xref: /openbmc/linux/fs/f2fs/data.c (revision d6fd48ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
40 int __init f2fs_init_bioset(void)
41 {
42 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS);
44 }
45 
46 void f2fs_destroy_bioset(void)
47 {
48 	bioset_exit(&f2fs_bioset);
49 }
50 
51 static bool __is_cp_guaranteed(struct page *page)
52 {
53 	struct address_space *mapping = page->mapping;
54 	struct inode *inode;
55 	struct f2fs_sb_info *sbi;
56 
57 	if (!mapping)
58 		return false;
59 
60 	inode = mapping->host;
61 	sbi = F2FS_I_SB(inode);
62 
63 	if (inode->i_ino == F2FS_META_INO(sbi) ||
64 			inode->i_ino == F2FS_NODE_INO(sbi) ||
65 			S_ISDIR(inode->i_mode))
66 		return true;
67 
68 	if (f2fs_is_compressed_page(page))
69 		return false;
70 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71 			page_private_gcing(page))
72 		return true;
73 	return false;
74 }
75 
76 static enum count_type __read_io_type(struct page *page)
77 {
78 	struct address_space *mapping = page_file_mapping(page);
79 
80 	if (mapping) {
81 		struct inode *inode = mapping->host;
82 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
83 
84 		if (inode->i_ino == F2FS_META_INO(sbi))
85 			return F2FS_RD_META;
86 
87 		if (inode->i_ino == F2FS_NODE_INO(sbi))
88 			return F2FS_RD_NODE;
89 	}
90 	return F2FS_RD_DATA;
91 }
92 
93 /* postprocessing steps for read bios */
94 enum bio_post_read_step {
95 #ifdef CONFIG_FS_ENCRYPTION
96 	STEP_DECRYPT	= 1 << 0,
97 #else
98 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
99 #endif
100 #ifdef CONFIG_F2FS_FS_COMPRESSION
101 	STEP_DECOMPRESS	= 1 << 1,
102 #else
103 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
104 #endif
105 #ifdef CONFIG_FS_VERITY
106 	STEP_VERITY	= 1 << 2,
107 #else
108 	STEP_VERITY	= 0,	/* compile out the verity-related code */
109 #endif
110 };
111 
112 struct bio_post_read_ctx {
113 	struct bio *bio;
114 	struct f2fs_sb_info *sbi;
115 	struct work_struct work;
116 	unsigned int enabled_steps;
117 	/*
118 	 * decompression_attempted keeps track of whether
119 	 * f2fs_end_read_compressed_page() has been called on the pages in the
120 	 * bio that belong to a compressed cluster yet.
121 	 */
122 	bool decompression_attempted;
123 	block_t fs_blkaddr;
124 };
125 
126 /*
127  * Update and unlock a bio's pages, and free the bio.
128  *
129  * This marks pages up-to-date only if there was no error in the bio (I/O error,
130  * decryption error, or verity error), as indicated by bio->bi_status.
131  *
132  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133  * aren't marked up-to-date here, as decompression is done on a per-compression-
134  * cluster basis rather than a per-bio basis.  Instead, we only must do two
135  * things for each compressed page here: call f2fs_end_read_compressed_page()
136  * with failed=true if an error occurred before it would have normally gotten
137  * called (i.e., I/O error or decryption error, but *not* verity error), and
138  * release the bio's reference to the decompress_io_ctx of the page's cluster.
139  */
140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
141 {
142 	struct bio_vec *bv;
143 	struct bvec_iter_all iter_all;
144 	struct bio_post_read_ctx *ctx = bio->bi_private;
145 
146 	bio_for_each_segment_all(bv, bio, iter_all) {
147 		struct page *page = bv->bv_page;
148 
149 		if (f2fs_is_compressed_page(page)) {
150 			if (ctx && !ctx->decompression_attempted)
151 				f2fs_end_read_compressed_page(page, true, 0,
152 							in_task);
153 			f2fs_put_page_dic(page, in_task);
154 			continue;
155 		}
156 
157 		if (bio->bi_status)
158 			ClearPageUptodate(page);
159 		else
160 			SetPageUptodate(page);
161 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162 		unlock_page(page);
163 	}
164 
165 	if (ctx)
166 		mempool_free(ctx, bio_post_read_ctx_pool);
167 	bio_put(bio);
168 }
169 
170 static void f2fs_verify_bio(struct work_struct *work)
171 {
172 	struct bio_post_read_ctx *ctx =
173 		container_of(work, struct bio_post_read_ctx, work);
174 	struct bio *bio = ctx->bio;
175 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
176 
177 	/*
178 	 * fsverity_verify_bio() may call readahead() again, and while verity
179 	 * will be disabled for this, decryption and/or decompression may still
180 	 * be needed, resulting in another bio_post_read_ctx being allocated.
181 	 * So to prevent deadlocks we need to release the current ctx to the
182 	 * mempool first.  This assumes that verity is the last post-read step.
183 	 */
184 	mempool_free(ctx, bio_post_read_ctx_pool);
185 	bio->bi_private = NULL;
186 
187 	/*
188 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
189 	 * as those were handled separately by f2fs_end_read_compressed_page().
190 	 */
191 	if (may_have_compressed_pages) {
192 		struct bio_vec *bv;
193 		struct bvec_iter_all iter_all;
194 
195 		bio_for_each_segment_all(bv, bio, iter_all) {
196 			struct page *page = bv->bv_page;
197 
198 			if (!f2fs_is_compressed_page(page) &&
199 			    !fsverity_verify_page(page)) {
200 				bio->bi_status = BLK_STS_IOERR;
201 				break;
202 			}
203 		}
204 	} else {
205 		fsverity_verify_bio(bio);
206 	}
207 
208 	f2fs_finish_read_bio(bio, true);
209 }
210 
211 /*
212  * If the bio's data needs to be verified with fs-verity, then enqueue the
213  * verity work for the bio.  Otherwise finish the bio now.
214  *
215  * Note that to avoid deadlocks, the verity work can't be done on the
216  * decryption/decompression workqueue.  This is because verifying the data pages
217  * can involve reading verity metadata pages from the file, and these verity
218  * metadata pages may be encrypted and/or compressed.
219  */
220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
221 {
222 	struct bio_post_read_ctx *ctx = bio->bi_private;
223 
224 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225 		INIT_WORK(&ctx->work, f2fs_verify_bio);
226 		fsverity_enqueue_verify_work(&ctx->work);
227 	} else {
228 		f2fs_finish_read_bio(bio, in_task);
229 	}
230 }
231 
232 /*
233  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234  * remaining page was read by @ctx->bio.
235  *
236  * Note that a bio may span clusters (even a mix of compressed and uncompressed
237  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
238  * that the bio includes at least one compressed page.  The actual decompression
239  * is done on a per-cluster basis, not a per-bio basis.
240  */
241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
242 		bool in_task)
243 {
244 	struct bio_vec *bv;
245 	struct bvec_iter_all iter_all;
246 	bool all_compressed = true;
247 	block_t blkaddr = ctx->fs_blkaddr;
248 
249 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250 		struct page *page = bv->bv_page;
251 
252 		if (f2fs_is_compressed_page(page))
253 			f2fs_end_read_compressed_page(page, false, blkaddr,
254 						      in_task);
255 		else
256 			all_compressed = false;
257 
258 		blkaddr++;
259 	}
260 
261 	ctx->decompression_attempted = true;
262 
263 	/*
264 	 * Optimization: if all the bio's pages are compressed, then scheduling
265 	 * the per-bio verity work is unnecessary, as verity will be fully
266 	 * handled at the compression cluster level.
267 	 */
268 	if (all_compressed)
269 		ctx->enabled_steps &= ~STEP_VERITY;
270 }
271 
272 static void f2fs_post_read_work(struct work_struct *work)
273 {
274 	struct bio_post_read_ctx *ctx =
275 		container_of(work, struct bio_post_read_ctx, work);
276 	struct bio *bio = ctx->bio;
277 
278 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279 		f2fs_finish_read_bio(bio, true);
280 		return;
281 	}
282 
283 	if (ctx->enabled_steps & STEP_DECOMPRESS)
284 		f2fs_handle_step_decompress(ctx, true);
285 
286 	f2fs_verify_and_finish_bio(bio, true);
287 }
288 
289 static void f2fs_read_end_io(struct bio *bio)
290 {
291 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292 	struct bio_post_read_ctx *ctx;
293 	bool intask = in_task();
294 
295 	iostat_update_and_unbind_ctx(bio);
296 	ctx = bio->bi_private;
297 
298 	if (time_to_inject(sbi, FAULT_READ_IO))
299 		bio->bi_status = BLK_STS_IOERR;
300 
301 	if (bio->bi_status) {
302 		f2fs_finish_read_bio(bio, intask);
303 		return;
304 	}
305 
306 	if (ctx) {
307 		unsigned int enabled_steps = ctx->enabled_steps &
308 					(STEP_DECRYPT | STEP_DECOMPRESS);
309 
310 		/*
311 		 * If we have only decompression step between decompression and
312 		 * decrypt, we don't need post processing for this.
313 		 */
314 		if (enabled_steps == STEP_DECOMPRESS &&
315 				!f2fs_low_mem_mode(sbi)) {
316 			f2fs_handle_step_decompress(ctx, intask);
317 		} else if (enabled_steps) {
318 			INIT_WORK(&ctx->work, f2fs_post_read_work);
319 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
320 			return;
321 		}
322 	}
323 
324 	f2fs_verify_and_finish_bio(bio, intask);
325 }
326 
327 static void f2fs_write_end_io(struct bio *bio)
328 {
329 	struct f2fs_sb_info *sbi;
330 	struct bio_vec *bvec;
331 	struct bvec_iter_all iter_all;
332 
333 	iostat_update_and_unbind_ctx(bio);
334 	sbi = bio->bi_private;
335 
336 	if (time_to_inject(sbi, FAULT_WRITE_IO))
337 		bio->bi_status = BLK_STS_IOERR;
338 
339 	bio_for_each_segment_all(bvec, bio, iter_all) {
340 		struct page *page = bvec->bv_page;
341 		enum count_type type = WB_DATA_TYPE(page);
342 
343 		if (page_private_dummy(page)) {
344 			clear_page_private_dummy(page);
345 			unlock_page(page);
346 			mempool_free(page, sbi->write_io_dummy);
347 
348 			if (unlikely(bio->bi_status))
349 				f2fs_stop_checkpoint(sbi, true,
350 						STOP_CP_REASON_WRITE_FAIL);
351 			continue;
352 		}
353 
354 		fscrypt_finalize_bounce_page(&page);
355 
356 #ifdef CONFIG_F2FS_FS_COMPRESSION
357 		if (f2fs_is_compressed_page(page)) {
358 			f2fs_compress_write_end_io(bio, page);
359 			continue;
360 		}
361 #endif
362 
363 		if (unlikely(bio->bi_status)) {
364 			mapping_set_error(page->mapping, -EIO);
365 			if (type == F2FS_WB_CP_DATA)
366 				f2fs_stop_checkpoint(sbi, true,
367 						STOP_CP_REASON_WRITE_FAIL);
368 		}
369 
370 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
371 					page->index != nid_of_node(page));
372 
373 		dec_page_count(sbi, type);
374 		if (f2fs_in_warm_node_list(sbi, page))
375 			f2fs_del_fsync_node_entry(sbi, page);
376 		clear_page_private_gcing(page);
377 		end_page_writeback(page);
378 	}
379 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
380 				wq_has_sleeper(&sbi->cp_wait))
381 		wake_up(&sbi->cp_wait);
382 
383 	bio_put(bio);
384 }
385 
386 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
387 		block_t blk_addr, sector_t *sector)
388 {
389 	struct block_device *bdev = sbi->sb->s_bdev;
390 	int i;
391 
392 	if (f2fs_is_multi_device(sbi)) {
393 		for (i = 0; i < sbi->s_ndevs; i++) {
394 			if (FDEV(i).start_blk <= blk_addr &&
395 			    FDEV(i).end_blk >= blk_addr) {
396 				blk_addr -= FDEV(i).start_blk;
397 				bdev = FDEV(i).bdev;
398 				break;
399 			}
400 		}
401 	}
402 
403 	if (sector)
404 		*sector = SECTOR_FROM_BLOCK(blk_addr);
405 	return bdev;
406 }
407 
408 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
409 {
410 	int i;
411 
412 	if (!f2fs_is_multi_device(sbi))
413 		return 0;
414 
415 	for (i = 0; i < sbi->s_ndevs; i++)
416 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
417 			return i;
418 	return 0;
419 }
420 
421 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
422 {
423 	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
424 	unsigned int fua_flag, meta_flag, io_flag;
425 	blk_opf_t op_flags = 0;
426 
427 	if (fio->op != REQ_OP_WRITE)
428 		return 0;
429 	if (fio->type == DATA)
430 		io_flag = fio->sbi->data_io_flag;
431 	else if (fio->type == NODE)
432 		io_flag = fio->sbi->node_io_flag;
433 	else
434 		return 0;
435 
436 	fua_flag = io_flag & temp_mask;
437 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
438 
439 	/*
440 	 * data/node io flag bits per temp:
441 	 *      REQ_META     |      REQ_FUA      |
442 	 *    5 |    4 |   3 |    2 |    1 |   0 |
443 	 * Cold | Warm | Hot | Cold | Warm | Hot |
444 	 */
445 	if ((1 << fio->temp) & meta_flag)
446 		op_flags |= REQ_META;
447 	if ((1 << fio->temp) & fua_flag)
448 		op_flags |= REQ_FUA;
449 	return op_flags;
450 }
451 
452 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
453 {
454 	struct f2fs_sb_info *sbi = fio->sbi;
455 	struct block_device *bdev;
456 	sector_t sector;
457 	struct bio *bio;
458 
459 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
460 	bio = bio_alloc_bioset(bdev, npages,
461 				fio->op | fio->op_flags | f2fs_io_flags(fio),
462 				GFP_NOIO, &f2fs_bioset);
463 	bio->bi_iter.bi_sector = sector;
464 	if (is_read_io(fio->op)) {
465 		bio->bi_end_io = f2fs_read_end_io;
466 		bio->bi_private = NULL;
467 	} else {
468 		bio->bi_end_io = f2fs_write_end_io;
469 		bio->bi_private = sbi;
470 	}
471 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
472 
473 	if (fio->io_wbc)
474 		wbc_init_bio(fio->io_wbc, bio);
475 
476 	return bio;
477 }
478 
479 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
480 				  pgoff_t first_idx,
481 				  const struct f2fs_io_info *fio,
482 				  gfp_t gfp_mask)
483 {
484 	/*
485 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
486 	 * read/write raw data without encryption.
487 	 */
488 	if (!fio || !fio->encrypted_page)
489 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
490 }
491 
492 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
493 				     pgoff_t next_idx,
494 				     const struct f2fs_io_info *fio)
495 {
496 	/*
497 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
498 	 * read/write raw data without encryption.
499 	 */
500 	if (fio && fio->encrypted_page)
501 		return !bio_has_crypt_ctx(bio);
502 
503 	return fscrypt_mergeable_bio(bio, inode, next_idx);
504 }
505 
506 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
507 				 enum page_type type)
508 {
509 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
510 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
511 
512 	iostat_update_submit_ctx(bio, type);
513 	submit_bio(bio);
514 }
515 
516 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
517 {
518 	unsigned int start =
519 		(bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
520 
521 	if (start == 0)
522 		return;
523 
524 	/* fill dummy pages */
525 	for (; start < F2FS_IO_SIZE(sbi); start++) {
526 		struct page *page =
527 			mempool_alloc(sbi->write_io_dummy,
528 				      GFP_NOIO | __GFP_NOFAIL);
529 		f2fs_bug_on(sbi, !page);
530 
531 		lock_page(page);
532 
533 		zero_user_segment(page, 0, PAGE_SIZE);
534 		set_page_private_dummy(page);
535 
536 		if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
537 			f2fs_bug_on(sbi, 1);
538 	}
539 }
540 
541 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
542 				  enum page_type type)
543 {
544 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
545 
546 	if (type == DATA || type == NODE) {
547 		if (f2fs_lfs_mode(sbi) && current->plug)
548 			blk_finish_plug(current->plug);
549 
550 		if (F2FS_IO_ALIGNED(sbi)) {
551 			f2fs_align_write_bio(sbi, bio);
552 			/*
553 			 * In the NODE case, we lose next block address chain.
554 			 * So, we need to do checkpoint in f2fs_sync_file.
555 			 */
556 			if (type == NODE)
557 				set_sbi_flag(sbi, SBI_NEED_CP);
558 		}
559 	}
560 
561 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
562 	iostat_update_submit_ctx(bio, type);
563 	submit_bio(bio);
564 }
565 
566 static void __submit_merged_bio(struct f2fs_bio_info *io)
567 {
568 	struct f2fs_io_info *fio = &io->fio;
569 
570 	if (!io->bio)
571 		return;
572 
573 	if (is_read_io(fio->op)) {
574 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
575 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
576 	} else {
577 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
578 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
579 	}
580 	io->bio = NULL;
581 }
582 
583 static bool __has_merged_page(struct bio *bio, struct inode *inode,
584 						struct page *page, nid_t ino)
585 {
586 	struct bio_vec *bvec;
587 	struct bvec_iter_all iter_all;
588 
589 	if (!bio)
590 		return false;
591 
592 	if (!inode && !page && !ino)
593 		return true;
594 
595 	bio_for_each_segment_all(bvec, bio, iter_all) {
596 		struct page *target = bvec->bv_page;
597 
598 		if (fscrypt_is_bounce_page(target)) {
599 			target = fscrypt_pagecache_page(target);
600 			if (IS_ERR(target))
601 				continue;
602 		}
603 		if (f2fs_is_compressed_page(target)) {
604 			target = f2fs_compress_control_page(target);
605 			if (IS_ERR(target))
606 				continue;
607 		}
608 
609 		if (inode && inode == target->mapping->host)
610 			return true;
611 		if (page && page == target)
612 			return true;
613 		if (ino && ino == ino_of_node(target))
614 			return true;
615 	}
616 
617 	return false;
618 }
619 
620 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
621 {
622 	int i;
623 
624 	for (i = 0; i < NR_PAGE_TYPE; i++) {
625 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
626 		int j;
627 
628 		sbi->write_io[i] = f2fs_kmalloc(sbi,
629 				array_size(n, sizeof(struct f2fs_bio_info)),
630 				GFP_KERNEL);
631 		if (!sbi->write_io[i])
632 			return -ENOMEM;
633 
634 		for (j = HOT; j < n; j++) {
635 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
636 			sbi->write_io[i][j].sbi = sbi;
637 			sbi->write_io[i][j].bio = NULL;
638 			spin_lock_init(&sbi->write_io[i][j].io_lock);
639 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
640 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
641 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
642 		}
643 	}
644 
645 	return 0;
646 }
647 
648 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
649 				enum page_type type, enum temp_type temp)
650 {
651 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
652 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
653 
654 	f2fs_down_write(&io->io_rwsem);
655 
656 	if (!io->bio)
657 		goto unlock_out;
658 
659 	/* change META to META_FLUSH in the checkpoint procedure */
660 	if (type >= META_FLUSH) {
661 		io->fio.type = META_FLUSH;
662 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
663 		if (!test_opt(sbi, NOBARRIER))
664 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
665 	}
666 	__submit_merged_bio(io);
667 unlock_out:
668 	f2fs_up_write(&io->io_rwsem);
669 }
670 
671 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
672 				struct inode *inode, struct page *page,
673 				nid_t ino, enum page_type type, bool force)
674 {
675 	enum temp_type temp;
676 	bool ret = true;
677 
678 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
679 		if (!force)	{
680 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
681 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
682 
683 			f2fs_down_read(&io->io_rwsem);
684 			ret = __has_merged_page(io->bio, inode, page, ino);
685 			f2fs_up_read(&io->io_rwsem);
686 		}
687 		if (ret)
688 			__f2fs_submit_merged_write(sbi, type, temp);
689 
690 		/* TODO: use HOT temp only for meta pages now. */
691 		if (type >= META)
692 			break;
693 	}
694 }
695 
696 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
697 {
698 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
699 }
700 
701 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
702 				struct inode *inode, struct page *page,
703 				nid_t ino, enum page_type type)
704 {
705 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
706 }
707 
708 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
709 {
710 	f2fs_submit_merged_write(sbi, DATA);
711 	f2fs_submit_merged_write(sbi, NODE);
712 	f2fs_submit_merged_write(sbi, META);
713 }
714 
715 /*
716  * Fill the locked page with data located in the block address.
717  * A caller needs to unlock the page on failure.
718  */
719 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
720 {
721 	struct bio *bio;
722 	struct page *page = fio->encrypted_page ?
723 			fio->encrypted_page : fio->page;
724 
725 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
726 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
727 			META_GENERIC : DATA_GENERIC_ENHANCE))) {
728 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
729 		return -EFSCORRUPTED;
730 	}
731 
732 	trace_f2fs_submit_page_bio(page, fio);
733 
734 	/* Allocate a new bio */
735 	bio = __bio_alloc(fio, 1);
736 
737 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
738 			       fio->page->index, fio, GFP_NOIO);
739 
740 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
741 		bio_put(bio);
742 		return -EFAULT;
743 	}
744 
745 	if (fio->io_wbc && !is_read_io(fio->op))
746 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
747 
748 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
749 			__read_io_type(page) : WB_DATA_TYPE(fio->page));
750 
751 	if (is_read_io(bio_op(bio)))
752 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
753 	else
754 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
755 	return 0;
756 }
757 
758 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
759 				block_t last_blkaddr, block_t cur_blkaddr)
760 {
761 	if (unlikely(sbi->max_io_bytes &&
762 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
763 		return false;
764 	if (last_blkaddr + 1 != cur_blkaddr)
765 		return false;
766 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
767 }
768 
769 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
770 						struct f2fs_io_info *fio)
771 {
772 	if (io->fio.op != fio->op)
773 		return false;
774 	return io->fio.op_flags == fio->op_flags;
775 }
776 
777 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
778 					struct f2fs_bio_info *io,
779 					struct f2fs_io_info *fio,
780 					block_t last_blkaddr,
781 					block_t cur_blkaddr)
782 {
783 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
784 		unsigned int filled_blocks =
785 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
786 		unsigned int io_size = F2FS_IO_SIZE(sbi);
787 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
788 
789 		/* IOs in bio is aligned and left space of vectors is not enough */
790 		if (!(filled_blocks % io_size) && left_vecs < io_size)
791 			return false;
792 	}
793 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
794 		return false;
795 	return io_type_is_mergeable(io, fio);
796 }
797 
798 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
799 				struct page *page, enum temp_type temp)
800 {
801 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
802 	struct bio_entry *be;
803 
804 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
805 	be->bio = bio;
806 	bio_get(bio);
807 
808 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
809 		f2fs_bug_on(sbi, 1);
810 
811 	f2fs_down_write(&io->bio_list_lock);
812 	list_add_tail(&be->list, &io->bio_list);
813 	f2fs_up_write(&io->bio_list_lock);
814 }
815 
816 static void del_bio_entry(struct bio_entry *be)
817 {
818 	list_del(&be->list);
819 	kmem_cache_free(bio_entry_slab, be);
820 }
821 
822 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
823 							struct page *page)
824 {
825 	struct f2fs_sb_info *sbi = fio->sbi;
826 	enum temp_type temp;
827 	bool found = false;
828 	int ret = -EAGAIN;
829 
830 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
831 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
832 		struct list_head *head = &io->bio_list;
833 		struct bio_entry *be;
834 
835 		f2fs_down_write(&io->bio_list_lock);
836 		list_for_each_entry(be, head, list) {
837 			if (be->bio != *bio)
838 				continue;
839 
840 			found = true;
841 
842 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
843 							    *fio->last_block,
844 							    fio->new_blkaddr));
845 			if (f2fs_crypt_mergeable_bio(*bio,
846 					fio->page->mapping->host,
847 					fio->page->index, fio) &&
848 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
849 					PAGE_SIZE) {
850 				ret = 0;
851 				break;
852 			}
853 
854 			/* page can't be merged into bio; submit the bio */
855 			del_bio_entry(be);
856 			f2fs_submit_write_bio(sbi, *bio, DATA);
857 			break;
858 		}
859 		f2fs_up_write(&io->bio_list_lock);
860 	}
861 
862 	if (ret) {
863 		bio_put(*bio);
864 		*bio = NULL;
865 	}
866 
867 	return ret;
868 }
869 
870 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
871 					struct bio **bio, struct page *page)
872 {
873 	enum temp_type temp;
874 	bool found = false;
875 	struct bio *target = bio ? *bio : NULL;
876 
877 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
878 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
879 		struct list_head *head = &io->bio_list;
880 		struct bio_entry *be;
881 
882 		if (list_empty(head))
883 			continue;
884 
885 		f2fs_down_read(&io->bio_list_lock);
886 		list_for_each_entry(be, head, list) {
887 			if (target)
888 				found = (target == be->bio);
889 			else
890 				found = __has_merged_page(be->bio, NULL,
891 								page, 0);
892 			if (found)
893 				break;
894 		}
895 		f2fs_up_read(&io->bio_list_lock);
896 
897 		if (!found)
898 			continue;
899 
900 		found = false;
901 
902 		f2fs_down_write(&io->bio_list_lock);
903 		list_for_each_entry(be, head, list) {
904 			if (target)
905 				found = (target == be->bio);
906 			else
907 				found = __has_merged_page(be->bio, NULL,
908 								page, 0);
909 			if (found) {
910 				target = be->bio;
911 				del_bio_entry(be);
912 				break;
913 			}
914 		}
915 		f2fs_up_write(&io->bio_list_lock);
916 	}
917 
918 	if (found)
919 		f2fs_submit_write_bio(sbi, target, DATA);
920 	if (bio && *bio) {
921 		bio_put(*bio);
922 		*bio = NULL;
923 	}
924 }
925 
926 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
927 {
928 	struct bio *bio = *fio->bio;
929 	struct page *page = fio->encrypted_page ?
930 			fio->encrypted_page : fio->page;
931 
932 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
933 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
934 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
935 		return -EFSCORRUPTED;
936 	}
937 
938 	trace_f2fs_submit_page_bio(page, fio);
939 
940 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
941 						fio->new_blkaddr))
942 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
943 alloc_new:
944 	if (!bio) {
945 		bio = __bio_alloc(fio, BIO_MAX_VECS);
946 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
947 				       fio->page->index, fio, GFP_NOIO);
948 
949 		add_bio_entry(fio->sbi, bio, page, fio->temp);
950 	} else {
951 		if (add_ipu_page(fio, &bio, page))
952 			goto alloc_new;
953 	}
954 
955 	if (fio->io_wbc)
956 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
957 
958 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
959 
960 	*fio->last_block = fio->new_blkaddr;
961 	*fio->bio = bio;
962 
963 	return 0;
964 }
965 
966 void f2fs_submit_page_write(struct f2fs_io_info *fio)
967 {
968 	struct f2fs_sb_info *sbi = fio->sbi;
969 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
970 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
971 	struct page *bio_page;
972 
973 	f2fs_bug_on(sbi, is_read_io(fio->op));
974 
975 	f2fs_down_write(&io->io_rwsem);
976 next:
977 	if (fio->in_list) {
978 		spin_lock(&io->io_lock);
979 		if (list_empty(&io->io_list)) {
980 			spin_unlock(&io->io_lock);
981 			goto out;
982 		}
983 		fio = list_first_entry(&io->io_list,
984 						struct f2fs_io_info, list);
985 		list_del(&fio->list);
986 		spin_unlock(&io->io_lock);
987 	}
988 
989 	verify_fio_blkaddr(fio);
990 
991 	if (fio->encrypted_page)
992 		bio_page = fio->encrypted_page;
993 	else if (fio->compressed_page)
994 		bio_page = fio->compressed_page;
995 	else
996 		bio_page = fio->page;
997 
998 	/* set submitted = true as a return value */
999 	fio->submitted = 1;
1000 
1001 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1002 
1003 	if (io->bio &&
1004 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1005 			      fio->new_blkaddr) ||
1006 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1007 				       bio_page->index, fio)))
1008 		__submit_merged_bio(io);
1009 alloc_new:
1010 	if (io->bio == NULL) {
1011 		if (F2FS_IO_ALIGNED(sbi) &&
1012 				(fio->type == DATA || fio->type == NODE) &&
1013 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1014 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1015 			fio->retry = 1;
1016 			goto skip;
1017 		}
1018 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1019 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1020 				       bio_page->index, fio, GFP_NOIO);
1021 		io->fio = *fio;
1022 	}
1023 
1024 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1025 		__submit_merged_bio(io);
1026 		goto alloc_new;
1027 	}
1028 
1029 	if (fio->io_wbc)
1030 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1031 
1032 	io->last_block_in_bio = fio->new_blkaddr;
1033 
1034 	trace_f2fs_submit_page_write(fio->page, fio);
1035 skip:
1036 	if (fio->in_list)
1037 		goto next;
1038 out:
1039 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1040 				!f2fs_is_checkpoint_ready(sbi))
1041 		__submit_merged_bio(io);
1042 	f2fs_up_write(&io->io_rwsem);
1043 }
1044 
1045 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1046 				      unsigned nr_pages, blk_opf_t op_flag,
1047 				      pgoff_t first_idx, bool for_write)
1048 {
1049 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1050 	struct bio *bio;
1051 	struct bio_post_read_ctx *ctx = NULL;
1052 	unsigned int post_read_steps = 0;
1053 	sector_t sector;
1054 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1055 
1056 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1057 			       REQ_OP_READ | op_flag,
1058 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1059 	if (!bio)
1060 		return ERR_PTR(-ENOMEM);
1061 	bio->bi_iter.bi_sector = sector;
1062 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1063 	bio->bi_end_io = f2fs_read_end_io;
1064 
1065 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1066 		post_read_steps |= STEP_DECRYPT;
1067 
1068 	if (f2fs_need_verity(inode, first_idx))
1069 		post_read_steps |= STEP_VERITY;
1070 
1071 	/*
1072 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1073 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1074 	 * bio_post_read_ctx if the file is compressed, but the caller is
1075 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1076 	 */
1077 
1078 	if (post_read_steps || f2fs_compressed_file(inode)) {
1079 		/* Due to the mempool, this never fails. */
1080 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1081 		ctx->bio = bio;
1082 		ctx->sbi = sbi;
1083 		ctx->enabled_steps = post_read_steps;
1084 		ctx->fs_blkaddr = blkaddr;
1085 		ctx->decompression_attempted = false;
1086 		bio->bi_private = ctx;
1087 	}
1088 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1089 
1090 	return bio;
1091 }
1092 
1093 /* This can handle encryption stuffs */
1094 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1095 				 block_t blkaddr, blk_opf_t op_flags,
1096 				 bool for_write)
1097 {
1098 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1099 	struct bio *bio;
1100 
1101 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1102 					page->index, for_write);
1103 	if (IS_ERR(bio))
1104 		return PTR_ERR(bio);
1105 
1106 	/* wait for GCed page writeback via META_MAPPING */
1107 	f2fs_wait_on_block_writeback(inode, blkaddr);
1108 
1109 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1110 		bio_put(bio);
1111 		return -EFAULT;
1112 	}
1113 	inc_page_count(sbi, F2FS_RD_DATA);
1114 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1115 	f2fs_submit_read_bio(sbi, bio, DATA);
1116 	return 0;
1117 }
1118 
1119 static void __set_data_blkaddr(struct dnode_of_data *dn)
1120 {
1121 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1122 	__le32 *addr_array;
1123 	int base = 0;
1124 
1125 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1126 		base = get_extra_isize(dn->inode);
1127 
1128 	/* Get physical address of data block */
1129 	addr_array = blkaddr_in_node(rn);
1130 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1131 }
1132 
1133 /*
1134  * Lock ordering for the change of data block address:
1135  * ->data_page
1136  *  ->node_page
1137  *    update block addresses in the node page
1138  */
1139 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1140 {
1141 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1142 	__set_data_blkaddr(dn);
1143 	if (set_page_dirty(dn->node_page))
1144 		dn->node_changed = true;
1145 }
1146 
1147 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1148 {
1149 	dn->data_blkaddr = blkaddr;
1150 	f2fs_set_data_blkaddr(dn);
1151 	f2fs_update_read_extent_cache(dn);
1152 }
1153 
1154 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1155 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1156 {
1157 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1158 	int err;
1159 
1160 	if (!count)
1161 		return 0;
1162 
1163 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1164 		return -EPERM;
1165 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1166 		return err;
1167 
1168 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1169 						dn->ofs_in_node, count);
1170 
1171 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1172 
1173 	for (; count > 0; dn->ofs_in_node++) {
1174 		block_t blkaddr = f2fs_data_blkaddr(dn);
1175 
1176 		if (blkaddr == NULL_ADDR) {
1177 			dn->data_blkaddr = NEW_ADDR;
1178 			__set_data_blkaddr(dn);
1179 			count--;
1180 		}
1181 	}
1182 
1183 	if (set_page_dirty(dn->node_page))
1184 		dn->node_changed = true;
1185 	return 0;
1186 }
1187 
1188 /* Should keep dn->ofs_in_node unchanged */
1189 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1190 {
1191 	unsigned int ofs_in_node = dn->ofs_in_node;
1192 	int ret;
1193 
1194 	ret = f2fs_reserve_new_blocks(dn, 1);
1195 	dn->ofs_in_node = ofs_in_node;
1196 	return ret;
1197 }
1198 
1199 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1200 {
1201 	bool need_put = dn->inode_page ? false : true;
1202 	int err;
1203 
1204 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1205 	if (err)
1206 		return err;
1207 
1208 	if (dn->data_blkaddr == NULL_ADDR)
1209 		err = f2fs_reserve_new_block(dn);
1210 	if (err || need_put)
1211 		f2fs_put_dnode(dn);
1212 	return err;
1213 }
1214 
1215 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1216 				     blk_opf_t op_flags, bool for_write,
1217 				     pgoff_t *next_pgofs)
1218 {
1219 	struct address_space *mapping = inode->i_mapping;
1220 	struct dnode_of_data dn;
1221 	struct page *page;
1222 	int err;
1223 
1224 	page = f2fs_grab_cache_page(mapping, index, for_write);
1225 	if (!page)
1226 		return ERR_PTR(-ENOMEM);
1227 
1228 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1229 						&dn.data_blkaddr)) {
1230 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1231 						DATA_GENERIC_ENHANCE_READ)) {
1232 			err = -EFSCORRUPTED;
1233 			f2fs_handle_error(F2FS_I_SB(inode),
1234 						ERROR_INVALID_BLKADDR);
1235 			goto put_err;
1236 		}
1237 		goto got_it;
1238 	}
1239 
1240 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1241 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1242 	if (err) {
1243 		if (err == -ENOENT && next_pgofs)
1244 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1245 		goto put_err;
1246 	}
1247 	f2fs_put_dnode(&dn);
1248 
1249 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1250 		err = -ENOENT;
1251 		if (next_pgofs)
1252 			*next_pgofs = index + 1;
1253 		goto put_err;
1254 	}
1255 	if (dn.data_blkaddr != NEW_ADDR &&
1256 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1257 						dn.data_blkaddr,
1258 						DATA_GENERIC_ENHANCE)) {
1259 		err = -EFSCORRUPTED;
1260 		f2fs_handle_error(F2FS_I_SB(inode),
1261 					ERROR_INVALID_BLKADDR);
1262 		goto put_err;
1263 	}
1264 got_it:
1265 	if (PageUptodate(page)) {
1266 		unlock_page(page);
1267 		return page;
1268 	}
1269 
1270 	/*
1271 	 * A new dentry page is allocated but not able to be written, since its
1272 	 * new inode page couldn't be allocated due to -ENOSPC.
1273 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1274 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1275 	 * f2fs_init_inode_metadata.
1276 	 */
1277 	if (dn.data_blkaddr == NEW_ADDR) {
1278 		zero_user_segment(page, 0, PAGE_SIZE);
1279 		if (!PageUptodate(page))
1280 			SetPageUptodate(page);
1281 		unlock_page(page);
1282 		return page;
1283 	}
1284 
1285 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1286 						op_flags, for_write);
1287 	if (err)
1288 		goto put_err;
1289 	return page;
1290 
1291 put_err:
1292 	f2fs_put_page(page, 1);
1293 	return ERR_PTR(err);
1294 }
1295 
1296 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1297 					pgoff_t *next_pgofs)
1298 {
1299 	struct address_space *mapping = inode->i_mapping;
1300 	struct page *page;
1301 
1302 	page = find_get_page(mapping, index);
1303 	if (page && PageUptodate(page))
1304 		return page;
1305 	f2fs_put_page(page, 0);
1306 
1307 	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1308 	if (IS_ERR(page))
1309 		return page;
1310 
1311 	if (PageUptodate(page))
1312 		return page;
1313 
1314 	wait_on_page_locked(page);
1315 	if (unlikely(!PageUptodate(page))) {
1316 		f2fs_put_page(page, 0);
1317 		return ERR_PTR(-EIO);
1318 	}
1319 	return page;
1320 }
1321 
1322 /*
1323  * If it tries to access a hole, return an error.
1324  * Because, the callers, functions in dir.c and GC, should be able to know
1325  * whether this page exists or not.
1326  */
1327 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1328 							bool for_write)
1329 {
1330 	struct address_space *mapping = inode->i_mapping;
1331 	struct page *page;
1332 repeat:
1333 	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1334 	if (IS_ERR(page))
1335 		return page;
1336 
1337 	/* wait for read completion */
1338 	lock_page(page);
1339 	if (unlikely(page->mapping != mapping)) {
1340 		f2fs_put_page(page, 1);
1341 		goto repeat;
1342 	}
1343 	if (unlikely(!PageUptodate(page))) {
1344 		f2fs_put_page(page, 1);
1345 		return ERR_PTR(-EIO);
1346 	}
1347 	return page;
1348 }
1349 
1350 /*
1351  * Caller ensures that this data page is never allocated.
1352  * A new zero-filled data page is allocated in the page cache.
1353  *
1354  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1355  * f2fs_unlock_op().
1356  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1357  * ipage should be released by this function.
1358  */
1359 struct page *f2fs_get_new_data_page(struct inode *inode,
1360 		struct page *ipage, pgoff_t index, bool new_i_size)
1361 {
1362 	struct address_space *mapping = inode->i_mapping;
1363 	struct page *page;
1364 	struct dnode_of_data dn;
1365 	int err;
1366 
1367 	page = f2fs_grab_cache_page(mapping, index, true);
1368 	if (!page) {
1369 		/*
1370 		 * before exiting, we should make sure ipage will be released
1371 		 * if any error occur.
1372 		 */
1373 		f2fs_put_page(ipage, 1);
1374 		return ERR_PTR(-ENOMEM);
1375 	}
1376 
1377 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1378 	err = f2fs_reserve_block(&dn, index);
1379 	if (err) {
1380 		f2fs_put_page(page, 1);
1381 		return ERR_PTR(err);
1382 	}
1383 	if (!ipage)
1384 		f2fs_put_dnode(&dn);
1385 
1386 	if (PageUptodate(page))
1387 		goto got_it;
1388 
1389 	if (dn.data_blkaddr == NEW_ADDR) {
1390 		zero_user_segment(page, 0, PAGE_SIZE);
1391 		if (!PageUptodate(page))
1392 			SetPageUptodate(page);
1393 	} else {
1394 		f2fs_put_page(page, 1);
1395 
1396 		/* if ipage exists, blkaddr should be NEW_ADDR */
1397 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1398 		page = f2fs_get_lock_data_page(inode, index, true);
1399 		if (IS_ERR(page))
1400 			return page;
1401 	}
1402 got_it:
1403 	if (new_i_size && i_size_read(inode) <
1404 				((loff_t)(index + 1) << PAGE_SHIFT))
1405 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1406 	return page;
1407 }
1408 
1409 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1410 {
1411 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1412 	struct f2fs_summary sum;
1413 	struct node_info ni;
1414 	block_t old_blkaddr;
1415 	blkcnt_t count = 1;
1416 	int err;
1417 
1418 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1419 		return -EPERM;
1420 
1421 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1422 	if (err)
1423 		return err;
1424 
1425 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1426 	if (dn->data_blkaddr == NULL_ADDR) {
1427 		err = inc_valid_block_count(sbi, dn->inode, &count);
1428 		if (unlikely(err))
1429 			return err;
1430 	}
1431 
1432 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1433 	old_blkaddr = dn->data_blkaddr;
1434 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1435 				&sum, seg_type, NULL);
1436 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1437 		invalidate_mapping_pages(META_MAPPING(sbi),
1438 					old_blkaddr, old_blkaddr);
1439 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1440 	}
1441 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1442 	return 0;
1443 }
1444 
1445 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1446 {
1447 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1448 		f2fs_down_read(&sbi->node_change);
1449 	else
1450 		f2fs_lock_op(sbi);
1451 }
1452 
1453 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1454 {
1455 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1456 		f2fs_up_read(&sbi->node_change);
1457 	else
1458 		f2fs_unlock_op(sbi);
1459 }
1460 
1461 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1462 {
1463 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1464 	int err = 0;
1465 
1466 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1467 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1468 						&dn->data_blkaddr))
1469 		err = f2fs_reserve_block(dn, index);
1470 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1471 
1472 	return err;
1473 }
1474 
1475 static int f2fs_map_no_dnode(struct inode *inode,
1476 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1477 		pgoff_t pgoff)
1478 {
1479 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1480 
1481 	/*
1482 	 * There is one exceptional case that read_node_page() may return
1483 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1484 	 * -EIO in that case.
1485 	 */
1486 	if (map->m_may_create &&
1487 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1488 		return -EIO;
1489 
1490 	if (map->m_next_pgofs)
1491 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1492 	if (map->m_next_extent)
1493 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1494 	return 0;
1495 }
1496 
1497 static bool f2fs_map_blocks_cached(struct inode *inode,
1498 		struct f2fs_map_blocks *map, int flag)
1499 {
1500 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1501 	unsigned int maxblocks = map->m_len;
1502 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1503 	struct extent_info ei = {};
1504 
1505 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1506 		return false;
1507 
1508 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1509 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1510 	map->m_flags = F2FS_MAP_MAPPED;
1511 	if (map->m_next_extent)
1512 		*map->m_next_extent = pgoff + map->m_len;
1513 
1514 	/* for hardware encryption, but to avoid potential issue in future */
1515 	if (flag == F2FS_GET_BLOCK_DIO)
1516 		f2fs_wait_on_block_writeback_range(inode,
1517 					map->m_pblk, map->m_len);
1518 
1519 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1520 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1521 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1522 
1523 		map->m_bdev = dev->bdev;
1524 		map->m_pblk -= dev->start_blk;
1525 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1526 	} else {
1527 		map->m_bdev = inode->i_sb->s_bdev;
1528 	}
1529 	return true;
1530 }
1531 
1532 /*
1533  * f2fs_map_blocks() tries to find or build mapping relationship which
1534  * maps continuous logical blocks to physical blocks, and return such
1535  * info via f2fs_map_blocks structure.
1536  */
1537 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1538 {
1539 	unsigned int maxblocks = map->m_len;
1540 	struct dnode_of_data dn;
1541 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1542 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1543 	pgoff_t pgofs, end_offset, end;
1544 	int err = 0, ofs = 1;
1545 	unsigned int ofs_in_node, last_ofs_in_node;
1546 	blkcnt_t prealloc;
1547 	block_t blkaddr;
1548 	unsigned int start_pgofs;
1549 	int bidx = 0;
1550 	bool is_hole;
1551 
1552 	if (!maxblocks)
1553 		return 0;
1554 
1555 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1556 		goto out;
1557 
1558 	map->m_bdev = inode->i_sb->s_bdev;
1559 	map->m_multidev_dio =
1560 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1561 
1562 	map->m_len = 0;
1563 	map->m_flags = 0;
1564 
1565 	/* it only supports block size == page size */
1566 	pgofs =	(pgoff_t)map->m_lblk;
1567 	end = pgofs + maxblocks;
1568 
1569 next_dnode:
1570 	if (map->m_may_create)
1571 		f2fs_map_lock(sbi, flag);
1572 
1573 	/* When reading holes, we need its node page */
1574 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1575 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1576 	if (err) {
1577 		if (flag == F2FS_GET_BLOCK_BMAP)
1578 			map->m_pblk = 0;
1579 		if (err == -ENOENT)
1580 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1581 		goto unlock_out;
1582 	}
1583 
1584 	start_pgofs = pgofs;
1585 	prealloc = 0;
1586 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1587 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1588 
1589 next_block:
1590 	blkaddr = f2fs_data_blkaddr(&dn);
1591 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1592 	if (!is_hole &&
1593 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1594 		err = -EFSCORRUPTED;
1595 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1596 		goto sync_out;
1597 	}
1598 
1599 	/* use out-place-update for direct IO under LFS mode */
1600 	if (map->m_may_create &&
1601 	    (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1602 		if (unlikely(f2fs_cp_error(sbi))) {
1603 			err = -EIO;
1604 			goto sync_out;
1605 		}
1606 
1607 		switch (flag) {
1608 		case F2FS_GET_BLOCK_PRE_AIO:
1609 			if (blkaddr == NULL_ADDR) {
1610 				prealloc++;
1611 				last_ofs_in_node = dn.ofs_in_node;
1612 			}
1613 			break;
1614 		case F2FS_GET_BLOCK_PRE_DIO:
1615 		case F2FS_GET_BLOCK_DIO:
1616 			err = __allocate_data_block(&dn, map->m_seg_type);
1617 			if (err)
1618 				goto sync_out;
1619 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1620 				file_need_truncate(inode);
1621 			set_inode_flag(inode, FI_APPEND_WRITE);
1622 			break;
1623 		default:
1624 			WARN_ON_ONCE(1);
1625 			err = -EIO;
1626 			goto sync_out;
1627 		}
1628 
1629 		blkaddr = dn.data_blkaddr;
1630 		if (is_hole)
1631 			map->m_flags |= F2FS_MAP_NEW;
1632 	} else if (is_hole) {
1633 		if (f2fs_compressed_file(inode) &&
1634 		    f2fs_sanity_check_cluster(&dn) &&
1635 		    (flag != F2FS_GET_BLOCK_FIEMAP ||
1636 		     IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1637 			err = -EFSCORRUPTED;
1638 			f2fs_handle_error(sbi,
1639 					ERROR_CORRUPTED_CLUSTER);
1640 			goto sync_out;
1641 		}
1642 
1643 		switch (flag) {
1644 		case F2FS_GET_BLOCK_PRECACHE:
1645 			goto sync_out;
1646 		case F2FS_GET_BLOCK_BMAP:
1647 			map->m_pblk = 0;
1648 			goto sync_out;
1649 		case F2FS_GET_BLOCK_FIEMAP:
1650 			if (blkaddr == NULL_ADDR) {
1651 				if (map->m_next_pgofs)
1652 					*map->m_next_pgofs = pgofs + 1;
1653 				goto sync_out;
1654 			}
1655 			break;
1656 		default:
1657 			/* for defragment case */
1658 			if (map->m_next_pgofs)
1659 				*map->m_next_pgofs = pgofs + 1;
1660 			goto sync_out;
1661 		}
1662 	}
1663 
1664 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1665 		goto skip;
1666 
1667 	if (map->m_multidev_dio)
1668 		bidx = f2fs_target_device_index(sbi, blkaddr);
1669 
1670 	if (map->m_len == 0) {
1671 		/* reserved delalloc block should be mapped for fiemap. */
1672 		if (blkaddr == NEW_ADDR)
1673 			map->m_flags |= F2FS_MAP_DELALLOC;
1674 		map->m_flags |= F2FS_MAP_MAPPED;
1675 
1676 		map->m_pblk = blkaddr;
1677 		map->m_len = 1;
1678 
1679 		if (map->m_multidev_dio)
1680 			map->m_bdev = FDEV(bidx).bdev;
1681 	} else if ((map->m_pblk != NEW_ADDR &&
1682 			blkaddr == (map->m_pblk + ofs)) ||
1683 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1684 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1685 		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1686 			goto sync_out;
1687 		ofs++;
1688 		map->m_len++;
1689 	} else {
1690 		goto sync_out;
1691 	}
1692 
1693 skip:
1694 	dn.ofs_in_node++;
1695 	pgofs++;
1696 
1697 	/* preallocate blocks in batch for one dnode page */
1698 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1699 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1700 
1701 		dn.ofs_in_node = ofs_in_node;
1702 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1703 		if (err)
1704 			goto sync_out;
1705 
1706 		map->m_len += dn.ofs_in_node - ofs_in_node;
1707 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1708 			err = -ENOSPC;
1709 			goto sync_out;
1710 		}
1711 		dn.ofs_in_node = end_offset;
1712 	}
1713 
1714 	if (pgofs >= end)
1715 		goto sync_out;
1716 	else if (dn.ofs_in_node < end_offset)
1717 		goto next_block;
1718 
1719 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1720 		if (map->m_flags & F2FS_MAP_MAPPED) {
1721 			unsigned int ofs = start_pgofs - map->m_lblk;
1722 
1723 			f2fs_update_read_extent_cache_range(&dn,
1724 				start_pgofs, map->m_pblk + ofs,
1725 				map->m_len - ofs);
1726 		}
1727 	}
1728 
1729 	f2fs_put_dnode(&dn);
1730 
1731 	if (map->m_may_create) {
1732 		f2fs_map_unlock(sbi, flag);
1733 		f2fs_balance_fs(sbi, dn.node_changed);
1734 	}
1735 	goto next_dnode;
1736 
1737 sync_out:
1738 
1739 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1740 		/*
1741 		 * for hardware encryption, but to avoid potential issue
1742 		 * in future
1743 		 */
1744 		f2fs_wait_on_block_writeback_range(inode,
1745 						map->m_pblk, map->m_len);
1746 
1747 		if (map->m_multidev_dio) {
1748 			block_t blk_addr = map->m_pblk;
1749 
1750 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1751 
1752 			map->m_bdev = FDEV(bidx).bdev;
1753 			map->m_pblk -= FDEV(bidx).start_blk;
1754 
1755 			if (map->m_may_create)
1756 				f2fs_update_device_state(sbi, inode->i_ino,
1757 							blk_addr, map->m_len);
1758 
1759 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1760 						FDEV(bidx).end_blk + 1);
1761 		}
1762 	}
1763 
1764 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1765 		if (map->m_flags & F2FS_MAP_MAPPED) {
1766 			unsigned int ofs = start_pgofs - map->m_lblk;
1767 
1768 			f2fs_update_read_extent_cache_range(&dn,
1769 				start_pgofs, map->m_pblk + ofs,
1770 				map->m_len - ofs);
1771 		}
1772 		if (map->m_next_extent)
1773 			*map->m_next_extent = pgofs + 1;
1774 	}
1775 	f2fs_put_dnode(&dn);
1776 unlock_out:
1777 	if (map->m_may_create) {
1778 		f2fs_map_unlock(sbi, flag);
1779 		f2fs_balance_fs(sbi, dn.node_changed);
1780 	}
1781 out:
1782 	trace_f2fs_map_blocks(inode, map, flag, err);
1783 	return err;
1784 }
1785 
1786 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1787 {
1788 	struct f2fs_map_blocks map;
1789 	block_t last_lblk;
1790 	int err;
1791 
1792 	if (pos + len > i_size_read(inode))
1793 		return false;
1794 
1795 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1796 	map.m_next_pgofs = NULL;
1797 	map.m_next_extent = NULL;
1798 	map.m_seg_type = NO_CHECK_TYPE;
1799 	map.m_may_create = false;
1800 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1801 
1802 	while (map.m_lblk < last_lblk) {
1803 		map.m_len = last_lblk - map.m_lblk;
1804 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1805 		if (err || map.m_len == 0)
1806 			return false;
1807 		map.m_lblk += map.m_len;
1808 	}
1809 	return true;
1810 }
1811 
1812 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1813 {
1814 	return (bytes >> inode->i_blkbits);
1815 }
1816 
1817 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1818 {
1819 	return (blks << inode->i_blkbits);
1820 }
1821 
1822 static int f2fs_xattr_fiemap(struct inode *inode,
1823 				struct fiemap_extent_info *fieinfo)
1824 {
1825 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1826 	struct page *page;
1827 	struct node_info ni;
1828 	__u64 phys = 0, len;
1829 	__u32 flags;
1830 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1831 	int err = 0;
1832 
1833 	if (f2fs_has_inline_xattr(inode)) {
1834 		int offset;
1835 
1836 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1837 						inode->i_ino, false);
1838 		if (!page)
1839 			return -ENOMEM;
1840 
1841 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1842 		if (err) {
1843 			f2fs_put_page(page, 1);
1844 			return err;
1845 		}
1846 
1847 		phys = blks_to_bytes(inode, ni.blk_addr);
1848 		offset = offsetof(struct f2fs_inode, i_addr) +
1849 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1850 					get_inline_xattr_addrs(inode));
1851 
1852 		phys += offset;
1853 		len = inline_xattr_size(inode);
1854 
1855 		f2fs_put_page(page, 1);
1856 
1857 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1858 
1859 		if (!xnid)
1860 			flags |= FIEMAP_EXTENT_LAST;
1861 
1862 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1863 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1864 		if (err)
1865 			return err;
1866 	}
1867 
1868 	if (xnid) {
1869 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1870 		if (!page)
1871 			return -ENOMEM;
1872 
1873 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1874 		if (err) {
1875 			f2fs_put_page(page, 1);
1876 			return err;
1877 		}
1878 
1879 		phys = blks_to_bytes(inode, ni.blk_addr);
1880 		len = inode->i_sb->s_blocksize;
1881 
1882 		f2fs_put_page(page, 1);
1883 
1884 		flags = FIEMAP_EXTENT_LAST;
1885 	}
1886 
1887 	if (phys) {
1888 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1889 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1890 	}
1891 
1892 	return (err < 0 ? err : 0);
1893 }
1894 
1895 static loff_t max_inode_blocks(struct inode *inode)
1896 {
1897 	loff_t result = ADDRS_PER_INODE(inode);
1898 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1899 
1900 	/* two direct node blocks */
1901 	result += (leaf_count * 2);
1902 
1903 	/* two indirect node blocks */
1904 	leaf_count *= NIDS_PER_BLOCK;
1905 	result += (leaf_count * 2);
1906 
1907 	/* one double indirect node block */
1908 	leaf_count *= NIDS_PER_BLOCK;
1909 	result += leaf_count;
1910 
1911 	return result;
1912 }
1913 
1914 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1915 		u64 start, u64 len)
1916 {
1917 	struct f2fs_map_blocks map;
1918 	sector_t start_blk, last_blk;
1919 	pgoff_t next_pgofs;
1920 	u64 logical = 0, phys = 0, size = 0;
1921 	u32 flags = 0;
1922 	int ret = 0;
1923 	bool compr_cluster = false, compr_appended;
1924 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1925 	unsigned int count_in_cluster = 0;
1926 	loff_t maxbytes;
1927 
1928 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1929 		ret = f2fs_precache_extents(inode);
1930 		if (ret)
1931 			return ret;
1932 	}
1933 
1934 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1935 	if (ret)
1936 		return ret;
1937 
1938 	inode_lock(inode);
1939 
1940 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1941 	if (start > maxbytes) {
1942 		ret = -EFBIG;
1943 		goto out;
1944 	}
1945 
1946 	if (len > maxbytes || (maxbytes - len) < start)
1947 		len = maxbytes - start;
1948 
1949 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1950 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1951 		goto out;
1952 	}
1953 
1954 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1955 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1956 		if (ret != -EAGAIN)
1957 			goto out;
1958 	}
1959 
1960 	if (bytes_to_blks(inode, len) == 0)
1961 		len = blks_to_bytes(inode, 1);
1962 
1963 	start_blk = bytes_to_blks(inode, start);
1964 	last_blk = bytes_to_blks(inode, start + len - 1);
1965 
1966 next:
1967 	memset(&map, 0, sizeof(map));
1968 	map.m_lblk = start_blk;
1969 	map.m_len = bytes_to_blks(inode, len);
1970 	map.m_next_pgofs = &next_pgofs;
1971 	map.m_seg_type = NO_CHECK_TYPE;
1972 
1973 	if (compr_cluster) {
1974 		map.m_lblk += 1;
1975 		map.m_len = cluster_size - count_in_cluster;
1976 	}
1977 
1978 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1979 	if (ret)
1980 		goto out;
1981 
1982 	/* HOLE */
1983 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1984 		start_blk = next_pgofs;
1985 
1986 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1987 						max_inode_blocks(inode)))
1988 			goto prep_next;
1989 
1990 		flags |= FIEMAP_EXTENT_LAST;
1991 	}
1992 
1993 	compr_appended = false;
1994 	/* In a case of compressed cluster, append this to the last extent */
1995 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1996 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1997 		compr_appended = true;
1998 		goto skip_fill;
1999 	}
2000 
2001 	if (size) {
2002 		flags |= FIEMAP_EXTENT_MERGED;
2003 		if (IS_ENCRYPTED(inode))
2004 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2005 
2006 		ret = fiemap_fill_next_extent(fieinfo, logical,
2007 				phys, size, flags);
2008 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2009 		if (ret)
2010 			goto out;
2011 		size = 0;
2012 	}
2013 
2014 	if (start_blk > last_blk)
2015 		goto out;
2016 
2017 skip_fill:
2018 	if (map.m_pblk == COMPRESS_ADDR) {
2019 		compr_cluster = true;
2020 		count_in_cluster = 1;
2021 	} else if (compr_appended) {
2022 		unsigned int appended_blks = cluster_size -
2023 						count_in_cluster + 1;
2024 		size += blks_to_bytes(inode, appended_blks);
2025 		start_blk += appended_blks;
2026 		compr_cluster = false;
2027 	} else {
2028 		logical = blks_to_bytes(inode, start_blk);
2029 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2030 			blks_to_bytes(inode, map.m_pblk) : 0;
2031 		size = blks_to_bytes(inode, map.m_len);
2032 		flags = 0;
2033 
2034 		if (compr_cluster) {
2035 			flags = FIEMAP_EXTENT_ENCODED;
2036 			count_in_cluster += map.m_len;
2037 			if (count_in_cluster == cluster_size) {
2038 				compr_cluster = false;
2039 				size += blks_to_bytes(inode, 1);
2040 			}
2041 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2042 			flags = FIEMAP_EXTENT_UNWRITTEN;
2043 		}
2044 
2045 		start_blk += bytes_to_blks(inode, size);
2046 	}
2047 
2048 prep_next:
2049 	cond_resched();
2050 	if (fatal_signal_pending(current))
2051 		ret = -EINTR;
2052 	else
2053 		goto next;
2054 out:
2055 	if (ret == 1)
2056 		ret = 0;
2057 
2058 	inode_unlock(inode);
2059 	return ret;
2060 }
2061 
2062 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2063 {
2064 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2065 		return inode->i_sb->s_maxbytes;
2066 
2067 	return i_size_read(inode);
2068 }
2069 
2070 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2071 					unsigned nr_pages,
2072 					struct f2fs_map_blocks *map,
2073 					struct bio **bio_ret,
2074 					sector_t *last_block_in_bio,
2075 					bool is_readahead)
2076 {
2077 	struct bio *bio = *bio_ret;
2078 	const unsigned blocksize = blks_to_bytes(inode, 1);
2079 	sector_t block_in_file;
2080 	sector_t last_block;
2081 	sector_t last_block_in_file;
2082 	sector_t block_nr;
2083 	int ret = 0;
2084 
2085 	block_in_file = (sector_t)page_index(page);
2086 	last_block = block_in_file + nr_pages;
2087 	last_block_in_file = bytes_to_blks(inode,
2088 			f2fs_readpage_limit(inode) + blocksize - 1);
2089 	if (last_block > last_block_in_file)
2090 		last_block = last_block_in_file;
2091 
2092 	/* just zeroing out page which is beyond EOF */
2093 	if (block_in_file >= last_block)
2094 		goto zero_out;
2095 	/*
2096 	 * Map blocks using the previous result first.
2097 	 */
2098 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2099 			block_in_file > map->m_lblk &&
2100 			block_in_file < (map->m_lblk + map->m_len))
2101 		goto got_it;
2102 
2103 	/*
2104 	 * Then do more f2fs_map_blocks() calls until we are
2105 	 * done with this page.
2106 	 */
2107 	map->m_lblk = block_in_file;
2108 	map->m_len = last_block - block_in_file;
2109 
2110 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2111 	if (ret)
2112 		goto out;
2113 got_it:
2114 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2115 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2116 		SetPageMappedToDisk(page);
2117 
2118 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2119 						DATA_GENERIC_ENHANCE_READ)) {
2120 			ret = -EFSCORRUPTED;
2121 			f2fs_handle_error(F2FS_I_SB(inode),
2122 						ERROR_INVALID_BLKADDR);
2123 			goto out;
2124 		}
2125 	} else {
2126 zero_out:
2127 		zero_user_segment(page, 0, PAGE_SIZE);
2128 		if (f2fs_need_verity(inode, page->index) &&
2129 		    !fsverity_verify_page(page)) {
2130 			ret = -EIO;
2131 			goto out;
2132 		}
2133 		if (!PageUptodate(page))
2134 			SetPageUptodate(page);
2135 		unlock_page(page);
2136 		goto out;
2137 	}
2138 
2139 	/*
2140 	 * This page will go to BIO.  Do we need to send this
2141 	 * BIO off first?
2142 	 */
2143 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2144 				       *last_block_in_bio, block_nr) ||
2145 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2146 submit_and_realloc:
2147 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2148 		bio = NULL;
2149 	}
2150 	if (bio == NULL) {
2151 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2152 				is_readahead ? REQ_RAHEAD : 0, page->index,
2153 				false);
2154 		if (IS_ERR(bio)) {
2155 			ret = PTR_ERR(bio);
2156 			bio = NULL;
2157 			goto out;
2158 		}
2159 	}
2160 
2161 	/*
2162 	 * If the page is under writeback, we need to wait for
2163 	 * its completion to see the correct decrypted data.
2164 	 */
2165 	f2fs_wait_on_block_writeback(inode, block_nr);
2166 
2167 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2168 		goto submit_and_realloc;
2169 
2170 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2171 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2172 							F2FS_BLKSIZE);
2173 	*last_block_in_bio = block_nr;
2174 	goto out;
2175 out:
2176 	*bio_ret = bio;
2177 	return ret;
2178 }
2179 
2180 #ifdef CONFIG_F2FS_FS_COMPRESSION
2181 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2182 				unsigned nr_pages, sector_t *last_block_in_bio,
2183 				bool is_readahead, bool for_write)
2184 {
2185 	struct dnode_of_data dn;
2186 	struct inode *inode = cc->inode;
2187 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2188 	struct bio *bio = *bio_ret;
2189 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2190 	sector_t last_block_in_file;
2191 	const unsigned blocksize = blks_to_bytes(inode, 1);
2192 	struct decompress_io_ctx *dic = NULL;
2193 	struct extent_info ei = {};
2194 	bool from_dnode = true;
2195 	int i;
2196 	int ret = 0;
2197 
2198 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2199 
2200 	last_block_in_file = bytes_to_blks(inode,
2201 			f2fs_readpage_limit(inode) + blocksize - 1);
2202 
2203 	/* get rid of pages beyond EOF */
2204 	for (i = 0; i < cc->cluster_size; i++) {
2205 		struct page *page = cc->rpages[i];
2206 
2207 		if (!page)
2208 			continue;
2209 		if ((sector_t)page->index >= last_block_in_file) {
2210 			zero_user_segment(page, 0, PAGE_SIZE);
2211 			if (!PageUptodate(page))
2212 				SetPageUptodate(page);
2213 		} else if (!PageUptodate(page)) {
2214 			continue;
2215 		}
2216 		unlock_page(page);
2217 		if (for_write)
2218 			put_page(page);
2219 		cc->rpages[i] = NULL;
2220 		cc->nr_rpages--;
2221 	}
2222 
2223 	/* we are done since all pages are beyond EOF */
2224 	if (f2fs_cluster_is_empty(cc))
2225 		goto out;
2226 
2227 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2228 		from_dnode = false;
2229 
2230 	if (!from_dnode)
2231 		goto skip_reading_dnode;
2232 
2233 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2234 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2235 	if (ret)
2236 		goto out;
2237 
2238 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2239 
2240 skip_reading_dnode:
2241 	for (i = 1; i < cc->cluster_size; i++) {
2242 		block_t blkaddr;
2243 
2244 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2245 					dn.ofs_in_node + i) :
2246 					ei.blk + i - 1;
2247 
2248 		if (!__is_valid_data_blkaddr(blkaddr))
2249 			break;
2250 
2251 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2252 			ret = -EFAULT;
2253 			goto out_put_dnode;
2254 		}
2255 		cc->nr_cpages++;
2256 
2257 		if (!from_dnode && i >= ei.c_len)
2258 			break;
2259 	}
2260 
2261 	/* nothing to decompress */
2262 	if (cc->nr_cpages == 0) {
2263 		ret = 0;
2264 		goto out_put_dnode;
2265 	}
2266 
2267 	dic = f2fs_alloc_dic(cc);
2268 	if (IS_ERR(dic)) {
2269 		ret = PTR_ERR(dic);
2270 		goto out_put_dnode;
2271 	}
2272 
2273 	for (i = 0; i < cc->nr_cpages; i++) {
2274 		struct page *page = dic->cpages[i];
2275 		block_t blkaddr;
2276 		struct bio_post_read_ctx *ctx;
2277 
2278 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2279 					dn.ofs_in_node + i + 1) :
2280 					ei.blk + i;
2281 
2282 		f2fs_wait_on_block_writeback(inode, blkaddr);
2283 
2284 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2285 			if (atomic_dec_and_test(&dic->remaining_pages))
2286 				f2fs_decompress_cluster(dic, true);
2287 			continue;
2288 		}
2289 
2290 		if (bio && (!page_is_mergeable(sbi, bio,
2291 					*last_block_in_bio, blkaddr) ||
2292 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2293 submit_and_realloc:
2294 			f2fs_submit_read_bio(sbi, bio, DATA);
2295 			bio = NULL;
2296 		}
2297 
2298 		if (!bio) {
2299 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2300 					is_readahead ? REQ_RAHEAD : 0,
2301 					page->index, for_write);
2302 			if (IS_ERR(bio)) {
2303 				ret = PTR_ERR(bio);
2304 				f2fs_decompress_end_io(dic, ret, true);
2305 				f2fs_put_dnode(&dn);
2306 				*bio_ret = NULL;
2307 				return ret;
2308 			}
2309 		}
2310 
2311 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2312 			goto submit_and_realloc;
2313 
2314 		ctx = get_post_read_ctx(bio);
2315 		ctx->enabled_steps |= STEP_DECOMPRESS;
2316 		refcount_inc(&dic->refcnt);
2317 
2318 		inc_page_count(sbi, F2FS_RD_DATA);
2319 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2320 		*last_block_in_bio = blkaddr;
2321 	}
2322 
2323 	if (from_dnode)
2324 		f2fs_put_dnode(&dn);
2325 
2326 	*bio_ret = bio;
2327 	return 0;
2328 
2329 out_put_dnode:
2330 	if (from_dnode)
2331 		f2fs_put_dnode(&dn);
2332 out:
2333 	for (i = 0; i < cc->cluster_size; i++) {
2334 		if (cc->rpages[i]) {
2335 			ClearPageUptodate(cc->rpages[i]);
2336 			unlock_page(cc->rpages[i]);
2337 		}
2338 	}
2339 	*bio_ret = bio;
2340 	return ret;
2341 }
2342 #endif
2343 
2344 /*
2345  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2346  * Major change was from block_size == page_size in f2fs by default.
2347  */
2348 static int f2fs_mpage_readpages(struct inode *inode,
2349 		struct readahead_control *rac, struct page *page)
2350 {
2351 	struct bio *bio = NULL;
2352 	sector_t last_block_in_bio = 0;
2353 	struct f2fs_map_blocks map;
2354 #ifdef CONFIG_F2FS_FS_COMPRESSION
2355 	struct compress_ctx cc = {
2356 		.inode = inode,
2357 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2358 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2359 		.cluster_idx = NULL_CLUSTER,
2360 		.rpages = NULL,
2361 		.cpages = NULL,
2362 		.nr_rpages = 0,
2363 		.nr_cpages = 0,
2364 	};
2365 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2366 #endif
2367 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2368 	unsigned max_nr_pages = nr_pages;
2369 	int ret = 0;
2370 
2371 	map.m_pblk = 0;
2372 	map.m_lblk = 0;
2373 	map.m_len = 0;
2374 	map.m_flags = 0;
2375 	map.m_next_pgofs = NULL;
2376 	map.m_next_extent = NULL;
2377 	map.m_seg_type = NO_CHECK_TYPE;
2378 	map.m_may_create = false;
2379 
2380 	for (; nr_pages; nr_pages--) {
2381 		if (rac) {
2382 			page = readahead_page(rac);
2383 			prefetchw(&page->flags);
2384 		}
2385 
2386 #ifdef CONFIG_F2FS_FS_COMPRESSION
2387 		if (f2fs_compressed_file(inode)) {
2388 			/* there are remained compressed pages, submit them */
2389 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2390 				ret = f2fs_read_multi_pages(&cc, &bio,
2391 							max_nr_pages,
2392 							&last_block_in_bio,
2393 							rac != NULL, false);
2394 				f2fs_destroy_compress_ctx(&cc, false);
2395 				if (ret)
2396 					goto set_error_page;
2397 			}
2398 			if (cc.cluster_idx == NULL_CLUSTER) {
2399 				if (nc_cluster_idx ==
2400 					page->index >> cc.log_cluster_size) {
2401 					goto read_single_page;
2402 				}
2403 
2404 				ret = f2fs_is_compressed_cluster(inode, page->index);
2405 				if (ret < 0)
2406 					goto set_error_page;
2407 				else if (!ret) {
2408 					nc_cluster_idx =
2409 						page->index >> cc.log_cluster_size;
2410 					goto read_single_page;
2411 				}
2412 
2413 				nc_cluster_idx = NULL_CLUSTER;
2414 			}
2415 			ret = f2fs_init_compress_ctx(&cc);
2416 			if (ret)
2417 				goto set_error_page;
2418 
2419 			f2fs_compress_ctx_add_page(&cc, page);
2420 
2421 			goto next_page;
2422 		}
2423 read_single_page:
2424 #endif
2425 
2426 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2427 					&bio, &last_block_in_bio, rac);
2428 		if (ret) {
2429 #ifdef CONFIG_F2FS_FS_COMPRESSION
2430 set_error_page:
2431 #endif
2432 			zero_user_segment(page, 0, PAGE_SIZE);
2433 			unlock_page(page);
2434 		}
2435 #ifdef CONFIG_F2FS_FS_COMPRESSION
2436 next_page:
2437 #endif
2438 		if (rac)
2439 			put_page(page);
2440 
2441 #ifdef CONFIG_F2FS_FS_COMPRESSION
2442 		if (f2fs_compressed_file(inode)) {
2443 			/* last page */
2444 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2445 				ret = f2fs_read_multi_pages(&cc, &bio,
2446 							max_nr_pages,
2447 							&last_block_in_bio,
2448 							rac != NULL, false);
2449 				f2fs_destroy_compress_ctx(&cc, false);
2450 			}
2451 		}
2452 #endif
2453 	}
2454 	if (bio)
2455 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2456 	return ret;
2457 }
2458 
2459 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2460 {
2461 	struct page *page = &folio->page;
2462 	struct inode *inode = page_file_mapping(page)->host;
2463 	int ret = -EAGAIN;
2464 
2465 	trace_f2fs_readpage(page, DATA);
2466 
2467 	if (!f2fs_is_compress_backend_ready(inode)) {
2468 		unlock_page(page);
2469 		return -EOPNOTSUPP;
2470 	}
2471 
2472 	/* If the file has inline data, try to read it directly */
2473 	if (f2fs_has_inline_data(inode))
2474 		ret = f2fs_read_inline_data(inode, page);
2475 	if (ret == -EAGAIN)
2476 		ret = f2fs_mpage_readpages(inode, NULL, page);
2477 	return ret;
2478 }
2479 
2480 static void f2fs_readahead(struct readahead_control *rac)
2481 {
2482 	struct inode *inode = rac->mapping->host;
2483 
2484 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2485 
2486 	if (!f2fs_is_compress_backend_ready(inode))
2487 		return;
2488 
2489 	/* If the file has inline data, skip readahead */
2490 	if (f2fs_has_inline_data(inode))
2491 		return;
2492 
2493 	f2fs_mpage_readpages(inode, rac, NULL);
2494 }
2495 
2496 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2497 {
2498 	struct inode *inode = fio->page->mapping->host;
2499 	struct page *mpage, *page;
2500 	gfp_t gfp_flags = GFP_NOFS;
2501 
2502 	if (!f2fs_encrypted_file(inode))
2503 		return 0;
2504 
2505 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2506 
2507 	/* wait for GCed page writeback via META_MAPPING */
2508 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2509 
2510 	if (fscrypt_inode_uses_inline_crypto(inode))
2511 		return 0;
2512 
2513 retry_encrypt:
2514 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2515 					PAGE_SIZE, 0, gfp_flags);
2516 	if (IS_ERR(fio->encrypted_page)) {
2517 		/* flush pending IOs and wait for a while in the ENOMEM case */
2518 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2519 			f2fs_flush_merged_writes(fio->sbi);
2520 			memalloc_retry_wait(GFP_NOFS);
2521 			gfp_flags |= __GFP_NOFAIL;
2522 			goto retry_encrypt;
2523 		}
2524 		return PTR_ERR(fio->encrypted_page);
2525 	}
2526 
2527 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2528 	if (mpage) {
2529 		if (PageUptodate(mpage))
2530 			memcpy(page_address(mpage),
2531 				page_address(fio->encrypted_page), PAGE_SIZE);
2532 		f2fs_put_page(mpage, 1);
2533 	}
2534 	return 0;
2535 }
2536 
2537 static inline bool check_inplace_update_policy(struct inode *inode,
2538 				struct f2fs_io_info *fio)
2539 {
2540 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2541 
2542 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2543 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2544 		return false;
2545 	if (IS_F2FS_IPU_FORCE(sbi))
2546 		return true;
2547 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2548 		return true;
2549 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2550 		return true;
2551 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2552 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2553 		return true;
2554 
2555 	/*
2556 	 * IPU for rewrite async pages
2557 	 */
2558 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2559 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2560 		return true;
2561 
2562 	/* this is only set during fdatasync */
2563 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2564 		return true;
2565 
2566 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2567 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2568 		return true;
2569 
2570 	return false;
2571 }
2572 
2573 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2574 {
2575 	/* swap file is migrating in aligned write mode */
2576 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2577 		return false;
2578 
2579 	if (f2fs_is_pinned_file(inode))
2580 		return true;
2581 
2582 	/* if this is cold file, we should overwrite to avoid fragmentation */
2583 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2584 		return true;
2585 
2586 	return check_inplace_update_policy(inode, fio);
2587 }
2588 
2589 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2590 {
2591 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2592 
2593 	/* The below cases were checked when setting it. */
2594 	if (f2fs_is_pinned_file(inode))
2595 		return false;
2596 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2597 		return true;
2598 	if (f2fs_lfs_mode(sbi))
2599 		return true;
2600 	if (S_ISDIR(inode->i_mode))
2601 		return true;
2602 	if (IS_NOQUOTA(inode))
2603 		return true;
2604 	if (f2fs_is_atomic_file(inode))
2605 		return true;
2606 
2607 	/* swap file is migrating in aligned write mode */
2608 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2609 		return true;
2610 
2611 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2612 		return true;
2613 
2614 	if (fio) {
2615 		if (page_private_gcing(fio->page))
2616 			return true;
2617 		if (page_private_dummy(fio->page))
2618 			return true;
2619 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2620 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2621 			return true;
2622 	}
2623 	return false;
2624 }
2625 
2626 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2627 {
2628 	struct inode *inode = fio->page->mapping->host;
2629 
2630 	if (f2fs_should_update_outplace(inode, fio))
2631 		return false;
2632 
2633 	return f2fs_should_update_inplace(inode, fio);
2634 }
2635 
2636 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2637 {
2638 	struct page *page = fio->page;
2639 	struct inode *inode = page->mapping->host;
2640 	struct dnode_of_data dn;
2641 	struct node_info ni;
2642 	bool ipu_force = false;
2643 	int err = 0;
2644 
2645 	/* Use COW inode to make dnode_of_data for atomic write */
2646 	if (f2fs_is_atomic_file(inode))
2647 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2648 	else
2649 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2650 
2651 	if (need_inplace_update(fio) &&
2652 	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2653 						&fio->old_blkaddr)) {
2654 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2655 						DATA_GENERIC_ENHANCE)) {
2656 			f2fs_handle_error(fio->sbi,
2657 						ERROR_INVALID_BLKADDR);
2658 			return -EFSCORRUPTED;
2659 		}
2660 
2661 		ipu_force = true;
2662 		fio->need_lock = LOCK_DONE;
2663 		goto got_it;
2664 	}
2665 
2666 	/* Deadlock due to between page->lock and f2fs_lock_op */
2667 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2668 		return -EAGAIN;
2669 
2670 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2671 	if (err)
2672 		goto out;
2673 
2674 	fio->old_blkaddr = dn.data_blkaddr;
2675 
2676 	/* This page is already truncated */
2677 	if (fio->old_blkaddr == NULL_ADDR) {
2678 		ClearPageUptodate(page);
2679 		clear_page_private_gcing(page);
2680 		goto out_writepage;
2681 	}
2682 got_it:
2683 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2684 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2685 						DATA_GENERIC_ENHANCE)) {
2686 		err = -EFSCORRUPTED;
2687 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2688 		goto out_writepage;
2689 	}
2690 
2691 	/*
2692 	 * If current allocation needs SSR,
2693 	 * it had better in-place writes for updated data.
2694 	 */
2695 	if (ipu_force ||
2696 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2697 					need_inplace_update(fio))) {
2698 		err = f2fs_encrypt_one_page(fio);
2699 		if (err)
2700 			goto out_writepage;
2701 
2702 		set_page_writeback(page);
2703 		f2fs_put_dnode(&dn);
2704 		if (fio->need_lock == LOCK_REQ)
2705 			f2fs_unlock_op(fio->sbi);
2706 		err = f2fs_inplace_write_data(fio);
2707 		if (err) {
2708 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2709 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2710 			if (PageWriteback(page))
2711 				end_page_writeback(page);
2712 		} else {
2713 			set_inode_flag(inode, FI_UPDATE_WRITE);
2714 		}
2715 		trace_f2fs_do_write_data_page(fio->page, IPU);
2716 		return err;
2717 	}
2718 
2719 	if (fio->need_lock == LOCK_RETRY) {
2720 		if (!f2fs_trylock_op(fio->sbi)) {
2721 			err = -EAGAIN;
2722 			goto out_writepage;
2723 		}
2724 		fio->need_lock = LOCK_REQ;
2725 	}
2726 
2727 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2728 	if (err)
2729 		goto out_writepage;
2730 
2731 	fio->version = ni.version;
2732 
2733 	err = f2fs_encrypt_one_page(fio);
2734 	if (err)
2735 		goto out_writepage;
2736 
2737 	set_page_writeback(page);
2738 
2739 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2740 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2741 
2742 	/* LFS mode write path */
2743 	f2fs_outplace_write_data(&dn, fio);
2744 	trace_f2fs_do_write_data_page(page, OPU);
2745 	set_inode_flag(inode, FI_APPEND_WRITE);
2746 	if (page->index == 0)
2747 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2748 out_writepage:
2749 	f2fs_put_dnode(&dn);
2750 out:
2751 	if (fio->need_lock == LOCK_REQ)
2752 		f2fs_unlock_op(fio->sbi);
2753 	return err;
2754 }
2755 
2756 int f2fs_write_single_data_page(struct page *page, int *submitted,
2757 				struct bio **bio,
2758 				sector_t *last_block,
2759 				struct writeback_control *wbc,
2760 				enum iostat_type io_type,
2761 				int compr_blocks,
2762 				bool allow_balance)
2763 {
2764 	struct inode *inode = page->mapping->host;
2765 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2766 	loff_t i_size = i_size_read(inode);
2767 	const pgoff_t end_index = ((unsigned long long)i_size)
2768 							>> PAGE_SHIFT;
2769 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2770 	unsigned offset = 0;
2771 	bool need_balance_fs = false;
2772 	int err = 0;
2773 	struct f2fs_io_info fio = {
2774 		.sbi = sbi,
2775 		.ino = inode->i_ino,
2776 		.type = DATA,
2777 		.op = REQ_OP_WRITE,
2778 		.op_flags = wbc_to_write_flags(wbc),
2779 		.old_blkaddr = NULL_ADDR,
2780 		.page = page,
2781 		.encrypted_page = NULL,
2782 		.submitted = 0,
2783 		.compr_blocks = compr_blocks,
2784 		.need_lock = LOCK_RETRY,
2785 		.post_read = f2fs_post_read_required(inode) ? 1 : 0,
2786 		.io_type = io_type,
2787 		.io_wbc = wbc,
2788 		.bio = bio,
2789 		.last_block = last_block,
2790 	};
2791 
2792 	trace_f2fs_writepage(page, DATA);
2793 
2794 	/* we should bypass data pages to proceed the kworker jobs */
2795 	if (unlikely(f2fs_cp_error(sbi))) {
2796 		mapping_set_error(page->mapping, -EIO);
2797 		/*
2798 		 * don't drop any dirty dentry pages for keeping lastest
2799 		 * directory structure.
2800 		 */
2801 		if (S_ISDIR(inode->i_mode))
2802 			goto redirty_out;
2803 		goto out;
2804 	}
2805 
2806 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2807 		goto redirty_out;
2808 
2809 	if (page->index < end_index ||
2810 			f2fs_verity_in_progress(inode) ||
2811 			compr_blocks)
2812 		goto write;
2813 
2814 	/*
2815 	 * If the offset is out-of-range of file size,
2816 	 * this page does not have to be written to disk.
2817 	 */
2818 	offset = i_size & (PAGE_SIZE - 1);
2819 	if ((page->index >= end_index + 1) || !offset)
2820 		goto out;
2821 
2822 	zero_user_segment(page, offset, PAGE_SIZE);
2823 write:
2824 	if (f2fs_is_drop_cache(inode))
2825 		goto out;
2826 
2827 	/* Dentry/quota blocks are controlled by checkpoint */
2828 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2829 		/*
2830 		 * We need to wait for node_write to avoid block allocation during
2831 		 * checkpoint. This can only happen to quota writes which can cause
2832 		 * the below discard race condition.
2833 		 */
2834 		if (IS_NOQUOTA(inode))
2835 			f2fs_down_read(&sbi->node_write);
2836 
2837 		fio.need_lock = LOCK_DONE;
2838 		err = f2fs_do_write_data_page(&fio);
2839 
2840 		if (IS_NOQUOTA(inode))
2841 			f2fs_up_read(&sbi->node_write);
2842 
2843 		goto done;
2844 	}
2845 
2846 	if (!wbc->for_reclaim)
2847 		need_balance_fs = true;
2848 	else if (has_not_enough_free_secs(sbi, 0, 0))
2849 		goto redirty_out;
2850 	else
2851 		set_inode_flag(inode, FI_HOT_DATA);
2852 
2853 	err = -EAGAIN;
2854 	if (f2fs_has_inline_data(inode)) {
2855 		err = f2fs_write_inline_data(inode, page);
2856 		if (!err)
2857 			goto out;
2858 	}
2859 
2860 	if (err == -EAGAIN) {
2861 		err = f2fs_do_write_data_page(&fio);
2862 		if (err == -EAGAIN) {
2863 			fio.need_lock = LOCK_REQ;
2864 			err = f2fs_do_write_data_page(&fio);
2865 		}
2866 	}
2867 
2868 	if (err) {
2869 		file_set_keep_isize(inode);
2870 	} else {
2871 		spin_lock(&F2FS_I(inode)->i_size_lock);
2872 		if (F2FS_I(inode)->last_disk_size < psize)
2873 			F2FS_I(inode)->last_disk_size = psize;
2874 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2875 	}
2876 
2877 done:
2878 	if (err && err != -ENOENT)
2879 		goto redirty_out;
2880 
2881 out:
2882 	inode_dec_dirty_pages(inode);
2883 	if (err) {
2884 		ClearPageUptodate(page);
2885 		clear_page_private_gcing(page);
2886 	}
2887 
2888 	if (wbc->for_reclaim) {
2889 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2890 		clear_inode_flag(inode, FI_HOT_DATA);
2891 		f2fs_remove_dirty_inode(inode);
2892 		submitted = NULL;
2893 	}
2894 	unlock_page(page);
2895 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2896 			!F2FS_I(inode)->wb_task && allow_balance)
2897 		f2fs_balance_fs(sbi, need_balance_fs);
2898 
2899 	if (unlikely(f2fs_cp_error(sbi))) {
2900 		f2fs_submit_merged_write(sbi, DATA);
2901 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2902 		submitted = NULL;
2903 	}
2904 
2905 	if (submitted)
2906 		*submitted = fio.submitted;
2907 
2908 	return 0;
2909 
2910 redirty_out:
2911 	redirty_page_for_writepage(wbc, page);
2912 	/*
2913 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2914 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2915 	 * file_write_and_wait_range() will see EIO error, which is critical
2916 	 * to return value of fsync() followed by atomic_write failure to user.
2917 	 */
2918 	if (!err || wbc->for_reclaim)
2919 		return AOP_WRITEPAGE_ACTIVATE;
2920 	unlock_page(page);
2921 	return err;
2922 }
2923 
2924 static int f2fs_write_data_page(struct page *page,
2925 					struct writeback_control *wbc)
2926 {
2927 #ifdef CONFIG_F2FS_FS_COMPRESSION
2928 	struct inode *inode = page->mapping->host;
2929 
2930 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2931 		goto out;
2932 
2933 	if (f2fs_compressed_file(inode)) {
2934 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2935 			redirty_page_for_writepage(wbc, page);
2936 			return AOP_WRITEPAGE_ACTIVATE;
2937 		}
2938 	}
2939 out:
2940 #endif
2941 
2942 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2943 						wbc, FS_DATA_IO, 0, true);
2944 }
2945 
2946 /*
2947  * This function was copied from write_cache_pages from mm/page-writeback.c.
2948  * The major change is making write step of cold data page separately from
2949  * warm/hot data page.
2950  */
2951 static int f2fs_write_cache_pages(struct address_space *mapping,
2952 					struct writeback_control *wbc,
2953 					enum iostat_type io_type)
2954 {
2955 	int ret = 0;
2956 	int done = 0, retry = 0;
2957 	struct page *pages[F2FS_ONSTACK_PAGES];
2958 	struct folio_batch fbatch;
2959 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2960 	struct bio *bio = NULL;
2961 	sector_t last_block;
2962 #ifdef CONFIG_F2FS_FS_COMPRESSION
2963 	struct inode *inode = mapping->host;
2964 	struct compress_ctx cc = {
2965 		.inode = inode,
2966 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2967 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2968 		.cluster_idx = NULL_CLUSTER,
2969 		.rpages = NULL,
2970 		.nr_rpages = 0,
2971 		.cpages = NULL,
2972 		.valid_nr_cpages = 0,
2973 		.rbuf = NULL,
2974 		.cbuf = NULL,
2975 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2976 		.private = NULL,
2977 	};
2978 #endif
2979 	int nr_folios, p, idx;
2980 	int nr_pages;
2981 	pgoff_t index;
2982 	pgoff_t end;		/* Inclusive */
2983 	pgoff_t done_index;
2984 	int range_whole = 0;
2985 	xa_mark_t tag;
2986 	int nwritten = 0;
2987 	int submitted = 0;
2988 	int i;
2989 
2990 	folio_batch_init(&fbatch);
2991 
2992 	if (get_dirty_pages(mapping->host) <=
2993 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2994 		set_inode_flag(mapping->host, FI_HOT_DATA);
2995 	else
2996 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2997 
2998 	if (wbc->range_cyclic) {
2999 		index = mapping->writeback_index; /* prev offset */
3000 		end = -1;
3001 	} else {
3002 		index = wbc->range_start >> PAGE_SHIFT;
3003 		end = wbc->range_end >> PAGE_SHIFT;
3004 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3005 			range_whole = 1;
3006 	}
3007 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3008 		tag = PAGECACHE_TAG_TOWRITE;
3009 	else
3010 		tag = PAGECACHE_TAG_DIRTY;
3011 retry:
3012 	retry = 0;
3013 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3014 		tag_pages_for_writeback(mapping, index, end);
3015 	done_index = index;
3016 	while (!done && !retry && (index <= end)) {
3017 		nr_pages = 0;
3018 again:
3019 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3020 				tag, &fbatch);
3021 		if (nr_folios == 0) {
3022 			if (nr_pages)
3023 				goto write;
3024 			break;
3025 		}
3026 
3027 		for (i = 0; i < nr_folios; i++) {
3028 			struct folio *folio = fbatch.folios[i];
3029 
3030 			idx = 0;
3031 			p = folio_nr_pages(folio);
3032 add_more:
3033 			pages[nr_pages] = folio_page(folio, idx);
3034 			folio_get(folio);
3035 			if (++nr_pages == F2FS_ONSTACK_PAGES) {
3036 				index = folio->index + idx + 1;
3037 				folio_batch_release(&fbatch);
3038 				goto write;
3039 			}
3040 			if (++idx < p)
3041 				goto add_more;
3042 		}
3043 		folio_batch_release(&fbatch);
3044 		goto again;
3045 write:
3046 		for (i = 0; i < nr_pages; i++) {
3047 			struct page *page = pages[i];
3048 			struct folio *folio = page_folio(page);
3049 			bool need_readd;
3050 readd:
3051 			need_readd = false;
3052 #ifdef CONFIG_F2FS_FS_COMPRESSION
3053 			if (f2fs_compressed_file(inode)) {
3054 				void *fsdata = NULL;
3055 				struct page *pagep;
3056 				int ret2;
3057 
3058 				ret = f2fs_init_compress_ctx(&cc);
3059 				if (ret) {
3060 					done = 1;
3061 					break;
3062 				}
3063 
3064 				if (!f2fs_cluster_can_merge_page(&cc,
3065 								folio->index)) {
3066 					ret = f2fs_write_multi_pages(&cc,
3067 						&submitted, wbc, io_type);
3068 					if (!ret)
3069 						need_readd = true;
3070 					goto result;
3071 				}
3072 
3073 				if (unlikely(f2fs_cp_error(sbi)))
3074 					goto lock_folio;
3075 
3076 				if (!f2fs_cluster_is_empty(&cc))
3077 					goto lock_folio;
3078 
3079 				if (f2fs_all_cluster_page_ready(&cc,
3080 					pages, i, nr_pages, true))
3081 					goto lock_folio;
3082 
3083 				ret2 = f2fs_prepare_compress_overwrite(
3084 							inode, &pagep,
3085 							folio->index, &fsdata);
3086 				if (ret2 < 0) {
3087 					ret = ret2;
3088 					done = 1;
3089 					break;
3090 				} else if (ret2 &&
3091 					(!f2fs_compress_write_end(inode,
3092 						fsdata, folio->index, 1) ||
3093 					 !f2fs_all_cluster_page_ready(&cc,
3094 						pages, i, nr_pages,
3095 						false))) {
3096 					retry = 1;
3097 					break;
3098 				}
3099 			}
3100 #endif
3101 			/* give a priority to WB_SYNC threads */
3102 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3103 					wbc->sync_mode == WB_SYNC_NONE) {
3104 				done = 1;
3105 				break;
3106 			}
3107 #ifdef CONFIG_F2FS_FS_COMPRESSION
3108 lock_folio:
3109 #endif
3110 			done_index = folio->index;
3111 retry_write:
3112 			folio_lock(folio);
3113 
3114 			if (unlikely(folio->mapping != mapping)) {
3115 continue_unlock:
3116 				folio_unlock(folio);
3117 				continue;
3118 			}
3119 
3120 			if (!folio_test_dirty(folio)) {
3121 				/* someone wrote it for us */
3122 				goto continue_unlock;
3123 			}
3124 
3125 			if (folio_test_writeback(folio)) {
3126 				if (wbc->sync_mode != WB_SYNC_NONE)
3127 					f2fs_wait_on_page_writeback(
3128 							&folio->page,
3129 							DATA, true, true);
3130 				else
3131 					goto continue_unlock;
3132 			}
3133 
3134 			if (!folio_clear_dirty_for_io(folio))
3135 				goto continue_unlock;
3136 
3137 #ifdef CONFIG_F2FS_FS_COMPRESSION
3138 			if (f2fs_compressed_file(inode)) {
3139 				folio_get(folio);
3140 				f2fs_compress_ctx_add_page(&cc, &folio->page);
3141 				continue;
3142 			}
3143 #endif
3144 			ret = f2fs_write_single_data_page(&folio->page,
3145 					&submitted, &bio, &last_block,
3146 					wbc, io_type, 0, true);
3147 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3148 				folio_unlock(folio);
3149 #ifdef CONFIG_F2FS_FS_COMPRESSION
3150 result:
3151 #endif
3152 			nwritten += submitted;
3153 			wbc->nr_to_write -= submitted;
3154 
3155 			if (unlikely(ret)) {
3156 				/*
3157 				 * keep nr_to_write, since vfs uses this to
3158 				 * get # of written pages.
3159 				 */
3160 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3161 					ret = 0;
3162 					goto next;
3163 				} else if (ret == -EAGAIN) {
3164 					ret = 0;
3165 					if (wbc->sync_mode == WB_SYNC_ALL) {
3166 						f2fs_io_schedule_timeout(
3167 							DEFAULT_IO_TIMEOUT);
3168 						goto retry_write;
3169 					}
3170 					goto next;
3171 				}
3172 				done_index = folio->index +
3173 					folio_nr_pages(folio);
3174 				done = 1;
3175 				break;
3176 			}
3177 
3178 			if (wbc->nr_to_write <= 0 &&
3179 					wbc->sync_mode == WB_SYNC_NONE) {
3180 				done = 1;
3181 				break;
3182 			}
3183 next:
3184 			if (need_readd)
3185 				goto readd;
3186 		}
3187 		release_pages(pages, nr_pages);
3188 		cond_resched();
3189 	}
3190 #ifdef CONFIG_F2FS_FS_COMPRESSION
3191 	/* flush remained pages in compress cluster */
3192 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3193 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3194 		nwritten += submitted;
3195 		wbc->nr_to_write -= submitted;
3196 		if (ret) {
3197 			done = 1;
3198 			retry = 0;
3199 		}
3200 	}
3201 	if (f2fs_compressed_file(inode))
3202 		f2fs_destroy_compress_ctx(&cc, false);
3203 #endif
3204 	if (retry) {
3205 		index = 0;
3206 		end = -1;
3207 		goto retry;
3208 	}
3209 	if (wbc->range_cyclic && !done)
3210 		done_index = 0;
3211 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3212 		mapping->writeback_index = done_index;
3213 
3214 	if (nwritten)
3215 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3216 								NULL, 0, DATA);
3217 	/* submit cached bio of IPU write */
3218 	if (bio)
3219 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3220 
3221 	return ret;
3222 }
3223 
3224 static inline bool __should_serialize_io(struct inode *inode,
3225 					struct writeback_control *wbc)
3226 {
3227 	/* to avoid deadlock in path of data flush */
3228 	if (F2FS_I(inode)->wb_task)
3229 		return false;
3230 
3231 	if (!S_ISREG(inode->i_mode))
3232 		return false;
3233 	if (IS_NOQUOTA(inode))
3234 		return false;
3235 
3236 	if (f2fs_need_compress_data(inode))
3237 		return true;
3238 	if (wbc->sync_mode != WB_SYNC_ALL)
3239 		return true;
3240 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3241 		return true;
3242 	return false;
3243 }
3244 
3245 static int __f2fs_write_data_pages(struct address_space *mapping,
3246 						struct writeback_control *wbc,
3247 						enum iostat_type io_type)
3248 {
3249 	struct inode *inode = mapping->host;
3250 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3251 	struct blk_plug plug;
3252 	int ret;
3253 	bool locked = false;
3254 
3255 	/* deal with chardevs and other special file */
3256 	if (!mapping->a_ops->writepage)
3257 		return 0;
3258 
3259 	/* skip writing if there is no dirty page in this inode */
3260 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3261 		return 0;
3262 
3263 	/* during POR, we don't need to trigger writepage at all. */
3264 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3265 		goto skip_write;
3266 
3267 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3268 			wbc->sync_mode == WB_SYNC_NONE &&
3269 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3270 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3271 		goto skip_write;
3272 
3273 	/* skip writing in file defragment preparing stage */
3274 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3275 		goto skip_write;
3276 
3277 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3278 
3279 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3280 	if (wbc->sync_mode == WB_SYNC_ALL)
3281 		atomic_inc(&sbi->wb_sync_req[DATA]);
3282 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3283 		/* to avoid potential deadlock */
3284 		if (current->plug)
3285 			blk_finish_plug(current->plug);
3286 		goto skip_write;
3287 	}
3288 
3289 	if (__should_serialize_io(inode, wbc)) {
3290 		mutex_lock(&sbi->writepages);
3291 		locked = true;
3292 	}
3293 
3294 	blk_start_plug(&plug);
3295 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3296 	blk_finish_plug(&plug);
3297 
3298 	if (locked)
3299 		mutex_unlock(&sbi->writepages);
3300 
3301 	if (wbc->sync_mode == WB_SYNC_ALL)
3302 		atomic_dec(&sbi->wb_sync_req[DATA]);
3303 	/*
3304 	 * if some pages were truncated, we cannot guarantee its mapping->host
3305 	 * to detect pending bios.
3306 	 */
3307 
3308 	f2fs_remove_dirty_inode(inode);
3309 	return ret;
3310 
3311 skip_write:
3312 	wbc->pages_skipped += get_dirty_pages(inode);
3313 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3314 	return 0;
3315 }
3316 
3317 static int f2fs_write_data_pages(struct address_space *mapping,
3318 			    struct writeback_control *wbc)
3319 {
3320 	struct inode *inode = mapping->host;
3321 
3322 	return __f2fs_write_data_pages(mapping, wbc,
3323 			F2FS_I(inode)->cp_task == current ?
3324 			FS_CP_DATA_IO : FS_DATA_IO);
3325 }
3326 
3327 void f2fs_write_failed(struct inode *inode, loff_t to)
3328 {
3329 	loff_t i_size = i_size_read(inode);
3330 
3331 	if (IS_NOQUOTA(inode))
3332 		return;
3333 
3334 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3335 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3336 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3337 		filemap_invalidate_lock(inode->i_mapping);
3338 
3339 		truncate_pagecache(inode, i_size);
3340 		f2fs_truncate_blocks(inode, i_size, true);
3341 
3342 		filemap_invalidate_unlock(inode->i_mapping);
3343 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3344 	}
3345 }
3346 
3347 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3348 			struct page *page, loff_t pos, unsigned len,
3349 			block_t *blk_addr, bool *node_changed)
3350 {
3351 	struct inode *inode = page->mapping->host;
3352 	pgoff_t index = page->index;
3353 	struct dnode_of_data dn;
3354 	struct page *ipage;
3355 	bool locked = false;
3356 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3357 	int err = 0;
3358 
3359 	/*
3360 	 * If a whole page is being written and we already preallocated all the
3361 	 * blocks, then there is no need to get a block address now.
3362 	 */
3363 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3364 		return 0;
3365 
3366 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3367 	if (f2fs_has_inline_data(inode)) {
3368 		if (pos + len > MAX_INLINE_DATA(inode))
3369 			flag = F2FS_GET_BLOCK_DEFAULT;
3370 		f2fs_map_lock(sbi, flag);
3371 		locked = true;
3372 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3373 		f2fs_map_lock(sbi, flag);
3374 		locked = true;
3375 	}
3376 
3377 restart:
3378 	/* check inline_data */
3379 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3380 	if (IS_ERR(ipage)) {
3381 		err = PTR_ERR(ipage);
3382 		goto unlock_out;
3383 	}
3384 
3385 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3386 
3387 	if (f2fs_has_inline_data(inode)) {
3388 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3389 			f2fs_do_read_inline_data(page, ipage);
3390 			set_inode_flag(inode, FI_DATA_EXIST);
3391 			if (inode->i_nlink)
3392 				set_page_private_inline(ipage);
3393 			goto out;
3394 		}
3395 		err = f2fs_convert_inline_page(&dn, page);
3396 		if (err || dn.data_blkaddr != NULL_ADDR)
3397 			goto out;
3398 	}
3399 
3400 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3401 						 &dn.data_blkaddr)) {
3402 		if (locked) {
3403 			err = f2fs_reserve_block(&dn, index);
3404 			goto out;
3405 		}
3406 
3407 		/* hole case */
3408 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3409 		if (!err && dn.data_blkaddr != NULL_ADDR)
3410 			goto out;
3411 		f2fs_put_dnode(&dn);
3412 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3413 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3414 		locked = true;
3415 		goto restart;
3416 	}
3417 out:
3418 	if (!err) {
3419 		/* convert_inline_page can make node_changed */
3420 		*blk_addr = dn.data_blkaddr;
3421 		*node_changed = dn.node_changed;
3422 	}
3423 	f2fs_put_dnode(&dn);
3424 unlock_out:
3425 	if (locked)
3426 		f2fs_map_unlock(sbi, flag);
3427 	return err;
3428 }
3429 
3430 static int __find_data_block(struct inode *inode, pgoff_t index,
3431 				block_t *blk_addr)
3432 {
3433 	struct dnode_of_data dn;
3434 	struct page *ipage;
3435 	int err = 0;
3436 
3437 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3438 	if (IS_ERR(ipage))
3439 		return PTR_ERR(ipage);
3440 
3441 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3442 
3443 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3444 						 &dn.data_blkaddr)) {
3445 		/* hole case */
3446 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3447 		if (err) {
3448 			dn.data_blkaddr = NULL_ADDR;
3449 			err = 0;
3450 		}
3451 	}
3452 	*blk_addr = dn.data_blkaddr;
3453 	f2fs_put_dnode(&dn);
3454 	return err;
3455 }
3456 
3457 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3458 				block_t *blk_addr, bool *node_changed)
3459 {
3460 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3461 	struct dnode_of_data dn;
3462 	struct page *ipage;
3463 	int err = 0;
3464 
3465 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3466 
3467 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3468 	if (IS_ERR(ipage)) {
3469 		err = PTR_ERR(ipage);
3470 		goto unlock_out;
3471 	}
3472 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3473 
3474 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3475 						&dn.data_blkaddr))
3476 		err = f2fs_reserve_block(&dn, index);
3477 
3478 	*blk_addr = dn.data_blkaddr;
3479 	*node_changed = dn.node_changed;
3480 	f2fs_put_dnode(&dn);
3481 
3482 unlock_out:
3483 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3484 	return err;
3485 }
3486 
3487 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3488 			struct page *page, loff_t pos, unsigned int len,
3489 			block_t *blk_addr, bool *node_changed)
3490 {
3491 	struct inode *inode = page->mapping->host;
3492 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3493 	pgoff_t index = page->index;
3494 	int err = 0;
3495 	block_t ori_blk_addr = NULL_ADDR;
3496 
3497 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3498 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3499 		goto reserve_block;
3500 
3501 	/* Look for the block in COW inode first */
3502 	err = __find_data_block(cow_inode, index, blk_addr);
3503 	if (err)
3504 		return err;
3505 	else if (*blk_addr != NULL_ADDR)
3506 		return 0;
3507 
3508 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3509 		goto reserve_block;
3510 
3511 	/* Look for the block in the original inode */
3512 	err = __find_data_block(inode, index, &ori_blk_addr);
3513 	if (err)
3514 		return err;
3515 
3516 reserve_block:
3517 	/* Finally, we should reserve a new block in COW inode for the update */
3518 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3519 	if (err)
3520 		return err;
3521 	inc_atomic_write_cnt(inode);
3522 
3523 	if (ori_blk_addr != NULL_ADDR)
3524 		*blk_addr = ori_blk_addr;
3525 	return 0;
3526 }
3527 
3528 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3529 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3530 {
3531 	struct inode *inode = mapping->host;
3532 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3533 	struct page *page = NULL;
3534 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3535 	bool need_balance = false;
3536 	block_t blkaddr = NULL_ADDR;
3537 	int err = 0;
3538 
3539 	trace_f2fs_write_begin(inode, pos, len);
3540 
3541 	if (!f2fs_is_checkpoint_ready(sbi)) {
3542 		err = -ENOSPC;
3543 		goto fail;
3544 	}
3545 
3546 	/*
3547 	 * We should check this at this moment to avoid deadlock on inode page
3548 	 * and #0 page. The locking rule for inline_data conversion should be:
3549 	 * lock_page(page #0) -> lock_page(inode_page)
3550 	 */
3551 	if (index != 0) {
3552 		err = f2fs_convert_inline_inode(inode);
3553 		if (err)
3554 			goto fail;
3555 	}
3556 
3557 #ifdef CONFIG_F2FS_FS_COMPRESSION
3558 	if (f2fs_compressed_file(inode)) {
3559 		int ret;
3560 
3561 		*fsdata = NULL;
3562 
3563 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3564 			goto repeat;
3565 
3566 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3567 							index, fsdata);
3568 		if (ret < 0) {
3569 			err = ret;
3570 			goto fail;
3571 		} else if (ret) {
3572 			return 0;
3573 		}
3574 	}
3575 #endif
3576 
3577 repeat:
3578 	/*
3579 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3580 	 * wait_for_stable_page. Will wait that below with our IO control.
3581 	 */
3582 	page = f2fs_pagecache_get_page(mapping, index,
3583 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3584 	if (!page) {
3585 		err = -ENOMEM;
3586 		goto fail;
3587 	}
3588 
3589 	/* TODO: cluster can be compressed due to race with .writepage */
3590 
3591 	*pagep = page;
3592 
3593 	if (f2fs_is_atomic_file(inode))
3594 		err = prepare_atomic_write_begin(sbi, page, pos, len,
3595 					&blkaddr, &need_balance);
3596 	else
3597 		err = prepare_write_begin(sbi, page, pos, len,
3598 					&blkaddr, &need_balance);
3599 	if (err)
3600 		goto fail;
3601 
3602 	if (need_balance && !IS_NOQUOTA(inode) &&
3603 			has_not_enough_free_secs(sbi, 0, 0)) {
3604 		unlock_page(page);
3605 		f2fs_balance_fs(sbi, true);
3606 		lock_page(page);
3607 		if (page->mapping != mapping) {
3608 			/* The page got truncated from under us */
3609 			f2fs_put_page(page, 1);
3610 			goto repeat;
3611 		}
3612 	}
3613 
3614 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3615 
3616 	if (len == PAGE_SIZE || PageUptodate(page))
3617 		return 0;
3618 
3619 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3620 	    !f2fs_verity_in_progress(inode)) {
3621 		zero_user_segment(page, len, PAGE_SIZE);
3622 		return 0;
3623 	}
3624 
3625 	if (blkaddr == NEW_ADDR) {
3626 		zero_user_segment(page, 0, PAGE_SIZE);
3627 		SetPageUptodate(page);
3628 	} else {
3629 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3630 				DATA_GENERIC_ENHANCE_READ)) {
3631 			err = -EFSCORRUPTED;
3632 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3633 			goto fail;
3634 		}
3635 		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3636 		if (err)
3637 			goto fail;
3638 
3639 		lock_page(page);
3640 		if (unlikely(page->mapping != mapping)) {
3641 			f2fs_put_page(page, 1);
3642 			goto repeat;
3643 		}
3644 		if (unlikely(!PageUptodate(page))) {
3645 			err = -EIO;
3646 			goto fail;
3647 		}
3648 	}
3649 	return 0;
3650 
3651 fail:
3652 	f2fs_put_page(page, 1);
3653 	f2fs_write_failed(inode, pos + len);
3654 	return err;
3655 }
3656 
3657 static int f2fs_write_end(struct file *file,
3658 			struct address_space *mapping,
3659 			loff_t pos, unsigned len, unsigned copied,
3660 			struct page *page, void *fsdata)
3661 {
3662 	struct inode *inode = page->mapping->host;
3663 
3664 	trace_f2fs_write_end(inode, pos, len, copied);
3665 
3666 	/*
3667 	 * This should be come from len == PAGE_SIZE, and we expect copied
3668 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3669 	 * let generic_perform_write() try to copy data again through copied=0.
3670 	 */
3671 	if (!PageUptodate(page)) {
3672 		if (unlikely(copied != len))
3673 			copied = 0;
3674 		else
3675 			SetPageUptodate(page);
3676 	}
3677 
3678 #ifdef CONFIG_F2FS_FS_COMPRESSION
3679 	/* overwrite compressed file */
3680 	if (f2fs_compressed_file(inode) && fsdata) {
3681 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3682 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3683 
3684 		if (pos + copied > i_size_read(inode) &&
3685 				!f2fs_verity_in_progress(inode))
3686 			f2fs_i_size_write(inode, pos + copied);
3687 		return copied;
3688 	}
3689 #endif
3690 
3691 	if (!copied)
3692 		goto unlock_out;
3693 
3694 	set_page_dirty(page);
3695 
3696 	if (pos + copied > i_size_read(inode) &&
3697 	    !f2fs_verity_in_progress(inode)) {
3698 		f2fs_i_size_write(inode, pos + copied);
3699 		if (f2fs_is_atomic_file(inode))
3700 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3701 					pos + copied);
3702 	}
3703 unlock_out:
3704 	f2fs_put_page(page, 1);
3705 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3706 	return copied;
3707 }
3708 
3709 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3710 {
3711 	struct inode *inode = folio->mapping->host;
3712 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3713 
3714 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3715 				(offset || length != folio_size(folio)))
3716 		return;
3717 
3718 	if (folio_test_dirty(folio)) {
3719 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3720 			dec_page_count(sbi, F2FS_DIRTY_META);
3721 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3722 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3723 		} else {
3724 			inode_dec_dirty_pages(inode);
3725 			f2fs_remove_dirty_inode(inode);
3726 		}
3727 	}
3728 
3729 	clear_page_private_reference(&folio->page);
3730 	clear_page_private_gcing(&folio->page);
3731 
3732 	if (test_opt(sbi, COMPRESS_CACHE) &&
3733 			inode->i_ino == F2FS_COMPRESS_INO(sbi))
3734 		clear_page_private_data(&folio->page);
3735 
3736 	folio_detach_private(folio);
3737 }
3738 
3739 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3740 {
3741 	struct f2fs_sb_info *sbi;
3742 
3743 	/* If this is dirty folio, keep private data */
3744 	if (folio_test_dirty(folio))
3745 		return false;
3746 
3747 	sbi = F2FS_M_SB(folio->mapping);
3748 	if (test_opt(sbi, COMPRESS_CACHE)) {
3749 		struct inode *inode = folio->mapping->host;
3750 
3751 		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3752 			clear_page_private_data(&folio->page);
3753 	}
3754 
3755 	clear_page_private_reference(&folio->page);
3756 	clear_page_private_gcing(&folio->page);
3757 
3758 	folio_detach_private(folio);
3759 	return true;
3760 }
3761 
3762 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3763 		struct folio *folio)
3764 {
3765 	struct inode *inode = mapping->host;
3766 
3767 	trace_f2fs_set_page_dirty(&folio->page, DATA);
3768 
3769 	if (!folio_test_uptodate(folio))
3770 		folio_mark_uptodate(folio);
3771 	BUG_ON(folio_test_swapcache(folio));
3772 
3773 	if (filemap_dirty_folio(mapping, folio)) {
3774 		f2fs_update_dirty_folio(inode, folio);
3775 		return true;
3776 	}
3777 	return false;
3778 }
3779 
3780 
3781 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3782 {
3783 #ifdef CONFIG_F2FS_FS_COMPRESSION
3784 	struct dnode_of_data dn;
3785 	sector_t start_idx, blknr = 0;
3786 	int ret;
3787 
3788 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3789 
3790 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3791 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3792 	if (ret)
3793 		return 0;
3794 
3795 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3796 		dn.ofs_in_node += block - start_idx;
3797 		blknr = f2fs_data_blkaddr(&dn);
3798 		if (!__is_valid_data_blkaddr(blknr))
3799 			blknr = 0;
3800 	}
3801 
3802 	f2fs_put_dnode(&dn);
3803 	return blknr;
3804 #else
3805 	return 0;
3806 #endif
3807 }
3808 
3809 
3810 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3811 {
3812 	struct inode *inode = mapping->host;
3813 	sector_t blknr = 0;
3814 
3815 	if (f2fs_has_inline_data(inode))
3816 		goto out;
3817 
3818 	/* make sure allocating whole blocks */
3819 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3820 		filemap_write_and_wait(mapping);
3821 
3822 	/* Block number less than F2FS MAX BLOCKS */
3823 	if (unlikely(block >= max_file_blocks(inode)))
3824 		goto out;
3825 
3826 	if (f2fs_compressed_file(inode)) {
3827 		blknr = f2fs_bmap_compress(inode, block);
3828 	} else {
3829 		struct f2fs_map_blocks map;
3830 
3831 		memset(&map, 0, sizeof(map));
3832 		map.m_lblk = block;
3833 		map.m_len = 1;
3834 		map.m_next_pgofs = NULL;
3835 		map.m_seg_type = NO_CHECK_TYPE;
3836 
3837 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3838 			blknr = map.m_pblk;
3839 	}
3840 out:
3841 	trace_f2fs_bmap(inode, block, blknr);
3842 	return blknr;
3843 }
3844 
3845 #ifdef CONFIG_SWAP
3846 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3847 							unsigned int blkcnt)
3848 {
3849 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3850 	unsigned int blkofs;
3851 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3852 	unsigned int secidx = start_blk / blk_per_sec;
3853 	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3854 	int ret = 0;
3855 
3856 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3857 	filemap_invalidate_lock(inode->i_mapping);
3858 
3859 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3860 	set_inode_flag(inode, FI_OPU_WRITE);
3861 
3862 	for (; secidx < end_sec; secidx++) {
3863 		f2fs_down_write(&sbi->pin_sem);
3864 
3865 		f2fs_lock_op(sbi);
3866 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3867 		f2fs_unlock_op(sbi);
3868 
3869 		set_inode_flag(inode, FI_SKIP_WRITES);
3870 
3871 		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3872 			struct page *page;
3873 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3874 
3875 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3876 			if (IS_ERR(page)) {
3877 				f2fs_up_write(&sbi->pin_sem);
3878 				ret = PTR_ERR(page);
3879 				goto done;
3880 			}
3881 
3882 			set_page_dirty(page);
3883 			f2fs_put_page(page, 1);
3884 		}
3885 
3886 		clear_inode_flag(inode, FI_SKIP_WRITES);
3887 
3888 		ret = filemap_fdatawrite(inode->i_mapping);
3889 
3890 		f2fs_up_write(&sbi->pin_sem);
3891 
3892 		if (ret)
3893 			break;
3894 	}
3895 
3896 done:
3897 	clear_inode_flag(inode, FI_SKIP_WRITES);
3898 	clear_inode_flag(inode, FI_OPU_WRITE);
3899 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3900 
3901 	filemap_invalidate_unlock(inode->i_mapping);
3902 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3903 
3904 	return ret;
3905 }
3906 
3907 static int check_swap_activate(struct swap_info_struct *sis,
3908 				struct file *swap_file, sector_t *span)
3909 {
3910 	struct address_space *mapping = swap_file->f_mapping;
3911 	struct inode *inode = mapping->host;
3912 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3913 	sector_t cur_lblock;
3914 	sector_t last_lblock;
3915 	sector_t pblock;
3916 	sector_t lowest_pblock = -1;
3917 	sector_t highest_pblock = 0;
3918 	int nr_extents = 0;
3919 	unsigned long nr_pblocks;
3920 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3921 	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3922 	unsigned int not_aligned = 0;
3923 	int ret = 0;
3924 
3925 	/*
3926 	 * Map all the blocks into the extent list.  This code doesn't try
3927 	 * to be very smart.
3928 	 */
3929 	cur_lblock = 0;
3930 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3931 
3932 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3933 		struct f2fs_map_blocks map;
3934 retry:
3935 		cond_resched();
3936 
3937 		memset(&map, 0, sizeof(map));
3938 		map.m_lblk = cur_lblock;
3939 		map.m_len = last_lblock - cur_lblock;
3940 		map.m_next_pgofs = NULL;
3941 		map.m_next_extent = NULL;
3942 		map.m_seg_type = NO_CHECK_TYPE;
3943 		map.m_may_create = false;
3944 
3945 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3946 		if (ret)
3947 			goto out;
3948 
3949 		/* hole */
3950 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3951 			f2fs_err(sbi, "Swapfile has holes");
3952 			ret = -EINVAL;
3953 			goto out;
3954 		}
3955 
3956 		pblock = map.m_pblk;
3957 		nr_pblocks = map.m_len;
3958 
3959 		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3960 				nr_pblocks & sec_blks_mask) {
3961 			not_aligned++;
3962 
3963 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3964 			if (cur_lblock + nr_pblocks > sis->max)
3965 				nr_pblocks -= blks_per_sec;
3966 
3967 			if (!nr_pblocks) {
3968 				/* this extent is last one */
3969 				nr_pblocks = map.m_len;
3970 				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3971 				goto next;
3972 			}
3973 
3974 			ret = f2fs_migrate_blocks(inode, cur_lblock,
3975 							nr_pblocks);
3976 			if (ret)
3977 				goto out;
3978 			goto retry;
3979 		}
3980 next:
3981 		if (cur_lblock + nr_pblocks >= sis->max)
3982 			nr_pblocks = sis->max - cur_lblock;
3983 
3984 		if (cur_lblock) {	/* exclude the header page */
3985 			if (pblock < lowest_pblock)
3986 				lowest_pblock = pblock;
3987 			if (pblock + nr_pblocks - 1 > highest_pblock)
3988 				highest_pblock = pblock + nr_pblocks - 1;
3989 		}
3990 
3991 		/*
3992 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3993 		 */
3994 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3995 		if (ret < 0)
3996 			goto out;
3997 		nr_extents += ret;
3998 		cur_lblock += nr_pblocks;
3999 	}
4000 	ret = nr_extents;
4001 	*span = 1 + highest_pblock - lowest_pblock;
4002 	if (cur_lblock == 0)
4003 		cur_lblock = 1;	/* force Empty message */
4004 	sis->max = cur_lblock;
4005 	sis->pages = cur_lblock - 1;
4006 	sis->highest_bit = cur_lblock - 1;
4007 out:
4008 	if (not_aligned)
4009 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4010 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4011 	return ret;
4012 }
4013 
4014 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4015 				sector_t *span)
4016 {
4017 	struct inode *inode = file_inode(file);
4018 	int ret;
4019 
4020 	if (!S_ISREG(inode->i_mode))
4021 		return -EINVAL;
4022 
4023 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4024 		return -EROFS;
4025 
4026 	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4027 		f2fs_err(F2FS_I_SB(inode),
4028 			"Swapfile not supported in LFS mode");
4029 		return -EINVAL;
4030 	}
4031 
4032 	ret = f2fs_convert_inline_inode(inode);
4033 	if (ret)
4034 		return ret;
4035 
4036 	if (!f2fs_disable_compressed_file(inode))
4037 		return -EINVAL;
4038 
4039 	f2fs_precache_extents(inode);
4040 
4041 	ret = check_swap_activate(sis, file, span);
4042 	if (ret < 0)
4043 		return ret;
4044 
4045 	stat_inc_swapfile_inode(inode);
4046 	set_inode_flag(inode, FI_PIN_FILE);
4047 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4048 	return ret;
4049 }
4050 
4051 static void f2fs_swap_deactivate(struct file *file)
4052 {
4053 	struct inode *inode = file_inode(file);
4054 
4055 	stat_dec_swapfile_inode(inode);
4056 	clear_inode_flag(inode, FI_PIN_FILE);
4057 }
4058 #else
4059 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4060 				sector_t *span)
4061 {
4062 	return -EOPNOTSUPP;
4063 }
4064 
4065 static void f2fs_swap_deactivate(struct file *file)
4066 {
4067 }
4068 #endif
4069 
4070 const struct address_space_operations f2fs_dblock_aops = {
4071 	.read_folio	= f2fs_read_data_folio,
4072 	.readahead	= f2fs_readahead,
4073 	.writepage	= f2fs_write_data_page,
4074 	.writepages	= f2fs_write_data_pages,
4075 	.write_begin	= f2fs_write_begin,
4076 	.write_end	= f2fs_write_end,
4077 	.dirty_folio	= f2fs_dirty_data_folio,
4078 	.migrate_folio	= filemap_migrate_folio,
4079 	.invalidate_folio = f2fs_invalidate_folio,
4080 	.release_folio	= f2fs_release_folio,
4081 	.direct_IO	= noop_direct_IO,
4082 	.bmap		= f2fs_bmap,
4083 	.swap_activate  = f2fs_swap_activate,
4084 	.swap_deactivate = f2fs_swap_deactivate,
4085 };
4086 
4087 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4088 {
4089 	struct address_space *mapping = page_mapping(page);
4090 	unsigned long flags;
4091 
4092 	xa_lock_irqsave(&mapping->i_pages, flags);
4093 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4094 						PAGECACHE_TAG_DIRTY);
4095 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4096 }
4097 
4098 int __init f2fs_init_post_read_processing(void)
4099 {
4100 	bio_post_read_ctx_cache =
4101 		kmem_cache_create("f2fs_bio_post_read_ctx",
4102 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4103 	if (!bio_post_read_ctx_cache)
4104 		goto fail;
4105 	bio_post_read_ctx_pool =
4106 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4107 					 bio_post_read_ctx_cache);
4108 	if (!bio_post_read_ctx_pool)
4109 		goto fail_free_cache;
4110 	return 0;
4111 
4112 fail_free_cache:
4113 	kmem_cache_destroy(bio_post_read_ctx_cache);
4114 fail:
4115 	return -ENOMEM;
4116 }
4117 
4118 void f2fs_destroy_post_read_processing(void)
4119 {
4120 	mempool_destroy(bio_post_read_ctx_pool);
4121 	kmem_cache_destroy(bio_post_read_ctx_cache);
4122 }
4123 
4124 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4125 {
4126 	if (!f2fs_sb_has_encrypt(sbi) &&
4127 		!f2fs_sb_has_verity(sbi) &&
4128 		!f2fs_sb_has_compression(sbi))
4129 		return 0;
4130 
4131 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4132 						 WQ_UNBOUND | WQ_HIGHPRI,
4133 						 num_online_cpus());
4134 	return sbi->post_read_wq ? 0 : -ENOMEM;
4135 }
4136 
4137 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4138 {
4139 	if (sbi->post_read_wq)
4140 		destroy_workqueue(sbi->post_read_wq);
4141 }
4142 
4143 int __init f2fs_init_bio_entry_cache(void)
4144 {
4145 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4146 			sizeof(struct bio_entry));
4147 	return bio_entry_slab ? 0 : -ENOMEM;
4148 }
4149 
4150 void f2fs_destroy_bio_entry_cache(void)
4151 {
4152 	kmem_cache_destroy(bio_entry_slab);
4153 }
4154 
4155 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4156 			    unsigned int flags, struct iomap *iomap,
4157 			    struct iomap *srcmap)
4158 {
4159 	struct f2fs_map_blocks map = {};
4160 	pgoff_t next_pgofs = 0;
4161 	int err;
4162 
4163 	map.m_lblk = bytes_to_blks(inode, offset);
4164 	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4165 	map.m_next_pgofs = &next_pgofs;
4166 	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4167 	if (flags & IOMAP_WRITE)
4168 		map.m_may_create = true;
4169 
4170 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4171 	if (err)
4172 		return err;
4173 
4174 	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4175 
4176 	/*
4177 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4178 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4179 	 * limiting the length of the mapping returned.
4180 	 */
4181 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4182 
4183 	/*
4184 	 * We should never see delalloc or compressed extents here based on
4185 	 * prior flushing and checks.
4186 	 */
4187 	if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4188 		return -EINVAL;
4189 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4190 		return -EINVAL;
4191 
4192 	if (map.m_pblk != NULL_ADDR) {
4193 		iomap->length = blks_to_bytes(inode, map.m_len);
4194 		iomap->type = IOMAP_MAPPED;
4195 		iomap->flags |= IOMAP_F_MERGED;
4196 		iomap->bdev = map.m_bdev;
4197 		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4198 	} else {
4199 		if (flags & IOMAP_WRITE)
4200 			return -ENOTBLK;
4201 		iomap->length = blks_to_bytes(inode, next_pgofs) -
4202 				iomap->offset;
4203 		iomap->type = IOMAP_HOLE;
4204 		iomap->addr = IOMAP_NULL_ADDR;
4205 	}
4206 
4207 	if (map.m_flags & F2FS_MAP_NEW)
4208 		iomap->flags |= IOMAP_F_NEW;
4209 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4210 	    offset + length > i_size_read(inode))
4211 		iomap->flags |= IOMAP_F_DIRTY;
4212 
4213 	return 0;
4214 }
4215 
4216 const struct iomap_ops f2fs_iomap_ops = {
4217 	.iomap_begin	= f2fs_iomap_begin,
4218 };
4219