xref: /openbmc/linux/fs/f2fs/data.c (revision cff11abeca78aa782378401ca2800bd2194aa14e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29 
30 #define NUM_PREALLOC_POST_READ_CTXS	128
31 
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36 
37 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
38 
39 int __init f2fs_init_bioset(void)
40 {
41 	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 					0, BIOSET_NEED_BVECS))
43 		return -ENOMEM;
44 	return 0;
45 }
46 
47 void f2fs_destroy_bioset(void)
48 {
49 	bioset_exit(&f2fs_bioset);
50 }
51 
52 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
53 						unsigned int nr_iovecs)
54 {
55 	return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
56 }
57 
58 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
59 {
60 	if (noio) {
61 		/* No failure on bio allocation */
62 		return __f2fs_bio_alloc(GFP_NOIO, npages);
63 	}
64 
65 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
66 		f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
67 		return NULL;
68 	}
69 
70 	return __f2fs_bio_alloc(GFP_KERNEL, npages);
71 }
72 
73 static bool __is_cp_guaranteed(struct page *page)
74 {
75 	struct address_space *mapping = page->mapping;
76 	struct inode *inode;
77 	struct f2fs_sb_info *sbi;
78 
79 	if (!mapping)
80 		return false;
81 
82 	if (f2fs_is_compressed_page(page))
83 		return false;
84 
85 	inode = mapping->host;
86 	sbi = F2FS_I_SB(inode);
87 
88 	if (inode->i_ino == F2FS_META_INO(sbi) ||
89 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
90 			S_ISDIR(inode->i_mode) ||
91 			(S_ISREG(inode->i_mode) &&
92 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
93 			is_cold_data(page))
94 		return true;
95 	return false;
96 }
97 
98 static enum count_type __read_io_type(struct page *page)
99 {
100 	struct address_space *mapping = page_file_mapping(page);
101 
102 	if (mapping) {
103 		struct inode *inode = mapping->host;
104 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
105 
106 		if (inode->i_ino == F2FS_META_INO(sbi))
107 			return F2FS_RD_META;
108 
109 		if (inode->i_ino == F2FS_NODE_INO(sbi))
110 			return F2FS_RD_NODE;
111 	}
112 	return F2FS_RD_DATA;
113 }
114 
115 /* postprocessing steps for read bios */
116 enum bio_post_read_step {
117 	STEP_DECRYPT,
118 	STEP_DECOMPRESS,
119 	STEP_VERITY,
120 };
121 
122 struct bio_post_read_ctx {
123 	struct bio *bio;
124 	struct f2fs_sb_info *sbi;
125 	struct work_struct work;
126 	unsigned int enabled_steps;
127 };
128 
129 static void __read_end_io(struct bio *bio, bool compr, bool verity)
130 {
131 	struct page *page;
132 	struct bio_vec *bv;
133 	struct bvec_iter_all iter_all;
134 
135 	bio_for_each_segment_all(bv, bio, iter_all) {
136 		page = bv->bv_page;
137 
138 #ifdef CONFIG_F2FS_FS_COMPRESSION
139 		if (compr && f2fs_is_compressed_page(page)) {
140 			f2fs_decompress_pages(bio, page, verity);
141 			continue;
142 		}
143 		if (verity)
144 			continue;
145 #endif
146 
147 		/* PG_error was set if any post_read step failed */
148 		if (bio->bi_status || PageError(page)) {
149 			ClearPageUptodate(page);
150 			/* will re-read again later */
151 			ClearPageError(page);
152 		} else {
153 			SetPageUptodate(page);
154 		}
155 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
156 		unlock_page(page);
157 	}
158 }
159 
160 static void f2fs_release_read_bio(struct bio *bio);
161 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
162 {
163 	if (!compr)
164 		__read_end_io(bio, false, verity);
165 	f2fs_release_read_bio(bio);
166 }
167 
168 static void f2fs_decompress_bio(struct bio *bio, bool verity)
169 {
170 	__read_end_io(bio, true, verity);
171 }
172 
173 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
174 
175 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
176 {
177 	fscrypt_decrypt_bio(ctx->bio);
178 }
179 
180 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
181 {
182 	f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
183 }
184 
185 #ifdef CONFIG_F2FS_FS_COMPRESSION
186 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
187 {
188 	f2fs_decompress_end_io(rpages, cluster_size, false, true);
189 }
190 
191 static void f2fs_verify_bio(struct bio *bio)
192 {
193 	struct bio_vec *bv;
194 	struct bvec_iter_all iter_all;
195 
196 	bio_for_each_segment_all(bv, bio, iter_all) {
197 		struct page *page = bv->bv_page;
198 		struct decompress_io_ctx *dic;
199 
200 		dic = (struct decompress_io_ctx *)page_private(page);
201 
202 		if (dic) {
203 			if (refcount_dec_not_one(&dic->ref))
204 				continue;
205 			f2fs_verify_pages(dic->rpages,
206 						dic->cluster_size);
207 			f2fs_free_dic(dic);
208 			continue;
209 		}
210 
211 		if (bio->bi_status || PageError(page))
212 			goto clear_uptodate;
213 
214 		if (fsverity_verify_page(page)) {
215 			SetPageUptodate(page);
216 			goto unlock;
217 		}
218 clear_uptodate:
219 		ClearPageUptodate(page);
220 		ClearPageError(page);
221 unlock:
222 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
223 		unlock_page(page);
224 	}
225 }
226 #endif
227 
228 static void f2fs_verity_work(struct work_struct *work)
229 {
230 	struct bio_post_read_ctx *ctx =
231 		container_of(work, struct bio_post_read_ctx, work);
232 	struct bio *bio = ctx->bio;
233 #ifdef CONFIG_F2FS_FS_COMPRESSION
234 	unsigned int enabled_steps = ctx->enabled_steps;
235 #endif
236 
237 	/*
238 	 * fsverity_verify_bio() may call readpages() again, and while verity
239 	 * will be disabled for this, decryption may still be needed, resulting
240 	 * in another bio_post_read_ctx being allocated.  So to prevent
241 	 * deadlocks we need to release the current ctx to the mempool first.
242 	 * This assumes that verity is the last post-read step.
243 	 */
244 	mempool_free(ctx, bio_post_read_ctx_pool);
245 	bio->bi_private = NULL;
246 
247 #ifdef CONFIG_F2FS_FS_COMPRESSION
248 	/* previous step is decompression */
249 	if (enabled_steps & (1 << STEP_DECOMPRESS)) {
250 		f2fs_verify_bio(bio);
251 		f2fs_release_read_bio(bio);
252 		return;
253 	}
254 #endif
255 
256 	fsverity_verify_bio(bio);
257 	__f2fs_read_end_io(bio, false, false);
258 }
259 
260 static void f2fs_post_read_work(struct work_struct *work)
261 {
262 	struct bio_post_read_ctx *ctx =
263 		container_of(work, struct bio_post_read_ctx, work);
264 
265 	if (ctx->enabled_steps & (1 << STEP_DECRYPT))
266 		f2fs_decrypt_work(ctx);
267 
268 	if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
269 		f2fs_decompress_work(ctx);
270 
271 	if (ctx->enabled_steps & (1 << STEP_VERITY)) {
272 		INIT_WORK(&ctx->work, f2fs_verity_work);
273 		fsverity_enqueue_verify_work(&ctx->work);
274 		return;
275 	}
276 
277 	__f2fs_read_end_io(ctx->bio,
278 		ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
279 }
280 
281 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
282 						struct work_struct *work)
283 {
284 	queue_work(sbi->post_read_wq, work);
285 }
286 
287 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
288 {
289 	/*
290 	 * We use different work queues for decryption and for verity because
291 	 * verity may require reading metadata pages that need decryption, and
292 	 * we shouldn't recurse to the same workqueue.
293 	 */
294 
295 	if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
296 		ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
297 		INIT_WORK(&ctx->work, f2fs_post_read_work);
298 		f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
299 		return;
300 	}
301 
302 	if (ctx->enabled_steps & (1 << STEP_VERITY)) {
303 		INIT_WORK(&ctx->work, f2fs_verity_work);
304 		fsverity_enqueue_verify_work(&ctx->work);
305 		return;
306 	}
307 
308 	__f2fs_read_end_io(ctx->bio, false, false);
309 }
310 
311 static bool f2fs_bio_post_read_required(struct bio *bio)
312 {
313 	return bio->bi_private;
314 }
315 
316 static void f2fs_read_end_io(struct bio *bio)
317 {
318 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
319 
320 	if (time_to_inject(sbi, FAULT_READ_IO)) {
321 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
322 		bio->bi_status = BLK_STS_IOERR;
323 	}
324 
325 	if (f2fs_bio_post_read_required(bio)) {
326 		struct bio_post_read_ctx *ctx = bio->bi_private;
327 
328 		bio_post_read_processing(ctx);
329 		return;
330 	}
331 
332 	__f2fs_read_end_io(bio, false, false);
333 }
334 
335 static void f2fs_write_end_io(struct bio *bio)
336 {
337 	struct f2fs_sb_info *sbi = bio->bi_private;
338 	struct bio_vec *bvec;
339 	struct bvec_iter_all iter_all;
340 
341 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
342 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
343 		bio->bi_status = BLK_STS_IOERR;
344 	}
345 
346 	bio_for_each_segment_all(bvec, bio, iter_all) {
347 		struct page *page = bvec->bv_page;
348 		enum count_type type = WB_DATA_TYPE(page);
349 
350 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
351 			set_page_private(page, (unsigned long)NULL);
352 			ClearPagePrivate(page);
353 			unlock_page(page);
354 			mempool_free(page, sbi->write_io_dummy);
355 
356 			if (unlikely(bio->bi_status))
357 				f2fs_stop_checkpoint(sbi, true);
358 			continue;
359 		}
360 
361 		fscrypt_finalize_bounce_page(&page);
362 
363 #ifdef CONFIG_F2FS_FS_COMPRESSION
364 		if (f2fs_is_compressed_page(page)) {
365 			f2fs_compress_write_end_io(bio, page);
366 			continue;
367 		}
368 #endif
369 
370 		if (unlikely(bio->bi_status)) {
371 			mapping_set_error(page->mapping, -EIO);
372 			if (type == F2FS_WB_CP_DATA)
373 				f2fs_stop_checkpoint(sbi, true);
374 		}
375 
376 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
377 					page->index != nid_of_node(page));
378 
379 		dec_page_count(sbi, type);
380 		if (f2fs_in_warm_node_list(sbi, page))
381 			f2fs_del_fsync_node_entry(sbi, page);
382 		clear_cold_data(page);
383 		end_page_writeback(page);
384 	}
385 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
386 				wq_has_sleeper(&sbi->cp_wait))
387 		wake_up(&sbi->cp_wait);
388 
389 	bio_put(bio);
390 }
391 
392 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
393 				block_t blk_addr, struct bio *bio)
394 {
395 	struct block_device *bdev = sbi->sb->s_bdev;
396 	int i;
397 
398 	if (f2fs_is_multi_device(sbi)) {
399 		for (i = 0; i < sbi->s_ndevs; i++) {
400 			if (FDEV(i).start_blk <= blk_addr &&
401 			    FDEV(i).end_blk >= blk_addr) {
402 				blk_addr -= FDEV(i).start_blk;
403 				bdev = FDEV(i).bdev;
404 				break;
405 			}
406 		}
407 	}
408 	if (bio) {
409 		bio_set_dev(bio, bdev);
410 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
411 	}
412 	return bdev;
413 }
414 
415 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
416 {
417 	int i;
418 
419 	if (!f2fs_is_multi_device(sbi))
420 		return 0;
421 
422 	for (i = 0; i < sbi->s_ndevs; i++)
423 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
424 			return i;
425 	return 0;
426 }
427 
428 /*
429  * Return true, if pre_bio's bdev is same as its target device.
430  */
431 static bool __same_bdev(struct f2fs_sb_info *sbi,
432 				block_t blk_addr, struct bio *bio)
433 {
434 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
435 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
436 }
437 
438 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
439 {
440 	struct f2fs_sb_info *sbi = fio->sbi;
441 	struct bio *bio;
442 
443 	bio = f2fs_bio_alloc(sbi, npages, true);
444 
445 	f2fs_target_device(sbi, fio->new_blkaddr, bio);
446 	if (is_read_io(fio->op)) {
447 		bio->bi_end_io = f2fs_read_end_io;
448 		bio->bi_private = NULL;
449 	} else {
450 		bio->bi_end_io = f2fs_write_end_io;
451 		bio->bi_private = sbi;
452 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
453 						fio->type, fio->temp);
454 	}
455 	if (fio->io_wbc)
456 		wbc_init_bio(fio->io_wbc, bio);
457 
458 	return bio;
459 }
460 
461 static inline void __submit_bio(struct f2fs_sb_info *sbi,
462 				struct bio *bio, enum page_type type)
463 {
464 	if (!is_read_io(bio_op(bio))) {
465 		unsigned int start;
466 
467 		if (type != DATA && type != NODE)
468 			goto submit_io;
469 
470 		if (f2fs_lfs_mode(sbi) && current->plug)
471 			blk_finish_plug(current->plug);
472 
473 		if (F2FS_IO_ALIGNED(sbi))
474 			goto submit_io;
475 
476 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
477 		start %= F2FS_IO_SIZE(sbi);
478 
479 		if (start == 0)
480 			goto submit_io;
481 
482 		/* fill dummy pages */
483 		for (; start < F2FS_IO_SIZE(sbi); start++) {
484 			struct page *page =
485 				mempool_alloc(sbi->write_io_dummy,
486 					      GFP_NOIO | __GFP_NOFAIL);
487 			f2fs_bug_on(sbi, !page);
488 
489 			zero_user_segment(page, 0, PAGE_SIZE);
490 			SetPagePrivate(page);
491 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
492 			lock_page(page);
493 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
494 				f2fs_bug_on(sbi, 1);
495 		}
496 		/*
497 		 * In the NODE case, we lose next block address chain. So, we
498 		 * need to do checkpoint in f2fs_sync_file.
499 		 */
500 		if (type == NODE)
501 			set_sbi_flag(sbi, SBI_NEED_CP);
502 	}
503 submit_io:
504 	if (is_read_io(bio_op(bio)))
505 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
506 	else
507 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
508 	submit_bio(bio);
509 }
510 
511 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
512 				struct bio *bio, enum page_type type)
513 {
514 	__submit_bio(sbi, bio, type);
515 }
516 
517 static void __submit_merged_bio(struct f2fs_bio_info *io)
518 {
519 	struct f2fs_io_info *fio = &io->fio;
520 
521 	if (!io->bio)
522 		return;
523 
524 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
525 
526 	if (is_read_io(fio->op))
527 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
528 	else
529 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
530 
531 	__submit_bio(io->sbi, io->bio, fio->type);
532 	io->bio = NULL;
533 }
534 
535 static bool __has_merged_page(struct bio *bio, struct inode *inode,
536 						struct page *page, nid_t ino)
537 {
538 	struct bio_vec *bvec;
539 	struct bvec_iter_all iter_all;
540 
541 	if (!bio)
542 		return false;
543 
544 	if (!inode && !page && !ino)
545 		return true;
546 
547 	bio_for_each_segment_all(bvec, bio, iter_all) {
548 		struct page *target = bvec->bv_page;
549 
550 		if (fscrypt_is_bounce_page(target)) {
551 			target = fscrypt_pagecache_page(target);
552 			if (IS_ERR(target))
553 				continue;
554 		}
555 		if (f2fs_is_compressed_page(target)) {
556 			target = f2fs_compress_control_page(target);
557 			if (IS_ERR(target))
558 				continue;
559 		}
560 
561 		if (inode && inode == target->mapping->host)
562 			return true;
563 		if (page && page == target)
564 			return true;
565 		if (ino && ino == ino_of_node(target))
566 			return true;
567 	}
568 
569 	return false;
570 }
571 
572 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
573 				enum page_type type, enum temp_type temp)
574 {
575 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
576 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
577 
578 	down_write(&io->io_rwsem);
579 
580 	/* change META to META_FLUSH in the checkpoint procedure */
581 	if (type >= META_FLUSH) {
582 		io->fio.type = META_FLUSH;
583 		io->fio.op = REQ_OP_WRITE;
584 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
585 		if (!test_opt(sbi, NOBARRIER))
586 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
587 	}
588 	__submit_merged_bio(io);
589 	up_write(&io->io_rwsem);
590 }
591 
592 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
593 				struct inode *inode, struct page *page,
594 				nid_t ino, enum page_type type, bool force)
595 {
596 	enum temp_type temp;
597 	bool ret = true;
598 
599 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
600 		if (!force)	{
601 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
602 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
603 
604 			down_read(&io->io_rwsem);
605 			ret = __has_merged_page(io->bio, inode, page, ino);
606 			up_read(&io->io_rwsem);
607 		}
608 		if (ret)
609 			__f2fs_submit_merged_write(sbi, type, temp);
610 
611 		/* TODO: use HOT temp only for meta pages now. */
612 		if (type >= META)
613 			break;
614 	}
615 }
616 
617 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
618 {
619 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
620 }
621 
622 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
623 				struct inode *inode, struct page *page,
624 				nid_t ino, enum page_type type)
625 {
626 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
627 }
628 
629 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
630 {
631 	f2fs_submit_merged_write(sbi, DATA);
632 	f2fs_submit_merged_write(sbi, NODE);
633 	f2fs_submit_merged_write(sbi, META);
634 }
635 
636 /*
637  * Fill the locked page with data located in the block address.
638  * A caller needs to unlock the page on failure.
639  */
640 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
641 {
642 	struct bio *bio;
643 	struct page *page = fio->encrypted_page ?
644 			fio->encrypted_page : fio->page;
645 
646 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
647 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
648 			META_GENERIC : DATA_GENERIC_ENHANCE)))
649 		return -EFSCORRUPTED;
650 
651 	trace_f2fs_submit_page_bio(page, fio);
652 	f2fs_trace_ios(fio, 0);
653 
654 	/* Allocate a new bio */
655 	bio = __bio_alloc(fio, 1);
656 
657 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
658 		bio_put(bio);
659 		return -EFAULT;
660 	}
661 
662 	if (fio->io_wbc && !is_read_io(fio->op))
663 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
664 
665 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
666 
667 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
668 			__read_io_type(page): WB_DATA_TYPE(fio->page));
669 
670 	__submit_bio(fio->sbi, bio, fio->type);
671 	return 0;
672 }
673 
674 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
675 				block_t last_blkaddr, block_t cur_blkaddr)
676 {
677 	if (last_blkaddr + 1 != cur_blkaddr)
678 		return false;
679 	return __same_bdev(sbi, cur_blkaddr, bio);
680 }
681 
682 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
683 						struct f2fs_io_info *fio)
684 {
685 	if (io->fio.op != fio->op)
686 		return false;
687 	return io->fio.op_flags == fio->op_flags;
688 }
689 
690 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
691 					struct f2fs_bio_info *io,
692 					struct f2fs_io_info *fio,
693 					block_t last_blkaddr,
694 					block_t cur_blkaddr)
695 {
696 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
697 		unsigned int filled_blocks =
698 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
699 		unsigned int io_size = F2FS_IO_SIZE(sbi);
700 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
701 
702 		/* IOs in bio is aligned and left space of vectors is not enough */
703 		if (!(filled_blocks % io_size) && left_vecs < io_size)
704 			return false;
705 	}
706 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
707 		return false;
708 	return io_type_is_mergeable(io, fio);
709 }
710 
711 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
712 				struct page *page, enum temp_type temp)
713 {
714 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
715 	struct bio_entry *be;
716 
717 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
718 	be->bio = bio;
719 	bio_get(bio);
720 
721 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
722 		f2fs_bug_on(sbi, 1);
723 
724 	down_write(&io->bio_list_lock);
725 	list_add_tail(&be->list, &io->bio_list);
726 	up_write(&io->bio_list_lock);
727 }
728 
729 static void del_bio_entry(struct bio_entry *be)
730 {
731 	list_del(&be->list);
732 	kmem_cache_free(bio_entry_slab, be);
733 }
734 
735 static int add_ipu_page(struct f2fs_sb_info *sbi, struct bio **bio,
736 							struct page *page)
737 {
738 	enum temp_type temp;
739 	bool found = false;
740 	int ret = -EAGAIN;
741 
742 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
743 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
744 		struct list_head *head = &io->bio_list;
745 		struct bio_entry *be;
746 
747 		down_write(&io->bio_list_lock);
748 		list_for_each_entry(be, head, list) {
749 			if (be->bio != *bio)
750 				continue;
751 
752 			found = true;
753 
754 			if (bio_add_page(*bio, page, PAGE_SIZE, 0) ==
755 							PAGE_SIZE) {
756 				ret = 0;
757 				break;
758 			}
759 
760 			/* bio is full */
761 			del_bio_entry(be);
762 			__submit_bio(sbi, *bio, DATA);
763 			break;
764 		}
765 		up_write(&io->bio_list_lock);
766 	}
767 
768 	if (ret) {
769 		bio_put(*bio);
770 		*bio = NULL;
771 	}
772 
773 	return ret;
774 }
775 
776 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
777 					struct bio **bio, struct page *page)
778 {
779 	enum temp_type temp;
780 	bool found = false;
781 	struct bio *target = bio ? *bio : NULL;
782 
783 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
784 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
785 		struct list_head *head = &io->bio_list;
786 		struct bio_entry *be;
787 
788 		if (list_empty(head))
789 			continue;
790 
791 		down_read(&io->bio_list_lock);
792 		list_for_each_entry(be, head, list) {
793 			if (target)
794 				found = (target == be->bio);
795 			else
796 				found = __has_merged_page(be->bio, NULL,
797 								page, 0);
798 			if (found)
799 				break;
800 		}
801 		up_read(&io->bio_list_lock);
802 
803 		if (!found)
804 			continue;
805 
806 		found = false;
807 
808 		down_write(&io->bio_list_lock);
809 		list_for_each_entry(be, head, list) {
810 			if (target)
811 				found = (target == be->bio);
812 			else
813 				found = __has_merged_page(be->bio, NULL,
814 								page, 0);
815 			if (found) {
816 				target = be->bio;
817 				del_bio_entry(be);
818 				break;
819 			}
820 		}
821 		up_write(&io->bio_list_lock);
822 	}
823 
824 	if (found)
825 		__submit_bio(sbi, target, DATA);
826 	if (bio && *bio) {
827 		bio_put(*bio);
828 		*bio = NULL;
829 	}
830 }
831 
832 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
833 {
834 	struct bio *bio = *fio->bio;
835 	struct page *page = fio->encrypted_page ?
836 			fio->encrypted_page : fio->page;
837 
838 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
839 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
840 		return -EFSCORRUPTED;
841 
842 	trace_f2fs_submit_page_bio(page, fio);
843 	f2fs_trace_ios(fio, 0);
844 
845 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
846 						fio->new_blkaddr))
847 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
848 alloc_new:
849 	if (!bio) {
850 		bio = __bio_alloc(fio, BIO_MAX_PAGES);
851 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
852 
853 		add_bio_entry(fio->sbi, bio, page, fio->temp);
854 	} else {
855 		if (add_ipu_page(fio->sbi, &bio, page))
856 			goto alloc_new;
857 	}
858 
859 	if (fio->io_wbc)
860 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
861 
862 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
863 
864 	*fio->last_block = fio->new_blkaddr;
865 	*fio->bio = bio;
866 
867 	return 0;
868 }
869 
870 void f2fs_submit_page_write(struct f2fs_io_info *fio)
871 {
872 	struct f2fs_sb_info *sbi = fio->sbi;
873 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
874 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
875 	struct page *bio_page;
876 
877 	f2fs_bug_on(sbi, is_read_io(fio->op));
878 
879 	down_write(&io->io_rwsem);
880 next:
881 	if (fio->in_list) {
882 		spin_lock(&io->io_lock);
883 		if (list_empty(&io->io_list)) {
884 			spin_unlock(&io->io_lock);
885 			goto out;
886 		}
887 		fio = list_first_entry(&io->io_list,
888 						struct f2fs_io_info, list);
889 		list_del(&fio->list);
890 		spin_unlock(&io->io_lock);
891 	}
892 
893 	verify_fio_blkaddr(fio);
894 
895 	if (fio->encrypted_page)
896 		bio_page = fio->encrypted_page;
897 	else if (fio->compressed_page)
898 		bio_page = fio->compressed_page;
899 	else
900 		bio_page = fio->page;
901 
902 	/* set submitted = true as a return value */
903 	fio->submitted = true;
904 
905 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
906 
907 	if (io->bio && !io_is_mergeable(sbi, io->bio, io, fio,
908 			io->last_block_in_bio, fio->new_blkaddr))
909 		__submit_merged_bio(io);
910 alloc_new:
911 	if (io->bio == NULL) {
912 		if (F2FS_IO_ALIGNED(sbi) &&
913 				(fio->type == DATA || fio->type == NODE) &&
914 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
915 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
916 			fio->retry = true;
917 			goto skip;
918 		}
919 		io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
920 		io->fio = *fio;
921 	}
922 
923 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
924 		__submit_merged_bio(io);
925 		goto alloc_new;
926 	}
927 
928 	if (fio->io_wbc)
929 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
930 
931 	io->last_block_in_bio = fio->new_blkaddr;
932 	f2fs_trace_ios(fio, 0);
933 
934 	trace_f2fs_submit_page_write(fio->page, fio);
935 skip:
936 	if (fio->in_list)
937 		goto next;
938 out:
939 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
940 				!f2fs_is_checkpoint_ready(sbi))
941 		__submit_merged_bio(io);
942 	up_write(&io->io_rwsem);
943 }
944 
945 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
946 {
947 	return fsverity_active(inode) &&
948 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
949 }
950 
951 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
952 				      unsigned nr_pages, unsigned op_flag,
953 				      pgoff_t first_idx, bool for_write)
954 {
955 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
956 	struct bio *bio;
957 	struct bio_post_read_ctx *ctx;
958 	unsigned int post_read_steps = 0;
959 
960 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
961 								for_write);
962 	if (!bio)
963 		return ERR_PTR(-ENOMEM);
964 	f2fs_target_device(sbi, blkaddr, bio);
965 	bio->bi_end_io = f2fs_read_end_io;
966 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
967 
968 	if (f2fs_encrypted_file(inode))
969 		post_read_steps |= 1 << STEP_DECRYPT;
970 	if (f2fs_compressed_file(inode))
971 		post_read_steps |= 1 << STEP_DECOMPRESS;
972 	if (f2fs_need_verity(inode, first_idx))
973 		post_read_steps |= 1 << STEP_VERITY;
974 
975 	if (post_read_steps) {
976 		/* Due to the mempool, this never fails. */
977 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
978 		ctx->bio = bio;
979 		ctx->sbi = sbi;
980 		ctx->enabled_steps = post_read_steps;
981 		bio->bi_private = ctx;
982 	}
983 
984 	return bio;
985 }
986 
987 static void f2fs_release_read_bio(struct bio *bio)
988 {
989 	if (bio->bi_private)
990 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
991 	bio_put(bio);
992 }
993 
994 /* This can handle encryption stuffs */
995 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
996 						block_t blkaddr, bool for_write)
997 {
998 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
999 	struct bio *bio;
1000 
1001 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index, for_write);
1002 	if (IS_ERR(bio))
1003 		return PTR_ERR(bio);
1004 
1005 	/* wait for GCed page writeback via META_MAPPING */
1006 	f2fs_wait_on_block_writeback(inode, blkaddr);
1007 
1008 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1009 		bio_put(bio);
1010 		return -EFAULT;
1011 	}
1012 	ClearPageError(page);
1013 	inc_page_count(sbi, F2FS_RD_DATA);
1014 	__submit_bio(sbi, bio, DATA);
1015 	return 0;
1016 }
1017 
1018 static void __set_data_blkaddr(struct dnode_of_data *dn)
1019 {
1020 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1021 	__le32 *addr_array;
1022 	int base = 0;
1023 
1024 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1025 		base = get_extra_isize(dn->inode);
1026 
1027 	/* Get physical address of data block */
1028 	addr_array = blkaddr_in_node(rn);
1029 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1030 }
1031 
1032 /*
1033  * Lock ordering for the change of data block address:
1034  * ->data_page
1035  *  ->node_page
1036  *    update block addresses in the node page
1037  */
1038 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1039 {
1040 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1041 	__set_data_blkaddr(dn);
1042 	if (set_page_dirty(dn->node_page))
1043 		dn->node_changed = true;
1044 }
1045 
1046 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1047 {
1048 	dn->data_blkaddr = blkaddr;
1049 	f2fs_set_data_blkaddr(dn);
1050 	f2fs_update_extent_cache(dn);
1051 }
1052 
1053 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1054 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1055 {
1056 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1057 	int err;
1058 
1059 	if (!count)
1060 		return 0;
1061 
1062 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1063 		return -EPERM;
1064 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1065 		return err;
1066 
1067 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1068 						dn->ofs_in_node, count);
1069 
1070 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1071 
1072 	for (; count > 0; dn->ofs_in_node++) {
1073 		block_t blkaddr = f2fs_data_blkaddr(dn);
1074 		if (blkaddr == NULL_ADDR) {
1075 			dn->data_blkaddr = NEW_ADDR;
1076 			__set_data_blkaddr(dn);
1077 			count--;
1078 		}
1079 	}
1080 
1081 	if (set_page_dirty(dn->node_page))
1082 		dn->node_changed = true;
1083 	return 0;
1084 }
1085 
1086 /* Should keep dn->ofs_in_node unchanged */
1087 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1088 {
1089 	unsigned int ofs_in_node = dn->ofs_in_node;
1090 	int ret;
1091 
1092 	ret = f2fs_reserve_new_blocks(dn, 1);
1093 	dn->ofs_in_node = ofs_in_node;
1094 	return ret;
1095 }
1096 
1097 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1098 {
1099 	bool need_put = dn->inode_page ? false : true;
1100 	int err;
1101 
1102 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1103 	if (err)
1104 		return err;
1105 
1106 	if (dn->data_blkaddr == NULL_ADDR)
1107 		err = f2fs_reserve_new_block(dn);
1108 	if (err || need_put)
1109 		f2fs_put_dnode(dn);
1110 	return err;
1111 }
1112 
1113 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1114 {
1115 	struct extent_info ei  = {0,0,0};
1116 	struct inode *inode = dn->inode;
1117 
1118 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1119 		dn->data_blkaddr = ei.blk + index - ei.fofs;
1120 		return 0;
1121 	}
1122 
1123 	return f2fs_reserve_block(dn, index);
1124 }
1125 
1126 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1127 						int op_flags, bool for_write)
1128 {
1129 	struct address_space *mapping = inode->i_mapping;
1130 	struct dnode_of_data dn;
1131 	struct page *page;
1132 	struct extent_info ei = {0,0,0};
1133 	int err;
1134 
1135 	page = f2fs_grab_cache_page(mapping, index, for_write);
1136 	if (!page)
1137 		return ERR_PTR(-ENOMEM);
1138 
1139 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1140 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1141 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1142 						DATA_GENERIC_ENHANCE_READ)) {
1143 			err = -EFSCORRUPTED;
1144 			goto put_err;
1145 		}
1146 		goto got_it;
1147 	}
1148 
1149 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1150 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1151 	if (err)
1152 		goto put_err;
1153 	f2fs_put_dnode(&dn);
1154 
1155 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1156 		err = -ENOENT;
1157 		goto put_err;
1158 	}
1159 	if (dn.data_blkaddr != NEW_ADDR &&
1160 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1161 						dn.data_blkaddr,
1162 						DATA_GENERIC_ENHANCE)) {
1163 		err = -EFSCORRUPTED;
1164 		goto put_err;
1165 	}
1166 got_it:
1167 	if (PageUptodate(page)) {
1168 		unlock_page(page);
1169 		return page;
1170 	}
1171 
1172 	/*
1173 	 * A new dentry page is allocated but not able to be written, since its
1174 	 * new inode page couldn't be allocated due to -ENOSPC.
1175 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1176 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1177 	 * f2fs_init_inode_metadata.
1178 	 */
1179 	if (dn.data_blkaddr == NEW_ADDR) {
1180 		zero_user_segment(page, 0, PAGE_SIZE);
1181 		if (!PageUptodate(page))
1182 			SetPageUptodate(page);
1183 		unlock_page(page);
1184 		return page;
1185 	}
1186 
1187 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, for_write);
1188 	if (err)
1189 		goto put_err;
1190 	return page;
1191 
1192 put_err:
1193 	f2fs_put_page(page, 1);
1194 	return ERR_PTR(err);
1195 }
1196 
1197 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1198 {
1199 	struct address_space *mapping = inode->i_mapping;
1200 	struct page *page;
1201 
1202 	page = find_get_page(mapping, index);
1203 	if (page && PageUptodate(page))
1204 		return page;
1205 	f2fs_put_page(page, 0);
1206 
1207 	page = f2fs_get_read_data_page(inode, index, 0, false);
1208 	if (IS_ERR(page))
1209 		return page;
1210 
1211 	if (PageUptodate(page))
1212 		return page;
1213 
1214 	wait_on_page_locked(page);
1215 	if (unlikely(!PageUptodate(page))) {
1216 		f2fs_put_page(page, 0);
1217 		return ERR_PTR(-EIO);
1218 	}
1219 	return page;
1220 }
1221 
1222 /*
1223  * If it tries to access a hole, return an error.
1224  * Because, the callers, functions in dir.c and GC, should be able to know
1225  * whether this page exists or not.
1226  */
1227 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1228 							bool for_write)
1229 {
1230 	struct address_space *mapping = inode->i_mapping;
1231 	struct page *page;
1232 repeat:
1233 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1234 	if (IS_ERR(page))
1235 		return page;
1236 
1237 	/* wait for read completion */
1238 	lock_page(page);
1239 	if (unlikely(page->mapping != mapping)) {
1240 		f2fs_put_page(page, 1);
1241 		goto repeat;
1242 	}
1243 	if (unlikely(!PageUptodate(page))) {
1244 		f2fs_put_page(page, 1);
1245 		return ERR_PTR(-EIO);
1246 	}
1247 	return page;
1248 }
1249 
1250 /*
1251  * Caller ensures that this data page is never allocated.
1252  * A new zero-filled data page is allocated in the page cache.
1253  *
1254  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1255  * f2fs_unlock_op().
1256  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1257  * ipage should be released by this function.
1258  */
1259 struct page *f2fs_get_new_data_page(struct inode *inode,
1260 		struct page *ipage, pgoff_t index, bool new_i_size)
1261 {
1262 	struct address_space *mapping = inode->i_mapping;
1263 	struct page *page;
1264 	struct dnode_of_data dn;
1265 	int err;
1266 
1267 	page = f2fs_grab_cache_page(mapping, index, true);
1268 	if (!page) {
1269 		/*
1270 		 * before exiting, we should make sure ipage will be released
1271 		 * if any error occur.
1272 		 */
1273 		f2fs_put_page(ipage, 1);
1274 		return ERR_PTR(-ENOMEM);
1275 	}
1276 
1277 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1278 	err = f2fs_reserve_block(&dn, index);
1279 	if (err) {
1280 		f2fs_put_page(page, 1);
1281 		return ERR_PTR(err);
1282 	}
1283 	if (!ipage)
1284 		f2fs_put_dnode(&dn);
1285 
1286 	if (PageUptodate(page))
1287 		goto got_it;
1288 
1289 	if (dn.data_blkaddr == NEW_ADDR) {
1290 		zero_user_segment(page, 0, PAGE_SIZE);
1291 		if (!PageUptodate(page))
1292 			SetPageUptodate(page);
1293 	} else {
1294 		f2fs_put_page(page, 1);
1295 
1296 		/* if ipage exists, blkaddr should be NEW_ADDR */
1297 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1298 		page = f2fs_get_lock_data_page(inode, index, true);
1299 		if (IS_ERR(page))
1300 			return page;
1301 	}
1302 got_it:
1303 	if (new_i_size && i_size_read(inode) <
1304 				((loff_t)(index + 1) << PAGE_SHIFT))
1305 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1306 	return page;
1307 }
1308 
1309 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1310 {
1311 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1312 	struct f2fs_summary sum;
1313 	struct node_info ni;
1314 	block_t old_blkaddr;
1315 	blkcnt_t count = 1;
1316 	int err;
1317 
1318 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1319 		return -EPERM;
1320 
1321 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1322 	if (err)
1323 		return err;
1324 
1325 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1326 	if (dn->data_blkaddr != NULL_ADDR)
1327 		goto alloc;
1328 
1329 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1330 		return err;
1331 
1332 alloc:
1333 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1334 	old_blkaddr = dn->data_blkaddr;
1335 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1336 					&sum, seg_type, NULL, false);
1337 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1338 		invalidate_mapping_pages(META_MAPPING(sbi),
1339 					old_blkaddr, old_blkaddr);
1340 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1341 
1342 	/*
1343 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1344 	 * data from unwritten block via dio_read.
1345 	 */
1346 	return 0;
1347 }
1348 
1349 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1350 {
1351 	struct inode *inode = file_inode(iocb->ki_filp);
1352 	struct f2fs_map_blocks map;
1353 	int flag;
1354 	int err = 0;
1355 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1356 
1357 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1358 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1359 	if (map.m_len > map.m_lblk)
1360 		map.m_len -= map.m_lblk;
1361 	else
1362 		map.m_len = 0;
1363 
1364 	map.m_next_pgofs = NULL;
1365 	map.m_next_extent = NULL;
1366 	map.m_seg_type = NO_CHECK_TYPE;
1367 	map.m_may_create = true;
1368 
1369 	if (direct_io) {
1370 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1371 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1372 					F2FS_GET_BLOCK_PRE_AIO :
1373 					F2FS_GET_BLOCK_PRE_DIO;
1374 		goto map_blocks;
1375 	}
1376 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1377 		err = f2fs_convert_inline_inode(inode);
1378 		if (err)
1379 			return err;
1380 	}
1381 	if (f2fs_has_inline_data(inode))
1382 		return err;
1383 
1384 	flag = F2FS_GET_BLOCK_PRE_AIO;
1385 
1386 map_blocks:
1387 	err = f2fs_map_blocks(inode, &map, 1, flag);
1388 	if (map.m_len > 0 && err == -ENOSPC) {
1389 		if (!direct_io)
1390 			set_inode_flag(inode, FI_NO_PREALLOC);
1391 		err = 0;
1392 	}
1393 	return err;
1394 }
1395 
1396 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1397 {
1398 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1399 		if (lock)
1400 			down_read(&sbi->node_change);
1401 		else
1402 			up_read(&sbi->node_change);
1403 	} else {
1404 		if (lock)
1405 			f2fs_lock_op(sbi);
1406 		else
1407 			f2fs_unlock_op(sbi);
1408 	}
1409 }
1410 
1411 /*
1412  * f2fs_map_blocks() tries to find or build mapping relationship which
1413  * maps continuous logical blocks to physical blocks, and return such
1414  * info via f2fs_map_blocks structure.
1415  */
1416 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1417 						int create, int flag)
1418 {
1419 	unsigned int maxblocks = map->m_len;
1420 	struct dnode_of_data dn;
1421 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1422 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1423 	pgoff_t pgofs, end_offset, end;
1424 	int err = 0, ofs = 1;
1425 	unsigned int ofs_in_node, last_ofs_in_node;
1426 	blkcnt_t prealloc;
1427 	struct extent_info ei = {0,0,0};
1428 	block_t blkaddr;
1429 	unsigned int start_pgofs;
1430 
1431 	if (!maxblocks)
1432 		return 0;
1433 
1434 	map->m_len = 0;
1435 	map->m_flags = 0;
1436 
1437 	/* it only supports block size == page size */
1438 	pgofs =	(pgoff_t)map->m_lblk;
1439 	end = pgofs + maxblocks;
1440 
1441 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1442 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1443 							map->m_may_create)
1444 			goto next_dnode;
1445 
1446 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1447 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1448 		map->m_flags = F2FS_MAP_MAPPED;
1449 		if (map->m_next_extent)
1450 			*map->m_next_extent = pgofs + map->m_len;
1451 
1452 		/* for hardware encryption, but to avoid potential issue in future */
1453 		if (flag == F2FS_GET_BLOCK_DIO)
1454 			f2fs_wait_on_block_writeback_range(inode,
1455 						map->m_pblk, map->m_len);
1456 		goto out;
1457 	}
1458 
1459 next_dnode:
1460 	if (map->m_may_create)
1461 		__do_map_lock(sbi, flag, true);
1462 
1463 	/* When reading holes, we need its node page */
1464 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1465 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1466 	if (err) {
1467 		if (flag == F2FS_GET_BLOCK_BMAP)
1468 			map->m_pblk = 0;
1469 		if (err == -ENOENT) {
1470 			err = 0;
1471 			if (map->m_next_pgofs)
1472 				*map->m_next_pgofs =
1473 					f2fs_get_next_page_offset(&dn, pgofs);
1474 			if (map->m_next_extent)
1475 				*map->m_next_extent =
1476 					f2fs_get_next_page_offset(&dn, pgofs);
1477 		}
1478 		goto unlock_out;
1479 	}
1480 
1481 	start_pgofs = pgofs;
1482 	prealloc = 0;
1483 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1484 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1485 
1486 next_block:
1487 	blkaddr = f2fs_data_blkaddr(&dn);
1488 
1489 	if (__is_valid_data_blkaddr(blkaddr) &&
1490 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1491 		err = -EFSCORRUPTED;
1492 		goto sync_out;
1493 	}
1494 
1495 	if (__is_valid_data_blkaddr(blkaddr)) {
1496 		/* use out-place-update for driect IO under LFS mode */
1497 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1498 							map->m_may_create) {
1499 			err = __allocate_data_block(&dn, map->m_seg_type);
1500 			if (err)
1501 				goto sync_out;
1502 			blkaddr = dn.data_blkaddr;
1503 			set_inode_flag(inode, FI_APPEND_WRITE);
1504 		}
1505 	} else {
1506 		if (create) {
1507 			if (unlikely(f2fs_cp_error(sbi))) {
1508 				err = -EIO;
1509 				goto sync_out;
1510 			}
1511 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1512 				if (blkaddr == NULL_ADDR) {
1513 					prealloc++;
1514 					last_ofs_in_node = dn.ofs_in_node;
1515 				}
1516 			} else {
1517 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1518 					flag != F2FS_GET_BLOCK_DIO);
1519 				err = __allocate_data_block(&dn,
1520 							map->m_seg_type);
1521 				if (!err)
1522 					set_inode_flag(inode, FI_APPEND_WRITE);
1523 			}
1524 			if (err)
1525 				goto sync_out;
1526 			map->m_flags |= F2FS_MAP_NEW;
1527 			blkaddr = dn.data_blkaddr;
1528 		} else {
1529 			if (flag == F2FS_GET_BLOCK_BMAP) {
1530 				map->m_pblk = 0;
1531 				goto sync_out;
1532 			}
1533 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1534 				goto sync_out;
1535 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1536 						blkaddr == NULL_ADDR) {
1537 				if (map->m_next_pgofs)
1538 					*map->m_next_pgofs = pgofs + 1;
1539 				goto sync_out;
1540 			}
1541 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1542 				/* for defragment case */
1543 				if (map->m_next_pgofs)
1544 					*map->m_next_pgofs = pgofs + 1;
1545 				goto sync_out;
1546 			}
1547 		}
1548 	}
1549 
1550 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1551 		goto skip;
1552 
1553 	if (map->m_len == 0) {
1554 		/* preallocated unwritten block should be mapped for fiemap. */
1555 		if (blkaddr == NEW_ADDR)
1556 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1557 		map->m_flags |= F2FS_MAP_MAPPED;
1558 
1559 		map->m_pblk = blkaddr;
1560 		map->m_len = 1;
1561 	} else if ((map->m_pblk != NEW_ADDR &&
1562 			blkaddr == (map->m_pblk + ofs)) ||
1563 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1564 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1565 		ofs++;
1566 		map->m_len++;
1567 	} else {
1568 		goto sync_out;
1569 	}
1570 
1571 skip:
1572 	dn.ofs_in_node++;
1573 	pgofs++;
1574 
1575 	/* preallocate blocks in batch for one dnode page */
1576 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1577 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1578 
1579 		dn.ofs_in_node = ofs_in_node;
1580 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1581 		if (err)
1582 			goto sync_out;
1583 
1584 		map->m_len += dn.ofs_in_node - ofs_in_node;
1585 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1586 			err = -ENOSPC;
1587 			goto sync_out;
1588 		}
1589 		dn.ofs_in_node = end_offset;
1590 	}
1591 
1592 	if (pgofs >= end)
1593 		goto sync_out;
1594 	else if (dn.ofs_in_node < end_offset)
1595 		goto next_block;
1596 
1597 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1598 		if (map->m_flags & F2FS_MAP_MAPPED) {
1599 			unsigned int ofs = start_pgofs - map->m_lblk;
1600 
1601 			f2fs_update_extent_cache_range(&dn,
1602 				start_pgofs, map->m_pblk + ofs,
1603 				map->m_len - ofs);
1604 		}
1605 	}
1606 
1607 	f2fs_put_dnode(&dn);
1608 
1609 	if (map->m_may_create) {
1610 		__do_map_lock(sbi, flag, false);
1611 		f2fs_balance_fs(sbi, dn.node_changed);
1612 	}
1613 	goto next_dnode;
1614 
1615 sync_out:
1616 
1617 	/* for hardware encryption, but to avoid potential issue in future */
1618 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1619 		f2fs_wait_on_block_writeback_range(inode,
1620 						map->m_pblk, map->m_len);
1621 
1622 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1623 		if (map->m_flags & F2FS_MAP_MAPPED) {
1624 			unsigned int ofs = start_pgofs - map->m_lblk;
1625 
1626 			f2fs_update_extent_cache_range(&dn,
1627 				start_pgofs, map->m_pblk + ofs,
1628 				map->m_len - ofs);
1629 		}
1630 		if (map->m_next_extent)
1631 			*map->m_next_extent = pgofs + 1;
1632 	}
1633 	f2fs_put_dnode(&dn);
1634 unlock_out:
1635 	if (map->m_may_create) {
1636 		__do_map_lock(sbi, flag, false);
1637 		f2fs_balance_fs(sbi, dn.node_changed);
1638 	}
1639 out:
1640 	trace_f2fs_map_blocks(inode, map, err);
1641 	return err;
1642 }
1643 
1644 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1645 {
1646 	struct f2fs_map_blocks map;
1647 	block_t last_lblk;
1648 	int err;
1649 
1650 	if (pos + len > i_size_read(inode))
1651 		return false;
1652 
1653 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1654 	map.m_next_pgofs = NULL;
1655 	map.m_next_extent = NULL;
1656 	map.m_seg_type = NO_CHECK_TYPE;
1657 	map.m_may_create = false;
1658 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1659 
1660 	while (map.m_lblk < last_lblk) {
1661 		map.m_len = last_lblk - map.m_lblk;
1662 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1663 		if (err || map.m_len == 0)
1664 			return false;
1665 		map.m_lblk += map.m_len;
1666 	}
1667 	return true;
1668 }
1669 
1670 static int __get_data_block(struct inode *inode, sector_t iblock,
1671 			struct buffer_head *bh, int create, int flag,
1672 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1673 {
1674 	struct f2fs_map_blocks map;
1675 	int err;
1676 
1677 	map.m_lblk = iblock;
1678 	map.m_len = bh->b_size >> inode->i_blkbits;
1679 	map.m_next_pgofs = next_pgofs;
1680 	map.m_next_extent = NULL;
1681 	map.m_seg_type = seg_type;
1682 	map.m_may_create = may_write;
1683 
1684 	err = f2fs_map_blocks(inode, &map, create, flag);
1685 	if (!err) {
1686 		map_bh(bh, inode->i_sb, map.m_pblk);
1687 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1688 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1689 	}
1690 	return err;
1691 }
1692 
1693 static int get_data_block(struct inode *inode, sector_t iblock,
1694 			struct buffer_head *bh_result, int create, int flag,
1695 			pgoff_t *next_pgofs)
1696 {
1697 	return __get_data_block(inode, iblock, bh_result, create,
1698 							flag, next_pgofs,
1699 							NO_CHECK_TYPE, create);
1700 }
1701 
1702 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1703 			struct buffer_head *bh_result, int create)
1704 {
1705 	return __get_data_block(inode, iblock, bh_result, create,
1706 				F2FS_GET_BLOCK_DIO, NULL,
1707 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1708 				IS_SWAPFILE(inode) ? false : true);
1709 }
1710 
1711 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1712 			struct buffer_head *bh_result, int create)
1713 {
1714 	return __get_data_block(inode, iblock, bh_result, create,
1715 				F2FS_GET_BLOCK_DIO, NULL,
1716 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1717 				false);
1718 }
1719 
1720 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1721 			struct buffer_head *bh_result, int create)
1722 {
1723 	/* Block number less than F2FS MAX BLOCKS */
1724 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1725 		return -EFBIG;
1726 
1727 	return __get_data_block(inode, iblock, bh_result, create,
1728 						F2FS_GET_BLOCK_BMAP, NULL,
1729 						NO_CHECK_TYPE, create);
1730 }
1731 
1732 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1733 {
1734 	return (offset >> inode->i_blkbits);
1735 }
1736 
1737 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1738 {
1739 	return (blk << inode->i_blkbits);
1740 }
1741 
1742 static int f2fs_xattr_fiemap(struct inode *inode,
1743 				struct fiemap_extent_info *fieinfo)
1744 {
1745 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1746 	struct page *page;
1747 	struct node_info ni;
1748 	__u64 phys = 0, len;
1749 	__u32 flags;
1750 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1751 	int err = 0;
1752 
1753 	if (f2fs_has_inline_xattr(inode)) {
1754 		int offset;
1755 
1756 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1757 						inode->i_ino, false);
1758 		if (!page)
1759 			return -ENOMEM;
1760 
1761 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1762 		if (err) {
1763 			f2fs_put_page(page, 1);
1764 			return err;
1765 		}
1766 
1767 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1768 		offset = offsetof(struct f2fs_inode, i_addr) +
1769 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1770 					get_inline_xattr_addrs(inode));
1771 
1772 		phys += offset;
1773 		len = inline_xattr_size(inode);
1774 
1775 		f2fs_put_page(page, 1);
1776 
1777 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1778 
1779 		if (!xnid)
1780 			flags |= FIEMAP_EXTENT_LAST;
1781 
1782 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1783 		if (err || err == 1)
1784 			return err;
1785 	}
1786 
1787 	if (xnid) {
1788 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1789 		if (!page)
1790 			return -ENOMEM;
1791 
1792 		err = f2fs_get_node_info(sbi, xnid, &ni);
1793 		if (err) {
1794 			f2fs_put_page(page, 1);
1795 			return err;
1796 		}
1797 
1798 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1799 		len = inode->i_sb->s_blocksize;
1800 
1801 		f2fs_put_page(page, 1);
1802 
1803 		flags = FIEMAP_EXTENT_LAST;
1804 	}
1805 
1806 	if (phys)
1807 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1808 
1809 	return (err < 0 ? err : 0);
1810 }
1811 
1812 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1813 		u64 start, u64 len)
1814 {
1815 	struct buffer_head map_bh;
1816 	sector_t start_blk, last_blk;
1817 	pgoff_t next_pgofs;
1818 	u64 logical = 0, phys = 0, size = 0;
1819 	u32 flags = 0;
1820 	int ret = 0;
1821 
1822 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1823 		ret = f2fs_precache_extents(inode);
1824 		if (ret)
1825 			return ret;
1826 	}
1827 
1828 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1829 	if (ret)
1830 		return ret;
1831 
1832 	inode_lock(inode);
1833 
1834 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1835 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1836 		goto out;
1837 	}
1838 
1839 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1840 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1841 		if (ret != -EAGAIN)
1842 			goto out;
1843 	}
1844 
1845 	if (logical_to_blk(inode, len) == 0)
1846 		len = blk_to_logical(inode, 1);
1847 
1848 	start_blk = logical_to_blk(inode, start);
1849 	last_blk = logical_to_blk(inode, start + len - 1);
1850 
1851 next:
1852 	memset(&map_bh, 0, sizeof(struct buffer_head));
1853 	map_bh.b_size = len;
1854 
1855 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1856 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1857 	if (ret)
1858 		goto out;
1859 
1860 	/* HOLE */
1861 	if (!buffer_mapped(&map_bh)) {
1862 		start_blk = next_pgofs;
1863 
1864 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1865 					F2FS_I_SB(inode)->max_file_blocks))
1866 			goto prep_next;
1867 
1868 		flags |= FIEMAP_EXTENT_LAST;
1869 	}
1870 
1871 	if (size) {
1872 		if (IS_ENCRYPTED(inode))
1873 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1874 
1875 		ret = fiemap_fill_next_extent(fieinfo, logical,
1876 				phys, size, flags);
1877 	}
1878 
1879 	if (start_blk > last_blk || ret)
1880 		goto out;
1881 
1882 	logical = blk_to_logical(inode, start_blk);
1883 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1884 	size = map_bh.b_size;
1885 	flags = 0;
1886 	if (buffer_unwritten(&map_bh))
1887 		flags = FIEMAP_EXTENT_UNWRITTEN;
1888 
1889 	start_blk += logical_to_blk(inode, size);
1890 
1891 prep_next:
1892 	cond_resched();
1893 	if (fatal_signal_pending(current))
1894 		ret = -EINTR;
1895 	else
1896 		goto next;
1897 out:
1898 	if (ret == 1)
1899 		ret = 0;
1900 
1901 	inode_unlock(inode);
1902 	return ret;
1903 }
1904 
1905 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1906 {
1907 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
1908 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1909 		return inode->i_sb->s_maxbytes;
1910 
1911 	return i_size_read(inode);
1912 }
1913 
1914 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1915 					unsigned nr_pages,
1916 					struct f2fs_map_blocks *map,
1917 					struct bio **bio_ret,
1918 					sector_t *last_block_in_bio,
1919 					bool is_readahead)
1920 {
1921 	struct bio *bio = *bio_ret;
1922 	const unsigned blkbits = inode->i_blkbits;
1923 	const unsigned blocksize = 1 << blkbits;
1924 	sector_t block_in_file;
1925 	sector_t last_block;
1926 	sector_t last_block_in_file;
1927 	sector_t block_nr;
1928 	int ret = 0;
1929 
1930 	block_in_file = (sector_t)page_index(page);
1931 	last_block = block_in_file + nr_pages;
1932 	last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
1933 							blkbits;
1934 	if (last_block > last_block_in_file)
1935 		last_block = last_block_in_file;
1936 
1937 	/* just zeroing out page which is beyond EOF */
1938 	if (block_in_file >= last_block)
1939 		goto zero_out;
1940 	/*
1941 	 * Map blocks using the previous result first.
1942 	 */
1943 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
1944 			block_in_file > map->m_lblk &&
1945 			block_in_file < (map->m_lblk + map->m_len))
1946 		goto got_it;
1947 
1948 	/*
1949 	 * Then do more f2fs_map_blocks() calls until we are
1950 	 * done with this page.
1951 	 */
1952 	map->m_lblk = block_in_file;
1953 	map->m_len = last_block - block_in_file;
1954 
1955 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1956 	if (ret)
1957 		goto out;
1958 got_it:
1959 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
1960 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
1961 		SetPageMappedToDisk(page);
1962 
1963 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
1964 					!cleancache_get_page(page))) {
1965 			SetPageUptodate(page);
1966 			goto confused;
1967 		}
1968 
1969 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1970 						DATA_GENERIC_ENHANCE_READ)) {
1971 			ret = -EFSCORRUPTED;
1972 			goto out;
1973 		}
1974 	} else {
1975 zero_out:
1976 		zero_user_segment(page, 0, PAGE_SIZE);
1977 		if (f2fs_need_verity(inode, page->index) &&
1978 		    !fsverity_verify_page(page)) {
1979 			ret = -EIO;
1980 			goto out;
1981 		}
1982 		if (!PageUptodate(page))
1983 			SetPageUptodate(page);
1984 		unlock_page(page);
1985 		goto out;
1986 	}
1987 
1988 	/*
1989 	 * This page will go to BIO.  Do we need to send this
1990 	 * BIO off first?
1991 	 */
1992 	if (bio && !page_is_mergeable(F2FS_I_SB(inode), bio,
1993 				*last_block_in_bio, block_nr)) {
1994 submit_and_realloc:
1995 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1996 		bio = NULL;
1997 	}
1998 	if (bio == NULL) {
1999 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2000 				is_readahead ? REQ_RAHEAD : 0, page->index,
2001 				false);
2002 		if (IS_ERR(bio)) {
2003 			ret = PTR_ERR(bio);
2004 			bio = NULL;
2005 			goto out;
2006 		}
2007 	}
2008 
2009 	/*
2010 	 * If the page is under writeback, we need to wait for
2011 	 * its completion to see the correct decrypted data.
2012 	 */
2013 	f2fs_wait_on_block_writeback(inode, block_nr);
2014 
2015 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2016 		goto submit_and_realloc;
2017 
2018 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2019 	ClearPageError(page);
2020 	*last_block_in_bio = block_nr;
2021 	goto out;
2022 confused:
2023 	if (bio) {
2024 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2025 		bio = NULL;
2026 	}
2027 	unlock_page(page);
2028 out:
2029 	*bio_ret = bio;
2030 	return ret;
2031 }
2032 
2033 #ifdef CONFIG_F2FS_FS_COMPRESSION
2034 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2035 				unsigned nr_pages, sector_t *last_block_in_bio,
2036 				bool is_readahead, bool for_write)
2037 {
2038 	struct dnode_of_data dn;
2039 	struct inode *inode = cc->inode;
2040 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2041 	struct bio *bio = *bio_ret;
2042 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2043 	sector_t last_block_in_file;
2044 	const unsigned blkbits = inode->i_blkbits;
2045 	const unsigned blocksize = 1 << blkbits;
2046 	struct decompress_io_ctx *dic = NULL;
2047 	int i;
2048 	int ret = 0;
2049 
2050 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2051 
2052 	last_block_in_file = (f2fs_readpage_limit(inode) +
2053 					blocksize - 1) >> blkbits;
2054 
2055 	/* get rid of pages beyond EOF */
2056 	for (i = 0; i < cc->cluster_size; i++) {
2057 		struct page *page = cc->rpages[i];
2058 
2059 		if (!page)
2060 			continue;
2061 		if ((sector_t)page->index >= last_block_in_file) {
2062 			zero_user_segment(page, 0, PAGE_SIZE);
2063 			if (!PageUptodate(page))
2064 				SetPageUptodate(page);
2065 		} else if (!PageUptodate(page)) {
2066 			continue;
2067 		}
2068 		unlock_page(page);
2069 		cc->rpages[i] = NULL;
2070 		cc->nr_rpages--;
2071 	}
2072 
2073 	/* we are done since all pages are beyond EOF */
2074 	if (f2fs_cluster_is_empty(cc))
2075 		goto out;
2076 
2077 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2078 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2079 	if (ret)
2080 		goto out;
2081 
2082 	/* cluster was overwritten as normal cluster */
2083 	if (dn.data_blkaddr != COMPRESS_ADDR)
2084 		goto out;
2085 
2086 	for (i = 1; i < cc->cluster_size; i++) {
2087 		block_t blkaddr;
2088 
2089 		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2090 						dn.ofs_in_node + i);
2091 
2092 		if (!__is_valid_data_blkaddr(blkaddr))
2093 			break;
2094 
2095 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2096 			ret = -EFAULT;
2097 			goto out_put_dnode;
2098 		}
2099 		cc->nr_cpages++;
2100 	}
2101 
2102 	/* nothing to decompress */
2103 	if (cc->nr_cpages == 0) {
2104 		ret = 0;
2105 		goto out_put_dnode;
2106 	}
2107 
2108 	dic = f2fs_alloc_dic(cc);
2109 	if (IS_ERR(dic)) {
2110 		ret = PTR_ERR(dic);
2111 		goto out_put_dnode;
2112 	}
2113 
2114 	for (i = 0; i < dic->nr_cpages; i++) {
2115 		struct page *page = dic->cpages[i];
2116 		block_t blkaddr;
2117 
2118 		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2119 						dn.ofs_in_node + i + 1);
2120 
2121 		if (bio && !page_is_mergeable(sbi, bio,
2122 					*last_block_in_bio, blkaddr)) {
2123 submit_and_realloc:
2124 			__submit_bio(sbi, bio, DATA);
2125 			bio = NULL;
2126 		}
2127 
2128 		if (!bio) {
2129 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2130 					is_readahead ? REQ_RAHEAD : 0,
2131 					page->index, for_write);
2132 			if (IS_ERR(bio)) {
2133 				ret = PTR_ERR(bio);
2134 				bio = NULL;
2135 				dic->failed = true;
2136 				if (refcount_sub_and_test(dic->nr_cpages - i,
2137 							&dic->ref))
2138 					f2fs_decompress_end_io(dic->rpages,
2139 							cc->cluster_size, true,
2140 							false);
2141 				f2fs_free_dic(dic);
2142 				f2fs_put_dnode(&dn);
2143 				*bio_ret = bio;
2144 				return ret;
2145 			}
2146 		}
2147 
2148 		f2fs_wait_on_block_writeback(inode, blkaddr);
2149 
2150 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2151 			goto submit_and_realloc;
2152 
2153 		inc_page_count(sbi, F2FS_RD_DATA);
2154 		ClearPageError(page);
2155 		*last_block_in_bio = blkaddr;
2156 	}
2157 
2158 	f2fs_put_dnode(&dn);
2159 
2160 	*bio_ret = bio;
2161 	return 0;
2162 
2163 out_put_dnode:
2164 	f2fs_put_dnode(&dn);
2165 out:
2166 	f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2167 	*bio_ret = bio;
2168 	return ret;
2169 }
2170 #endif
2171 
2172 /*
2173  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2174  * Major change was from block_size == page_size in f2fs by default.
2175  *
2176  * Note that the aops->readpages() function is ONLY used for read-ahead. If
2177  * this function ever deviates from doing just read-ahead, it should either
2178  * use ->readpage() or do the necessary surgery to decouple ->readpages()
2179  * from read-ahead.
2180  */
2181 static int f2fs_mpage_readpages(struct inode *inode,
2182 		struct readahead_control *rac, struct page *page)
2183 {
2184 	struct bio *bio = NULL;
2185 	sector_t last_block_in_bio = 0;
2186 	struct f2fs_map_blocks map;
2187 #ifdef CONFIG_F2FS_FS_COMPRESSION
2188 	struct compress_ctx cc = {
2189 		.inode = inode,
2190 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2191 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2192 		.cluster_idx = NULL_CLUSTER,
2193 		.rpages = NULL,
2194 		.cpages = NULL,
2195 		.nr_rpages = 0,
2196 		.nr_cpages = 0,
2197 	};
2198 #endif
2199 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2200 	unsigned max_nr_pages = nr_pages;
2201 	int ret = 0;
2202 
2203 	map.m_pblk = 0;
2204 	map.m_lblk = 0;
2205 	map.m_len = 0;
2206 	map.m_flags = 0;
2207 	map.m_next_pgofs = NULL;
2208 	map.m_next_extent = NULL;
2209 	map.m_seg_type = NO_CHECK_TYPE;
2210 	map.m_may_create = false;
2211 
2212 	for (; nr_pages; nr_pages--) {
2213 		if (rac) {
2214 			page = readahead_page(rac);
2215 			prefetchw(&page->flags);
2216 		}
2217 
2218 #ifdef CONFIG_F2FS_FS_COMPRESSION
2219 		if (f2fs_compressed_file(inode)) {
2220 			/* there are remained comressed pages, submit them */
2221 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2222 				ret = f2fs_read_multi_pages(&cc, &bio,
2223 							max_nr_pages,
2224 							&last_block_in_bio,
2225 							rac != NULL, false);
2226 				f2fs_destroy_compress_ctx(&cc);
2227 				if (ret)
2228 					goto set_error_page;
2229 			}
2230 			ret = f2fs_is_compressed_cluster(inode, page->index);
2231 			if (ret < 0)
2232 				goto set_error_page;
2233 			else if (!ret)
2234 				goto read_single_page;
2235 
2236 			ret = f2fs_init_compress_ctx(&cc);
2237 			if (ret)
2238 				goto set_error_page;
2239 
2240 			f2fs_compress_ctx_add_page(&cc, page);
2241 
2242 			goto next_page;
2243 		}
2244 read_single_page:
2245 #endif
2246 
2247 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2248 					&bio, &last_block_in_bio, rac);
2249 		if (ret) {
2250 #ifdef CONFIG_F2FS_FS_COMPRESSION
2251 set_error_page:
2252 #endif
2253 			SetPageError(page);
2254 			zero_user_segment(page, 0, PAGE_SIZE);
2255 			unlock_page(page);
2256 		}
2257 #ifdef CONFIG_F2FS_FS_COMPRESSION
2258 next_page:
2259 #endif
2260 		if (rac)
2261 			put_page(page);
2262 
2263 #ifdef CONFIG_F2FS_FS_COMPRESSION
2264 		if (f2fs_compressed_file(inode)) {
2265 			/* last page */
2266 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2267 				ret = f2fs_read_multi_pages(&cc, &bio,
2268 							max_nr_pages,
2269 							&last_block_in_bio,
2270 							rac != NULL, false);
2271 				f2fs_destroy_compress_ctx(&cc);
2272 			}
2273 		}
2274 #endif
2275 	}
2276 	if (bio)
2277 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2278 	return ret;
2279 }
2280 
2281 static int f2fs_read_data_page(struct file *file, struct page *page)
2282 {
2283 	struct inode *inode = page_file_mapping(page)->host;
2284 	int ret = -EAGAIN;
2285 
2286 	trace_f2fs_readpage(page, DATA);
2287 
2288 	if (!f2fs_is_compress_backend_ready(inode)) {
2289 		unlock_page(page);
2290 		return -EOPNOTSUPP;
2291 	}
2292 
2293 	/* If the file has inline data, try to read it directly */
2294 	if (f2fs_has_inline_data(inode))
2295 		ret = f2fs_read_inline_data(inode, page);
2296 	if (ret == -EAGAIN)
2297 		ret = f2fs_mpage_readpages(inode, NULL, page);
2298 	return ret;
2299 }
2300 
2301 static void f2fs_readahead(struct readahead_control *rac)
2302 {
2303 	struct inode *inode = rac->mapping->host;
2304 
2305 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2306 
2307 	if (!f2fs_is_compress_backend_ready(inode))
2308 		return;
2309 
2310 	/* If the file has inline data, skip readpages */
2311 	if (f2fs_has_inline_data(inode))
2312 		return;
2313 
2314 	f2fs_mpage_readpages(inode, rac, NULL);
2315 }
2316 
2317 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2318 {
2319 	struct inode *inode = fio->page->mapping->host;
2320 	struct page *mpage, *page;
2321 	gfp_t gfp_flags = GFP_NOFS;
2322 
2323 	if (!f2fs_encrypted_file(inode))
2324 		return 0;
2325 
2326 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2327 
2328 	/* wait for GCed page writeback via META_MAPPING */
2329 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2330 
2331 retry_encrypt:
2332 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2333 					PAGE_SIZE, 0, gfp_flags);
2334 	if (IS_ERR(fio->encrypted_page)) {
2335 		/* flush pending IOs and wait for a while in the ENOMEM case */
2336 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2337 			f2fs_flush_merged_writes(fio->sbi);
2338 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2339 			gfp_flags |= __GFP_NOFAIL;
2340 			goto retry_encrypt;
2341 		}
2342 		return PTR_ERR(fio->encrypted_page);
2343 	}
2344 
2345 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2346 	if (mpage) {
2347 		if (PageUptodate(mpage))
2348 			memcpy(page_address(mpage),
2349 				page_address(fio->encrypted_page), PAGE_SIZE);
2350 		f2fs_put_page(mpage, 1);
2351 	}
2352 	return 0;
2353 }
2354 
2355 static inline bool check_inplace_update_policy(struct inode *inode,
2356 				struct f2fs_io_info *fio)
2357 {
2358 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2359 	unsigned int policy = SM_I(sbi)->ipu_policy;
2360 
2361 	if (policy & (0x1 << F2FS_IPU_FORCE))
2362 		return true;
2363 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2364 		return true;
2365 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2366 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2367 		return true;
2368 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2369 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2370 		return true;
2371 
2372 	/*
2373 	 * IPU for rewrite async pages
2374 	 */
2375 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2376 			fio && fio->op == REQ_OP_WRITE &&
2377 			!(fio->op_flags & REQ_SYNC) &&
2378 			!IS_ENCRYPTED(inode))
2379 		return true;
2380 
2381 	/* this is only set during fdatasync */
2382 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2383 			is_inode_flag_set(inode, FI_NEED_IPU))
2384 		return true;
2385 
2386 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2387 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2388 		return true;
2389 
2390 	return false;
2391 }
2392 
2393 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2394 {
2395 	if (f2fs_is_pinned_file(inode))
2396 		return true;
2397 
2398 	/* if this is cold file, we should overwrite to avoid fragmentation */
2399 	if (file_is_cold(inode))
2400 		return true;
2401 
2402 	return check_inplace_update_policy(inode, fio);
2403 }
2404 
2405 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2406 {
2407 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2408 
2409 	if (f2fs_lfs_mode(sbi))
2410 		return true;
2411 	if (S_ISDIR(inode->i_mode))
2412 		return true;
2413 	if (IS_NOQUOTA(inode))
2414 		return true;
2415 	if (f2fs_is_atomic_file(inode))
2416 		return true;
2417 	if (fio) {
2418 		if (is_cold_data(fio->page))
2419 			return true;
2420 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2421 			return true;
2422 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2423 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2424 			return true;
2425 	}
2426 	return false;
2427 }
2428 
2429 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2430 {
2431 	struct inode *inode = fio->page->mapping->host;
2432 
2433 	if (f2fs_should_update_outplace(inode, fio))
2434 		return false;
2435 
2436 	return f2fs_should_update_inplace(inode, fio);
2437 }
2438 
2439 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2440 {
2441 	struct page *page = fio->page;
2442 	struct inode *inode = page->mapping->host;
2443 	struct dnode_of_data dn;
2444 	struct extent_info ei = {0,0,0};
2445 	struct node_info ni;
2446 	bool ipu_force = false;
2447 	int err = 0;
2448 
2449 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2450 	if (need_inplace_update(fio) &&
2451 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2452 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2453 
2454 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2455 						DATA_GENERIC_ENHANCE))
2456 			return -EFSCORRUPTED;
2457 
2458 		ipu_force = true;
2459 		fio->need_lock = LOCK_DONE;
2460 		goto got_it;
2461 	}
2462 
2463 	/* Deadlock due to between page->lock and f2fs_lock_op */
2464 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2465 		return -EAGAIN;
2466 
2467 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2468 	if (err)
2469 		goto out;
2470 
2471 	fio->old_blkaddr = dn.data_blkaddr;
2472 
2473 	/* This page is already truncated */
2474 	if (fio->old_blkaddr == NULL_ADDR) {
2475 		ClearPageUptodate(page);
2476 		clear_cold_data(page);
2477 		goto out_writepage;
2478 	}
2479 got_it:
2480 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2481 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2482 						DATA_GENERIC_ENHANCE)) {
2483 		err = -EFSCORRUPTED;
2484 		goto out_writepage;
2485 	}
2486 	/*
2487 	 * If current allocation needs SSR,
2488 	 * it had better in-place writes for updated data.
2489 	 */
2490 	if (ipu_force ||
2491 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2492 					need_inplace_update(fio))) {
2493 		err = f2fs_encrypt_one_page(fio);
2494 		if (err)
2495 			goto out_writepage;
2496 
2497 		set_page_writeback(page);
2498 		ClearPageError(page);
2499 		f2fs_put_dnode(&dn);
2500 		if (fio->need_lock == LOCK_REQ)
2501 			f2fs_unlock_op(fio->sbi);
2502 		err = f2fs_inplace_write_data(fio);
2503 		if (err) {
2504 			if (f2fs_encrypted_file(inode))
2505 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2506 			if (PageWriteback(page))
2507 				end_page_writeback(page);
2508 		} else {
2509 			set_inode_flag(inode, FI_UPDATE_WRITE);
2510 		}
2511 		trace_f2fs_do_write_data_page(fio->page, IPU);
2512 		return err;
2513 	}
2514 
2515 	if (fio->need_lock == LOCK_RETRY) {
2516 		if (!f2fs_trylock_op(fio->sbi)) {
2517 			err = -EAGAIN;
2518 			goto out_writepage;
2519 		}
2520 		fio->need_lock = LOCK_REQ;
2521 	}
2522 
2523 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2524 	if (err)
2525 		goto out_writepage;
2526 
2527 	fio->version = ni.version;
2528 
2529 	err = f2fs_encrypt_one_page(fio);
2530 	if (err)
2531 		goto out_writepage;
2532 
2533 	set_page_writeback(page);
2534 	ClearPageError(page);
2535 
2536 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2537 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2538 
2539 	/* LFS mode write path */
2540 	f2fs_outplace_write_data(&dn, fio);
2541 	trace_f2fs_do_write_data_page(page, OPU);
2542 	set_inode_flag(inode, FI_APPEND_WRITE);
2543 	if (page->index == 0)
2544 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2545 out_writepage:
2546 	f2fs_put_dnode(&dn);
2547 out:
2548 	if (fio->need_lock == LOCK_REQ)
2549 		f2fs_unlock_op(fio->sbi);
2550 	return err;
2551 }
2552 
2553 int f2fs_write_single_data_page(struct page *page, int *submitted,
2554 				struct bio **bio,
2555 				sector_t *last_block,
2556 				struct writeback_control *wbc,
2557 				enum iostat_type io_type,
2558 				int compr_blocks)
2559 {
2560 	struct inode *inode = page->mapping->host;
2561 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2562 	loff_t i_size = i_size_read(inode);
2563 	const pgoff_t end_index = ((unsigned long long)i_size)
2564 							>> PAGE_SHIFT;
2565 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2566 	unsigned offset = 0;
2567 	bool need_balance_fs = false;
2568 	int err = 0;
2569 	struct f2fs_io_info fio = {
2570 		.sbi = sbi,
2571 		.ino = inode->i_ino,
2572 		.type = DATA,
2573 		.op = REQ_OP_WRITE,
2574 		.op_flags = wbc_to_write_flags(wbc),
2575 		.old_blkaddr = NULL_ADDR,
2576 		.page = page,
2577 		.encrypted_page = NULL,
2578 		.submitted = false,
2579 		.compr_blocks = compr_blocks,
2580 		.need_lock = LOCK_RETRY,
2581 		.io_type = io_type,
2582 		.io_wbc = wbc,
2583 		.bio = bio,
2584 		.last_block = last_block,
2585 	};
2586 
2587 	trace_f2fs_writepage(page, DATA);
2588 
2589 	/* we should bypass data pages to proceed the kworkder jobs */
2590 	if (unlikely(f2fs_cp_error(sbi))) {
2591 		mapping_set_error(page->mapping, -EIO);
2592 		/*
2593 		 * don't drop any dirty dentry pages for keeping lastest
2594 		 * directory structure.
2595 		 */
2596 		if (S_ISDIR(inode->i_mode))
2597 			goto redirty_out;
2598 		goto out;
2599 	}
2600 
2601 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2602 		goto redirty_out;
2603 
2604 	if (page->index < end_index ||
2605 			f2fs_verity_in_progress(inode) ||
2606 			compr_blocks)
2607 		goto write;
2608 
2609 	/*
2610 	 * If the offset is out-of-range of file size,
2611 	 * this page does not have to be written to disk.
2612 	 */
2613 	offset = i_size & (PAGE_SIZE - 1);
2614 	if ((page->index >= end_index + 1) || !offset)
2615 		goto out;
2616 
2617 	zero_user_segment(page, offset, PAGE_SIZE);
2618 write:
2619 	if (f2fs_is_drop_cache(inode))
2620 		goto out;
2621 	/* we should not write 0'th page having journal header */
2622 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2623 			(!wbc->for_reclaim &&
2624 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2625 		goto redirty_out;
2626 
2627 	/* Dentry blocks are controlled by checkpoint */
2628 	if (S_ISDIR(inode->i_mode)) {
2629 		fio.need_lock = LOCK_DONE;
2630 		err = f2fs_do_write_data_page(&fio);
2631 		goto done;
2632 	}
2633 
2634 	if (!wbc->for_reclaim)
2635 		need_balance_fs = true;
2636 	else if (has_not_enough_free_secs(sbi, 0, 0))
2637 		goto redirty_out;
2638 	else
2639 		set_inode_flag(inode, FI_HOT_DATA);
2640 
2641 	err = -EAGAIN;
2642 	if (f2fs_has_inline_data(inode)) {
2643 		err = f2fs_write_inline_data(inode, page);
2644 		if (!err)
2645 			goto out;
2646 	}
2647 
2648 	if (err == -EAGAIN) {
2649 		err = f2fs_do_write_data_page(&fio);
2650 		if (err == -EAGAIN) {
2651 			fio.need_lock = LOCK_REQ;
2652 			err = f2fs_do_write_data_page(&fio);
2653 		}
2654 	}
2655 
2656 	if (err) {
2657 		file_set_keep_isize(inode);
2658 	} else {
2659 		spin_lock(&F2FS_I(inode)->i_size_lock);
2660 		if (F2FS_I(inode)->last_disk_size < psize)
2661 			F2FS_I(inode)->last_disk_size = psize;
2662 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2663 	}
2664 
2665 done:
2666 	if (err && err != -ENOENT)
2667 		goto redirty_out;
2668 
2669 out:
2670 	inode_dec_dirty_pages(inode);
2671 	if (err) {
2672 		ClearPageUptodate(page);
2673 		clear_cold_data(page);
2674 	}
2675 
2676 	if (wbc->for_reclaim) {
2677 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2678 		clear_inode_flag(inode, FI_HOT_DATA);
2679 		f2fs_remove_dirty_inode(inode);
2680 		submitted = NULL;
2681 	}
2682 	unlock_page(page);
2683 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2684 					!F2FS_I(inode)->cp_task)
2685 		f2fs_balance_fs(sbi, need_balance_fs);
2686 
2687 	if (unlikely(f2fs_cp_error(sbi))) {
2688 		f2fs_submit_merged_write(sbi, DATA);
2689 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2690 		submitted = NULL;
2691 	}
2692 
2693 	if (submitted)
2694 		*submitted = fio.submitted ? 1 : 0;
2695 
2696 	return 0;
2697 
2698 redirty_out:
2699 	redirty_page_for_writepage(wbc, page);
2700 	/*
2701 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2702 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2703 	 * file_write_and_wait_range() will see EIO error, which is critical
2704 	 * to return value of fsync() followed by atomic_write failure to user.
2705 	 */
2706 	if (!err || wbc->for_reclaim)
2707 		return AOP_WRITEPAGE_ACTIVATE;
2708 	unlock_page(page);
2709 	return err;
2710 }
2711 
2712 static int f2fs_write_data_page(struct page *page,
2713 					struct writeback_control *wbc)
2714 {
2715 #ifdef CONFIG_F2FS_FS_COMPRESSION
2716 	struct inode *inode = page->mapping->host;
2717 
2718 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2719 		goto out;
2720 
2721 	if (f2fs_compressed_file(inode)) {
2722 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2723 			redirty_page_for_writepage(wbc, page);
2724 			return AOP_WRITEPAGE_ACTIVATE;
2725 		}
2726 	}
2727 out:
2728 #endif
2729 
2730 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2731 						wbc, FS_DATA_IO, 0);
2732 }
2733 
2734 /*
2735  * This function was copied from write_cche_pages from mm/page-writeback.c.
2736  * The major change is making write step of cold data page separately from
2737  * warm/hot data page.
2738  */
2739 static int f2fs_write_cache_pages(struct address_space *mapping,
2740 					struct writeback_control *wbc,
2741 					enum iostat_type io_type)
2742 {
2743 	int ret = 0;
2744 	int done = 0, retry = 0;
2745 	struct pagevec pvec;
2746 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2747 	struct bio *bio = NULL;
2748 	sector_t last_block;
2749 #ifdef CONFIG_F2FS_FS_COMPRESSION
2750 	struct inode *inode = mapping->host;
2751 	struct compress_ctx cc = {
2752 		.inode = inode,
2753 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2754 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2755 		.cluster_idx = NULL_CLUSTER,
2756 		.rpages = NULL,
2757 		.nr_rpages = 0,
2758 		.cpages = NULL,
2759 		.rbuf = NULL,
2760 		.cbuf = NULL,
2761 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2762 		.private = NULL,
2763 	};
2764 #endif
2765 	int nr_pages;
2766 	pgoff_t uninitialized_var(writeback_index);
2767 	pgoff_t index;
2768 	pgoff_t end;		/* Inclusive */
2769 	pgoff_t done_index;
2770 	int cycled;
2771 	int range_whole = 0;
2772 	xa_mark_t tag;
2773 	int nwritten = 0;
2774 	int submitted = 0;
2775 	int i;
2776 
2777 	pagevec_init(&pvec);
2778 
2779 	if (get_dirty_pages(mapping->host) <=
2780 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2781 		set_inode_flag(mapping->host, FI_HOT_DATA);
2782 	else
2783 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2784 
2785 	if (wbc->range_cyclic) {
2786 		writeback_index = mapping->writeback_index; /* prev offset */
2787 		index = writeback_index;
2788 		if (index == 0)
2789 			cycled = 1;
2790 		else
2791 			cycled = 0;
2792 		end = -1;
2793 	} else {
2794 		index = wbc->range_start >> PAGE_SHIFT;
2795 		end = wbc->range_end >> PAGE_SHIFT;
2796 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2797 			range_whole = 1;
2798 		cycled = 1; /* ignore range_cyclic tests */
2799 	}
2800 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2801 		tag = PAGECACHE_TAG_TOWRITE;
2802 	else
2803 		tag = PAGECACHE_TAG_DIRTY;
2804 retry:
2805 	retry = 0;
2806 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2807 		tag_pages_for_writeback(mapping, index, end);
2808 	done_index = index;
2809 	while (!done && !retry && (index <= end)) {
2810 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2811 				tag);
2812 		if (nr_pages == 0)
2813 			break;
2814 
2815 		for (i = 0; i < nr_pages; i++) {
2816 			struct page *page = pvec.pages[i];
2817 			bool need_readd;
2818 readd:
2819 			need_readd = false;
2820 #ifdef CONFIG_F2FS_FS_COMPRESSION
2821 			if (f2fs_compressed_file(inode)) {
2822 				ret = f2fs_init_compress_ctx(&cc);
2823 				if (ret) {
2824 					done = 1;
2825 					break;
2826 				}
2827 
2828 				if (!f2fs_cluster_can_merge_page(&cc,
2829 								page->index)) {
2830 					ret = f2fs_write_multi_pages(&cc,
2831 						&submitted, wbc, io_type);
2832 					if (!ret)
2833 						need_readd = true;
2834 					goto result;
2835 				}
2836 
2837 				if (unlikely(f2fs_cp_error(sbi)))
2838 					goto lock_page;
2839 
2840 				if (f2fs_cluster_is_empty(&cc)) {
2841 					void *fsdata = NULL;
2842 					struct page *pagep;
2843 					int ret2;
2844 
2845 					ret2 = f2fs_prepare_compress_overwrite(
2846 							inode, &pagep,
2847 							page->index, &fsdata);
2848 					if (ret2 < 0) {
2849 						ret = ret2;
2850 						done = 1;
2851 						break;
2852 					} else if (ret2 &&
2853 						!f2fs_compress_write_end(inode,
2854 								fsdata, page->index,
2855 								1)) {
2856 						retry = 1;
2857 						break;
2858 					}
2859 				} else {
2860 					goto lock_page;
2861 				}
2862 			}
2863 #endif
2864 			/* give a priority to WB_SYNC threads */
2865 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2866 					wbc->sync_mode == WB_SYNC_NONE) {
2867 				done = 1;
2868 				break;
2869 			}
2870 #ifdef CONFIG_F2FS_FS_COMPRESSION
2871 lock_page:
2872 #endif
2873 			done_index = page->index;
2874 retry_write:
2875 			lock_page(page);
2876 
2877 			if (unlikely(page->mapping != mapping)) {
2878 continue_unlock:
2879 				unlock_page(page);
2880 				continue;
2881 			}
2882 
2883 			if (!PageDirty(page)) {
2884 				/* someone wrote it for us */
2885 				goto continue_unlock;
2886 			}
2887 
2888 			if (PageWriteback(page)) {
2889 				if (wbc->sync_mode != WB_SYNC_NONE)
2890 					f2fs_wait_on_page_writeback(page,
2891 							DATA, true, true);
2892 				else
2893 					goto continue_unlock;
2894 			}
2895 
2896 			if (!clear_page_dirty_for_io(page))
2897 				goto continue_unlock;
2898 
2899 #ifdef CONFIG_F2FS_FS_COMPRESSION
2900 			if (f2fs_compressed_file(inode)) {
2901 				get_page(page);
2902 				f2fs_compress_ctx_add_page(&cc, page);
2903 				continue;
2904 			}
2905 #endif
2906 			ret = f2fs_write_single_data_page(page, &submitted,
2907 					&bio, &last_block, wbc, io_type, 0);
2908 			if (ret == AOP_WRITEPAGE_ACTIVATE)
2909 				unlock_page(page);
2910 #ifdef CONFIG_F2FS_FS_COMPRESSION
2911 result:
2912 #endif
2913 			nwritten += submitted;
2914 			wbc->nr_to_write -= submitted;
2915 
2916 			if (unlikely(ret)) {
2917 				/*
2918 				 * keep nr_to_write, since vfs uses this to
2919 				 * get # of written pages.
2920 				 */
2921 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2922 					ret = 0;
2923 					goto next;
2924 				} else if (ret == -EAGAIN) {
2925 					ret = 0;
2926 					if (wbc->sync_mode == WB_SYNC_ALL) {
2927 						cond_resched();
2928 						congestion_wait(BLK_RW_ASYNC,
2929 							DEFAULT_IO_TIMEOUT);
2930 						goto retry_write;
2931 					}
2932 					goto next;
2933 				}
2934 				done_index = page->index + 1;
2935 				done = 1;
2936 				break;
2937 			}
2938 
2939 			if (wbc->nr_to_write <= 0 &&
2940 					wbc->sync_mode == WB_SYNC_NONE) {
2941 				done = 1;
2942 				break;
2943 			}
2944 next:
2945 			if (need_readd)
2946 				goto readd;
2947 		}
2948 		pagevec_release(&pvec);
2949 		cond_resched();
2950 	}
2951 #ifdef CONFIG_F2FS_FS_COMPRESSION
2952 	/* flush remained pages in compress cluster */
2953 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
2954 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
2955 		nwritten += submitted;
2956 		wbc->nr_to_write -= submitted;
2957 		if (ret) {
2958 			done = 1;
2959 			retry = 0;
2960 		}
2961 	}
2962 #endif
2963 	if ((!cycled && !done) || retry) {
2964 		cycled = 1;
2965 		index = 0;
2966 		end = writeback_index - 1;
2967 		goto retry;
2968 	}
2969 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2970 		mapping->writeback_index = done_index;
2971 
2972 	if (nwritten)
2973 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2974 								NULL, 0, DATA);
2975 	/* submit cached bio of IPU write */
2976 	if (bio)
2977 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
2978 
2979 	return ret;
2980 }
2981 
2982 static inline bool __should_serialize_io(struct inode *inode,
2983 					struct writeback_control *wbc)
2984 {
2985 	/* to avoid deadlock in path of data flush */
2986 	if (F2FS_I(inode)->cp_task)
2987 		return false;
2988 
2989 	if (!S_ISREG(inode->i_mode))
2990 		return false;
2991 	if (IS_NOQUOTA(inode))
2992 		return false;
2993 
2994 	if (f2fs_compressed_file(inode))
2995 		return true;
2996 	if (wbc->sync_mode != WB_SYNC_ALL)
2997 		return true;
2998 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2999 		return true;
3000 	return false;
3001 }
3002 
3003 static int __f2fs_write_data_pages(struct address_space *mapping,
3004 						struct writeback_control *wbc,
3005 						enum iostat_type io_type)
3006 {
3007 	struct inode *inode = mapping->host;
3008 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3009 	struct blk_plug plug;
3010 	int ret;
3011 	bool locked = false;
3012 
3013 	/* deal with chardevs and other special file */
3014 	if (!mapping->a_ops->writepage)
3015 		return 0;
3016 
3017 	/* skip writing if there is no dirty page in this inode */
3018 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3019 		return 0;
3020 
3021 	/* during POR, we don't need to trigger writepage at all. */
3022 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3023 		goto skip_write;
3024 
3025 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3026 			wbc->sync_mode == WB_SYNC_NONE &&
3027 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3028 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3029 		goto skip_write;
3030 
3031 	/* skip writing during file defragment */
3032 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3033 		goto skip_write;
3034 
3035 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3036 
3037 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3038 	if (wbc->sync_mode == WB_SYNC_ALL)
3039 		atomic_inc(&sbi->wb_sync_req[DATA]);
3040 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
3041 		goto skip_write;
3042 
3043 	if (__should_serialize_io(inode, wbc)) {
3044 		mutex_lock(&sbi->writepages);
3045 		locked = true;
3046 	}
3047 
3048 	blk_start_plug(&plug);
3049 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3050 	blk_finish_plug(&plug);
3051 
3052 	if (locked)
3053 		mutex_unlock(&sbi->writepages);
3054 
3055 	if (wbc->sync_mode == WB_SYNC_ALL)
3056 		atomic_dec(&sbi->wb_sync_req[DATA]);
3057 	/*
3058 	 * if some pages were truncated, we cannot guarantee its mapping->host
3059 	 * to detect pending bios.
3060 	 */
3061 
3062 	f2fs_remove_dirty_inode(inode);
3063 	return ret;
3064 
3065 skip_write:
3066 	wbc->pages_skipped += get_dirty_pages(inode);
3067 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3068 	return 0;
3069 }
3070 
3071 static int f2fs_write_data_pages(struct address_space *mapping,
3072 			    struct writeback_control *wbc)
3073 {
3074 	struct inode *inode = mapping->host;
3075 
3076 	return __f2fs_write_data_pages(mapping, wbc,
3077 			F2FS_I(inode)->cp_task == current ?
3078 			FS_CP_DATA_IO : FS_DATA_IO);
3079 }
3080 
3081 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3082 {
3083 	struct inode *inode = mapping->host;
3084 	loff_t i_size = i_size_read(inode);
3085 
3086 	if (IS_NOQUOTA(inode))
3087 		return;
3088 
3089 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3090 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3091 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3092 		down_write(&F2FS_I(inode)->i_mmap_sem);
3093 
3094 		truncate_pagecache(inode, i_size);
3095 		f2fs_truncate_blocks(inode, i_size, true);
3096 
3097 		up_write(&F2FS_I(inode)->i_mmap_sem);
3098 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3099 	}
3100 }
3101 
3102 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3103 			struct page *page, loff_t pos, unsigned len,
3104 			block_t *blk_addr, bool *node_changed)
3105 {
3106 	struct inode *inode = page->mapping->host;
3107 	pgoff_t index = page->index;
3108 	struct dnode_of_data dn;
3109 	struct page *ipage;
3110 	bool locked = false;
3111 	struct extent_info ei = {0,0,0};
3112 	int err = 0;
3113 	int flag;
3114 
3115 	/*
3116 	 * we already allocated all the blocks, so we don't need to get
3117 	 * the block addresses when there is no need to fill the page.
3118 	 */
3119 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3120 	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3121 	    !f2fs_verity_in_progress(inode))
3122 		return 0;
3123 
3124 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3125 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3126 		flag = F2FS_GET_BLOCK_DEFAULT;
3127 	else
3128 		flag = F2FS_GET_BLOCK_PRE_AIO;
3129 
3130 	if (f2fs_has_inline_data(inode) ||
3131 			(pos & PAGE_MASK) >= i_size_read(inode)) {
3132 		__do_map_lock(sbi, flag, true);
3133 		locked = true;
3134 	}
3135 
3136 restart:
3137 	/* check inline_data */
3138 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3139 	if (IS_ERR(ipage)) {
3140 		err = PTR_ERR(ipage);
3141 		goto unlock_out;
3142 	}
3143 
3144 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3145 
3146 	if (f2fs_has_inline_data(inode)) {
3147 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3148 			f2fs_do_read_inline_data(page, ipage);
3149 			set_inode_flag(inode, FI_DATA_EXIST);
3150 			if (inode->i_nlink)
3151 				set_inline_node(ipage);
3152 		} else {
3153 			err = f2fs_convert_inline_page(&dn, page);
3154 			if (err)
3155 				goto out;
3156 			if (dn.data_blkaddr == NULL_ADDR)
3157 				err = f2fs_get_block(&dn, index);
3158 		}
3159 	} else if (locked) {
3160 		err = f2fs_get_block(&dn, index);
3161 	} else {
3162 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3163 			dn.data_blkaddr = ei.blk + index - ei.fofs;
3164 		} else {
3165 			/* hole case */
3166 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3167 			if (err || dn.data_blkaddr == NULL_ADDR) {
3168 				f2fs_put_dnode(&dn);
3169 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3170 								true);
3171 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3172 				locked = true;
3173 				goto restart;
3174 			}
3175 		}
3176 	}
3177 
3178 	/* convert_inline_page can make node_changed */
3179 	*blk_addr = dn.data_blkaddr;
3180 	*node_changed = dn.node_changed;
3181 out:
3182 	f2fs_put_dnode(&dn);
3183 unlock_out:
3184 	if (locked)
3185 		__do_map_lock(sbi, flag, false);
3186 	return err;
3187 }
3188 
3189 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3190 		loff_t pos, unsigned len, unsigned flags,
3191 		struct page **pagep, void **fsdata)
3192 {
3193 	struct inode *inode = mapping->host;
3194 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3195 	struct page *page = NULL;
3196 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3197 	bool need_balance = false, drop_atomic = false;
3198 	block_t blkaddr = NULL_ADDR;
3199 	int err = 0;
3200 
3201 	trace_f2fs_write_begin(inode, pos, len, flags);
3202 
3203 	if (!f2fs_is_checkpoint_ready(sbi)) {
3204 		err = -ENOSPC;
3205 		goto fail;
3206 	}
3207 
3208 	if ((f2fs_is_atomic_file(inode) &&
3209 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3210 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3211 		err = -ENOMEM;
3212 		drop_atomic = true;
3213 		goto fail;
3214 	}
3215 
3216 	/*
3217 	 * We should check this at this moment to avoid deadlock on inode page
3218 	 * and #0 page. The locking rule for inline_data conversion should be:
3219 	 * lock_page(page #0) -> lock_page(inode_page)
3220 	 */
3221 	if (index != 0) {
3222 		err = f2fs_convert_inline_inode(inode);
3223 		if (err)
3224 			goto fail;
3225 	}
3226 
3227 #ifdef CONFIG_F2FS_FS_COMPRESSION
3228 	if (f2fs_compressed_file(inode)) {
3229 		int ret;
3230 
3231 		*fsdata = NULL;
3232 
3233 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3234 							index, fsdata);
3235 		if (ret < 0) {
3236 			err = ret;
3237 			goto fail;
3238 		} else if (ret) {
3239 			return 0;
3240 		}
3241 	}
3242 #endif
3243 
3244 repeat:
3245 	/*
3246 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3247 	 * wait_for_stable_page. Will wait that below with our IO control.
3248 	 */
3249 	page = f2fs_pagecache_get_page(mapping, index,
3250 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3251 	if (!page) {
3252 		err = -ENOMEM;
3253 		goto fail;
3254 	}
3255 
3256 	/* TODO: cluster can be compressed due to race with .writepage */
3257 
3258 	*pagep = page;
3259 
3260 	err = prepare_write_begin(sbi, page, pos, len,
3261 					&blkaddr, &need_balance);
3262 	if (err)
3263 		goto fail;
3264 
3265 	if (need_balance && !IS_NOQUOTA(inode) &&
3266 			has_not_enough_free_secs(sbi, 0, 0)) {
3267 		unlock_page(page);
3268 		f2fs_balance_fs(sbi, true);
3269 		lock_page(page);
3270 		if (page->mapping != mapping) {
3271 			/* The page got truncated from under us */
3272 			f2fs_put_page(page, 1);
3273 			goto repeat;
3274 		}
3275 	}
3276 
3277 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3278 
3279 	if (len == PAGE_SIZE || PageUptodate(page))
3280 		return 0;
3281 
3282 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3283 	    !f2fs_verity_in_progress(inode)) {
3284 		zero_user_segment(page, len, PAGE_SIZE);
3285 		return 0;
3286 	}
3287 
3288 	if (blkaddr == NEW_ADDR) {
3289 		zero_user_segment(page, 0, PAGE_SIZE);
3290 		SetPageUptodate(page);
3291 	} else {
3292 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3293 				DATA_GENERIC_ENHANCE_READ)) {
3294 			err = -EFSCORRUPTED;
3295 			goto fail;
3296 		}
3297 		err = f2fs_submit_page_read(inode, page, blkaddr, true);
3298 		if (err)
3299 			goto fail;
3300 
3301 		lock_page(page);
3302 		if (unlikely(page->mapping != mapping)) {
3303 			f2fs_put_page(page, 1);
3304 			goto repeat;
3305 		}
3306 		if (unlikely(!PageUptodate(page))) {
3307 			err = -EIO;
3308 			goto fail;
3309 		}
3310 	}
3311 	return 0;
3312 
3313 fail:
3314 	f2fs_put_page(page, 1);
3315 	f2fs_write_failed(mapping, pos + len);
3316 	if (drop_atomic)
3317 		f2fs_drop_inmem_pages_all(sbi, false);
3318 	return err;
3319 }
3320 
3321 static int f2fs_write_end(struct file *file,
3322 			struct address_space *mapping,
3323 			loff_t pos, unsigned len, unsigned copied,
3324 			struct page *page, void *fsdata)
3325 {
3326 	struct inode *inode = page->mapping->host;
3327 
3328 	trace_f2fs_write_end(inode, pos, len, copied);
3329 
3330 	/*
3331 	 * This should be come from len == PAGE_SIZE, and we expect copied
3332 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3333 	 * let generic_perform_write() try to copy data again through copied=0.
3334 	 */
3335 	if (!PageUptodate(page)) {
3336 		if (unlikely(copied != len))
3337 			copied = 0;
3338 		else
3339 			SetPageUptodate(page);
3340 	}
3341 
3342 #ifdef CONFIG_F2FS_FS_COMPRESSION
3343 	/* overwrite compressed file */
3344 	if (f2fs_compressed_file(inode) && fsdata) {
3345 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3346 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3347 		return copied;
3348 	}
3349 #endif
3350 
3351 	if (!copied)
3352 		goto unlock_out;
3353 
3354 	set_page_dirty(page);
3355 
3356 	if (pos + copied > i_size_read(inode) &&
3357 	    !f2fs_verity_in_progress(inode))
3358 		f2fs_i_size_write(inode, pos + copied);
3359 unlock_out:
3360 	f2fs_put_page(page, 1);
3361 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3362 	return copied;
3363 }
3364 
3365 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3366 			   loff_t offset)
3367 {
3368 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3369 	unsigned blkbits = i_blkbits;
3370 	unsigned blocksize_mask = (1 << blkbits) - 1;
3371 	unsigned long align = offset | iov_iter_alignment(iter);
3372 	struct block_device *bdev = inode->i_sb->s_bdev;
3373 
3374 	if (align & blocksize_mask) {
3375 		if (bdev)
3376 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
3377 		blocksize_mask = (1 << blkbits) - 1;
3378 		if (align & blocksize_mask)
3379 			return -EINVAL;
3380 		return 1;
3381 	}
3382 	return 0;
3383 }
3384 
3385 static void f2fs_dio_end_io(struct bio *bio)
3386 {
3387 	struct f2fs_private_dio *dio = bio->bi_private;
3388 
3389 	dec_page_count(F2FS_I_SB(dio->inode),
3390 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3391 
3392 	bio->bi_private = dio->orig_private;
3393 	bio->bi_end_io = dio->orig_end_io;
3394 
3395 	kvfree(dio);
3396 
3397 	bio_endio(bio);
3398 }
3399 
3400 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3401 							loff_t file_offset)
3402 {
3403 	struct f2fs_private_dio *dio;
3404 	bool write = (bio_op(bio) == REQ_OP_WRITE);
3405 
3406 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
3407 			sizeof(struct f2fs_private_dio), GFP_NOFS);
3408 	if (!dio)
3409 		goto out;
3410 
3411 	dio->inode = inode;
3412 	dio->orig_end_io = bio->bi_end_io;
3413 	dio->orig_private = bio->bi_private;
3414 	dio->write = write;
3415 
3416 	bio->bi_end_io = f2fs_dio_end_io;
3417 	bio->bi_private = dio;
3418 
3419 	inc_page_count(F2FS_I_SB(inode),
3420 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3421 
3422 	submit_bio(bio);
3423 	return;
3424 out:
3425 	bio->bi_status = BLK_STS_IOERR;
3426 	bio_endio(bio);
3427 }
3428 
3429 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3430 {
3431 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3432 	struct inode *inode = mapping->host;
3433 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3434 	struct f2fs_inode_info *fi = F2FS_I(inode);
3435 	size_t count = iov_iter_count(iter);
3436 	loff_t offset = iocb->ki_pos;
3437 	int rw = iov_iter_rw(iter);
3438 	int err;
3439 	enum rw_hint hint = iocb->ki_hint;
3440 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
3441 	bool do_opu;
3442 
3443 	err = check_direct_IO(inode, iter, offset);
3444 	if (err)
3445 		return err < 0 ? err : 0;
3446 
3447 	if (f2fs_force_buffered_io(inode, iocb, iter))
3448 		return 0;
3449 
3450 	do_opu = allow_outplace_dio(inode, iocb, iter);
3451 
3452 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3453 
3454 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3455 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
3456 
3457 	if (iocb->ki_flags & IOCB_NOWAIT) {
3458 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3459 			iocb->ki_hint = hint;
3460 			err = -EAGAIN;
3461 			goto out;
3462 		}
3463 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3464 			up_read(&fi->i_gc_rwsem[rw]);
3465 			iocb->ki_hint = hint;
3466 			err = -EAGAIN;
3467 			goto out;
3468 		}
3469 	} else {
3470 		down_read(&fi->i_gc_rwsem[rw]);
3471 		if (do_opu)
3472 			down_read(&fi->i_gc_rwsem[READ]);
3473 	}
3474 
3475 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3476 			iter, rw == WRITE ? get_data_block_dio_write :
3477 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
3478 			rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3479 			DIO_SKIP_HOLES);
3480 
3481 	if (do_opu)
3482 		up_read(&fi->i_gc_rwsem[READ]);
3483 
3484 	up_read(&fi->i_gc_rwsem[rw]);
3485 
3486 	if (rw == WRITE) {
3487 		if (whint_mode == WHINT_MODE_OFF)
3488 			iocb->ki_hint = hint;
3489 		if (err > 0) {
3490 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3491 									err);
3492 			if (!do_opu)
3493 				set_inode_flag(inode, FI_UPDATE_WRITE);
3494 		} else if (err < 0) {
3495 			f2fs_write_failed(mapping, offset + count);
3496 		}
3497 	}
3498 
3499 out:
3500 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3501 
3502 	return err;
3503 }
3504 
3505 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3506 							unsigned int length)
3507 {
3508 	struct inode *inode = page->mapping->host;
3509 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3510 
3511 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3512 		(offset % PAGE_SIZE || length != PAGE_SIZE))
3513 		return;
3514 
3515 	if (PageDirty(page)) {
3516 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3517 			dec_page_count(sbi, F2FS_DIRTY_META);
3518 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3519 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3520 		} else {
3521 			inode_dec_dirty_pages(inode);
3522 			f2fs_remove_dirty_inode(inode);
3523 		}
3524 	}
3525 
3526 	clear_cold_data(page);
3527 
3528 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3529 		return f2fs_drop_inmem_page(inode, page);
3530 
3531 	f2fs_clear_page_private(page);
3532 }
3533 
3534 int f2fs_release_page(struct page *page, gfp_t wait)
3535 {
3536 	/* If this is dirty page, keep PagePrivate */
3537 	if (PageDirty(page))
3538 		return 0;
3539 
3540 	/* This is atomic written page, keep Private */
3541 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3542 		return 0;
3543 
3544 	clear_cold_data(page);
3545 	f2fs_clear_page_private(page);
3546 	return 1;
3547 }
3548 
3549 static int f2fs_set_data_page_dirty(struct page *page)
3550 {
3551 	struct inode *inode = page_file_mapping(page)->host;
3552 
3553 	trace_f2fs_set_page_dirty(page, DATA);
3554 
3555 	if (!PageUptodate(page))
3556 		SetPageUptodate(page);
3557 	if (PageSwapCache(page))
3558 		return __set_page_dirty_nobuffers(page);
3559 
3560 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3561 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3562 			f2fs_register_inmem_page(inode, page);
3563 			return 1;
3564 		}
3565 		/*
3566 		 * Previously, this page has been registered, we just
3567 		 * return here.
3568 		 */
3569 		return 0;
3570 	}
3571 
3572 	if (!PageDirty(page)) {
3573 		__set_page_dirty_nobuffers(page);
3574 		f2fs_update_dirty_page(inode, page);
3575 		return 1;
3576 	}
3577 	return 0;
3578 }
3579 
3580 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3581 {
3582 	struct inode *inode = mapping->host;
3583 
3584 	if (f2fs_has_inline_data(inode))
3585 		return 0;
3586 
3587 	/* make sure allocating whole blocks */
3588 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3589 		filemap_write_and_wait(mapping);
3590 
3591 	return generic_block_bmap(mapping, block, get_data_block_bmap);
3592 }
3593 
3594 #ifdef CONFIG_MIGRATION
3595 #include <linux/migrate.h>
3596 
3597 int f2fs_migrate_page(struct address_space *mapping,
3598 		struct page *newpage, struct page *page, enum migrate_mode mode)
3599 {
3600 	int rc, extra_count;
3601 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3602 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3603 
3604 	BUG_ON(PageWriteback(page));
3605 
3606 	/* migrating an atomic written page is safe with the inmem_lock hold */
3607 	if (atomic_written) {
3608 		if (mode != MIGRATE_SYNC)
3609 			return -EBUSY;
3610 		if (!mutex_trylock(&fi->inmem_lock))
3611 			return -EAGAIN;
3612 	}
3613 
3614 	/* one extra reference was held for atomic_write page */
3615 	extra_count = atomic_written ? 1 : 0;
3616 	rc = migrate_page_move_mapping(mapping, newpage,
3617 				page, extra_count);
3618 	if (rc != MIGRATEPAGE_SUCCESS) {
3619 		if (atomic_written)
3620 			mutex_unlock(&fi->inmem_lock);
3621 		return rc;
3622 	}
3623 
3624 	if (atomic_written) {
3625 		struct inmem_pages *cur;
3626 		list_for_each_entry(cur, &fi->inmem_pages, list)
3627 			if (cur->page == page) {
3628 				cur->page = newpage;
3629 				break;
3630 			}
3631 		mutex_unlock(&fi->inmem_lock);
3632 		put_page(page);
3633 		get_page(newpage);
3634 	}
3635 
3636 	if (PagePrivate(page)) {
3637 		f2fs_set_page_private(newpage, page_private(page));
3638 		f2fs_clear_page_private(page);
3639 	}
3640 
3641 	if (mode != MIGRATE_SYNC_NO_COPY)
3642 		migrate_page_copy(newpage, page);
3643 	else
3644 		migrate_page_states(newpage, page);
3645 
3646 	return MIGRATEPAGE_SUCCESS;
3647 }
3648 #endif
3649 
3650 #ifdef CONFIG_SWAP
3651 /* Copied from generic_swapfile_activate() to check any holes */
3652 static int check_swap_activate(struct swap_info_struct *sis,
3653 				struct file *swap_file, sector_t *span)
3654 {
3655 	struct address_space *mapping = swap_file->f_mapping;
3656 	struct inode *inode = mapping->host;
3657 	unsigned blocks_per_page;
3658 	unsigned long page_no;
3659 	unsigned blkbits;
3660 	sector_t probe_block;
3661 	sector_t last_block;
3662 	sector_t lowest_block = -1;
3663 	sector_t highest_block = 0;
3664 	int nr_extents = 0;
3665 	int ret;
3666 
3667 	blkbits = inode->i_blkbits;
3668 	blocks_per_page = PAGE_SIZE >> blkbits;
3669 
3670 	/*
3671 	 * Map all the blocks into the extent list.  This code doesn't try
3672 	 * to be very smart.
3673 	 */
3674 	probe_block = 0;
3675 	page_no = 0;
3676 	last_block = i_size_read(inode) >> blkbits;
3677 	while ((probe_block + blocks_per_page) <= last_block &&
3678 			page_no < sis->max) {
3679 		unsigned block_in_page;
3680 		sector_t first_block;
3681 		sector_t block = 0;
3682 		int	 err = 0;
3683 
3684 		cond_resched();
3685 
3686 		block = probe_block;
3687 		err = bmap(inode, &block);
3688 		if (err || !block)
3689 			goto bad_bmap;
3690 		first_block = block;
3691 
3692 		/*
3693 		 * It must be PAGE_SIZE aligned on-disk
3694 		 */
3695 		if (first_block & (blocks_per_page - 1)) {
3696 			probe_block++;
3697 			goto reprobe;
3698 		}
3699 
3700 		for (block_in_page = 1; block_in_page < blocks_per_page;
3701 					block_in_page++) {
3702 
3703 			block = probe_block + block_in_page;
3704 			err = bmap(inode, &block);
3705 
3706 			if (err || !block)
3707 				goto bad_bmap;
3708 
3709 			if (block != first_block + block_in_page) {
3710 				/* Discontiguity */
3711 				probe_block++;
3712 				goto reprobe;
3713 			}
3714 		}
3715 
3716 		first_block >>= (PAGE_SHIFT - blkbits);
3717 		if (page_no) {	/* exclude the header page */
3718 			if (first_block < lowest_block)
3719 				lowest_block = first_block;
3720 			if (first_block > highest_block)
3721 				highest_block = first_block;
3722 		}
3723 
3724 		/*
3725 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3726 		 */
3727 		ret = add_swap_extent(sis, page_no, 1, first_block);
3728 		if (ret < 0)
3729 			goto out;
3730 		nr_extents += ret;
3731 		page_no++;
3732 		probe_block += blocks_per_page;
3733 reprobe:
3734 		continue;
3735 	}
3736 	ret = nr_extents;
3737 	*span = 1 + highest_block - lowest_block;
3738 	if (page_no == 0)
3739 		page_no = 1;	/* force Empty message */
3740 	sis->max = page_no;
3741 	sis->pages = page_no - 1;
3742 	sis->highest_bit = page_no - 1;
3743 out:
3744 	return ret;
3745 bad_bmap:
3746 	pr_err("swapon: swapfile has holes\n");
3747 	return -EINVAL;
3748 }
3749 
3750 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3751 				sector_t *span)
3752 {
3753 	struct inode *inode = file_inode(file);
3754 	int ret;
3755 
3756 	if (!S_ISREG(inode->i_mode))
3757 		return -EINVAL;
3758 
3759 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3760 		return -EROFS;
3761 
3762 	ret = f2fs_convert_inline_inode(inode);
3763 	if (ret)
3764 		return ret;
3765 
3766 	if (f2fs_disable_compressed_file(inode))
3767 		return -EINVAL;
3768 
3769 	ret = check_swap_activate(sis, file, span);
3770 	if (ret < 0)
3771 		return ret;
3772 
3773 	set_inode_flag(inode, FI_PIN_FILE);
3774 	f2fs_precache_extents(inode);
3775 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3776 	return ret;
3777 }
3778 
3779 static void f2fs_swap_deactivate(struct file *file)
3780 {
3781 	struct inode *inode = file_inode(file);
3782 
3783 	clear_inode_flag(inode, FI_PIN_FILE);
3784 }
3785 #else
3786 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3787 				sector_t *span)
3788 {
3789 	return -EOPNOTSUPP;
3790 }
3791 
3792 static void f2fs_swap_deactivate(struct file *file)
3793 {
3794 }
3795 #endif
3796 
3797 const struct address_space_operations f2fs_dblock_aops = {
3798 	.readpage	= f2fs_read_data_page,
3799 	.readahead	= f2fs_readahead,
3800 	.writepage	= f2fs_write_data_page,
3801 	.writepages	= f2fs_write_data_pages,
3802 	.write_begin	= f2fs_write_begin,
3803 	.write_end	= f2fs_write_end,
3804 	.set_page_dirty	= f2fs_set_data_page_dirty,
3805 	.invalidatepage	= f2fs_invalidate_page,
3806 	.releasepage	= f2fs_release_page,
3807 	.direct_IO	= f2fs_direct_IO,
3808 	.bmap		= f2fs_bmap,
3809 	.swap_activate  = f2fs_swap_activate,
3810 	.swap_deactivate = f2fs_swap_deactivate,
3811 #ifdef CONFIG_MIGRATION
3812 	.migratepage    = f2fs_migrate_page,
3813 #endif
3814 };
3815 
3816 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3817 {
3818 	struct address_space *mapping = page_mapping(page);
3819 	unsigned long flags;
3820 
3821 	xa_lock_irqsave(&mapping->i_pages, flags);
3822 	__xa_clear_mark(&mapping->i_pages, page_index(page),
3823 						PAGECACHE_TAG_DIRTY);
3824 	xa_unlock_irqrestore(&mapping->i_pages, flags);
3825 }
3826 
3827 int __init f2fs_init_post_read_processing(void)
3828 {
3829 	bio_post_read_ctx_cache =
3830 		kmem_cache_create("f2fs_bio_post_read_ctx",
3831 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3832 	if (!bio_post_read_ctx_cache)
3833 		goto fail;
3834 	bio_post_read_ctx_pool =
3835 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3836 					 bio_post_read_ctx_cache);
3837 	if (!bio_post_read_ctx_pool)
3838 		goto fail_free_cache;
3839 	return 0;
3840 
3841 fail_free_cache:
3842 	kmem_cache_destroy(bio_post_read_ctx_cache);
3843 fail:
3844 	return -ENOMEM;
3845 }
3846 
3847 void f2fs_destroy_post_read_processing(void)
3848 {
3849 	mempool_destroy(bio_post_read_ctx_pool);
3850 	kmem_cache_destroy(bio_post_read_ctx_cache);
3851 }
3852 
3853 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
3854 {
3855 	if (!f2fs_sb_has_encrypt(sbi) &&
3856 		!f2fs_sb_has_verity(sbi) &&
3857 		!f2fs_sb_has_compression(sbi))
3858 		return 0;
3859 
3860 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
3861 						 WQ_UNBOUND | WQ_HIGHPRI,
3862 						 num_online_cpus());
3863 	if (!sbi->post_read_wq)
3864 		return -ENOMEM;
3865 	return 0;
3866 }
3867 
3868 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
3869 {
3870 	if (sbi->post_read_wq)
3871 		destroy_workqueue(sbi->post_read_wq);
3872 }
3873 
3874 int __init f2fs_init_bio_entry_cache(void)
3875 {
3876 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
3877 			sizeof(struct bio_entry));
3878 	if (!bio_entry_slab)
3879 		return -ENOMEM;
3880 	return 0;
3881 }
3882 
3883 void f2fs_destroy_bio_entry_cache(void)
3884 {
3885 	kmem_cache_destroy(bio_entry_slab);
3886 }
3887