xref: /openbmc/linux/fs/f2fs/data.c (revision cfd6ed45)
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32 
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 	struct address_space *mapping = page->mapping;
36 	struct inode *inode;
37 	struct f2fs_sb_info *sbi;
38 
39 	if (!mapping)
40 		return false;
41 
42 	inode = mapping->host;
43 	sbi = F2FS_I_SB(inode);
44 
45 	if (inode->i_ino == F2FS_META_INO(sbi) ||
46 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
47 			S_ISDIR(inode->i_mode) ||
48 			is_cold_data(page))
49 		return true;
50 	return false;
51 }
52 
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55 	struct bio_vec *bvec;
56 	int i;
57 
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59 	if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
60 		f2fs_show_injection_info(FAULT_IO);
61 		bio->bi_error = -EIO;
62 	}
63 #endif
64 
65 	if (f2fs_bio_encrypted(bio)) {
66 		if (bio->bi_error) {
67 			fscrypt_release_ctx(bio->bi_private);
68 		} else {
69 			fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70 			return;
71 		}
72 	}
73 
74 	bio_for_each_segment_all(bvec, bio, i) {
75 		struct page *page = bvec->bv_page;
76 
77 		if (!bio->bi_error) {
78 			if (!PageUptodate(page))
79 				SetPageUptodate(page);
80 		} else {
81 			ClearPageUptodate(page);
82 			SetPageError(page);
83 		}
84 		unlock_page(page);
85 	}
86 	bio_put(bio);
87 }
88 
89 static void f2fs_write_end_io(struct bio *bio)
90 {
91 	struct f2fs_sb_info *sbi = bio->bi_private;
92 	struct bio_vec *bvec;
93 	int i;
94 
95 	bio_for_each_segment_all(bvec, bio, i) {
96 		struct page *page = bvec->bv_page;
97 		enum count_type type = WB_DATA_TYPE(page);
98 
99 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
100 			set_page_private(page, (unsigned long)NULL);
101 			ClearPagePrivate(page);
102 			unlock_page(page);
103 			mempool_free(page, sbi->write_io_dummy);
104 
105 			if (unlikely(bio->bi_error))
106 				f2fs_stop_checkpoint(sbi, true);
107 			continue;
108 		}
109 
110 		fscrypt_pullback_bio_page(&page, true);
111 
112 		if (unlikely(bio->bi_error)) {
113 			mapping_set_error(page->mapping, -EIO);
114 			f2fs_stop_checkpoint(sbi, true);
115 		}
116 		dec_page_count(sbi, type);
117 		clear_cold_data(page);
118 		end_page_writeback(page);
119 	}
120 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
121 				wq_has_sleeper(&sbi->cp_wait))
122 		wake_up(&sbi->cp_wait);
123 
124 	bio_put(bio);
125 }
126 
127 /*
128  * Return true, if pre_bio's bdev is same as its target device.
129  */
130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
131 				block_t blk_addr, struct bio *bio)
132 {
133 	struct block_device *bdev = sbi->sb->s_bdev;
134 	int i;
135 
136 	for (i = 0; i < sbi->s_ndevs; i++) {
137 		if (FDEV(i).start_blk <= blk_addr &&
138 					FDEV(i).end_blk >= blk_addr) {
139 			blk_addr -= FDEV(i).start_blk;
140 			bdev = FDEV(i).bdev;
141 			break;
142 		}
143 	}
144 	if (bio) {
145 		bio->bi_bdev = bdev;
146 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
147 	}
148 	return bdev;
149 }
150 
151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
152 {
153 	int i;
154 
155 	for (i = 0; i < sbi->s_ndevs; i++)
156 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
157 			return i;
158 	return 0;
159 }
160 
161 static bool __same_bdev(struct f2fs_sb_info *sbi,
162 				block_t blk_addr, struct bio *bio)
163 {
164 	return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
165 }
166 
167 /*
168  * Low-level block read/write IO operations.
169  */
170 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
171 				int npages, bool is_read)
172 {
173 	struct bio *bio;
174 
175 	bio = f2fs_bio_alloc(npages);
176 
177 	f2fs_target_device(sbi, blk_addr, bio);
178 	bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
179 	bio->bi_private = is_read ? NULL : sbi;
180 
181 	return bio;
182 }
183 
184 static inline void __submit_bio(struct f2fs_sb_info *sbi,
185 				struct bio *bio, enum page_type type)
186 {
187 	if (!is_read_io(bio_op(bio))) {
188 		unsigned int start;
189 
190 		if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
191 			current->plug && (type == DATA || type == NODE))
192 			blk_finish_plug(current->plug);
193 
194 		if (type != DATA && type != NODE)
195 			goto submit_io;
196 
197 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
198 		start %= F2FS_IO_SIZE(sbi);
199 
200 		if (start == 0)
201 			goto submit_io;
202 
203 		/* fill dummy pages */
204 		for (; start < F2FS_IO_SIZE(sbi); start++) {
205 			struct page *page =
206 				mempool_alloc(sbi->write_io_dummy,
207 					GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
208 			f2fs_bug_on(sbi, !page);
209 
210 			SetPagePrivate(page);
211 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
212 			lock_page(page);
213 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
214 				f2fs_bug_on(sbi, 1);
215 		}
216 		/*
217 		 * In the NODE case, we lose next block address chain. So, we
218 		 * need to do checkpoint in f2fs_sync_file.
219 		 */
220 		if (type == NODE)
221 			set_sbi_flag(sbi, SBI_NEED_CP);
222 	}
223 submit_io:
224 	if (is_read_io(bio_op(bio)))
225 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
226 	else
227 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
228 	submit_bio(bio);
229 }
230 
231 static void __submit_merged_bio(struct f2fs_bio_info *io)
232 {
233 	struct f2fs_io_info *fio = &io->fio;
234 
235 	if (!io->bio)
236 		return;
237 
238 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
239 
240 	if (is_read_io(fio->op))
241 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
242 	else
243 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
244 
245 	__submit_bio(io->sbi, io->bio, fio->type);
246 	io->bio = NULL;
247 }
248 
249 static bool __has_merged_page(struct f2fs_bio_info *io,
250 				struct inode *inode, nid_t ino, pgoff_t idx)
251 {
252 	struct bio_vec *bvec;
253 	struct page *target;
254 	int i;
255 
256 	if (!io->bio)
257 		return false;
258 
259 	if (!inode && !ino)
260 		return true;
261 
262 	bio_for_each_segment_all(bvec, io->bio, i) {
263 
264 		if (bvec->bv_page->mapping)
265 			target = bvec->bv_page;
266 		else
267 			target = fscrypt_control_page(bvec->bv_page);
268 
269 		if (idx != target->index)
270 			continue;
271 
272 		if (inode && inode == target->mapping->host)
273 			return true;
274 		if (ino && ino == ino_of_node(target))
275 			return true;
276 	}
277 
278 	return false;
279 }
280 
281 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
282 				nid_t ino, pgoff_t idx, enum page_type type)
283 {
284 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
285 	struct f2fs_bio_info *io = &sbi->write_io[btype];
286 	bool ret;
287 
288 	down_read(&io->io_rwsem);
289 	ret = __has_merged_page(io, inode, ino, idx);
290 	up_read(&io->io_rwsem);
291 	return ret;
292 }
293 
294 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
295 				struct inode *inode, nid_t ino, pgoff_t idx,
296 				enum page_type type, int rw)
297 {
298 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
299 	struct f2fs_bio_info *io;
300 
301 	io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
302 
303 	down_write(&io->io_rwsem);
304 
305 	if (!__has_merged_page(io, inode, ino, idx))
306 		goto out;
307 
308 	/* change META to META_FLUSH in the checkpoint procedure */
309 	if (type >= META_FLUSH) {
310 		io->fio.type = META_FLUSH;
311 		io->fio.op = REQ_OP_WRITE;
312 		io->fio.op_flags = REQ_META | REQ_PRIO;
313 		if (!test_opt(sbi, NOBARRIER))
314 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
315 	}
316 	__submit_merged_bio(io);
317 out:
318 	up_write(&io->io_rwsem);
319 }
320 
321 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
322 									int rw)
323 {
324 	__f2fs_submit_merged_bio(sbi, NULL, 0, 0, type, rw);
325 }
326 
327 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
328 				struct inode *inode, nid_t ino, pgoff_t idx,
329 				enum page_type type, int rw)
330 {
331 	if (has_merged_page(sbi, inode, ino, idx, type))
332 		__f2fs_submit_merged_bio(sbi, inode, ino, idx, type, rw);
333 }
334 
335 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
336 {
337 	f2fs_submit_merged_bio(sbi, DATA, WRITE);
338 	f2fs_submit_merged_bio(sbi, NODE, WRITE);
339 	f2fs_submit_merged_bio(sbi, META, WRITE);
340 }
341 
342 /*
343  * Fill the locked page with data located in the block address.
344  * Return unlocked page.
345  */
346 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
347 {
348 	struct bio *bio;
349 	struct page *page = fio->encrypted_page ?
350 			fio->encrypted_page : fio->page;
351 
352 	trace_f2fs_submit_page_bio(page, fio);
353 	f2fs_trace_ios(fio, 0);
354 
355 	/* Allocate a new bio */
356 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
357 
358 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
359 		bio_put(bio);
360 		return -EFAULT;
361 	}
362 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
363 
364 	__submit_bio(fio->sbi, bio, fio->type);
365 	return 0;
366 }
367 
368 int f2fs_submit_page_mbio(struct f2fs_io_info *fio)
369 {
370 	struct f2fs_sb_info *sbi = fio->sbi;
371 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
372 	struct f2fs_bio_info *io;
373 	bool is_read = is_read_io(fio->op);
374 	struct page *bio_page;
375 	int err = 0;
376 
377 	io = is_read ? &sbi->read_io : &sbi->write_io[btype];
378 
379 	if (fio->old_blkaddr != NEW_ADDR)
380 		verify_block_addr(sbi, fio->old_blkaddr);
381 	verify_block_addr(sbi, fio->new_blkaddr);
382 
383 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
384 
385 	/* set submitted = 1 as a return value */
386 	fio->submitted = 1;
387 
388 	if (!is_read)
389 		inc_page_count(sbi, WB_DATA_TYPE(bio_page));
390 
391 	down_write(&io->io_rwsem);
392 
393 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
394 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
395 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
396 		__submit_merged_bio(io);
397 alloc_new:
398 	if (io->bio == NULL) {
399 		if ((fio->type == DATA || fio->type == NODE) &&
400 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
401 			err = -EAGAIN;
402 			if (!is_read)
403 				dec_page_count(sbi, WB_DATA_TYPE(bio_page));
404 			goto out_fail;
405 		}
406 		io->bio = __bio_alloc(sbi, fio->new_blkaddr,
407 						BIO_MAX_PAGES, is_read);
408 		io->fio = *fio;
409 	}
410 
411 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
412 							PAGE_SIZE) {
413 		__submit_merged_bio(io);
414 		goto alloc_new;
415 	}
416 
417 	io->last_block_in_bio = fio->new_blkaddr;
418 	f2fs_trace_ios(fio, 0);
419 out_fail:
420 	up_write(&io->io_rwsem);
421 	trace_f2fs_submit_page_mbio(fio->page, fio);
422 	return err;
423 }
424 
425 static void __set_data_blkaddr(struct dnode_of_data *dn)
426 {
427 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
428 	__le32 *addr_array;
429 
430 	/* Get physical address of data block */
431 	addr_array = blkaddr_in_node(rn);
432 	addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
433 }
434 
435 /*
436  * Lock ordering for the change of data block address:
437  * ->data_page
438  *  ->node_page
439  *    update block addresses in the node page
440  */
441 void set_data_blkaddr(struct dnode_of_data *dn)
442 {
443 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
444 	__set_data_blkaddr(dn);
445 	if (set_page_dirty(dn->node_page))
446 		dn->node_changed = true;
447 }
448 
449 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
450 {
451 	dn->data_blkaddr = blkaddr;
452 	set_data_blkaddr(dn);
453 	f2fs_update_extent_cache(dn);
454 }
455 
456 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
457 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
458 {
459 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
460 
461 	if (!count)
462 		return 0;
463 
464 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
465 		return -EPERM;
466 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
467 		return -ENOSPC;
468 
469 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
470 						dn->ofs_in_node, count);
471 
472 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
473 
474 	for (; count > 0; dn->ofs_in_node++) {
475 		block_t blkaddr =
476 			datablock_addr(dn->node_page, dn->ofs_in_node);
477 		if (blkaddr == NULL_ADDR) {
478 			dn->data_blkaddr = NEW_ADDR;
479 			__set_data_blkaddr(dn);
480 			count--;
481 		}
482 	}
483 
484 	if (set_page_dirty(dn->node_page))
485 		dn->node_changed = true;
486 	return 0;
487 }
488 
489 /* Should keep dn->ofs_in_node unchanged */
490 int reserve_new_block(struct dnode_of_data *dn)
491 {
492 	unsigned int ofs_in_node = dn->ofs_in_node;
493 	int ret;
494 
495 	ret = reserve_new_blocks(dn, 1);
496 	dn->ofs_in_node = ofs_in_node;
497 	return ret;
498 }
499 
500 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
501 {
502 	bool need_put = dn->inode_page ? false : true;
503 	int err;
504 
505 	err = get_dnode_of_data(dn, index, ALLOC_NODE);
506 	if (err)
507 		return err;
508 
509 	if (dn->data_blkaddr == NULL_ADDR)
510 		err = reserve_new_block(dn);
511 	if (err || need_put)
512 		f2fs_put_dnode(dn);
513 	return err;
514 }
515 
516 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
517 {
518 	struct extent_info ei  = {0,0,0};
519 	struct inode *inode = dn->inode;
520 
521 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
522 		dn->data_blkaddr = ei.blk + index - ei.fofs;
523 		return 0;
524 	}
525 
526 	return f2fs_reserve_block(dn, index);
527 }
528 
529 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
530 						int op_flags, bool for_write)
531 {
532 	struct address_space *mapping = inode->i_mapping;
533 	struct dnode_of_data dn;
534 	struct page *page;
535 	struct extent_info ei = {0,0,0};
536 	int err;
537 	struct f2fs_io_info fio = {
538 		.sbi = F2FS_I_SB(inode),
539 		.type = DATA,
540 		.op = REQ_OP_READ,
541 		.op_flags = op_flags,
542 		.encrypted_page = NULL,
543 	};
544 
545 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
546 		return read_mapping_page(mapping, index, NULL);
547 
548 	page = f2fs_grab_cache_page(mapping, index, for_write);
549 	if (!page)
550 		return ERR_PTR(-ENOMEM);
551 
552 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
553 		dn.data_blkaddr = ei.blk + index - ei.fofs;
554 		goto got_it;
555 	}
556 
557 	set_new_dnode(&dn, inode, NULL, NULL, 0);
558 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
559 	if (err)
560 		goto put_err;
561 	f2fs_put_dnode(&dn);
562 
563 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
564 		err = -ENOENT;
565 		goto put_err;
566 	}
567 got_it:
568 	if (PageUptodate(page)) {
569 		unlock_page(page);
570 		return page;
571 	}
572 
573 	/*
574 	 * A new dentry page is allocated but not able to be written, since its
575 	 * new inode page couldn't be allocated due to -ENOSPC.
576 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
577 	 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
578 	 */
579 	if (dn.data_blkaddr == NEW_ADDR) {
580 		zero_user_segment(page, 0, PAGE_SIZE);
581 		if (!PageUptodate(page))
582 			SetPageUptodate(page);
583 		unlock_page(page);
584 		return page;
585 	}
586 
587 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
588 	fio.page = page;
589 	err = f2fs_submit_page_bio(&fio);
590 	if (err)
591 		goto put_err;
592 	return page;
593 
594 put_err:
595 	f2fs_put_page(page, 1);
596 	return ERR_PTR(err);
597 }
598 
599 struct page *find_data_page(struct inode *inode, pgoff_t index)
600 {
601 	struct address_space *mapping = inode->i_mapping;
602 	struct page *page;
603 
604 	page = find_get_page(mapping, index);
605 	if (page && PageUptodate(page))
606 		return page;
607 	f2fs_put_page(page, 0);
608 
609 	page = get_read_data_page(inode, index, 0, false);
610 	if (IS_ERR(page))
611 		return page;
612 
613 	if (PageUptodate(page))
614 		return page;
615 
616 	wait_on_page_locked(page);
617 	if (unlikely(!PageUptodate(page))) {
618 		f2fs_put_page(page, 0);
619 		return ERR_PTR(-EIO);
620 	}
621 	return page;
622 }
623 
624 /*
625  * If it tries to access a hole, return an error.
626  * Because, the callers, functions in dir.c and GC, should be able to know
627  * whether this page exists or not.
628  */
629 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
630 							bool for_write)
631 {
632 	struct address_space *mapping = inode->i_mapping;
633 	struct page *page;
634 repeat:
635 	page = get_read_data_page(inode, index, 0, for_write);
636 	if (IS_ERR(page))
637 		return page;
638 
639 	/* wait for read completion */
640 	lock_page(page);
641 	if (unlikely(page->mapping != mapping)) {
642 		f2fs_put_page(page, 1);
643 		goto repeat;
644 	}
645 	if (unlikely(!PageUptodate(page))) {
646 		f2fs_put_page(page, 1);
647 		return ERR_PTR(-EIO);
648 	}
649 	return page;
650 }
651 
652 /*
653  * Caller ensures that this data page is never allocated.
654  * A new zero-filled data page is allocated in the page cache.
655  *
656  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
657  * f2fs_unlock_op().
658  * Note that, ipage is set only by make_empty_dir, and if any error occur,
659  * ipage should be released by this function.
660  */
661 struct page *get_new_data_page(struct inode *inode,
662 		struct page *ipage, pgoff_t index, bool new_i_size)
663 {
664 	struct address_space *mapping = inode->i_mapping;
665 	struct page *page;
666 	struct dnode_of_data dn;
667 	int err;
668 
669 	page = f2fs_grab_cache_page(mapping, index, true);
670 	if (!page) {
671 		/*
672 		 * before exiting, we should make sure ipage will be released
673 		 * if any error occur.
674 		 */
675 		f2fs_put_page(ipage, 1);
676 		return ERR_PTR(-ENOMEM);
677 	}
678 
679 	set_new_dnode(&dn, inode, ipage, NULL, 0);
680 	err = f2fs_reserve_block(&dn, index);
681 	if (err) {
682 		f2fs_put_page(page, 1);
683 		return ERR_PTR(err);
684 	}
685 	if (!ipage)
686 		f2fs_put_dnode(&dn);
687 
688 	if (PageUptodate(page))
689 		goto got_it;
690 
691 	if (dn.data_blkaddr == NEW_ADDR) {
692 		zero_user_segment(page, 0, PAGE_SIZE);
693 		if (!PageUptodate(page))
694 			SetPageUptodate(page);
695 	} else {
696 		f2fs_put_page(page, 1);
697 
698 		/* if ipage exists, blkaddr should be NEW_ADDR */
699 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
700 		page = get_lock_data_page(inode, index, true);
701 		if (IS_ERR(page))
702 			return page;
703 	}
704 got_it:
705 	if (new_i_size && i_size_read(inode) <
706 				((loff_t)(index + 1) << PAGE_SHIFT))
707 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
708 	return page;
709 }
710 
711 static int __allocate_data_block(struct dnode_of_data *dn)
712 {
713 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
714 	struct f2fs_summary sum;
715 	struct node_info ni;
716 	pgoff_t fofs;
717 	blkcnt_t count = 1;
718 
719 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
720 		return -EPERM;
721 
722 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
723 	if (dn->data_blkaddr == NEW_ADDR)
724 		goto alloc;
725 
726 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
727 		return -ENOSPC;
728 
729 alloc:
730 	get_node_info(sbi, dn->nid, &ni);
731 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
732 
733 	allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
734 						&sum, CURSEG_WARM_DATA);
735 	set_data_blkaddr(dn);
736 
737 	/* update i_size */
738 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
739 							dn->ofs_in_node;
740 	if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
741 		f2fs_i_size_write(dn->inode,
742 				((loff_t)(fofs + 1) << PAGE_SHIFT));
743 	return 0;
744 }
745 
746 static inline bool __force_buffered_io(struct inode *inode, int rw)
747 {
748 	return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
749 			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
750 			F2FS_I_SB(inode)->s_ndevs);
751 }
752 
753 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
754 {
755 	struct inode *inode = file_inode(iocb->ki_filp);
756 	struct f2fs_map_blocks map;
757 	int err = 0;
758 
759 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
760 		return 0;
761 
762 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
763 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
764 	if (map.m_len > map.m_lblk)
765 		map.m_len -= map.m_lblk;
766 	else
767 		map.m_len = 0;
768 
769 	map.m_next_pgofs = NULL;
770 
771 	if (iocb->ki_flags & IOCB_DIRECT) {
772 		err = f2fs_convert_inline_inode(inode);
773 		if (err)
774 			return err;
775 		return f2fs_map_blocks(inode, &map, 1,
776 			__force_buffered_io(inode, WRITE) ?
777 				F2FS_GET_BLOCK_PRE_AIO :
778 				F2FS_GET_BLOCK_PRE_DIO);
779 	}
780 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
781 		err = f2fs_convert_inline_inode(inode);
782 		if (err)
783 			return err;
784 	}
785 	if (!f2fs_has_inline_data(inode))
786 		return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
787 	return err;
788 }
789 
790 /*
791  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
792  * f2fs_map_blocks structure.
793  * If original data blocks are allocated, then give them to blockdev.
794  * Otherwise,
795  *     a. preallocate requested block addresses
796  *     b. do not use extent cache for better performance
797  *     c. give the block addresses to blockdev
798  */
799 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
800 						int create, int flag)
801 {
802 	unsigned int maxblocks = map->m_len;
803 	struct dnode_of_data dn;
804 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
805 	int mode = create ? ALLOC_NODE : LOOKUP_NODE;
806 	pgoff_t pgofs, end_offset, end;
807 	int err = 0, ofs = 1;
808 	unsigned int ofs_in_node, last_ofs_in_node;
809 	blkcnt_t prealloc;
810 	struct extent_info ei = {0,0,0};
811 	block_t blkaddr;
812 
813 	if (!maxblocks)
814 		return 0;
815 
816 	map->m_len = 0;
817 	map->m_flags = 0;
818 
819 	/* it only supports block size == page size */
820 	pgofs =	(pgoff_t)map->m_lblk;
821 	end = pgofs + maxblocks;
822 
823 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
824 		map->m_pblk = ei.blk + pgofs - ei.fofs;
825 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
826 		map->m_flags = F2FS_MAP_MAPPED;
827 		goto out;
828 	}
829 
830 next_dnode:
831 	if (create)
832 		f2fs_lock_op(sbi);
833 
834 	/* When reading holes, we need its node page */
835 	set_new_dnode(&dn, inode, NULL, NULL, 0);
836 	err = get_dnode_of_data(&dn, pgofs, mode);
837 	if (err) {
838 		if (flag == F2FS_GET_BLOCK_BMAP)
839 			map->m_pblk = 0;
840 		if (err == -ENOENT) {
841 			err = 0;
842 			if (map->m_next_pgofs)
843 				*map->m_next_pgofs =
844 					get_next_page_offset(&dn, pgofs);
845 		}
846 		goto unlock_out;
847 	}
848 
849 	prealloc = 0;
850 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
851 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
852 
853 next_block:
854 	blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
855 
856 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
857 		if (create) {
858 			if (unlikely(f2fs_cp_error(sbi))) {
859 				err = -EIO;
860 				goto sync_out;
861 			}
862 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
863 				if (blkaddr == NULL_ADDR) {
864 					prealloc++;
865 					last_ofs_in_node = dn.ofs_in_node;
866 				}
867 			} else {
868 				err = __allocate_data_block(&dn);
869 				if (!err)
870 					set_inode_flag(inode, FI_APPEND_WRITE);
871 			}
872 			if (err)
873 				goto sync_out;
874 			map->m_flags |= F2FS_MAP_NEW;
875 			blkaddr = dn.data_blkaddr;
876 		} else {
877 			if (flag == F2FS_GET_BLOCK_BMAP) {
878 				map->m_pblk = 0;
879 				goto sync_out;
880 			}
881 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
882 						blkaddr == NULL_ADDR) {
883 				if (map->m_next_pgofs)
884 					*map->m_next_pgofs = pgofs + 1;
885 			}
886 			if (flag != F2FS_GET_BLOCK_FIEMAP ||
887 						blkaddr != NEW_ADDR)
888 				goto sync_out;
889 		}
890 	}
891 
892 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
893 		goto skip;
894 
895 	if (map->m_len == 0) {
896 		/* preallocated unwritten block should be mapped for fiemap. */
897 		if (blkaddr == NEW_ADDR)
898 			map->m_flags |= F2FS_MAP_UNWRITTEN;
899 		map->m_flags |= F2FS_MAP_MAPPED;
900 
901 		map->m_pblk = blkaddr;
902 		map->m_len = 1;
903 	} else if ((map->m_pblk != NEW_ADDR &&
904 			blkaddr == (map->m_pblk + ofs)) ||
905 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
906 			flag == F2FS_GET_BLOCK_PRE_DIO) {
907 		ofs++;
908 		map->m_len++;
909 	} else {
910 		goto sync_out;
911 	}
912 
913 skip:
914 	dn.ofs_in_node++;
915 	pgofs++;
916 
917 	/* preallocate blocks in batch for one dnode page */
918 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
919 			(pgofs == end || dn.ofs_in_node == end_offset)) {
920 
921 		dn.ofs_in_node = ofs_in_node;
922 		err = reserve_new_blocks(&dn, prealloc);
923 		if (err)
924 			goto sync_out;
925 
926 		map->m_len += dn.ofs_in_node - ofs_in_node;
927 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
928 			err = -ENOSPC;
929 			goto sync_out;
930 		}
931 		dn.ofs_in_node = end_offset;
932 	}
933 
934 	if (pgofs >= end)
935 		goto sync_out;
936 	else if (dn.ofs_in_node < end_offset)
937 		goto next_block;
938 
939 	f2fs_put_dnode(&dn);
940 
941 	if (create) {
942 		f2fs_unlock_op(sbi);
943 		f2fs_balance_fs(sbi, dn.node_changed);
944 	}
945 	goto next_dnode;
946 
947 sync_out:
948 	f2fs_put_dnode(&dn);
949 unlock_out:
950 	if (create) {
951 		f2fs_unlock_op(sbi);
952 		f2fs_balance_fs(sbi, dn.node_changed);
953 	}
954 out:
955 	trace_f2fs_map_blocks(inode, map, err);
956 	return err;
957 }
958 
959 static int __get_data_block(struct inode *inode, sector_t iblock,
960 			struct buffer_head *bh, int create, int flag,
961 			pgoff_t *next_pgofs)
962 {
963 	struct f2fs_map_blocks map;
964 	int err;
965 
966 	map.m_lblk = iblock;
967 	map.m_len = bh->b_size >> inode->i_blkbits;
968 	map.m_next_pgofs = next_pgofs;
969 
970 	err = f2fs_map_blocks(inode, &map, create, flag);
971 	if (!err) {
972 		map_bh(bh, inode->i_sb, map.m_pblk);
973 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
974 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
975 	}
976 	return err;
977 }
978 
979 static int get_data_block(struct inode *inode, sector_t iblock,
980 			struct buffer_head *bh_result, int create, int flag,
981 			pgoff_t *next_pgofs)
982 {
983 	return __get_data_block(inode, iblock, bh_result, create,
984 							flag, next_pgofs);
985 }
986 
987 static int get_data_block_dio(struct inode *inode, sector_t iblock,
988 			struct buffer_head *bh_result, int create)
989 {
990 	return __get_data_block(inode, iblock, bh_result, create,
991 						F2FS_GET_BLOCK_DIO, NULL);
992 }
993 
994 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
995 			struct buffer_head *bh_result, int create)
996 {
997 	/* Block number less than F2FS MAX BLOCKS */
998 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
999 		return -EFBIG;
1000 
1001 	return __get_data_block(inode, iblock, bh_result, create,
1002 						F2FS_GET_BLOCK_BMAP, NULL);
1003 }
1004 
1005 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1006 {
1007 	return (offset >> inode->i_blkbits);
1008 }
1009 
1010 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1011 {
1012 	return (blk << inode->i_blkbits);
1013 }
1014 
1015 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1016 		u64 start, u64 len)
1017 {
1018 	struct buffer_head map_bh;
1019 	sector_t start_blk, last_blk;
1020 	pgoff_t next_pgofs;
1021 	u64 logical = 0, phys = 0, size = 0;
1022 	u32 flags = 0;
1023 	int ret = 0;
1024 
1025 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1026 	if (ret)
1027 		return ret;
1028 
1029 	if (f2fs_has_inline_data(inode)) {
1030 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1031 		if (ret != -EAGAIN)
1032 			return ret;
1033 	}
1034 
1035 	inode_lock(inode);
1036 
1037 	if (logical_to_blk(inode, len) == 0)
1038 		len = blk_to_logical(inode, 1);
1039 
1040 	start_blk = logical_to_blk(inode, start);
1041 	last_blk = logical_to_blk(inode, start + len - 1);
1042 
1043 next:
1044 	memset(&map_bh, 0, sizeof(struct buffer_head));
1045 	map_bh.b_size = len;
1046 
1047 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1048 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1049 	if (ret)
1050 		goto out;
1051 
1052 	/* HOLE */
1053 	if (!buffer_mapped(&map_bh)) {
1054 		start_blk = next_pgofs;
1055 
1056 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1057 					F2FS_I_SB(inode)->max_file_blocks))
1058 			goto prep_next;
1059 
1060 		flags |= FIEMAP_EXTENT_LAST;
1061 	}
1062 
1063 	if (size) {
1064 		if (f2fs_encrypted_inode(inode))
1065 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1066 
1067 		ret = fiemap_fill_next_extent(fieinfo, logical,
1068 				phys, size, flags);
1069 	}
1070 
1071 	if (start_blk > last_blk || ret)
1072 		goto out;
1073 
1074 	logical = blk_to_logical(inode, start_blk);
1075 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1076 	size = map_bh.b_size;
1077 	flags = 0;
1078 	if (buffer_unwritten(&map_bh))
1079 		flags = FIEMAP_EXTENT_UNWRITTEN;
1080 
1081 	start_blk += logical_to_blk(inode, size);
1082 
1083 prep_next:
1084 	cond_resched();
1085 	if (fatal_signal_pending(current))
1086 		ret = -EINTR;
1087 	else
1088 		goto next;
1089 out:
1090 	if (ret == 1)
1091 		ret = 0;
1092 
1093 	inode_unlock(inode);
1094 	return ret;
1095 }
1096 
1097 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1098 				 unsigned nr_pages)
1099 {
1100 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1101 	struct fscrypt_ctx *ctx = NULL;
1102 	struct bio *bio;
1103 
1104 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1105 		ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1106 		if (IS_ERR(ctx))
1107 			return ERR_CAST(ctx);
1108 
1109 		/* wait the page to be moved by cleaning */
1110 		f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1111 	}
1112 
1113 	bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1114 	if (!bio) {
1115 		if (ctx)
1116 			fscrypt_release_ctx(ctx);
1117 		return ERR_PTR(-ENOMEM);
1118 	}
1119 	f2fs_target_device(sbi, blkaddr, bio);
1120 	bio->bi_end_io = f2fs_read_end_io;
1121 	bio->bi_private = ctx;
1122 
1123 	return bio;
1124 }
1125 
1126 /*
1127  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1128  * Major change was from block_size == page_size in f2fs by default.
1129  */
1130 static int f2fs_mpage_readpages(struct address_space *mapping,
1131 			struct list_head *pages, struct page *page,
1132 			unsigned nr_pages)
1133 {
1134 	struct bio *bio = NULL;
1135 	unsigned page_idx;
1136 	sector_t last_block_in_bio = 0;
1137 	struct inode *inode = mapping->host;
1138 	const unsigned blkbits = inode->i_blkbits;
1139 	const unsigned blocksize = 1 << blkbits;
1140 	sector_t block_in_file;
1141 	sector_t last_block;
1142 	sector_t last_block_in_file;
1143 	sector_t block_nr;
1144 	struct f2fs_map_blocks map;
1145 
1146 	map.m_pblk = 0;
1147 	map.m_lblk = 0;
1148 	map.m_len = 0;
1149 	map.m_flags = 0;
1150 	map.m_next_pgofs = NULL;
1151 
1152 	for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1153 
1154 		prefetchw(&page->flags);
1155 		if (pages) {
1156 			page = list_last_entry(pages, struct page, lru);
1157 			list_del(&page->lru);
1158 			if (add_to_page_cache_lru(page, mapping,
1159 						  page->index,
1160 						  readahead_gfp_mask(mapping)))
1161 				goto next_page;
1162 		}
1163 
1164 		block_in_file = (sector_t)page->index;
1165 		last_block = block_in_file + nr_pages;
1166 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1167 								blkbits;
1168 		if (last_block > last_block_in_file)
1169 			last_block = last_block_in_file;
1170 
1171 		/*
1172 		 * Map blocks using the previous result first.
1173 		 */
1174 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1175 				block_in_file > map.m_lblk &&
1176 				block_in_file < (map.m_lblk + map.m_len))
1177 			goto got_it;
1178 
1179 		/*
1180 		 * Then do more f2fs_map_blocks() calls until we are
1181 		 * done with this page.
1182 		 */
1183 		map.m_flags = 0;
1184 
1185 		if (block_in_file < last_block) {
1186 			map.m_lblk = block_in_file;
1187 			map.m_len = last_block - block_in_file;
1188 
1189 			if (f2fs_map_blocks(inode, &map, 0,
1190 						F2FS_GET_BLOCK_READ))
1191 				goto set_error_page;
1192 		}
1193 got_it:
1194 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1195 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1196 			SetPageMappedToDisk(page);
1197 
1198 			if (!PageUptodate(page) && !cleancache_get_page(page)) {
1199 				SetPageUptodate(page);
1200 				goto confused;
1201 			}
1202 		} else {
1203 			zero_user_segment(page, 0, PAGE_SIZE);
1204 			if (!PageUptodate(page))
1205 				SetPageUptodate(page);
1206 			unlock_page(page);
1207 			goto next_page;
1208 		}
1209 
1210 		/*
1211 		 * This page will go to BIO.  Do we need to send this
1212 		 * BIO off first?
1213 		 */
1214 		if (bio && (last_block_in_bio != block_nr - 1 ||
1215 			!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1216 submit_and_realloc:
1217 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1218 			bio = NULL;
1219 		}
1220 		if (bio == NULL) {
1221 			bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1222 			if (IS_ERR(bio)) {
1223 				bio = NULL;
1224 				goto set_error_page;
1225 			}
1226 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1227 		}
1228 
1229 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1230 			goto submit_and_realloc;
1231 
1232 		last_block_in_bio = block_nr;
1233 		goto next_page;
1234 set_error_page:
1235 		SetPageError(page);
1236 		zero_user_segment(page, 0, PAGE_SIZE);
1237 		unlock_page(page);
1238 		goto next_page;
1239 confused:
1240 		if (bio) {
1241 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1242 			bio = NULL;
1243 		}
1244 		unlock_page(page);
1245 next_page:
1246 		if (pages)
1247 			put_page(page);
1248 	}
1249 	BUG_ON(pages && !list_empty(pages));
1250 	if (bio)
1251 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1252 	return 0;
1253 }
1254 
1255 static int f2fs_read_data_page(struct file *file, struct page *page)
1256 {
1257 	struct inode *inode = page->mapping->host;
1258 	int ret = -EAGAIN;
1259 
1260 	trace_f2fs_readpage(page, DATA);
1261 
1262 	/* If the file has inline data, try to read it directly */
1263 	if (f2fs_has_inline_data(inode))
1264 		ret = f2fs_read_inline_data(inode, page);
1265 	if (ret == -EAGAIN)
1266 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1267 	return ret;
1268 }
1269 
1270 static int f2fs_read_data_pages(struct file *file,
1271 			struct address_space *mapping,
1272 			struct list_head *pages, unsigned nr_pages)
1273 {
1274 	struct inode *inode = file->f_mapping->host;
1275 	struct page *page = list_last_entry(pages, struct page, lru);
1276 
1277 	trace_f2fs_readpages(inode, page, nr_pages);
1278 
1279 	/* If the file has inline data, skip readpages */
1280 	if (f2fs_has_inline_data(inode))
1281 		return 0;
1282 
1283 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1284 }
1285 
1286 int do_write_data_page(struct f2fs_io_info *fio)
1287 {
1288 	struct page *page = fio->page;
1289 	struct inode *inode = page->mapping->host;
1290 	struct dnode_of_data dn;
1291 	int err = 0;
1292 
1293 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1294 	err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1295 	if (err)
1296 		return err;
1297 
1298 	fio->old_blkaddr = dn.data_blkaddr;
1299 
1300 	/* This page is already truncated */
1301 	if (fio->old_blkaddr == NULL_ADDR) {
1302 		ClearPageUptodate(page);
1303 		goto out_writepage;
1304 	}
1305 
1306 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1307 		gfp_t gfp_flags = GFP_NOFS;
1308 
1309 		/* wait for GCed encrypted page writeback */
1310 		f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1311 							fio->old_blkaddr);
1312 retry_encrypt:
1313 		fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1314 							PAGE_SIZE, 0,
1315 							fio->page->index,
1316 							gfp_flags);
1317 		if (IS_ERR(fio->encrypted_page)) {
1318 			err = PTR_ERR(fio->encrypted_page);
1319 			if (err == -ENOMEM) {
1320 				/* flush pending ios and wait for a while */
1321 				f2fs_flush_merged_bios(F2FS_I_SB(inode));
1322 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1323 				gfp_flags |= __GFP_NOFAIL;
1324 				err = 0;
1325 				goto retry_encrypt;
1326 			}
1327 			goto out_writepage;
1328 		}
1329 	}
1330 
1331 	set_page_writeback(page);
1332 
1333 	/*
1334 	 * If current allocation needs SSR,
1335 	 * it had better in-place writes for updated data.
1336 	 */
1337 	if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1338 			!is_cold_data(page) &&
1339 			!IS_ATOMIC_WRITTEN_PAGE(page) &&
1340 			need_inplace_update(inode))) {
1341 		rewrite_data_page(fio);
1342 		set_inode_flag(inode, FI_UPDATE_WRITE);
1343 		trace_f2fs_do_write_data_page(page, IPU);
1344 	} else {
1345 		write_data_page(&dn, fio);
1346 		trace_f2fs_do_write_data_page(page, OPU);
1347 		set_inode_flag(inode, FI_APPEND_WRITE);
1348 		if (page->index == 0)
1349 			set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1350 	}
1351 out_writepage:
1352 	f2fs_put_dnode(&dn);
1353 	return err;
1354 }
1355 
1356 static int __write_data_page(struct page *page, bool *submitted,
1357 				struct writeback_control *wbc)
1358 {
1359 	struct inode *inode = page->mapping->host;
1360 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1361 	loff_t i_size = i_size_read(inode);
1362 	const pgoff_t end_index = ((unsigned long long) i_size)
1363 							>> PAGE_SHIFT;
1364 	loff_t psize = (page->index + 1) << PAGE_SHIFT;
1365 	unsigned offset = 0;
1366 	bool need_balance_fs = false;
1367 	int err = 0;
1368 	struct f2fs_io_info fio = {
1369 		.sbi = sbi,
1370 		.type = DATA,
1371 		.op = REQ_OP_WRITE,
1372 		.op_flags = wbc_to_write_flags(wbc),
1373 		.page = page,
1374 		.encrypted_page = NULL,
1375 		.submitted = false,
1376 	};
1377 
1378 	trace_f2fs_writepage(page, DATA);
1379 
1380 	if (page->index < end_index)
1381 		goto write;
1382 
1383 	/*
1384 	 * If the offset is out-of-range of file size,
1385 	 * this page does not have to be written to disk.
1386 	 */
1387 	offset = i_size & (PAGE_SIZE - 1);
1388 	if ((page->index >= end_index + 1) || !offset)
1389 		goto out;
1390 
1391 	zero_user_segment(page, offset, PAGE_SIZE);
1392 write:
1393 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1394 		goto redirty_out;
1395 	if (f2fs_is_drop_cache(inode))
1396 		goto out;
1397 	/* we should not write 0'th page having journal header */
1398 	if (f2fs_is_volatile_file(inode) && (!page->index ||
1399 			(!wbc->for_reclaim &&
1400 			available_free_memory(sbi, BASE_CHECK))))
1401 		goto redirty_out;
1402 
1403 	/* we should bypass data pages to proceed the kworkder jobs */
1404 	if (unlikely(f2fs_cp_error(sbi))) {
1405 		mapping_set_error(page->mapping, -EIO);
1406 		goto out;
1407 	}
1408 
1409 	/* Dentry blocks are controlled by checkpoint */
1410 	if (S_ISDIR(inode->i_mode)) {
1411 		err = do_write_data_page(&fio);
1412 		goto done;
1413 	}
1414 
1415 	if (!wbc->for_reclaim)
1416 		need_balance_fs = true;
1417 	else if (has_not_enough_free_secs(sbi, 0, 0))
1418 		goto redirty_out;
1419 
1420 	err = -EAGAIN;
1421 	if (f2fs_has_inline_data(inode)) {
1422 		err = f2fs_write_inline_data(inode, page);
1423 		if (!err)
1424 			goto out;
1425 	}
1426 	f2fs_lock_op(sbi);
1427 	if (err == -EAGAIN)
1428 		err = do_write_data_page(&fio);
1429 	if (F2FS_I(inode)->last_disk_size < psize)
1430 		F2FS_I(inode)->last_disk_size = psize;
1431 	f2fs_unlock_op(sbi);
1432 done:
1433 	if (err && err != -ENOENT)
1434 		goto redirty_out;
1435 
1436 out:
1437 	inode_dec_dirty_pages(inode);
1438 	if (err)
1439 		ClearPageUptodate(page);
1440 
1441 	if (wbc->for_reclaim) {
1442 		f2fs_submit_merged_bio_cond(sbi, inode, 0, page->index,
1443 						DATA, WRITE);
1444 		remove_dirty_inode(inode);
1445 		submitted = NULL;
1446 	}
1447 
1448 	unlock_page(page);
1449 	f2fs_balance_fs(sbi, need_balance_fs);
1450 
1451 	if (unlikely(f2fs_cp_error(sbi))) {
1452 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
1453 		submitted = NULL;
1454 	}
1455 
1456 	if (submitted)
1457 		*submitted = fio.submitted;
1458 
1459 	return 0;
1460 
1461 redirty_out:
1462 	redirty_page_for_writepage(wbc, page);
1463 	if (!err)
1464 		return AOP_WRITEPAGE_ACTIVATE;
1465 	unlock_page(page);
1466 	return err;
1467 }
1468 
1469 static int f2fs_write_data_page(struct page *page,
1470 					struct writeback_control *wbc)
1471 {
1472 	return __write_data_page(page, NULL, wbc);
1473 }
1474 
1475 /*
1476  * This function was copied from write_cche_pages from mm/page-writeback.c.
1477  * The major change is making write step of cold data page separately from
1478  * warm/hot data page.
1479  */
1480 static int f2fs_write_cache_pages(struct address_space *mapping,
1481 					struct writeback_control *wbc)
1482 {
1483 	int ret = 0;
1484 	int done = 0;
1485 	struct pagevec pvec;
1486 	int nr_pages;
1487 	pgoff_t uninitialized_var(writeback_index);
1488 	pgoff_t index;
1489 	pgoff_t end;		/* Inclusive */
1490 	pgoff_t done_index;
1491 	pgoff_t last_idx = ULONG_MAX;
1492 	int cycled;
1493 	int range_whole = 0;
1494 	int tag;
1495 
1496 	pagevec_init(&pvec, 0);
1497 
1498 	if (wbc->range_cyclic) {
1499 		writeback_index = mapping->writeback_index; /* prev offset */
1500 		index = writeback_index;
1501 		if (index == 0)
1502 			cycled = 1;
1503 		else
1504 			cycled = 0;
1505 		end = -1;
1506 	} else {
1507 		index = wbc->range_start >> PAGE_SHIFT;
1508 		end = wbc->range_end >> PAGE_SHIFT;
1509 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1510 			range_whole = 1;
1511 		cycled = 1; /* ignore range_cyclic tests */
1512 	}
1513 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1514 		tag = PAGECACHE_TAG_TOWRITE;
1515 	else
1516 		tag = PAGECACHE_TAG_DIRTY;
1517 retry:
1518 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1519 		tag_pages_for_writeback(mapping, index, end);
1520 	done_index = index;
1521 	while (!done && (index <= end)) {
1522 		int i;
1523 
1524 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1525 			      min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1526 		if (nr_pages == 0)
1527 			break;
1528 
1529 		for (i = 0; i < nr_pages; i++) {
1530 			struct page *page = pvec.pages[i];
1531 			bool submitted = false;
1532 
1533 			if (page->index > end) {
1534 				done = 1;
1535 				break;
1536 			}
1537 
1538 			done_index = page->index;
1539 
1540 			lock_page(page);
1541 
1542 			if (unlikely(page->mapping != mapping)) {
1543 continue_unlock:
1544 				unlock_page(page);
1545 				continue;
1546 			}
1547 
1548 			if (!PageDirty(page)) {
1549 				/* someone wrote it for us */
1550 				goto continue_unlock;
1551 			}
1552 
1553 			if (PageWriteback(page)) {
1554 				if (wbc->sync_mode != WB_SYNC_NONE)
1555 					f2fs_wait_on_page_writeback(page,
1556 								DATA, true);
1557 				else
1558 					goto continue_unlock;
1559 			}
1560 
1561 			BUG_ON(PageWriteback(page));
1562 			if (!clear_page_dirty_for_io(page))
1563 				goto continue_unlock;
1564 
1565 			ret = __write_data_page(page, &submitted, wbc);
1566 			if (unlikely(ret)) {
1567 				/*
1568 				 * keep nr_to_write, since vfs uses this to
1569 				 * get # of written pages.
1570 				 */
1571 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1572 					unlock_page(page);
1573 					ret = 0;
1574 					continue;
1575 				}
1576 				done_index = page->index + 1;
1577 				done = 1;
1578 				break;
1579 			} else if (submitted) {
1580 				last_idx = page->index;
1581 			}
1582 
1583 			if (--wbc->nr_to_write <= 0 &&
1584 			    wbc->sync_mode == WB_SYNC_NONE) {
1585 				done = 1;
1586 				break;
1587 			}
1588 		}
1589 		pagevec_release(&pvec);
1590 		cond_resched();
1591 	}
1592 
1593 	if (!cycled && !done) {
1594 		cycled = 1;
1595 		index = 0;
1596 		end = writeback_index - 1;
1597 		goto retry;
1598 	}
1599 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1600 		mapping->writeback_index = done_index;
1601 
1602 	if (last_idx != ULONG_MAX)
1603 		f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1604 						0, last_idx, DATA, WRITE);
1605 
1606 	return ret;
1607 }
1608 
1609 static int f2fs_write_data_pages(struct address_space *mapping,
1610 			    struct writeback_control *wbc)
1611 {
1612 	struct inode *inode = mapping->host;
1613 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1614 	struct blk_plug plug;
1615 	int ret;
1616 
1617 	/* deal with chardevs and other special file */
1618 	if (!mapping->a_ops->writepage)
1619 		return 0;
1620 
1621 	/* skip writing if there is no dirty page in this inode */
1622 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1623 		return 0;
1624 
1625 	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1626 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1627 			available_free_memory(sbi, DIRTY_DENTS))
1628 		goto skip_write;
1629 
1630 	/* skip writing during file defragment */
1631 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1632 		goto skip_write;
1633 
1634 	/* during POR, we don't need to trigger writepage at all. */
1635 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1636 		goto skip_write;
1637 
1638 	trace_f2fs_writepages(mapping->host, wbc, DATA);
1639 
1640 	blk_start_plug(&plug);
1641 	ret = f2fs_write_cache_pages(mapping, wbc);
1642 	blk_finish_plug(&plug);
1643 	/*
1644 	 * if some pages were truncated, we cannot guarantee its mapping->host
1645 	 * to detect pending bios.
1646 	 */
1647 
1648 	remove_dirty_inode(inode);
1649 	return ret;
1650 
1651 skip_write:
1652 	wbc->pages_skipped += get_dirty_pages(inode);
1653 	trace_f2fs_writepages(mapping->host, wbc, DATA);
1654 	return 0;
1655 }
1656 
1657 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1658 {
1659 	struct inode *inode = mapping->host;
1660 	loff_t i_size = i_size_read(inode);
1661 
1662 	if (to > i_size) {
1663 		truncate_pagecache(inode, i_size);
1664 		truncate_blocks(inode, i_size, true);
1665 	}
1666 }
1667 
1668 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1669 			struct page *page, loff_t pos, unsigned len,
1670 			block_t *blk_addr, bool *node_changed)
1671 {
1672 	struct inode *inode = page->mapping->host;
1673 	pgoff_t index = page->index;
1674 	struct dnode_of_data dn;
1675 	struct page *ipage;
1676 	bool locked = false;
1677 	struct extent_info ei = {0,0,0};
1678 	int err = 0;
1679 
1680 	/*
1681 	 * we already allocated all the blocks, so we don't need to get
1682 	 * the block addresses when there is no need to fill the page.
1683 	 */
1684 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
1685 			!is_inode_flag_set(inode, FI_NO_PREALLOC))
1686 		return 0;
1687 
1688 	if (f2fs_has_inline_data(inode) ||
1689 			(pos & PAGE_MASK) >= i_size_read(inode)) {
1690 		f2fs_lock_op(sbi);
1691 		locked = true;
1692 	}
1693 restart:
1694 	/* check inline_data */
1695 	ipage = get_node_page(sbi, inode->i_ino);
1696 	if (IS_ERR(ipage)) {
1697 		err = PTR_ERR(ipage);
1698 		goto unlock_out;
1699 	}
1700 
1701 	set_new_dnode(&dn, inode, ipage, ipage, 0);
1702 
1703 	if (f2fs_has_inline_data(inode)) {
1704 		if (pos + len <= MAX_INLINE_DATA) {
1705 			read_inline_data(page, ipage);
1706 			set_inode_flag(inode, FI_DATA_EXIST);
1707 			if (inode->i_nlink)
1708 				set_inline_node(ipage);
1709 		} else {
1710 			err = f2fs_convert_inline_page(&dn, page);
1711 			if (err)
1712 				goto out;
1713 			if (dn.data_blkaddr == NULL_ADDR)
1714 				err = f2fs_get_block(&dn, index);
1715 		}
1716 	} else if (locked) {
1717 		err = f2fs_get_block(&dn, index);
1718 	} else {
1719 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1720 			dn.data_blkaddr = ei.blk + index - ei.fofs;
1721 		} else {
1722 			/* hole case */
1723 			err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1724 			if (err || dn.data_blkaddr == NULL_ADDR) {
1725 				f2fs_put_dnode(&dn);
1726 				f2fs_lock_op(sbi);
1727 				locked = true;
1728 				goto restart;
1729 			}
1730 		}
1731 	}
1732 
1733 	/* convert_inline_page can make node_changed */
1734 	*blk_addr = dn.data_blkaddr;
1735 	*node_changed = dn.node_changed;
1736 out:
1737 	f2fs_put_dnode(&dn);
1738 unlock_out:
1739 	if (locked)
1740 		f2fs_unlock_op(sbi);
1741 	return err;
1742 }
1743 
1744 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1745 		loff_t pos, unsigned len, unsigned flags,
1746 		struct page **pagep, void **fsdata)
1747 {
1748 	struct inode *inode = mapping->host;
1749 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1750 	struct page *page = NULL;
1751 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1752 	bool need_balance = false;
1753 	block_t blkaddr = NULL_ADDR;
1754 	int err = 0;
1755 
1756 	trace_f2fs_write_begin(inode, pos, len, flags);
1757 
1758 	/*
1759 	 * We should check this at this moment to avoid deadlock on inode page
1760 	 * and #0 page. The locking rule for inline_data conversion should be:
1761 	 * lock_page(page #0) -> lock_page(inode_page)
1762 	 */
1763 	if (index != 0) {
1764 		err = f2fs_convert_inline_inode(inode);
1765 		if (err)
1766 			goto fail;
1767 	}
1768 repeat:
1769 	/*
1770 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1771 	 * wait_for_stable_page. Will wait that below with our IO control.
1772 	 */
1773 	page = pagecache_get_page(mapping, index,
1774 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1775 	if (!page) {
1776 		err = -ENOMEM;
1777 		goto fail;
1778 	}
1779 
1780 	*pagep = page;
1781 
1782 	err = prepare_write_begin(sbi, page, pos, len,
1783 					&blkaddr, &need_balance);
1784 	if (err)
1785 		goto fail;
1786 
1787 	if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1788 		unlock_page(page);
1789 		f2fs_balance_fs(sbi, true);
1790 		lock_page(page);
1791 		if (page->mapping != mapping) {
1792 			/* The page got truncated from under us */
1793 			f2fs_put_page(page, 1);
1794 			goto repeat;
1795 		}
1796 	}
1797 
1798 	f2fs_wait_on_page_writeback(page, DATA, false);
1799 
1800 	/* wait for GCed encrypted page writeback */
1801 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1802 		f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1803 
1804 	if (len == PAGE_SIZE || PageUptodate(page))
1805 		return 0;
1806 
1807 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
1808 		zero_user_segment(page, len, PAGE_SIZE);
1809 		return 0;
1810 	}
1811 
1812 	if (blkaddr == NEW_ADDR) {
1813 		zero_user_segment(page, 0, PAGE_SIZE);
1814 		SetPageUptodate(page);
1815 	} else {
1816 		struct bio *bio;
1817 
1818 		bio = f2fs_grab_bio(inode, blkaddr, 1);
1819 		if (IS_ERR(bio)) {
1820 			err = PTR_ERR(bio);
1821 			goto fail;
1822 		}
1823 		bio->bi_opf = REQ_OP_READ;
1824 		if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1825 			bio_put(bio);
1826 			err = -EFAULT;
1827 			goto fail;
1828 		}
1829 
1830 		__submit_bio(sbi, bio, DATA);
1831 
1832 		lock_page(page);
1833 		if (unlikely(page->mapping != mapping)) {
1834 			f2fs_put_page(page, 1);
1835 			goto repeat;
1836 		}
1837 		if (unlikely(!PageUptodate(page))) {
1838 			err = -EIO;
1839 			goto fail;
1840 		}
1841 	}
1842 	return 0;
1843 
1844 fail:
1845 	f2fs_put_page(page, 1);
1846 	f2fs_write_failed(mapping, pos + len);
1847 	return err;
1848 }
1849 
1850 static int f2fs_write_end(struct file *file,
1851 			struct address_space *mapping,
1852 			loff_t pos, unsigned len, unsigned copied,
1853 			struct page *page, void *fsdata)
1854 {
1855 	struct inode *inode = page->mapping->host;
1856 
1857 	trace_f2fs_write_end(inode, pos, len, copied);
1858 
1859 	/*
1860 	 * This should be come from len == PAGE_SIZE, and we expect copied
1861 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1862 	 * let generic_perform_write() try to copy data again through copied=0.
1863 	 */
1864 	if (!PageUptodate(page)) {
1865 		if (unlikely(copied != len))
1866 			copied = 0;
1867 		else
1868 			SetPageUptodate(page);
1869 	}
1870 	if (!copied)
1871 		goto unlock_out;
1872 
1873 	set_page_dirty(page);
1874 
1875 	if (pos + copied > i_size_read(inode))
1876 		f2fs_i_size_write(inode, pos + copied);
1877 unlock_out:
1878 	f2fs_put_page(page, 1);
1879 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1880 	return copied;
1881 }
1882 
1883 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1884 			   loff_t offset)
1885 {
1886 	unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1887 
1888 	if (offset & blocksize_mask)
1889 		return -EINVAL;
1890 
1891 	if (iov_iter_alignment(iter) & blocksize_mask)
1892 		return -EINVAL;
1893 
1894 	return 0;
1895 }
1896 
1897 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1898 {
1899 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1900 	struct inode *inode = mapping->host;
1901 	size_t count = iov_iter_count(iter);
1902 	loff_t offset = iocb->ki_pos;
1903 	int rw = iov_iter_rw(iter);
1904 	int err;
1905 
1906 	err = check_direct_IO(inode, iter, offset);
1907 	if (err)
1908 		return err;
1909 
1910 	if (__force_buffered_io(inode, rw))
1911 		return 0;
1912 
1913 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1914 
1915 	down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1916 	err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1917 	up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1918 
1919 	if (rw == WRITE) {
1920 		if (err > 0)
1921 			set_inode_flag(inode, FI_UPDATE_WRITE);
1922 		else if (err < 0)
1923 			f2fs_write_failed(mapping, offset + count);
1924 	}
1925 
1926 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1927 
1928 	return err;
1929 }
1930 
1931 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1932 							unsigned int length)
1933 {
1934 	struct inode *inode = page->mapping->host;
1935 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1936 
1937 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1938 		(offset % PAGE_SIZE || length != PAGE_SIZE))
1939 		return;
1940 
1941 	if (PageDirty(page)) {
1942 		if (inode->i_ino == F2FS_META_INO(sbi)) {
1943 			dec_page_count(sbi, F2FS_DIRTY_META);
1944 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
1945 			dec_page_count(sbi, F2FS_DIRTY_NODES);
1946 		} else {
1947 			inode_dec_dirty_pages(inode);
1948 			remove_dirty_inode(inode);
1949 		}
1950 	}
1951 
1952 	/* This is atomic written page, keep Private */
1953 	if (IS_ATOMIC_WRITTEN_PAGE(page))
1954 		return;
1955 
1956 	set_page_private(page, 0);
1957 	ClearPagePrivate(page);
1958 }
1959 
1960 int f2fs_release_page(struct page *page, gfp_t wait)
1961 {
1962 	/* If this is dirty page, keep PagePrivate */
1963 	if (PageDirty(page))
1964 		return 0;
1965 
1966 	/* This is atomic written page, keep Private */
1967 	if (IS_ATOMIC_WRITTEN_PAGE(page))
1968 		return 0;
1969 
1970 	set_page_private(page, 0);
1971 	ClearPagePrivate(page);
1972 	return 1;
1973 }
1974 
1975 /*
1976  * This was copied from __set_page_dirty_buffers which gives higher performance
1977  * in very high speed storages. (e.g., pmem)
1978  */
1979 void f2fs_set_page_dirty_nobuffers(struct page *page)
1980 {
1981 	struct address_space *mapping = page->mapping;
1982 	unsigned long flags;
1983 
1984 	if (unlikely(!mapping))
1985 		return;
1986 
1987 	spin_lock(&mapping->private_lock);
1988 	lock_page_memcg(page);
1989 	SetPageDirty(page);
1990 	spin_unlock(&mapping->private_lock);
1991 
1992 	spin_lock_irqsave(&mapping->tree_lock, flags);
1993 	WARN_ON_ONCE(!PageUptodate(page));
1994 	account_page_dirtied(page, mapping);
1995 	radix_tree_tag_set(&mapping->page_tree,
1996 			page_index(page), PAGECACHE_TAG_DIRTY);
1997 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
1998 	unlock_page_memcg(page);
1999 
2000 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2001 	return;
2002 }
2003 
2004 static int f2fs_set_data_page_dirty(struct page *page)
2005 {
2006 	struct address_space *mapping = page->mapping;
2007 	struct inode *inode = mapping->host;
2008 
2009 	trace_f2fs_set_page_dirty(page, DATA);
2010 
2011 	if (!PageUptodate(page))
2012 		SetPageUptodate(page);
2013 
2014 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2015 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2016 			register_inmem_page(inode, page);
2017 			return 1;
2018 		}
2019 		/*
2020 		 * Previously, this page has been registered, we just
2021 		 * return here.
2022 		 */
2023 		return 0;
2024 	}
2025 
2026 	if (!PageDirty(page)) {
2027 		f2fs_set_page_dirty_nobuffers(page);
2028 		update_dirty_page(inode, page);
2029 		return 1;
2030 	}
2031 	return 0;
2032 }
2033 
2034 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2035 {
2036 	struct inode *inode = mapping->host;
2037 
2038 	if (f2fs_has_inline_data(inode))
2039 		return 0;
2040 
2041 	/* make sure allocating whole blocks */
2042 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2043 		filemap_write_and_wait(mapping);
2044 
2045 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2046 }
2047 
2048 #ifdef CONFIG_MIGRATION
2049 #include <linux/migrate.h>
2050 
2051 int f2fs_migrate_page(struct address_space *mapping,
2052 		struct page *newpage, struct page *page, enum migrate_mode mode)
2053 {
2054 	int rc, extra_count;
2055 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2056 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2057 
2058 	BUG_ON(PageWriteback(page));
2059 
2060 	/* migrating an atomic written page is safe with the inmem_lock hold */
2061 	if (atomic_written && !mutex_trylock(&fi->inmem_lock))
2062 		return -EAGAIN;
2063 
2064 	/*
2065 	 * A reference is expected if PagePrivate set when move mapping,
2066 	 * however F2FS breaks this for maintaining dirty page counts when
2067 	 * truncating pages. So here adjusting the 'extra_count' make it work.
2068 	 */
2069 	extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2070 	rc = migrate_page_move_mapping(mapping, newpage,
2071 				page, NULL, mode, extra_count);
2072 	if (rc != MIGRATEPAGE_SUCCESS) {
2073 		if (atomic_written)
2074 			mutex_unlock(&fi->inmem_lock);
2075 		return rc;
2076 	}
2077 
2078 	if (atomic_written) {
2079 		struct inmem_pages *cur;
2080 		list_for_each_entry(cur, &fi->inmem_pages, list)
2081 			if (cur->page == page) {
2082 				cur->page = newpage;
2083 				break;
2084 			}
2085 		mutex_unlock(&fi->inmem_lock);
2086 		put_page(page);
2087 		get_page(newpage);
2088 	}
2089 
2090 	if (PagePrivate(page))
2091 		SetPagePrivate(newpage);
2092 	set_page_private(newpage, page_private(page));
2093 
2094 	migrate_page_copy(newpage, page);
2095 
2096 	return MIGRATEPAGE_SUCCESS;
2097 }
2098 #endif
2099 
2100 const struct address_space_operations f2fs_dblock_aops = {
2101 	.readpage	= f2fs_read_data_page,
2102 	.readpages	= f2fs_read_data_pages,
2103 	.writepage	= f2fs_write_data_page,
2104 	.writepages	= f2fs_write_data_pages,
2105 	.write_begin	= f2fs_write_begin,
2106 	.write_end	= f2fs_write_end,
2107 	.set_page_dirty	= f2fs_set_data_page_dirty,
2108 	.invalidatepage	= f2fs_invalidate_page,
2109 	.releasepage	= f2fs_release_page,
2110 	.direct_IO	= f2fs_direct_IO,
2111 	.bmap		= f2fs_bmap,
2112 #ifdef CONFIG_MIGRATION
2113 	.migratepage    = f2fs_migrate_page,
2114 #endif
2115 };
2116