xref: /openbmc/linux/fs/f2fs/data.c (revision cd1e565a5b7fa60c349ca8a16db1e61715fe8230)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
40 int __init f2fs_init_bioset(void)
41 {
42 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS);
44 }
45 
46 void f2fs_destroy_bioset(void)
47 {
48 	bioset_exit(&f2fs_bioset);
49 }
50 
51 bool f2fs_is_cp_guaranteed(struct page *page)
52 {
53 	struct address_space *mapping = page->mapping;
54 	struct inode *inode;
55 	struct f2fs_sb_info *sbi;
56 
57 	if (!mapping)
58 		return false;
59 
60 	inode = mapping->host;
61 	sbi = F2FS_I_SB(inode);
62 
63 	if (inode->i_ino == F2FS_META_INO(sbi) ||
64 			inode->i_ino == F2FS_NODE_INO(sbi) ||
65 			S_ISDIR(inode->i_mode))
66 		return true;
67 
68 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
69 			page_private_gcing(page))
70 		return true;
71 	return false;
72 }
73 
74 static enum count_type __read_io_type(struct page *page)
75 {
76 	struct address_space *mapping = page_file_mapping(page);
77 
78 	if (mapping) {
79 		struct inode *inode = mapping->host;
80 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
81 
82 		if (inode->i_ino == F2FS_META_INO(sbi))
83 			return F2FS_RD_META;
84 
85 		if (inode->i_ino == F2FS_NODE_INO(sbi))
86 			return F2FS_RD_NODE;
87 	}
88 	return F2FS_RD_DATA;
89 }
90 
91 /* postprocessing steps for read bios */
92 enum bio_post_read_step {
93 #ifdef CONFIG_FS_ENCRYPTION
94 	STEP_DECRYPT	= BIT(0),
95 #else
96 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
97 #endif
98 #ifdef CONFIG_F2FS_FS_COMPRESSION
99 	STEP_DECOMPRESS	= BIT(1),
100 #else
101 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
102 #endif
103 #ifdef CONFIG_FS_VERITY
104 	STEP_VERITY	= BIT(2),
105 #else
106 	STEP_VERITY	= 0,	/* compile out the verity-related code */
107 #endif
108 };
109 
110 struct bio_post_read_ctx {
111 	struct bio *bio;
112 	struct f2fs_sb_info *sbi;
113 	struct work_struct work;
114 	unsigned int enabled_steps;
115 	/*
116 	 * decompression_attempted keeps track of whether
117 	 * f2fs_end_read_compressed_page() has been called on the pages in the
118 	 * bio that belong to a compressed cluster yet.
119 	 */
120 	bool decompression_attempted;
121 	block_t fs_blkaddr;
122 };
123 
124 /*
125  * Update and unlock a bio's pages, and free the bio.
126  *
127  * This marks pages up-to-date only if there was no error in the bio (I/O error,
128  * decryption error, or verity error), as indicated by bio->bi_status.
129  *
130  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
131  * aren't marked up-to-date here, as decompression is done on a per-compression-
132  * cluster basis rather than a per-bio basis.  Instead, we only must do two
133  * things for each compressed page here: call f2fs_end_read_compressed_page()
134  * with failed=true if an error occurred before it would have normally gotten
135  * called (i.e., I/O error or decryption error, but *not* verity error), and
136  * release the bio's reference to the decompress_io_ctx of the page's cluster.
137  */
138 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
139 {
140 	struct bio_vec *bv;
141 	struct bvec_iter_all iter_all;
142 	struct bio_post_read_ctx *ctx = bio->bi_private;
143 
144 	bio_for_each_segment_all(bv, bio, iter_all) {
145 		struct page *page = bv->bv_page;
146 
147 		if (f2fs_is_compressed_page(page)) {
148 			if (ctx && !ctx->decompression_attempted)
149 				f2fs_end_read_compressed_page(page, true, 0,
150 							in_task);
151 			f2fs_put_page_dic(page, in_task);
152 			continue;
153 		}
154 
155 		if (bio->bi_status)
156 			ClearPageUptodate(page);
157 		else
158 			SetPageUptodate(page);
159 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
160 		unlock_page(page);
161 	}
162 
163 	if (ctx)
164 		mempool_free(ctx, bio_post_read_ctx_pool);
165 	bio_put(bio);
166 }
167 
168 static void f2fs_verify_bio(struct work_struct *work)
169 {
170 	struct bio_post_read_ctx *ctx =
171 		container_of(work, struct bio_post_read_ctx, work);
172 	struct bio *bio = ctx->bio;
173 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
174 
175 	/*
176 	 * fsverity_verify_bio() may call readahead() again, and while verity
177 	 * will be disabled for this, decryption and/or decompression may still
178 	 * be needed, resulting in another bio_post_read_ctx being allocated.
179 	 * So to prevent deadlocks we need to release the current ctx to the
180 	 * mempool first.  This assumes that verity is the last post-read step.
181 	 */
182 	mempool_free(ctx, bio_post_read_ctx_pool);
183 	bio->bi_private = NULL;
184 
185 	/*
186 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
187 	 * as those were handled separately by f2fs_end_read_compressed_page().
188 	 */
189 	if (may_have_compressed_pages) {
190 		struct bio_vec *bv;
191 		struct bvec_iter_all iter_all;
192 
193 		bio_for_each_segment_all(bv, bio, iter_all) {
194 			struct page *page = bv->bv_page;
195 
196 			if (!f2fs_is_compressed_page(page) &&
197 			    !fsverity_verify_page(page)) {
198 				bio->bi_status = BLK_STS_IOERR;
199 				break;
200 			}
201 		}
202 	} else {
203 		fsverity_verify_bio(bio);
204 	}
205 
206 	f2fs_finish_read_bio(bio, true);
207 }
208 
209 /*
210  * If the bio's data needs to be verified with fs-verity, then enqueue the
211  * verity work for the bio.  Otherwise finish the bio now.
212  *
213  * Note that to avoid deadlocks, the verity work can't be done on the
214  * decryption/decompression workqueue.  This is because verifying the data pages
215  * can involve reading verity metadata pages from the file, and these verity
216  * metadata pages may be encrypted and/or compressed.
217  */
218 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
219 {
220 	struct bio_post_read_ctx *ctx = bio->bi_private;
221 
222 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
223 		INIT_WORK(&ctx->work, f2fs_verify_bio);
224 		fsverity_enqueue_verify_work(&ctx->work);
225 	} else {
226 		f2fs_finish_read_bio(bio, in_task);
227 	}
228 }
229 
230 /*
231  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
232  * remaining page was read by @ctx->bio.
233  *
234  * Note that a bio may span clusters (even a mix of compressed and uncompressed
235  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
236  * that the bio includes at least one compressed page.  The actual decompression
237  * is done on a per-cluster basis, not a per-bio basis.
238  */
239 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
240 		bool in_task)
241 {
242 	struct bio_vec *bv;
243 	struct bvec_iter_all iter_all;
244 	bool all_compressed = true;
245 	block_t blkaddr = ctx->fs_blkaddr;
246 
247 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
248 		struct page *page = bv->bv_page;
249 
250 		if (f2fs_is_compressed_page(page))
251 			f2fs_end_read_compressed_page(page, false, blkaddr,
252 						      in_task);
253 		else
254 			all_compressed = false;
255 
256 		blkaddr++;
257 	}
258 
259 	ctx->decompression_attempted = true;
260 
261 	/*
262 	 * Optimization: if all the bio's pages are compressed, then scheduling
263 	 * the per-bio verity work is unnecessary, as verity will be fully
264 	 * handled at the compression cluster level.
265 	 */
266 	if (all_compressed)
267 		ctx->enabled_steps &= ~STEP_VERITY;
268 }
269 
270 static void f2fs_post_read_work(struct work_struct *work)
271 {
272 	struct bio_post_read_ctx *ctx =
273 		container_of(work, struct bio_post_read_ctx, work);
274 	struct bio *bio = ctx->bio;
275 
276 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
277 		f2fs_finish_read_bio(bio, true);
278 		return;
279 	}
280 
281 	if (ctx->enabled_steps & STEP_DECOMPRESS)
282 		f2fs_handle_step_decompress(ctx, true);
283 
284 	f2fs_verify_and_finish_bio(bio, true);
285 }
286 
287 static void f2fs_read_end_io(struct bio *bio)
288 {
289 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
290 	struct bio_post_read_ctx *ctx;
291 	bool intask = in_task();
292 
293 	iostat_update_and_unbind_ctx(bio);
294 	ctx = bio->bi_private;
295 
296 	if (time_to_inject(sbi, FAULT_READ_IO))
297 		bio->bi_status = BLK_STS_IOERR;
298 
299 	if (bio->bi_status) {
300 		f2fs_finish_read_bio(bio, intask);
301 		return;
302 	}
303 
304 	if (ctx) {
305 		unsigned int enabled_steps = ctx->enabled_steps &
306 					(STEP_DECRYPT | STEP_DECOMPRESS);
307 
308 		/*
309 		 * If we have only decompression step between decompression and
310 		 * decrypt, we don't need post processing for this.
311 		 */
312 		if (enabled_steps == STEP_DECOMPRESS &&
313 				!f2fs_low_mem_mode(sbi)) {
314 			f2fs_handle_step_decompress(ctx, intask);
315 		} else if (enabled_steps) {
316 			INIT_WORK(&ctx->work, f2fs_post_read_work);
317 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
318 			return;
319 		}
320 	}
321 
322 	f2fs_verify_and_finish_bio(bio, intask);
323 }
324 
325 static void f2fs_write_end_io(struct bio *bio)
326 {
327 	struct f2fs_sb_info *sbi;
328 	struct bio_vec *bvec;
329 	struct bvec_iter_all iter_all;
330 
331 	iostat_update_and_unbind_ctx(bio);
332 	sbi = bio->bi_private;
333 
334 	if (time_to_inject(sbi, FAULT_WRITE_IO))
335 		bio->bi_status = BLK_STS_IOERR;
336 
337 	bio_for_each_segment_all(bvec, bio, iter_all) {
338 		struct page *page = bvec->bv_page;
339 		enum count_type type = WB_DATA_TYPE(page, false);
340 
341 		fscrypt_finalize_bounce_page(&page);
342 
343 #ifdef CONFIG_F2FS_FS_COMPRESSION
344 		if (f2fs_is_compressed_page(page)) {
345 			f2fs_compress_write_end_io(bio, page);
346 			continue;
347 		}
348 #endif
349 
350 		if (unlikely(bio->bi_status)) {
351 			mapping_set_error(page->mapping, -EIO);
352 			if (type == F2FS_WB_CP_DATA)
353 				f2fs_stop_checkpoint(sbi, true,
354 						STOP_CP_REASON_WRITE_FAIL);
355 		}
356 
357 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
358 					page->index != nid_of_node(page));
359 
360 		dec_page_count(sbi, type);
361 		if (f2fs_in_warm_node_list(sbi, page))
362 			f2fs_del_fsync_node_entry(sbi, page);
363 		clear_page_private_gcing(page);
364 		end_page_writeback(page);
365 	}
366 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367 				wq_has_sleeper(&sbi->cp_wait))
368 		wake_up(&sbi->cp_wait);
369 
370 	bio_put(bio);
371 }
372 
373 #ifdef CONFIG_BLK_DEV_ZONED
374 static void f2fs_zone_write_end_io(struct bio *bio)
375 {
376 	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377 
378 	bio->bi_private = io->bi_private;
379 	complete(&io->zone_wait);
380 	f2fs_write_end_io(bio);
381 }
382 #endif
383 
384 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385 		block_t blk_addr, sector_t *sector)
386 {
387 	struct block_device *bdev = sbi->sb->s_bdev;
388 	int i;
389 
390 	if (f2fs_is_multi_device(sbi)) {
391 		for (i = 0; i < sbi->s_ndevs; i++) {
392 			if (FDEV(i).start_blk <= blk_addr &&
393 			    FDEV(i).end_blk >= blk_addr) {
394 				blk_addr -= FDEV(i).start_blk;
395 				bdev = FDEV(i).bdev;
396 				break;
397 			}
398 		}
399 	}
400 
401 	if (sector)
402 		*sector = SECTOR_FROM_BLOCK(blk_addr);
403 	return bdev;
404 }
405 
406 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407 {
408 	int i;
409 
410 	if (!f2fs_is_multi_device(sbi))
411 		return 0;
412 
413 	for (i = 0; i < sbi->s_ndevs; i++)
414 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415 			return i;
416 	return 0;
417 }
418 
419 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420 {
421 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422 	unsigned int fua_flag, meta_flag, io_flag;
423 	blk_opf_t op_flags = 0;
424 
425 	if (fio->op != REQ_OP_WRITE)
426 		return 0;
427 	if (fio->type == DATA)
428 		io_flag = fio->sbi->data_io_flag;
429 	else if (fio->type == NODE)
430 		io_flag = fio->sbi->node_io_flag;
431 	else
432 		return 0;
433 
434 	fua_flag = io_flag & temp_mask;
435 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
436 
437 	/*
438 	 * data/node io flag bits per temp:
439 	 *      REQ_META     |      REQ_FUA      |
440 	 *    5 |    4 |   3 |    2 |    1 |   0 |
441 	 * Cold | Warm | Hot | Cold | Warm | Hot |
442 	 */
443 	if (BIT(fio->temp) & meta_flag)
444 		op_flags |= REQ_META;
445 	if (BIT(fio->temp) & fua_flag)
446 		op_flags |= REQ_FUA;
447 	return op_flags;
448 }
449 
450 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
451 {
452 	struct f2fs_sb_info *sbi = fio->sbi;
453 	struct block_device *bdev;
454 	sector_t sector;
455 	struct bio *bio;
456 
457 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
458 	bio = bio_alloc_bioset(bdev, npages,
459 				fio->op | fio->op_flags | f2fs_io_flags(fio),
460 				GFP_NOIO, &f2fs_bioset);
461 	bio->bi_iter.bi_sector = sector;
462 	if (is_read_io(fio->op)) {
463 		bio->bi_end_io = f2fs_read_end_io;
464 		bio->bi_private = NULL;
465 	} else {
466 		bio->bi_end_io = f2fs_write_end_io;
467 		bio->bi_private = sbi;
468 	}
469 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
470 
471 	if (fio->io_wbc)
472 		wbc_init_bio(fio->io_wbc, bio);
473 
474 	return bio;
475 }
476 
477 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
478 				  pgoff_t first_idx,
479 				  const struct f2fs_io_info *fio,
480 				  gfp_t gfp_mask)
481 {
482 	/*
483 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
484 	 * read/write raw data without encryption.
485 	 */
486 	if (!fio || !fio->encrypted_page)
487 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
488 }
489 
490 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
491 				     pgoff_t next_idx,
492 				     const struct f2fs_io_info *fio)
493 {
494 	/*
495 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
496 	 * read/write raw data without encryption.
497 	 */
498 	if (fio && fio->encrypted_page)
499 		return !bio_has_crypt_ctx(bio);
500 
501 	return fscrypt_mergeable_bio(bio, inode, next_idx);
502 }
503 
504 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
505 				 enum page_type type)
506 {
507 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
508 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
509 
510 	iostat_update_submit_ctx(bio, type);
511 	submit_bio(bio);
512 }
513 
514 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
515 				  enum page_type type)
516 {
517 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
518 
519 	if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
520 		blk_finish_plug(current->plug);
521 
522 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
523 	iostat_update_submit_ctx(bio, type);
524 	submit_bio(bio);
525 }
526 
527 static void __submit_merged_bio(struct f2fs_bio_info *io)
528 {
529 	struct f2fs_io_info *fio = &io->fio;
530 
531 	if (!io->bio)
532 		return;
533 
534 	if (is_read_io(fio->op)) {
535 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
536 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
537 	} else {
538 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
539 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
540 	}
541 	io->bio = NULL;
542 }
543 
544 static bool __has_merged_page(struct bio *bio, struct inode *inode,
545 						struct page *page, nid_t ino)
546 {
547 	struct bio_vec *bvec;
548 	struct bvec_iter_all iter_all;
549 
550 	if (!bio)
551 		return false;
552 
553 	if (!inode && !page && !ino)
554 		return true;
555 
556 	bio_for_each_segment_all(bvec, bio, iter_all) {
557 		struct page *target = bvec->bv_page;
558 
559 		if (fscrypt_is_bounce_page(target)) {
560 			target = fscrypt_pagecache_page(target);
561 			if (IS_ERR(target))
562 				continue;
563 		}
564 		if (f2fs_is_compressed_page(target)) {
565 			target = f2fs_compress_control_page(target);
566 			if (IS_ERR(target))
567 				continue;
568 		}
569 
570 		if (inode && inode == target->mapping->host)
571 			return true;
572 		if (page && page == target)
573 			return true;
574 		if (ino && ino == ino_of_node(target))
575 			return true;
576 	}
577 
578 	return false;
579 }
580 
581 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
582 {
583 	int i;
584 
585 	for (i = 0; i < NR_PAGE_TYPE; i++) {
586 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
587 		int j;
588 
589 		sbi->write_io[i] = f2fs_kmalloc(sbi,
590 				array_size(n, sizeof(struct f2fs_bio_info)),
591 				GFP_KERNEL);
592 		if (!sbi->write_io[i])
593 			return -ENOMEM;
594 
595 		for (j = HOT; j < n; j++) {
596 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
597 			sbi->write_io[i][j].sbi = sbi;
598 			sbi->write_io[i][j].bio = NULL;
599 			spin_lock_init(&sbi->write_io[i][j].io_lock);
600 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
601 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
602 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
603 #ifdef CONFIG_BLK_DEV_ZONED
604 			init_completion(&sbi->write_io[i][j].zone_wait);
605 			sbi->write_io[i][j].zone_pending_bio = NULL;
606 			sbi->write_io[i][j].bi_private = NULL;
607 #endif
608 		}
609 	}
610 
611 	return 0;
612 }
613 
614 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
615 				enum page_type type, enum temp_type temp)
616 {
617 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
618 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
619 
620 	f2fs_down_write(&io->io_rwsem);
621 
622 	if (!io->bio)
623 		goto unlock_out;
624 
625 	/* change META to META_FLUSH in the checkpoint procedure */
626 	if (type >= META_FLUSH) {
627 		io->fio.type = META_FLUSH;
628 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
629 		if (!test_opt(sbi, NOBARRIER))
630 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
631 	}
632 	__submit_merged_bio(io);
633 unlock_out:
634 	f2fs_up_write(&io->io_rwsem);
635 }
636 
637 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
638 				struct inode *inode, struct page *page,
639 				nid_t ino, enum page_type type, bool force)
640 {
641 	enum temp_type temp;
642 	bool ret = true;
643 
644 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
645 		if (!force)	{
646 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
647 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
648 
649 			f2fs_down_read(&io->io_rwsem);
650 			ret = __has_merged_page(io->bio, inode, page, ino);
651 			f2fs_up_read(&io->io_rwsem);
652 		}
653 		if (ret)
654 			__f2fs_submit_merged_write(sbi, type, temp);
655 
656 		/* TODO: use HOT temp only for meta pages now. */
657 		if (type >= META)
658 			break;
659 	}
660 }
661 
662 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
663 {
664 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
665 }
666 
667 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
668 				struct inode *inode, struct page *page,
669 				nid_t ino, enum page_type type)
670 {
671 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
672 }
673 
674 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
675 {
676 	f2fs_submit_merged_write(sbi, DATA);
677 	f2fs_submit_merged_write(sbi, NODE);
678 	f2fs_submit_merged_write(sbi, META);
679 }
680 
681 /*
682  * Fill the locked page with data located in the block address.
683  * A caller needs to unlock the page on failure.
684  */
685 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
686 {
687 	struct bio *bio;
688 	struct page *page = fio->encrypted_page ?
689 			fio->encrypted_page : fio->page;
690 
691 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
692 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
693 			META_GENERIC : DATA_GENERIC_ENHANCE))) {
694 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
695 		return -EFSCORRUPTED;
696 	}
697 
698 	trace_f2fs_submit_page_bio(page, fio);
699 
700 	/* Allocate a new bio */
701 	bio = __bio_alloc(fio, 1);
702 
703 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
704 			       fio->page->index, fio, GFP_NOIO);
705 
706 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
707 		bio_put(bio);
708 		return -EFAULT;
709 	}
710 
711 	if (fio->io_wbc && !is_read_io(fio->op))
712 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
713 
714 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
715 			__read_io_type(page) : WB_DATA_TYPE(fio->page, false));
716 
717 	if (is_read_io(bio_op(bio)))
718 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
719 	else
720 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
721 	return 0;
722 }
723 
724 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
725 				block_t last_blkaddr, block_t cur_blkaddr)
726 {
727 	if (unlikely(sbi->max_io_bytes &&
728 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
729 		return false;
730 	if (last_blkaddr + 1 != cur_blkaddr)
731 		return false;
732 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
733 }
734 
735 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
736 						struct f2fs_io_info *fio)
737 {
738 	if (io->fio.op != fio->op)
739 		return false;
740 	return io->fio.op_flags == fio->op_flags;
741 }
742 
743 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
744 					struct f2fs_bio_info *io,
745 					struct f2fs_io_info *fio,
746 					block_t last_blkaddr,
747 					block_t cur_blkaddr)
748 {
749 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
750 		return false;
751 	return io_type_is_mergeable(io, fio);
752 }
753 
754 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
755 				struct page *page, enum temp_type temp)
756 {
757 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
758 	struct bio_entry *be;
759 
760 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
761 	be->bio = bio;
762 	bio_get(bio);
763 
764 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
765 		f2fs_bug_on(sbi, 1);
766 
767 	f2fs_down_write(&io->bio_list_lock);
768 	list_add_tail(&be->list, &io->bio_list);
769 	f2fs_up_write(&io->bio_list_lock);
770 }
771 
772 static void del_bio_entry(struct bio_entry *be)
773 {
774 	list_del(&be->list);
775 	kmem_cache_free(bio_entry_slab, be);
776 }
777 
778 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
779 							struct page *page)
780 {
781 	struct f2fs_sb_info *sbi = fio->sbi;
782 	enum temp_type temp;
783 	bool found = false;
784 	int ret = -EAGAIN;
785 
786 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
787 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
788 		struct list_head *head = &io->bio_list;
789 		struct bio_entry *be;
790 
791 		f2fs_down_write(&io->bio_list_lock);
792 		list_for_each_entry(be, head, list) {
793 			if (be->bio != *bio)
794 				continue;
795 
796 			found = true;
797 
798 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
799 							    *fio->last_block,
800 							    fio->new_blkaddr));
801 			if (f2fs_crypt_mergeable_bio(*bio,
802 					fio->page->mapping->host,
803 					fio->page->index, fio) &&
804 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
805 					PAGE_SIZE) {
806 				ret = 0;
807 				break;
808 			}
809 
810 			/* page can't be merged into bio; submit the bio */
811 			del_bio_entry(be);
812 			f2fs_submit_write_bio(sbi, *bio, DATA);
813 			break;
814 		}
815 		f2fs_up_write(&io->bio_list_lock);
816 	}
817 
818 	if (ret) {
819 		bio_put(*bio);
820 		*bio = NULL;
821 	}
822 
823 	return ret;
824 }
825 
826 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
827 					struct bio **bio, struct page *page)
828 {
829 	enum temp_type temp;
830 	bool found = false;
831 	struct bio *target = bio ? *bio : NULL;
832 
833 	f2fs_bug_on(sbi, !target && !page);
834 
835 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
836 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
837 		struct list_head *head = &io->bio_list;
838 		struct bio_entry *be;
839 
840 		if (list_empty(head))
841 			continue;
842 
843 		f2fs_down_read(&io->bio_list_lock);
844 		list_for_each_entry(be, head, list) {
845 			if (target)
846 				found = (target == be->bio);
847 			else
848 				found = __has_merged_page(be->bio, NULL,
849 								page, 0);
850 			if (found)
851 				break;
852 		}
853 		f2fs_up_read(&io->bio_list_lock);
854 
855 		if (!found)
856 			continue;
857 
858 		found = false;
859 
860 		f2fs_down_write(&io->bio_list_lock);
861 		list_for_each_entry(be, head, list) {
862 			if (target)
863 				found = (target == be->bio);
864 			else
865 				found = __has_merged_page(be->bio, NULL,
866 								page, 0);
867 			if (found) {
868 				target = be->bio;
869 				del_bio_entry(be);
870 				break;
871 			}
872 		}
873 		f2fs_up_write(&io->bio_list_lock);
874 	}
875 
876 	if (found)
877 		f2fs_submit_write_bio(sbi, target, DATA);
878 	if (bio && *bio) {
879 		bio_put(*bio);
880 		*bio = NULL;
881 	}
882 }
883 
884 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
885 {
886 	struct bio *bio = *fio->bio;
887 	struct page *page = fio->encrypted_page ?
888 			fio->encrypted_page : fio->page;
889 
890 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
891 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
892 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
893 		return -EFSCORRUPTED;
894 	}
895 
896 	trace_f2fs_submit_page_bio(page, fio);
897 
898 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
899 						fio->new_blkaddr))
900 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
901 alloc_new:
902 	if (!bio) {
903 		bio = __bio_alloc(fio, BIO_MAX_VECS);
904 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
905 				       fio->page->index, fio, GFP_NOIO);
906 
907 		add_bio_entry(fio->sbi, bio, page, fio->temp);
908 	} else {
909 		if (add_ipu_page(fio, &bio, page))
910 			goto alloc_new;
911 	}
912 
913 	if (fio->io_wbc)
914 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
915 
916 	inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
917 
918 	*fio->last_block = fio->new_blkaddr;
919 	*fio->bio = bio;
920 
921 	return 0;
922 }
923 
924 #ifdef CONFIG_BLK_DEV_ZONED
925 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
926 {
927 	int devi = 0;
928 
929 	if (f2fs_is_multi_device(sbi)) {
930 		devi = f2fs_target_device_index(sbi, blkaddr);
931 		if (blkaddr < FDEV(devi).start_blk ||
932 		    blkaddr > FDEV(devi).end_blk) {
933 			f2fs_err(sbi, "Invalid block %x", blkaddr);
934 			return false;
935 		}
936 		blkaddr -= FDEV(devi).start_blk;
937 	}
938 	return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM &&
939 		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
940 		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
941 }
942 #endif
943 
944 void f2fs_submit_page_write(struct f2fs_io_info *fio)
945 {
946 	struct f2fs_sb_info *sbi = fio->sbi;
947 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
948 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
949 	struct page *bio_page;
950 	enum count_type type;
951 
952 	f2fs_bug_on(sbi, is_read_io(fio->op));
953 
954 	f2fs_down_write(&io->io_rwsem);
955 next:
956 #ifdef CONFIG_BLK_DEV_ZONED
957 	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
958 		wait_for_completion_io(&io->zone_wait);
959 		bio_put(io->zone_pending_bio);
960 		io->zone_pending_bio = NULL;
961 		io->bi_private = NULL;
962 	}
963 #endif
964 
965 	if (fio->in_list) {
966 		spin_lock(&io->io_lock);
967 		if (list_empty(&io->io_list)) {
968 			spin_unlock(&io->io_lock);
969 			goto out;
970 		}
971 		fio = list_first_entry(&io->io_list,
972 						struct f2fs_io_info, list);
973 		list_del(&fio->list);
974 		spin_unlock(&io->io_lock);
975 	}
976 
977 	verify_fio_blkaddr(fio);
978 
979 	if (fio->encrypted_page)
980 		bio_page = fio->encrypted_page;
981 	else if (fio->compressed_page)
982 		bio_page = fio->compressed_page;
983 	else
984 		bio_page = fio->page;
985 
986 	/* set submitted = true as a return value */
987 	fio->submitted = 1;
988 
989 	type = WB_DATA_TYPE(bio_page, fio->compressed_page);
990 	inc_page_count(sbi, type);
991 
992 	if (io->bio &&
993 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
994 			      fio->new_blkaddr) ||
995 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
996 				       bio_page->index, fio)))
997 		__submit_merged_bio(io);
998 alloc_new:
999 	if (io->bio == NULL) {
1000 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1001 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1002 				       bio_page->index, fio, GFP_NOIO);
1003 		io->fio = *fio;
1004 	}
1005 
1006 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1007 		__submit_merged_bio(io);
1008 		goto alloc_new;
1009 	}
1010 
1011 	if (fio->io_wbc)
1012 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1013 
1014 	io->last_block_in_bio = fio->new_blkaddr;
1015 
1016 	trace_f2fs_submit_page_write(fio->page, fio);
1017 #ifdef CONFIG_BLK_DEV_ZONED
1018 	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1019 			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1020 		bio_get(io->bio);
1021 		reinit_completion(&io->zone_wait);
1022 		io->bi_private = io->bio->bi_private;
1023 		io->bio->bi_private = io;
1024 		io->bio->bi_end_io = f2fs_zone_write_end_io;
1025 		io->zone_pending_bio = io->bio;
1026 		__submit_merged_bio(io);
1027 	}
1028 #endif
1029 	if (fio->in_list)
1030 		goto next;
1031 out:
1032 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1033 				!f2fs_is_checkpoint_ready(sbi))
1034 		__submit_merged_bio(io);
1035 	f2fs_up_write(&io->io_rwsem);
1036 }
1037 
1038 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1039 				      unsigned nr_pages, blk_opf_t op_flag,
1040 				      pgoff_t first_idx, bool for_write)
1041 {
1042 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1043 	struct bio *bio;
1044 	struct bio_post_read_ctx *ctx = NULL;
1045 	unsigned int post_read_steps = 0;
1046 	sector_t sector;
1047 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1048 
1049 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1050 			       REQ_OP_READ | op_flag,
1051 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1052 	if (!bio)
1053 		return ERR_PTR(-ENOMEM);
1054 	bio->bi_iter.bi_sector = sector;
1055 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1056 	bio->bi_end_io = f2fs_read_end_io;
1057 
1058 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1059 		post_read_steps |= STEP_DECRYPT;
1060 
1061 	if (f2fs_need_verity(inode, first_idx))
1062 		post_read_steps |= STEP_VERITY;
1063 
1064 	/*
1065 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1066 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1067 	 * bio_post_read_ctx if the file is compressed, but the caller is
1068 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1069 	 */
1070 
1071 	if (post_read_steps || f2fs_compressed_file(inode)) {
1072 		/* Due to the mempool, this never fails. */
1073 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1074 		ctx->bio = bio;
1075 		ctx->sbi = sbi;
1076 		ctx->enabled_steps = post_read_steps;
1077 		ctx->fs_blkaddr = blkaddr;
1078 		ctx->decompression_attempted = false;
1079 		bio->bi_private = ctx;
1080 	}
1081 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1082 
1083 	return bio;
1084 }
1085 
1086 /* This can handle encryption stuffs */
1087 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1088 				 block_t blkaddr, blk_opf_t op_flags,
1089 				 bool for_write)
1090 {
1091 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1092 	struct bio *bio;
1093 
1094 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1095 					page->index, for_write);
1096 	if (IS_ERR(bio))
1097 		return PTR_ERR(bio);
1098 
1099 	/* wait for GCed page writeback via META_MAPPING */
1100 	f2fs_wait_on_block_writeback(inode, blkaddr);
1101 
1102 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1103 		iostat_update_and_unbind_ctx(bio);
1104 		if (bio->bi_private)
1105 			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1106 		bio_put(bio);
1107 		return -EFAULT;
1108 	}
1109 	inc_page_count(sbi, F2FS_RD_DATA);
1110 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1111 	f2fs_submit_read_bio(sbi, bio, DATA);
1112 	return 0;
1113 }
1114 
1115 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1116 {
1117 	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1118 
1119 	dn->data_blkaddr = blkaddr;
1120 	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1121 }
1122 
1123 /*
1124  * Lock ordering for the change of data block address:
1125  * ->data_page
1126  *  ->node_page
1127  *    update block addresses in the node page
1128  */
1129 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1130 {
1131 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1132 	__set_data_blkaddr(dn, blkaddr);
1133 	if (set_page_dirty(dn->node_page))
1134 		dn->node_changed = true;
1135 }
1136 
1137 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1138 {
1139 	f2fs_set_data_blkaddr(dn, blkaddr);
1140 	f2fs_update_read_extent_cache(dn);
1141 }
1142 
1143 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1144 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1145 {
1146 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1147 	int err;
1148 
1149 	if (!count)
1150 		return 0;
1151 
1152 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1153 		return -EPERM;
1154 	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1155 	if (unlikely(err))
1156 		return err;
1157 
1158 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1159 						dn->ofs_in_node, count);
1160 
1161 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1162 
1163 	for (; count > 0; dn->ofs_in_node++) {
1164 		block_t blkaddr = f2fs_data_blkaddr(dn);
1165 
1166 		if (blkaddr == NULL_ADDR) {
1167 			__set_data_blkaddr(dn, NEW_ADDR);
1168 			count--;
1169 		}
1170 	}
1171 
1172 	if (set_page_dirty(dn->node_page))
1173 		dn->node_changed = true;
1174 	return 0;
1175 }
1176 
1177 /* Should keep dn->ofs_in_node unchanged */
1178 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1179 {
1180 	unsigned int ofs_in_node = dn->ofs_in_node;
1181 	int ret;
1182 
1183 	ret = f2fs_reserve_new_blocks(dn, 1);
1184 	dn->ofs_in_node = ofs_in_node;
1185 	return ret;
1186 }
1187 
1188 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1189 {
1190 	bool need_put = dn->inode_page ? false : true;
1191 	int err;
1192 
1193 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1194 	if (err)
1195 		return err;
1196 
1197 	if (dn->data_blkaddr == NULL_ADDR)
1198 		err = f2fs_reserve_new_block(dn);
1199 	if (err || need_put)
1200 		f2fs_put_dnode(dn);
1201 	return err;
1202 }
1203 
1204 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1205 				     blk_opf_t op_flags, bool for_write,
1206 				     pgoff_t *next_pgofs)
1207 {
1208 	struct address_space *mapping = inode->i_mapping;
1209 	struct dnode_of_data dn;
1210 	struct page *page;
1211 	int err;
1212 
1213 	page = f2fs_grab_cache_page(mapping, index, for_write);
1214 	if (!page)
1215 		return ERR_PTR(-ENOMEM);
1216 
1217 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1218 						&dn.data_blkaddr)) {
1219 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1220 						DATA_GENERIC_ENHANCE_READ)) {
1221 			err = -EFSCORRUPTED;
1222 			f2fs_handle_error(F2FS_I_SB(inode),
1223 						ERROR_INVALID_BLKADDR);
1224 			goto put_err;
1225 		}
1226 		goto got_it;
1227 	}
1228 
1229 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1230 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1231 	if (err) {
1232 		if (err == -ENOENT && next_pgofs)
1233 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1234 		goto put_err;
1235 	}
1236 	f2fs_put_dnode(&dn);
1237 
1238 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1239 		err = -ENOENT;
1240 		if (next_pgofs)
1241 			*next_pgofs = index + 1;
1242 		goto put_err;
1243 	}
1244 	if (dn.data_blkaddr != NEW_ADDR &&
1245 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1246 						dn.data_blkaddr,
1247 						DATA_GENERIC_ENHANCE)) {
1248 		err = -EFSCORRUPTED;
1249 		f2fs_handle_error(F2FS_I_SB(inode),
1250 					ERROR_INVALID_BLKADDR);
1251 		goto put_err;
1252 	}
1253 got_it:
1254 	if (PageUptodate(page)) {
1255 		unlock_page(page);
1256 		return page;
1257 	}
1258 
1259 	/*
1260 	 * A new dentry page is allocated but not able to be written, since its
1261 	 * new inode page couldn't be allocated due to -ENOSPC.
1262 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1263 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1264 	 * f2fs_init_inode_metadata.
1265 	 */
1266 	if (dn.data_blkaddr == NEW_ADDR) {
1267 		zero_user_segment(page, 0, PAGE_SIZE);
1268 		if (!PageUptodate(page))
1269 			SetPageUptodate(page);
1270 		unlock_page(page);
1271 		return page;
1272 	}
1273 
1274 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1275 						op_flags, for_write);
1276 	if (err)
1277 		goto put_err;
1278 	return page;
1279 
1280 put_err:
1281 	f2fs_put_page(page, 1);
1282 	return ERR_PTR(err);
1283 }
1284 
1285 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1286 					pgoff_t *next_pgofs)
1287 {
1288 	struct address_space *mapping = inode->i_mapping;
1289 	struct page *page;
1290 
1291 	page = find_get_page(mapping, index);
1292 	if (page && PageUptodate(page))
1293 		return page;
1294 	f2fs_put_page(page, 0);
1295 
1296 	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1297 	if (IS_ERR(page))
1298 		return page;
1299 
1300 	if (PageUptodate(page))
1301 		return page;
1302 
1303 	wait_on_page_locked(page);
1304 	if (unlikely(!PageUptodate(page))) {
1305 		f2fs_put_page(page, 0);
1306 		return ERR_PTR(-EIO);
1307 	}
1308 	return page;
1309 }
1310 
1311 /*
1312  * If it tries to access a hole, return an error.
1313  * Because, the callers, functions in dir.c and GC, should be able to know
1314  * whether this page exists or not.
1315  */
1316 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1317 							bool for_write)
1318 {
1319 	struct address_space *mapping = inode->i_mapping;
1320 	struct page *page;
1321 
1322 	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1323 	if (IS_ERR(page))
1324 		return page;
1325 
1326 	/* wait for read completion */
1327 	lock_page(page);
1328 	if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1329 		f2fs_put_page(page, 1);
1330 		return ERR_PTR(-EIO);
1331 	}
1332 	return page;
1333 }
1334 
1335 /*
1336  * Caller ensures that this data page is never allocated.
1337  * A new zero-filled data page is allocated in the page cache.
1338  *
1339  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1340  * f2fs_unlock_op().
1341  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1342  * ipage should be released by this function.
1343  */
1344 struct page *f2fs_get_new_data_page(struct inode *inode,
1345 		struct page *ipage, pgoff_t index, bool new_i_size)
1346 {
1347 	struct address_space *mapping = inode->i_mapping;
1348 	struct page *page;
1349 	struct dnode_of_data dn;
1350 	int err;
1351 
1352 	page = f2fs_grab_cache_page(mapping, index, true);
1353 	if (!page) {
1354 		/*
1355 		 * before exiting, we should make sure ipage will be released
1356 		 * if any error occur.
1357 		 */
1358 		f2fs_put_page(ipage, 1);
1359 		return ERR_PTR(-ENOMEM);
1360 	}
1361 
1362 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1363 	err = f2fs_reserve_block(&dn, index);
1364 	if (err) {
1365 		f2fs_put_page(page, 1);
1366 		return ERR_PTR(err);
1367 	}
1368 	if (!ipage)
1369 		f2fs_put_dnode(&dn);
1370 
1371 	if (PageUptodate(page))
1372 		goto got_it;
1373 
1374 	if (dn.data_blkaddr == NEW_ADDR) {
1375 		zero_user_segment(page, 0, PAGE_SIZE);
1376 		if (!PageUptodate(page))
1377 			SetPageUptodate(page);
1378 	} else {
1379 		f2fs_put_page(page, 1);
1380 
1381 		/* if ipage exists, blkaddr should be NEW_ADDR */
1382 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1383 		page = f2fs_get_lock_data_page(inode, index, true);
1384 		if (IS_ERR(page))
1385 			return page;
1386 	}
1387 got_it:
1388 	if (new_i_size && i_size_read(inode) <
1389 				((loff_t)(index + 1) << PAGE_SHIFT))
1390 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1391 	return page;
1392 }
1393 
1394 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1395 {
1396 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1397 	struct f2fs_summary sum;
1398 	struct node_info ni;
1399 	block_t old_blkaddr;
1400 	blkcnt_t count = 1;
1401 	int err;
1402 
1403 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1404 		return -EPERM;
1405 
1406 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1407 	if (err)
1408 		return err;
1409 
1410 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1411 	if (dn->data_blkaddr == NULL_ADDR) {
1412 		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1413 		if (unlikely(err))
1414 			return err;
1415 	}
1416 
1417 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1418 	old_blkaddr = dn->data_blkaddr;
1419 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1420 				&sum, seg_type, NULL);
1421 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1422 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1423 
1424 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1425 	return 0;
1426 }
1427 
1428 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1429 {
1430 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1431 		f2fs_down_read(&sbi->node_change);
1432 	else
1433 		f2fs_lock_op(sbi);
1434 }
1435 
1436 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1437 {
1438 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1439 		f2fs_up_read(&sbi->node_change);
1440 	else
1441 		f2fs_unlock_op(sbi);
1442 }
1443 
1444 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1445 {
1446 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1447 	int err = 0;
1448 
1449 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1450 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1451 						&dn->data_blkaddr))
1452 		err = f2fs_reserve_block(dn, index);
1453 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1454 
1455 	return err;
1456 }
1457 
1458 static int f2fs_map_no_dnode(struct inode *inode,
1459 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1460 		pgoff_t pgoff)
1461 {
1462 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1463 
1464 	/*
1465 	 * There is one exceptional case that read_node_page() may return
1466 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1467 	 * -EIO in that case.
1468 	 */
1469 	if (map->m_may_create &&
1470 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1471 		return -EIO;
1472 
1473 	if (map->m_next_pgofs)
1474 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1475 	if (map->m_next_extent)
1476 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1477 	return 0;
1478 }
1479 
1480 static bool f2fs_map_blocks_cached(struct inode *inode,
1481 		struct f2fs_map_blocks *map, int flag)
1482 {
1483 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1484 	unsigned int maxblocks = map->m_len;
1485 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1486 	struct extent_info ei = {};
1487 
1488 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1489 		return false;
1490 
1491 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1492 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1493 	map->m_flags = F2FS_MAP_MAPPED;
1494 	if (map->m_next_extent)
1495 		*map->m_next_extent = pgoff + map->m_len;
1496 
1497 	/* for hardware encryption, but to avoid potential issue in future */
1498 	if (flag == F2FS_GET_BLOCK_DIO)
1499 		f2fs_wait_on_block_writeback_range(inode,
1500 					map->m_pblk, map->m_len);
1501 
1502 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1503 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1504 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1505 
1506 		map->m_bdev = dev->bdev;
1507 		map->m_pblk -= dev->start_blk;
1508 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1509 	} else {
1510 		map->m_bdev = inode->i_sb->s_bdev;
1511 	}
1512 	return true;
1513 }
1514 
1515 /*
1516  * f2fs_map_blocks() tries to find or build mapping relationship which
1517  * maps continuous logical blocks to physical blocks, and return such
1518  * info via f2fs_map_blocks structure.
1519  */
1520 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1521 {
1522 	unsigned int maxblocks = map->m_len;
1523 	struct dnode_of_data dn;
1524 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1525 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1526 	pgoff_t pgofs, end_offset, end;
1527 	int err = 0, ofs = 1;
1528 	unsigned int ofs_in_node, last_ofs_in_node;
1529 	blkcnt_t prealloc;
1530 	block_t blkaddr;
1531 	unsigned int start_pgofs;
1532 	int bidx = 0;
1533 	bool is_hole;
1534 
1535 	if (!maxblocks)
1536 		return 0;
1537 
1538 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1539 		goto out;
1540 
1541 	map->m_bdev = inode->i_sb->s_bdev;
1542 	map->m_multidev_dio =
1543 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1544 
1545 	map->m_len = 0;
1546 	map->m_flags = 0;
1547 
1548 	/* it only supports block size == page size */
1549 	pgofs =	(pgoff_t)map->m_lblk;
1550 	end = pgofs + maxblocks;
1551 
1552 next_dnode:
1553 	if (map->m_may_create)
1554 		f2fs_map_lock(sbi, flag);
1555 
1556 	/* When reading holes, we need its node page */
1557 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1558 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1559 	if (err) {
1560 		if (flag == F2FS_GET_BLOCK_BMAP)
1561 			map->m_pblk = 0;
1562 		if (err == -ENOENT)
1563 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1564 		goto unlock_out;
1565 	}
1566 
1567 	start_pgofs = pgofs;
1568 	prealloc = 0;
1569 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1570 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1571 
1572 next_block:
1573 	blkaddr = f2fs_data_blkaddr(&dn);
1574 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1575 	if (!is_hole &&
1576 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1577 		err = -EFSCORRUPTED;
1578 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1579 		goto sync_out;
1580 	}
1581 
1582 	/* use out-place-update for direct IO under LFS mode */
1583 	if (map->m_may_create &&
1584 	    (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1585 		if (unlikely(f2fs_cp_error(sbi))) {
1586 			err = -EIO;
1587 			goto sync_out;
1588 		}
1589 
1590 		switch (flag) {
1591 		case F2FS_GET_BLOCK_PRE_AIO:
1592 			if (blkaddr == NULL_ADDR) {
1593 				prealloc++;
1594 				last_ofs_in_node = dn.ofs_in_node;
1595 			}
1596 			break;
1597 		case F2FS_GET_BLOCK_PRE_DIO:
1598 		case F2FS_GET_BLOCK_DIO:
1599 			err = __allocate_data_block(&dn, map->m_seg_type);
1600 			if (err)
1601 				goto sync_out;
1602 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1603 				file_need_truncate(inode);
1604 			set_inode_flag(inode, FI_APPEND_WRITE);
1605 			break;
1606 		default:
1607 			WARN_ON_ONCE(1);
1608 			err = -EIO;
1609 			goto sync_out;
1610 		}
1611 
1612 		blkaddr = dn.data_blkaddr;
1613 		if (is_hole)
1614 			map->m_flags |= F2FS_MAP_NEW;
1615 	} else if (is_hole) {
1616 		if (f2fs_compressed_file(inode) &&
1617 		    f2fs_sanity_check_cluster(&dn)) {
1618 			err = -EFSCORRUPTED;
1619 			f2fs_handle_error(sbi,
1620 					ERROR_CORRUPTED_CLUSTER);
1621 			goto sync_out;
1622 		}
1623 
1624 		switch (flag) {
1625 		case F2FS_GET_BLOCK_PRECACHE:
1626 			goto sync_out;
1627 		case F2FS_GET_BLOCK_BMAP:
1628 			map->m_pblk = 0;
1629 			goto sync_out;
1630 		case F2FS_GET_BLOCK_FIEMAP:
1631 			if (blkaddr == NULL_ADDR) {
1632 				if (map->m_next_pgofs)
1633 					*map->m_next_pgofs = pgofs + 1;
1634 				goto sync_out;
1635 			}
1636 			break;
1637 		default:
1638 			/* for defragment case */
1639 			if (map->m_next_pgofs)
1640 				*map->m_next_pgofs = pgofs + 1;
1641 			goto sync_out;
1642 		}
1643 	}
1644 
1645 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1646 		goto skip;
1647 
1648 	if (map->m_multidev_dio)
1649 		bidx = f2fs_target_device_index(sbi, blkaddr);
1650 
1651 	if (map->m_len == 0) {
1652 		/* reserved delalloc block should be mapped for fiemap. */
1653 		if (blkaddr == NEW_ADDR)
1654 			map->m_flags |= F2FS_MAP_DELALLOC;
1655 		map->m_flags |= F2FS_MAP_MAPPED;
1656 
1657 		map->m_pblk = blkaddr;
1658 		map->m_len = 1;
1659 
1660 		if (map->m_multidev_dio)
1661 			map->m_bdev = FDEV(bidx).bdev;
1662 	} else if ((map->m_pblk != NEW_ADDR &&
1663 			blkaddr == (map->m_pblk + ofs)) ||
1664 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1665 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1666 		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1667 			goto sync_out;
1668 		ofs++;
1669 		map->m_len++;
1670 	} else {
1671 		goto sync_out;
1672 	}
1673 
1674 skip:
1675 	dn.ofs_in_node++;
1676 	pgofs++;
1677 
1678 	/* preallocate blocks in batch for one dnode page */
1679 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1680 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1681 
1682 		dn.ofs_in_node = ofs_in_node;
1683 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1684 		if (err)
1685 			goto sync_out;
1686 
1687 		map->m_len += dn.ofs_in_node - ofs_in_node;
1688 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1689 			err = -ENOSPC;
1690 			goto sync_out;
1691 		}
1692 		dn.ofs_in_node = end_offset;
1693 	}
1694 
1695 	if (pgofs >= end)
1696 		goto sync_out;
1697 	else if (dn.ofs_in_node < end_offset)
1698 		goto next_block;
1699 
1700 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1701 		if (map->m_flags & F2FS_MAP_MAPPED) {
1702 			unsigned int ofs = start_pgofs - map->m_lblk;
1703 
1704 			f2fs_update_read_extent_cache_range(&dn,
1705 				start_pgofs, map->m_pblk + ofs,
1706 				map->m_len - ofs);
1707 		}
1708 	}
1709 
1710 	f2fs_put_dnode(&dn);
1711 
1712 	if (map->m_may_create) {
1713 		f2fs_map_unlock(sbi, flag);
1714 		f2fs_balance_fs(sbi, dn.node_changed);
1715 	}
1716 	goto next_dnode;
1717 
1718 sync_out:
1719 
1720 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1721 		/*
1722 		 * for hardware encryption, but to avoid potential issue
1723 		 * in future
1724 		 */
1725 		f2fs_wait_on_block_writeback_range(inode,
1726 						map->m_pblk, map->m_len);
1727 
1728 		if (map->m_multidev_dio) {
1729 			block_t blk_addr = map->m_pblk;
1730 
1731 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1732 
1733 			map->m_bdev = FDEV(bidx).bdev;
1734 			map->m_pblk -= FDEV(bidx).start_blk;
1735 
1736 			if (map->m_may_create)
1737 				f2fs_update_device_state(sbi, inode->i_ino,
1738 							blk_addr, map->m_len);
1739 
1740 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1741 						FDEV(bidx).end_blk + 1);
1742 		}
1743 	}
1744 
1745 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1746 		if (map->m_flags & F2FS_MAP_MAPPED) {
1747 			unsigned int ofs = start_pgofs - map->m_lblk;
1748 
1749 			f2fs_update_read_extent_cache_range(&dn,
1750 				start_pgofs, map->m_pblk + ofs,
1751 				map->m_len - ofs);
1752 		}
1753 		if (map->m_next_extent)
1754 			*map->m_next_extent = pgofs + 1;
1755 	}
1756 	f2fs_put_dnode(&dn);
1757 unlock_out:
1758 	if (map->m_may_create) {
1759 		f2fs_map_unlock(sbi, flag);
1760 		f2fs_balance_fs(sbi, dn.node_changed);
1761 	}
1762 out:
1763 	trace_f2fs_map_blocks(inode, map, flag, err);
1764 	return err;
1765 }
1766 
1767 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1768 {
1769 	struct f2fs_map_blocks map;
1770 	block_t last_lblk;
1771 	int err;
1772 
1773 	if (pos + len > i_size_read(inode))
1774 		return false;
1775 
1776 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1777 	map.m_next_pgofs = NULL;
1778 	map.m_next_extent = NULL;
1779 	map.m_seg_type = NO_CHECK_TYPE;
1780 	map.m_may_create = false;
1781 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1782 
1783 	while (map.m_lblk < last_lblk) {
1784 		map.m_len = last_lblk - map.m_lblk;
1785 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1786 		if (err || map.m_len == 0)
1787 			return false;
1788 		map.m_lblk += map.m_len;
1789 	}
1790 	return true;
1791 }
1792 
1793 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1794 {
1795 	return (bytes >> inode->i_blkbits);
1796 }
1797 
1798 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1799 {
1800 	return (blks << inode->i_blkbits);
1801 }
1802 
1803 static int f2fs_xattr_fiemap(struct inode *inode,
1804 				struct fiemap_extent_info *fieinfo)
1805 {
1806 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1807 	struct page *page;
1808 	struct node_info ni;
1809 	__u64 phys = 0, len;
1810 	__u32 flags;
1811 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1812 	int err = 0;
1813 
1814 	if (f2fs_has_inline_xattr(inode)) {
1815 		int offset;
1816 
1817 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1818 						inode->i_ino, false);
1819 		if (!page)
1820 			return -ENOMEM;
1821 
1822 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1823 		if (err) {
1824 			f2fs_put_page(page, 1);
1825 			return err;
1826 		}
1827 
1828 		phys = blks_to_bytes(inode, ni.blk_addr);
1829 		offset = offsetof(struct f2fs_inode, i_addr) +
1830 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1831 					get_inline_xattr_addrs(inode));
1832 
1833 		phys += offset;
1834 		len = inline_xattr_size(inode);
1835 
1836 		f2fs_put_page(page, 1);
1837 
1838 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1839 
1840 		if (!xnid)
1841 			flags |= FIEMAP_EXTENT_LAST;
1842 
1843 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1844 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1845 		if (err)
1846 			return err;
1847 	}
1848 
1849 	if (xnid) {
1850 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1851 		if (!page)
1852 			return -ENOMEM;
1853 
1854 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1855 		if (err) {
1856 			f2fs_put_page(page, 1);
1857 			return err;
1858 		}
1859 
1860 		phys = blks_to_bytes(inode, ni.blk_addr);
1861 		len = inode->i_sb->s_blocksize;
1862 
1863 		f2fs_put_page(page, 1);
1864 
1865 		flags = FIEMAP_EXTENT_LAST;
1866 	}
1867 
1868 	if (phys) {
1869 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1870 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1871 	}
1872 
1873 	return (err < 0 ? err : 0);
1874 }
1875 
1876 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1877 		u64 start, u64 len)
1878 {
1879 	struct f2fs_map_blocks map;
1880 	sector_t start_blk, last_blk;
1881 	pgoff_t next_pgofs;
1882 	u64 logical = 0, phys = 0, size = 0;
1883 	u32 flags = 0;
1884 	int ret = 0;
1885 	bool compr_cluster = false, compr_appended;
1886 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1887 	unsigned int count_in_cluster = 0;
1888 	loff_t maxbytes;
1889 
1890 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1891 		ret = f2fs_precache_extents(inode);
1892 		if (ret)
1893 			return ret;
1894 	}
1895 
1896 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1897 	if (ret)
1898 		return ret;
1899 
1900 	inode_lock(inode);
1901 
1902 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1903 	if (start > maxbytes) {
1904 		ret = -EFBIG;
1905 		goto out;
1906 	}
1907 
1908 	if (len > maxbytes || (maxbytes - len) < start)
1909 		len = maxbytes - start;
1910 
1911 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1912 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1913 		goto out;
1914 	}
1915 
1916 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1917 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1918 		if (ret != -EAGAIN)
1919 			goto out;
1920 	}
1921 
1922 	if (bytes_to_blks(inode, len) == 0)
1923 		len = blks_to_bytes(inode, 1);
1924 
1925 	start_blk = bytes_to_blks(inode, start);
1926 	last_blk = bytes_to_blks(inode, start + len - 1);
1927 
1928 next:
1929 	memset(&map, 0, sizeof(map));
1930 	map.m_lblk = start_blk;
1931 	map.m_len = bytes_to_blks(inode, len);
1932 	map.m_next_pgofs = &next_pgofs;
1933 	map.m_seg_type = NO_CHECK_TYPE;
1934 
1935 	if (compr_cluster) {
1936 		map.m_lblk += 1;
1937 		map.m_len = cluster_size - count_in_cluster;
1938 	}
1939 
1940 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1941 	if (ret)
1942 		goto out;
1943 
1944 	/* HOLE */
1945 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1946 		start_blk = next_pgofs;
1947 
1948 		if (blks_to_bytes(inode, start_blk) < maxbytes)
1949 			goto prep_next;
1950 
1951 		flags |= FIEMAP_EXTENT_LAST;
1952 	}
1953 
1954 	compr_appended = false;
1955 	/* In a case of compressed cluster, append this to the last extent */
1956 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1957 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1958 		compr_appended = true;
1959 		goto skip_fill;
1960 	}
1961 
1962 	if (size) {
1963 		flags |= FIEMAP_EXTENT_MERGED;
1964 		if (IS_ENCRYPTED(inode))
1965 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1966 
1967 		ret = fiemap_fill_next_extent(fieinfo, logical,
1968 				phys, size, flags);
1969 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1970 		if (ret)
1971 			goto out;
1972 		size = 0;
1973 	}
1974 
1975 	if (start_blk > last_blk)
1976 		goto out;
1977 
1978 skip_fill:
1979 	if (map.m_pblk == COMPRESS_ADDR) {
1980 		compr_cluster = true;
1981 		count_in_cluster = 1;
1982 	} else if (compr_appended) {
1983 		unsigned int appended_blks = cluster_size -
1984 						count_in_cluster + 1;
1985 		size += blks_to_bytes(inode, appended_blks);
1986 		start_blk += appended_blks;
1987 		compr_cluster = false;
1988 	} else {
1989 		logical = blks_to_bytes(inode, start_blk);
1990 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
1991 			blks_to_bytes(inode, map.m_pblk) : 0;
1992 		size = blks_to_bytes(inode, map.m_len);
1993 		flags = 0;
1994 
1995 		if (compr_cluster) {
1996 			flags = FIEMAP_EXTENT_ENCODED;
1997 			count_in_cluster += map.m_len;
1998 			if (count_in_cluster == cluster_size) {
1999 				compr_cluster = false;
2000 				size += blks_to_bytes(inode, 1);
2001 			}
2002 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2003 			flags = FIEMAP_EXTENT_UNWRITTEN;
2004 		}
2005 
2006 		start_blk += bytes_to_blks(inode, size);
2007 	}
2008 
2009 prep_next:
2010 	cond_resched();
2011 	if (fatal_signal_pending(current))
2012 		ret = -EINTR;
2013 	else
2014 		goto next;
2015 out:
2016 	if (ret == 1)
2017 		ret = 0;
2018 
2019 	inode_unlock(inode);
2020 	return ret;
2021 }
2022 
2023 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2024 {
2025 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2026 		return inode->i_sb->s_maxbytes;
2027 
2028 	return i_size_read(inode);
2029 }
2030 
2031 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2032 					unsigned nr_pages,
2033 					struct f2fs_map_blocks *map,
2034 					struct bio **bio_ret,
2035 					sector_t *last_block_in_bio,
2036 					bool is_readahead)
2037 {
2038 	struct bio *bio = *bio_ret;
2039 	const unsigned blocksize = blks_to_bytes(inode, 1);
2040 	sector_t block_in_file;
2041 	sector_t last_block;
2042 	sector_t last_block_in_file;
2043 	sector_t block_nr;
2044 	int ret = 0;
2045 
2046 	block_in_file = (sector_t)page_index(page);
2047 	last_block = block_in_file + nr_pages;
2048 	last_block_in_file = bytes_to_blks(inode,
2049 			f2fs_readpage_limit(inode) + blocksize - 1);
2050 	if (last_block > last_block_in_file)
2051 		last_block = last_block_in_file;
2052 
2053 	/* just zeroing out page which is beyond EOF */
2054 	if (block_in_file >= last_block)
2055 		goto zero_out;
2056 	/*
2057 	 * Map blocks using the previous result first.
2058 	 */
2059 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2060 			block_in_file > map->m_lblk &&
2061 			block_in_file < (map->m_lblk + map->m_len))
2062 		goto got_it;
2063 
2064 	/*
2065 	 * Then do more f2fs_map_blocks() calls until we are
2066 	 * done with this page.
2067 	 */
2068 	map->m_lblk = block_in_file;
2069 	map->m_len = last_block - block_in_file;
2070 
2071 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2072 	if (ret)
2073 		goto out;
2074 got_it:
2075 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2076 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2077 		SetPageMappedToDisk(page);
2078 
2079 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2080 						DATA_GENERIC_ENHANCE_READ)) {
2081 			ret = -EFSCORRUPTED;
2082 			f2fs_handle_error(F2FS_I_SB(inode),
2083 						ERROR_INVALID_BLKADDR);
2084 			goto out;
2085 		}
2086 	} else {
2087 zero_out:
2088 		zero_user_segment(page, 0, PAGE_SIZE);
2089 		if (f2fs_need_verity(inode, page->index) &&
2090 		    !fsverity_verify_page(page)) {
2091 			ret = -EIO;
2092 			goto out;
2093 		}
2094 		if (!PageUptodate(page))
2095 			SetPageUptodate(page);
2096 		unlock_page(page);
2097 		goto out;
2098 	}
2099 
2100 	/*
2101 	 * This page will go to BIO.  Do we need to send this
2102 	 * BIO off first?
2103 	 */
2104 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2105 				       *last_block_in_bio, block_nr) ||
2106 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2107 submit_and_realloc:
2108 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2109 		bio = NULL;
2110 	}
2111 	if (bio == NULL) {
2112 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2113 				is_readahead ? REQ_RAHEAD : 0, page->index,
2114 				false);
2115 		if (IS_ERR(bio)) {
2116 			ret = PTR_ERR(bio);
2117 			bio = NULL;
2118 			goto out;
2119 		}
2120 	}
2121 
2122 	/*
2123 	 * If the page is under writeback, we need to wait for
2124 	 * its completion to see the correct decrypted data.
2125 	 */
2126 	f2fs_wait_on_block_writeback(inode, block_nr);
2127 
2128 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2129 		goto submit_and_realloc;
2130 
2131 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2132 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2133 							F2FS_BLKSIZE);
2134 	*last_block_in_bio = block_nr;
2135 out:
2136 	*bio_ret = bio;
2137 	return ret;
2138 }
2139 
2140 #ifdef CONFIG_F2FS_FS_COMPRESSION
2141 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2142 				unsigned nr_pages, sector_t *last_block_in_bio,
2143 				bool is_readahead, bool for_write)
2144 {
2145 	struct dnode_of_data dn;
2146 	struct inode *inode = cc->inode;
2147 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2148 	struct bio *bio = *bio_ret;
2149 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2150 	sector_t last_block_in_file;
2151 	const unsigned blocksize = blks_to_bytes(inode, 1);
2152 	struct decompress_io_ctx *dic = NULL;
2153 	struct extent_info ei = {};
2154 	bool from_dnode = true;
2155 	int i;
2156 	int ret = 0;
2157 
2158 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2159 
2160 	last_block_in_file = bytes_to_blks(inode,
2161 			f2fs_readpage_limit(inode) + blocksize - 1);
2162 
2163 	/* get rid of pages beyond EOF */
2164 	for (i = 0; i < cc->cluster_size; i++) {
2165 		struct page *page = cc->rpages[i];
2166 
2167 		if (!page)
2168 			continue;
2169 		if ((sector_t)page->index >= last_block_in_file) {
2170 			zero_user_segment(page, 0, PAGE_SIZE);
2171 			if (!PageUptodate(page))
2172 				SetPageUptodate(page);
2173 		} else if (!PageUptodate(page)) {
2174 			continue;
2175 		}
2176 		unlock_page(page);
2177 		if (for_write)
2178 			put_page(page);
2179 		cc->rpages[i] = NULL;
2180 		cc->nr_rpages--;
2181 	}
2182 
2183 	/* we are done since all pages are beyond EOF */
2184 	if (f2fs_cluster_is_empty(cc))
2185 		goto out;
2186 
2187 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2188 		from_dnode = false;
2189 
2190 	if (!from_dnode)
2191 		goto skip_reading_dnode;
2192 
2193 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2194 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2195 	if (ret)
2196 		goto out;
2197 
2198 	if (unlikely(f2fs_cp_error(sbi))) {
2199 		ret = -EIO;
2200 		goto out_put_dnode;
2201 	}
2202 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2203 
2204 skip_reading_dnode:
2205 	for (i = 1; i < cc->cluster_size; i++) {
2206 		block_t blkaddr;
2207 
2208 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2209 					dn.ofs_in_node + i) :
2210 					ei.blk + i - 1;
2211 
2212 		if (!__is_valid_data_blkaddr(blkaddr))
2213 			break;
2214 
2215 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2216 			ret = -EFAULT;
2217 			goto out_put_dnode;
2218 		}
2219 		cc->nr_cpages++;
2220 
2221 		if (!from_dnode && i >= ei.c_len)
2222 			break;
2223 	}
2224 
2225 	/* nothing to decompress */
2226 	if (cc->nr_cpages == 0) {
2227 		ret = 0;
2228 		goto out_put_dnode;
2229 	}
2230 
2231 	dic = f2fs_alloc_dic(cc);
2232 	if (IS_ERR(dic)) {
2233 		ret = PTR_ERR(dic);
2234 		goto out_put_dnode;
2235 	}
2236 
2237 	for (i = 0; i < cc->nr_cpages; i++) {
2238 		struct page *page = dic->cpages[i];
2239 		block_t blkaddr;
2240 		struct bio_post_read_ctx *ctx;
2241 
2242 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2243 					dn.ofs_in_node + i + 1) :
2244 					ei.blk + i;
2245 
2246 		f2fs_wait_on_block_writeback(inode, blkaddr);
2247 
2248 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2249 			if (atomic_dec_and_test(&dic->remaining_pages)) {
2250 				f2fs_decompress_cluster(dic, true);
2251 				break;
2252 			}
2253 			continue;
2254 		}
2255 
2256 		if (bio && (!page_is_mergeable(sbi, bio,
2257 					*last_block_in_bio, blkaddr) ||
2258 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2259 submit_and_realloc:
2260 			f2fs_submit_read_bio(sbi, bio, DATA);
2261 			bio = NULL;
2262 		}
2263 
2264 		if (!bio) {
2265 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2266 					is_readahead ? REQ_RAHEAD : 0,
2267 					page->index, for_write);
2268 			if (IS_ERR(bio)) {
2269 				ret = PTR_ERR(bio);
2270 				f2fs_decompress_end_io(dic, ret, true);
2271 				f2fs_put_dnode(&dn);
2272 				*bio_ret = NULL;
2273 				return ret;
2274 			}
2275 		}
2276 
2277 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2278 			goto submit_and_realloc;
2279 
2280 		ctx = get_post_read_ctx(bio);
2281 		ctx->enabled_steps |= STEP_DECOMPRESS;
2282 		refcount_inc(&dic->refcnt);
2283 
2284 		inc_page_count(sbi, F2FS_RD_DATA);
2285 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2286 		*last_block_in_bio = blkaddr;
2287 	}
2288 
2289 	if (from_dnode)
2290 		f2fs_put_dnode(&dn);
2291 
2292 	*bio_ret = bio;
2293 	return 0;
2294 
2295 out_put_dnode:
2296 	if (from_dnode)
2297 		f2fs_put_dnode(&dn);
2298 out:
2299 	for (i = 0; i < cc->cluster_size; i++) {
2300 		if (cc->rpages[i]) {
2301 			ClearPageUptodate(cc->rpages[i]);
2302 			unlock_page(cc->rpages[i]);
2303 		}
2304 	}
2305 	*bio_ret = bio;
2306 	return ret;
2307 }
2308 #endif
2309 
2310 /*
2311  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2312  * Major change was from block_size == page_size in f2fs by default.
2313  */
2314 static int f2fs_mpage_readpages(struct inode *inode,
2315 		struct readahead_control *rac, struct page *page)
2316 {
2317 	struct bio *bio = NULL;
2318 	sector_t last_block_in_bio = 0;
2319 	struct f2fs_map_blocks map;
2320 #ifdef CONFIG_F2FS_FS_COMPRESSION
2321 	struct compress_ctx cc = {
2322 		.inode = inode,
2323 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2324 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2325 		.cluster_idx = NULL_CLUSTER,
2326 		.rpages = NULL,
2327 		.cpages = NULL,
2328 		.nr_rpages = 0,
2329 		.nr_cpages = 0,
2330 	};
2331 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2332 #endif
2333 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2334 	unsigned max_nr_pages = nr_pages;
2335 	int ret = 0;
2336 
2337 	map.m_pblk = 0;
2338 	map.m_lblk = 0;
2339 	map.m_len = 0;
2340 	map.m_flags = 0;
2341 	map.m_next_pgofs = NULL;
2342 	map.m_next_extent = NULL;
2343 	map.m_seg_type = NO_CHECK_TYPE;
2344 	map.m_may_create = false;
2345 
2346 	for (; nr_pages; nr_pages--) {
2347 		if (rac) {
2348 			page = readahead_page(rac);
2349 			prefetchw(&page->flags);
2350 		}
2351 
2352 #ifdef CONFIG_F2FS_FS_COMPRESSION
2353 		if (f2fs_compressed_file(inode)) {
2354 			/* there are remained compressed pages, submit them */
2355 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2356 				ret = f2fs_read_multi_pages(&cc, &bio,
2357 							max_nr_pages,
2358 							&last_block_in_bio,
2359 							rac != NULL, false);
2360 				f2fs_destroy_compress_ctx(&cc, false);
2361 				if (ret)
2362 					goto set_error_page;
2363 			}
2364 			if (cc.cluster_idx == NULL_CLUSTER) {
2365 				if (nc_cluster_idx ==
2366 					page->index >> cc.log_cluster_size) {
2367 					goto read_single_page;
2368 				}
2369 
2370 				ret = f2fs_is_compressed_cluster(inode, page->index);
2371 				if (ret < 0)
2372 					goto set_error_page;
2373 				else if (!ret) {
2374 					nc_cluster_idx =
2375 						page->index >> cc.log_cluster_size;
2376 					goto read_single_page;
2377 				}
2378 
2379 				nc_cluster_idx = NULL_CLUSTER;
2380 			}
2381 			ret = f2fs_init_compress_ctx(&cc);
2382 			if (ret)
2383 				goto set_error_page;
2384 
2385 			f2fs_compress_ctx_add_page(&cc, page);
2386 
2387 			goto next_page;
2388 		}
2389 read_single_page:
2390 #endif
2391 
2392 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2393 					&bio, &last_block_in_bio, rac);
2394 		if (ret) {
2395 #ifdef CONFIG_F2FS_FS_COMPRESSION
2396 set_error_page:
2397 #endif
2398 			zero_user_segment(page, 0, PAGE_SIZE);
2399 			unlock_page(page);
2400 		}
2401 #ifdef CONFIG_F2FS_FS_COMPRESSION
2402 next_page:
2403 #endif
2404 		if (rac)
2405 			put_page(page);
2406 
2407 #ifdef CONFIG_F2FS_FS_COMPRESSION
2408 		if (f2fs_compressed_file(inode)) {
2409 			/* last page */
2410 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2411 				ret = f2fs_read_multi_pages(&cc, &bio,
2412 							max_nr_pages,
2413 							&last_block_in_bio,
2414 							rac != NULL, false);
2415 				f2fs_destroy_compress_ctx(&cc, false);
2416 			}
2417 		}
2418 #endif
2419 	}
2420 	if (bio)
2421 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2422 	return ret;
2423 }
2424 
2425 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2426 {
2427 	struct page *page = &folio->page;
2428 	struct inode *inode = page_file_mapping(page)->host;
2429 	int ret = -EAGAIN;
2430 
2431 	trace_f2fs_readpage(page, DATA);
2432 
2433 	if (!f2fs_is_compress_backend_ready(inode)) {
2434 		unlock_page(page);
2435 		return -EOPNOTSUPP;
2436 	}
2437 
2438 	/* If the file has inline data, try to read it directly */
2439 	if (f2fs_has_inline_data(inode))
2440 		ret = f2fs_read_inline_data(inode, page);
2441 	if (ret == -EAGAIN)
2442 		ret = f2fs_mpage_readpages(inode, NULL, page);
2443 	return ret;
2444 }
2445 
2446 static void f2fs_readahead(struct readahead_control *rac)
2447 {
2448 	struct inode *inode = rac->mapping->host;
2449 
2450 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2451 
2452 	if (!f2fs_is_compress_backend_ready(inode))
2453 		return;
2454 
2455 	/* If the file has inline data, skip readahead */
2456 	if (f2fs_has_inline_data(inode))
2457 		return;
2458 
2459 	f2fs_mpage_readpages(inode, rac, NULL);
2460 }
2461 
2462 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2463 {
2464 	struct inode *inode = fio->page->mapping->host;
2465 	struct page *mpage, *page;
2466 	gfp_t gfp_flags = GFP_NOFS;
2467 
2468 	if (!f2fs_encrypted_file(inode))
2469 		return 0;
2470 
2471 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2472 
2473 	if (fscrypt_inode_uses_inline_crypto(inode))
2474 		return 0;
2475 
2476 retry_encrypt:
2477 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2478 					PAGE_SIZE, 0, gfp_flags);
2479 	if (IS_ERR(fio->encrypted_page)) {
2480 		/* flush pending IOs and wait for a while in the ENOMEM case */
2481 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2482 			f2fs_flush_merged_writes(fio->sbi);
2483 			memalloc_retry_wait(GFP_NOFS);
2484 			gfp_flags |= __GFP_NOFAIL;
2485 			goto retry_encrypt;
2486 		}
2487 		return PTR_ERR(fio->encrypted_page);
2488 	}
2489 
2490 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2491 	if (mpage) {
2492 		if (PageUptodate(mpage))
2493 			memcpy(page_address(mpage),
2494 				page_address(fio->encrypted_page), PAGE_SIZE);
2495 		f2fs_put_page(mpage, 1);
2496 	}
2497 	return 0;
2498 }
2499 
2500 static inline bool check_inplace_update_policy(struct inode *inode,
2501 				struct f2fs_io_info *fio)
2502 {
2503 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2504 
2505 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2506 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2507 		return false;
2508 	if (IS_F2FS_IPU_FORCE(sbi))
2509 		return true;
2510 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2511 		return true;
2512 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2513 		return true;
2514 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2515 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2516 		return true;
2517 
2518 	/*
2519 	 * IPU for rewrite async pages
2520 	 */
2521 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2522 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2523 		return true;
2524 
2525 	/* this is only set during fdatasync */
2526 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2527 		return true;
2528 
2529 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2530 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2531 		return true;
2532 
2533 	return false;
2534 }
2535 
2536 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2537 {
2538 	/* swap file is migrating in aligned write mode */
2539 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2540 		return false;
2541 
2542 	if (f2fs_is_pinned_file(inode))
2543 		return true;
2544 
2545 	/* if this is cold file, we should overwrite to avoid fragmentation */
2546 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2547 		return true;
2548 
2549 	return check_inplace_update_policy(inode, fio);
2550 }
2551 
2552 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2553 {
2554 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2555 
2556 	/* The below cases were checked when setting it. */
2557 	if (f2fs_is_pinned_file(inode))
2558 		return false;
2559 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2560 		return true;
2561 	if (f2fs_lfs_mode(sbi))
2562 		return true;
2563 	if (S_ISDIR(inode->i_mode))
2564 		return true;
2565 	if (IS_NOQUOTA(inode))
2566 		return true;
2567 	if (f2fs_used_in_atomic_write(inode))
2568 		return true;
2569 
2570 	/* swap file is migrating in aligned write mode */
2571 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2572 		return true;
2573 
2574 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2575 		return true;
2576 
2577 	if (fio) {
2578 		if (page_private_gcing(fio->page))
2579 			return true;
2580 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2581 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2582 			return true;
2583 	}
2584 	return false;
2585 }
2586 
2587 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2588 {
2589 	struct inode *inode = fio->page->mapping->host;
2590 
2591 	if (f2fs_should_update_outplace(inode, fio))
2592 		return false;
2593 
2594 	return f2fs_should_update_inplace(inode, fio);
2595 }
2596 
2597 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2598 {
2599 	struct page *page = fio->page;
2600 	struct inode *inode = page->mapping->host;
2601 	struct dnode_of_data dn;
2602 	struct node_info ni;
2603 	bool ipu_force = false;
2604 	bool atomic_commit;
2605 	int err = 0;
2606 
2607 	/* Use COW inode to make dnode_of_data for atomic write */
2608 	atomic_commit = f2fs_is_atomic_file(inode) &&
2609 				page_private_atomic(fio->page);
2610 	if (atomic_commit)
2611 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2612 	else
2613 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2614 
2615 	if (need_inplace_update(fio) &&
2616 	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2617 						&fio->old_blkaddr)) {
2618 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2619 						DATA_GENERIC_ENHANCE)) {
2620 			f2fs_handle_error(fio->sbi,
2621 						ERROR_INVALID_BLKADDR);
2622 			return -EFSCORRUPTED;
2623 		}
2624 
2625 		ipu_force = true;
2626 		fio->need_lock = LOCK_DONE;
2627 		goto got_it;
2628 	}
2629 
2630 	/* Deadlock due to between page->lock and f2fs_lock_op */
2631 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2632 		return -EAGAIN;
2633 
2634 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2635 	if (err)
2636 		goto out;
2637 
2638 	fio->old_blkaddr = dn.data_blkaddr;
2639 
2640 	/* This page is already truncated */
2641 	if (fio->old_blkaddr == NULL_ADDR) {
2642 		ClearPageUptodate(page);
2643 		clear_page_private_gcing(page);
2644 		goto out_writepage;
2645 	}
2646 got_it:
2647 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2648 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2649 						DATA_GENERIC_ENHANCE)) {
2650 		err = -EFSCORRUPTED;
2651 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2652 		goto out_writepage;
2653 	}
2654 
2655 	/* wait for GCed page writeback via META_MAPPING */
2656 	if (fio->meta_gc)
2657 		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2658 
2659 	/*
2660 	 * If current allocation needs SSR,
2661 	 * it had better in-place writes for updated data.
2662 	 */
2663 	if (ipu_force ||
2664 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2665 					need_inplace_update(fio))) {
2666 		err = f2fs_encrypt_one_page(fio);
2667 		if (err)
2668 			goto out_writepage;
2669 
2670 		set_page_writeback(page);
2671 		f2fs_put_dnode(&dn);
2672 		if (fio->need_lock == LOCK_REQ)
2673 			f2fs_unlock_op(fio->sbi);
2674 		err = f2fs_inplace_write_data(fio);
2675 		if (err) {
2676 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2677 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2678 			if (PageWriteback(page))
2679 				end_page_writeback(page);
2680 		} else {
2681 			set_inode_flag(inode, FI_UPDATE_WRITE);
2682 		}
2683 		trace_f2fs_do_write_data_page(fio->page, IPU);
2684 		return err;
2685 	}
2686 
2687 	if (fio->need_lock == LOCK_RETRY) {
2688 		if (!f2fs_trylock_op(fio->sbi)) {
2689 			err = -EAGAIN;
2690 			goto out_writepage;
2691 		}
2692 		fio->need_lock = LOCK_REQ;
2693 	}
2694 
2695 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2696 	if (err)
2697 		goto out_writepage;
2698 
2699 	fio->version = ni.version;
2700 
2701 	err = f2fs_encrypt_one_page(fio);
2702 	if (err)
2703 		goto out_writepage;
2704 
2705 	set_page_writeback(page);
2706 
2707 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2708 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2709 
2710 	/* LFS mode write path */
2711 	f2fs_outplace_write_data(&dn, fio);
2712 	trace_f2fs_do_write_data_page(page, OPU);
2713 	set_inode_flag(inode, FI_APPEND_WRITE);
2714 	if (atomic_commit)
2715 		clear_page_private_atomic(page);
2716 out_writepage:
2717 	f2fs_put_dnode(&dn);
2718 out:
2719 	if (fio->need_lock == LOCK_REQ)
2720 		f2fs_unlock_op(fio->sbi);
2721 	return err;
2722 }
2723 
2724 int f2fs_write_single_data_page(struct page *page, int *submitted,
2725 				struct bio **bio,
2726 				sector_t *last_block,
2727 				struct writeback_control *wbc,
2728 				enum iostat_type io_type,
2729 				int compr_blocks,
2730 				bool allow_balance)
2731 {
2732 	struct inode *inode = page->mapping->host;
2733 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2734 	loff_t i_size = i_size_read(inode);
2735 	const pgoff_t end_index = ((unsigned long long)i_size)
2736 							>> PAGE_SHIFT;
2737 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2738 	unsigned offset = 0;
2739 	bool need_balance_fs = false;
2740 	bool quota_inode = IS_NOQUOTA(inode);
2741 	int err = 0;
2742 	struct f2fs_io_info fio = {
2743 		.sbi = sbi,
2744 		.ino = inode->i_ino,
2745 		.type = DATA,
2746 		.op = REQ_OP_WRITE,
2747 		.op_flags = wbc_to_write_flags(wbc),
2748 		.old_blkaddr = NULL_ADDR,
2749 		.page = page,
2750 		.encrypted_page = NULL,
2751 		.submitted = 0,
2752 		.compr_blocks = compr_blocks,
2753 		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2754 		.meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2755 		.io_type = io_type,
2756 		.io_wbc = wbc,
2757 		.bio = bio,
2758 		.last_block = last_block,
2759 	};
2760 
2761 	trace_f2fs_writepage(page, DATA);
2762 
2763 	/* we should bypass data pages to proceed the kworker jobs */
2764 	if (unlikely(f2fs_cp_error(sbi))) {
2765 		mapping_set_error(page->mapping, -EIO);
2766 		/*
2767 		 * don't drop any dirty dentry pages for keeping lastest
2768 		 * directory structure.
2769 		 */
2770 		if (S_ISDIR(inode->i_mode) &&
2771 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2772 			goto redirty_out;
2773 
2774 		/* keep data pages in remount-ro mode */
2775 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2776 			goto redirty_out;
2777 		goto out;
2778 	}
2779 
2780 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2781 		goto redirty_out;
2782 
2783 	if (page->index < end_index ||
2784 			f2fs_verity_in_progress(inode) ||
2785 			compr_blocks)
2786 		goto write;
2787 
2788 	/*
2789 	 * If the offset is out-of-range of file size,
2790 	 * this page does not have to be written to disk.
2791 	 */
2792 	offset = i_size & (PAGE_SIZE - 1);
2793 	if ((page->index >= end_index + 1) || !offset)
2794 		goto out;
2795 
2796 	zero_user_segment(page, offset, PAGE_SIZE);
2797 write:
2798 	/* Dentry/quota blocks are controlled by checkpoint */
2799 	if (S_ISDIR(inode->i_mode) || quota_inode) {
2800 		/*
2801 		 * We need to wait for node_write to avoid block allocation during
2802 		 * checkpoint. This can only happen to quota writes which can cause
2803 		 * the below discard race condition.
2804 		 */
2805 		if (quota_inode)
2806 			f2fs_down_read(&sbi->node_write);
2807 
2808 		fio.need_lock = LOCK_DONE;
2809 		err = f2fs_do_write_data_page(&fio);
2810 
2811 		if (quota_inode)
2812 			f2fs_up_read(&sbi->node_write);
2813 
2814 		goto done;
2815 	}
2816 
2817 	if (!wbc->for_reclaim)
2818 		need_balance_fs = true;
2819 	else if (has_not_enough_free_secs(sbi, 0, 0))
2820 		goto redirty_out;
2821 	else
2822 		set_inode_flag(inode, FI_HOT_DATA);
2823 
2824 	err = -EAGAIN;
2825 	if (f2fs_has_inline_data(inode)) {
2826 		err = f2fs_write_inline_data(inode, page);
2827 		if (!err)
2828 			goto out;
2829 	}
2830 
2831 	if (err == -EAGAIN) {
2832 		err = f2fs_do_write_data_page(&fio);
2833 		if (err == -EAGAIN) {
2834 			f2fs_bug_on(sbi, compr_blocks);
2835 			fio.need_lock = LOCK_REQ;
2836 			err = f2fs_do_write_data_page(&fio);
2837 		}
2838 	}
2839 
2840 	if (err) {
2841 		file_set_keep_isize(inode);
2842 	} else {
2843 		spin_lock(&F2FS_I(inode)->i_size_lock);
2844 		if (F2FS_I(inode)->last_disk_size < psize)
2845 			F2FS_I(inode)->last_disk_size = psize;
2846 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2847 	}
2848 
2849 done:
2850 	if (err && err != -ENOENT)
2851 		goto redirty_out;
2852 
2853 out:
2854 	inode_dec_dirty_pages(inode);
2855 	if (err) {
2856 		ClearPageUptodate(page);
2857 		clear_page_private_gcing(page);
2858 	}
2859 
2860 	if (wbc->for_reclaim) {
2861 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2862 		clear_inode_flag(inode, FI_HOT_DATA);
2863 		f2fs_remove_dirty_inode(inode);
2864 		submitted = NULL;
2865 	}
2866 	unlock_page(page);
2867 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2868 			!F2FS_I(inode)->wb_task && allow_balance)
2869 		f2fs_balance_fs(sbi, need_balance_fs);
2870 
2871 	if (unlikely(f2fs_cp_error(sbi))) {
2872 		f2fs_submit_merged_write(sbi, DATA);
2873 		if (bio && *bio)
2874 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2875 		submitted = NULL;
2876 	}
2877 
2878 	if (submitted)
2879 		*submitted = fio.submitted;
2880 
2881 	return 0;
2882 
2883 redirty_out:
2884 	redirty_page_for_writepage(wbc, page);
2885 	/*
2886 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2887 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2888 	 * file_write_and_wait_range() will see EIO error, which is critical
2889 	 * to return value of fsync() followed by atomic_write failure to user.
2890 	 */
2891 	if (!err || wbc->for_reclaim)
2892 		return AOP_WRITEPAGE_ACTIVATE;
2893 	unlock_page(page);
2894 	return err;
2895 }
2896 
2897 static int f2fs_write_data_page(struct page *page,
2898 					struct writeback_control *wbc)
2899 {
2900 #ifdef CONFIG_F2FS_FS_COMPRESSION
2901 	struct inode *inode = page->mapping->host;
2902 
2903 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2904 		goto out;
2905 
2906 	if (f2fs_compressed_file(inode)) {
2907 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2908 			redirty_page_for_writepage(wbc, page);
2909 			return AOP_WRITEPAGE_ACTIVATE;
2910 		}
2911 	}
2912 out:
2913 #endif
2914 
2915 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2916 						wbc, FS_DATA_IO, 0, true);
2917 }
2918 
2919 /*
2920  * This function was copied from write_cache_pages from mm/page-writeback.c.
2921  * The major change is making write step of cold data page separately from
2922  * warm/hot data page.
2923  */
2924 static int f2fs_write_cache_pages(struct address_space *mapping,
2925 					struct writeback_control *wbc,
2926 					enum iostat_type io_type)
2927 {
2928 	int ret = 0;
2929 	int done = 0, retry = 0;
2930 	struct page *pages_local[F2FS_ONSTACK_PAGES];
2931 	struct page **pages = pages_local;
2932 	struct folio_batch fbatch;
2933 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2934 	struct bio *bio = NULL;
2935 	sector_t last_block;
2936 #ifdef CONFIG_F2FS_FS_COMPRESSION
2937 	struct inode *inode = mapping->host;
2938 	struct compress_ctx cc = {
2939 		.inode = inode,
2940 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2941 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2942 		.cluster_idx = NULL_CLUSTER,
2943 		.rpages = NULL,
2944 		.nr_rpages = 0,
2945 		.cpages = NULL,
2946 		.valid_nr_cpages = 0,
2947 		.rbuf = NULL,
2948 		.cbuf = NULL,
2949 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2950 		.private = NULL,
2951 	};
2952 #endif
2953 	int nr_folios, p, idx;
2954 	int nr_pages;
2955 	unsigned int max_pages = F2FS_ONSTACK_PAGES;
2956 	pgoff_t index;
2957 	pgoff_t end;		/* Inclusive */
2958 	pgoff_t done_index;
2959 	int range_whole = 0;
2960 	xa_mark_t tag;
2961 	int nwritten = 0;
2962 	int submitted = 0;
2963 	int i;
2964 
2965 #ifdef CONFIG_F2FS_FS_COMPRESSION
2966 	if (f2fs_compressed_file(inode) &&
2967 		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2968 		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2969 				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2970 		max_pages = 1 << cc.log_cluster_size;
2971 	}
2972 #endif
2973 
2974 	folio_batch_init(&fbatch);
2975 
2976 	if (get_dirty_pages(mapping->host) <=
2977 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2978 		set_inode_flag(mapping->host, FI_HOT_DATA);
2979 	else
2980 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2981 
2982 	if (wbc->range_cyclic) {
2983 		index = mapping->writeback_index; /* prev offset */
2984 		end = -1;
2985 	} else {
2986 		index = wbc->range_start >> PAGE_SHIFT;
2987 		end = wbc->range_end >> PAGE_SHIFT;
2988 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2989 			range_whole = 1;
2990 	}
2991 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2992 		tag = PAGECACHE_TAG_TOWRITE;
2993 	else
2994 		tag = PAGECACHE_TAG_DIRTY;
2995 retry:
2996 	retry = 0;
2997 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2998 		tag_pages_for_writeback(mapping, index, end);
2999 	done_index = index;
3000 	while (!done && !retry && (index <= end)) {
3001 		nr_pages = 0;
3002 again:
3003 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3004 				tag, &fbatch);
3005 		if (nr_folios == 0) {
3006 			if (nr_pages)
3007 				goto write;
3008 			break;
3009 		}
3010 
3011 		for (i = 0; i < nr_folios; i++) {
3012 			struct folio *folio = fbatch.folios[i];
3013 
3014 			idx = 0;
3015 			p = folio_nr_pages(folio);
3016 add_more:
3017 			pages[nr_pages] = folio_page(folio, idx);
3018 			folio_get(folio);
3019 			if (++nr_pages == max_pages) {
3020 				index = folio->index + idx + 1;
3021 				folio_batch_release(&fbatch);
3022 				goto write;
3023 			}
3024 			if (++idx < p)
3025 				goto add_more;
3026 		}
3027 		folio_batch_release(&fbatch);
3028 		goto again;
3029 write:
3030 		for (i = 0; i < nr_pages; i++) {
3031 			struct page *page = pages[i];
3032 			struct folio *folio = page_folio(page);
3033 			bool need_readd;
3034 readd:
3035 			need_readd = false;
3036 #ifdef CONFIG_F2FS_FS_COMPRESSION
3037 			if (f2fs_compressed_file(inode)) {
3038 				void *fsdata = NULL;
3039 				struct page *pagep;
3040 				int ret2;
3041 
3042 				ret = f2fs_init_compress_ctx(&cc);
3043 				if (ret) {
3044 					done = 1;
3045 					break;
3046 				}
3047 
3048 				if (!f2fs_cluster_can_merge_page(&cc,
3049 								folio->index)) {
3050 					ret = f2fs_write_multi_pages(&cc,
3051 						&submitted, wbc, io_type);
3052 					if (!ret)
3053 						need_readd = true;
3054 					goto result;
3055 				}
3056 
3057 				if (unlikely(f2fs_cp_error(sbi)))
3058 					goto lock_folio;
3059 
3060 				if (!f2fs_cluster_is_empty(&cc))
3061 					goto lock_folio;
3062 
3063 				if (f2fs_all_cluster_page_ready(&cc,
3064 					pages, i, nr_pages, true))
3065 					goto lock_folio;
3066 
3067 				ret2 = f2fs_prepare_compress_overwrite(
3068 							inode, &pagep,
3069 							folio->index, &fsdata);
3070 				if (ret2 < 0) {
3071 					ret = ret2;
3072 					done = 1;
3073 					break;
3074 				} else if (ret2 &&
3075 					(!f2fs_compress_write_end(inode,
3076 						fsdata, folio->index, 1) ||
3077 					 !f2fs_all_cluster_page_ready(&cc,
3078 						pages, i, nr_pages,
3079 						false))) {
3080 					retry = 1;
3081 					break;
3082 				}
3083 			}
3084 #endif
3085 			/* give a priority to WB_SYNC threads */
3086 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3087 					wbc->sync_mode == WB_SYNC_NONE) {
3088 				done = 1;
3089 				break;
3090 			}
3091 #ifdef CONFIG_F2FS_FS_COMPRESSION
3092 lock_folio:
3093 #endif
3094 			done_index = folio->index;
3095 retry_write:
3096 			folio_lock(folio);
3097 
3098 			if (unlikely(folio->mapping != mapping)) {
3099 continue_unlock:
3100 				folio_unlock(folio);
3101 				continue;
3102 			}
3103 
3104 			if (!folio_test_dirty(folio)) {
3105 				/* someone wrote it for us */
3106 				goto continue_unlock;
3107 			}
3108 
3109 			if (folio_test_writeback(folio)) {
3110 				if (wbc->sync_mode == WB_SYNC_NONE)
3111 					goto continue_unlock;
3112 				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3113 			}
3114 
3115 			if (!folio_clear_dirty_for_io(folio))
3116 				goto continue_unlock;
3117 
3118 #ifdef CONFIG_F2FS_FS_COMPRESSION
3119 			if (f2fs_compressed_file(inode)) {
3120 				folio_get(folio);
3121 				f2fs_compress_ctx_add_page(&cc, &folio->page);
3122 				continue;
3123 			}
3124 #endif
3125 			ret = f2fs_write_single_data_page(&folio->page,
3126 					&submitted, &bio, &last_block,
3127 					wbc, io_type, 0, true);
3128 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3129 				folio_unlock(folio);
3130 #ifdef CONFIG_F2FS_FS_COMPRESSION
3131 result:
3132 #endif
3133 			nwritten += submitted;
3134 			wbc->nr_to_write -= submitted;
3135 
3136 			if (unlikely(ret)) {
3137 				/*
3138 				 * keep nr_to_write, since vfs uses this to
3139 				 * get # of written pages.
3140 				 */
3141 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3142 					ret = 0;
3143 					goto next;
3144 				} else if (ret == -EAGAIN) {
3145 					ret = 0;
3146 					if (wbc->sync_mode == WB_SYNC_ALL) {
3147 						f2fs_io_schedule_timeout(
3148 							DEFAULT_IO_TIMEOUT);
3149 						goto retry_write;
3150 					}
3151 					goto next;
3152 				}
3153 				done_index = folio_next_index(folio);
3154 				done = 1;
3155 				break;
3156 			}
3157 
3158 			if (wbc->nr_to_write <= 0 &&
3159 					wbc->sync_mode == WB_SYNC_NONE) {
3160 				done = 1;
3161 				break;
3162 			}
3163 next:
3164 			if (need_readd)
3165 				goto readd;
3166 		}
3167 		release_pages(pages, nr_pages);
3168 		cond_resched();
3169 	}
3170 #ifdef CONFIG_F2FS_FS_COMPRESSION
3171 	/* flush remained pages in compress cluster */
3172 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3173 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3174 		nwritten += submitted;
3175 		wbc->nr_to_write -= submitted;
3176 		if (ret) {
3177 			done = 1;
3178 			retry = 0;
3179 		}
3180 	}
3181 	if (f2fs_compressed_file(inode))
3182 		f2fs_destroy_compress_ctx(&cc, false);
3183 #endif
3184 	if (retry) {
3185 		index = 0;
3186 		end = -1;
3187 		goto retry;
3188 	}
3189 	if (wbc->range_cyclic && !done)
3190 		done_index = 0;
3191 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3192 		mapping->writeback_index = done_index;
3193 
3194 	if (nwritten)
3195 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3196 								NULL, 0, DATA);
3197 	/* submit cached bio of IPU write */
3198 	if (bio)
3199 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3200 
3201 #ifdef CONFIG_F2FS_FS_COMPRESSION
3202 	if (pages != pages_local)
3203 		kfree(pages);
3204 #endif
3205 
3206 	return ret;
3207 }
3208 
3209 static inline bool __should_serialize_io(struct inode *inode,
3210 					struct writeback_control *wbc)
3211 {
3212 	/* to avoid deadlock in path of data flush */
3213 	if (F2FS_I(inode)->wb_task)
3214 		return false;
3215 
3216 	if (!S_ISREG(inode->i_mode))
3217 		return false;
3218 	if (IS_NOQUOTA(inode))
3219 		return false;
3220 
3221 	if (f2fs_need_compress_data(inode))
3222 		return true;
3223 	if (wbc->sync_mode != WB_SYNC_ALL)
3224 		return true;
3225 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3226 		return true;
3227 	return false;
3228 }
3229 
3230 static int __f2fs_write_data_pages(struct address_space *mapping,
3231 						struct writeback_control *wbc,
3232 						enum iostat_type io_type)
3233 {
3234 	struct inode *inode = mapping->host;
3235 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3236 	struct blk_plug plug;
3237 	int ret;
3238 	bool locked = false;
3239 
3240 	/* deal with chardevs and other special file */
3241 	if (!mapping->a_ops->writepage)
3242 		return 0;
3243 
3244 	/* skip writing if there is no dirty page in this inode */
3245 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3246 		return 0;
3247 
3248 	/* during POR, we don't need to trigger writepage at all. */
3249 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3250 		goto skip_write;
3251 
3252 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3253 			wbc->sync_mode == WB_SYNC_NONE &&
3254 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3255 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3256 		goto skip_write;
3257 
3258 	/* skip writing in file defragment preparing stage */
3259 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3260 		goto skip_write;
3261 
3262 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3263 
3264 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3265 	if (wbc->sync_mode == WB_SYNC_ALL)
3266 		atomic_inc(&sbi->wb_sync_req[DATA]);
3267 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3268 		/* to avoid potential deadlock */
3269 		if (current->plug)
3270 			blk_finish_plug(current->plug);
3271 		goto skip_write;
3272 	}
3273 
3274 	if (__should_serialize_io(inode, wbc)) {
3275 		mutex_lock(&sbi->writepages);
3276 		locked = true;
3277 	}
3278 
3279 	blk_start_plug(&plug);
3280 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3281 	blk_finish_plug(&plug);
3282 
3283 	if (locked)
3284 		mutex_unlock(&sbi->writepages);
3285 
3286 	if (wbc->sync_mode == WB_SYNC_ALL)
3287 		atomic_dec(&sbi->wb_sync_req[DATA]);
3288 	/*
3289 	 * if some pages were truncated, we cannot guarantee its mapping->host
3290 	 * to detect pending bios.
3291 	 */
3292 
3293 	f2fs_remove_dirty_inode(inode);
3294 	return ret;
3295 
3296 skip_write:
3297 	wbc->pages_skipped += get_dirty_pages(inode);
3298 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3299 	return 0;
3300 }
3301 
3302 static int f2fs_write_data_pages(struct address_space *mapping,
3303 			    struct writeback_control *wbc)
3304 {
3305 	struct inode *inode = mapping->host;
3306 
3307 	return __f2fs_write_data_pages(mapping, wbc,
3308 			F2FS_I(inode)->cp_task == current ?
3309 			FS_CP_DATA_IO : FS_DATA_IO);
3310 }
3311 
3312 void f2fs_write_failed(struct inode *inode, loff_t to)
3313 {
3314 	loff_t i_size = i_size_read(inode);
3315 
3316 	if (IS_NOQUOTA(inode))
3317 		return;
3318 
3319 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3320 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3321 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3322 		filemap_invalidate_lock(inode->i_mapping);
3323 
3324 		truncate_pagecache(inode, i_size);
3325 		f2fs_truncate_blocks(inode, i_size, true);
3326 
3327 		filemap_invalidate_unlock(inode->i_mapping);
3328 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3329 	}
3330 }
3331 
3332 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3333 			struct page *page, loff_t pos, unsigned len,
3334 			block_t *blk_addr, bool *node_changed)
3335 {
3336 	struct inode *inode = page->mapping->host;
3337 	pgoff_t index = page->index;
3338 	struct dnode_of_data dn;
3339 	struct page *ipage;
3340 	bool locked = false;
3341 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3342 	int err = 0;
3343 
3344 	/*
3345 	 * If a whole page is being written and we already preallocated all the
3346 	 * blocks, then there is no need to get a block address now.
3347 	 */
3348 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3349 		return 0;
3350 
3351 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3352 	if (f2fs_has_inline_data(inode)) {
3353 		if (pos + len > MAX_INLINE_DATA(inode))
3354 			flag = F2FS_GET_BLOCK_DEFAULT;
3355 		f2fs_map_lock(sbi, flag);
3356 		locked = true;
3357 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3358 		f2fs_map_lock(sbi, flag);
3359 		locked = true;
3360 	}
3361 
3362 restart:
3363 	/* check inline_data */
3364 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3365 	if (IS_ERR(ipage)) {
3366 		err = PTR_ERR(ipage);
3367 		goto unlock_out;
3368 	}
3369 
3370 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3371 
3372 	if (f2fs_has_inline_data(inode)) {
3373 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3374 			f2fs_do_read_inline_data(page, ipage);
3375 			set_inode_flag(inode, FI_DATA_EXIST);
3376 			if (inode->i_nlink)
3377 				set_page_private_inline(ipage);
3378 			goto out;
3379 		}
3380 		err = f2fs_convert_inline_page(&dn, page);
3381 		if (err || dn.data_blkaddr != NULL_ADDR)
3382 			goto out;
3383 	}
3384 
3385 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3386 						 &dn.data_blkaddr)) {
3387 		if (locked) {
3388 			err = f2fs_reserve_block(&dn, index);
3389 			goto out;
3390 		}
3391 
3392 		/* hole case */
3393 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3394 		if (!err && dn.data_blkaddr != NULL_ADDR)
3395 			goto out;
3396 		f2fs_put_dnode(&dn);
3397 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3398 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3399 		locked = true;
3400 		goto restart;
3401 	}
3402 out:
3403 	if (!err) {
3404 		/* convert_inline_page can make node_changed */
3405 		*blk_addr = dn.data_blkaddr;
3406 		*node_changed = dn.node_changed;
3407 	}
3408 	f2fs_put_dnode(&dn);
3409 unlock_out:
3410 	if (locked)
3411 		f2fs_map_unlock(sbi, flag);
3412 	return err;
3413 }
3414 
3415 static int __find_data_block(struct inode *inode, pgoff_t index,
3416 				block_t *blk_addr)
3417 {
3418 	struct dnode_of_data dn;
3419 	struct page *ipage;
3420 	int err = 0;
3421 
3422 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3423 	if (IS_ERR(ipage))
3424 		return PTR_ERR(ipage);
3425 
3426 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3427 
3428 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3429 						 &dn.data_blkaddr)) {
3430 		/* hole case */
3431 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3432 		if (err) {
3433 			dn.data_blkaddr = NULL_ADDR;
3434 			err = 0;
3435 		}
3436 	}
3437 	*blk_addr = dn.data_blkaddr;
3438 	f2fs_put_dnode(&dn);
3439 	return err;
3440 }
3441 
3442 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3443 				block_t *blk_addr, bool *node_changed)
3444 {
3445 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3446 	struct dnode_of_data dn;
3447 	struct page *ipage;
3448 	int err = 0;
3449 
3450 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3451 
3452 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3453 	if (IS_ERR(ipage)) {
3454 		err = PTR_ERR(ipage);
3455 		goto unlock_out;
3456 	}
3457 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3458 
3459 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3460 						&dn.data_blkaddr))
3461 		err = f2fs_reserve_block(&dn, index);
3462 
3463 	*blk_addr = dn.data_blkaddr;
3464 	*node_changed = dn.node_changed;
3465 	f2fs_put_dnode(&dn);
3466 
3467 unlock_out:
3468 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3469 	return err;
3470 }
3471 
3472 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3473 			struct page *page, loff_t pos, unsigned int len,
3474 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3475 {
3476 	struct inode *inode = page->mapping->host;
3477 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3478 	pgoff_t index = page->index;
3479 	int err = 0;
3480 	block_t ori_blk_addr = NULL_ADDR;
3481 
3482 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3483 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3484 		goto reserve_block;
3485 
3486 	/* Look for the block in COW inode first */
3487 	err = __find_data_block(cow_inode, index, blk_addr);
3488 	if (err) {
3489 		return err;
3490 	} else if (*blk_addr != NULL_ADDR) {
3491 		*use_cow = true;
3492 		return 0;
3493 	}
3494 
3495 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3496 		goto reserve_block;
3497 
3498 	/* Look for the block in the original inode */
3499 	err = __find_data_block(inode, index, &ori_blk_addr);
3500 	if (err)
3501 		return err;
3502 
3503 reserve_block:
3504 	/* Finally, we should reserve a new block in COW inode for the update */
3505 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3506 	if (err)
3507 		return err;
3508 	inc_atomic_write_cnt(inode);
3509 
3510 	if (ori_blk_addr != NULL_ADDR)
3511 		*blk_addr = ori_blk_addr;
3512 	return 0;
3513 }
3514 
3515 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3516 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3517 {
3518 	struct inode *inode = mapping->host;
3519 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3520 	struct page *page = NULL;
3521 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3522 	bool need_balance = false;
3523 	bool use_cow = false;
3524 	block_t blkaddr = NULL_ADDR;
3525 	int err = 0;
3526 
3527 	trace_f2fs_write_begin(inode, pos, len);
3528 
3529 	if (!f2fs_is_checkpoint_ready(sbi)) {
3530 		err = -ENOSPC;
3531 		goto fail;
3532 	}
3533 
3534 	/*
3535 	 * We should check this at this moment to avoid deadlock on inode page
3536 	 * and #0 page. The locking rule for inline_data conversion should be:
3537 	 * lock_page(page #0) -> lock_page(inode_page)
3538 	 */
3539 	if (index != 0) {
3540 		err = f2fs_convert_inline_inode(inode);
3541 		if (err)
3542 			goto fail;
3543 	}
3544 
3545 #ifdef CONFIG_F2FS_FS_COMPRESSION
3546 	if (f2fs_compressed_file(inode)) {
3547 		int ret;
3548 
3549 		*fsdata = NULL;
3550 
3551 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3552 			goto repeat;
3553 
3554 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3555 							index, fsdata);
3556 		if (ret < 0) {
3557 			err = ret;
3558 			goto fail;
3559 		} else if (ret) {
3560 			return 0;
3561 		}
3562 	}
3563 #endif
3564 
3565 repeat:
3566 	/*
3567 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3568 	 * wait_for_stable_page. Will wait that below with our IO control.
3569 	 */
3570 	page = f2fs_pagecache_get_page(mapping, index,
3571 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3572 	if (!page) {
3573 		err = -ENOMEM;
3574 		goto fail;
3575 	}
3576 
3577 	/* TODO: cluster can be compressed due to race with .writepage */
3578 
3579 	*pagep = page;
3580 
3581 	if (f2fs_is_atomic_file(inode))
3582 		err = prepare_atomic_write_begin(sbi, page, pos, len,
3583 					&blkaddr, &need_balance, &use_cow);
3584 	else
3585 		err = prepare_write_begin(sbi, page, pos, len,
3586 					&blkaddr, &need_balance);
3587 	if (err)
3588 		goto fail;
3589 
3590 	if (need_balance && !IS_NOQUOTA(inode) &&
3591 			has_not_enough_free_secs(sbi, 0, 0)) {
3592 		unlock_page(page);
3593 		f2fs_balance_fs(sbi, true);
3594 		lock_page(page);
3595 		if (page->mapping != mapping) {
3596 			/* The page got truncated from under us */
3597 			f2fs_put_page(page, 1);
3598 			goto repeat;
3599 		}
3600 	}
3601 
3602 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3603 
3604 	if (len == PAGE_SIZE || PageUptodate(page))
3605 		return 0;
3606 
3607 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3608 	    !f2fs_verity_in_progress(inode)) {
3609 		zero_user_segment(page, len, PAGE_SIZE);
3610 		return 0;
3611 	}
3612 
3613 	if (blkaddr == NEW_ADDR) {
3614 		zero_user_segment(page, 0, PAGE_SIZE);
3615 		SetPageUptodate(page);
3616 	} else {
3617 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3618 				DATA_GENERIC_ENHANCE_READ)) {
3619 			err = -EFSCORRUPTED;
3620 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3621 			goto fail;
3622 		}
3623 		err = f2fs_submit_page_read(use_cow ?
3624 				F2FS_I(inode)->cow_inode : inode, page,
3625 				blkaddr, 0, true);
3626 		if (err)
3627 			goto fail;
3628 
3629 		lock_page(page);
3630 		if (unlikely(page->mapping != mapping)) {
3631 			f2fs_put_page(page, 1);
3632 			goto repeat;
3633 		}
3634 		if (unlikely(!PageUptodate(page))) {
3635 			err = -EIO;
3636 			goto fail;
3637 		}
3638 	}
3639 	return 0;
3640 
3641 fail:
3642 	f2fs_put_page(page, 1);
3643 	f2fs_write_failed(inode, pos + len);
3644 	return err;
3645 }
3646 
3647 static int f2fs_write_end(struct file *file,
3648 			struct address_space *mapping,
3649 			loff_t pos, unsigned len, unsigned copied,
3650 			struct page *page, void *fsdata)
3651 {
3652 	struct inode *inode = page->mapping->host;
3653 
3654 	trace_f2fs_write_end(inode, pos, len, copied);
3655 
3656 	/*
3657 	 * This should be come from len == PAGE_SIZE, and we expect copied
3658 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3659 	 * let generic_perform_write() try to copy data again through copied=0.
3660 	 */
3661 	if (!PageUptodate(page)) {
3662 		if (unlikely(copied != len))
3663 			copied = 0;
3664 		else
3665 			SetPageUptodate(page);
3666 	}
3667 
3668 #ifdef CONFIG_F2FS_FS_COMPRESSION
3669 	/* overwrite compressed file */
3670 	if (f2fs_compressed_file(inode) && fsdata) {
3671 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3672 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3673 
3674 		if (pos + copied > i_size_read(inode) &&
3675 				!f2fs_verity_in_progress(inode))
3676 			f2fs_i_size_write(inode, pos + copied);
3677 		return copied;
3678 	}
3679 #endif
3680 
3681 	if (!copied)
3682 		goto unlock_out;
3683 
3684 	set_page_dirty(page);
3685 
3686 	if (f2fs_is_atomic_file(inode))
3687 		set_page_private_atomic(page);
3688 
3689 	if (pos + copied > i_size_read(inode) &&
3690 	    !f2fs_verity_in_progress(inode)) {
3691 		f2fs_i_size_write(inode, pos + copied);
3692 		if (f2fs_is_atomic_file(inode))
3693 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3694 					pos + copied);
3695 	}
3696 unlock_out:
3697 	f2fs_put_page(page, 1);
3698 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3699 	return copied;
3700 }
3701 
3702 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3703 {
3704 	struct inode *inode = folio->mapping->host;
3705 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3706 
3707 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3708 				(offset || length != folio_size(folio)))
3709 		return;
3710 
3711 	if (folio_test_dirty(folio)) {
3712 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3713 			dec_page_count(sbi, F2FS_DIRTY_META);
3714 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3715 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3716 		} else {
3717 			inode_dec_dirty_pages(inode);
3718 			f2fs_remove_dirty_inode(inode);
3719 		}
3720 	}
3721 	clear_page_private_all(&folio->page);
3722 }
3723 
3724 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3725 {
3726 	/* If this is dirty folio, keep private data */
3727 	if (folio_test_dirty(folio))
3728 		return false;
3729 
3730 	clear_page_private_all(&folio->page);
3731 	return true;
3732 }
3733 
3734 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3735 		struct folio *folio)
3736 {
3737 	struct inode *inode = mapping->host;
3738 
3739 	trace_f2fs_set_page_dirty(&folio->page, DATA);
3740 
3741 	if (!folio_test_uptodate(folio))
3742 		folio_mark_uptodate(folio);
3743 	BUG_ON(folio_test_swapcache(folio));
3744 
3745 	if (filemap_dirty_folio(mapping, folio)) {
3746 		f2fs_update_dirty_folio(inode, folio);
3747 		return true;
3748 	}
3749 	return false;
3750 }
3751 
3752 
3753 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3754 {
3755 #ifdef CONFIG_F2FS_FS_COMPRESSION
3756 	struct dnode_of_data dn;
3757 	sector_t start_idx, blknr = 0;
3758 	int ret;
3759 
3760 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3761 
3762 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3763 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3764 	if (ret)
3765 		return 0;
3766 
3767 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3768 		dn.ofs_in_node += block - start_idx;
3769 		blknr = f2fs_data_blkaddr(&dn);
3770 		if (!__is_valid_data_blkaddr(blknr))
3771 			blknr = 0;
3772 	}
3773 
3774 	f2fs_put_dnode(&dn);
3775 	return blknr;
3776 #else
3777 	return 0;
3778 #endif
3779 }
3780 
3781 
3782 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3783 {
3784 	struct inode *inode = mapping->host;
3785 	sector_t blknr = 0;
3786 
3787 	if (f2fs_has_inline_data(inode))
3788 		goto out;
3789 
3790 	/* make sure allocating whole blocks */
3791 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3792 		filemap_write_and_wait(mapping);
3793 
3794 	/* Block number less than F2FS MAX BLOCKS */
3795 	if (unlikely(block >= max_file_blocks(inode)))
3796 		goto out;
3797 
3798 	if (f2fs_compressed_file(inode)) {
3799 		blknr = f2fs_bmap_compress(inode, block);
3800 	} else {
3801 		struct f2fs_map_blocks map;
3802 
3803 		memset(&map, 0, sizeof(map));
3804 		map.m_lblk = block;
3805 		map.m_len = 1;
3806 		map.m_next_pgofs = NULL;
3807 		map.m_seg_type = NO_CHECK_TYPE;
3808 
3809 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3810 			blknr = map.m_pblk;
3811 	}
3812 out:
3813 	trace_f2fs_bmap(inode, block, blknr);
3814 	return blknr;
3815 }
3816 
3817 #ifdef CONFIG_SWAP
3818 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3819 							unsigned int blkcnt)
3820 {
3821 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3822 	unsigned int blkofs;
3823 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3824 	unsigned int secidx = start_blk / blk_per_sec;
3825 	unsigned int end_sec;
3826 	int ret = 0;
3827 
3828 	if (!blkcnt)
3829 		return 0;
3830 	end_sec = secidx + (blkcnt - 1) / blk_per_sec;
3831 
3832 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3833 	filemap_invalidate_lock(inode->i_mapping);
3834 
3835 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3836 	set_inode_flag(inode, FI_OPU_WRITE);
3837 
3838 	for (; secidx <= end_sec; secidx++) {
3839 		unsigned int blkofs_end = secidx == end_sec ?
3840 			(blkcnt - 1) % blk_per_sec : blk_per_sec - 1;
3841 
3842 		f2fs_down_write(&sbi->pin_sem);
3843 
3844 		ret = f2fs_allocate_pinning_section(sbi);
3845 		if (ret) {
3846 			f2fs_up_write(&sbi->pin_sem);
3847 			break;
3848 		}
3849 
3850 		set_inode_flag(inode, FI_SKIP_WRITES);
3851 
3852 		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3853 			struct page *page;
3854 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3855 
3856 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3857 			if (IS_ERR(page)) {
3858 				f2fs_up_write(&sbi->pin_sem);
3859 				ret = PTR_ERR(page);
3860 				goto done;
3861 			}
3862 
3863 			set_page_dirty(page);
3864 			f2fs_put_page(page, 1);
3865 		}
3866 
3867 		clear_inode_flag(inode, FI_SKIP_WRITES);
3868 
3869 		ret = filemap_fdatawrite(inode->i_mapping);
3870 
3871 		f2fs_up_write(&sbi->pin_sem);
3872 
3873 		if (ret)
3874 			break;
3875 	}
3876 
3877 done:
3878 	clear_inode_flag(inode, FI_SKIP_WRITES);
3879 	clear_inode_flag(inode, FI_OPU_WRITE);
3880 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3881 
3882 	filemap_invalidate_unlock(inode->i_mapping);
3883 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3884 
3885 	return ret;
3886 }
3887 
3888 static int check_swap_activate(struct swap_info_struct *sis,
3889 				struct file *swap_file, sector_t *span)
3890 {
3891 	struct address_space *mapping = swap_file->f_mapping;
3892 	struct inode *inode = mapping->host;
3893 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3894 	block_t cur_lblock;
3895 	block_t last_lblock;
3896 	block_t pblock;
3897 	block_t lowest_pblock = -1;
3898 	block_t highest_pblock = 0;
3899 	int nr_extents = 0;
3900 	unsigned int nr_pblocks;
3901 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3902 	unsigned int not_aligned = 0;
3903 	int ret = 0;
3904 
3905 	/*
3906 	 * Map all the blocks into the extent list.  This code doesn't try
3907 	 * to be very smart.
3908 	 */
3909 	cur_lblock = 0;
3910 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3911 
3912 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3913 		struct f2fs_map_blocks map;
3914 retry:
3915 		cond_resched();
3916 
3917 		memset(&map, 0, sizeof(map));
3918 		map.m_lblk = cur_lblock;
3919 		map.m_len = last_lblock - cur_lblock;
3920 		map.m_next_pgofs = NULL;
3921 		map.m_next_extent = NULL;
3922 		map.m_seg_type = NO_CHECK_TYPE;
3923 		map.m_may_create = false;
3924 
3925 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3926 		if (ret)
3927 			goto out;
3928 
3929 		/* hole */
3930 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3931 			f2fs_err(sbi, "Swapfile has holes");
3932 			ret = -EINVAL;
3933 			goto out;
3934 		}
3935 
3936 		pblock = map.m_pblk;
3937 		nr_pblocks = map.m_len;
3938 
3939 		if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3940 				nr_pblocks % blks_per_sec ||
3941 				!f2fs_valid_pinned_area(sbi, pblock)) {
3942 			bool last_extent = false;
3943 
3944 			not_aligned++;
3945 
3946 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3947 			if (cur_lblock + nr_pblocks > sis->max)
3948 				nr_pblocks -= blks_per_sec;
3949 
3950 			/* this extent is last one */
3951 			if (!nr_pblocks) {
3952 				nr_pblocks = last_lblock - cur_lblock;
3953 				last_extent = true;
3954 			}
3955 
3956 			ret = f2fs_migrate_blocks(inode, cur_lblock,
3957 							nr_pblocks);
3958 			if (ret) {
3959 				if (ret == -ENOENT)
3960 					ret = -EINVAL;
3961 				goto out;
3962 			}
3963 
3964 			if (!last_extent)
3965 				goto retry;
3966 		}
3967 
3968 		if (cur_lblock + nr_pblocks >= sis->max)
3969 			nr_pblocks = sis->max - cur_lblock;
3970 
3971 		if (cur_lblock) {	/* exclude the header page */
3972 			if (pblock < lowest_pblock)
3973 				lowest_pblock = pblock;
3974 			if (pblock + nr_pblocks - 1 > highest_pblock)
3975 				highest_pblock = pblock + nr_pblocks - 1;
3976 		}
3977 
3978 		/*
3979 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3980 		 */
3981 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3982 		if (ret < 0)
3983 			goto out;
3984 		nr_extents += ret;
3985 		cur_lblock += nr_pblocks;
3986 	}
3987 	ret = nr_extents;
3988 	*span = 1 + highest_pblock - lowest_pblock;
3989 	if (cur_lblock == 0)
3990 		cur_lblock = 1;	/* force Empty message */
3991 	sis->max = cur_lblock;
3992 	sis->pages = cur_lblock - 1;
3993 	sis->highest_bit = cur_lblock - 1;
3994 out:
3995 	if (not_aligned)
3996 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3997 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
3998 	return ret;
3999 }
4000 
4001 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4002 				sector_t *span)
4003 {
4004 	struct inode *inode = file_inode(file);
4005 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4006 	int ret;
4007 
4008 	if (!S_ISREG(inode->i_mode))
4009 		return -EINVAL;
4010 
4011 	if (f2fs_readonly(sbi->sb))
4012 		return -EROFS;
4013 
4014 	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4015 		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4016 		return -EINVAL;
4017 	}
4018 
4019 	ret = f2fs_convert_inline_inode(inode);
4020 	if (ret)
4021 		return ret;
4022 
4023 	if (!f2fs_disable_compressed_file(inode))
4024 		return -EINVAL;
4025 
4026 	f2fs_precache_extents(inode);
4027 
4028 	ret = filemap_fdatawrite(inode->i_mapping);
4029 	if (ret < 0)
4030 		return ret;
4031 
4032 	ret = check_swap_activate(sis, file, span);
4033 	if (ret < 0)
4034 		return ret;
4035 
4036 	stat_inc_swapfile_inode(inode);
4037 	set_inode_flag(inode, FI_PIN_FILE);
4038 	f2fs_update_time(sbi, REQ_TIME);
4039 	return ret;
4040 }
4041 
4042 static void f2fs_swap_deactivate(struct file *file)
4043 {
4044 	struct inode *inode = file_inode(file);
4045 
4046 	stat_dec_swapfile_inode(inode);
4047 	clear_inode_flag(inode, FI_PIN_FILE);
4048 }
4049 #else
4050 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4051 				sector_t *span)
4052 {
4053 	return -EOPNOTSUPP;
4054 }
4055 
4056 static void f2fs_swap_deactivate(struct file *file)
4057 {
4058 }
4059 #endif
4060 
4061 const struct address_space_operations f2fs_dblock_aops = {
4062 	.read_folio	= f2fs_read_data_folio,
4063 	.readahead	= f2fs_readahead,
4064 	.writepage	= f2fs_write_data_page,
4065 	.writepages	= f2fs_write_data_pages,
4066 	.write_begin	= f2fs_write_begin,
4067 	.write_end	= f2fs_write_end,
4068 	.dirty_folio	= f2fs_dirty_data_folio,
4069 	.migrate_folio	= filemap_migrate_folio,
4070 	.invalidate_folio = f2fs_invalidate_folio,
4071 	.release_folio	= f2fs_release_folio,
4072 	.bmap		= f2fs_bmap,
4073 	.swap_activate  = f2fs_swap_activate,
4074 	.swap_deactivate = f2fs_swap_deactivate,
4075 };
4076 
4077 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4078 {
4079 	struct address_space *mapping = page_mapping(page);
4080 	unsigned long flags;
4081 
4082 	xa_lock_irqsave(&mapping->i_pages, flags);
4083 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4084 						PAGECACHE_TAG_DIRTY);
4085 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4086 }
4087 
4088 int __init f2fs_init_post_read_processing(void)
4089 {
4090 	bio_post_read_ctx_cache =
4091 		kmem_cache_create("f2fs_bio_post_read_ctx",
4092 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4093 	if (!bio_post_read_ctx_cache)
4094 		goto fail;
4095 	bio_post_read_ctx_pool =
4096 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4097 					 bio_post_read_ctx_cache);
4098 	if (!bio_post_read_ctx_pool)
4099 		goto fail_free_cache;
4100 	return 0;
4101 
4102 fail_free_cache:
4103 	kmem_cache_destroy(bio_post_read_ctx_cache);
4104 fail:
4105 	return -ENOMEM;
4106 }
4107 
4108 void f2fs_destroy_post_read_processing(void)
4109 {
4110 	mempool_destroy(bio_post_read_ctx_pool);
4111 	kmem_cache_destroy(bio_post_read_ctx_cache);
4112 }
4113 
4114 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4115 {
4116 	if (!f2fs_sb_has_encrypt(sbi) &&
4117 		!f2fs_sb_has_verity(sbi) &&
4118 		!f2fs_sb_has_compression(sbi))
4119 		return 0;
4120 
4121 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4122 						 WQ_UNBOUND | WQ_HIGHPRI,
4123 						 num_online_cpus());
4124 	return sbi->post_read_wq ? 0 : -ENOMEM;
4125 }
4126 
4127 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4128 {
4129 	if (sbi->post_read_wq)
4130 		destroy_workqueue(sbi->post_read_wq);
4131 }
4132 
4133 int __init f2fs_init_bio_entry_cache(void)
4134 {
4135 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4136 			sizeof(struct bio_entry));
4137 	return bio_entry_slab ? 0 : -ENOMEM;
4138 }
4139 
4140 void f2fs_destroy_bio_entry_cache(void)
4141 {
4142 	kmem_cache_destroy(bio_entry_slab);
4143 }
4144 
4145 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4146 			    unsigned int flags, struct iomap *iomap,
4147 			    struct iomap *srcmap)
4148 {
4149 	struct f2fs_map_blocks map = {};
4150 	pgoff_t next_pgofs = 0;
4151 	int err;
4152 
4153 	map.m_lblk = bytes_to_blks(inode, offset);
4154 	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4155 	map.m_next_pgofs = &next_pgofs;
4156 	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4157 	if (flags & IOMAP_WRITE)
4158 		map.m_may_create = true;
4159 
4160 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4161 	if (err)
4162 		return err;
4163 
4164 	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4165 
4166 	/*
4167 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4168 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4169 	 * limiting the length of the mapping returned.
4170 	 */
4171 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4172 
4173 	/*
4174 	 * We should never see delalloc or compressed extents here based on
4175 	 * prior flushing and checks.
4176 	 */
4177 	if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4178 		return -EINVAL;
4179 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4180 		return -EINVAL;
4181 
4182 	if (map.m_flags & F2FS_MAP_MAPPED) {
4183 		iomap->length = blks_to_bytes(inode, map.m_len);
4184 		iomap->type = IOMAP_MAPPED;
4185 		iomap->flags |= IOMAP_F_MERGED;
4186 		iomap->bdev = map.m_bdev;
4187 		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4188 	} else {
4189 		if (flags & IOMAP_WRITE)
4190 			return -ENOTBLK;
4191 		iomap->length = blks_to_bytes(inode, next_pgofs) -
4192 				iomap->offset;
4193 		iomap->type = IOMAP_HOLE;
4194 		iomap->addr = IOMAP_NULL_ADDR;
4195 	}
4196 
4197 	if (map.m_flags & F2FS_MAP_NEW)
4198 		iomap->flags |= IOMAP_F_NEW;
4199 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4200 	    offset + length > i_size_read(inode))
4201 		iomap->flags |= IOMAP_F_DIRTY;
4202 
4203 	return 0;
4204 }
4205 
4206 const struct iomap_ops f2fs_iomap_ops = {
4207 	.iomap_begin	= f2fs_iomap_begin,
4208 };
4209