xref: /openbmc/linux/fs/f2fs/data.c (revision d623f60d)
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23 #include <linux/sched/signal.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "trace.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static mempool_t *bio_post_read_ctx_pool;
35 
36 static bool __is_cp_guaranteed(struct page *page)
37 {
38 	struct address_space *mapping = page->mapping;
39 	struct inode *inode;
40 	struct f2fs_sb_info *sbi;
41 
42 	if (!mapping)
43 		return false;
44 
45 	inode = mapping->host;
46 	sbi = F2FS_I_SB(inode);
47 
48 	if (inode->i_ino == F2FS_META_INO(sbi) ||
49 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
50 			S_ISDIR(inode->i_mode) ||
51 			(S_ISREG(inode->i_mode) &&
52 			is_inode_flag_set(inode, FI_ATOMIC_FILE)) ||
53 			is_cold_data(page))
54 		return true;
55 	return false;
56 }
57 
58 /* postprocessing steps for read bios */
59 enum bio_post_read_step {
60 	STEP_INITIAL = 0,
61 	STEP_DECRYPT,
62 };
63 
64 struct bio_post_read_ctx {
65 	struct bio *bio;
66 	struct work_struct work;
67 	unsigned int cur_step;
68 	unsigned int enabled_steps;
69 };
70 
71 static void __read_end_io(struct bio *bio)
72 {
73 	struct page *page;
74 	struct bio_vec *bv;
75 	int i;
76 
77 	bio_for_each_segment_all(bv, bio, i) {
78 		page = bv->bv_page;
79 
80 		/* PG_error was set if any post_read step failed */
81 		if (bio->bi_status || PageError(page)) {
82 			ClearPageUptodate(page);
83 			SetPageError(page);
84 		} else {
85 			SetPageUptodate(page);
86 		}
87 		unlock_page(page);
88 	}
89 	if (bio->bi_private)
90 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
91 	bio_put(bio);
92 }
93 
94 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
95 
96 static void decrypt_work(struct work_struct *work)
97 {
98 	struct bio_post_read_ctx *ctx =
99 		container_of(work, struct bio_post_read_ctx, work);
100 
101 	fscrypt_decrypt_bio(ctx->bio);
102 
103 	bio_post_read_processing(ctx);
104 }
105 
106 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
107 {
108 	switch (++ctx->cur_step) {
109 	case STEP_DECRYPT:
110 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
111 			INIT_WORK(&ctx->work, decrypt_work);
112 			fscrypt_enqueue_decrypt_work(&ctx->work);
113 			return;
114 		}
115 		ctx->cur_step++;
116 		/* fall-through */
117 	default:
118 		__read_end_io(ctx->bio);
119 	}
120 }
121 
122 static bool f2fs_bio_post_read_required(struct bio *bio)
123 {
124 	return bio->bi_private && !bio->bi_status;
125 }
126 
127 static void f2fs_read_end_io(struct bio *bio)
128 {
129 #ifdef CONFIG_F2FS_FAULT_INJECTION
130 	if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
131 		f2fs_show_injection_info(FAULT_IO);
132 		bio->bi_status = BLK_STS_IOERR;
133 	}
134 #endif
135 
136 	if (f2fs_bio_post_read_required(bio)) {
137 		struct bio_post_read_ctx *ctx = bio->bi_private;
138 
139 		ctx->cur_step = STEP_INITIAL;
140 		bio_post_read_processing(ctx);
141 		return;
142 	}
143 
144 	__read_end_io(bio);
145 }
146 
147 static void f2fs_write_end_io(struct bio *bio)
148 {
149 	struct f2fs_sb_info *sbi = bio->bi_private;
150 	struct bio_vec *bvec;
151 	int i;
152 
153 	bio_for_each_segment_all(bvec, bio, i) {
154 		struct page *page = bvec->bv_page;
155 		enum count_type type = WB_DATA_TYPE(page);
156 
157 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
158 			set_page_private(page, (unsigned long)NULL);
159 			ClearPagePrivate(page);
160 			unlock_page(page);
161 			mempool_free(page, sbi->write_io_dummy);
162 
163 			if (unlikely(bio->bi_status))
164 				f2fs_stop_checkpoint(sbi, true);
165 			continue;
166 		}
167 
168 		fscrypt_pullback_bio_page(&page, true);
169 
170 		if (unlikely(bio->bi_status)) {
171 			mapping_set_error(page->mapping, -EIO);
172 			if (type == F2FS_WB_CP_DATA)
173 				f2fs_stop_checkpoint(sbi, true);
174 		}
175 
176 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
177 					page->index != nid_of_node(page));
178 
179 		dec_page_count(sbi, type);
180 		clear_cold_data(page);
181 		end_page_writeback(page);
182 	}
183 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
184 				wq_has_sleeper(&sbi->cp_wait))
185 		wake_up(&sbi->cp_wait);
186 
187 	bio_put(bio);
188 }
189 
190 /*
191  * Return true, if pre_bio's bdev is same as its target device.
192  */
193 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
194 				block_t blk_addr, struct bio *bio)
195 {
196 	struct block_device *bdev = sbi->sb->s_bdev;
197 	int i;
198 
199 	for (i = 0; i < sbi->s_ndevs; i++) {
200 		if (FDEV(i).start_blk <= blk_addr &&
201 					FDEV(i).end_blk >= blk_addr) {
202 			blk_addr -= FDEV(i).start_blk;
203 			bdev = FDEV(i).bdev;
204 			break;
205 		}
206 	}
207 	if (bio) {
208 		bio_set_dev(bio, bdev);
209 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
210 	}
211 	return bdev;
212 }
213 
214 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
215 {
216 	int i;
217 
218 	for (i = 0; i < sbi->s_ndevs; i++)
219 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
220 			return i;
221 	return 0;
222 }
223 
224 static bool __same_bdev(struct f2fs_sb_info *sbi,
225 				block_t blk_addr, struct bio *bio)
226 {
227 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
228 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
229 }
230 
231 /*
232  * Low-level block read/write IO operations.
233  */
234 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
235 				struct writeback_control *wbc,
236 				int npages, bool is_read,
237 				enum page_type type, enum temp_type temp)
238 {
239 	struct bio *bio;
240 
241 	bio = f2fs_bio_alloc(sbi, npages, true);
242 
243 	f2fs_target_device(sbi, blk_addr, bio);
244 	if (is_read) {
245 		bio->bi_end_io = f2fs_read_end_io;
246 		bio->bi_private = NULL;
247 	} else {
248 		bio->bi_end_io = f2fs_write_end_io;
249 		bio->bi_private = sbi;
250 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
251 	}
252 	if (wbc)
253 		wbc_init_bio(wbc, bio);
254 
255 	return bio;
256 }
257 
258 static inline void __submit_bio(struct f2fs_sb_info *sbi,
259 				struct bio *bio, enum page_type type)
260 {
261 	if (!is_read_io(bio_op(bio))) {
262 		unsigned int start;
263 
264 		if (type != DATA && type != NODE)
265 			goto submit_io;
266 
267 		if (f2fs_sb_has_blkzoned(sbi->sb) && current->plug)
268 			blk_finish_plug(current->plug);
269 
270 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
271 		start %= F2FS_IO_SIZE(sbi);
272 
273 		if (start == 0)
274 			goto submit_io;
275 
276 		/* fill dummy pages */
277 		for (; start < F2FS_IO_SIZE(sbi); start++) {
278 			struct page *page =
279 				mempool_alloc(sbi->write_io_dummy,
280 					GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
281 			f2fs_bug_on(sbi, !page);
282 
283 			SetPagePrivate(page);
284 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
285 			lock_page(page);
286 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
287 				f2fs_bug_on(sbi, 1);
288 		}
289 		/*
290 		 * In the NODE case, we lose next block address chain. So, we
291 		 * need to do checkpoint in f2fs_sync_file.
292 		 */
293 		if (type == NODE)
294 			set_sbi_flag(sbi, SBI_NEED_CP);
295 	}
296 submit_io:
297 	if (is_read_io(bio_op(bio)))
298 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
299 	else
300 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
301 	submit_bio(bio);
302 }
303 
304 static void __submit_merged_bio(struct f2fs_bio_info *io)
305 {
306 	struct f2fs_io_info *fio = &io->fio;
307 
308 	if (!io->bio)
309 		return;
310 
311 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
312 
313 	if (is_read_io(fio->op))
314 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
315 	else
316 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
317 
318 	__submit_bio(io->sbi, io->bio, fio->type);
319 	io->bio = NULL;
320 }
321 
322 static bool __has_merged_page(struct f2fs_bio_info *io,
323 				struct inode *inode, nid_t ino, pgoff_t idx)
324 {
325 	struct bio_vec *bvec;
326 	struct page *target;
327 	int i;
328 
329 	if (!io->bio)
330 		return false;
331 
332 	if (!inode && !ino)
333 		return true;
334 
335 	bio_for_each_segment_all(bvec, io->bio, i) {
336 
337 		if (bvec->bv_page->mapping)
338 			target = bvec->bv_page;
339 		else
340 			target = fscrypt_control_page(bvec->bv_page);
341 
342 		if (idx != target->index)
343 			continue;
344 
345 		if (inode && inode == target->mapping->host)
346 			return true;
347 		if (ino && ino == ino_of_node(target))
348 			return true;
349 	}
350 
351 	return false;
352 }
353 
354 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
355 				nid_t ino, pgoff_t idx, enum page_type type)
356 {
357 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
358 	enum temp_type temp;
359 	struct f2fs_bio_info *io;
360 	bool ret = false;
361 
362 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
363 		io = sbi->write_io[btype] + temp;
364 
365 		down_read(&io->io_rwsem);
366 		ret = __has_merged_page(io, inode, ino, idx);
367 		up_read(&io->io_rwsem);
368 
369 		/* TODO: use HOT temp only for meta pages now. */
370 		if (ret || btype == META)
371 			break;
372 	}
373 	return ret;
374 }
375 
376 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
377 				enum page_type type, enum temp_type temp)
378 {
379 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
380 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
381 
382 	down_write(&io->io_rwsem);
383 
384 	/* change META to META_FLUSH in the checkpoint procedure */
385 	if (type >= META_FLUSH) {
386 		io->fio.type = META_FLUSH;
387 		io->fio.op = REQ_OP_WRITE;
388 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
389 		if (!test_opt(sbi, NOBARRIER))
390 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
391 	}
392 	__submit_merged_bio(io);
393 	up_write(&io->io_rwsem);
394 }
395 
396 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
397 				struct inode *inode, nid_t ino, pgoff_t idx,
398 				enum page_type type, bool force)
399 {
400 	enum temp_type temp;
401 
402 	if (!force && !has_merged_page(sbi, inode, ino, idx, type))
403 		return;
404 
405 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
406 
407 		__f2fs_submit_merged_write(sbi, type, temp);
408 
409 		/* TODO: use HOT temp only for meta pages now. */
410 		if (type >= META)
411 			break;
412 	}
413 }
414 
415 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
416 {
417 	__submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
418 }
419 
420 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
421 				struct inode *inode, nid_t ino, pgoff_t idx,
422 				enum page_type type)
423 {
424 	__submit_merged_write_cond(sbi, inode, ino, idx, type, false);
425 }
426 
427 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
428 {
429 	f2fs_submit_merged_write(sbi, DATA);
430 	f2fs_submit_merged_write(sbi, NODE);
431 	f2fs_submit_merged_write(sbi, META);
432 }
433 
434 /*
435  * Fill the locked page with data located in the block address.
436  * A caller needs to unlock the page on failure.
437  */
438 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
439 {
440 	struct bio *bio;
441 	struct page *page = fio->encrypted_page ?
442 			fio->encrypted_page : fio->page;
443 
444 	verify_block_addr(fio, fio->new_blkaddr);
445 	trace_f2fs_submit_page_bio(page, fio);
446 	f2fs_trace_ios(fio, 0);
447 
448 	/* Allocate a new bio */
449 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
450 				1, is_read_io(fio->op), fio->type, fio->temp);
451 
452 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
453 		bio_put(bio);
454 		return -EFAULT;
455 	}
456 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
457 
458 	__submit_bio(fio->sbi, bio, fio->type);
459 
460 	if (!is_read_io(fio->op))
461 		inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
462 	return 0;
463 }
464 
465 void f2fs_submit_page_write(struct f2fs_io_info *fio)
466 {
467 	struct f2fs_sb_info *sbi = fio->sbi;
468 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
469 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
470 	struct page *bio_page;
471 
472 	f2fs_bug_on(sbi, is_read_io(fio->op));
473 
474 	down_write(&io->io_rwsem);
475 next:
476 	if (fio->in_list) {
477 		spin_lock(&io->io_lock);
478 		if (list_empty(&io->io_list)) {
479 			spin_unlock(&io->io_lock);
480 			goto out;
481 		}
482 		fio = list_first_entry(&io->io_list,
483 						struct f2fs_io_info, list);
484 		list_del(&fio->list);
485 		spin_unlock(&io->io_lock);
486 	}
487 
488 	if (is_valid_blkaddr(fio->old_blkaddr))
489 		verify_block_addr(fio, fio->old_blkaddr);
490 	verify_block_addr(fio, fio->new_blkaddr);
491 
492 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
493 
494 	/* set submitted = true as a return value */
495 	fio->submitted = true;
496 
497 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
498 
499 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
500 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
501 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
502 		__submit_merged_bio(io);
503 alloc_new:
504 	if (io->bio == NULL) {
505 		if ((fio->type == DATA || fio->type == NODE) &&
506 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
507 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
508 			fio->retry = true;
509 			goto skip;
510 		}
511 		io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
512 						BIO_MAX_PAGES, false,
513 						fio->type, fio->temp);
514 		io->fio = *fio;
515 	}
516 
517 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
518 		__submit_merged_bio(io);
519 		goto alloc_new;
520 	}
521 
522 	if (fio->io_wbc)
523 		wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
524 
525 	io->last_block_in_bio = fio->new_blkaddr;
526 	f2fs_trace_ios(fio, 0);
527 
528 	trace_f2fs_submit_page_write(fio->page, fio);
529 skip:
530 	if (fio->in_list)
531 		goto next;
532 out:
533 	up_write(&io->io_rwsem);
534 }
535 
536 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
537 							 unsigned nr_pages)
538 {
539 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
540 	struct bio *bio;
541 	struct bio_post_read_ctx *ctx;
542 	unsigned int post_read_steps = 0;
543 
544 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
545 	if (!bio)
546 		return ERR_PTR(-ENOMEM);
547 	f2fs_target_device(sbi, blkaddr, bio);
548 	bio->bi_end_io = f2fs_read_end_io;
549 	bio_set_op_attrs(bio, REQ_OP_READ, 0);
550 
551 	if (f2fs_encrypted_file(inode))
552 		post_read_steps |= 1 << STEP_DECRYPT;
553 	if (post_read_steps) {
554 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
555 		if (!ctx) {
556 			bio_put(bio);
557 			return ERR_PTR(-ENOMEM);
558 		}
559 		ctx->bio = bio;
560 		ctx->enabled_steps = post_read_steps;
561 		bio->bi_private = ctx;
562 
563 		/* wait the page to be moved by cleaning */
564 		f2fs_wait_on_block_writeback(sbi, blkaddr);
565 	}
566 
567 	return bio;
568 }
569 
570 /* This can handle encryption stuffs */
571 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
572 							block_t blkaddr)
573 {
574 	struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1);
575 
576 	if (IS_ERR(bio))
577 		return PTR_ERR(bio);
578 
579 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
580 		bio_put(bio);
581 		return -EFAULT;
582 	}
583 	__submit_bio(F2FS_I_SB(inode), bio, DATA);
584 	return 0;
585 }
586 
587 static void __set_data_blkaddr(struct dnode_of_data *dn)
588 {
589 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
590 	__le32 *addr_array;
591 	int base = 0;
592 
593 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
594 		base = get_extra_isize(dn->inode);
595 
596 	/* Get physical address of data block */
597 	addr_array = blkaddr_in_node(rn);
598 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
599 }
600 
601 /*
602  * Lock ordering for the change of data block address:
603  * ->data_page
604  *  ->node_page
605  *    update block addresses in the node page
606  */
607 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
608 {
609 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
610 	__set_data_blkaddr(dn);
611 	if (set_page_dirty(dn->node_page))
612 		dn->node_changed = true;
613 }
614 
615 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
616 {
617 	dn->data_blkaddr = blkaddr;
618 	f2fs_set_data_blkaddr(dn);
619 	f2fs_update_extent_cache(dn);
620 }
621 
622 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
623 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
624 {
625 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
626 	int err;
627 
628 	if (!count)
629 		return 0;
630 
631 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
632 		return -EPERM;
633 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
634 		return err;
635 
636 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
637 						dn->ofs_in_node, count);
638 
639 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
640 
641 	for (; count > 0; dn->ofs_in_node++) {
642 		block_t blkaddr = datablock_addr(dn->inode,
643 					dn->node_page, dn->ofs_in_node);
644 		if (blkaddr == NULL_ADDR) {
645 			dn->data_blkaddr = NEW_ADDR;
646 			__set_data_blkaddr(dn);
647 			count--;
648 		}
649 	}
650 
651 	if (set_page_dirty(dn->node_page))
652 		dn->node_changed = true;
653 	return 0;
654 }
655 
656 /* Should keep dn->ofs_in_node unchanged */
657 int f2fs_reserve_new_block(struct dnode_of_data *dn)
658 {
659 	unsigned int ofs_in_node = dn->ofs_in_node;
660 	int ret;
661 
662 	ret = f2fs_reserve_new_blocks(dn, 1);
663 	dn->ofs_in_node = ofs_in_node;
664 	return ret;
665 }
666 
667 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
668 {
669 	bool need_put = dn->inode_page ? false : true;
670 	int err;
671 
672 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
673 	if (err)
674 		return err;
675 
676 	if (dn->data_blkaddr == NULL_ADDR)
677 		err = f2fs_reserve_new_block(dn);
678 	if (err || need_put)
679 		f2fs_put_dnode(dn);
680 	return err;
681 }
682 
683 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
684 {
685 	struct extent_info ei  = {0,0,0};
686 	struct inode *inode = dn->inode;
687 
688 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
689 		dn->data_blkaddr = ei.blk + index - ei.fofs;
690 		return 0;
691 	}
692 
693 	return f2fs_reserve_block(dn, index);
694 }
695 
696 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
697 						int op_flags, bool for_write)
698 {
699 	struct address_space *mapping = inode->i_mapping;
700 	struct dnode_of_data dn;
701 	struct page *page;
702 	struct extent_info ei = {0,0,0};
703 	int err;
704 
705 	page = f2fs_grab_cache_page(mapping, index, for_write);
706 	if (!page)
707 		return ERR_PTR(-ENOMEM);
708 
709 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
710 		dn.data_blkaddr = ei.blk + index - ei.fofs;
711 		goto got_it;
712 	}
713 
714 	set_new_dnode(&dn, inode, NULL, NULL, 0);
715 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
716 	if (err)
717 		goto put_err;
718 	f2fs_put_dnode(&dn);
719 
720 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
721 		err = -ENOENT;
722 		goto put_err;
723 	}
724 got_it:
725 	if (PageUptodate(page)) {
726 		unlock_page(page);
727 		return page;
728 	}
729 
730 	/*
731 	 * A new dentry page is allocated but not able to be written, since its
732 	 * new inode page couldn't be allocated due to -ENOSPC.
733 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
734 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
735 	 * f2fs_init_inode_metadata.
736 	 */
737 	if (dn.data_blkaddr == NEW_ADDR) {
738 		zero_user_segment(page, 0, PAGE_SIZE);
739 		if (!PageUptodate(page))
740 			SetPageUptodate(page);
741 		unlock_page(page);
742 		return page;
743 	}
744 
745 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
746 	if (err)
747 		goto put_err;
748 	return page;
749 
750 put_err:
751 	f2fs_put_page(page, 1);
752 	return ERR_PTR(err);
753 }
754 
755 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
756 {
757 	struct address_space *mapping = inode->i_mapping;
758 	struct page *page;
759 
760 	page = find_get_page(mapping, index);
761 	if (page && PageUptodate(page))
762 		return page;
763 	f2fs_put_page(page, 0);
764 
765 	page = f2fs_get_read_data_page(inode, index, 0, false);
766 	if (IS_ERR(page))
767 		return page;
768 
769 	if (PageUptodate(page))
770 		return page;
771 
772 	wait_on_page_locked(page);
773 	if (unlikely(!PageUptodate(page))) {
774 		f2fs_put_page(page, 0);
775 		return ERR_PTR(-EIO);
776 	}
777 	return page;
778 }
779 
780 /*
781  * If it tries to access a hole, return an error.
782  * Because, the callers, functions in dir.c and GC, should be able to know
783  * whether this page exists or not.
784  */
785 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
786 							bool for_write)
787 {
788 	struct address_space *mapping = inode->i_mapping;
789 	struct page *page;
790 repeat:
791 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
792 	if (IS_ERR(page))
793 		return page;
794 
795 	/* wait for read completion */
796 	lock_page(page);
797 	if (unlikely(page->mapping != mapping)) {
798 		f2fs_put_page(page, 1);
799 		goto repeat;
800 	}
801 	if (unlikely(!PageUptodate(page))) {
802 		f2fs_put_page(page, 1);
803 		return ERR_PTR(-EIO);
804 	}
805 	return page;
806 }
807 
808 /*
809  * Caller ensures that this data page is never allocated.
810  * A new zero-filled data page is allocated in the page cache.
811  *
812  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
813  * f2fs_unlock_op().
814  * Note that, ipage is set only by make_empty_dir, and if any error occur,
815  * ipage should be released by this function.
816  */
817 struct page *f2fs_get_new_data_page(struct inode *inode,
818 		struct page *ipage, pgoff_t index, bool new_i_size)
819 {
820 	struct address_space *mapping = inode->i_mapping;
821 	struct page *page;
822 	struct dnode_of_data dn;
823 	int err;
824 
825 	page = f2fs_grab_cache_page(mapping, index, true);
826 	if (!page) {
827 		/*
828 		 * before exiting, we should make sure ipage will be released
829 		 * if any error occur.
830 		 */
831 		f2fs_put_page(ipage, 1);
832 		return ERR_PTR(-ENOMEM);
833 	}
834 
835 	set_new_dnode(&dn, inode, ipage, NULL, 0);
836 	err = f2fs_reserve_block(&dn, index);
837 	if (err) {
838 		f2fs_put_page(page, 1);
839 		return ERR_PTR(err);
840 	}
841 	if (!ipage)
842 		f2fs_put_dnode(&dn);
843 
844 	if (PageUptodate(page))
845 		goto got_it;
846 
847 	if (dn.data_blkaddr == NEW_ADDR) {
848 		zero_user_segment(page, 0, PAGE_SIZE);
849 		if (!PageUptodate(page))
850 			SetPageUptodate(page);
851 	} else {
852 		f2fs_put_page(page, 1);
853 
854 		/* if ipage exists, blkaddr should be NEW_ADDR */
855 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
856 		page = f2fs_get_lock_data_page(inode, index, true);
857 		if (IS_ERR(page))
858 			return page;
859 	}
860 got_it:
861 	if (new_i_size && i_size_read(inode) <
862 				((loff_t)(index + 1) << PAGE_SHIFT))
863 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
864 	return page;
865 }
866 
867 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
868 {
869 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
870 	struct f2fs_summary sum;
871 	struct node_info ni;
872 	pgoff_t fofs;
873 	blkcnt_t count = 1;
874 	int err;
875 
876 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
877 		return -EPERM;
878 
879 	dn->data_blkaddr = datablock_addr(dn->inode,
880 				dn->node_page, dn->ofs_in_node);
881 	if (dn->data_blkaddr == NEW_ADDR)
882 		goto alloc;
883 
884 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
885 		return err;
886 
887 alloc:
888 	f2fs_get_node_info(sbi, dn->nid, &ni);
889 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
890 
891 	f2fs_allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
892 					&sum, seg_type, NULL, false);
893 	f2fs_set_data_blkaddr(dn);
894 
895 	/* update i_size */
896 	fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
897 							dn->ofs_in_node;
898 	if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
899 		f2fs_i_size_write(dn->inode,
900 				((loff_t)(fofs + 1) << PAGE_SHIFT));
901 	return 0;
902 }
903 
904 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
905 {
906 	struct inode *inode = file_inode(iocb->ki_filp);
907 	struct f2fs_map_blocks map;
908 	int flag;
909 	int err = 0;
910 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
911 
912 	/* convert inline data for Direct I/O*/
913 	if (direct_io) {
914 		err = f2fs_convert_inline_inode(inode);
915 		if (err)
916 			return err;
917 	}
918 
919 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
920 		return 0;
921 
922 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
923 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
924 	if (map.m_len > map.m_lblk)
925 		map.m_len -= map.m_lblk;
926 	else
927 		map.m_len = 0;
928 
929 	map.m_next_pgofs = NULL;
930 	map.m_next_extent = NULL;
931 	map.m_seg_type = NO_CHECK_TYPE;
932 
933 	if (direct_io) {
934 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
935 		flag = f2fs_force_buffered_io(inode, WRITE) ?
936 					F2FS_GET_BLOCK_PRE_AIO :
937 					F2FS_GET_BLOCK_PRE_DIO;
938 		goto map_blocks;
939 	}
940 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
941 		err = f2fs_convert_inline_inode(inode);
942 		if (err)
943 			return err;
944 	}
945 	if (f2fs_has_inline_data(inode))
946 		return err;
947 
948 	flag = F2FS_GET_BLOCK_PRE_AIO;
949 
950 map_blocks:
951 	err = f2fs_map_blocks(inode, &map, 1, flag);
952 	if (map.m_len > 0 && err == -ENOSPC) {
953 		if (!direct_io)
954 			set_inode_flag(inode, FI_NO_PREALLOC);
955 		err = 0;
956 	}
957 	return err;
958 }
959 
960 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
961 {
962 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
963 		if (lock)
964 			down_read(&sbi->node_change);
965 		else
966 			up_read(&sbi->node_change);
967 	} else {
968 		if (lock)
969 			f2fs_lock_op(sbi);
970 		else
971 			f2fs_unlock_op(sbi);
972 	}
973 }
974 
975 /*
976  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
977  * f2fs_map_blocks structure.
978  * If original data blocks are allocated, then give them to blockdev.
979  * Otherwise,
980  *     a. preallocate requested block addresses
981  *     b. do not use extent cache for better performance
982  *     c. give the block addresses to blockdev
983  */
984 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
985 						int create, int flag)
986 {
987 	unsigned int maxblocks = map->m_len;
988 	struct dnode_of_data dn;
989 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
990 	int mode = create ? ALLOC_NODE : LOOKUP_NODE;
991 	pgoff_t pgofs, end_offset, end;
992 	int err = 0, ofs = 1;
993 	unsigned int ofs_in_node, last_ofs_in_node;
994 	blkcnt_t prealloc;
995 	struct extent_info ei = {0,0,0};
996 	block_t blkaddr;
997 	unsigned int start_pgofs;
998 
999 	if (!maxblocks)
1000 		return 0;
1001 
1002 	map->m_len = 0;
1003 	map->m_flags = 0;
1004 
1005 	/* it only supports block size == page size */
1006 	pgofs =	(pgoff_t)map->m_lblk;
1007 	end = pgofs + maxblocks;
1008 
1009 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1010 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1011 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1012 		map->m_flags = F2FS_MAP_MAPPED;
1013 		if (map->m_next_extent)
1014 			*map->m_next_extent = pgofs + map->m_len;
1015 		goto out;
1016 	}
1017 
1018 next_dnode:
1019 	if (create)
1020 		__do_map_lock(sbi, flag, true);
1021 
1022 	/* When reading holes, we need its node page */
1023 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1024 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1025 	if (err) {
1026 		if (flag == F2FS_GET_BLOCK_BMAP)
1027 			map->m_pblk = 0;
1028 		if (err == -ENOENT) {
1029 			err = 0;
1030 			if (map->m_next_pgofs)
1031 				*map->m_next_pgofs =
1032 					f2fs_get_next_page_offset(&dn, pgofs);
1033 			if (map->m_next_extent)
1034 				*map->m_next_extent =
1035 					f2fs_get_next_page_offset(&dn, pgofs);
1036 		}
1037 		goto unlock_out;
1038 	}
1039 
1040 	start_pgofs = pgofs;
1041 	prealloc = 0;
1042 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1043 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1044 
1045 next_block:
1046 	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1047 
1048 	if (!is_valid_blkaddr(blkaddr)) {
1049 		if (create) {
1050 			if (unlikely(f2fs_cp_error(sbi))) {
1051 				err = -EIO;
1052 				goto sync_out;
1053 			}
1054 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1055 				if (blkaddr == NULL_ADDR) {
1056 					prealloc++;
1057 					last_ofs_in_node = dn.ofs_in_node;
1058 				}
1059 			} else {
1060 				err = __allocate_data_block(&dn,
1061 							map->m_seg_type);
1062 				if (!err)
1063 					set_inode_flag(inode, FI_APPEND_WRITE);
1064 			}
1065 			if (err)
1066 				goto sync_out;
1067 			map->m_flags |= F2FS_MAP_NEW;
1068 			blkaddr = dn.data_blkaddr;
1069 		} else {
1070 			if (flag == F2FS_GET_BLOCK_BMAP) {
1071 				map->m_pblk = 0;
1072 				goto sync_out;
1073 			}
1074 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1075 				goto sync_out;
1076 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1077 						blkaddr == NULL_ADDR) {
1078 				if (map->m_next_pgofs)
1079 					*map->m_next_pgofs = pgofs + 1;
1080 				goto sync_out;
1081 			}
1082 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1083 				/* for defragment case */
1084 				if (map->m_next_pgofs)
1085 					*map->m_next_pgofs = pgofs + 1;
1086 				goto sync_out;
1087 			}
1088 		}
1089 	}
1090 
1091 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1092 		goto skip;
1093 
1094 	if (map->m_len == 0) {
1095 		/* preallocated unwritten block should be mapped for fiemap. */
1096 		if (blkaddr == NEW_ADDR)
1097 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1098 		map->m_flags |= F2FS_MAP_MAPPED;
1099 
1100 		map->m_pblk = blkaddr;
1101 		map->m_len = 1;
1102 	} else if ((map->m_pblk != NEW_ADDR &&
1103 			blkaddr == (map->m_pblk + ofs)) ||
1104 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1105 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1106 		ofs++;
1107 		map->m_len++;
1108 	} else {
1109 		goto sync_out;
1110 	}
1111 
1112 skip:
1113 	dn.ofs_in_node++;
1114 	pgofs++;
1115 
1116 	/* preallocate blocks in batch for one dnode page */
1117 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1118 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1119 
1120 		dn.ofs_in_node = ofs_in_node;
1121 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1122 		if (err)
1123 			goto sync_out;
1124 
1125 		map->m_len += dn.ofs_in_node - ofs_in_node;
1126 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1127 			err = -ENOSPC;
1128 			goto sync_out;
1129 		}
1130 		dn.ofs_in_node = end_offset;
1131 	}
1132 
1133 	if (pgofs >= end)
1134 		goto sync_out;
1135 	else if (dn.ofs_in_node < end_offset)
1136 		goto next_block;
1137 
1138 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1139 		if (map->m_flags & F2FS_MAP_MAPPED) {
1140 			unsigned int ofs = start_pgofs - map->m_lblk;
1141 
1142 			f2fs_update_extent_cache_range(&dn,
1143 				start_pgofs, map->m_pblk + ofs,
1144 				map->m_len - ofs);
1145 		}
1146 	}
1147 
1148 	f2fs_put_dnode(&dn);
1149 
1150 	if (create) {
1151 		__do_map_lock(sbi, flag, false);
1152 		f2fs_balance_fs(sbi, dn.node_changed);
1153 	}
1154 	goto next_dnode;
1155 
1156 sync_out:
1157 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1158 		if (map->m_flags & F2FS_MAP_MAPPED) {
1159 			unsigned int ofs = start_pgofs - map->m_lblk;
1160 
1161 			f2fs_update_extent_cache_range(&dn,
1162 				start_pgofs, map->m_pblk + ofs,
1163 				map->m_len - ofs);
1164 		}
1165 		if (map->m_next_extent)
1166 			*map->m_next_extent = pgofs + 1;
1167 	}
1168 	f2fs_put_dnode(&dn);
1169 unlock_out:
1170 	if (create) {
1171 		__do_map_lock(sbi, flag, false);
1172 		f2fs_balance_fs(sbi, dn.node_changed);
1173 	}
1174 out:
1175 	trace_f2fs_map_blocks(inode, map, err);
1176 	return err;
1177 }
1178 
1179 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1180 {
1181 	struct f2fs_map_blocks map;
1182 	block_t last_lblk;
1183 	int err;
1184 
1185 	if (pos + len > i_size_read(inode))
1186 		return false;
1187 
1188 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1189 	map.m_next_pgofs = NULL;
1190 	map.m_next_extent = NULL;
1191 	map.m_seg_type = NO_CHECK_TYPE;
1192 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1193 
1194 	while (map.m_lblk < last_lblk) {
1195 		map.m_len = last_lblk - map.m_lblk;
1196 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1197 		if (err || map.m_len == 0)
1198 			return false;
1199 		map.m_lblk += map.m_len;
1200 	}
1201 	return true;
1202 }
1203 
1204 static int __get_data_block(struct inode *inode, sector_t iblock,
1205 			struct buffer_head *bh, int create, int flag,
1206 			pgoff_t *next_pgofs, int seg_type)
1207 {
1208 	struct f2fs_map_blocks map;
1209 	int err;
1210 
1211 	map.m_lblk = iblock;
1212 	map.m_len = bh->b_size >> inode->i_blkbits;
1213 	map.m_next_pgofs = next_pgofs;
1214 	map.m_next_extent = NULL;
1215 	map.m_seg_type = seg_type;
1216 
1217 	err = f2fs_map_blocks(inode, &map, create, flag);
1218 	if (!err) {
1219 		map_bh(bh, inode->i_sb, map.m_pblk);
1220 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1221 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1222 	}
1223 	return err;
1224 }
1225 
1226 static int get_data_block(struct inode *inode, sector_t iblock,
1227 			struct buffer_head *bh_result, int create, int flag,
1228 			pgoff_t *next_pgofs)
1229 {
1230 	return __get_data_block(inode, iblock, bh_result, create,
1231 							flag, next_pgofs,
1232 							NO_CHECK_TYPE);
1233 }
1234 
1235 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1236 			struct buffer_head *bh_result, int create)
1237 {
1238 	return __get_data_block(inode, iblock, bh_result, create,
1239 						F2FS_GET_BLOCK_DEFAULT, NULL,
1240 						f2fs_rw_hint_to_seg_type(
1241 							inode->i_write_hint));
1242 }
1243 
1244 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1245 			struct buffer_head *bh_result, int create)
1246 {
1247 	/* Block number less than F2FS MAX BLOCKS */
1248 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1249 		return -EFBIG;
1250 
1251 	return __get_data_block(inode, iblock, bh_result, create,
1252 						F2FS_GET_BLOCK_BMAP, NULL,
1253 						NO_CHECK_TYPE);
1254 }
1255 
1256 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1257 {
1258 	return (offset >> inode->i_blkbits);
1259 }
1260 
1261 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1262 {
1263 	return (blk << inode->i_blkbits);
1264 }
1265 
1266 static int f2fs_xattr_fiemap(struct inode *inode,
1267 				struct fiemap_extent_info *fieinfo)
1268 {
1269 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1270 	struct page *page;
1271 	struct node_info ni;
1272 	__u64 phys = 0, len;
1273 	__u32 flags;
1274 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1275 	int err = 0;
1276 
1277 	if (f2fs_has_inline_xattr(inode)) {
1278 		int offset;
1279 
1280 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1281 						inode->i_ino, false);
1282 		if (!page)
1283 			return -ENOMEM;
1284 
1285 		f2fs_get_node_info(sbi, inode->i_ino, &ni);
1286 
1287 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1288 		offset = offsetof(struct f2fs_inode, i_addr) +
1289 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1290 					get_inline_xattr_addrs(inode));
1291 
1292 		phys += offset;
1293 		len = inline_xattr_size(inode);
1294 
1295 		f2fs_put_page(page, 1);
1296 
1297 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1298 
1299 		if (!xnid)
1300 			flags |= FIEMAP_EXTENT_LAST;
1301 
1302 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1303 		if (err || err == 1)
1304 			return err;
1305 	}
1306 
1307 	if (xnid) {
1308 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1309 		if (!page)
1310 			return -ENOMEM;
1311 
1312 		f2fs_get_node_info(sbi, xnid, &ni);
1313 
1314 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1315 		len = inode->i_sb->s_blocksize;
1316 
1317 		f2fs_put_page(page, 1);
1318 
1319 		flags = FIEMAP_EXTENT_LAST;
1320 	}
1321 
1322 	if (phys)
1323 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1324 
1325 	return (err < 0 ? err : 0);
1326 }
1327 
1328 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1329 		u64 start, u64 len)
1330 {
1331 	struct buffer_head map_bh;
1332 	sector_t start_blk, last_blk;
1333 	pgoff_t next_pgofs;
1334 	u64 logical = 0, phys = 0, size = 0;
1335 	u32 flags = 0;
1336 	int ret = 0;
1337 
1338 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1339 		ret = f2fs_precache_extents(inode);
1340 		if (ret)
1341 			return ret;
1342 	}
1343 
1344 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1345 	if (ret)
1346 		return ret;
1347 
1348 	inode_lock(inode);
1349 
1350 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1351 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1352 		goto out;
1353 	}
1354 
1355 	if (f2fs_has_inline_data(inode)) {
1356 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1357 		if (ret != -EAGAIN)
1358 			goto out;
1359 	}
1360 
1361 	if (logical_to_blk(inode, len) == 0)
1362 		len = blk_to_logical(inode, 1);
1363 
1364 	start_blk = logical_to_blk(inode, start);
1365 	last_blk = logical_to_blk(inode, start + len - 1);
1366 
1367 next:
1368 	memset(&map_bh, 0, sizeof(struct buffer_head));
1369 	map_bh.b_size = len;
1370 
1371 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1372 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1373 	if (ret)
1374 		goto out;
1375 
1376 	/* HOLE */
1377 	if (!buffer_mapped(&map_bh)) {
1378 		start_blk = next_pgofs;
1379 
1380 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1381 					F2FS_I_SB(inode)->max_file_blocks))
1382 			goto prep_next;
1383 
1384 		flags |= FIEMAP_EXTENT_LAST;
1385 	}
1386 
1387 	if (size) {
1388 		if (f2fs_encrypted_inode(inode))
1389 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1390 
1391 		ret = fiemap_fill_next_extent(fieinfo, logical,
1392 				phys, size, flags);
1393 	}
1394 
1395 	if (start_blk > last_blk || ret)
1396 		goto out;
1397 
1398 	logical = blk_to_logical(inode, start_blk);
1399 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1400 	size = map_bh.b_size;
1401 	flags = 0;
1402 	if (buffer_unwritten(&map_bh))
1403 		flags = FIEMAP_EXTENT_UNWRITTEN;
1404 
1405 	start_blk += logical_to_blk(inode, size);
1406 
1407 prep_next:
1408 	cond_resched();
1409 	if (fatal_signal_pending(current))
1410 		ret = -EINTR;
1411 	else
1412 		goto next;
1413 out:
1414 	if (ret == 1)
1415 		ret = 0;
1416 
1417 	inode_unlock(inode);
1418 	return ret;
1419 }
1420 
1421 /*
1422  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1423  * Major change was from block_size == page_size in f2fs by default.
1424  */
1425 static int f2fs_mpage_readpages(struct address_space *mapping,
1426 			struct list_head *pages, struct page *page,
1427 			unsigned nr_pages)
1428 {
1429 	struct bio *bio = NULL;
1430 	sector_t last_block_in_bio = 0;
1431 	struct inode *inode = mapping->host;
1432 	const unsigned blkbits = inode->i_blkbits;
1433 	const unsigned blocksize = 1 << blkbits;
1434 	sector_t block_in_file;
1435 	sector_t last_block;
1436 	sector_t last_block_in_file;
1437 	sector_t block_nr;
1438 	struct f2fs_map_blocks map;
1439 
1440 	map.m_pblk = 0;
1441 	map.m_lblk = 0;
1442 	map.m_len = 0;
1443 	map.m_flags = 0;
1444 	map.m_next_pgofs = NULL;
1445 	map.m_next_extent = NULL;
1446 	map.m_seg_type = NO_CHECK_TYPE;
1447 
1448 	for (; nr_pages; nr_pages--) {
1449 		if (pages) {
1450 			page = list_last_entry(pages, struct page, lru);
1451 
1452 			prefetchw(&page->flags);
1453 			list_del(&page->lru);
1454 			if (add_to_page_cache_lru(page, mapping,
1455 						  page->index,
1456 						  readahead_gfp_mask(mapping)))
1457 				goto next_page;
1458 		}
1459 
1460 		block_in_file = (sector_t)page->index;
1461 		last_block = block_in_file + nr_pages;
1462 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1463 								blkbits;
1464 		if (last_block > last_block_in_file)
1465 			last_block = last_block_in_file;
1466 
1467 		/*
1468 		 * Map blocks using the previous result first.
1469 		 */
1470 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1471 				block_in_file > map.m_lblk &&
1472 				block_in_file < (map.m_lblk + map.m_len))
1473 			goto got_it;
1474 
1475 		/*
1476 		 * Then do more f2fs_map_blocks() calls until we are
1477 		 * done with this page.
1478 		 */
1479 		map.m_flags = 0;
1480 
1481 		if (block_in_file < last_block) {
1482 			map.m_lblk = block_in_file;
1483 			map.m_len = last_block - block_in_file;
1484 
1485 			if (f2fs_map_blocks(inode, &map, 0,
1486 						F2FS_GET_BLOCK_DEFAULT))
1487 				goto set_error_page;
1488 		}
1489 got_it:
1490 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1491 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1492 			SetPageMappedToDisk(page);
1493 
1494 			if (!PageUptodate(page) && !cleancache_get_page(page)) {
1495 				SetPageUptodate(page);
1496 				goto confused;
1497 			}
1498 		} else {
1499 			zero_user_segment(page, 0, PAGE_SIZE);
1500 			if (!PageUptodate(page))
1501 				SetPageUptodate(page);
1502 			unlock_page(page);
1503 			goto next_page;
1504 		}
1505 
1506 		/*
1507 		 * This page will go to BIO.  Do we need to send this
1508 		 * BIO off first?
1509 		 */
1510 		if (bio && (last_block_in_bio != block_nr - 1 ||
1511 			!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1512 submit_and_realloc:
1513 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1514 			bio = NULL;
1515 		}
1516 		if (bio == NULL) {
1517 			bio = f2fs_grab_read_bio(inode, block_nr, nr_pages);
1518 			if (IS_ERR(bio)) {
1519 				bio = NULL;
1520 				goto set_error_page;
1521 			}
1522 		}
1523 
1524 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1525 			goto submit_and_realloc;
1526 
1527 		last_block_in_bio = block_nr;
1528 		goto next_page;
1529 set_error_page:
1530 		SetPageError(page);
1531 		zero_user_segment(page, 0, PAGE_SIZE);
1532 		unlock_page(page);
1533 		goto next_page;
1534 confused:
1535 		if (bio) {
1536 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1537 			bio = NULL;
1538 		}
1539 		unlock_page(page);
1540 next_page:
1541 		if (pages)
1542 			put_page(page);
1543 	}
1544 	BUG_ON(pages && !list_empty(pages));
1545 	if (bio)
1546 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1547 	return 0;
1548 }
1549 
1550 static int f2fs_read_data_page(struct file *file, struct page *page)
1551 {
1552 	struct inode *inode = page->mapping->host;
1553 	int ret = -EAGAIN;
1554 
1555 	trace_f2fs_readpage(page, DATA);
1556 
1557 	/* If the file has inline data, try to read it directly */
1558 	if (f2fs_has_inline_data(inode))
1559 		ret = f2fs_read_inline_data(inode, page);
1560 	if (ret == -EAGAIN)
1561 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1562 	return ret;
1563 }
1564 
1565 static int f2fs_read_data_pages(struct file *file,
1566 			struct address_space *mapping,
1567 			struct list_head *pages, unsigned nr_pages)
1568 {
1569 	struct inode *inode = mapping->host;
1570 	struct page *page = list_last_entry(pages, struct page, lru);
1571 
1572 	trace_f2fs_readpages(inode, page, nr_pages);
1573 
1574 	/* If the file has inline data, skip readpages */
1575 	if (f2fs_has_inline_data(inode))
1576 		return 0;
1577 
1578 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1579 }
1580 
1581 static int encrypt_one_page(struct f2fs_io_info *fio)
1582 {
1583 	struct inode *inode = fio->page->mapping->host;
1584 	gfp_t gfp_flags = GFP_NOFS;
1585 
1586 	if (!f2fs_encrypted_file(inode))
1587 		return 0;
1588 
1589 	/* wait for GCed page writeback via META_MAPPING */
1590 	f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
1591 
1592 retry_encrypt:
1593 	fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1594 			PAGE_SIZE, 0, fio->page->index, gfp_flags);
1595 	if (!IS_ERR(fio->encrypted_page))
1596 		return 0;
1597 
1598 	/* flush pending IOs and wait for a while in the ENOMEM case */
1599 	if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1600 		f2fs_flush_merged_writes(fio->sbi);
1601 		congestion_wait(BLK_RW_ASYNC, HZ/50);
1602 		gfp_flags |= __GFP_NOFAIL;
1603 		goto retry_encrypt;
1604 	}
1605 	return PTR_ERR(fio->encrypted_page);
1606 }
1607 
1608 static inline bool check_inplace_update_policy(struct inode *inode,
1609 				struct f2fs_io_info *fio)
1610 {
1611 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1612 	unsigned int policy = SM_I(sbi)->ipu_policy;
1613 
1614 	if (policy & (0x1 << F2FS_IPU_FORCE))
1615 		return true;
1616 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1617 		return true;
1618 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
1619 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1620 		return true;
1621 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1622 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1623 		return true;
1624 
1625 	/*
1626 	 * IPU for rewrite async pages
1627 	 */
1628 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1629 			fio && fio->op == REQ_OP_WRITE &&
1630 			!(fio->op_flags & REQ_SYNC) &&
1631 			!f2fs_encrypted_inode(inode))
1632 		return true;
1633 
1634 	/* this is only set during fdatasync */
1635 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1636 			is_inode_flag_set(inode, FI_NEED_IPU))
1637 		return true;
1638 
1639 	return false;
1640 }
1641 
1642 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1643 {
1644 	if (f2fs_is_pinned_file(inode))
1645 		return true;
1646 
1647 	/* if this is cold file, we should overwrite to avoid fragmentation */
1648 	if (file_is_cold(inode))
1649 		return true;
1650 
1651 	return check_inplace_update_policy(inode, fio);
1652 }
1653 
1654 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1655 {
1656 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1657 
1658 	if (test_opt(sbi, LFS))
1659 		return true;
1660 	if (S_ISDIR(inode->i_mode))
1661 		return true;
1662 	if (f2fs_is_atomic_file(inode))
1663 		return true;
1664 	if (fio) {
1665 		if (is_cold_data(fio->page))
1666 			return true;
1667 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1668 			return true;
1669 	}
1670 	return false;
1671 }
1672 
1673 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1674 {
1675 	struct inode *inode = fio->page->mapping->host;
1676 
1677 	if (f2fs_should_update_outplace(inode, fio))
1678 		return false;
1679 
1680 	return f2fs_should_update_inplace(inode, fio);
1681 }
1682 
1683 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1684 {
1685 	struct page *page = fio->page;
1686 	struct inode *inode = page->mapping->host;
1687 	struct dnode_of_data dn;
1688 	struct extent_info ei = {0,0,0};
1689 	bool ipu_force = false;
1690 	int err = 0;
1691 
1692 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1693 	if (need_inplace_update(fio) &&
1694 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1695 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1696 
1697 		if (is_valid_blkaddr(fio->old_blkaddr)) {
1698 			ipu_force = true;
1699 			fio->need_lock = LOCK_DONE;
1700 			goto got_it;
1701 		}
1702 	}
1703 
1704 	/* Deadlock due to between page->lock and f2fs_lock_op */
1705 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1706 		return -EAGAIN;
1707 
1708 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1709 	if (err)
1710 		goto out;
1711 
1712 	fio->old_blkaddr = dn.data_blkaddr;
1713 
1714 	/* This page is already truncated */
1715 	if (fio->old_blkaddr == NULL_ADDR) {
1716 		ClearPageUptodate(page);
1717 		goto out_writepage;
1718 	}
1719 got_it:
1720 	/*
1721 	 * If current allocation needs SSR,
1722 	 * it had better in-place writes for updated data.
1723 	 */
1724 	if (ipu_force || (is_valid_blkaddr(fio->old_blkaddr) &&
1725 					need_inplace_update(fio))) {
1726 		err = encrypt_one_page(fio);
1727 		if (err)
1728 			goto out_writepage;
1729 
1730 		set_page_writeback(page);
1731 		ClearPageError(page);
1732 		f2fs_put_dnode(&dn);
1733 		if (fio->need_lock == LOCK_REQ)
1734 			f2fs_unlock_op(fio->sbi);
1735 		err = f2fs_inplace_write_data(fio);
1736 		trace_f2fs_do_write_data_page(fio->page, IPU);
1737 		set_inode_flag(inode, FI_UPDATE_WRITE);
1738 		return err;
1739 	}
1740 
1741 	if (fio->need_lock == LOCK_RETRY) {
1742 		if (!f2fs_trylock_op(fio->sbi)) {
1743 			err = -EAGAIN;
1744 			goto out_writepage;
1745 		}
1746 		fio->need_lock = LOCK_REQ;
1747 	}
1748 
1749 	err = encrypt_one_page(fio);
1750 	if (err)
1751 		goto out_writepage;
1752 
1753 	set_page_writeback(page);
1754 	ClearPageError(page);
1755 
1756 	/* LFS mode write path */
1757 	f2fs_outplace_write_data(&dn, fio);
1758 	trace_f2fs_do_write_data_page(page, OPU);
1759 	set_inode_flag(inode, FI_APPEND_WRITE);
1760 	if (page->index == 0)
1761 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1762 out_writepage:
1763 	f2fs_put_dnode(&dn);
1764 out:
1765 	if (fio->need_lock == LOCK_REQ)
1766 		f2fs_unlock_op(fio->sbi);
1767 	return err;
1768 }
1769 
1770 static int __write_data_page(struct page *page, bool *submitted,
1771 				struct writeback_control *wbc,
1772 				enum iostat_type io_type)
1773 {
1774 	struct inode *inode = page->mapping->host;
1775 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1776 	loff_t i_size = i_size_read(inode);
1777 	const pgoff_t end_index = ((unsigned long long) i_size)
1778 							>> PAGE_SHIFT;
1779 	loff_t psize = (page->index + 1) << PAGE_SHIFT;
1780 	unsigned offset = 0;
1781 	bool need_balance_fs = false;
1782 	int err = 0;
1783 	struct f2fs_io_info fio = {
1784 		.sbi = sbi,
1785 		.ino = inode->i_ino,
1786 		.type = DATA,
1787 		.op = REQ_OP_WRITE,
1788 		.op_flags = wbc_to_write_flags(wbc),
1789 		.old_blkaddr = NULL_ADDR,
1790 		.page = page,
1791 		.encrypted_page = NULL,
1792 		.submitted = false,
1793 		.need_lock = LOCK_RETRY,
1794 		.io_type = io_type,
1795 		.io_wbc = wbc,
1796 	};
1797 
1798 	trace_f2fs_writepage(page, DATA);
1799 
1800 	/* we should bypass data pages to proceed the kworkder jobs */
1801 	if (unlikely(f2fs_cp_error(sbi))) {
1802 		mapping_set_error(page->mapping, -EIO);
1803 		/*
1804 		 * don't drop any dirty dentry pages for keeping lastest
1805 		 * directory structure.
1806 		 */
1807 		if (S_ISDIR(inode->i_mode))
1808 			goto redirty_out;
1809 		goto out;
1810 	}
1811 
1812 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1813 		goto redirty_out;
1814 
1815 	if (page->index < end_index)
1816 		goto write;
1817 
1818 	/*
1819 	 * If the offset is out-of-range of file size,
1820 	 * this page does not have to be written to disk.
1821 	 */
1822 	offset = i_size & (PAGE_SIZE - 1);
1823 	if ((page->index >= end_index + 1) || !offset)
1824 		goto out;
1825 
1826 	zero_user_segment(page, offset, PAGE_SIZE);
1827 write:
1828 	if (f2fs_is_drop_cache(inode))
1829 		goto out;
1830 	/* we should not write 0'th page having journal header */
1831 	if (f2fs_is_volatile_file(inode) && (!page->index ||
1832 			(!wbc->for_reclaim &&
1833 			f2fs_available_free_memory(sbi, BASE_CHECK))))
1834 		goto redirty_out;
1835 
1836 	/* Dentry blocks are controlled by checkpoint */
1837 	if (S_ISDIR(inode->i_mode)) {
1838 		fio.need_lock = LOCK_DONE;
1839 		err = f2fs_do_write_data_page(&fio);
1840 		goto done;
1841 	}
1842 
1843 	if (!wbc->for_reclaim)
1844 		need_balance_fs = true;
1845 	else if (has_not_enough_free_secs(sbi, 0, 0))
1846 		goto redirty_out;
1847 	else
1848 		set_inode_flag(inode, FI_HOT_DATA);
1849 
1850 	err = -EAGAIN;
1851 	if (f2fs_has_inline_data(inode)) {
1852 		err = f2fs_write_inline_data(inode, page);
1853 		if (!err)
1854 			goto out;
1855 	}
1856 
1857 	if (err == -EAGAIN) {
1858 		err = f2fs_do_write_data_page(&fio);
1859 		if (err == -EAGAIN) {
1860 			fio.need_lock = LOCK_REQ;
1861 			err = f2fs_do_write_data_page(&fio);
1862 		}
1863 	}
1864 
1865 	if (err) {
1866 		file_set_keep_isize(inode);
1867 	} else {
1868 		down_write(&F2FS_I(inode)->i_sem);
1869 		if (F2FS_I(inode)->last_disk_size < psize)
1870 			F2FS_I(inode)->last_disk_size = psize;
1871 		up_write(&F2FS_I(inode)->i_sem);
1872 	}
1873 
1874 done:
1875 	if (err && err != -ENOENT)
1876 		goto redirty_out;
1877 
1878 out:
1879 	inode_dec_dirty_pages(inode);
1880 	if (err)
1881 		ClearPageUptodate(page);
1882 
1883 	if (wbc->for_reclaim) {
1884 		f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1885 		clear_inode_flag(inode, FI_HOT_DATA);
1886 		f2fs_remove_dirty_inode(inode);
1887 		submitted = NULL;
1888 	}
1889 
1890 	unlock_page(page);
1891 	if (!S_ISDIR(inode->i_mode))
1892 		f2fs_balance_fs(sbi, need_balance_fs);
1893 
1894 	if (unlikely(f2fs_cp_error(sbi))) {
1895 		f2fs_submit_merged_write(sbi, DATA);
1896 		submitted = NULL;
1897 	}
1898 
1899 	if (submitted)
1900 		*submitted = fio.submitted;
1901 
1902 	return 0;
1903 
1904 redirty_out:
1905 	redirty_page_for_writepage(wbc, page);
1906 	/*
1907 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
1908 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
1909 	 * file_write_and_wait_range() will see EIO error, which is critical
1910 	 * to return value of fsync() followed by atomic_write failure to user.
1911 	 */
1912 	if (!err || wbc->for_reclaim)
1913 		return AOP_WRITEPAGE_ACTIVATE;
1914 	unlock_page(page);
1915 	return err;
1916 }
1917 
1918 static int f2fs_write_data_page(struct page *page,
1919 					struct writeback_control *wbc)
1920 {
1921 	return __write_data_page(page, NULL, wbc, FS_DATA_IO);
1922 }
1923 
1924 /*
1925  * This function was copied from write_cche_pages from mm/page-writeback.c.
1926  * The major change is making write step of cold data page separately from
1927  * warm/hot data page.
1928  */
1929 static int f2fs_write_cache_pages(struct address_space *mapping,
1930 					struct writeback_control *wbc,
1931 					enum iostat_type io_type)
1932 {
1933 	int ret = 0;
1934 	int done = 0;
1935 	struct pagevec pvec;
1936 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1937 	int nr_pages;
1938 	pgoff_t uninitialized_var(writeback_index);
1939 	pgoff_t index;
1940 	pgoff_t end;		/* Inclusive */
1941 	pgoff_t done_index;
1942 	pgoff_t last_idx = ULONG_MAX;
1943 	int cycled;
1944 	int range_whole = 0;
1945 	int tag;
1946 
1947 	pagevec_init(&pvec);
1948 
1949 	if (get_dirty_pages(mapping->host) <=
1950 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1951 		set_inode_flag(mapping->host, FI_HOT_DATA);
1952 	else
1953 		clear_inode_flag(mapping->host, FI_HOT_DATA);
1954 
1955 	if (wbc->range_cyclic) {
1956 		writeback_index = mapping->writeback_index; /* prev offset */
1957 		index = writeback_index;
1958 		if (index == 0)
1959 			cycled = 1;
1960 		else
1961 			cycled = 0;
1962 		end = -1;
1963 	} else {
1964 		index = wbc->range_start >> PAGE_SHIFT;
1965 		end = wbc->range_end >> PAGE_SHIFT;
1966 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1967 			range_whole = 1;
1968 		cycled = 1; /* ignore range_cyclic tests */
1969 	}
1970 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1971 		tag = PAGECACHE_TAG_TOWRITE;
1972 	else
1973 		tag = PAGECACHE_TAG_DIRTY;
1974 retry:
1975 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1976 		tag_pages_for_writeback(mapping, index, end);
1977 	done_index = index;
1978 	while (!done && (index <= end)) {
1979 		int i;
1980 
1981 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
1982 				tag);
1983 		if (nr_pages == 0)
1984 			break;
1985 
1986 		for (i = 0; i < nr_pages; i++) {
1987 			struct page *page = pvec.pages[i];
1988 			bool submitted = false;
1989 
1990 			/* give a priority to WB_SYNC threads */
1991 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
1992 					wbc->sync_mode == WB_SYNC_NONE) {
1993 				done = 1;
1994 				break;
1995 			}
1996 
1997 			done_index = page->index;
1998 retry_write:
1999 			lock_page(page);
2000 
2001 			if (unlikely(page->mapping != mapping)) {
2002 continue_unlock:
2003 				unlock_page(page);
2004 				continue;
2005 			}
2006 
2007 			if (!PageDirty(page)) {
2008 				/* someone wrote it for us */
2009 				goto continue_unlock;
2010 			}
2011 
2012 			if (PageWriteback(page)) {
2013 				if (wbc->sync_mode != WB_SYNC_NONE)
2014 					f2fs_wait_on_page_writeback(page,
2015 								DATA, true);
2016 				else
2017 					goto continue_unlock;
2018 			}
2019 
2020 			BUG_ON(PageWriteback(page));
2021 			if (!clear_page_dirty_for_io(page))
2022 				goto continue_unlock;
2023 
2024 			ret = __write_data_page(page, &submitted, wbc, io_type);
2025 			if (unlikely(ret)) {
2026 				/*
2027 				 * keep nr_to_write, since vfs uses this to
2028 				 * get # of written pages.
2029 				 */
2030 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2031 					unlock_page(page);
2032 					ret = 0;
2033 					continue;
2034 				} else if (ret == -EAGAIN) {
2035 					ret = 0;
2036 					if (wbc->sync_mode == WB_SYNC_ALL) {
2037 						cond_resched();
2038 						congestion_wait(BLK_RW_ASYNC,
2039 									HZ/50);
2040 						goto retry_write;
2041 					}
2042 					continue;
2043 				}
2044 				done_index = page->index + 1;
2045 				done = 1;
2046 				break;
2047 			} else if (submitted) {
2048 				last_idx = page->index;
2049 			}
2050 
2051 			if (--wbc->nr_to_write <= 0 &&
2052 					wbc->sync_mode == WB_SYNC_NONE) {
2053 				done = 1;
2054 				break;
2055 			}
2056 		}
2057 		pagevec_release(&pvec);
2058 		cond_resched();
2059 	}
2060 
2061 	if (!cycled && !done) {
2062 		cycled = 1;
2063 		index = 0;
2064 		end = writeback_index - 1;
2065 		goto retry;
2066 	}
2067 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2068 		mapping->writeback_index = done_index;
2069 
2070 	if (last_idx != ULONG_MAX)
2071 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2072 						0, last_idx, DATA);
2073 
2074 	return ret;
2075 }
2076 
2077 static int __f2fs_write_data_pages(struct address_space *mapping,
2078 						struct writeback_control *wbc,
2079 						enum iostat_type io_type)
2080 {
2081 	struct inode *inode = mapping->host;
2082 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2083 	struct blk_plug plug;
2084 	int ret;
2085 
2086 	/* deal with chardevs and other special file */
2087 	if (!mapping->a_ops->writepage)
2088 		return 0;
2089 
2090 	/* skip writing if there is no dirty page in this inode */
2091 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2092 		return 0;
2093 
2094 	/* during POR, we don't need to trigger writepage at all. */
2095 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2096 		goto skip_write;
2097 
2098 	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
2099 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2100 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
2101 		goto skip_write;
2102 
2103 	/* skip writing during file defragment */
2104 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2105 		goto skip_write;
2106 
2107 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2108 
2109 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2110 	if (wbc->sync_mode == WB_SYNC_ALL)
2111 		atomic_inc(&sbi->wb_sync_req[DATA]);
2112 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
2113 		goto skip_write;
2114 
2115 	blk_start_plug(&plug);
2116 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2117 	blk_finish_plug(&plug);
2118 
2119 	if (wbc->sync_mode == WB_SYNC_ALL)
2120 		atomic_dec(&sbi->wb_sync_req[DATA]);
2121 	/*
2122 	 * if some pages were truncated, we cannot guarantee its mapping->host
2123 	 * to detect pending bios.
2124 	 */
2125 
2126 	f2fs_remove_dirty_inode(inode);
2127 	return ret;
2128 
2129 skip_write:
2130 	wbc->pages_skipped += get_dirty_pages(inode);
2131 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2132 	return 0;
2133 }
2134 
2135 static int f2fs_write_data_pages(struct address_space *mapping,
2136 			    struct writeback_control *wbc)
2137 {
2138 	struct inode *inode = mapping->host;
2139 
2140 	return __f2fs_write_data_pages(mapping, wbc,
2141 			F2FS_I(inode)->cp_task == current ?
2142 			FS_CP_DATA_IO : FS_DATA_IO);
2143 }
2144 
2145 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2146 {
2147 	struct inode *inode = mapping->host;
2148 	loff_t i_size = i_size_read(inode);
2149 
2150 	if (to > i_size) {
2151 		down_write(&F2FS_I(inode)->i_mmap_sem);
2152 		truncate_pagecache(inode, i_size);
2153 		f2fs_truncate_blocks(inode, i_size, true);
2154 		up_write(&F2FS_I(inode)->i_mmap_sem);
2155 	}
2156 }
2157 
2158 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2159 			struct page *page, loff_t pos, unsigned len,
2160 			block_t *blk_addr, bool *node_changed)
2161 {
2162 	struct inode *inode = page->mapping->host;
2163 	pgoff_t index = page->index;
2164 	struct dnode_of_data dn;
2165 	struct page *ipage;
2166 	bool locked = false;
2167 	struct extent_info ei = {0,0,0};
2168 	int err = 0;
2169 
2170 	/*
2171 	 * we already allocated all the blocks, so we don't need to get
2172 	 * the block addresses when there is no need to fill the page.
2173 	 */
2174 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2175 			!is_inode_flag_set(inode, FI_NO_PREALLOC))
2176 		return 0;
2177 
2178 	if (f2fs_has_inline_data(inode) ||
2179 			(pos & PAGE_MASK) >= i_size_read(inode)) {
2180 		__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
2181 		locked = true;
2182 	}
2183 restart:
2184 	/* check inline_data */
2185 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2186 	if (IS_ERR(ipage)) {
2187 		err = PTR_ERR(ipage);
2188 		goto unlock_out;
2189 	}
2190 
2191 	set_new_dnode(&dn, inode, ipage, ipage, 0);
2192 
2193 	if (f2fs_has_inline_data(inode)) {
2194 		if (pos + len <= MAX_INLINE_DATA(inode)) {
2195 			f2fs_do_read_inline_data(page, ipage);
2196 			set_inode_flag(inode, FI_DATA_EXIST);
2197 			if (inode->i_nlink)
2198 				set_inline_node(ipage);
2199 		} else {
2200 			err = f2fs_convert_inline_page(&dn, page);
2201 			if (err)
2202 				goto out;
2203 			if (dn.data_blkaddr == NULL_ADDR)
2204 				err = f2fs_get_block(&dn, index);
2205 		}
2206 	} else if (locked) {
2207 		err = f2fs_get_block(&dn, index);
2208 	} else {
2209 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2210 			dn.data_blkaddr = ei.blk + index - ei.fofs;
2211 		} else {
2212 			/* hole case */
2213 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2214 			if (err || dn.data_blkaddr == NULL_ADDR) {
2215 				f2fs_put_dnode(&dn);
2216 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2217 								true);
2218 				locked = true;
2219 				goto restart;
2220 			}
2221 		}
2222 	}
2223 
2224 	/* convert_inline_page can make node_changed */
2225 	*blk_addr = dn.data_blkaddr;
2226 	*node_changed = dn.node_changed;
2227 out:
2228 	f2fs_put_dnode(&dn);
2229 unlock_out:
2230 	if (locked)
2231 		__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
2232 	return err;
2233 }
2234 
2235 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2236 		loff_t pos, unsigned len, unsigned flags,
2237 		struct page **pagep, void **fsdata)
2238 {
2239 	struct inode *inode = mapping->host;
2240 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2241 	struct page *page = NULL;
2242 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2243 	bool need_balance = false, drop_atomic = false;
2244 	block_t blkaddr = NULL_ADDR;
2245 	int err = 0;
2246 
2247 	trace_f2fs_write_begin(inode, pos, len, flags);
2248 
2249 	if (f2fs_is_atomic_file(inode) &&
2250 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) {
2251 		err = -ENOMEM;
2252 		drop_atomic = true;
2253 		goto fail;
2254 	}
2255 
2256 	/*
2257 	 * We should check this at this moment to avoid deadlock on inode page
2258 	 * and #0 page. The locking rule for inline_data conversion should be:
2259 	 * lock_page(page #0) -> lock_page(inode_page)
2260 	 */
2261 	if (index != 0) {
2262 		err = f2fs_convert_inline_inode(inode);
2263 		if (err)
2264 			goto fail;
2265 	}
2266 repeat:
2267 	/*
2268 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2269 	 * wait_for_stable_page. Will wait that below with our IO control.
2270 	 */
2271 	page = f2fs_pagecache_get_page(mapping, index,
2272 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2273 	if (!page) {
2274 		err = -ENOMEM;
2275 		goto fail;
2276 	}
2277 
2278 	*pagep = page;
2279 
2280 	err = prepare_write_begin(sbi, page, pos, len,
2281 					&blkaddr, &need_balance);
2282 	if (err)
2283 		goto fail;
2284 
2285 	if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
2286 		unlock_page(page);
2287 		f2fs_balance_fs(sbi, true);
2288 		lock_page(page);
2289 		if (page->mapping != mapping) {
2290 			/* The page got truncated from under us */
2291 			f2fs_put_page(page, 1);
2292 			goto repeat;
2293 		}
2294 	}
2295 
2296 	f2fs_wait_on_page_writeback(page, DATA, false);
2297 
2298 	/* wait for GCed page writeback via META_MAPPING */
2299 	if (f2fs_post_read_required(inode))
2300 		f2fs_wait_on_block_writeback(sbi, blkaddr);
2301 
2302 	if (len == PAGE_SIZE || PageUptodate(page))
2303 		return 0;
2304 
2305 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2306 		zero_user_segment(page, len, PAGE_SIZE);
2307 		return 0;
2308 	}
2309 
2310 	if (blkaddr == NEW_ADDR) {
2311 		zero_user_segment(page, 0, PAGE_SIZE);
2312 		SetPageUptodate(page);
2313 	} else {
2314 		err = f2fs_submit_page_read(inode, page, blkaddr);
2315 		if (err)
2316 			goto fail;
2317 
2318 		lock_page(page);
2319 		if (unlikely(page->mapping != mapping)) {
2320 			f2fs_put_page(page, 1);
2321 			goto repeat;
2322 		}
2323 		if (unlikely(!PageUptodate(page))) {
2324 			err = -EIO;
2325 			goto fail;
2326 		}
2327 	}
2328 	return 0;
2329 
2330 fail:
2331 	f2fs_put_page(page, 1);
2332 	f2fs_write_failed(mapping, pos + len);
2333 	if (drop_atomic)
2334 		f2fs_drop_inmem_pages_all(sbi, false);
2335 	return err;
2336 }
2337 
2338 static int f2fs_write_end(struct file *file,
2339 			struct address_space *mapping,
2340 			loff_t pos, unsigned len, unsigned copied,
2341 			struct page *page, void *fsdata)
2342 {
2343 	struct inode *inode = page->mapping->host;
2344 
2345 	trace_f2fs_write_end(inode, pos, len, copied);
2346 
2347 	/*
2348 	 * This should be come from len == PAGE_SIZE, and we expect copied
2349 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2350 	 * let generic_perform_write() try to copy data again through copied=0.
2351 	 */
2352 	if (!PageUptodate(page)) {
2353 		if (unlikely(copied != len))
2354 			copied = 0;
2355 		else
2356 			SetPageUptodate(page);
2357 	}
2358 	if (!copied)
2359 		goto unlock_out;
2360 
2361 	set_page_dirty(page);
2362 
2363 	if (pos + copied > i_size_read(inode))
2364 		f2fs_i_size_write(inode, pos + copied);
2365 unlock_out:
2366 	f2fs_put_page(page, 1);
2367 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2368 	return copied;
2369 }
2370 
2371 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2372 			   loff_t offset)
2373 {
2374 	unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
2375 
2376 	if (offset & blocksize_mask)
2377 		return -EINVAL;
2378 
2379 	if (iov_iter_alignment(iter) & blocksize_mask)
2380 		return -EINVAL;
2381 
2382 	return 0;
2383 }
2384 
2385 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2386 {
2387 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2388 	struct inode *inode = mapping->host;
2389 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2390 	size_t count = iov_iter_count(iter);
2391 	loff_t offset = iocb->ki_pos;
2392 	int rw = iov_iter_rw(iter);
2393 	int err;
2394 	enum rw_hint hint = iocb->ki_hint;
2395 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2396 
2397 	err = check_direct_IO(inode, iter, offset);
2398 	if (err)
2399 		return err;
2400 
2401 	if (f2fs_force_buffered_io(inode, rw))
2402 		return 0;
2403 
2404 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2405 
2406 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2407 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2408 
2409 	if (!down_read_trylock(&F2FS_I(inode)->i_gc_rwsem[rw])) {
2410 		if (iocb->ki_flags & IOCB_NOWAIT) {
2411 			iocb->ki_hint = hint;
2412 			err = -EAGAIN;
2413 			goto out;
2414 		}
2415 		down_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2416 	}
2417 
2418 	err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2419 	up_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2420 
2421 	if (rw == WRITE) {
2422 		if (whint_mode == WHINT_MODE_OFF)
2423 			iocb->ki_hint = hint;
2424 		if (err > 0) {
2425 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2426 									err);
2427 			set_inode_flag(inode, FI_UPDATE_WRITE);
2428 		} else if (err < 0) {
2429 			f2fs_write_failed(mapping, offset + count);
2430 		}
2431 	}
2432 
2433 out:
2434 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2435 
2436 	return err;
2437 }
2438 
2439 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2440 							unsigned int length)
2441 {
2442 	struct inode *inode = page->mapping->host;
2443 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2444 
2445 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2446 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2447 		return;
2448 
2449 	if (PageDirty(page)) {
2450 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2451 			dec_page_count(sbi, F2FS_DIRTY_META);
2452 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2453 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2454 		} else {
2455 			inode_dec_dirty_pages(inode);
2456 			f2fs_remove_dirty_inode(inode);
2457 		}
2458 	}
2459 
2460 	/* This is atomic written page, keep Private */
2461 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2462 		return f2fs_drop_inmem_page(inode, page);
2463 
2464 	set_page_private(page, 0);
2465 	ClearPagePrivate(page);
2466 }
2467 
2468 int f2fs_release_page(struct page *page, gfp_t wait)
2469 {
2470 	/* If this is dirty page, keep PagePrivate */
2471 	if (PageDirty(page))
2472 		return 0;
2473 
2474 	/* This is atomic written page, keep Private */
2475 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2476 		return 0;
2477 
2478 	set_page_private(page, 0);
2479 	ClearPagePrivate(page);
2480 	return 1;
2481 }
2482 
2483 static int f2fs_set_data_page_dirty(struct page *page)
2484 {
2485 	struct address_space *mapping = page->mapping;
2486 	struct inode *inode = mapping->host;
2487 
2488 	trace_f2fs_set_page_dirty(page, DATA);
2489 
2490 	if (!PageUptodate(page))
2491 		SetPageUptodate(page);
2492 
2493 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2494 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2495 			f2fs_register_inmem_page(inode, page);
2496 			return 1;
2497 		}
2498 		/*
2499 		 * Previously, this page has been registered, we just
2500 		 * return here.
2501 		 */
2502 		return 0;
2503 	}
2504 
2505 	if (!PageDirty(page)) {
2506 		__set_page_dirty_nobuffers(page);
2507 		f2fs_update_dirty_page(inode, page);
2508 		return 1;
2509 	}
2510 	return 0;
2511 }
2512 
2513 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2514 {
2515 	struct inode *inode = mapping->host;
2516 
2517 	if (f2fs_has_inline_data(inode))
2518 		return 0;
2519 
2520 	/* make sure allocating whole blocks */
2521 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2522 		filemap_write_and_wait(mapping);
2523 
2524 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2525 }
2526 
2527 #ifdef CONFIG_MIGRATION
2528 #include <linux/migrate.h>
2529 
2530 int f2fs_migrate_page(struct address_space *mapping,
2531 		struct page *newpage, struct page *page, enum migrate_mode mode)
2532 {
2533 	int rc, extra_count;
2534 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2535 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2536 
2537 	BUG_ON(PageWriteback(page));
2538 
2539 	/* migrating an atomic written page is safe with the inmem_lock hold */
2540 	if (atomic_written) {
2541 		if (mode != MIGRATE_SYNC)
2542 			return -EBUSY;
2543 		if (!mutex_trylock(&fi->inmem_lock))
2544 			return -EAGAIN;
2545 	}
2546 
2547 	/*
2548 	 * A reference is expected if PagePrivate set when move mapping,
2549 	 * however F2FS breaks this for maintaining dirty page counts when
2550 	 * truncating pages. So here adjusting the 'extra_count' make it work.
2551 	 */
2552 	extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2553 	rc = migrate_page_move_mapping(mapping, newpage,
2554 				page, NULL, mode, extra_count);
2555 	if (rc != MIGRATEPAGE_SUCCESS) {
2556 		if (atomic_written)
2557 			mutex_unlock(&fi->inmem_lock);
2558 		return rc;
2559 	}
2560 
2561 	if (atomic_written) {
2562 		struct inmem_pages *cur;
2563 		list_for_each_entry(cur, &fi->inmem_pages, list)
2564 			if (cur->page == page) {
2565 				cur->page = newpage;
2566 				break;
2567 			}
2568 		mutex_unlock(&fi->inmem_lock);
2569 		put_page(page);
2570 		get_page(newpage);
2571 	}
2572 
2573 	if (PagePrivate(page))
2574 		SetPagePrivate(newpage);
2575 	set_page_private(newpage, page_private(page));
2576 
2577 	if (mode != MIGRATE_SYNC_NO_COPY)
2578 		migrate_page_copy(newpage, page);
2579 	else
2580 		migrate_page_states(newpage, page);
2581 
2582 	return MIGRATEPAGE_SUCCESS;
2583 }
2584 #endif
2585 
2586 const struct address_space_operations f2fs_dblock_aops = {
2587 	.readpage	= f2fs_read_data_page,
2588 	.readpages	= f2fs_read_data_pages,
2589 	.writepage	= f2fs_write_data_page,
2590 	.writepages	= f2fs_write_data_pages,
2591 	.write_begin	= f2fs_write_begin,
2592 	.write_end	= f2fs_write_end,
2593 	.set_page_dirty	= f2fs_set_data_page_dirty,
2594 	.invalidatepage	= f2fs_invalidate_page,
2595 	.releasepage	= f2fs_release_page,
2596 	.direct_IO	= f2fs_direct_IO,
2597 	.bmap		= f2fs_bmap,
2598 #ifdef CONFIG_MIGRATION
2599 	.migratepage    = f2fs_migrate_page,
2600 #endif
2601 };
2602 
2603 void f2fs_clear_radix_tree_dirty_tag(struct page *page)
2604 {
2605 	struct address_space *mapping = page_mapping(page);
2606 	unsigned long flags;
2607 
2608 	xa_lock_irqsave(&mapping->i_pages, flags);
2609 	radix_tree_tag_clear(&mapping->i_pages, page_index(page),
2610 						PAGECACHE_TAG_DIRTY);
2611 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2612 }
2613 
2614 int __init f2fs_init_post_read_processing(void)
2615 {
2616 	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2617 	if (!bio_post_read_ctx_cache)
2618 		goto fail;
2619 	bio_post_read_ctx_pool =
2620 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2621 					 bio_post_read_ctx_cache);
2622 	if (!bio_post_read_ctx_pool)
2623 		goto fail_free_cache;
2624 	return 0;
2625 
2626 fail_free_cache:
2627 	kmem_cache_destroy(bio_post_read_ctx_cache);
2628 fail:
2629 	return -ENOMEM;
2630 }
2631 
2632 void __exit f2fs_destroy_post_read_processing(void)
2633 {
2634 	mempool_destroy(bio_post_read_ctx_pool);
2635 	kmem_cache_destroy(bio_post_read_ctx_cache);
2636 }
2637