1);
555 			goto repeat;
556 		}
557 	}
558 
559 	if (new_i_size &&
560 		i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
561 		i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
562 		/* Only the directory inode sets new_i_size */
563 		set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
564 	}
565 	return page;
566 
567 put_err:
568 	f2fs_put_dnode(&dn);
569 	return ERR_PTR(err);
570 }
571 
572 static int __allocate_data_block(struct dnode_of_data *dn)
573 {
574 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
575 	struct f2fs_inode_info *fi = F2FS_I(dn->inode);
576 	struct f2fs_summary sum;
577 	block_t new_blkaddr;
578 	struct node_info ni;
579 	pgoff_t fofs;
580 	int type;
581 
582 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
583 		return -EPERM;
584 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
585 		return -ENOSPC;
586 
587 	__set_data_blkaddr(dn, NEW_ADDR);
588 	dn->data_blkaddr = NEW_ADDR;
589 
590 	get_node_info(sbi, dn->nid, &ni);
591 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
592 
593 	type = CURSEG_WARM_DATA;
594 
595 	allocate_data_block(sbi, NULL, NULL_ADDR, &new_blkaddr, &sum, type);
596 
597 	/* direct IO doesn't use extent cache to maximize the performance */
598 	set_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
599 	update_extent_cache(new_blkaddr, dn);
600 	clear_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
601 
602 	/* update i_size */
603 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
604 							dn->ofs_in_node;
605 	if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
606 		i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
607 
608 	dn->data_blkaddr = new_blkaddr;
609 	return 0;
610 }
611 
612 /*
613  * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
614  * If original data blocks are allocated, then give them to blockdev.
615  * Otherwise,
616  *     a. preallocate requested block addresses
617  *     b. do not use extent cache for better performance
618  *     c. give the block addresses to blockdev
619  */
620 static int __get_data_block(struct inode *inode, sector_t iblock,
621 			struct buffer_head *bh_result, int create, bool fiemap)
622 {
623 	unsigned int blkbits = inode->i_sb->s_blocksize_bits;
624 	unsigned maxblocks = bh_result->b_size >> blkbits;
625 	struct dnode_of_data dn;
626 	int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
627 	pgoff_t pgofs, end_offset;
628 	int err = 0, ofs = 1;
629 	bool allocated = false;
630 
631 	/* Get the page offset from the block offset(iblock) */
632 	pgofs =	(pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
633 
634 	if (check_extent_cache(inode, pgofs, bh_result))
635 		goto out;
636 
637 	if (create) {
638 		f2fs_balance_fs(F2FS_I_SB(inode));
639 		f2fs_lock_op(F2FS_I_SB(inode));
640 	}
641 
642 	/* When reading holes, we need its node page */
643 	set_new_dnode(&dn, inode, NULL, NULL, 0);
644 	err = get_dnode_of_data(&dn, pgofs, mode);
645 	if (err) {
646 		if (err == -ENOENT)
647 			err = 0;
648 		goto unlock_out;
649 	}
650 	if (dn.data_blkaddr == NEW_ADDR && !fiemap)
651 		goto put_out;
652 
653 	if (dn.data_blkaddr != NULL_ADDR) {
654 		map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
655 	} else if (create) {
656 		err = __allocate_data_block(&dn);
657 		if (err)
658 			goto put_out;
659 		allocated = true;
660 		map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
661 	} else {
662 		goto put_out;
663 	}
664 
665 	end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
666 	bh_result->b_size = (((size_t)1) << blkbits);
667 	dn.ofs_in_node++;
668 	pgofs++;
669 
670 get_next:
671 	if (dn.ofs_in_node >= end_offset) {
672 		if (allocated)
673 			sync_inode_page(&dn);
674 		allocated = false;
675 		f2fs_put_dnode(&dn);
676 
677 		set_new_dnode(&dn, inode, NULL, NULL, 0);
678 		err = get_dnode_of_data(&dn, pgofs, mode);
679 		if (err) {
680 			if (err == -ENOENT)
681 				err = 0;
682 			goto unlock_out;
683 		}
684 		if (dn.data_blkaddr == NEW_ADDR && !fiemap)
685 			goto put_out;
686 
687 		end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
688 	}
689 
690 	if (maxblocks > (bh_result->b_size >> blkbits)) {
691 		block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
692 		if (blkaddr == NULL_ADDR && create) {
693 			err = __allocate_data_block(&dn);
694 			if (err)
695 				goto sync_out;
696 			allocated = true;
697 			blkaddr = dn.data_blkaddr;
698 		}
699 		/* Give more consecutive addresses for the readahead */
700 		if (blkaddr == (bh_result->b_blocknr + ofs)) {
701 			ofs++;
702 			dn.ofs_in_node++;
703 			pgofs++;
704 			bh_result->b_size += (((size_t)1) << blkbits);
705 			goto get_next;
706 		}
707 	}
708 sync_out:
709 	if (allocated)
710 		sync_inode_page(&dn);
711 put_out:
712 	f2fs_put_dnode(&dn);
713 unlock_out:
714 	if (create)
715 		f2fs_unlock_op(F2FS_I_SB(inode));
716 out:
717 	trace_f2fs_get_data_block(inode, iblock, bh_result, err);
718 	return err;
719 }
720 
721 static int get_data_block(struct inode *inode, sector_t iblock,
722 			struct buffer_head *bh_result, int create)
723 {
724 	return __get_data_block(inode, iblock, bh_result, create, false);
725 }
726 
727 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
728 			struct buffer_head *bh_result, int create)
729 {
730 	return __get_data_block(inode, iblock, bh_result, create, true);
731 }
732 
733 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
734 		u64 start, u64 len)
735 {
736 	return generic_block_fiemap(inode, fieinfo,
737 				start, len, get_data_block_fiemap);
738 }
739 
740 static int f2fs_read_data_page(struct file *file, struct page *page)
741 {
742 	struct inode *inode = page->mapping->host;
743 	int ret;
744 
745 	trace_f2fs_readpage(page, DATA);
746 
747 	/* If the file has inline data, try to read it directly */
748 	if (f2fs_has_inline_data(inode))
749 		ret = f2fs_read_inline_data(inode, page);
750 	else
751 		ret = mpage_readpage(page, get_data_block);
752 
753 	return ret;
754 }
755 
756 static int f2fs_read_data_pages(struct file *file,
757 			struct address_space *mapping,
758 			struct list_head *pages, unsigned nr_pages)
759 {
760 	struct inode *inode = file->f_mapping->host;
761 
762 	/* If the file has inline data, skip readpages */
763 	if (f2fs_has_inline_data(inode))
764 		return 0;
765 
766 	return mpage_readpages(mapping, pages, nr_pages, get_data_block);
767 }
768 
769 int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
770 {
771 	struct inode *inode = page->mapping->host;
772 	block_t old_blkaddr, new_blkaddr;
773 	struct dnode_of_data dn;
774 	int err = 0;
775 
776 	set_new_dnode(&dn, inode, NULL, NULL, 0);
777 	err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
778 	if (err)
779 		return err;
780 
781 	old_blkaddr = dn.data_blkaddr;
782 
783 	/* This page is already truncated */
784 	if (old_blkaddr == NULL_ADDR)
785 		goto out_writepage;
786 
787 	set_page_writeback(page);
788 
789 	/*
790 	 * If current allocation needs SSR,
791 	 * it had better in-place writes for updated data.
792 	 */
793 	if (unlikely(old_blkaddr != NEW_ADDR &&
794 			!is_cold_data(page) &&
795 			need_inplace_update(inode))) {
796 		rewrite_data_page(page, old_blkaddr, fio);
797 		set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
798 	} else {
799 		write_data_page(page, &dn, &new_blkaddr, fio);
800 		update_extent_cache(new_blkaddr, &dn);
801 		set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
802 	}
803 out_writepage:
804 	f2fs_put_dnode(&dn);
805 	return err;
806 }
807 
808 static int f2fs_write_data_page(struct page *page,
809 					struct writeback_control *wbc)
810 {
811 	struct inode *inode = page->mapping->host;
812 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
813 	loff_t i_size = i_size_read(inode);
814 	const pgoff_t end_index = ((unsigned long long) i_size)
815 							>> PAGE_CACHE_SHIFT;
816 	unsigned offset = 0;
817 	bool need_balance_fs = false;
818 	int err = 0;
819 	struct f2fs_io_info fio = {
820 		.type = DATA,
821 		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
822 	};
823 
824 	trace_f2fs_writepage(page, DATA);
825 
826 	if (page->index < end_index)
827 		goto write;
828 
829 	/*
830 	 * If the offset is out-of-range of file size,
831 	 * this page does not have to be written to disk.
832 	 */
833 	offset = i_size & (PAGE_CACHE_SIZE - 1);
834 	if ((page->index >= end_index + 1) || !offset)
835 		goto out;
836 
837 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
838 write:
839 	if (unlikely(sbi->por_doing))
840 		goto redirty_out;
841 
842 	/* Dentry blocks are controlled by checkpoint */
843 	if (S_ISDIR(inode->i_mode)) {
844 		if (unlikely(f2fs_cp_error(sbi)))
845 			goto redirty_out;
846 		err = do_write_data_page(page, &fio);
847 		goto done;
848 	}
849 
850 	/* we should bypass data pages to proceed the kworkder jobs */
851 	if (unlikely(f2fs_cp_error(sbi))) {
852 		SetPageError(page);
853 		unlock_page(page);
854 		goto out;
855 	}
856 
857 	if (!wbc->for_reclaim)
858 		need_balance_fs = true;
859 	else if (has_not_enough_free_secs(sbi, 0))
860 		goto redirty_out;
861 
862 	f2fs_lock_op(sbi);
863 	if (f2fs_has_inline_data(inode) || f2fs_may_inline(inode))
864 		err = f2fs_write_inline_data(inode, page, offset);
865 	else
866 		err = do_write_data_page(page, &fio);
867 	f2fs_unlock_op(sbi);
868 done:
869 	if (err && err != -ENOENT)
870 		goto redirty_out;
871 
872 	clear_cold_data(page);
873 out:
874 	inode_dec_dirty_pages(inode);
875 	unlock_page(page);
876 	if (need_balance_fs)
877 		f2fs_balance_fs(sbi);
878 	if (wbc->for_reclaim)
879 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
880 	return 0;
881 
882 redirty_out:
883 	redirty_page_for_writepage(wbc, page);
884 	return AOP_WRITEPAGE_ACTIVATE;
885 }
886 
887 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
888 			void *data)
889 {
890 	struct address_space *mapping = data;
891 	int ret = mapping->a_ops->writepage(page, wbc);
892 	mapping_set_error(mapping, ret);
893 	return ret;
894 }
895 
896 static int f2fs_write_data_pages(struct address_space *mapping,
897 			    struct writeback_control *wbc)
898 {
899 	struct inode *inode = mapping->host;
900 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
901 	bool locked = false;
902 	int ret;
903 	long diff;
904 
905 	trace_f2fs_writepages(mapping->host, wbc, DATA);
906 
907 	/* deal with chardevs and other special file */
908 	if (!mapping->a_ops->writepage)
909 		return 0;
910 
911 	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
912 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
913 			available_free_memory(sbi, DIRTY_DENTS))
914 		goto skip_write;
915 
916 	diff = nr_pages_to_write(sbi, DATA, wbc);
917 
918 	if (!S_ISDIR(inode->i_mode)) {
919 		mutex_lock(&sbi->writepages);
920 		locked = true;
921 	}
922 	ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
923 	if (locked)
924 		mutex_unlock(&sbi->writepages);
925 
926 	f2fs_submit_merged_bio(sbi, DATA, WRITE);
927 
928 	remove_dirty_dir_inode(inode);
929 
930 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
931 	return ret;
932 
933 skip_write:
934 	wbc->pages_skipped += get_dirty_pages(inode);
935 	return 0;
936 }
937 
938 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
939 {
940 	struct inode *inode = mapping->host;
941 
942 	if (to > inode->i_size) {
943 		truncate_pagecache(inode, inode->i_size);
944 		truncate_blocks(inode, inode->i_size, true);
945 	}
946 }
947 
948 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
949 		loff_t pos, unsigned len, unsigned flags,
950 		struct page **pagep, void **fsdata)
951 {
952 	struct inode *inode = mapping->host;
953 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
954 	struct page *page;
955 	pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
956 	struct dnode_of_data dn;
957 	int err = 0;
958 
959 	trace_f2fs_write_begin(inode, pos, len, flags);
960 
961 	f2fs_balance_fs(sbi);
962 repeat:
963 	err = f2fs_convert_inline_data(inode, pos + len, NULL);
964 	if (err)
965 		goto fail;
966 
967 	page = grab_cache_page_write_begin(mapping, index, flags);
968 	if (!page) {
969 		err = -ENOMEM;
970 		goto fail;
971 	}
972 
973 	/* to avoid latency during memory pressure */
974 	unlock_page(page);
975 
976 	*pagep = page;
977 
978 	if (f2fs_has_inline_data(inode) && (pos + len) <= MAX_INLINE_DATA)
979 		goto inline_data;
980 
981 	f2fs_lock_op(sbi);
982 	set_new_dnode(&dn, inode, NULL, NULL, 0);
983 	err = f2fs_reserve_block(&dn, index);
984 	f2fs_unlock_op(sbi);
985 	if (err) {
986 		f2fs_put_page(page, 0);
987 		goto fail;
988 	}
989 inline_data:
990 	lock_page(page);
991 	if (unlikely(page->mapping != mapping)) {
992 		f2fs_put_page(page, 1);
993 		goto repeat;
994 	}
995 
996 	f2fs_wait_on_page_writeback(page, DATA);
997 
998 	if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
999 		return 0;
1000 
1001 	if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1002 		unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1003 		unsigned end = start + len;
1004 
1005 		/* Reading beyond i_size is simple: memset to zero */
1006 		zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1007 		goto out;
1008 	}
1009 
1010 	if (dn.data_blkaddr == NEW_ADDR) {
1011 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1012 	} else {
1013 		if (f2fs_has_inline_data(inode)) {
1014 			err = f2fs_read_inline_data(inode, page);
1015 			if (err) {
1016 				page_cache_release(page);
1017 				goto fail;
1018 			}
1019 		} else {
1020 			err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
1021 							READ_SYNC);
1022 			if (err)
1023 				goto fail;
1024 		}
1025 
1026 		lock_page(page);
1027 		if (unlikely(!PageUptodate(page))) {
1028 			f2fs_put_page(page, 1);
1029 			err = -EIO;
1030 			goto fail;
1031 		}
1032 		if (unlikely(page->mapping != mapping)) {
1033 			f2fs_put_page(page, 1);
1034 			goto repeat;
1035 		}
1036 	}
1037 out:
1038 	SetPageUptodate(page);
1039 	clear_cold_data(page);
1040 	return 0;
1041 fail:
1042 	f2fs_write_failed(mapping, pos + len);
1043 	return err;
1044 }
1045 
1046 static int f2fs_write_end(struct file *file,
1047 			struct address_space *mapping,
1048 			loff_t pos, unsigned len, unsigned copied,
1049 			struct page *page, void *fsdata)
1050 {
1051 	struct inode *inode = page->mapping->host;
1052 
1053 	trace_f2fs_write_end(inode, pos, len, copied);
1054 
1055 	if (f2fs_is_atomic_file(inode) || f2fs_is_volatile_file(inode))
1056 		register_inmem_page(inode, page);
1057 	else
1058 		set_page_dirty(page);
1059 
1060 	if (pos + copied > i_size_read(inode)) {
1061 		i_size_write(inode, pos + copied);
1062 		mark_inode_dirty(inode);
1063 		update_inode_page(inode);
1064 	}
1065 
1066 	f2fs_put_page(page, 1);
1067 	return copied;
1068 }
1069 
1070 static int check_direct_IO(struct inode *inode, int rw,
1071 		struct iov_iter *iter, loff_t offset)
1072 {
1073 	unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1074 
1075 	if (rw == READ)
1076 		return 0;
1077 
1078 	if (offset & blocksize_mask)
1079 		return -EINVAL;
1080 
1081 	if (iov_iter_alignment(iter) & blocksize_mask)
1082 		return -EINVAL;
1083 
1084 	return 0;
1085 }
1086 
1087 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
1088 		struct iov_iter *iter, loff_t offset)
1089 {
1090 	struct file *file = iocb->ki_filp;
1091 	struct address_space *mapping = file->f_mapping;
1092 	struct inode *inode = mapping->host;
1093 	size_t count = iov_iter_count(iter);
1094 	int err;
1095 
1096 	/* Let buffer I/O handle the inline data case. */
1097 	if (f2fs_has_inline_data(inode))
1098 		return 0;
1099 
1100 	if (check_direct_IO(inode, rw, iter, offset))
1101 		return 0;
1102 
1103 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1104 
1105 	err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1106 	if (err < 0 && (rw & WRITE))
1107 		f2fs_write_failed(mapping, offset + count);
1108 
1109 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1110 
1111 	return err;
1112 }
1113 
1114 static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
1115 				      unsigned int length)
1116 {
1117 	struct inode *inode = page->mapping->host;
1118 
1119 	if (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE)
1120 		return;
1121 
1122 	if (PageDirty(page))
1123 		inode_dec_dirty_pages(inode);
1124 	ClearPagePrivate(page);
1125 }
1126 
1127 static int f2fs_release_data_page(struct page *page, gfp_t wait)
1128 {
1129 	ClearPagePrivate(page);
1130 	return 1;
1131 }
1132 
1133 static int f2fs_set_data_page_dirty(struct page *page)
1134 {
1135 	struct address_space *mapping = page->mapping;
1136 	struct inode *inode = mapping->host;
1137 
1138 	trace_f2fs_set_page_dirty(page, DATA);
1139 
1140 	SetPageUptodate(page);
1141 	mark_inode_dirty(inode);
1142 
1143 	if (!PageDirty(page)) {
1144 		__set_page_dirty_nobuffers(page);
1145 		update_dirty_page(inode, page);
1146 		return 1;
1147 	}
1148 	return 0;
1149 }
1150 
1151 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1152 {
1153 	struct inode *inode = mapping->host;
1154 
1155 	if (f2fs_has_inline_data(inode))
1156 		return 0;
1157 
1158 	return generic_block_bmap(mapping, block, get_data_block);
1159 }
1160 
1161 const struct address_space_operations f2fs_dblock_aops = {
1162 	.readpage	= f2fs_read_data_page,
1163 	.readpages	= f2fs_read_data_pages,
1164 	.writepage	= f2fs_write_data_page,
1165 	.writepages	= f2fs_write_data_pages,
1166 	.write_begin	= f2fs_write_begin,
1167 	.write_end	= f2fs_write_end,
1168 	.set_page_dirty	= f2fs_set_data_page_dirty,
1169 	.invalidatepage	= f2fs_invalidate_data_page,
1170 	.releasepage	= f2fs_release_data_page,
1171 	.direct_IO	= f2fs_direct_IO,
1172 	.bmap		= f2fs_bmap,
1173 };
1174