1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/backing-dev.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/cleancache.h> 22 #include <linux/sched/signal.h> 23 #include <linux/fiemap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include <trace/events/f2fs.h> 29 30 #define NUM_PREALLOC_POST_READ_CTXS 128 31 32 static struct kmem_cache *bio_post_read_ctx_cache; 33 static struct kmem_cache *bio_entry_slab; 34 static mempool_t *bio_post_read_ctx_pool; 35 static struct bio_set f2fs_bioset; 36 37 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 38 39 int __init f2fs_init_bioset(void) 40 { 41 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 42 0, BIOSET_NEED_BVECS)) 43 return -ENOMEM; 44 return 0; 45 } 46 47 void f2fs_destroy_bioset(void) 48 { 49 bioset_exit(&f2fs_bioset); 50 } 51 52 static bool __is_cp_guaranteed(struct page *page) 53 { 54 struct address_space *mapping = page->mapping; 55 struct inode *inode; 56 struct f2fs_sb_info *sbi; 57 58 if (!mapping) 59 return false; 60 61 if (f2fs_is_compressed_page(page)) 62 return false; 63 64 inode = mapping->host; 65 sbi = F2FS_I_SB(inode); 66 67 if (inode->i_ino == F2FS_META_INO(sbi) || 68 inode->i_ino == F2FS_NODE_INO(sbi) || 69 S_ISDIR(inode->i_mode) || 70 (S_ISREG(inode->i_mode) && 71 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 72 is_cold_data(page)) 73 return true; 74 return false; 75 } 76 77 static enum count_type __read_io_type(struct page *page) 78 { 79 struct address_space *mapping = page_file_mapping(page); 80 81 if (mapping) { 82 struct inode *inode = mapping->host; 83 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 84 85 if (inode->i_ino == F2FS_META_INO(sbi)) 86 return F2FS_RD_META; 87 88 if (inode->i_ino == F2FS_NODE_INO(sbi)) 89 return F2FS_RD_NODE; 90 } 91 return F2FS_RD_DATA; 92 } 93 94 /* postprocessing steps for read bios */ 95 enum bio_post_read_step { 96 #ifdef CONFIG_FS_ENCRYPTION 97 STEP_DECRYPT = 1 << 0, 98 #else 99 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 100 #endif 101 #ifdef CONFIG_F2FS_FS_COMPRESSION 102 STEP_DECOMPRESS = 1 << 1, 103 #else 104 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 105 #endif 106 #ifdef CONFIG_FS_VERITY 107 STEP_VERITY = 1 << 2, 108 #else 109 STEP_VERITY = 0, /* compile out the verity-related code */ 110 #endif 111 }; 112 113 struct bio_post_read_ctx { 114 struct bio *bio; 115 struct f2fs_sb_info *sbi; 116 struct work_struct work; 117 unsigned int enabled_steps; 118 }; 119 120 static void f2fs_finish_read_bio(struct bio *bio) 121 { 122 struct bio_vec *bv; 123 struct bvec_iter_all iter_all; 124 125 /* 126 * Update and unlock the bio's pagecache pages, and put the 127 * decompression context for any compressed pages. 128 */ 129 bio_for_each_segment_all(bv, bio, iter_all) { 130 struct page *page = bv->bv_page; 131 132 if (f2fs_is_compressed_page(page)) { 133 if (bio->bi_status) 134 f2fs_end_read_compressed_page(page, true); 135 f2fs_put_page_dic(page); 136 continue; 137 } 138 139 /* PG_error was set if decryption or verity failed. */ 140 if (bio->bi_status || PageError(page)) { 141 ClearPageUptodate(page); 142 /* will re-read again later */ 143 ClearPageError(page); 144 } else { 145 SetPageUptodate(page); 146 } 147 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 148 unlock_page(page); 149 } 150 151 if (bio->bi_private) 152 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 153 bio_put(bio); 154 } 155 156 static void f2fs_verify_bio(struct work_struct *work) 157 { 158 struct bio_post_read_ctx *ctx = 159 container_of(work, struct bio_post_read_ctx, work); 160 struct bio *bio = ctx->bio; 161 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 162 163 /* 164 * fsverity_verify_bio() may call readpages() again, and while verity 165 * will be disabled for this, decryption and/or decompression may still 166 * be needed, resulting in another bio_post_read_ctx being allocated. 167 * So to prevent deadlocks we need to release the current ctx to the 168 * mempool first. This assumes that verity is the last post-read step. 169 */ 170 mempool_free(ctx, bio_post_read_ctx_pool); 171 bio->bi_private = NULL; 172 173 /* 174 * Verify the bio's pages with fs-verity. Exclude compressed pages, 175 * as those were handled separately by f2fs_end_read_compressed_page(). 176 */ 177 if (may_have_compressed_pages) { 178 struct bio_vec *bv; 179 struct bvec_iter_all iter_all; 180 181 bio_for_each_segment_all(bv, bio, iter_all) { 182 struct page *page = bv->bv_page; 183 184 if (!f2fs_is_compressed_page(page) && 185 !PageError(page) && !fsverity_verify_page(page)) 186 SetPageError(page); 187 } 188 } else { 189 fsverity_verify_bio(bio); 190 } 191 192 f2fs_finish_read_bio(bio); 193 } 194 195 /* 196 * If the bio's data needs to be verified with fs-verity, then enqueue the 197 * verity work for the bio. Otherwise finish the bio now. 198 * 199 * Note that to avoid deadlocks, the verity work can't be done on the 200 * decryption/decompression workqueue. This is because verifying the data pages 201 * can involve reading verity metadata pages from the file, and these verity 202 * metadata pages may be encrypted and/or compressed. 203 */ 204 static void f2fs_verify_and_finish_bio(struct bio *bio) 205 { 206 struct bio_post_read_ctx *ctx = bio->bi_private; 207 208 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 209 INIT_WORK(&ctx->work, f2fs_verify_bio); 210 fsverity_enqueue_verify_work(&ctx->work); 211 } else { 212 f2fs_finish_read_bio(bio); 213 } 214 } 215 216 /* 217 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 218 * remaining page was read by @ctx->bio. 219 * 220 * Note that a bio may span clusters (even a mix of compressed and uncompressed 221 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 222 * that the bio includes at least one compressed page. The actual decompression 223 * is done on a per-cluster basis, not a per-bio basis. 224 */ 225 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx) 226 { 227 struct bio_vec *bv; 228 struct bvec_iter_all iter_all; 229 bool all_compressed = true; 230 231 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 232 struct page *page = bv->bv_page; 233 234 /* PG_error was set if decryption failed. */ 235 if (f2fs_is_compressed_page(page)) 236 f2fs_end_read_compressed_page(page, PageError(page)); 237 else 238 all_compressed = false; 239 } 240 241 /* 242 * Optimization: if all the bio's pages are compressed, then scheduling 243 * the per-bio verity work is unnecessary, as verity will be fully 244 * handled at the compression cluster level. 245 */ 246 if (all_compressed) 247 ctx->enabled_steps &= ~STEP_VERITY; 248 } 249 250 static void f2fs_post_read_work(struct work_struct *work) 251 { 252 struct bio_post_read_ctx *ctx = 253 container_of(work, struct bio_post_read_ctx, work); 254 255 if (ctx->enabled_steps & STEP_DECRYPT) 256 fscrypt_decrypt_bio(ctx->bio); 257 258 if (ctx->enabled_steps & STEP_DECOMPRESS) 259 f2fs_handle_step_decompress(ctx); 260 261 f2fs_verify_and_finish_bio(ctx->bio); 262 } 263 264 static void f2fs_read_end_io(struct bio *bio) 265 { 266 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 267 struct bio_post_read_ctx *ctx = bio->bi_private; 268 269 if (time_to_inject(sbi, FAULT_READ_IO)) { 270 f2fs_show_injection_info(sbi, FAULT_READ_IO); 271 bio->bi_status = BLK_STS_IOERR; 272 } 273 274 if (bio->bi_status) { 275 f2fs_finish_read_bio(bio); 276 return; 277 } 278 279 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) { 280 INIT_WORK(&ctx->work, f2fs_post_read_work); 281 queue_work(ctx->sbi->post_read_wq, &ctx->work); 282 } else { 283 f2fs_verify_and_finish_bio(bio); 284 } 285 } 286 287 static void f2fs_write_end_io(struct bio *bio) 288 { 289 struct f2fs_sb_info *sbi = bio->bi_private; 290 struct bio_vec *bvec; 291 struct bvec_iter_all iter_all; 292 293 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 294 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 295 bio->bi_status = BLK_STS_IOERR; 296 } 297 298 bio_for_each_segment_all(bvec, bio, iter_all) { 299 struct page *page = bvec->bv_page; 300 enum count_type type = WB_DATA_TYPE(page); 301 302 if (IS_DUMMY_WRITTEN_PAGE(page)) { 303 set_page_private(page, (unsigned long)NULL); 304 ClearPagePrivate(page); 305 unlock_page(page); 306 mempool_free(page, sbi->write_io_dummy); 307 308 if (unlikely(bio->bi_status)) 309 f2fs_stop_checkpoint(sbi, true); 310 continue; 311 } 312 313 fscrypt_finalize_bounce_page(&page); 314 315 #ifdef CONFIG_F2FS_FS_COMPRESSION 316 if (f2fs_is_compressed_page(page)) { 317 f2fs_compress_write_end_io(bio, page); 318 continue; 319 } 320 #endif 321 322 if (unlikely(bio->bi_status)) { 323 mapping_set_error(page->mapping, -EIO); 324 if (type == F2FS_WB_CP_DATA) 325 f2fs_stop_checkpoint(sbi, true); 326 } 327 328 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 329 page->index != nid_of_node(page)); 330 331 dec_page_count(sbi, type); 332 if (f2fs_in_warm_node_list(sbi, page)) 333 f2fs_del_fsync_node_entry(sbi, page); 334 clear_cold_data(page); 335 end_page_writeback(page); 336 } 337 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 338 wq_has_sleeper(&sbi->cp_wait)) 339 wake_up(&sbi->cp_wait); 340 341 bio_put(bio); 342 } 343 344 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 345 block_t blk_addr, struct bio *bio) 346 { 347 struct block_device *bdev = sbi->sb->s_bdev; 348 int i; 349 350 if (f2fs_is_multi_device(sbi)) { 351 for (i = 0; i < sbi->s_ndevs; i++) { 352 if (FDEV(i).start_blk <= blk_addr && 353 FDEV(i).end_blk >= blk_addr) { 354 blk_addr -= FDEV(i).start_blk; 355 bdev = FDEV(i).bdev; 356 break; 357 } 358 } 359 } 360 if (bio) { 361 bio_set_dev(bio, bdev); 362 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 363 } 364 return bdev; 365 } 366 367 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 368 { 369 int i; 370 371 if (!f2fs_is_multi_device(sbi)) 372 return 0; 373 374 for (i = 0; i < sbi->s_ndevs; i++) 375 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 376 return i; 377 return 0; 378 } 379 380 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 381 { 382 struct f2fs_sb_info *sbi = fio->sbi; 383 struct bio *bio; 384 385 bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset); 386 387 f2fs_target_device(sbi, fio->new_blkaddr, bio); 388 if (is_read_io(fio->op)) { 389 bio->bi_end_io = f2fs_read_end_io; 390 bio->bi_private = NULL; 391 } else { 392 bio->bi_end_io = f2fs_write_end_io; 393 bio->bi_private = sbi; 394 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 395 fio->type, fio->temp); 396 } 397 if (fio->io_wbc) 398 wbc_init_bio(fio->io_wbc, bio); 399 400 return bio; 401 } 402 403 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 404 pgoff_t first_idx, 405 const struct f2fs_io_info *fio, 406 gfp_t gfp_mask) 407 { 408 /* 409 * The f2fs garbage collector sets ->encrypted_page when it wants to 410 * read/write raw data without encryption. 411 */ 412 if (!fio || !fio->encrypted_page) 413 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 414 } 415 416 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 417 pgoff_t next_idx, 418 const struct f2fs_io_info *fio) 419 { 420 /* 421 * The f2fs garbage collector sets ->encrypted_page when it wants to 422 * read/write raw data without encryption. 423 */ 424 if (fio && fio->encrypted_page) 425 return !bio_has_crypt_ctx(bio); 426 427 return fscrypt_mergeable_bio(bio, inode, next_idx); 428 } 429 430 static inline void __submit_bio(struct f2fs_sb_info *sbi, 431 struct bio *bio, enum page_type type) 432 { 433 if (!is_read_io(bio_op(bio))) { 434 unsigned int start; 435 436 if (type != DATA && type != NODE) 437 goto submit_io; 438 439 if (f2fs_lfs_mode(sbi) && current->plug) 440 blk_finish_plug(current->plug); 441 442 if (!F2FS_IO_ALIGNED(sbi)) 443 goto submit_io; 444 445 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 446 start %= F2FS_IO_SIZE(sbi); 447 448 if (start == 0) 449 goto submit_io; 450 451 /* fill dummy pages */ 452 for (; start < F2FS_IO_SIZE(sbi); start++) { 453 struct page *page = 454 mempool_alloc(sbi->write_io_dummy, 455 GFP_NOIO | __GFP_NOFAIL); 456 f2fs_bug_on(sbi, !page); 457 458 zero_user_segment(page, 0, PAGE_SIZE); 459 SetPagePrivate(page); 460 set_page_private(page, DUMMY_WRITTEN_PAGE); 461 lock_page(page); 462 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 463 f2fs_bug_on(sbi, 1); 464 } 465 /* 466 * In the NODE case, we lose next block address chain. So, we 467 * need to do checkpoint in f2fs_sync_file. 468 */ 469 if (type == NODE) 470 set_sbi_flag(sbi, SBI_NEED_CP); 471 } 472 submit_io: 473 if (is_read_io(bio_op(bio))) 474 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 475 else 476 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 477 submit_bio(bio); 478 } 479 480 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 481 struct bio *bio, enum page_type type) 482 { 483 __submit_bio(sbi, bio, type); 484 } 485 486 static void __attach_io_flag(struct f2fs_io_info *fio) 487 { 488 struct f2fs_sb_info *sbi = fio->sbi; 489 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 490 unsigned int io_flag, fua_flag, meta_flag; 491 492 if (fio->type == DATA) 493 io_flag = sbi->data_io_flag; 494 else if (fio->type == NODE) 495 io_flag = sbi->node_io_flag; 496 else 497 return; 498 499 fua_flag = io_flag & temp_mask; 500 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 501 502 /* 503 * data/node io flag bits per temp: 504 * REQ_META | REQ_FUA | 505 * 5 | 4 | 3 | 2 | 1 | 0 | 506 * Cold | Warm | Hot | Cold | Warm | Hot | 507 */ 508 if ((1 << fio->temp) & meta_flag) 509 fio->op_flags |= REQ_META; 510 if ((1 << fio->temp) & fua_flag) 511 fio->op_flags |= REQ_FUA; 512 } 513 514 static void __submit_merged_bio(struct f2fs_bio_info *io) 515 { 516 struct f2fs_io_info *fio = &io->fio; 517 518 if (!io->bio) 519 return; 520 521 __attach_io_flag(fio); 522 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 523 524 if (is_read_io(fio->op)) 525 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 526 else 527 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 528 529 __submit_bio(io->sbi, io->bio, fio->type); 530 io->bio = NULL; 531 } 532 533 static bool __has_merged_page(struct bio *bio, struct inode *inode, 534 struct page *page, nid_t ino) 535 { 536 struct bio_vec *bvec; 537 struct bvec_iter_all iter_all; 538 539 if (!bio) 540 return false; 541 542 if (!inode && !page && !ino) 543 return true; 544 545 bio_for_each_segment_all(bvec, bio, iter_all) { 546 struct page *target = bvec->bv_page; 547 548 if (fscrypt_is_bounce_page(target)) { 549 target = fscrypt_pagecache_page(target); 550 if (IS_ERR(target)) 551 continue; 552 } 553 if (f2fs_is_compressed_page(target)) { 554 target = f2fs_compress_control_page(target); 555 if (IS_ERR(target)) 556 continue; 557 } 558 559 if (inode && inode == target->mapping->host) 560 return true; 561 if (page && page == target) 562 return true; 563 if (ino && ino == ino_of_node(target)) 564 return true; 565 } 566 567 return false; 568 } 569 570 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 571 enum page_type type, enum temp_type temp) 572 { 573 enum page_type btype = PAGE_TYPE_OF_BIO(type); 574 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 575 576 down_write(&io->io_rwsem); 577 578 /* change META to META_FLUSH in the checkpoint procedure */ 579 if (type >= META_FLUSH) { 580 io->fio.type = META_FLUSH; 581 io->fio.op = REQ_OP_WRITE; 582 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 583 if (!test_opt(sbi, NOBARRIER)) 584 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 585 } 586 __submit_merged_bio(io); 587 up_write(&io->io_rwsem); 588 } 589 590 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 591 struct inode *inode, struct page *page, 592 nid_t ino, enum page_type type, bool force) 593 { 594 enum temp_type temp; 595 bool ret = true; 596 597 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 598 if (!force) { 599 enum page_type btype = PAGE_TYPE_OF_BIO(type); 600 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 601 602 down_read(&io->io_rwsem); 603 ret = __has_merged_page(io->bio, inode, page, ino); 604 up_read(&io->io_rwsem); 605 } 606 if (ret) 607 __f2fs_submit_merged_write(sbi, type, temp); 608 609 /* TODO: use HOT temp only for meta pages now. */ 610 if (type >= META) 611 break; 612 } 613 } 614 615 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 616 { 617 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 618 } 619 620 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 621 struct inode *inode, struct page *page, 622 nid_t ino, enum page_type type) 623 { 624 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 625 } 626 627 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 628 { 629 f2fs_submit_merged_write(sbi, DATA); 630 f2fs_submit_merged_write(sbi, NODE); 631 f2fs_submit_merged_write(sbi, META); 632 } 633 634 /* 635 * Fill the locked page with data located in the block address. 636 * A caller needs to unlock the page on failure. 637 */ 638 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 639 { 640 struct bio *bio; 641 struct page *page = fio->encrypted_page ? 642 fio->encrypted_page : fio->page; 643 644 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 645 fio->is_por ? META_POR : (__is_meta_io(fio) ? 646 META_GENERIC : DATA_GENERIC_ENHANCE))) 647 return -EFSCORRUPTED; 648 649 trace_f2fs_submit_page_bio(page, fio); 650 651 /* Allocate a new bio */ 652 bio = __bio_alloc(fio, 1); 653 654 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 655 fio->page->index, fio, GFP_NOIO); 656 657 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 658 bio_put(bio); 659 return -EFAULT; 660 } 661 662 if (fio->io_wbc && !is_read_io(fio->op)) 663 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 664 665 __attach_io_flag(fio); 666 bio_set_op_attrs(bio, fio->op, fio->op_flags); 667 668 inc_page_count(fio->sbi, is_read_io(fio->op) ? 669 __read_io_type(page): WB_DATA_TYPE(fio->page)); 670 671 __submit_bio(fio->sbi, bio, fio->type); 672 return 0; 673 } 674 675 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 676 block_t last_blkaddr, block_t cur_blkaddr) 677 { 678 if (unlikely(sbi->max_io_bytes && 679 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 680 return false; 681 if (last_blkaddr + 1 != cur_blkaddr) 682 return false; 683 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 684 } 685 686 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 687 struct f2fs_io_info *fio) 688 { 689 if (io->fio.op != fio->op) 690 return false; 691 return io->fio.op_flags == fio->op_flags; 692 } 693 694 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 695 struct f2fs_bio_info *io, 696 struct f2fs_io_info *fio, 697 block_t last_blkaddr, 698 block_t cur_blkaddr) 699 { 700 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 701 unsigned int filled_blocks = 702 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 703 unsigned int io_size = F2FS_IO_SIZE(sbi); 704 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 705 706 /* IOs in bio is aligned and left space of vectors is not enough */ 707 if (!(filled_blocks % io_size) && left_vecs < io_size) 708 return false; 709 } 710 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 711 return false; 712 return io_type_is_mergeable(io, fio); 713 } 714 715 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 716 struct page *page, enum temp_type temp) 717 { 718 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 719 struct bio_entry *be; 720 721 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); 722 be->bio = bio; 723 bio_get(bio); 724 725 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 726 f2fs_bug_on(sbi, 1); 727 728 down_write(&io->bio_list_lock); 729 list_add_tail(&be->list, &io->bio_list); 730 up_write(&io->bio_list_lock); 731 } 732 733 static void del_bio_entry(struct bio_entry *be) 734 { 735 list_del(&be->list); 736 kmem_cache_free(bio_entry_slab, be); 737 } 738 739 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 740 struct page *page) 741 { 742 struct f2fs_sb_info *sbi = fio->sbi; 743 enum temp_type temp; 744 bool found = false; 745 int ret = -EAGAIN; 746 747 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 748 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 749 struct list_head *head = &io->bio_list; 750 struct bio_entry *be; 751 752 down_write(&io->bio_list_lock); 753 list_for_each_entry(be, head, list) { 754 if (be->bio != *bio) 755 continue; 756 757 found = true; 758 759 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 760 *fio->last_block, 761 fio->new_blkaddr)); 762 if (f2fs_crypt_mergeable_bio(*bio, 763 fio->page->mapping->host, 764 fio->page->index, fio) && 765 bio_add_page(*bio, page, PAGE_SIZE, 0) == 766 PAGE_SIZE) { 767 ret = 0; 768 break; 769 } 770 771 /* page can't be merged into bio; submit the bio */ 772 del_bio_entry(be); 773 __submit_bio(sbi, *bio, DATA); 774 break; 775 } 776 up_write(&io->bio_list_lock); 777 } 778 779 if (ret) { 780 bio_put(*bio); 781 *bio = NULL; 782 } 783 784 return ret; 785 } 786 787 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 788 struct bio **bio, struct page *page) 789 { 790 enum temp_type temp; 791 bool found = false; 792 struct bio *target = bio ? *bio : NULL; 793 794 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 795 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 796 struct list_head *head = &io->bio_list; 797 struct bio_entry *be; 798 799 if (list_empty(head)) 800 continue; 801 802 down_read(&io->bio_list_lock); 803 list_for_each_entry(be, head, list) { 804 if (target) 805 found = (target == be->bio); 806 else 807 found = __has_merged_page(be->bio, NULL, 808 page, 0); 809 if (found) 810 break; 811 } 812 up_read(&io->bio_list_lock); 813 814 if (!found) 815 continue; 816 817 found = false; 818 819 down_write(&io->bio_list_lock); 820 list_for_each_entry(be, head, list) { 821 if (target) 822 found = (target == be->bio); 823 else 824 found = __has_merged_page(be->bio, NULL, 825 page, 0); 826 if (found) { 827 target = be->bio; 828 del_bio_entry(be); 829 break; 830 } 831 } 832 up_write(&io->bio_list_lock); 833 } 834 835 if (found) 836 __submit_bio(sbi, target, DATA); 837 if (bio && *bio) { 838 bio_put(*bio); 839 *bio = NULL; 840 } 841 } 842 843 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 844 { 845 struct bio *bio = *fio->bio; 846 struct page *page = fio->encrypted_page ? 847 fio->encrypted_page : fio->page; 848 849 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 850 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 851 return -EFSCORRUPTED; 852 853 trace_f2fs_submit_page_bio(page, fio); 854 855 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 856 fio->new_blkaddr)) 857 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 858 alloc_new: 859 if (!bio) { 860 bio = __bio_alloc(fio, BIO_MAX_VECS); 861 __attach_io_flag(fio); 862 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 863 fio->page->index, fio, GFP_NOIO); 864 bio_set_op_attrs(bio, fio->op, fio->op_flags); 865 866 add_bio_entry(fio->sbi, bio, page, fio->temp); 867 } else { 868 if (add_ipu_page(fio, &bio, page)) 869 goto alloc_new; 870 } 871 872 if (fio->io_wbc) 873 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 874 875 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 876 877 *fio->last_block = fio->new_blkaddr; 878 *fio->bio = bio; 879 880 return 0; 881 } 882 883 void f2fs_submit_page_write(struct f2fs_io_info *fio) 884 { 885 struct f2fs_sb_info *sbi = fio->sbi; 886 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 887 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 888 struct page *bio_page; 889 890 f2fs_bug_on(sbi, is_read_io(fio->op)); 891 892 down_write(&io->io_rwsem); 893 next: 894 if (fio->in_list) { 895 spin_lock(&io->io_lock); 896 if (list_empty(&io->io_list)) { 897 spin_unlock(&io->io_lock); 898 goto out; 899 } 900 fio = list_first_entry(&io->io_list, 901 struct f2fs_io_info, list); 902 list_del(&fio->list); 903 spin_unlock(&io->io_lock); 904 } 905 906 verify_fio_blkaddr(fio); 907 908 if (fio->encrypted_page) 909 bio_page = fio->encrypted_page; 910 else if (fio->compressed_page) 911 bio_page = fio->compressed_page; 912 else 913 bio_page = fio->page; 914 915 /* set submitted = true as a return value */ 916 fio->submitted = true; 917 918 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 919 920 if (io->bio && 921 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 922 fio->new_blkaddr) || 923 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 924 bio_page->index, fio))) 925 __submit_merged_bio(io); 926 alloc_new: 927 if (io->bio == NULL) { 928 if (F2FS_IO_ALIGNED(sbi) && 929 (fio->type == DATA || fio->type == NODE) && 930 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 931 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 932 fio->retry = true; 933 goto skip; 934 } 935 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 936 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 937 bio_page->index, fio, GFP_NOIO); 938 io->fio = *fio; 939 } 940 941 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 942 __submit_merged_bio(io); 943 goto alloc_new; 944 } 945 946 if (fio->io_wbc) 947 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 948 949 io->last_block_in_bio = fio->new_blkaddr; 950 951 trace_f2fs_submit_page_write(fio->page, fio); 952 skip: 953 if (fio->in_list) 954 goto next; 955 out: 956 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 957 !f2fs_is_checkpoint_ready(sbi)) 958 __submit_merged_bio(io); 959 up_write(&io->io_rwsem); 960 } 961 962 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 963 unsigned nr_pages, unsigned op_flag, 964 pgoff_t first_idx, bool for_write) 965 { 966 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 967 struct bio *bio; 968 struct bio_post_read_ctx *ctx; 969 unsigned int post_read_steps = 0; 970 971 bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL, 972 bio_max_segs(nr_pages), &f2fs_bioset); 973 if (!bio) 974 return ERR_PTR(-ENOMEM); 975 976 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 977 978 f2fs_target_device(sbi, blkaddr, bio); 979 bio->bi_end_io = f2fs_read_end_io; 980 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 981 982 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 983 post_read_steps |= STEP_DECRYPT; 984 985 if (f2fs_need_verity(inode, first_idx)) 986 post_read_steps |= STEP_VERITY; 987 988 /* 989 * STEP_DECOMPRESS is handled specially, since a compressed file might 990 * contain both compressed and uncompressed clusters. We'll allocate a 991 * bio_post_read_ctx if the file is compressed, but the caller is 992 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 993 */ 994 995 if (post_read_steps || f2fs_compressed_file(inode)) { 996 /* Due to the mempool, this never fails. */ 997 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 998 ctx->bio = bio; 999 ctx->sbi = sbi; 1000 ctx->enabled_steps = post_read_steps; 1001 bio->bi_private = ctx; 1002 } 1003 1004 return bio; 1005 } 1006 1007 /* This can handle encryption stuffs */ 1008 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1009 block_t blkaddr, int op_flags, bool for_write) 1010 { 1011 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1012 struct bio *bio; 1013 1014 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1015 page->index, for_write); 1016 if (IS_ERR(bio)) 1017 return PTR_ERR(bio); 1018 1019 /* wait for GCed page writeback via META_MAPPING */ 1020 f2fs_wait_on_block_writeback(inode, blkaddr); 1021 1022 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1023 bio_put(bio); 1024 return -EFAULT; 1025 } 1026 ClearPageError(page); 1027 inc_page_count(sbi, F2FS_RD_DATA); 1028 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1029 __submit_bio(sbi, bio, DATA); 1030 return 0; 1031 } 1032 1033 static void __set_data_blkaddr(struct dnode_of_data *dn) 1034 { 1035 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1036 __le32 *addr_array; 1037 int base = 0; 1038 1039 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1040 base = get_extra_isize(dn->inode); 1041 1042 /* Get physical address of data block */ 1043 addr_array = blkaddr_in_node(rn); 1044 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1045 } 1046 1047 /* 1048 * Lock ordering for the change of data block address: 1049 * ->data_page 1050 * ->node_page 1051 * update block addresses in the node page 1052 */ 1053 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1054 { 1055 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1056 __set_data_blkaddr(dn); 1057 if (set_page_dirty(dn->node_page)) 1058 dn->node_changed = true; 1059 } 1060 1061 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1062 { 1063 dn->data_blkaddr = blkaddr; 1064 f2fs_set_data_blkaddr(dn); 1065 f2fs_update_extent_cache(dn); 1066 } 1067 1068 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1069 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1070 { 1071 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1072 int err; 1073 1074 if (!count) 1075 return 0; 1076 1077 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1078 return -EPERM; 1079 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1080 return err; 1081 1082 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1083 dn->ofs_in_node, count); 1084 1085 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1086 1087 for (; count > 0; dn->ofs_in_node++) { 1088 block_t blkaddr = f2fs_data_blkaddr(dn); 1089 1090 if (blkaddr == NULL_ADDR) { 1091 dn->data_blkaddr = NEW_ADDR; 1092 __set_data_blkaddr(dn); 1093 count--; 1094 } 1095 } 1096 1097 if (set_page_dirty(dn->node_page)) 1098 dn->node_changed = true; 1099 return 0; 1100 } 1101 1102 /* Should keep dn->ofs_in_node unchanged */ 1103 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1104 { 1105 unsigned int ofs_in_node = dn->ofs_in_node; 1106 int ret; 1107 1108 ret = f2fs_reserve_new_blocks(dn, 1); 1109 dn->ofs_in_node = ofs_in_node; 1110 return ret; 1111 } 1112 1113 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1114 { 1115 bool need_put = dn->inode_page ? false : true; 1116 int err; 1117 1118 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1119 if (err) 1120 return err; 1121 1122 if (dn->data_blkaddr == NULL_ADDR) 1123 err = f2fs_reserve_new_block(dn); 1124 if (err || need_put) 1125 f2fs_put_dnode(dn); 1126 return err; 1127 } 1128 1129 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1130 { 1131 struct extent_info ei = {0, 0, 0}; 1132 struct inode *inode = dn->inode; 1133 1134 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1135 dn->data_blkaddr = ei.blk + index - ei.fofs; 1136 return 0; 1137 } 1138 1139 return f2fs_reserve_block(dn, index); 1140 } 1141 1142 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1143 int op_flags, bool for_write) 1144 { 1145 struct address_space *mapping = inode->i_mapping; 1146 struct dnode_of_data dn; 1147 struct page *page; 1148 struct extent_info ei = {0,0,0}; 1149 int err; 1150 1151 page = f2fs_grab_cache_page(mapping, index, for_write); 1152 if (!page) 1153 return ERR_PTR(-ENOMEM); 1154 1155 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1156 dn.data_blkaddr = ei.blk + index - ei.fofs; 1157 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1158 DATA_GENERIC_ENHANCE_READ)) { 1159 err = -EFSCORRUPTED; 1160 goto put_err; 1161 } 1162 goto got_it; 1163 } 1164 1165 set_new_dnode(&dn, inode, NULL, NULL, 0); 1166 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1167 if (err) 1168 goto put_err; 1169 f2fs_put_dnode(&dn); 1170 1171 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1172 err = -ENOENT; 1173 goto put_err; 1174 } 1175 if (dn.data_blkaddr != NEW_ADDR && 1176 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1177 dn.data_blkaddr, 1178 DATA_GENERIC_ENHANCE)) { 1179 err = -EFSCORRUPTED; 1180 goto put_err; 1181 } 1182 got_it: 1183 if (PageUptodate(page)) { 1184 unlock_page(page); 1185 return page; 1186 } 1187 1188 /* 1189 * A new dentry page is allocated but not able to be written, since its 1190 * new inode page couldn't be allocated due to -ENOSPC. 1191 * In such the case, its blkaddr can be remained as NEW_ADDR. 1192 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1193 * f2fs_init_inode_metadata. 1194 */ 1195 if (dn.data_blkaddr == NEW_ADDR) { 1196 zero_user_segment(page, 0, PAGE_SIZE); 1197 if (!PageUptodate(page)) 1198 SetPageUptodate(page); 1199 unlock_page(page); 1200 return page; 1201 } 1202 1203 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1204 op_flags, for_write); 1205 if (err) 1206 goto put_err; 1207 return page; 1208 1209 put_err: 1210 f2fs_put_page(page, 1); 1211 return ERR_PTR(err); 1212 } 1213 1214 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1215 { 1216 struct address_space *mapping = inode->i_mapping; 1217 struct page *page; 1218 1219 page = find_get_page(mapping, index); 1220 if (page && PageUptodate(page)) 1221 return page; 1222 f2fs_put_page(page, 0); 1223 1224 page = f2fs_get_read_data_page(inode, index, 0, false); 1225 if (IS_ERR(page)) 1226 return page; 1227 1228 if (PageUptodate(page)) 1229 return page; 1230 1231 wait_on_page_locked(page); 1232 if (unlikely(!PageUptodate(page))) { 1233 f2fs_put_page(page, 0); 1234 return ERR_PTR(-EIO); 1235 } 1236 return page; 1237 } 1238 1239 /* 1240 * If it tries to access a hole, return an error. 1241 * Because, the callers, functions in dir.c and GC, should be able to know 1242 * whether this page exists or not. 1243 */ 1244 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1245 bool for_write) 1246 { 1247 struct address_space *mapping = inode->i_mapping; 1248 struct page *page; 1249 repeat: 1250 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1251 if (IS_ERR(page)) 1252 return page; 1253 1254 /* wait for read completion */ 1255 lock_page(page); 1256 if (unlikely(page->mapping != mapping)) { 1257 f2fs_put_page(page, 1); 1258 goto repeat; 1259 } 1260 if (unlikely(!PageUptodate(page))) { 1261 f2fs_put_page(page, 1); 1262 return ERR_PTR(-EIO); 1263 } 1264 return page; 1265 } 1266 1267 /* 1268 * Caller ensures that this data page is never allocated. 1269 * A new zero-filled data page is allocated in the page cache. 1270 * 1271 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1272 * f2fs_unlock_op(). 1273 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1274 * ipage should be released by this function. 1275 */ 1276 struct page *f2fs_get_new_data_page(struct inode *inode, 1277 struct page *ipage, pgoff_t index, bool new_i_size) 1278 { 1279 struct address_space *mapping = inode->i_mapping; 1280 struct page *page; 1281 struct dnode_of_data dn; 1282 int err; 1283 1284 page = f2fs_grab_cache_page(mapping, index, true); 1285 if (!page) { 1286 /* 1287 * before exiting, we should make sure ipage will be released 1288 * if any error occur. 1289 */ 1290 f2fs_put_page(ipage, 1); 1291 return ERR_PTR(-ENOMEM); 1292 } 1293 1294 set_new_dnode(&dn, inode, ipage, NULL, 0); 1295 err = f2fs_reserve_block(&dn, index); 1296 if (err) { 1297 f2fs_put_page(page, 1); 1298 return ERR_PTR(err); 1299 } 1300 if (!ipage) 1301 f2fs_put_dnode(&dn); 1302 1303 if (PageUptodate(page)) 1304 goto got_it; 1305 1306 if (dn.data_blkaddr == NEW_ADDR) { 1307 zero_user_segment(page, 0, PAGE_SIZE); 1308 if (!PageUptodate(page)) 1309 SetPageUptodate(page); 1310 } else { 1311 f2fs_put_page(page, 1); 1312 1313 /* if ipage exists, blkaddr should be NEW_ADDR */ 1314 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1315 page = f2fs_get_lock_data_page(inode, index, true); 1316 if (IS_ERR(page)) 1317 return page; 1318 } 1319 got_it: 1320 if (new_i_size && i_size_read(inode) < 1321 ((loff_t)(index + 1) << PAGE_SHIFT)) 1322 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1323 return page; 1324 } 1325 1326 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1327 { 1328 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1329 struct f2fs_summary sum; 1330 struct node_info ni; 1331 block_t old_blkaddr; 1332 blkcnt_t count = 1; 1333 int err; 1334 1335 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1336 return -EPERM; 1337 1338 err = f2fs_get_node_info(sbi, dn->nid, &ni); 1339 if (err) 1340 return err; 1341 1342 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1343 if (dn->data_blkaddr != NULL_ADDR) 1344 goto alloc; 1345 1346 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1347 return err; 1348 1349 alloc: 1350 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1351 old_blkaddr = dn->data_blkaddr; 1352 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1353 &sum, seg_type, NULL); 1354 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1355 invalidate_mapping_pages(META_MAPPING(sbi), 1356 old_blkaddr, old_blkaddr); 1357 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1358 1359 /* 1360 * i_size will be updated by direct_IO. Otherwise, we'll get stale 1361 * data from unwritten block via dio_read. 1362 */ 1363 return 0; 1364 } 1365 1366 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 1367 { 1368 struct inode *inode = file_inode(iocb->ki_filp); 1369 struct f2fs_map_blocks map; 1370 int flag; 1371 int err = 0; 1372 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 1373 1374 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 1375 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 1376 if (map.m_len > map.m_lblk) 1377 map.m_len -= map.m_lblk; 1378 else 1379 map.m_len = 0; 1380 1381 map.m_next_pgofs = NULL; 1382 map.m_next_extent = NULL; 1383 map.m_seg_type = NO_CHECK_TYPE; 1384 map.m_may_create = true; 1385 1386 if (direct_io) { 1387 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 1388 flag = f2fs_force_buffered_io(inode, iocb, from) ? 1389 F2FS_GET_BLOCK_PRE_AIO : 1390 F2FS_GET_BLOCK_PRE_DIO; 1391 goto map_blocks; 1392 } 1393 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 1394 err = f2fs_convert_inline_inode(inode); 1395 if (err) 1396 return err; 1397 } 1398 if (f2fs_has_inline_data(inode)) 1399 return err; 1400 1401 flag = F2FS_GET_BLOCK_PRE_AIO; 1402 1403 map_blocks: 1404 err = f2fs_map_blocks(inode, &map, 1, flag); 1405 if (map.m_len > 0 && err == -ENOSPC) { 1406 if (!direct_io) 1407 set_inode_flag(inode, FI_NO_PREALLOC); 1408 err = 0; 1409 } 1410 return err; 1411 } 1412 1413 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1414 { 1415 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1416 if (lock) 1417 down_read(&sbi->node_change); 1418 else 1419 up_read(&sbi->node_change); 1420 } else { 1421 if (lock) 1422 f2fs_lock_op(sbi); 1423 else 1424 f2fs_unlock_op(sbi); 1425 } 1426 } 1427 1428 /* 1429 * f2fs_map_blocks() tries to find or build mapping relationship which 1430 * maps continuous logical blocks to physical blocks, and return such 1431 * info via f2fs_map_blocks structure. 1432 */ 1433 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1434 int create, int flag) 1435 { 1436 unsigned int maxblocks = map->m_len; 1437 struct dnode_of_data dn; 1438 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1439 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1440 pgoff_t pgofs, end_offset, end; 1441 int err = 0, ofs = 1; 1442 unsigned int ofs_in_node, last_ofs_in_node; 1443 blkcnt_t prealloc; 1444 struct extent_info ei = {0,0,0}; 1445 block_t blkaddr; 1446 unsigned int start_pgofs; 1447 1448 if (!maxblocks) 1449 return 0; 1450 1451 map->m_len = 0; 1452 map->m_flags = 0; 1453 1454 /* it only supports block size == page size */ 1455 pgofs = (pgoff_t)map->m_lblk; 1456 end = pgofs + maxblocks; 1457 1458 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1459 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1460 map->m_may_create) 1461 goto next_dnode; 1462 1463 map->m_pblk = ei.blk + pgofs - ei.fofs; 1464 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1465 map->m_flags = F2FS_MAP_MAPPED; 1466 if (map->m_next_extent) 1467 *map->m_next_extent = pgofs + map->m_len; 1468 1469 /* for hardware encryption, but to avoid potential issue in future */ 1470 if (flag == F2FS_GET_BLOCK_DIO) 1471 f2fs_wait_on_block_writeback_range(inode, 1472 map->m_pblk, map->m_len); 1473 goto out; 1474 } 1475 1476 next_dnode: 1477 if (map->m_may_create) 1478 f2fs_do_map_lock(sbi, flag, true); 1479 1480 /* When reading holes, we need its node page */ 1481 set_new_dnode(&dn, inode, NULL, NULL, 0); 1482 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1483 if (err) { 1484 if (flag == F2FS_GET_BLOCK_BMAP) 1485 map->m_pblk = 0; 1486 if (err == -ENOENT) { 1487 err = 0; 1488 if (map->m_next_pgofs) 1489 *map->m_next_pgofs = 1490 f2fs_get_next_page_offset(&dn, pgofs); 1491 if (map->m_next_extent) 1492 *map->m_next_extent = 1493 f2fs_get_next_page_offset(&dn, pgofs); 1494 } 1495 goto unlock_out; 1496 } 1497 1498 start_pgofs = pgofs; 1499 prealloc = 0; 1500 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1501 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1502 1503 next_block: 1504 blkaddr = f2fs_data_blkaddr(&dn); 1505 1506 if (__is_valid_data_blkaddr(blkaddr) && 1507 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1508 err = -EFSCORRUPTED; 1509 goto sync_out; 1510 } 1511 1512 if (__is_valid_data_blkaddr(blkaddr)) { 1513 /* use out-place-update for driect IO under LFS mode */ 1514 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1515 map->m_may_create) { 1516 err = __allocate_data_block(&dn, map->m_seg_type); 1517 if (err) 1518 goto sync_out; 1519 blkaddr = dn.data_blkaddr; 1520 set_inode_flag(inode, FI_APPEND_WRITE); 1521 } 1522 } else { 1523 if (create) { 1524 if (unlikely(f2fs_cp_error(sbi))) { 1525 err = -EIO; 1526 goto sync_out; 1527 } 1528 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1529 if (blkaddr == NULL_ADDR) { 1530 prealloc++; 1531 last_ofs_in_node = dn.ofs_in_node; 1532 } 1533 } else { 1534 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1535 flag != F2FS_GET_BLOCK_DIO); 1536 err = __allocate_data_block(&dn, 1537 map->m_seg_type); 1538 if (!err) 1539 set_inode_flag(inode, FI_APPEND_WRITE); 1540 } 1541 if (err) 1542 goto sync_out; 1543 map->m_flags |= F2FS_MAP_NEW; 1544 blkaddr = dn.data_blkaddr; 1545 } else { 1546 if (flag == F2FS_GET_BLOCK_BMAP) { 1547 map->m_pblk = 0; 1548 goto sync_out; 1549 } 1550 if (flag == F2FS_GET_BLOCK_PRECACHE) 1551 goto sync_out; 1552 if (flag == F2FS_GET_BLOCK_FIEMAP && 1553 blkaddr == NULL_ADDR) { 1554 if (map->m_next_pgofs) 1555 *map->m_next_pgofs = pgofs + 1; 1556 goto sync_out; 1557 } 1558 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1559 /* for defragment case */ 1560 if (map->m_next_pgofs) 1561 *map->m_next_pgofs = pgofs + 1; 1562 goto sync_out; 1563 } 1564 } 1565 } 1566 1567 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1568 goto skip; 1569 1570 if (map->m_len == 0) { 1571 /* preallocated unwritten block should be mapped for fiemap. */ 1572 if (blkaddr == NEW_ADDR) 1573 map->m_flags |= F2FS_MAP_UNWRITTEN; 1574 map->m_flags |= F2FS_MAP_MAPPED; 1575 1576 map->m_pblk = blkaddr; 1577 map->m_len = 1; 1578 } else if ((map->m_pblk != NEW_ADDR && 1579 blkaddr == (map->m_pblk + ofs)) || 1580 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1581 flag == F2FS_GET_BLOCK_PRE_DIO) { 1582 ofs++; 1583 map->m_len++; 1584 } else { 1585 goto sync_out; 1586 } 1587 1588 skip: 1589 dn.ofs_in_node++; 1590 pgofs++; 1591 1592 /* preallocate blocks in batch for one dnode page */ 1593 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1594 (pgofs == end || dn.ofs_in_node == end_offset)) { 1595 1596 dn.ofs_in_node = ofs_in_node; 1597 err = f2fs_reserve_new_blocks(&dn, prealloc); 1598 if (err) 1599 goto sync_out; 1600 1601 map->m_len += dn.ofs_in_node - ofs_in_node; 1602 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1603 err = -ENOSPC; 1604 goto sync_out; 1605 } 1606 dn.ofs_in_node = end_offset; 1607 } 1608 1609 if (pgofs >= end) 1610 goto sync_out; 1611 else if (dn.ofs_in_node < end_offset) 1612 goto next_block; 1613 1614 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1615 if (map->m_flags & F2FS_MAP_MAPPED) { 1616 unsigned int ofs = start_pgofs - map->m_lblk; 1617 1618 f2fs_update_extent_cache_range(&dn, 1619 start_pgofs, map->m_pblk + ofs, 1620 map->m_len - ofs); 1621 } 1622 } 1623 1624 f2fs_put_dnode(&dn); 1625 1626 if (map->m_may_create) { 1627 f2fs_do_map_lock(sbi, flag, false); 1628 f2fs_balance_fs(sbi, dn.node_changed); 1629 } 1630 goto next_dnode; 1631 1632 sync_out: 1633 1634 /* for hardware encryption, but to avoid potential issue in future */ 1635 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) 1636 f2fs_wait_on_block_writeback_range(inode, 1637 map->m_pblk, map->m_len); 1638 1639 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1640 if (map->m_flags & F2FS_MAP_MAPPED) { 1641 unsigned int ofs = start_pgofs - map->m_lblk; 1642 1643 f2fs_update_extent_cache_range(&dn, 1644 start_pgofs, map->m_pblk + ofs, 1645 map->m_len - ofs); 1646 } 1647 if (map->m_next_extent) 1648 *map->m_next_extent = pgofs + 1; 1649 } 1650 f2fs_put_dnode(&dn); 1651 unlock_out: 1652 if (map->m_may_create) { 1653 f2fs_do_map_lock(sbi, flag, false); 1654 f2fs_balance_fs(sbi, dn.node_changed); 1655 } 1656 out: 1657 trace_f2fs_map_blocks(inode, map, err); 1658 return err; 1659 } 1660 1661 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1662 { 1663 struct f2fs_map_blocks map; 1664 block_t last_lblk; 1665 int err; 1666 1667 if (pos + len > i_size_read(inode)) 1668 return false; 1669 1670 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1671 map.m_next_pgofs = NULL; 1672 map.m_next_extent = NULL; 1673 map.m_seg_type = NO_CHECK_TYPE; 1674 map.m_may_create = false; 1675 last_lblk = F2FS_BLK_ALIGN(pos + len); 1676 1677 while (map.m_lblk < last_lblk) { 1678 map.m_len = last_lblk - map.m_lblk; 1679 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1680 if (err || map.m_len == 0) 1681 return false; 1682 map.m_lblk += map.m_len; 1683 } 1684 return true; 1685 } 1686 1687 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1688 { 1689 return (bytes >> inode->i_blkbits); 1690 } 1691 1692 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1693 { 1694 return (blks << inode->i_blkbits); 1695 } 1696 1697 static int __get_data_block(struct inode *inode, sector_t iblock, 1698 struct buffer_head *bh, int create, int flag, 1699 pgoff_t *next_pgofs, int seg_type, bool may_write) 1700 { 1701 struct f2fs_map_blocks map; 1702 int err; 1703 1704 map.m_lblk = iblock; 1705 map.m_len = bytes_to_blks(inode, bh->b_size); 1706 map.m_next_pgofs = next_pgofs; 1707 map.m_next_extent = NULL; 1708 map.m_seg_type = seg_type; 1709 map.m_may_create = may_write; 1710 1711 err = f2fs_map_blocks(inode, &map, create, flag); 1712 if (!err) { 1713 map_bh(bh, inode->i_sb, map.m_pblk); 1714 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1715 bh->b_size = blks_to_bytes(inode, map.m_len); 1716 } 1717 return err; 1718 } 1719 1720 static int get_data_block_dio_write(struct inode *inode, sector_t iblock, 1721 struct buffer_head *bh_result, int create) 1722 { 1723 return __get_data_block(inode, iblock, bh_result, create, 1724 F2FS_GET_BLOCK_DIO, NULL, 1725 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1726 true); 1727 } 1728 1729 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1730 struct buffer_head *bh_result, int create) 1731 { 1732 return __get_data_block(inode, iblock, bh_result, create, 1733 F2FS_GET_BLOCK_DIO, NULL, 1734 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1735 false); 1736 } 1737 1738 static int f2fs_xattr_fiemap(struct inode *inode, 1739 struct fiemap_extent_info *fieinfo) 1740 { 1741 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1742 struct page *page; 1743 struct node_info ni; 1744 __u64 phys = 0, len; 1745 __u32 flags; 1746 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1747 int err = 0; 1748 1749 if (f2fs_has_inline_xattr(inode)) { 1750 int offset; 1751 1752 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1753 inode->i_ino, false); 1754 if (!page) 1755 return -ENOMEM; 1756 1757 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1758 if (err) { 1759 f2fs_put_page(page, 1); 1760 return err; 1761 } 1762 1763 phys = blks_to_bytes(inode, ni.blk_addr); 1764 offset = offsetof(struct f2fs_inode, i_addr) + 1765 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1766 get_inline_xattr_addrs(inode)); 1767 1768 phys += offset; 1769 len = inline_xattr_size(inode); 1770 1771 f2fs_put_page(page, 1); 1772 1773 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1774 1775 if (!xnid) 1776 flags |= FIEMAP_EXTENT_LAST; 1777 1778 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1779 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1780 if (err || err == 1) 1781 return err; 1782 } 1783 1784 if (xnid) { 1785 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1786 if (!page) 1787 return -ENOMEM; 1788 1789 err = f2fs_get_node_info(sbi, xnid, &ni); 1790 if (err) { 1791 f2fs_put_page(page, 1); 1792 return err; 1793 } 1794 1795 phys = blks_to_bytes(inode, ni.blk_addr); 1796 len = inode->i_sb->s_blocksize; 1797 1798 f2fs_put_page(page, 1); 1799 1800 flags = FIEMAP_EXTENT_LAST; 1801 } 1802 1803 if (phys) { 1804 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1805 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1806 } 1807 1808 return (err < 0 ? err : 0); 1809 } 1810 1811 static loff_t max_inode_blocks(struct inode *inode) 1812 { 1813 loff_t result = ADDRS_PER_INODE(inode); 1814 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1815 1816 /* two direct node blocks */ 1817 result += (leaf_count * 2); 1818 1819 /* two indirect node blocks */ 1820 leaf_count *= NIDS_PER_BLOCK; 1821 result += (leaf_count * 2); 1822 1823 /* one double indirect node block */ 1824 leaf_count *= NIDS_PER_BLOCK; 1825 result += leaf_count; 1826 1827 return result; 1828 } 1829 1830 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1831 u64 start, u64 len) 1832 { 1833 struct f2fs_map_blocks map; 1834 sector_t start_blk, last_blk; 1835 pgoff_t next_pgofs; 1836 u64 logical = 0, phys = 0, size = 0; 1837 u32 flags = 0; 1838 int ret = 0; 1839 bool compr_cluster = false; 1840 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1841 loff_t maxbytes; 1842 1843 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1844 ret = f2fs_precache_extents(inode); 1845 if (ret) 1846 return ret; 1847 } 1848 1849 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1850 if (ret) 1851 return ret; 1852 1853 inode_lock(inode); 1854 1855 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1856 if (start > maxbytes) { 1857 ret = -EFBIG; 1858 goto out; 1859 } 1860 1861 if (len > maxbytes || (maxbytes - len) < start) 1862 len = maxbytes - start; 1863 1864 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1865 ret = f2fs_xattr_fiemap(inode, fieinfo); 1866 goto out; 1867 } 1868 1869 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1870 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1871 if (ret != -EAGAIN) 1872 goto out; 1873 } 1874 1875 if (bytes_to_blks(inode, len) == 0) 1876 len = blks_to_bytes(inode, 1); 1877 1878 start_blk = bytes_to_blks(inode, start); 1879 last_blk = bytes_to_blks(inode, start + len - 1); 1880 1881 next: 1882 memset(&map, 0, sizeof(map)); 1883 map.m_lblk = start_blk; 1884 map.m_len = bytes_to_blks(inode, len); 1885 map.m_next_pgofs = &next_pgofs; 1886 map.m_seg_type = NO_CHECK_TYPE; 1887 1888 if (compr_cluster) 1889 map.m_len = cluster_size - 1; 1890 1891 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1892 if (ret) 1893 goto out; 1894 1895 /* HOLE */ 1896 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 1897 start_blk = next_pgofs; 1898 1899 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1900 max_inode_blocks(inode))) 1901 goto prep_next; 1902 1903 flags |= FIEMAP_EXTENT_LAST; 1904 } 1905 1906 if (size) { 1907 flags |= FIEMAP_EXTENT_MERGED; 1908 if (IS_ENCRYPTED(inode)) 1909 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1910 1911 ret = fiemap_fill_next_extent(fieinfo, logical, 1912 phys, size, flags); 1913 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1914 if (ret) 1915 goto out; 1916 size = 0; 1917 } 1918 1919 if (start_blk > last_blk) 1920 goto out; 1921 1922 if (compr_cluster) { 1923 compr_cluster = false; 1924 1925 1926 logical = blks_to_bytes(inode, start_blk - 1); 1927 phys = blks_to_bytes(inode, map.m_pblk); 1928 size = blks_to_bytes(inode, cluster_size); 1929 1930 flags |= FIEMAP_EXTENT_ENCODED; 1931 1932 start_blk += cluster_size - 1; 1933 1934 if (start_blk > last_blk) 1935 goto out; 1936 1937 goto prep_next; 1938 } 1939 1940 if (map.m_pblk == COMPRESS_ADDR) { 1941 compr_cluster = true; 1942 start_blk++; 1943 goto prep_next; 1944 } 1945 1946 logical = blks_to_bytes(inode, start_blk); 1947 phys = blks_to_bytes(inode, map.m_pblk); 1948 size = blks_to_bytes(inode, map.m_len); 1949 flags = 0; 1950 if (map.m_flags & F2FS_MAP_UNWRITTEN) 1951 flags = FIEMAP_EXTENT_UNWRITTEN; 1952 1953 start_blk += bytes_to_blks(inode, size); 1954 1955 prep_next: 1956 cond_resched(); 1957 if (fatal_signal_pending(current)) 1958 ret = -EINTR; 1959 else 1960 goto next; 1961 out: 1962 if (ret == 1) 1963 ret = 0; 1964 1965 inode_unlock(inode); 1966 return ret; 1967 } 1968 1969 static inline loff_t f2fs_readpage_limit(struct inode *inode) 1970 { 1971 if (IS_ENABLED(CONFIG_FS_VERITY) && 1972 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 1973 return inode->i_sb->s_maxbytes; 1974 1975 return i_size_read(inode); 1976 } 1977 1978 static int f2fs_read_single_page(struct inode *inode, struct page *page, 1979 unsigned nr_pages, 1980 struct f2fs_map_blocks *map, 1981 struct bio **bio_ret, 1982 sector_t *last_block_in_bio, 1983 bool is_readahead) 1984 { 1985 struct bio *bio = *bio_ret; 1986 const unsigned blocksize = blks_to_bytes(inode, 1); 1987 sector_t block_in_file; 1988 sector_t last_block; 1989 sector_t last_block_in_file; 1990 sector_t block_nr; 1991 int ret = 0; 1992 1993 block_in_file = (sector_t)page_index(page); 1994 last_block = block_in_file + nr_pages; 1995 last_block_in_file = bytes_to_blks(inode, 1996 f2fs_readpage_limit(inode) + blocksize - 1); 1997 if (last_block > last_block_in_file) 1998 last_block = last_block_in_file; 1999 2000 /* just zeroing out page which is beyond EOF */ 2001 if (block_in_file >= last_block) 2002 goto zero_out; 2003 /* 2004 * Map blocks using the previous result first. 2005 */ 2006 if ((map->m_flags & F2FS_MAP_MAPPED) && 2007 block_in_file > map->m_lblk && 2008 block_in_file < (map->m_lblk + map->m_len)) 2009 goto got_it; 2010 2011 /* 2012 * Then do more f2fs_map_blocks() calls until we are 2013 * done with this page. 2014 */ 2015 map->m_lblk = block_in_file; 2016 map->m_len = last_block - block_in_file; 2017 2018 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2019 if (ret) 2020 goto out; 2021 got_it: 2022 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2023 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2024 SetPageMappedToDisk(page); 2025 2026 if (!PageUptodate(page) && (!PageSwapCache(page) && 2027 !cleancache_get_page(page))) { 2028 SetPageUptodate(page); 2029 goto confused; 2030 } 2031 2032 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2033 DATA_GENERIC_ENHANCE_READ)) { 2034 ret = -EFSCORRUPTED; 2035 goto out; 2036 } 2037 } else { 2038 zero_out: 2039 zero_user_segment(page, 0, PAGE_SIZE); 2040 if (f2fs_need_verity(inode, page->index) && 2041 !fsverity_verify_page(page)) { 2042 ret = -EIO; 2043 goto out; 2044 } 2045 if (!PageUptodate(page)) 2046 SetPageUptodate(page); 2047 unlock_page(page); 2048 goto out; 2049 } 2050 2051 /* 2052 * This page will go to BIO. Do we need to send this 2053 * BIO off first? 2054 */ 2055 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2056 *last_block_in_bio, block_nr) || 2057 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2058 submit_and_realloc: 2059 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2060 bio = NULL; 2061 } 2062 if (bio == NULL) { 2063 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2064 is_readahead ? REQ_RAHEAD : 0, page->index, 2065 false); 2066 if (IS_ERR(bio)) { 2067 ret = PTR_ERR(bio); 2068 bio = NULL; 2069 goto out; 2070 } 2071 } 2072 2073 /* 2074 * If the page is under writeback, we need to wait for 2075 * its completion to see the correct decrypted data. 2076 */ 2077 f2fs_wait_on_block_writeback(inode, block_nr); 2078 2079 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2080 goto submit_and_realloc; 2081 2082 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2083 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2084 ClearPageError(page); 2085 *last_block_in_bio = block_nr; 2086 goto out; 2087 confused: 2088 if (bio) { 2089 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2090 bio = NULL; 2091 } 2092 unlock_page(page); 2093 out: 2094 *bio_ret = bio; 2095 return ret; 2096 } 2097 2098 #ifdef CONFIG_F2FS_FS_COMPRESSION 2099 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2100 unsigned nr_pages, sector_t *last_block_in_bio, 2101 bool is_readahead, bool for_write) 2102 { 2103 struct dnode_of_data dn; 2104 struct inode *inode = cc->inode; 2105 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2106 struct bio *bio = *bio_ret; 2107 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2108 sector_t last_block_in_file; 2109 const unsigned blocksize = blks_to_bytes(inode, 1); 2110 struct decompress_io_ctx *dic = NULL; 2111 int i; 2112 int ret = 0; 2113 2114 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2115 2116 last_block_in_file = bytes_to_blks(inode, 2117 f2fs_readpage_limit(inode) + blocksize - 1); 2118 2119 /* get rid of pages beyond EOF */ 2120 for (i = 0; i < cc->cluster_size; i++) { 2121 struct page *page = cc->rpages[i]; 2122 2123 if (!page) 2124 continue; 2125 if ((sector_t)page->index >= last_block_in_file) { 2126 zero_user_segment(page, 0, PAGE_SIZE); 2127 if (!PageUptodate(page)) 2128 SetPageUptodate(page); 2129 } else if (!PageUptodate(page)) { 2130 continue; 2131 } 2132 unlock_page(page); 2133 cc->rpages[i] = NULL; 2134 cc->nr_rpages--; 2135 } 2136 2137 /* we are done since all pages are beyond EOF */ 2138 if (f2fs_cluster_is_empty(cc)) 2139 goto out; 2140 2141 set_new_dnode(&dn, inode, NULL, NULL, 0); 2142 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2143 if (ret) 2144 goto out; 2145 2146 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2147 2148 for (i = 1; i < cc->cluster_size; i++) { 2149 block_t blkaddr; 2150 2151 blkaddr = data_blkaddr(dn.inode, dn.node_page, 2152 dn.ofs_in_node + i); 2153 2154 if (!__is_valid_data_blkaddr(blkaddr)) 2155 break; 2156 2157 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2158 ret = -EFAULT; 2159 goto out_put_dnode; 2160 } 2161 cc->nr_cpages++; 2162 } 2163 2164 /* nothing to decompress */ 2165 if (cc->nr_cpages == 0) { 2166 ret = 0; 2167 goto out_put_dnode; 2168 } 2169 2170 dic = f2fs_alloc_dic(cc); 2171 if (IS_ERR(dic)) { 2172 ret = PTR_ERR(dic); 2173 goto out_put_dnode; 2174 } 2175 2176 for (i = 0; i < dic->nr_cpages; i++) { 2177 struct page *page = dic->cpages[i]; 2178 block_t blkaddr; 2179 struct bio_post_read_ctx *ctx; 2180 2181 blkaddr = data_blkaddr(dn.inode, dn.node_page, 2182 dn.ofs_in_node + i + 1); 2183 2184 if (bio && (!page_is_mergeable(sbi, bio, 2185 *last_block_in_bio, blkaddr) || 2186 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2187 submit_and_realloc: 2188 __submit_bio(sbi, bio, DATA); 2189 bio = NULL; 2190 } 2191 2192 if (!bio) { 2193 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2194 is_readahead ? REQ_RAHEAD : 0, 2195 page->index, for_write); 2196 if (IS_ERR(bio)) { 2197 ret = PTR_ERR(bio); 2198 f2fs_decompress_end_io(dic, ret); 2199 f2fs_put_dnode(&dn); 2200 *bio_ret = NULL; 2201 return ret; 2202 } 2203 } 2204 2205 f2fs_wait_on_block_writeback(inode, blkaddr); 2206 2207 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2208 goto submit_and_realloc; 2209 2210 ctx = bio->bi_private; 2211 ctx->enabled_steps |= STEP_DECOMPRESS; 2212 refcount_inc(&dic->refcnt); 2213 2214 inc_page_count(sbi, F2FS_RD_DATA); 2215 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2216 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2217 ClearPageError(page); 2218 *last_block_in_bio = blkaddr; 2219 } 2220 2221 f2fs_put_dnode(&dn); 2222 2223 *bio_ret = bio; 2224 return 0; 2225 2226 out_put_dnode: 2227 f2fs_put_dnode(&dn); 2228 out: 2229 for (i = 0; i < cc->cluster_size; i++) { 2230 if (cc->rpages[i]) { 2231 ClearPageUptodate(cc->rpages[i]); 2232 ClearPageError(cc->rpages[i]); 2233 unlock_page(cc->rpages[i]); 2234 } 2235 } 2236 *bio_ret = bio; 2237 return ret; 2238 } 2239 #endif 2240 2241 /* 2242 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2243 * Major change was from block_size == page_size in f2fs by default. 2244 */ 2245 static int f2fs_mpage_readpages(struct inode *inode, 2246 struct readahead_control *rac, struct page *page) 2247 { 2248 struct bio *bio = NULL; 2249 sector_t last_block_in_bio = 0; 2250 struct f2fs_map_blocks map; 2251 #ifdef CONFIG_F2FS_FS_COMPRESSION 2252 struct compress_ctx cc = { 2253 .inode = inode, 2254 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2255 .cluster_size = F2FS_I(inode)->i_cluster_size, 2256 .cluster_idx = NULL_CLUSTER, 2257 .rpages = NULL, 2258 .cpages = NULL, 2259 .nr_rpages = 0, 2260 .nr_cpages = 0, 2261 }; 2262 #endif 2263 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2264 unsigned max_nr_pages = nr_pages; 2265 int ret = 0; 2266 2267 map.m_pblk = 0; 2268 map.m_lblk = 0; 2269 map.m_len = 0; 2270 map.m_flags = 0; 2271 map.m_next_pgofs = NULL; 2272 map.m_next_extent = NULL; 2273 map.m_seg_type = NO_CHECK_TYPE; 2274 map.m_may_create = false; 2275 2276 for (; nr_pages; nr_pages--) { 2277 if (rac) { 2278 page = readahead_page(rac); 2279 prefetchw(&page->flags); 2280 } 2281 2282 #ifdef CONFIG_F2FS_FS_COMPRESSION 2283 if (f2fs_compressed_file(inode)) { 2284 /* there are remained comressed pages, submit them */ 2285 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2286 ret = f2fs_read_multi_pages(&cc, &bio, 2287 max_nr_pages, 2288 &last_block_in_bio, 2289 rac != NULL, false); 2290 f2fs_destroy_compress_ctx(&cc); 2291 if (ret) 2292 goto set_error_page; 2293 } 2294 ret = f2fs_is_compressed_cluster(inode, page->index); 2295 if (ret < 0) 2296 goto set_error_page; 2297 else if (!ret) 2298 goto read_single_page; 2299 2300 ret = f2fs_init_compress_ctx(&cc); 2301 if (ret) 2302 goto set_error_page; 2303 2304 f2fs_compress_ctx_add_page(&cc, page); 2305 2306 goto next_page; 2307 } 2308 read_single_page: 2309 #endif 2310 2311 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2312 &bio, &last_block_in_bio, rac); 2313 if (ret) { 2314 #ifdef CONFIG_F2FS_FS_COMPRESSION 2315 set_error_page: 2316 #endif 2317 SetPageError(page); 2318 zero_user_segment(page, 0, PAGE_SIZE); 2319 unlock_page(page); 2320 } 2321 #ifdef CONFIG_F2FS_FS_COMPRESSION 2322 next_page: 2323 #endif 2324 if (rac) 2325 put_page(page); 2326 2327 #ifdef CONFIG_F2FS_FS_COMPRESSION 2328 if (f2fs_compressed_file(inode)) { 2329 /* last page */ 2330 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2331 ret = f2fs_read_multi_pages(&cc, &bio, 2332 max_nr_pages, 2333 &last_block_in_bio, 2334 rac != NULL, false); 2335 f2fs_destroy_compress_ctx(&cc); 2336 } 2337 } 2338 #endif 2339 } 2340 if (bio) 2341 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2342 return ret; 2343 } 2344 2345 static int f2fs_read_data_page(struct file *file, struct page *page) 2346 { 2347 struct inode *inode = page_file_mapping(page)->host; 2348 int ret = -EAGAIN; 2349 2350 trace_f2fs_readpage(page, DATA); 2351 2352 if (!f2fs_is_compress_backend_ready(inode)) { 2353 unlock_page(page); 2354 return -EOPNOTSUPP; 2355 } 2356 2357 /* If the file has inline data, try to read it directly */ 2358 if (f2fs_has_inline_data(inode)) 2359 ret = f2fs_read_inline_data(inode, page); 2360 if (ret == -EAGAIN) 2361 ret = f2fs_mpage_readpages(inode, NULL, page); 2362 return ret; 2363 } 2364 2365 static void f2fs_readahead(struct readahead_control *rac) 2366 { 2367 struct inode *inode = rac->mapping->host; 2368 2369 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2370 2371 if (!f2fs_is_compress_backend_ready(inode)) 2372 return; 2373 2374 /* If the file has inline data, skip readpages */ 2375 if (f2fs_has_inline_data(inode)) 2376 return; 2377 2378 f2fs_mpage_readpages(inode, rac, NULL); 2379 } 2380 2381 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2382 { 2383 struct inode *inode = fio->page->mapping->host; 2384 struct page *mpage, *page; 2385 gfp_t gfp_flags = GFP_NOFS; 2386 2387 if (!f2fs_encrypted_file(inode)) 2388 return 0; 2389 2390 page = fio->compressed_page ? fio->compressed_page : fio->page; 2391 2392 /* wait for GCed page writeback via META_MAPPING */ 2393 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2394 2395 if (fscrypt_inode_uses_inline_crypto(inode)) 2396 return 0; 2397 2398 retry_encrypt: 2399 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2400 PAGE_SIZE, 0, gfp_flags); 2401 if (IS_ERR(fio->encrypted_page)) { 2402 /* flush pending IOs and wait for a while in the ENOMEM case */ 2403 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2404 f2fs_flush_merged_writes(fio->sbi); 2405 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 2406 gfp_flags |= __GFP_NOFAIL; 2407 goto retry_encrypt; 2408 } 2409 return PTR_ERR(fio->encrypted_page); 2410 } 2411 2412 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2413 if (mpage) { 2414 if (PageUptodate(mpage)) 2415 memcpy(page_address(mpage), 2416 page_address(fio->encrypted_page), PAGE_SIZE); 2417 f2fs_put_page(mpage, 1); 2418 } 2419 return 0; 2420 } 2421 2422 static inline bool check_inplace_update_policy(struct inode *inode, 2423 struct f2fs_io_info *fio) 2424 { 2425 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2426 unsigned int policy = SM_I(sbi)->ipu_policy; 2427 2428 if (policy & (0x1 << F2FS_IPU_FORCE)) 2429 return true; 2430 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2431 return true; 2432 if (policy & (0x1 << F2FS_IPU_UTIL) && 2433 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2434 return true; 2435 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2436 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2437 return true; 2438 2439 /* 2440 * IPU for rewrite async pages 2441 */ 2442 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2443 fio && fio->op == REQ_OP_WRITE && 2444 !(fio->op_flags & REQ_SYNC) && 2445 !IS_ENCRYPTED(inode)) 2446 return true; 2447 2448 /* this is only set during fdatasync */ 2449 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2450 is_inode_flag_set(inode, FI_NEED_IPU)) 2451 return true; 2452 2453 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2454 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2455 return true; 2456 2457 return false; 2458 } 2459 2460 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2461 { 2462 if (f2fs_is_pinned_file(inode)) 2463 return true; 2464 2465 /* if this is cold file, we should overwrite to avoid fragmentation */ 2466 if (file_is_cold(inode)) 2467 return true; 2468 2469 return check_inplace_update_policy(inode, fio); 2470 } 2471 2472 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2473 { 2474 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2475 2476 if (f2fs_lfs_mode(sbi)) 2477 return true; 2478 if (S_ISDIR(inode->i_mode)) 2479 return true; 2480 if (IS_NOQUOTA(inode)) 2481 return true; 2482 if (f2fs_is_atomic_file(inode)) 2483 return true; 2484 if (fio) { 2485 if (is_cold_data(fio->page)) 2486 return true; 2487 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 2488 return true; 2489 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2490 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2491 return true; 2492 } 2493 return false; 2494 } 2495 2496 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2497 { 2498 struct inode *inode = fio->page->mapping->host; 2499 2500 if (f2fs_should_update_outplace(inode, fio)) 2501 return false; 2502 2503 return f2fs_should_update_inplace(inode, fio); 2504 } 2505 2506 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2507 { 2508 struct page *page = fio->page; 2509 struct inode *inode = page->mapping->host; 2510 struct dnode_of_data dn; 2511 struct extent_info ei = {0,0,0}; 2512 struct node_info ni; 2513 bool ipu_force = false; 2514 int err = 0; 2515 2516 set_new_dnode(&dn, inode, NULL, NULL, 0); 2517 if (need_inplace_update(fio) && 2518 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2519 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2520 2521 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2522 DATA_GENERIC_ENHANCE)) 2523 return -EFSCORRUPTED; 2524 2525 ipu_force = true; 2526 fio->need_lock = LOCK_DONE; 2527 goto got_it; 2528 } 2529 2530 /* Deadlock due to between page->lock and f2fs_lock_op */ 2531 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2532 return -EAGAIN; 2533 2534 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2535 if (err) 2536 goto out; 2537 2538 fio->old_blkaddr = dn.data_blkaddr; 2539 2540 /* This page is already truncated */ 2541 if (fio->old_blkaddr == NULL_ADDR) { 2542 ClearPageUptodate(page); 2543 clear_cold_data(page); 2544 goto out_writepage; 2545 } 2546 got_it: 2547 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2548 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2549 DATA_GENERIC_ENHANCE)) { 2550 err = -EFSCORRUPTED; 2551 goto out_writepage; 2552 } 2553 /* 2554 * If current allocation needs SSR, 2555 * it had better in-place writes for updated data. 2556 */ 2557 if (ipu_force || 2558 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2559 need_inplace_update(fio))) { 2560 err = f2fs_encrypt_one_page(fio); 2561 if (err) 2562 goto out_writepage; 2563 2564 set_page_writeback(page); 2565 ClearPageError(page); 2566 f2fs_put_dnode(&dn); 2567 if (fio->need_lock == LOCK_REQ) 2568 f2fs_unlock_op(fio->sbi); 2569 err = f2fs_inplace_write_data(fio); 2570 if (err) { 2571 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2572 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2573 if (PageWriteback(page)) 2574 end_page_writeback(page); 2575 } else { 2576 set_inode_flag(inode, FI_UPDATE_WRITE); 2577 } 2578 trace_f2fs_do_write_data_page(fio->page, IPU); 2579 return err; 2580 } 2581 2582 if (fio->need_lock == LOCK_RETRY) { 2583 if (!f2fs_trylock_op(fio->sbi)) { 2584 err = -EAGAIN; 2585 goto out_writepage; 2586 } 2587 fio->need_lock = LOCK_REQ; 2588 } 2589 2590 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 2591 if (err) 2592 goto out_writepage; 2593 2594 fio->version = ni.version; 2595 2596 err = f2fs_encrypt_one_page(fio); 2597 if (err) 2598 goto out_writepage; 2599 2600 set_page_writeback(page); 2601 ClearPageError(page); 2602 2603 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2604 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2605 2606 /* LFS mode write path */ 2607 f2fs_outplace_write_data(&dn, fio); 2608 trace_f2fs_do_write_data_page(page, OPU); 2609 set_inode_flag(inode, FI_APPEND_WRITE); 2610 if (page->index == 0) 2611 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2612 out_writepage: 2613 f2fs_put_dnode(&dn); 2614 out: 2615 if (fio->need_lock == LOCK_REQ) 2616 f2fs_unlock_op(fio->sbi); 2617 return err; 2618 } 2619 2620 int f2fs_write_single_data_page(struct page *page, int *submitted, 2621 struct bio **bio, 2622 sector_t *last_block, 2623 struct writeback_control *wbc, 2624 enum iostat_type io_type, 2625 int compr_blocks, 2626 bool allow_balance) 2627 { 2628 struct inode *inode = page->mapping->host; 2629 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2630 loff_t i_size = i_size_read(inode); 2631 const pgoff_t end_index = ((unsigned long long)i_size) 2632 >> PAGE_SHIFT; 2633 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2634 unsigned offset = 0; 2635 bool need_balance_fs = false; 2636 int err = 0; 2637 struct f2fs_io_info fio = { 2638 .sbi = sbi, 2639 .ino = inode->i_ino, 2640 .type = DATA, 2641 .op = REQ_OP_WRITE, 2642 .op_flags = wbc_to_write_flags(wbc), 2643 .old_blkaddr = NULL_ADDR, 2644 .page = page, 2645 .encrypted_page = NULL, 2646 .submitted = false, 2647 .compr_blocks = compr_blocks, 2648 .need_lock = LOCK_RETRY, 2649 .io_type = io_type, 2650 .io_wbc = wbc, 2651 .bio = bio, 2652 .last_block = last_block, 2653 }; 2654 2655 trace_f2fs_writepage(page, DATA); 2656 2657 /* we should bypass data pages to proceed the kworkder jobs */ 2658 if (unlikely(f2fs_cp_error(sbi))) { 2659 mapping_set_error(page->mapping, -EIO); 2660 /* 2661 * don't drop any dirty dentry pages for keeping lastest 2662 * directory structure. 2663 */ 2664 if (S_ISDIR(inode->i_mode)) 2665 goto redirty_out; 2666 goto out; 2667 } 2668 2669 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2670 goto redirty_out; 2671 2672 if (page->index < end_index || 2673 f2fs_verity_in_progress(inode) || 2674 compr_blocks) 2675 goto write; 2676 2677 /* 2678 * If the offset is out-of-range of file size, 2679 * this page does not have to be written to disk. 2680 */ 2681 offset = i_size & (PAGE_SIZE - 1); 2682 if ((page->index >= end_index + 1) || !offset) 2683 goto out; 2684 2685 zero_user_segment(page, offset, PAGE_SIZE); 2686 write: 2687 if (f2fs_is_drop_cache(inode)) 2688 goto out; 2689 /* we should not write 0'th page having journal header */ 2690 if (f2fs_is_volatile_file(inode) && (!page->index || 2691 (!wbc->for_reclaim && 2692 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2693 goto redirty_out; 2694 2695 /* Dentry/quota blocks are controlled by checkpoint */ 2696 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2697 /* 2698 * We need to wait for node_write to avoid block allocation during 2699 * checkpoint. This can only happen to quota writes which can cause 2700 * the below discard race condition. 2701 */ 2702 if (IS_NOQUOTA(inode)) 2703 down_read(&sbi->node_write); 2704 2705 fio.need_lock = LOCK_DONE; 2706 err = f2fs_do_write_data_page(&fio); 2707 2708 if (IS_NOQUOTA(inode)) 2709 up_read(&sbi->node_write); 2710 2711 goto done; 2712 } 2713 2714 if (!wbc->for_reclaim) 2715 need_balance_fs = true; 2716 else if (has_not_enough_free_secs(sbi, 0, 0)) 2717 goto redirty_out; 2718 else 2719 set_inode_flag(inode, FI_HOT_DATA); 2720 2721 err = -EAGAIN; 2722 if (f2fs_has_inline_data(inode)) { 2723 err = f2fs_write_inline_data(inode, page); 2724 if (!err) 2725 goto out; 2726 } 2727 2728 if (err == -EAGAIN) { 2729 err = f2fs_do_write_data_page(&fio); 2730 if (err == -EAGAIN) { 2731 fio.need_lock = LOCK_REQ; 2732 err = f2fs_do_write_data_page(&fio); 2733 } 2734 } 2735 2736 if (err) { 2737 file_set_keep_isize(inode); 2738 } else { 2739 spin_lock(&F2FS_I(inode)->i_size_lock); 2740 if (F2FS_I(inode)->last_disk_size < psize) 2741 F2FS_I(inode)->last_disk_size = psize; 2742 spin_unlock(&F2FS_I(inode)->i_size_lock); 2743 } 2744 2745 done: 2746 if (err && err != -ENOENT) 2747 goto redirty_out; 2748 2749 out: 2750 inode_dec_dirty_pages(inode); 2751 if (err) { 2752 ClearPageUptodate(page); 2753 clear_cold_data(page); 2754 } 2755 2756 if (wbc->for_reclaim) { 2757 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2758 clear_inode_flag(inode, FI_HOT_DATA); 2759 f2fs_remove_dirty_inode(inode); 2760 submitted = NULL; 2761 } 2762 unlock_page(page); 2763 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2764 !F2FS_I(inode)->cp_task && allow_balance) 2765 f2fs_balance_fs(sbi, need_balance_fs); 2766 2767 if (unlikely(f2fs_cp_error(sbi))) { 2768 f2fs_submit_merged_write(sbi, DATA); 2769 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2770 submitted = NULL; 2771 } 2772 2773 if (submitted) 2774 *submitted = fio.submitted ? 1 : 0; 2775 2776 return 0; 2777 2778 redirty_out: 2779 redirty_page_for_writepage(wbc, page); 2780 /* 2781 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2782 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2783 * file_write_and_wait_range() will see EIO error, which is critical 2784 * to return value of fsync() followed by atomic_write failure to user. 2785 */ 2786 if (!err || wbc->for_reclaim) 2787 return AOP_WRITEPAGE_ACTIVATE; 2788 unlock_page(page); 2789 return err; 2790 } 2791 2792 static int f2fs_write_data_page(struct page *page, 2793 struct writeback_control *wbc) 2794 { 2795 #ifdef CONFIG_F2FS_FS_COMPRESSION 2796 struct inode *inode = page->mapping->host; 2797 2798 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2799 goto out; 2800 2801 if (f2fs_compressed_file(inode)) { 2802 if (f2fs_is_compressed_cluster(inode, page->index)) { 2803 redirty_page_for_writepage(wbc, page); 2804 return AOP_WRITEPAGE_ACTIVATE; 2805 } 2806 } 2807 out: 2808 #endif 2809 2810 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2811 wbc, FS_DATA_IO, 0, true); 2812 } 2813 2814 /* 2815 * This function was copied from write_cche_pages from mm/page-writeback.c. 2816 * The major change is making write step of cold data page separately from 2817 * warm/hot data page. 2818 */ 2819 static int f2fs_write_cache_pages(struct address_space *mapping, 2820 struct writeback_control *wbc, 2821 enum iostat_type io_type) 2822 { 2823 int ret = 0; 2824 int done = 0, retry = 0; 2825 struct pagevec pvec; 2826 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2827 struct bio *bio = NULL; 2828 sector_t last_block; 2829 #ifdef CONFIG_F2FS_FS_COMPRESSION 2830 struct inode *inode = mapping->host; 2831 struct compress_ctx cc = { 2832 .inode = inode, 2833 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2834 .cluster_size = F2FS_I(inode)->i_cluster_size, 2835 .cluster_idx = NULL_CLUSTER, 2836 .rpages = NULL, 2837 .nr_rpages = 0, 2838 .cpages = NULL, 2839 .rbuf = NULL, 2840 .cbuf = NULL, 2841 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2842 .private = NULL, 2843 }; 2844 #endif 2845 int nr_pages; 2846 pgoff_t index; 2847 pgoff_t end; /* Inclusive */ 2848 pgoff_t done_index; 2849 int range_whole = 0; 2850 xa_mark_t tag; 2851 int nwritten = 0; 2852 int submitted = 0; 2853 int i; 2854 2855 pagevec_init(&pvec); 2856 2857 if (get_dirty_pages(mapping->host) <= 2858 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2859 set_inode_flag(mapping->host, FI_HOT_DATA); 2860 else 2861 clear_inode_flag(mapping->host, FI_HOT_DATA); 2862 2863 if (wbc->range_cyclic) { 2864 index = mapping->writeback_index; /* prev offset */ 2865 end = -1; 2866 } else { 2867 index = wbc->range_start >> PAGE_SHIFT; 2868 end = wbc->range_end >> PAGE_SHIFT; 2869 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2870 range_whole = 1; 2871 } 2872 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2873 tag = PAGECACHE_TAG_TOWRITE; 2874 else 2875 tag = PAGECACHE_TAG_DIRTY; 2876 retry: 2877 retry = 0; 2878 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2879 tag_pages_for_writeback(mapping, index, end); 2880 done_index = index; 2881 while (!done && !retry && (index <= end)) { 2882 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2883 tag); 2884 if (nr_pages == 0) 2885 break; 2886 2887 for (i = 0; i < nr_pages; i++) { 2888 struct page *page = pvec.pages[i]; 2889 bool need_readd; 2890 readd: 2891 need_readd = false; 2892 #ifdef CONFIG_F2FS_FS_COMPRESSION 2893 if (f2fs_compressed_file(inode)) { 2894 ret = f2fs_init_compress_ctx(&cc); 2895 if (ret) { 2896 done = 1; 2897 break; 2898 } 2899 2900 if (!f2fs_cluster_can_merge_page(&cc, 2901 page->index)) { 2902 ret = f2fs_write_multi_pages(&cc, 2903 &submitted, wbc, io_type); 2904 if (!ret) 2905 need_readd = true; 2906 goto result; 2907 } 2908 2909 if (unlikely(f2fs_cp_error(sbi))) 2910 goto lock_page; 2911 2912 if (f2fs_cluster_is_empty(&cc)) { 2913 void *fsdata = NULL; 2914 struct page *pagep; 2915 int ret2; 2916 2917 ret2 = f2fs_prepare_compress_overwrite( 2918 inode, &pagep, 2919 page->index, &fsdata); 2920 if (ret2 < 0) { 2921 ret = ret2; 2922 done = 1; 2923 break; 2924 } else if (ret2 && 2925 !f2fs_compress_write_end(inode, 2926 fsdata, page->index, 2927 1)) { 2928 retry = 1; 2929 break; 2930 } 2931 } else { 2932 goto lock_page; 2933 } 2934 } 2935 #endif 2936 /* give a priority to WB_SYNC threads */ 2937 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2938 wbc->sync_mode == WB_SYNC_NONE) { 2939 done = 1; 2940 break; 2941 } 2942 #ifdef CONFIG_F2FS_FS_COMPRESSION 2943 lock_page: 2944 #endif 2945 done_index = page->index; 2946 retry_write: 2947 lock_page(page); 2948 2949 if (unlikely(page->mapping != mapping)) { 2950 continue_unlock: 2951 unlock_page(page); 2952 continue; 2953 } 2954 2955 if (!PageDirty(page)) { 2956 /* someone wrote it for us */ 2957 goto continue_unlock; 2958 } 2959 2960 if (PageWriteback(page)) { 2961 if (wbc->sync_mode != WB_SYNC_NONE) 2962 f2fs_wait_on_page_writeback(page, 2963 DATA, true, true); 2964 else 2965 goto continue_unlock; 2966 } 2967 2968 if (!clear_page_dirty_for_io(page)) 2969 goto continue_unlock; 2970 2971 #ifdef CONFIG_F2FS_FS_COMPRESSION 2972 if (f2fs_compressed_file(inode)) { 2973 get_page(page); 2974 f2fs_compress_ctx_add_page(&cc, page); 2975 continue; 2976 } 2977 #endif 2978 ret = f2fs_write_single_data_page(page, &submitted, 2979 &bio, &last_block, wbc, io_type, 2980 0, true); 2981 if (ret == AOP_WRITEPAGE_ACTIVATE) 2982 unlock_page(page); 2983 #ifdef CONFIG_F2FS_FS_COMPRESSION 2984 result: 2985 #endif 2986 nwritten += submitted; 2987 wbc->nr_to_write -= submitted; 2988 2989 if (unlikely(ret)) { 2990 /* 2991 * keep nr_to_write, since vfs uses this to 2992 * get # of written pages. 2993 */ 2994 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2995 ret = 0; 2996 goto next; 2997 } else if (ret == -EAGAIN) { 2998 ret = 0; 2999 if (wbc->sync_mode == WB_SYNC_ALL) { 3000 cond_resched(); 3001 congestion_wait(BLK_RW_ASYNC, 3002 DEFAULT_IO_TIMEOUT); 3003 goto retry_write; 3004 } 3005 goto next; 3006 } 3007 done_index = page->index + 1; 3008 done = 1; 3009 break; 3010 } 3011 3012 if (wbc->nr_to_write <= 0 && 3013 wbc->sync_mode == WB_SYNC_NONE) { 3014 done = 1; 3015 break; 3016 } 3017 next: 3018 if (need_readd) 3019 goto readd; 3020 } 3021 pagevec_release(&pvec); 3022 cond_resched(); 3023 } 3024 #ifdef CONFIG_F2FS_FS_COMPRESSION 3025 /* flush remained pages in compress cluster */ 3026 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3027 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3028 nwritten += submitted; 3029 wbc->nr_to_write -= submitted; 3030 if (ret) { 3031 done = 1; 3032 retry = 0; 3033 } 3034 } 3035 if (f2fs_compressed_file(inode)) 3036 f2fs_destroy_compress_ctx(&cc); 3037 #endif 3038 if (retry) { 3039 index = 0; 3040 end = -1; 3041 goto retry; 3042 } 3043 if (wbc->range_cyclic && !done) 3044 done_index = 0; 3045 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3046 mapping->writeback_index = done_index; 3047 3048 if (nwritten) 3049 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3050 NULL, 0, DATA); 3051 /* submit cached bio of IPU write */ 3052 if (bio) 3053 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3054 3055 return ret; 3056 } 3057 3058 static inline bool __should_serialize_io(struct inode *inode, 3059 struct writeback_control *wbc) 3060 { 3061 /* to avoid deadlock in path of data flush */ 3062 if (F2FS_I(inode)->cp_task) 3063 return false; 3064 3065 if (!S_ISREG(inode->i_mode)) 3066 return false; 3067 if (IS_NOQUOTA(inode)) 3068 return false; 3069 3070 if (f2fs_need_compress_data(inode)) 3071 return true; 3072 if (wbc->sync_mode != WB_SYNC_ALL) 3073 return true; 3074 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3075 return true; 3076 return false; 3077 } 3078 3079 static int __f2fs_write_data_pages(struct address_space *mapping, 3080 struct writeback_control *wbc, 3081 enum iostat_type io_type) 3082 { 3083 struct inode *inode = mapping->host; 3084 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3085 struct blk_plug plug; 3086 int ret; 3087 bool locked = false; 3088 3089 /* deal with chardevs and other special file */ 3090 if (!mapping->a_ops->writepage) 3091 return 0; 3092 3093 /* skip writing if there is no dirty page in this inode */ 3094 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3095 return 0; 3096 3097 /* during POR, we don't need to trigger writepage at all. */ 3098 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3099 goto skip_write; 3100 3101 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3102 wbc->sync_mode == WB_SYNC_NONE && 3103 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3104 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3105 goto skip_write; 3106 3107 /* skip writing during file defragment */ 3108 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 3109 goto skip_write; 3110 3111 trace_f2fs_writepages(mapping->host, wbc, DATA); 3112 3113 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3114 if (wbc->sync_mode == WB_SYNC_ALL) 3115 atomic_inc(&sbi->wb_sync_req[DATA]); 3116 else if (atomic_read(&sbi->wb_sync_req[DATA])) 3117 goto skip_write; 3118 3119 if (__should_serialize_io(inode, wbc)) { 3120 mutex_lock(&sbi->writepages); 3121 locked = true; 3122 } 3123 3124 blk_start_plug(&plug); 3125 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3126 blk_finish_plug(&plug); 3127 3128 if (locked) 3129 mutex_unlock(&sbi->writepages); 3130 3131 if (wbc->sync_mode == WB_SYNC_ALL) 3132 atomic_dec(&sbi->wb_sync_req[DATA]); 3133 /* 3134 * if some pages were truncated, we cannot guarantee its mapping->host 3135 * to detect pending bios. 3136 */ 3137 3138 f2fs_remove_dirty_inode(inode); 3139 return ret; 3140 3141 skip_write: 3142 wbc->pages_skipped += get_dirty_pages(inode); 3143 trace_f2fs_writepages(mapping->host, wbc, DATA); 3144 return 0; 3145 } 3146 3147 static int f2fs_write_data_pages(struct address_space *mapping, 3148 struct writeback_control *wbc) 3149 { 3150 struct inode *inode = mapping->host; 3151 3152 return __f2fs_write_data_pages(mapping, wbc, 3153 F2FS_I(inode)->cp_task == current ? 3154 FS_CP_DATA_IO : FS_DATA_IO); 3155 } 3156 3157 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 3158 { 3159 struct inode *inode = mapping->host; 3160 loff_t i_size = i_size_read(inode); 3161 3162 if (IS_NOQUOTA(inode)) 3163 return; 3164 3165 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3166 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3167 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3168 down_write(&F2FS_I(inode)->i_mmap_sem); 3169 3170 truncate_pagecache(inode, i_size); 3171 f2fs_truncate_blocks(inode, i_size, true); 3172 3173 up_write(&F2FS_I(inode)->i_mmap_sem); 3174 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3175 } 3176 } 3177 3178 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3179 struct page *page, loff_t pos, unsigned len, 3180 block_t *blk_addr, bool *node_changed) 3181 { 3182 struct inode *inode = page->mapping->host; 3183 pgoff_t index = page->index; 3184 struct dnode_of_data dn; 3185 struct page *ipage; 3186 bool locked = false; 3187 struct extent_info ei = {0,0,0}; 3188 int err = 0; 3189 int flag; 3190 3191 /* 3192 * we already allocated all the blocks, so we don't need to get 3193 * the block addresses when there is no need to fill the page. 3194 */ 3195 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 3196 !is_inode_flag_set(inode, FI_NO_PREALLOC) && 3197 !f2fs_verity_in_progress(inode)) 3198 return 0; 3199 3200 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3201 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3202 flag = F2FS_GET_BLOCK_DEFAULT; 3203 else 3204 flag = F2FS_GET_BLOCK_PRE_AIO; 3205 3206 if (f2fs_has_inline_data(inode) || 3207 (pos & PAGE_MASK) >= i_size_read(inode)) { 3208 f2fs_do_map_lock(sbi, flag, true); 3209 locked = true; 3210 } 3211 3212 restart: 3213 /* check inline_data */ 3214 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3215 if (IS_ERR(ipage)) { 3216 err = PTR_ERR(ipage); 3217 goto unlock_out; 3218 } 3219 3220 set_new_dnode(&dn, inode, ipage, ipage, 0); 3221 3222 if (f2fs_has_inline_data(inode)) { 3223 if (pos + len <= MAX_INLINE_DATA(inode)) { 3224 f2fs_do_read_inline_data(page, ipage); 3225 set_inode_flag(inode, FI_DATA_EXIST); 3226 if (inode->i_nlink) 3227 set_inline_node(ipage); 3228 } else { 3229 err = f2fs_convert_inline_page(&dn, page); 3230 if (err) 3231 goto out; 3232 if (dn.data_blkaddr == NULL_ADDR) 3233 err = f2fs_get_block(&dn, index); 3234 } 3235 } else if (locked) { 3236 err = f2fs_get_block(&dn, index); 3237 } else { 3238 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3239 dn.data_blkaddr = ei.blk + index - ei.fofs; 3240 } else { 3241 /* hole case */ 3242 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3243 if (err || dn.data_blkaddr == NULL_ADDR) { 3244 f2fs_put_dnode(&dn); 3245 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3246 true); 3247 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3248 locked = true; 3249 goto restart; 3250 } 3251 } 3252 } 3253 3254 /* convert_inline_page can make node_changed */ 3255 *blk_addr = dn.data_blkaddr; 3256 *node_changed = dn.node_changed; 3257 out: 3258 f2fs_put_dnode(&dn); 3259 unlock_out: 3260 if (locked) 3261 f2fs_do_map_lock(sbi, flag, false); 3262 return err; 3263 } 3264 3265 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3266 loff_t pos, unsigned len, unsigned flags, 3267 struct page **pagep, void **fsdata) 3268 { 3269 struct inode *inode = mapping->host; 3270 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3271 struct page *page = NULL; 3272 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3273 bool need_balance = false, drop_atomic = false; 3274 block_t blkaddr = NULL_ADDR; 3275 int err = 0; 3276 3277 trace_f2fs_write_begin(inode, pos, len, flags); 3278 3279 if (!f2fs_is_checkpoint_ready(sbi)) { 3280 err = -ENOSPC; 3281 goto fail; 3282 } 3283 3284 if ((f2fs_is_atomic_file(inode) && 3285 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 3286 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 3287 err = -ENOMEM; 3288 drop_atomic = true; 3289 goto fail; 3290 } 3291 3292 /* 3293 * We should check this at this moment to avoid deadlock on inode page 3294 * and #0 page. The locking rule for inline_data conversion should be: 3295 * lock_page(page #0) -> lock_page(inode_page) 3296 */ 3297 if (index != 0) { 3298 err = f2fs_convert_inline_inode(inode); 3299 if (err) 3300 goto fail; 3301 } 3302 3303 #ifdef CONFIG_F2FS_FS_COMPRESSION 3304 if (f2fs_compressed_file(inode)) { 3305 int ret; 3306 3307 *fsdata = NULL; 3308 3309 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3310 index, fsdata); 3311 if (ret < 0) { 3312 err = ret; 3313 goto fail; 3314 } else if (ret) { 3315 return 0; 3316 } 3317 } 3318 #endif 3319 3320 repeat: 3321 /* 3322 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3323 * wait_for_stable_page. Will wait that below with our IO control. 3324 */ 3325 page = f2fs_pagecache_get_page(mapping, index, 3326 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3327 if (!page) { 3328 err = -ENOMEM; 3329 goto fail; 3330 } 3331 3332 /* TODO: cluster can be compressed due to race with .writepage */ 3333 3334 *pagep = page; 3335 3336 err = prepare_write_begin(sbi, page, pos, len, 3337 &blkaddr, &need_balance); 3338 if (err) 3339 goto fail; 3340 3341 if (need_balance && !IS_NOQUOTA(inode) && 3342 has_not_enough_free_secs(sbi, 0, 0)) { 3343 unlock_page(page); 3344 f2fs_balance_fs(sbi, true); 3345 lock_page(page); 3346 if (page->mapping != mapping) { 3347 /* The page got truncated from under us */ 3348 f2fs_put_page(page, 1); 3349 goto repeat; 3350 } 3351 } 3352 3353 f2fs_wait_on_page_writeback(page, DATA, false, true); 3354 3355 if (len == PAGE_SIZE || PageUptodate(page)) 3356 return 0; 3357 3358 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3359 !f2fs_verity_in_progress(inode)) { 3360 zero_user_segment(page, len, PAGE_SIZE); 3361 return 0; 3362 } 3363 3364 if (blkaddr == NEW_ADDR) { 3365 zero_user_segment(page, 0, PAGE_SIZE); 3366 SetPageUptodate(page); 3367 } else { 3368 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3369 DATA_GENERIC_ENHANCE_READ)) { 3370 err = -EFSCORRUPTED; 3371 goto fail; 3372 } 3373 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3374 if (err) 3375 goto fail; 3376 3377 lock_page(page); 3378 if (unlikely(page->mapping != mapping)) { 3379 f2fs_put_page(page, 1); 3380 goto repeat; 3381 } 3382 if (unlikely(!PageUptodate(page))) { 3383 err = -EIO; 3384 goto fail; 3385 } 3386 } 3387 return 0; 3388 3389 fail: 3390 f2fs_put_page(page, 1); 3391 f2fs_write_failed(mapping, pos + len); 3392 if (drop_atomic) 3393 f2fs_drop_inmem_pages_all(sbi, false); 3394 return err; 3395 } 3396 3397 static int f2fs_write_end(struct file *file, 3398 struct address_space *mapping, 3399 loff_t pos, unsigned len, unsigned copied, 3400 struct page *page, void *fsdata) 3401 { 3402 struct inode *inode = page->mapping->host; 3403 3404 trace_f2fs_write_end(inode, pos, len, copied); 3405 3406 /* 3407 * This should be come from len == PAGE_SIZE, and we expect copied 3408 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3409 * let generic_perform_write() try to copy data again through copied=0. 3410 */ 3411 if (!PageUptodate(page)) { 3412 if (unlikely(copied != len)) 3413 copied = 0; 3414 else 3415 SetPageUptodate(page); 3416 } 3417 3418 #ifdef CONFIG_F2FS_FS_COMPRESSION 3419 /* overwrite compressed file */ 3420 if (f2fs_compressed_file(inode) && fsdata) { 3421 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3422 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3423 3424 if (pos + copied > i_size_read(inode) && 3425 !f2fs_verity_in_progress(inode)) 3426 f2fs_i_size_write(inode, pos + copied); 3427 return copied; 3428 } 3429 #endif 3430 3431 if (!copied) 3432 goto unlock_out; 3433 3434 set_page_dirty(page); 3435 3436 if (pos + copied > i_size_read(inode) && 3437 !f2fs_verity_in_progress(inode)) 3438 f2fs_i_size_write(inode, pos + copied); 3439 unlock_out: 3440 f2fs_put_page(page, 1); 3441 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3442 return copied; 3443 } 3444 3445 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 3446 loff_t offset) 3447 { 3448 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 3449 unsigned blkbits = i_blkbits; 3450 unsigned blocksize_mask = (1 << blkbits) - 1; 3451 unsigned long align = offset | iov_iter_alignment(iter); 3452 struct block_device *bdev = inode->i_sb->s_bdev; 3453 3454 if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode)) 3455 return 1; 3456 3457 if (align & blocksize_mask) { 3458 if (bdev) 3459 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 3460 blocksize_mask = (1 << blkbits) - 1; 3461 if (align & blocksize_mask) 3462 return -EINVAL; 3463 return 1; 3464 } 3465 return 0; 3466 } 3467 3468 static void f2fs_dio_end_io(struct bio *bio) 3469 { 3470 struct f2fs_private_dio *dio = bio->bi_private; 3471 3472 dec_page_count(F2FS_I_SB(dio->inode), 3473 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3474 3475 bio->bi_private = dio->orig_private; 3476 bio->bi_end_io = dio->orig_end_io; 3477 3478 kfree(dio); 3479 3480 bio_endio(bio); 3481 } 3482 3483 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, 3484 loff_t file_offset) 3485 { 3486 struct f2fs_private_dio *dio; 3487 bool write = (bio_op(bio) == REQ_OP_WRITE); 3488 3489 dio = f2fs_kzalloc(F2FS_I_SB(inode), 3490 sizeof(struct f2fs_private_dio), GFP_NOFS); 3491 if (!dio) 3492 goto out; 3493 3494 dio->inode = inode; 3495 dio->orig_end_io = bio->bi_end_io; 3496 dio->orig_private = bio->bi_private; 3497 dio->write = write; 3498 3499 bio->bi_end_io = f2fs_dio_end_io; 3500 bio->bi_private = dio; 3501 3502 inc_page_count(F2FS_I_SB(inode), 3503 write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3504 3505 submit_bio(bio); 3506 return; 3507 out: 3508 bio->bi_status = BLK_STS_IOERR; 3509 bio_endio(bio); 3510 } 3511 3512 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3513 { 3514 struct address_space *mapping = iocb->ki_filp->f_mapping; 3515 struct inode *inode = mapping->host; 3516 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3517 struct f2fs_inode_info *fi = F2FS_I(inode); 3518 size_t count = iov_iter_count(iter); 3519 loff_t offset = iocb->ki_pos; 3520 int rw = iov_iter_rw(iter); 3521 int err; 3522 enum rw_hint hint = iocb->ki_hint; 3523 int whint_mode = F2FS_OPTION(sbi).whint_mode; 3524 bool do_opu; 3525 3526 err = check_direct_IO(inode, iter, offset); 3527 if (err) 3528 return err < 0 ? err : 0; 3529 3530 if (f2fs_force_buffered_io(inode, iocb, iter)) 3531 return 0; 3532 3533 do_opu = allow_outplace_dio(inode, iocb, iter); 3534 3535 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 3536 3537 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 3538 iocb->ki_hint = WRITE_LIFE_NOT_SET; 3539 3540 if (iocb->ki_flags & IOCB_NOWAIT) { 3541 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 3542 iocb->ki_hint = hint; 3543 err = -EAGAIN; 3544 goto out; 3545 } 3546 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 3547 up_read(&fi->i_gc_rwsem[rw]); 3548 iocb->ki_hint = hint; 3549 err = -EAGAIN; 3550 goto out; 3551 } 3552 } else { 3553 down_read(&fi->i_gc_rwsem[rw]); 3554 if (do_opu) 3555 down_read(&fi->i_gc_rwsem[READ]); 3556 } 3557 3558 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3559 iter, rw == WRITE ? get_data_block_dio_write : 3560 get_data_block_dio, NULL, f2fs_dio_submit_bio, 3561 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES : 3562 DIO_SKIP_HOLES); 3563 3564 if (do_opu) 3565 up_read(&fi->i_gc_rwsem[READ]); 3566 3567 up_read(&fi->i_gc_rwsem[rw]); 3568 3569 if (rw == WRITE) { 3570 if (whint_mode == WHINT_MODE_OFF) 3571 iocb->ki_hint = hint; 3572 if (err > 0) { 3573 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3574 err); 3575 if (!do_opu) 3576 set_inode_flag(inode, FI_UPDATE_WRITE); 3577 } else if (err == -EIOCBQUEUED) { 3578 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3579 count - iov_iter_count(iter)); 3580 } else if (err < 0) { 3581 f2fs_write_failed(mapping, offset + count); 3582 } 3583 } else { 3584 if (err > 0) 3585 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err); 3586 else if (err == -EIOCBQUEUED) 3587 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO, 3588 count - iov_iter_count(iter)); 3589 } 3590 3591 out: 3592 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 3593 3594 return err; 3595 } 3596 3597 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3598 unsigned int length) 3599 { 3600 struct inode *inode = page->mapping->host; 3601 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3602 3603 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3604 (offset % PAGE_SIZE || length != PAGE_SIZE)) 3605 return; 3606 3607 if (PageDirty(page)) { 3608 if (inode->i_ino == F2FS_META_INO(sbi)) { 3609 dec_page_count(sbi, F2FS_DIRTY_META); 3610 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3611 dec_page_count(sbi, F2FS_DIRTY_NODES); 3612 } else { 3613 inode_dec_dirty_pages(inode); 3614 f2fs_remove_dirty_inode(inode); 3615 } 3616 } 3617 3618 clear_cold_data(page); 3619 3620 if (IS_ATOMIC_WRITTEN_PAGE(page)) 3621 return f2fs_drop_inmem_page(inode, page); 3622 3623 f2fs_clear_page_private(page); 3624 } 3625 3626 int f2fs_release_page(struct page *page, gfp_t wait) 3627 { 3628 /* If this is dirty page, keep PagePrivate */ 3629 if (PageDirty(page)) 3630 return 0; 3631 3632 /* This is atomic written page, keep Private */ 3633 if (IS_ATOMIC_WRITTEN_PAGE(page)) 3634 return 0; 3635 3636 clear_cold_data(page); 3637 f2fs_clear_page_private(page); 3638 return 1; 3639 } 3640 3641 static int f2fs_set_data_page_dirty(struct page *page) 3642 { 3643 struct inode *inode = page_file_mapping(page)->host; 3644 3645 trace_f2fs_set_page_dirty(page, DATA); 3646 3647 if (!PageUptodate(page)) 3648 SetPageUptodate(page); 3649 if (PageSwapCache(page)) 3650 return __set_page_dirty_nobuffers(page); 3651 3652 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 3653 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 3654 f2fs_register_inmem_page(inode, page); 3655 return 1; 3656 } 3657 /* 3658 * Previously, this page has been registered, we just 3659 * return here. 3660 */ 3661 return 0; 3662 } 3663 3664 if (!PageDirty(page)) { 3665 __set_page_dirty_nobuffers(page); 3666 f2fs_update_dirty_page(inode, page); 3667 return 1; 3668 } 3669 return 0; 3670 } 3671 3672 3673 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3674 { 3675 #ifdef CONFIG_F2FS_FS_COMPRESSION 3676 struct dnode_of_data dn; 3677 sector_t start_idx, blknr = 0; 3678 int ret; 3679 3680 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3681 3682 set_new_dnode(&dn, inode, NULL, NULL, 0); 3683 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3684 if (ret) 3685 return 0; 3686 3687 if (dn.data_blkaddr != COMPRESS_ADDR) { 3688 dn.ofs_in_node += block - start_idx; 3689 blknr = f2fs_data_blkaddr(&dn); 3690 if (!__is_valid_data_blkaddr(blknr)) 3691 blknr = 0; 3692 } 3693 3694 f2fs_put_dnode(&dn); 3695 return blknr; 3696 #else 3697 return 0; 3698 #endif 3699 } 3700 3701 3702 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3703 { 3704 struct inode *inode = mapping->host; 3705 sector_t blknr = 0; 3706 3707 if (f2fs_has_inline_data(inode)) 3708 goto out; 3709 3710 /* make sure allocating whole blocks */ 3711 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3712 filemap_write_and_wait(mapping); 3713 3714 /* Block number less than F2FS MAX BLOCKS */ 3715 if (unlikely(block >= max_file_blocks(inode))) 3716 goto out; 3717 3718 if (f2fs_compressed_file(inode)) { 3719 blknr = f2fs_bmap_compress(inode, block); 3720 } else { 3721 struct f2fs_map_blocks map; 3722 3723 memset(&map, 0, sizeof(map)); 3724 map.m_lblk = block; 3725 map.m_len = 1; 3726 map.m_next_pgofs = NULL; 3727 map.m_seg_type = NO_CHECK_TYPE; 3728 3729 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3730 blknr = map.m_pblk; 3731 } 3732 out: 3733 trace_f2fs_bmap(inode, block, blknr); 3734 return blknr; 3735 } 3736 3737 #ifdef CONFIG_MIGRATION 3738 #include <linux/migrate.h> 3739 3740 int f2fs_migrate_page(struct address_space *mapping, 3741 struct page *newpage, struct page *page, enum migrate_mode mode) 3742 { 3743 int rc, extra_count; 3744 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 3745 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 3746 3747 BUG_ON(PageWriteback(page)); 3748 3749 /* migrating an atomic written page is safe with the inmem_lock hold */ 3750 if (atomic_written) { 3751 if (mode != MIGRATE_SYNC) 3752 return -EBUSY; 3753 if (!mutex_trylock(&fi->inmem_lock)) 3754 return -EAGAIN; 3755 } 3756 3757 /* one extra reference was held for atomic_write page */ 3758 extra_count = atomic_written ? 1 : 0; 3759 rc = migrate_page_move_mapping(mapping, newpage, 3760 page, extra_count); 3761 if (rc != MIGRATEPAGE_SUCCESS) { 3762 if (atomic_written) 3763 mutex_unlock(&fi->inmem_lock); 3764 return rc; 3765 } 3766 3767 if (atomic_written) { 3768 struct inmem_pages *cur; 3769 3770 list_for_each_entry(cur, &fi->inmem_pages, list) 3771 if (cur->page == page) { 3772 cur->page = newpage; 3773 break; 3774 } 3775 mutex_unlock(&fi->inmem_lock); 3776 put_page(page); 3777 get_page(newpage); 3778 } 3779 3780 if (PagePrivate(page)) { 3781 f2fs_set_page_private(newpage, page_private(page)); 3782 f2fs_clear_page_private(page); 3783 } 3784 3785 if (mode != MIGRATE_SYNC_NO_COPY) 3786 migrate_page_copy(newpage, page); 3787 else 3788 migrate_page_states(newpage, page); 3789 3790 return MIGRATEPAGE_SUCCESS; 3791 } 3792 #endif 3793 3794 #ifdef CONFIG_SWAP 3795 static int f2fs_is_file_aligned(struct inode *inode) 3796 { 3797 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3798 block_t main_blkaddr = SM_I(sbi)->main_blkaddr; 3799 block_t cur_lblock; 3800 block_t last_lblock; 3801 block_t pblock; 3802 unsigned long nr_pblocks; 3803 unsigned int blocks_per_sec = BLKS_PER_SEC(sbi); 3804 int ret = 0; 3805 3806 cur_lblock = 0; 3807 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3808 3809 while (cur_lblock < last_lblock) { 3810 struct f2fs_map_blocks map; 3811 3812 memset(&map, 0, sizeof(map)); 3813 map.m_lblk = cur_lblock; 3814 map.m_len = last_lblock - cur_lblock; 3815 map.m_next_pgofs = NULL; 3816 map.m_next_extent = NULL; 3817 map.m_seg_type = NO_CHECK_TYPE; 3818 map.m_may_create = false; 3819 3820 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3821 if (ret) 3822 goto out; 3823 3824 /* hole */ 3825 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3826 f2fs_err(sbi, "Swapfile has holes\n"); 3827 ret = -ENOENT; 3828 goto out; 3829 } 3830 3831 pblock = map.m_pblk; 3832 nr_pblocks = map.m_len; 3833 3834 if ((pblock - main_blkaddr) & (blocks_per_sec - 1) || 3835 nr_pblocks & (blocks_per_sec - 1)) { 3836 f2fs_err(sbi, "Swapfile does not align to section"); 3837 ret = -EINVAL; 3838 goto out; 3839 } 3840 3841 cur_lblock += nr_pblocks; 3842 } 3843 out: 3844 return ret; 3845 } 3846 3847 static int check_swap_activate_fast(struct swap_info_struct *sis, 3848 struct file *swap_file, sector_t *span) 3849 { 3850 struct address_space *mapping = swap_file->f_mapping; 3851 struct inode *inode = mapping->host; 3852 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3853 sector_t cur_lblock; 3854 sector_t last_lblock; 3855 sector_t pblock; 3856 sector_t lowest_pblock = -1; 3857 sector_t highest_pblock = 0; 3858 int nr_extents = 0; 3859 unsigned long nr_pblocks; 3860 unsigned int blocks_per_sec = BLKS_PER_SEC(sbi); 3861 int ret = 0; 3862 3863 /* 3864 * Map all the blocks into the extent list. This code doesn't try 3865 * to be very smart. 3866 */ 3867 cur_lblock = 0; 3868 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3869 3870 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3871 struct f2fs_map_blocks map; 3872 3873 cond_resched(); 3874 3875 memset(&map, 0, sizeof(map)); 3876 map.m_lblk = cur_lblock; 3877 map.m_len = last_lblock - cur_lblock; 3878 map.m_next_pgofs = NULL; 3879 map.m_next_extent = NULL; 3880 map.m_seg_type = NO_CHECK_TYPE; 3881 map.m_may_create = false; 3882 3883 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3884 if (ret) 3885 goto out; 3886 3887 /* hole */ 3888 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3889 f2fs_err(sbi, "Swapfile has holes\n"); 3890 ret = -ENOENT; 3891 goto out; 3892 } 3893 3894 pblock = map.m_pblk; 3895 nr_pblocks = map.m_len; 3896 3897 if ((pblock - SM_I(sbi)->main_blkaddr) & (blocks_per_sec - 1) || 3898 nr_pblocks & (blocks_per_sec - 1)) { 3899 f2fs_err(sbi, "Swapfile does not align to section"); 3900 ret = -EINVAL; 3901 goto out; 3902 } 3903 3904 if (cur_lblock + nr_pblocks >= sis->max) 3905 nr_pblocks = sis->max - cur_lblock; 3906 3907 if (cur_lblock) { /* exclude the header page */ 3908 if (pblock < lowest_pblock) 3909 lowest_pblock = pblock; 3910 if (pblock + nr_pblocks - 1 > highest_pblock) 3911 highest_pblock = pblock + nr_pblocks - 1; 3912 } 3913 3914 /* 3915 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3916 */ 3917 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3918 if (ret < 0) 3919 goto out; 3920 nr_extents += ret; 3921 cur_lblock += nr_pblocks; 3922 } 3923 ret = nr_extents; 3924 *span = 1 + highest_pblock - lowest_pblock; 3925 if (cur_lblock == 0) 3926 cur_lblock = 1; /* force Empty message */ 3927 sis->max = cur_lblock; 3928 sis->pages = cur_lblock - 1; 3929 sis->highest_bit = cur_lblock - 1; 3930 out: 3931 return ret; 3932 } 3933 3934 /* Copied from generic_swapfile_activate() to check any holes */ 3935 static int check_swap_activate(struct swap_info_struct *sis, 3936 struct file *swap_file, sector_t *span) 3937 { 3938 struct address_space *mapping = swap_file->f_mapping; 3939 struct inode *inode = mapping->host; 3940 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3941 unsigned blocks_per_page; 3942 unsigned long page_no; 3943 sector_t probe_block; 3944 sector_t last_block; 3945 sector_t lowest_block = -1; 3946 sector_t highest_block = 0; 3947 int nr_extents = 0; 3948 int ret = 0; 3949 3950 if (PAGE_SIZE == F2FS_BLKSIZE) 3951 return check_swap_activate_fast(sis, swap_file, span); 3952 3953 ret = f2fs_is_file_aligned(inode); 3954 if (ret) 3955 goto out; 3956 3957 blocks_per_page = bytes_to_blks(inode, PAGE_SIZE); 3958 3959 /* 3960 * Map all the blocks into the extent list. This code doesn't try 3961 * to be very smart. 3962 */ 3963 probe_block = 0; 3964 page_no = 0; 3965 last_block = bytes_to_blks(inode, i_size_read(inode)); 3966 while ((probe_block + blocks_per_page) <= last_block && 3967 page_no < sis->max) { 3968 unsigned block_in_page; 3969 sector_t first_block; 3970 sector_t block = 0; 3971 3972 cond_resched(); 3973 3974 block = probe_block; 3975 ret = bmap(inode, &block); 3976 if (ret) 3977 goto out; 3978 if (!block) 3979 goto bad_bmap; 3980 first_block = block; 3981 3982 /* 3983 * It must be PAGE_SIZE aligned on-disk 3984 */ 3985 if (first_block & (blocks_per_page - 1)) { 3986 probe_block++; 3987 goto reprobe; 3988 } 3989 3990 for (block_in_page = 1; block_in_page < blocks_per_page; 3991 block_in_page++) { 3992 3993 block = probe_block + block_in_page; 3994 ret = bmap(inode, &block); 3995 if (ret) 3996 goto out; 3997 if (!block) 3998 goto bad_bmap; 3999 4000 if (block != first_block + block_in_page) { 4001 /* Discontiguity */ 4002 probe_block++; 4003 goto reprobe; 4004 } 4005 } 4006 4007 first_block >>= (PAGE_SHIFT - inode->i_blkbits); 4008 if (page_no) { /* exclude the header page */ 4009 if (first_block < lowest_block) 4010 lowest_block = first_block; 4011 if (first_block > highest_block) 4012 highest_block = first_block; 4013 } 4014 4015 /* 4016 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 4017 */ 4018 ret = add_swap_extent(sis, page_no, 1, first_block); 4019 if (ret < 0) 4020 goto out; 4021 nr_extents += ret; 4022 page_no++; 4023 probe_block += blocks_per_page; 4024 reprobe: 4025 continue; 4026 } 4027 ret = nr_extents; 4028 *span = 1 + highest_block - lowest_block; 4029 if (page_no == 0) 4030 page_no = 1; /* force Empty message */ 4031 sis->max = page_no; 4032 sis->pages = page_no - 1; 4033 sis->highest_bit = page_no - 1; 4034 out: 4035 return ret; 4036 bad_bmap: 4037 f2fs_err(sbi, "Swapfile has holes\n"); 4038 return -ENOENT; 4039 } 4040 4041 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4042 sector_t *span) 4043 { 4044 struct inode *inode = file_inode(file); 4045 int ret; 4046 4047 if (!S_ISREG(inode->i_mode)) 4048 return -EINVAL; 4049 4050 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 4051 return -EROFS; 4052 4053 ret = f2fs_convert_inline_inode(inode); 4054 if (ret) 4055 return ret; 4056 4057 if (!f2fs_disable_compressed_file(inode)) 4058 return -EINVAL; 4059 4060 f2fs_precache_extents(inode); 4061 4062 ret = check_swap_activate(sis, file, span); 4063 if (ret < 0) 4064 return ret; 4065 4066 set_inode_flag(inode, FI_PIN_FILE); 4067 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 4068 return ret; 4069 } 4070 4071 static void f2fs_swap_deactivate(struct file *file) 4072 { 4073 struct inode *inode = file_inode(file); 4074 4075 clear_inode_flag(inode, FI_PIN_FILE); 4076 } 4077 #else 4078 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4079 sector_t *span) 4080 { 4081 return -EOPNOTSUPP; 4082 } 4083 4084 static void f2fs_swap_deactivate(struct file *file) 4085 { 4086 } 4087 #endif 4088 4089 const struct address_space_operations f2fs_dblock_aops = { 4090 .readpage = f2fs_read_data_page, 4091 .readahead = f2fs_readahead, 4092 .writepage = f2fs_write_data_page, 4093 .writepages = f2fs_write_data_pages, 4094 .write_begin = f2fs_write_begin, 4095 .write_end = f2fs_write_end, 4096 .set_page_dirty = f2fs_set_data_page_dirty, 4097 .invalidatepage = f2fs_invalidate_page, 4098 .releasepage = f2fs_release_page, 4099 .direct_IO = f2fs_direct_IO, 4100 .bmap = f2fs_bmap, 4101 .swap_activate = f2fs_swap_activate, 4102 .swap_deactivate = f2fs_swap_deactivate, 4103 #ifdef CONFIG_MIGRATION 4104 .migratepage = f2fs_migrate_page, 4105 #endif 4106 }; 4107 4108 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4109 { 4110 struct address_space *mapping = page_mapping(page); 4111 unsigned long flags; 4112 4113 xa_lock_irqsave(&mapping->i_pages, flags); 4114 __xa_clear_mark(&mapping->i_pages, page_index(page), 4115 PAGECACHE_TAG_DIRTY); 4116 xa_unlock_irqrestore(&mapping->i_pages, flags); 4117 } 4118 4119 int __init f2fs_init_post_read_processing(void) 4120 { 4121 bio_post_read_ctx_cache = 4122 kmem_cache_create("f2fs_bio_post_read_ctx", 4123 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4124 if (!bio_post_read_ctx_cache) 4125 goto fail; 4126 bio_post_read_ctx_pool = 4127 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4128 bio_post_read_ctx_cache); 4129 if (!bio_post_read_ctx_pool) 4130 goto fail_free_cache; 4131 return 0; 4132 4133 fail_free_cache: 4134 kmem_cache_destroy(bio_post_read_ctx_cache); 4135 fail: 4136 return -ENOMEM; 4137 } 4138 4139 void f2fs_destroy_post_read_processing(void) 4140 { 4141 mempool_destroy(bio_post_read_ctx_pool); 4142 kmem_cache_destroy(bio_post_read_ctx_cache); 4143 } 4144 4145 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4146 { 4147 if (!f2fs_sb_has_encrypt(sbi) && 4148 !f2fs_sb_has_verity(sbi) && 4149 !f2fs_sb_has_compression(sbi)) 4150 return 0; 4151 4152 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4153 WQ_UNBOUND | WQ_HIGHPRI, 4154 num_online_cpus()); 4155 if (!sbi->post_read_wq) 4156 return -ENOMEM; 4157 return 0; 4158 } 4159 4160 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4161 { 4162 if (sbi->post_read_wq) 4163 destroy_workqueue(sbi->post_read_wq); 4164 } 4165 4166 int __init f2fs_init_bio_entry_cache(void) 4167 { 4168 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4169 sizeof(struct bio_entry)); 4170 if (!bio_entry_slab) 4171 return -ENOMEM; 4172 return 0; 4173 } 4174 4175 void f2fs_destroy_bio_entry_cache(void) 4176 { 4177 kmem_cache_destroy(bio_entry_slab); 4178 } 4179